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Bohm’s hydrodynamic formulation (or quantum fluid dynamics) is an attractive
approach since, it connects both classical and quantum mechanical theories of
matter through Hamilton-Jacobi (HJ) theory, and quantum potential. Lopreore
and Wyatt derived and implemented one-dimensional quantum trajectory method
(QTM), a new wave-packet approach, for solving hydrodynamic equations of
motion on serial computing environment. Brook et al. parallelized the QTM
on shared memory computing environment using a partially implicit method, and
conducted accuracy study of a free particle. These studies exhibited a strange
behavior of the relative error for the probability density referred to as the transient
effect.

In the present work, numerical experiments of Brook et al. were repeated with

a view to identify the physical origin of the transient effect and its resolution. The



present work used the QTM implemented on a distributed memory computing

environment using MPI. The simulation is guided by an explicