
Mississippi State University Mississippi State University

Scholars Junction Scholars Junction

Theses and Dissertations Theses and Dissertations

8-3-2002

On the Modeling of TCP Latency and Throughput On the Modeling of TCP Latency and Throughput

Dong Zheng

Follow this and additional works at: https://scholarsjunction.msstate.edu/td

Recommended Citation Recommended Citation
Zheng, Dong, "On the Modeling of TCP Latency and Throughput" (2002). Theses and Dissertations. 3369.
https://scholarsjunction.msstate.edu/td/3369

This Graduate Thesis - Open Access is brought to you for free and open access by the Theses and Dissertations at
Scholars Junction. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of
Scholars Junction. For more information, please contact scholcomm@msstate.libanswers.com.

https://scholarsjunction.msstate.edu/
https://scholarsjunction.msstate.edu/td
https://scholarsjunction.msstate.edu/theses-dissertations
https://scholarsjunction.msstate.edu/td?utm_source=scholarsjunction.msstate.edu%2Ftd%2F3369&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsjunction.msstate.edu/td/3369?utm_source=scholarsjunction.msstate.edu%2Ftd%2F3369&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholcomm@msstate.libanswers.com

ON THE MODELING OF TCP LATENCY AND THROUGHPUT

By

Dong Zheng

A Thesis
Submitted to the Faculty of
Mississippi State University

in Partial Fulfillment of the Requirements
for the Degree of Master of Science

in Electrical Engineering
in the Department of Electrical and Computer Engineering

Mississippi State, Mississippi

August 2002

Copyright by

Dong Zheng

2002

ON THE MODELING OF TCP LATENCY AND THROUGHPUT

By

Dong Zheng

Approved:

Georgios Y. Lazarou
Assistant Professor of Electrical Engineer-
ing
(Major Professor)

James C. Harden
Professor of Electrical Engineering
Graduate Coordinator
Department of Electrical and Computer
Engineering

Yul Chu
Assistant Professor of Electrical Engineer-
ing
(Committee Member)

Rose Qingyang Hu
Assistant Professor of Electrical Engineer-
ing
(Committee Member)

A. Wayne Bennett
Dean of the College of Engineering

Name: Dong Zheng

Date of Degree: August 3, 2002

Institution: Mississippi State University

Major Field: Electrical Engineering

Major Professor: Dr. Georgios Y. Lazarou

Title of Study: ON THE MODELING OF TCP LATENCY AND THROUGHPUT

Pages in Study: 64

Candidate for Degree of Master of Science

In this thesis, a new model for the slow start phase based on the discrete evolutions

of congestion window is developed. We then integrate this result into our improved TCP

steady state model for a better prediction performance. Combining these short and steady

state models, we propose an extensive stochastic model which can accurately predict the

throughput and latency of the TCP connections as functions of loss rate, round-trip time

(RTT), and file size. We validate our model through simulation experiments. The results

show that our model’s predictions match the simulation results better than the stochastic

models in [17, 4], about
�����

improvement in the accuracy of performance predictions

compared with other steady-state models and ��� � improvement compared with other

short-lived TCP connection models.

DEDICATION

To my parents and Beryl.

ii

ACKNOWLEDGMENTS

My sincere thanks goes to Dr. Georgios Lazarou, my major adviser, for his guidance

and support. I appreciate his patience while I am trying to find my way out. His insight

and knowledge in networks, the social grace with which he delivers his idea are a constant

inspiration.

I wish to thank my thesis committee members for their valuable suggestions. I espe-

cially thank Dr. Nicholas Younan, without his help and long-lasting support, I wouldn’t be

able to finish my study. My thanks also goes to Mr. Bill Chapman and Mr. Michale Lane

for their help on my various kinds of computer questions.

I thank my friends, especially Manimaran Selvaraj and Gomathi Anandan. Mani’s

knowledge in simulation always be my last resort of NS questions. He and Gomathi leaded

me to this wonderful LATEXworld.

I also want to thank my wife, Beryl, whose appearance has changed every aspect of

my life. Her support and lovely companionship is another important source of strength for

me.

This degree is dedicated to my parents, Cheng Rong and Riyong Zheng. They spend

all their time and energies on me. Without their devoted love and unstingting sacrifices,

none of this would have been possible.

iii

TABLE OF CONTENTS

Page

DEDICATION . ii

ACKNOWLEDGMENTS . iii

LIST OF TABLES . vi

LIST OF FIGURES . vii

LIST OF SYMBOLS, ABBREVIATIONS, AND NOMENCLATURE ix

CHAPTER

I. INTRODUCTION . 1

1.1 Problem Statement and Motivation . 2
1.2 Summary of Main Contributions of This Research 4
1.3 Organization . 4

II. TCP: THE MAJOR TRANSFER PROTOCOL IN THE INTERNET 5

2.1 BSD TCP’s implementation . 5
2.2 Basic Features of TCP . 6

2.2.1 Flow Control . 8
2.2.2 Slow Start and Congestion Avoidance 9
2.2.3 Delayed Acknowledgments . 11
2.2.4 TCP’s Self-Clocking Property 12

III. RELATED WORK . 13

3.1 The Short-lived Connections Model 14
3.2 The Steady-state Model . 15

IV. STEADY STATE MODEL INCORPORATING THE SLOW START PHASE 17

4.1 Assumptions . 17

iv

CHAPTER Page

4.2 The Steady State Model that Incorporates the Slow-Start Phase 18
4.2.1 The Slow-Start Phase . 20
4.2.2 The Congestion-Avoidance Phase 24
4.2.3 The Time-out Phase . 30
4.2.4 The Steady State Send Rate and Throughput 33

V. SHORT-LIVED TCP CONNECTION MODEL 37

5.1 The First Slow Start . 38
5.2 The First Loss . 39
5.3 Sending the Rest of the Packets . 43
5.4 Total Latency . 43

VI. MODEL VALIDATION THROUGH SIMULATION 46

6.1 Steady-State Model . 47
6.2 Relation between the Transferred File Size and Latency 48
6.3 Relation between File Size, Loss Rate and Throughput 52

VII. CONCLUSIONS AND FUTURE WORK 56

7.1 Summary of the Achievements . 56
7.2 Future Work . 57

REFERENCES . 58

APPENDIX

A. THE EXPECTATION OF 1/W . 60

B. THE VARIANCE OF ����� . 62

v

LIST OF TABLES

TABLE Page

2.1 A history of BSD releases and important TCP features added with each release. 6

6.1 Comparison of the predictions average error. 52

vi

LIST OF FIGURES

FIGURE Page

2.1 A typical TCP initial start phase evolution 10

4.1 The extended steady state model - evolution of congestion window size when
loss indications are triple-duplicate ACK’s and time-outs. 18

4.2 The steady state analysis. 25

4.3 The difference of the expected value of window size. 29

4.4 The difference of throughput predictions given by our proposed model and the
model from Padhye’s paper. The conditions are: ������� �������	� ,
��
���������������� � , ��������� � � � �"!#�

, �#$%�&��� �(' , �*)+� ����� � � � �"!,� � ,
� � � 36

5.1 A sample situation when TD happens. 41

5.2 Throughput predictions given by the short TCP model and the steady state
model. The conditions are: ����� � � �����	� ,
��
�-� �������.����� � , �/�0�
��� � � � �"!#�

, �#$%�1��� �(' , �*)0� ����� � � � �"!,� � ,
� � � 45

6.1 Simulation topology . 46

6.2 Comparing the steady state throughput predicted by the models in the middle-
to-high loss rate range. The parameters are: ����� � �������	� ,
��
� �������������� � , ��������� � � � �"!#�

, �#$%�&��� �(' , �*)+� ����� � � � �"!,� � 49

6.3 Average error comparison of the models in the middle-to-high loss rate range.
The parameters are: �����2� �������	� ,
��
�3� �������.����� � , ���4�5��� � � � �"!#�

,
�#$%���(� �(' , �*)0� ���6� � � � �"!#� � . 50

6.4 Comparing the latency predicted by the short connection models for small
transferred file size. The parameters are: 78� � , ���9�:�5� �����	� ,
��
�3�������������� � , ��������� � � � �"!#�

, �#$%�&��� �(' , �*)+� ����� � � � �"!,� � 51

vii

6.5 Comparing the throughput predicted by the models for varying loss rate. The
transferred file size is fixed at ����� . The parameters are: ����� � � �����	� ,

��
� � � �����.� ��� � , � ���1�(� � � � �"!,�

, � $%�1��� �(' , �)0� ���6� � � � �"!#� � 53

6.6 Comparing the throughput predicted by the models for varying loss rate. The
transferred file size is fixed at

��� � . The parameters are: ����� � � �����	� ,

��
� � � �����.� ��� � , � ���1�(� � � � �"!,�

, � $%�1��� �(' , �)0� ���6� � � � �"!#� � 54

6.7 Comparing the throughput predicted by the models for varying loss rate. The
transferred file size is fixed at ��� � � . The parameters are: ���9�2�5� �����	� ,

��
� � � �����.� ��� � , � ���1�(� � � � �"!,�

, � $%�1��� �(' , �)0� ���6� � � � �"!#� � 55

viii

LIST OF SYMBOLS, ABBREVIATIONS, AND NOMENCLATURE

�
stands for golden number, 1.61804;

' � !��
is the size of the congestion window;

��� ������� � � is the size of the slow start threshold;

����� is the round trip time;

 � � is the maximum segment size.

ix

CHAPTER I

INTRODUCTION

A multitude of Internet applications, such as the world wide web, usenet news, file

transfer and remote login have opted for TCP as their transport medium. TCP’s perfor-

mance thus greatly influences Internet traffic behavior [23, 5]. Hence, many stochastic

models of TCP latency and throughput have been proposed, trying to capture its char-

acteristics [20, 8, 17, 4]. In most of these models, the TCP performance (latency and

throughput) is described based on the network parameters such as TCP round trip time

and packet loss rate. With the help of these models, a better understanding of TCP’s sen-

sitivity to network parameters can be obtained, and this can further aid in the design of

active queue management techniques [7, 16] and TCP-friendly multicast protocols [2, 25].

In order to distribute resources in a fair manner between TCP and other transport protocol,

we need to know the TCP connections’ characteristics. Therefore, an accurate model of

TCP performance is needed. However due to the complexity of the protocol, itself, and the

fast-changing network conditions, the development of an accurate TCP stochastic model

is a very challenging task.

There are at present two major approaches in the TCP modeling area. The first one

makes use of simulation tools to simulate the behavior of TCP [9]. But simulation studies

1

2

neither provide a full mathematical description of TCP nor estimate the performance of

TCP when the network parameters change. Hence simulation based approaches are only

useful to test the validating analytical models of TCP [14].

The second approach models TCP performance through the use of mathematical anal-

ysis. The work in [17, 4] follow this approach. These modeling techniques assume the

underlying congestion control window size growth process to be a Markov generative

process. These techniques start with mathematical expressions that relate the TCP send-

ing rate with the loss probability and the round trip time. Then, in order to develop a

mathematically tractable and solvable model, many assumptions are made to simplify the

analysis. This makes it possible to derive a complete mathematical description of the ex-

pectation of TCP sending rate based on the network parameters (round trip time and loss

probability).

Stochastic models of TCP can be classified into three types: models for the steady-state

performance of a bulk transfer flow [3, 17], models for the short-lived flows with small

packet losses [18, 8, 11], and lately, models that combine the above analyses together [20,

4].

1.1 Problem Statement and Motivation

Most existing stochastic TCP models do not capture the effect of time-outs [12, 13, 15].

As observed in [17], around ��� � of packet losses cause time-outs. Hence, time-outs must

always be an integral part of any TCP performance prediction model.

3

The work in [17] proposes a model which accounts for the time-outs, however, it al-

ways underestimates the performance of TCP. This is due on several inaccurate assump-

tions and approximations 1.

At the best of our knowledge, none of the steady-state models proposed so far account

for the slow start phase which begins at the end of every single time-out [17, 3]. Hence,

for accurate TCP performance predictions, new models are needed that can capture the

effects of the slow-start phases on performance.

Since delayed acknowledgment effects has made the stochastic analysis complex in

the model building, most models circumvent it by just ignoring their effects, or using a

simple approximation. And these simplifications inevitably bring some inaccuracy to the

model’s prediction. Obviously, accurate TCP models should include the analysis of the

delayed acknowledgment effects into their model.

All steady state models assume the availability of unlimited data to send. Hence, the

impact of the transient phase on performance is insignificant, and is therefore ignored [17].

These models can only be used to predict the TCP send rate or throughput of bulk data

transfers. Therefore, they are not applicable in predicting the performance of short-lived

TCP flows.

It is noted in [6, 1] that the majority of TCP traffic in the Internet consists of short-lived

flows, i.e., the transmission comes to an end during the slow start phase before switching

1See Chapter V for details.

4

to the congestion-avoidance phase. Hence, new models are needed that are capable of

predicting the performance of long-lived or short-lived TCP flows.

1.2 Summary of Main Contributions of This Research

In this thesis, we constructed:

1. a better and tractable model of the congestion window growth pattern for the slow-
start phase;

2. a complete steady-state model including the slow-start phase and more accurate
analysis of time-outs;

3. an accurate model for the short-lived TCP flows.

1.3 Organization

The remainder of the thesis is organized as follows. In Chapter II we briefly describe the

TCP’s implementation, especially congestion control mechanism on which we are trying

to build our model. The following Chapter III gives the summary of the work related to

ours. After that, Chapter IV describes the assumptions, and then, gives a very detailed

analysis of our proposed extended model step by step. The slow start congestion window

growth pattern is also discussed here. In Chapter V, we will propose a short TCP connec-

tion model based on the extended steady state model developed in the previous chapter.

Chapter VI describes the simulation and model validation experiments and analyze the

simulation results to verify the accuracy our model. Finally, Chapter VII concludes the

paper and discusses the future work.

CHAPTER II

TCP: THE MAJOR TRANSFER PROTOCOL IN THE INTERNET

Transmission Control Protocol (TCP) is the most widely used communication protocol

corresponding to the transport layer of the Open System Interconnection (OSI) networking

model. In this chapter, we describe the important features of TCP protocol which are rele-

vant to our model building in the next chapter. We begin our discussion with an overview

of TCP and its implementations, especially the TCP Reno release.

2.1 BSD TCP’s implementation

TCP, originally defined in RFC 793[19], provides a connection-oriented and reliable

byte stream service to applications. The most popular TCP implementation is released by

the Computer Systems Research Group at the University of California at Berkeley, usually

called the “BSD Networking Releases”. This implementation of TCP has served as the

starting point for many TCP/IP suites running in different UNIX and windows systems

[22]. A chronology of the various BSD releases is shown in Table 2.1. Two of the most

popular BSD implementations are TCP Tahoe and TCP Reno. They are widely used as

a basis on the effect congestion control to the TCP performance [21]. In this thesis, we

focus on the following TCP Reno features: the explicit and acknowledged connection

5

6

establishment, the reliable stream exchange across the TCP connection, the end-to-end

flow control, and the congestion control.

Features RFC 793 TCP Tahoe TCP Reno TCP Lite

and RFC 1122 (1988) (1990) (1993)

RTT Variance Estimation � � � �

Exponential RTO Backoff � � � �

Slow start � � � �

Karn’s Algorithm � � � �

Congestion Avoidance � � � �

Fast Retransmit � � �

Fast Recovery � �

Table 2.1 A history of BSD releases and important TCP features added with each release.

2.2 Basic Features of TCP

TCP is a connection-oriented communication protocol, i.e., whenever applications

want to transfer data, they are required to establish a logical connection before they can do

so. This explicit TCP connection is established by the three-way-handshake process [22].

When data is passed from an application to TCP for delivery, TCP breaks the data

stream into smaller chunks, and adds a protocol information header to form a segment. The

7

largest chunk of data that TCP can include in each segment is limited by the maximum

segment size (MSS). During the initialization of a connection, each host announces its

MSS, and TCP chooses the smallest value to avoid further fragmentation. These segments

are passed to IP, and in turn IP appends its own header information to form datagrams or

packets.

TCP operates on top of IP suite, which provides a best effort service. That is, IP does

not guarantee that a packet would successfully be received by its destination. Packets

could be dropped somewhere in the network, or get corrupted by channel noise. Both of

these situations lead to the failure of the packets’ delivery. TCP is designed to deal with

these situations and provides the reliability to the data delivery. It achieves this by using

a technique called positive acknowledgment with retransmission. This technique requires

TCP sender to assign unique sequence numbers to packets, keep record of each packet

sent, and wait for the receiver to send back acknowledgments (ACKs) upon successfully

receiving the packets. The sender also starts a retransmission timer whenever it sends a

packet. If an acknowledgment does not arrive before the expiration of the timer, TCP will

assume that the packet has been lost, and therefore TCP will retransmit it.

The total amount of time a sender waits for an ACK before retransmission is called

retransmission time-out (RTO). RTO is calculated based on the round trip time (RTT),

the duration required for a segment to travel to the destination and an ACK to return to the

sender. However, RTT changes significantly over time due to the variation of network con-

ditions. Therefore, TCP uses an adaptive retransmission algorithm to track delay changes

8

on each connection, and adjust the RTO accordingly. More exact details on calculating the

RTO can be found in [22].

2.2.1 Flow Control

However, if TCP sends one segment at a time and waits for the acknowledgment, the

send rate would be around ��������� packets per second. That is, TCP will not fully utilize

the network bandwidth if the simple stop-and-wait algorithm is applied. Therefore, TCP

uses the sliding window technique instead [22]. It allows the sender to transmit multiple

segments before it stops and wait for an ACK, thus a higher send rate is achieved by TCP.

When TCP sends data at a rate greater than the maximum receiving rate of the receiver,

the receiver’s buffer will overflow. Hence, many packets are dropped by the receiver.

This leads to time-outs at the sender, and therefore, retransmissions. In that situation,

TCP performance is severely degraded. Thus, flow control is also about regulating the

sending rate to prevent fast senders overloading slow receivers. Obviously, the sending

rate depends on the receiver’s processing capacity and buffer size, and therefore, it is

controlled by the receiver. The receiver achieves this by advertising the current “send”

window size along with each ACK, thus, limiting the size of the transmission window of

the sender. This “send” window indicates how much buffer space the receiver has available

for the incoming packets. A zero window tells the sender that there is no space left for

further packets, and the sender should stop the transmission until it receives a non-zero

window advertisement.

9

2.2.2 Slow Start and Congestion Avoidance

Flow control does not help reducing the possibility of congestion within the network,

nor does relieve congestion when it happens. Congestion is defined as a condition of

severe delay caused by an overload of packets at one or more switching points. It can

occur whenever the offered load exceeds the available bandwidth at a bottleneck node.

TCP Reno has adopted two congestion control mechanism, and they are usually im-

plemented together, known as the slow start and congestion avoidance scheme. With this

scheme, a TCP connection can be in one of the two modes: the slow-start mode or the

congestion-avoidance mode.

TCP changes from slow start to congestion avoidance based on a threshold. The

switching is done based on two state variables: the current congestion window size (
' � ! �

),

and the slow-start threshold (��� ��� � � � �). The sender always sends the minimum of
' � !��

and the window advertised by the receiver (� ! � � ! �
). Thus the

' � ! �
reflects the flow

control imposed by the sender according to the network condition, and � ! � � ! �
is the

flow control imposed by the receiver according to the its processing capacity and buffer

size.

TCP always begins its transmission from the slow-start phase. During the slow-start

phase, TCP tries to send as many packets as possible until a packet loss is detected. It does

this by increasing the congestion window (
' � ! �

) in an exponential fashion, i.e., whenever

an acknowledgment is received, it increases the
' � ! �

by one. To see the exponential

growth pattern of the
' � ! �

, assume that at first
' � ! �

is one, and therefore, only one packet

10

is sent. Once this packet is acknowledged by the receiver,
' � !��

is increased by one, and

hence, two more packets are transmitted. When these two packets are again ACKed by

the receiver,
' � !��

is set to four. This exponential growth pattern of
' � ! �

continues until

' � !��
reaches the maximum window size or the slow start threshold. Figure 2.1 shows a

typical initial slow start phase evolution without any packet losses. The number of packets

that are sent back to back is printed on the arrowhead line. As shown in the figure, TCP

establishes a connection through the “3-way handshake” mechanism. It first sends a SYN

packet and upon receiving the corresponding ACK, TCP resumes with slow-start. Even

though we include the delayed acknowledgment scheme, the evolution of cwnd is still

exponential.

packets = 1 2 3 5 8 12 18

cwnd=1 cwnd=2 cwnd=12 cwnd=18 cwnd=20cwnd=8cwnd=5cwnd=3

������ �������� ������

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

	�	
�
2 2 3 3 2 48 12 6 18 9

D
elayed A

C
K

D
elayed A

C
K

D
elayed A

C
K

0 RTT

3RTT/200 * 100

t

SY
N

/A
C

K

SY
N

Maximum window = 20

Figure 2.1 A typical TCP initial start phase evolution

TCP enters the congestion avoidance mode once the congestion window (
' � !��

) be-

comes greater than the slow-start threshold (� � ����� � � �). During this mode, TCP increases

' � !��
by ��� ' � !��

for every acknowledgment it receives. Thus, for every RTT period, TCP

11

receives
' � !��

worth of ACKs or
' � ! � ��� worth of ACKs if considering the delayed ac-

knowledgment mechanism. That is, during the congestion avoidance mode, TCP increases

' � !��
by one or one half segment per RTT.

Congestion is indicated by a packet loss, which could cause TCP time-outs or the

reception of duplicate ACKs. TCP treats these two events with different strategies. When

TCP detects a packet loss by a time-out, it sets ��� ������� � � to one half of the current
' � ! �

,

' � !��
to one packet, and then resends the lost packet. It then switches the slow-start mode.

However, when three duplicate ACKs are received, TCP assumes that a packet is lost due

to channel noise or mild congestion. It then sets ��� ��� � � � � to half of the current
' � ! �

, and

immediately retransmits the lost packet without waiting for the retransmission timer to

expire. This is called the fast retransmit mechanism. Next, it sets
' � ! �

to ��� ������� � � plus

three segments. Each time another duplicate ACK is received, TCP increases
' � ! �

by one

segment and transmits a new segment if allowed by the current
' � !��

. Upon receiving a

non-duplicate ACK, TCP resumes with the congestion avoidance mode. This is called the

fast recovery algorithm [22].

2.2.3 Delayed Acknowledgments

Most TCP implementations use delayed acknowledgments. That is, TCP does not

send ACK instantly upon receiving a segment. Instead, it delays to send an ACK in case

there is data to send to the sender, so that the ACK can be carried along 1. Usually TCP

1This is called piggybacking.

12

hold this ACK for maximum 200ms. During this time, if another packet is received, TCP

sends an ACK immediately to acknowledge the reception of both packets. Another excep-

tion is: when out-of-order segment is received, an immediate ACK is sent.

2.2.4 TCP’s Self-Clocking Property

TCP’s flow control and congestion control are designed according to a “self-clocking”

concept. As indicated in Jacobson’s work [10], the flow of a TCP connection should con-

form to a conservation-of-packets principle. It means that for the flow to stay in equilib-

rium, i.e., maintaining the stability with a full window size of data in transition, the TCP

sender should not release new packets into the network until it receives an indication that

an old packet has exited the network. These indications are done by the acknowledgment

packets. In other words, the sender uses ACKs (acknowledgments) as a clock to strobe

new packets into the network. Since the TCP receiver can not generate the ACKs faster

than the sender sends the packets into the network, the protocol is called “self-clocking”.

This self-clocking mechanism is very important to the congestion-avoidance scheme

because it helps the system adjust to the bandwidth and delay variations. When ACKs are

generated at the same rate as of the incoming packets, the sender releases packets at a rate

limited by the link bandwidth, so to prevent overloading the network. A more detailed

description is provided in [10].

CHAPTER III

RELATED WORK

As mentioned before, stochastic models of TCP can be classified into three types:

models for the steady-state performance of a bulk transfer flow [3, 17], models for the

short-lived flows with small packet losses [18, 8, 11], and lately, models that combine the

above analyses together [20, 4].

A review of the models given in [17, 4] follows since their models have been widely

referenced, and have provided a base from which our models are developed. The stochas-

tic steady-state model proposed in [17] for predicting TCP’s throughput as a function of

packet loss rate and round-trip time (RTT), is the first model that captures not only the

behavior of fast retransmission mechanism, but also the effect of the time-outs. Based

on this steady-state model, [4] proposed a new model for capturing the performance of

short-lived TCP connections. Unlike the steady-state model of [17], this model includes

the three-way-handshake and slow-start mechanisms. Further, it was developed under the

assumption of no packet losses, or packets were getting lost rarely.

The following is a brief overview of these models. The notations and terminology are

same as those used in [17, 4].

13

14

3.1 The Short-lived Connections Model

Cardwell, Savage and Anderson have proposed a model in [4] trying to capture the perfor-

mance of short-lived TCP connections since they observed that most of the traffic of the

Internet today are composed by short TCP connections. Short-lived TCP connections end

their data transmission before entering the congestion-avoidance phase or soon after they

enter congestion-avoidance phase for the first time.

The expected “three-way-handshake” duration is approximated in [4] as1:

��� �������
	��#� ������
 ��	�� ���*7
��� � 7 � ��� (3.1)

where the ���9� is the round trip time, ��	 is the duration of SYN time-out and 7 is the

packet loss rate.

Data transfer begins with the slow start phase. In this phase, the sender’s congestion

window (cwnd) increases exponentially until either of the following two events occur: a

packet gets lost or the cwnd is bounded by the receiver’s maximum congestion window

size, �) .

����������� ��� , the expected number of packets sent until a loss occurs is given as:

��� �!���
� �"� �
#%$ �&
'%($ ����� 7)� '

7 �
*� ���*7)� # �

� � ���+����� 7)� # �
���,�*7)�
7

�

-.../ ...0
� $211 when

�43 5
� ���,�*7!� when

�
is small and 7 3 �

(3.2)

1In this thesis, we assume that the acknowledgment-packet loss rate is zero.

15

where
�

is the total number of packets to be transmitted. The first condition of Equation

(3.2) stands when we have infinite number of packets to send and the second condition

holds when the TCP connection is short-lived and the loss rate is small.

Using the expected number of packets to be sent in the slow start phase, the expected

window size
��� � 	 	 � and expected transfer time

����� 	 	 � are given as [4]:

��� � 	 	 �#� ��� � 	 	 � ����� ����
 ���� (3.3)

and

����� 	 	 �#�
-.../ ...0 ����� ����� �
	 ����
��� �
 �
 ���
 � ��� � 	 	 ��� 	 �
 $ � �	 $ � ��� when

��� � 	 	 ��� �*)

����� ��� ��	 � ��� ��������� 	 $ ������
 ��� when
��� � 	 	 �! ��)

(3.4)

where � is �#" � if the delayed acknowledgment mechanism is applied, otherwise it is � . � �

is the initial window size, usually set to � , and �) is the limit on the receiver’s congestion

window size.

3.2 The Steady-state Model

As a consequence of the exponential growth of the cwnd, TCP tries to send as many

packets as possible. Finally the connection reaches saturation and packets are lost. At

this point the slow start phase terminates, and congestion control mode takes over the

transmission. The model in [17] describes this phase and establishes the send rate as:

$&%�')(+*-,�,/.�021&3�46587)*-,�, (9*-,�,;: <>= 1?A@ , $ 1&3B4C% 9 (ED#: ? = 1F 'G% 9 @ DIHJ' < .>.LK (3.5)

16

and throughput as:

� � 7)���

-..../0
������ ����� �
	� �
� � 1�� � � 1 � ��

� �
� � � 1 � � ��� ��� � ��� ��� ��	�	�� � ��	��������� where � � 7)�- ��*)������ � �
� �
� � 1�� ��
 ��

� �
� �
� � ������ �
 � < � � � � ��� �
 	�� � �
	��������� otherwise

(3.6)

where �#$ is the average duration of the first time out. ��� 7�� � � is the probability that

a sender in congestion control will detect a packet loss with re-transmission time-outs

(RTOs). It is formulated as a function of the loss probability and current window size, and

is given as:

� � 7�� � ��� � � ! ���!� ����� �����*7)� ? ��� �
*����� 7!� ? ���,�+� ��� 7)� � $? � �
���+���,�*7)� � (3.7)

where � � 7)� is the expected cwnd value when RTOs occur. This is also given in [17] as:

� � 7)��� ��
 �
���

"##$ % ����� 7)���� 7
 � ��
 �
��� � < (3.8)

And finally, & � 7)� , the function of loss rate, is defined as:

& � 7)���1�
 7
 � 7 <
(' 7 ?
 % 7*)
 � � 7
+
 � � 7*, (3.9)

CHAPTER IV

STEADY STATE MODEL INCORPORATING THE SLOW START

PHASE

4.1 Assumptions

The model is based on the TCP Reno release from Berkeley [22]. Since we are only

concerned about modeling TCP performance, we assume that the link speed is very high

and the sender sends full-sized segments whenever the congestion window (
' � ! �

) allows.

The advertised window is always a constant, i.e., the receiver fetches the data so fast that

the buffer is always empty. Thus, the congestion window evolution, alone, determines the

send rate of the TCP connection which could roughly be described by
' � !�� ������� , where

����� is the round trip time.

We model the dynamics of TCP in terms of “rounds” as done in [17]. A round starts

when a window of packets is sent by the sender and ends when one or more acknowledg-

ments are received for these packets. The delayed acknowledgment’s effect is taken into

consideration, but neither the Nagle algorithm nor the silly window syndrome avoidance

is considered. In addition, we assume that packet losses are in accordance with the bursty

loss model. The packet losses in different rounds are independent, but they are correlated

within a single round, i.e., if one packet in a round is lost, then the following back to back

17

18

packets in the same round are also assumed to be lost. It is an idealization of the packet

loss dynamics observed in the paths where FIFO drop-tail queues are used [4].

4.2 The Steady State Model that Incorporates the Slow-Start Phase

W TD

W TD

Z i

T0 T0

ssZ

W ss
i

W TD

Z i

A Ai1 i2

i1

i2

TO

S i

2T0 4

R = 2i

i

t

W(t)

i−1

TD

Slow start phase Congestion avoidance phase Time−out phase

TDPTDP

Figure 4.1 The extended steady state model - evolution of congestion window size when

loss indications are triple-duplicate ACK’s and time-outs.

Figure 4.1 depicts our model which includes the slow start phase. It shows a typical

congestion window’s (
' � ! �

) evolution over time. Our model is an extension of the one

used in [17]. We assume that in the steady state, the connections will go through and

repeat periodically the slow-start phase, congestion-avoidance phase and time-out phase.

19

In the figure, the slow-start phase always begins after the first time-out following by the

congestion-avoidance phase. Since the throughput in the slow-start phase is lower than

the throughput in the congestion-avoidance phase, including the slow-start phase into the

steady-state phase will definitely decrease the performance predictions given by the model

in [17].

We define TDP to be the period between two triple-duplicate (���) losses [17]. Let� 	 	�
to be the time spent in the slow-start phase,

� ����
be the duration of the congestion

control phase, and
� ����

be the time interval of the time-out phase. Let
 �
be the number

of packets sent during the total time � �
. The above parameters are related as follows:

 � � � 	 	�

���&
� (�

�!� �
+� �
(4.1)

� � � � 	 	�
 � � ��
 � ����
� � 	 	�

���&
� (�

� � �
 � ����
(4.2)

where
� 	 	�

is the number of packets sent during the slow-start phase,
� � � is the duration

of the 	 th TDP,
! �

is the total number of the TDPs in the interval
� � ��

,
��� � is the number

of packets sent during the 	 th TDP of interval
� ����

, and � �
is the number of packets sent

during the time-out phase. � 	 	�
is the window size at the end of a slow start and finally

� ���� � is the window size at the end of the 	 � � TDP.

Assuming � � � ��
 � � to be a sequence of independent and identically distributed (i.i.d.)

random variables, we can determine the send rate as:

���
���
+���� � �

20

Considering
! �

to be i.i.d. random variables and independent of
� � � and

� � � , we have:

� �
��� � 	 	 �
 ����� ���

� (� �!� � �
 ��� � ������ 	 	 �
 ����� ���� (� � � � �
 �����
��� �

�
����� 	 	 �
 ��� ! � ����� �
 ��� � ������ 	 	 �
 ��� ! � ��� � �
 �����

��� � (4.3)

In the next subsections, we derive the closed form expressions for these expected val-

ues in the different TCP phases: the slow-start phase, the congestion-avoidance phase and

the time-out phase.

4.2.1 The Slow-Start Phase

According to TCP Reno [10, 22], the current state of a TCP connection is determined

based upon the values of the congestion window size (
' � !��

) and the slow-start threshold

(� � ����� � � �). If
' � ! �

is less than ��� ����� � � � , TCP is in the slow-start phase, otherwise, it is

in the congestion-avoidance phase.

Since TCP has no knowledge of the network conditions during the slow-start phases, it

tries to probe for the available bandwidth “greedily”, i.e., increasing the
' � !��

by one upon

the receipt of a non-repeated acknowledgment. This algorithm can further be formulated

using discrete mathematics as:

' � ! � � ���
' � !�� � $ �

�
�
 ' � ! � � $ ��� (4.4)

in which
' � ! � �

is the congestion window size for the � � � round. Equation (4.4) is due

to the fact that assuming no loss, in round (� ���), there is a total of
' � ! � � $ � packets

sent to the destination, which, in turn, causes the TCP receiver to generate � ' � !�� � $ � ��� �

21

acknowledgments1. According to the slow-start algorithm, upon receiving these ACKs,

the TCP sender increases the
' � ! �

by the number of ACKs it has obtained, which is

� ' � ! � � $ � ��� � .
Noting that the congestion window is an integer, we can simplify Equation (4.4) as

follows2:

' � !�� � � �
�
�
' � !�� � $ � � " (4.5)

Rearranging, we get:

�
' � ! � � $ �

�
� � � �� �

�
�
' � !�� � $ < � �

� ' � ! � � $ < " (4.6)

Substituting this result in (4.4), we get the following discrete equation:

' � ! � � � ' � ! � � $ <
 ' � ! � � $ � " (4.7)

Noting that (4.7) generates the Fibonacci sequence and we have the closed form of

' � !��
as:

' � ! � � � � ���
�
�
 � < � �< � n = � � � � � " " " (4.8)

in which � � and � < are3:

� � � < � ��� � �

�
" (4.9)

1 �	��

� the smallest integer bigger than �
2In deriving a model for the latency of the short-lived TCP flows, Equation (4.5) was approximated in

[4] as: ��������� ��� ��������������� �
3 ! � is also called the golden number

22
� � and

� < are determined by the initial value of
' � ! �

. Assuming the initial value of
' � ! �

is one, we have:

� � � < �
� � � �

� � " (4.10)

By knowing the evolution of the congestion window, we can calculate the total number

of packets,
� 	 	�

, that are sent until the
! � � round, by summing the congestion window size

during each round:

� 	 	� �
�& � (�

' � !�� �

�
�& � (�

� � �
�
�

�&� (�
� < � �<

�
� ��� �
����� �

�
� �

��� � �

� < � < � ��� �

�< �
��� � <

� ' � ! � � � < � �

� � ���
� � <�
 � < � � � << � �

� � ���
� � <� � � " (4.11)

The last approximation is due to the fact that:

� < � � � << � � � � �

� � � � �,� � �

�
� ? � � � " � � � (4.12)

Thus, from Equation (4.11), the number of rounds,
!

, can be computed as:

! � �B� ��� �
� � 	 	�
 �� � � � � " (4.13)

Substituting (4.13) into (4.8), we can get the approximate relationship between the con-

gestion window size and the total count of packets that have been sent, as follows:

' � ! � � �
� 	 	�
 �

� <� " (4.14)

23

Taking the expectation of both sides of Equation (4.14), we have:

��� � 	 	 �,�
����� 	 	 �
 �

� <� (4.15)

in which
��� � 	 	 � is the expectation of

' � ! � �
.

After each time-out, the slow-start threshold is set to half of the current congestion

window. Hence,

��� ��� ������� � � �#� ��� � ��� �
�

" (4.16)

The expected data that have been sent by TCP before a loss happens can be calculated as:

����� 	 	 �,� ��� 7
7 (4.17)

in which 7 is the loss rate.

Substituting the value of
��� � 	 	 � in the Equation (4.15), we get:

��� � 	 	 �#� �
 7
7 � <� " (4.18)

This is the expected value of the congestion window when the slow-start phase ends due

to a lost packet. Noting that when 7 is small, the expected value would be much bigger

than the expected value of ��� ��� � � � � , i.e.,

��� � 	 	 ��� ��� ��� ����� � � � ��" (4.19)

Thus, we can assume that most TCP connections enter the congestion-avoidance phase

before a packet is lost. So, at this point, we take it for granted that a TCP connection

switches from the slow-start phase to the congestion-avoidance phase when the congestion

24

window size is equal to the ��� ������� � � . As a consequence, we have the expected congestion

window size at the end of the slow start constrained by the limitation of the slow-start

threshold:

��� � 	 	 �,� ��� � � ����� � � � �#� ��� � �����
�

" (4.20)

Using (4.20) in (4.15) and rearranging, we have the expected number of packets sent in

the slow-start phase as:

��� � 	 	 �#�
��� � ����� � <

�
� � � (4.21)

where
� � � � �-�#" � � % �!' . The time spent in the slow-start phase can be obtained by

multiplying the number of rounds with the round trip time (RTT) 4:

����� 	 	 �#� ��� ��� � ��� � ��� �
�
� � ��������� (4.22)

We derive
��� � ��� � in the following subsection.

4.2.2 The Congestion-Avoidance Phase

In this subsection, the expected value of the number of packets sent in a round,
��� � � , and

the expected value of duration of a round,
��� � � , are derived. With reference to Figure 4.2,

the following enhanced equations are given based on [17]5:

�!� � � �
 � ���� � � (4.23)

� � �
� � � �&
� (�

� � � (4.24)

4For simplicity, we assume RTT is a constant

5Readers are advised to refer [17] for detailed derivation of these equations

25

Wi

i−2

ACKed packet

lost packet

β
i

b b

TDP

b

X
i

i

i−1

3

1

1

2

2 3

α
α

i

last round

penultimate round

TD O occurs

W

TDP ends

.............

......

packets
sent

no of rounds

4

6

5

4

2

Figure 4.2 The steady state analysis.

26

� ���� � � ���� $ �
�
 � �

� � � (4.25)

and

��� �
� ��� = $ �&

' ($ � � ���� $ �
�

 � � �
�� �
(4.26)

� � �
�

� � ���� $ �
�

 � ���� � ���
�� �
(4.27)

where � �
is the penultimate round in the TDP which experiences packet losses,

� � � is the

round trip time, � ����
is the window size at the end of a TDP, � �

is the number of packets

sent in a TDP until the first loss happens, and � �
is the number of packets sent in the fast

retransmit phase, which is the last round [17].

� �
is a geometrically-distributed random variable based on the independent and burst

loss assumptions. Hence,

��� � � � � �#� � ���*7!� '
$ � 7�� � ��� � � �L"L"L" (4.28)

Based on Equations (4.23) and (4.28), we get:

����� � � ��� ���
 ��� � ��� ��� � (4.29)

� ���*7
7
 ��� � ��� ��" (4.30)

From Equation (4.25) and (4.27), we can have the following:

��� � � � � � ��� � ��� �
�
 ��� (4.31)

��� � � �
��� � �
�

�
��� � ��� �

�

 ��� � ��� �!� ���
 ��� � � � (4.32)

27

where
��� � � is the expected number of rounds in a single TDP. We assume � �

and � ����
to be mutually independent i.i.d. random variables. Then, from Equations (4.30), (4.32)

and (4.31), we get the following expression which involves
��� � ��� � :

9�� '' @ ��� 7 � ��� 0 ��� � �H % ��� 7 ��� �H @ ��� 7 ���	� � 9 . @ ���
 �
0 � % ��� � �
� �< @ 9 .H % ��� 7 ��� �H @ ��� 7 ��� � � 9 . @ ���
 ��� (4.33)

As we know, � �
is the number of packets sent when

�
packets in the penultimate round

are ACKed. Thus, the value of � �
should be equal to

�
, whose probability can be described

by:

� � � � � ��� �����*7)� ' 7
���+� ��� 7)� � " (4.34)

Now we can obtain the expected value of � ,
��� � � , using a conditional probability on the

window size at the end of a TDP, in the following manner:

���
 � 0 ��� � $ �&
' ($

����� %�
 0 � .�� � �
0 ��� � $ �&

' ($
� % 9�� ' . ' '9�� % 9�� '�. � � � �0 ��� % 9�� ' . % 9�� '�� % 9�� ' . � $ � � % 9�� '�. � .' % 9�� % 9�� ' . � . � � ��� (4.35)

When the loss rate 7 is very small, Equation (4.35) can be simplified as:

��� � � � � ��� � ��� � � ����� ��� 7)��" (4.36)

Combining (4.36) with(4.33), we get:

��� � ��� �#� � � � � � � 7)��

"##$ '�� � 74
 � ���,�*7 < � ���� 7
 � � � � ' 7��� � < (4.37)

28

The value of
��� � ��� � computed above is smaller than the value of

��� � ��� � given in

[17]. This can be observed in Figure 4.3, where the majority of the difference is around 2

packets. But this difference is trivial compared to the values of the window size (
��� � ��� �)

when 7 is very small. However, if 7 is in the middle to high range, the difference is not

small enough to be ignored when compared with the window size. Such a difference can

have a significant impact on the estimation of TCP send rate or throughput.

Combining (4.31) and (4.24), we have the expected number of rounds in a single of

TDP,
��� � � as:

��� � � 0 % HJ' @ D
. � � � <D @ � � < ' @ H � % 9 � ' < .DJ' @ % � � HJ'D . < ((4.38)

and the expected value of
�

, the duration of a TDP, as

��� � � � � ��� � �
 � � ��� � �
� ����� � ��� � �
 ���
� ������� � � < �+� ��7
 � � ��

� � < 7
 � � �����*7 < �� 7
 � � � � 7� � <�� � (4.39)

where we assume
� � � to be i.i.d. random variables and

��� � � � ����� .

In the previous subsection, we stated without proof that the slow-start phase will en-

ter the congestion-avoidance phase before a packet loss happens. This can be proved if

��� � 	 	 ��� , the expected congestion window size at the end of the slow-start phase due to a

packet loss, is bigger than the value of
��� ��� ��� � � � � � � ��� � ��� � ��� , which is the expected

threshold at the beginning of the slow-start phase. In other words, we need to prove:

�
 7
7 � <���

��� � ��� �
� �

29

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 ≤ p ≤ 1

D
iff

er
en

ce
 o

f t
he

 w
in

do
w

 s
iz

e

Figure 4.3 The difference of the expected value of window size.

30

where
��� � ��� � is given by (4.37). We prove this inequality below, under the normal

condition where 7 is small:

�
 7
7 � <� �

�
���� 7

� ��� � " � 7
 7 < � �

The last inequality stands obviously.

4.2.3 The Time-out Phase

During the congestion-avoidance phase, the probability that a loss indication is a time-out

under the current congestion window size � , is given in [17] as:

� � � � � ��� � � ! � � � � ���+����� 7)� ? �����
 ���,�*7)� ? �����+����� 7!� � $? � �
��� �����*7)� � � (4.40)

which gets simplified when the loss rate, 7 , is small:

� � � � � ��� � � ! � � � �� ��" (4.41)

Thus, � ��� , the expected probability that a loss leads to a time-out at the end of the

congestion-avoidance phase, is approximated as follows [17]:

� ��� � ��� � ��� � � � �
� � � ! � � � ���� � ��� � ��" (4.42)

The traffic traces collected in [17] indicate that the effect of the time-outs must always

be captured by any TCP performance prediction model. In most of the traces, time-out

31

events out numbered the fast retransmit events, i.e., � ��� is around ��� � of the total loss.

This value is larger than the value given by the formula of (4.42), as we further calculated

that the
��� � ����� is greater than � � , which, in turn, renders the � ��� to be less than

� � � .

So, we believe that this approximation underestimates the real � ��� . As a matter of fact,

the underestimation of � ��� in [17] is due to the approximation of
��� � � �*� � ��� ��� �*� by

noting that: ��� � �� � ��� � � � � < ��� � �� � � < � ��� � � � � < �
��� ��!� � � ��� �� �

The equality holds only when ��� � � � � � or when � ��� . As we know, the window

size is always bigger than � , except at the start of a connection. In the following, we derive

a more accurate expression of � ��� .

Using Taylor’s formula and expectation properties, we get the following 6:

��� �
� � � ���� �*� ���
 ��� � � � ���� �*� < ��" (4.43)

The above approximation7 holds when
��� � � � � � ��� � ��� � � � ��� �*�"� � � . Hence, to find a

better approximation of � ��� we need to find the variance of � .

After rigorous analysis8, we obtain the variance of � ��� , the congestion window size

at the end of TDP, as follows:

��� � � � ��� � 1�� $ � % � � � � ������ 7 " (4.44)

6For complete derivations, please refer to Appendix A

7From (4.43), we can also prove �
	�� ��
������ ���
	
�� since ��������
������
	
�� are both greater than 0.

8Please refer to Appendix B for details

32

Substituting Equations (4.37) and (4.44) into Equation (4.43), we get:

��� �
� � �

� � ���� � ��� � � �
 � � � � � ��� ���� � ��� � < �
� ���� � ��� � � �

F � � ? $ ���? = 1F? = 1 �
� � ���� � ��� � " (4.45)

Thus, Equation(4.45) gives a better, but still simple, estimation of
��� ��� � ����� . Then, � ��� ,

the probability that a loss detection is a time-out (TO), is obtained as:

� ��� � ��� � ��� � � � �
� ��� � � ! � � � �� � �
� � � ! � � � � ��� �

� ���
�"�

� � � ! � � � � � ���� � ��� � ��" (4.46)

The probability of
! �

, the number of TDPs, is derived according to � ��� :

7�� ! � � � �
� � ��� � ��� � � '
$ ��� � � ��� "
This is due to the fact that, with probability � ��� , the packets lost at the end of the conges-

tion control phase lead to a TO, and, with probability � �(� ��� the TCP connection stays

in TDP.

By taking the expectation of
! �

, we get:

��� ! � � �
� � � " (4.47)

33

The expressions for the number of packets sent in the time-out phase,
��� � � and its

duration,
����� ��� � are given in [17] as:

��� � � � �
��� 7 (4.48)

����� ��� � � � $ & � 7)�
���*7 � (4.49)

where & � 7)� is defined as:

& � 7!�����
 7
 � 7 <
 ' 7 ?
 % 7*)
 � � 7
+
 � � 7
,L" (4.50)

Utilizing these equations, we obtain the send rate in the following subsection.

4.2.4 The Steady State Send Rate and Throughput

Substituting Equations (4.21), (4.22), (4.30), (4.37), (4.39), (4.46), (4.47), (4.48) and

(4.49) into (4.3), and taking into consideration the limitation of the window size9, we

finally derive the send rate as:

� � 7��.����� ���

-............../0

��� � � ��� � �� $ < � �� �
� � ��� � �
� � 	 � ��� �� � ��� � �
� � � � ������
���
	 � � � ��� � �
� ���� � � � �� �
� � ��� � �
� � 	 ��
 ��� � �
� �� � = � ��� � � � � � � � �
	���������

when
��� � ��� ��� �)

�
 � �� $ < � �� �
� � �
 	 � ��� �� � ��
 � � ������
�
	
� � � �
��� � � � � � � �� �
� � �
 	 � �
� �
 � ������ �
 � < � � ��� � � � � � � ��	 � ������

when
��� � ��� � � �*) "

(4.51)

This can be further simplified as

� � 7��.����� ��� � � ! � ��
�
� �
� �
�
� � � �
 �� �) ��� 5 � � � �
 �� K 1 ��� ���� �
	

� � � ��
 � � �� � � � � � � � ? < 1 � � � ��" (4.52)

9we used the result from [17]

34

To derive the throughput, we only need to change
��� � � , the expected size of packets

that have been sent in a TDP, to
������� � , the expected size of packets that have been received

in a TDP.
��� � � � can be expressed as:

����� � �#� ��� � �
 ��� � ���8� � (4.53)

where
��� ��� is � � 7 and

��� � � is given by Equation (4.36). Also we substitute
��� � � with

��� � � � , the expected number of packets received in the time out phase, where [17]

��� � � �#��� (4.54)

Thus, the throughput can be formulated as:

� �
��� � 	 	 �
 ��� ! � ��� � � �
 ��� � � ������ 	 	 �
 ��� ! � ��� � �
 �����

��� � (4.55)

or

� � 7��.����� ���

-............../0

��� � � � � � �� $ < � �� �
� � ��� � �
� � 	 � ������ � � ��� � � � � $ ��� � � $21 � � � �
� � 	 � � � ��� � �
� ���� � � � �� �
� � ��� � �
� � 	 ��
 ��� � �
� �� � = � ��� � � � � � � � �
	���������

when
��� � ��� ��� �)

�
 � �� $ < � �� �
� � �
 	 � ��� �� � � �
 $ ��� � � $21 � � � �
�
	
� � � �
��� � � � � � � �� �
� � �
 	 � �
� ��
 � ������ �
 � ��� � ��� � � � � � � �
	���������

when
��� � ��� � � �*)

(4.56)

which, when p is small, can be simplified as (4.52). This can be explained by noting that,

if a loss seldom happens, then the send rate should just equal the throughput.

Figure 4.4 shows the relationship between our proposed steady state model and the

model from [17]. It presents the differences of the throughput predictions under different

35

packet loss rates (7) given by our model from Equation (4.56), and the full model of [17],

which is described by:

� �

-..../0
������ � ��� �
	� �
� � 1�� � � 1 � ��

� �
� � � 1 � � ��� ��� � ��� ��� ��	�	�� � ��	��������� where � � 7)�- ��*)��� �� � �
� �
� � 1 � ��
 ��

� �
� �
� � ������ �
 � < � ��� � ��� �
 	�� � ��	 � ���� � otherwise

(4.57)

Obviously when the loss rate approaches zero, both models give the same maximum per-

formance predictions which is determined by �) ������� . But when 7 becomes larger, our

model’s predictions are smaller than those of the model from [17]. This is due to the intro-

duction of the slow-start phase into the steady state model. However, when 7 approaches

one, again both models give the same predictions because the throughput is near zero.

36

10
−4

10
−3

10
−2

10
−1

10
0

−0.5

0

0.5

1

1.5

2

2.5

Frequency of Loss Indications (p)

B
an

dw
id

th
(K

B
/s

)

H
Padhye

 − H
Proposed

Figure 4.4 The difference of throughput predictions given by our proposed model and the

model from Padhye’s paper. The conditions are: ���9� � �������	� ,
��
� � � �����.� ��� � ,

�����1�(� � � � �"!,�
, � $%�1��� �(' , �)0� ���6� � � � �"!#� � , � � � .

CHAPTER V

SHORT-LIVED TCP CONNECTION MODEL

In the above sections, we derived the steady state model for predicting the performance

of bulk data TCP connections. However, the steady state model is only applicable for either

of the following conditions:

1. The loss rate (7) is high.

2. There are unlimited data to be sent.

Several recent studies [6, 1] have empirically observed that most TCP connections are

short-lived. These short-lived connections have a common property, i.e., they usually

spend their life time in the first slow-start phase without experiencing a single loss. Thus

the steady-state model can not be used to predict the performance of these short-lived TCP

flows. Therefore, a new model is needed.

Our proposed model is partially based on our results given in Section 4.2.1.

Every TCP connection starts with the three-way-handshake process. Assuming that no

ACK packets can be lost, this process can be well modeled as follows [4]:

��� �������
	��#� ������
 ��	�� ���*7
��� � 7 � ��� (5.1)

where ��	 is the duration of SYN time-out.

37

38

We further assume that two or more time-outs within the three-way-handshake process

is very rare. Otherwise the slow start threshold will be set to one, and therefore, the

connection will be forced into the congestion-avoidance phase directly instead of into the

slow-start phase.

5.1 The First Slow Start

After the three-way-handshake, the connection moves to the slow-start phase. In this

phase, the sender’s congestion window (
' � ! �

) increases exponentially until either of the

following two events occur: a packet gets lost or the
' � ! �

is bounded by the receiver’s

maximum congestion window size, �) . In order to derive the latency for this phase,

���������
� �"� , the expected number of packets sent until a loss occurs is given by the following

enhanced equation (based on the one given in [4]):

����������� �"�#� � ���+� ��� 7)� # �
����� 7)�
7 (5.2)

where
�

is the total file size measured in packets that must be transmitted. Using the same

derivation as in Section 4.2.1, and according to Equation (4.15), we obtain the expected

congestion window size at the end of the slow-start phase due to the packet losses as:

��� � � ��� ���,� ��� �!���
� �"�
 �� < (5.3)

If
��� � ����� � � is bigger than the value of �) , then the congestion window first grows

to �) and then remains there while sending the rest of the packets. Thus, the whole

39

procedure is divided into two parts [4]. From Equation (4.15), the number of packets sent

when the
' � ! �

grows to �) is given by:

� � � � ��� � < � �*)�� � " (5.4)

Substituting (5.4) into (4.13), we can obtain the duration of this step measured in rounds

as1:

! �
� ��� � � � �)� � ��" (5.5)

In the second part,

! < �
���������
� �"��� � � � � �

�*) (5.6)

rounds are needed to transmit the remaining
���������
� �"�!� � � � � � packets.

Combining the previous results and using Equation (4.13) for the
��� � ����� ���! ��*) case,

the expected slow-start latency is calculated as follows:

��� ! �#�
-.../ ...0

� � ��� ��� � �
� � � �
 ���
 � ����������� �"��� � < �*)�� � ��� when
��� � ���
� ���!� �*)

� ��� � � � ��� � � �
�

� � � <
� � � � � � when

��� � ����� ���! ��)
(5.7)

5.2 The First Loss

The initial slow-start phase ends when a packet loss is detected with a probability of � �
� � � 7)� #

. When a packet gets lost, it could cause re-transmission time-out (RTO), or lead

to a triple duplicate ACKs in which case TCP will recover in a round or two by using the

fast re-transmit and recovery. So first we have to derive the probability that a packet loss

leads to a time-out (TO).

1We have chosen � to represent the golden number instead of ! �

40

Due to the exponential growing pattern of
' � ! �

in the slow-start phase, � ���
� � , the

probability that a loss is a TO is different from the probability when the sender is in the

congestion-avoidance phase. Hence, � ����� � is derived as follows (See Figure 5.1):

In the round where a TD (triple-duplicate) occurs, let � 	 	 be the current size of
' � !��

,

which has a value � .
�

packets have successfully been transmitted and ACKed among a

total of � packets that are sent. Since the connection is still in the slow-start phase, the

' � !��
increases to �
 �

and another � � packets are sent in the next round2. If more than

three packets in these � � packets have been ACKed, then a TD occurs. Otherwise a TO

takes place. Let
� � � � � � be the probability that the first

�
packets have been successfully

transmitted and ACKed in a round of � packets, provided that there might be one or more

packets loss, which is given by Equation (4.34). Also, let
� � � � be the probability that no

more than 2 packets have been transmitted successfully in a round of � packets, which

can be given as:

� � � �
�
<&� ($ � ���*7!� �

7 if � � �
(5.8)

We thus obtain � ���
� � as:

� ����� � � � 	 	 � �

-.../ ...0 � � � 	 	 �

� �'%($ � � � 	 	 � � �
 � � ��� $ �' (< � � � 	 	 � � � � � � � � � otherwise

� � � ! 5 �!� 7�� � �*7!�
*����� � ���*7)� ? �
����� 7)� < ����� � ���*7!� � ��� $ < �
�,�+� ���*7!� � ��� K (5.9)

2The delayed acknowledgment concept is not applied here, but we prove it later that it does not affect the
analysis of the � ��� ���

41

= w

RTT

5 6 74 8 9 10 11

= w+k

k = 2 w+k−(w−k) = 2k = 4 TD occurs

received packet

ACK

lost packet

W W+
ssss

RTT t

Figure 5.1 A sample situation when TD happens.

42

As 7 approaches zero, Equation (5.9) reduced to:

� ���
� � �������1 � $
��� � ����� � � � 	 	 � �#� � � ! � � � ���� � 	 	 � � (5.10)

In case of delayed acknowledgment,
�

successfully received packets generate � � ����� 3

ACKs, and thus the size of the
' � !��

increases to � � ���	�
 � and � � ���	�
 �
packets are

sent. Therefore � ���
� � can be computed as:

� � ��� � �

-.../ ...0 � � � 	 	 �

� �'%($ � � � 	 	 � � �
 � � ��� $ �' (< � � � 	 	 � � � � ��� ' < �
 � � � otherwise

which is the same with Equation (5.9) since

� � � � �
� � ��� �
�
�
 � ��" for

� � �

The expected time which TCP spends in the RTOs is given in [17] and presented in

Equation (4.49). The time which TCP spends in the fast re-transmit phase,
! � depends on

where the loss occurs [20]:

! � �

-......../0

������� � if the lost packet is in the last

three packets of the window

����� � otherwise

(5.11)

When the congestion window size � 	 	 is bigger than three, the expected time,
��� ! � � is

computed as follows:

��� ! ��� � ���+� �,�*7)� � ��� $?
���+� �,�*7)� � ��� � � ���9�
 � ���*7)� � ��� $? ���,�+�����*7)� ? �

�,�+� ���*7!� � ��� � �����

� ���9� � � �+����� 7)� � � � $? � �����*7)� � ���
�,�+�����*7)� � ��� (5.12)

3
�� � �
� is the biggest integer small than � � �

43

Finally, the expected latency that this loss would incur is:

� �
	 	 	�� �����+����� 7!� # ��� � ���
� � ����� ��� �
 ����� � ����� � � ��� ! ���"� (5.13)

where � 	 	 is

� 	 	 � � � ! � �*) �
���������
� �"�
 �� < ��" (5.14)

5.3 Sending the Rest of the Packets

After the first packet loss, the transmission latency of the rest (
� � ��� � � ��� ���) packets is

obtained by using our extended steady-state model as follows:

����� 	 �2�
� � ��� ������� � �

�

�
� 7 �+� ��� �����*7)� # �
�����*7)�

7 � � (5.15)

in which � �
is given by Equation (4.55).

5.4 Total Latency

Grouping (5.1), (5.7), (5.12) and (5.15) together and considering the delay (� # � �����) caused

by the delayed acknowledgment for the first packet (whose mean value is 100ms for the

BSD-derived implementations), we now have the total expected latency:

� ��� �	� ��
 � � ��� �)��� � 	 �
 ��� ! � �����
 � �
	 	 	
 ����� 	 �
 � # � ����� � �����
� (5.16)

Note that the last term is due to the fact that only half of a round is needed to send the last

window of packets. This short-lived TCP connection model is compared with our steady-

state model in Figure 5.2. It shows that as the transferred file size increases, the short TCP

44

model approaches the steady state model. This is because when the connection has a large

amount of data to send, TCP would spend most of its time in the steady-state. Also, the

figure illustrates that as the loss rate increases, the throughput predicted by the short-lived

TCP model approaches the one predicted by the steady-state model. This is because as

the connection loses its packets at higher probability, the transient slow-start phase ends

quickly and the remaining packets are sent in the steady-state phase.

45

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

0

10

20

30

40

50

60

Frequency of Loss Indications (p)

B
an

dw
id

th
 (

K
B

/s
ec

)

Short TCP model (2KB)
Short TCP model (10KB)
Short TCP model (50KB)
Short TCP model (10MB)
Steady state full model
Steady state approximate model

Figure 5.2 Throughput predictions given by the short TCP model and the steady state

model. The conditions are: ���9�3� �������	� ,
��
� � �������.����� � , � ���:��� � � � �"!#�
, �#$ �

�(� �(' , �*)0� ���6� � � � �"!#� � , � � � .

CHAPTER VI

MODEL VALIDATION THROUGH SIMULATION

In this chapter, we validate our proposed analytical models with simulation experi-

ments. We performed all experiments in NS-2 [24] using the FullTCP agent. The FullTCP

agent is modeled based on the 4.4BSD TCP implementation and can simulate all the im-

portant features of TCP Reno. The simulation topology used in all experiments is shown

in Figure 6.1.

S1 S2

r2r1

ftp1
FullTcp1 Sink1

DropTail
(Bursty loss model)

5ms

10Mb

5ms

10Mb

10Mb, 90ms

(MSS=536, Wm=20)

Figure 6.1 Simulation topology

Unlike in [4] where the Bernoulli loss model is used, in our experiments packets were

getting lost according to the bursty loss model. Since NS-2 does not have a bursty model

46

47

built-in, we added our own BurstyError Model, which was derived from the basic Er-

ror Model class. This BurstyError Model drops packets with probability 7 , which is a

Bernoulli trial. After a packet is selected to be dropped with probability 7 , all the sub-

sequent packets in transit are also dropped. This emulates the DropTail queues behavior

under congestion conditions.

Since TCP does not care about what kind of data it transmits, we used FTP 1 as the ap-

plication for sending a controlled number of packets over a 10Mbps link. The experiments

were designed such that the minimum RTT was 200ms.

6.1 Steady-State Model

As stated previously, when the loss rate is middle-to-high, the steady-state phase has a sig-

nificant impact on the performance of the short-lived TCP connections. Thus, the steady-

state model is important for both bulk data transfers and short-lived TCP connections. We

compared our steady-state model with the one developed in [17] 2. Figure 6.2 shows the

results for the case of � " ��� � � 7 � � " � . For each value of 7 , we ran � ����� simulation

experiments. The file size was set to 10MB. Clearly, our model’s predictions are closer to

the simulation results. We further compared our model with the one in [17] by using the

average error criterion (as defined in [17]):

�
	 = 	 � � � � � � 	 � 	 � � � 1 � � # �
 �	� # � 7)� � � � 	 = 	 � � � � # � 7!� � ��� �

	 = 	 � � � � # � 7)�
��� � ��� � � & � � � � ��� � � � � ! � � (6.1)

1FTP is the major application used to transfer files in the network.

2See Figure 4.4

48

where � � 1 ��� # �
 �	� # is the predicted value and � � 	 = 	 � � � � # is the observation value. A smaller

average error implies a better model accuracy. We plotted these average errors against loss

rates in Figure 6.3. It shows that in most cases the average error is
���

for our proposed

full model and is � � � for the one in [17]. That is, our model is
�����

more accurate than

the model proposed in [17]. We can further observe from Figure 6.3 that the average error

increases as 7 decreases. For these case, the short-lived TCP model should be used instead

of the steady-state model. Nevertheless, the simulation results support our previous claim

that by including the slow-start phase into the steady-state model more accurate predictions

can be obtained.

6.2 Relation between the Transferred File Size and Latency

Figure 6.4 shows the relationship between the latency and the transferred file size under

no loss conditions. It compares the latency predictions given by our proposed short-lived

TCP model (Equation (5.16)) with the ones obtained by the short-lived TCP models of

[4] and [20]. Again, our model’s prediction values match the simulated values better than

the values obtained by the other models. The average error is
� " % � � for our model, � " ' � �

for the model of [4], and ��' " ��� � for the model of [20].

49

10
−3

10
−2

10
−1

10
0

0

5

10

15

20

25

30

Frequency of Loss Indications (p)

B
an

dw
id

th
 (

K
B

/s
ec

)

Simulated
[PFTK97] (Full)
Proposed (Full)
[PFTK97] (Approximate)
Proposed (Approximate)

Figure 6.2 Comparing the steady state throughput predicted by the models in the middle-

to-high loss rate range. The parameters are: ���9� � � �����	� ,
��
� � �������.����� � , � �/�

�(� � � � �"!,�
, � $ ����� �(' , �)0� ���6� � � � �"!#� � .

50

0 0.02 0.04 0.06 0.08 0.1 0.12
0

0.05

0.1

0.15

0.2

0.25

0.3

Frequency of Loss Indications (p)

A
ve

ra
ge

 E
rr

or

[PFTK97] (Full)
Proposed (Full)

Figure 6.3 Average error comparison of the models in the middle-to-high loss rate range.

The parameters are: ����� � �������	� ,
��
��� � �����.� ��� � , ��� � ��� � � � �"!#�
, �#$ � ��� �(' ,

�*)0� � �6� � � � �"!,� � .

51

0 5 10 15 20 25 30 35 40 45 50
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Data Transfered (Packets)

T
ra

ns
fe

r
T

im
e

(s
ec

)

Simulated
[CSA00]
[SKV01]
Proposed

Figure 6.4 Comparing the latency predicted by the short connection models for small

transferred file size. The parameters are: 7 � � , ���9� � � ��� �	� ,
��
� � � �����.� ��� � ,

�����1�(� � � � �"!,�
, � $%�1��� �(' , �)0� ���6� � � � �"!#� � .

52

6.3 Relation between File Size, Loss Rate and Throughput

Figures 6.5, 6.6 and 6.7 compare the accuracy of our model with the one proposed in [4]

in terms of throughput versus transferred file size and loss rate. Table 6.1 compares the

two models in terms of the average error.

As can be observed, when the transferred file size is small and the loss rate is low, our

model gives more accurate predictions than the model from [4]. This is because we include

the delay acknowledgment mechanism in our model. This is also due to the fact that we

use
�

in our prediction expression rather � which is used in [4]. However, when the file

size is big and the loss rate is high, both of the models agree closely with our steady-state

model, as expected.

Table 6.1 Comparison of the predictions average error.

Loss Rate 7 � � �
� � � $?�� � � $ �

File Size 0.5
�

26KB 2KB 6KB 11KB

[CSA00] 9.40% 4.08% 6.43% 8.38%

Proposed 5.83% 0.59% 7.54% 7.64%

53

10
−4

10
−3

10
−2

10
−1

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

Frequency of Loss Indications (p)

B
an

dw
id

th
 (

by
te

s/
se

c)

Simulated
[CSA00]
Proposed

Figure 6.5 Comparing the throughput predicted by the models for varying loss rate. The

transferred file size is fixed at � ��� . The parameters are: ���9� � � �����	� ,
��
� �
� �����.� ��� � , � ������� � � � �"!#�

, � $ �1��� �(' , �)0� ���6� � � � �"!#� � .

54

10
−4

10
−3

10
−2

10
−1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Frequency of Loss Indications (p)

B
an

dw
id

th
 (

K
B

/s
ec

)

Simulated
[CSA00]
Proposed

Figure 6.6 Comparing the throughput predicted by the models for varying loss rate. The

transferred file size is fixed at
� � � . The parameters are: ����� � � �����	� ,
 � �5�

� �����.� ��� � , � ������� � � � �"!#�
, � $ �1��� �(' , �)0� ���6� � � � �"!#� � .

55

10
−4

10
−3

10
−2

10
−1

1

2

3

4

5

6

7

8

9

Frequency of Loss Indications (p)

B
an

dw
id

th
 (

K
B

/s
ec

)

Simulated
[CSA00]
Proposed

Figure 6.7 Comparing the throughput predicted by the models for varying loss rate. The

transferred file size is fixed at ��� � � . The parameters are: ����� � � ��� �	� ,
 � � �
� �����.� ��� � , � ������� � � � �"!#�

, � $ �1��� �(' , �)0� ���6� � � � �"!#� � .

CHAPTER VII

CONCLUSIONS AND FUTURE WORK

7.1 Summary of the Achievements

In this thesis, we developed an extended and improved stochastic TCP model for predicting

the latency and throughput. We constructs a new model for the slow-start phase based on

discrete evolutions of the congestion window. This model is very important in determining

the performance of short-lived TCP connections. We also integrated it into our extended

steady-state model to achieve better performance predictions. The sending rate, B and the

throughput, H are given by our model as follows based on the loss rate (7) and the round

trip time (�����):

� � 7��.����� ���

-............../0

��� � �
� � � �� $ < � �� �
� � ��� � �
� � 	 � ��� �� � ��� � �
� � � � ������
���
	 � � � ��� � �
� ���� � � � �� �
� � ��� � �
� � 	 �
 ��� � �
� �� � = � ��� � � � � � � � �
	���������

when
��� � ������� �*)

�
 � �� $ < � �� �
� � �
 	 � ��� �� � ��
 � � ������
�
	
� � � �
��� � � � � � � �� �
� � �
 	 � �
� �
 � ��� �� �
 � < � � ��� � � � � � � ��	 � ������

when
��� � ����� � �*) �

(7.1)

56

57

or,

� � 7��.����� � �

-............../0

��� � � � � � �� $ < � �� �
� � ��� � �
� � 	 � ��� �� � � ��� � � � � $ ��� � � $21 � � � �
���
	 � � � ��� � �
� ���� � � � �� �
� � ��� � �
� � 	 �
 ��� � �
� �� � = � ��� � � � � � � � �
	���������

when
��� � ��� ��� �)

�
 � �� $ < � �� �
� � �
 	 � ��� �� � � ��
 $ ��� � � $21 � � � �
�
	
� � � �
��� � � � � � � �� �
� � �
 	 � �
� ��
 � ��� �� �
 � ��� � ��� � � � � � � ��	 � ������

when
��� � ��� � � �*) �

(7.2)

where �*) is the maximum congestion window size,
��� � ��� � � � � � � & � 7!� are defined in

Equations (4.37), (4.46) and (4.50) respectively.

Our simulation results suggest that our model can predict the performance of bulk data

transfers and short-lived TCP connections here accurately than the models proposed in

[17, 4, 20].

7.2 Future Work

A number of avenues are left to be studied for future work. First in the constructing

the steady-state model, we did not consider the effects of the fast recovery. Second, our

model is not suitable for slow links such as telephone line using modem whose speed is

usually less than
� � � �

. Third, we selected the bursty loss model to describe the packet

loss behavior which is an approximation of the FIFO drop-tail queuing algorithm. Since

the majority of router are now using RED as their queuing algorithm, it is important to

repeat our analysis by using different loss models.

REFERENCES

[1] H. Balakrishnan, V. Padmanabhan, S. Seshan, R. H. Katz, and M. Stemm, “TCP
behavior of a busy Internet server. Analysis and improvements,” Proceedings of the
INFOCOM ’98, April 1998.

[2] J. Blot and T. Turletti, “Experience with rate control mechanisms for packet video in
the Internet,” Computer Communications Review, vol. 28, no. 1, January 1998.

[3] J. Bolliger, T. Gross, and U. Hengartner, “Bandwidth modeling for network-aware
applications,” Proceedings of the INFOCOM’99, March 1999.

[4] N. Cardwell, S. Savage, and T. Anderson, “Modeling TCP latency,” Proceedings of
the INFOCOM ’2000, March 2000.

[5] K. Claffy, G. Miller, and K. Thompson, “The nature of the beast: Recent traffic
measurements from an Internet backbone,” Proceedings of the INET ’98, July 1998.

[6] C. R. Cunha, A. Bestavros, and M. E. Crovella, Characteristics of WWW client-based
traces, technical report BU-CS-95-010, Boston University, July 1995.

[7] S. Floyd and K. Fall, “Promoting the use of end-to-end congestion control in the
Internet,” IEEE/ACM Transactions on Networking, August 1999.

[8] J. Heidemann, K. Obraczka, and J. Touch, “Modeling the performance of HTTP over
several transport protocols,” IEEE/ACM Transactions on Networking, vol. 8, no. 2,
April 2000.

[9] J. C. Hoe, Start-up dynamics of TCP’s congestion control an davoideance schemes,
master’s thesis, Department of Electrical Engineering and Computer Science, Mas-
sachusetts Institute of Technology, June 1995.

[10] V. Jacobson, “Congestion avoidance and control,” Proceedings of the SIGCOMM
’88.

[11] J. Mahdavi, “TCP performance tuning,” April 1997,
http://www.psc.edu/networking/tcptune/slides/.

[12] J. Mahdavi and S. Flyod, “TCP-Friendly Unicast Rate-Based Flow Control,” Jan
1997, Note sent to end2end-interest mailing list.

58

59

[13] M. Mathis, J. Semske, J. Mahdavi, and T. Ott, “The Macroscopic Behavior of the
TCP Congestion Avoidance Algorithm,” Computer Communication Review, vol. 27,
no. 3, July 1997.

[14] M. Mitzenmacher and R. Rajaraman, “Towards more complete models of TCP la-
tency and throughput,” Journal of Supercomputing, vol. 20, no. 2, September 2001.

[15] T. Ott, J. Kemperman, and M. Mathis, “Promoting the use of end-to-end congestion
control in the Internet,” August 1996, ftp://ftp.bellcore.com/pub/tjo/TCPwindow.ps.

[16] T. J. Ott, T. V. Lakshman, and L. H. Wong, “SRED: Stabilized RED,” Proceedings
of the INFOCOM ’99, March 1999.

[17] J. Padhye, V. Firoiu, D. F. Towsley, and J. F. Kurose, “Modeling TCP Reno Perfor-
mance: A simple model and its empirical validation,” IEEE/ACM Transactions on
Networking, vol. 8, no. 2, April 2000, pp. 133–145.

[18] C. Partridge and T. J. Shepard, “TCP/IP performance over satellite links,” IEEE
Network, September 1997, pp. 44–49.

[19] J. Postel, “Transmission control protocol,” September 1981, Request for Comments
793, DDN Network Information Center, SRI International.

[20] B. Sikdar, S. Kalyanaraman, and K. S. Vastola, “An integrated model for the latency
and steady-state throughput of TCP connections,” Performance Evaluation, vol. 46,
October 2001.

[21] W. Stallings, High-speed networks: TCP/IP and ATM design principles, Prentice
Hall, 1998.

[22] W. R. Stevens, TCP/IP illustrated, vol. 1, Addison Wesley, 1994.

[23] K. Thompson, G. J.Miller, and R. Wilder, “Wide-area Internet traffic patterns and
characteristics,” IEEE Network, vol. 11, no. 6, November 1997.

[24] UCB/LBNL/VINT, “The Network Simulator ns-2,” May 2002,
http://www.isi.edu/nsnam/ns/.

[25] L. Vivisano, L. Rizzo, and J. Crowcroft, “TCP-like congestion control for layered
multicast data transfer,” Proceedings of the INFOCOM ’98, April 1998.

APPENDIX A

THE EXPECTATION OF 1/W

60

61

From Taylor formula, we know:

& � � ���
�& � ($
&

� � � �
� � � � � � � �

(A.1)

Let & � � � and
�

be � � � and
��� �*� respectively. We thus have:

&
� � � ��� � � ��� � ! �

�
$ � � � ���

(A.2)

Substituting &
� � � � in Equation (A.1) and making use of Equation (A.2) and

��� �*� , we get:

�
� �

�& � ($
� � ��� �

� � ��� � � $ � � � ���
� � � � � ��� �*�"� �

�
�& � ($

� � ��� � � � � ��� �*�"� �
��� �*� � � � ��� (A.3)

Taking expectation on both sides of Equation (A.3), results in:

��� �
� �:� ��� �&� ($

� � ��� � � � � ��� �*��� �
��� �*� � � � ��� �

�
�&� ($

��� � � ��� � � � � ��� �*��� �
��� �*� � � � ��� �

�
�&� ($

� � ��� � ��� � � � ��� �*��� � ���� �*� � � � ���
� ���� �*�

��� � � � ���� �*� ?

�&� (? � � ��� � ��� � � � ��� �*�"� � ���� �*� � � � ���

� ���� �*�
 ��� � � � ���� �*� ?
� ���� �*� ���
 � � � � � ���� �*� < � (A.4)

The approximation holds when
��� �*� � � � ��� � ��� � � � ��� � �"� � � .

APPENDIX B

THE VARIANCE OF �����

62

63

Using similar assumptions as in the previous analysis, from (4.28), we know

��� � � ��� � �,�*7
7 < (B.1)

Thus from Equation (4.23):

��� � � � � � ���*7
7 <
 � � � � � � � � (B.2)

From Equation (4.25), we get the auto-correlation at the zero point1:

� � � � � � ��� � � �
'
 ��� � � �� <

��� � � � �
��� <
' � � � � � (B.3)

And from Equations (4.34), (4.36) and (4.37), we can compute the variance of � as fol-

lowing:

��� � � � � � ����� � � � ��� � � <
� ��� � < ��� ��� � � <
� ��� � $ �&

' ($
� < 7�� � � � � � ����� ��� � � <

� ��� � $ �&
' ($

� < ����� 7)� ' 7
���+����� 7)� � � � � � ��� � � <

� � ���,�*7)� <
7 < � �����*7)� � � %��� 7 � ���

<
(B.4)

From Equation (4.27), we can also get:

��� � ��� � � � � � � � �
�

� � ���� $ �
�

 � ���� � �����
 ��� � � � �
1This is equal to �
	 !�� �

64

� ��� � �
�
� � < � ��� � � � �� $ �

�
 � ���� � ��� < �
� � ��� � �

�
� � ���� $ �

�

 � ���� �8��� �"� <
 � � � � � �

� ��� � � �
'

� � � � � �
' � ��� �

�
� < ��� � � �� $ �

�

 � ���� � ���

<

 ��� � � � �

�
? = �
) � � � � �
'

� � � � � �
' � ��� � � <

'
� �
�

��� � ��� ��� ��� <
 ��� � � � �
� � ��� <� '

� ��� � � � � � �
 ��� � ��� � < � < � ��� � � <
'

� �
�

��� � ��� ��� ��� <
 ��� � � � �
� � ��� <� '

� ��� � � � � � �
 %��� 7 � < � �
'
� �
�

�
%��� 7
 ��� < � �

�

�
%��� 7 � � �

<

 �����,�*7)� <

7 < �+� ��� 7)� � � %��� 7 � ���
<

(B.5)

Combining (B.5) and (B.2), we obtain the final equation:

9�� '' < @������ � 7 ��� � 0 9
	 � <�
� � ����� � 7 ��� � @ �D � ' � <
� 9� � �H � �D � ' @ � �

< � DH � �D � ' � 9 � <
@ H % 9�� '�. <' < � % 9�� ' . � � �D � ' � 9 � < (B.6)

Solving Equation(B.6), we obtain the variance of � ��� as follows:

� � � � � ��� � 1 � $ � % � � � � ������ 7 (B.7)

	On the Modeling of TCP Latency and Throughput
	Recommended Citation

	tmp.1625165283.pdf.DeE8M

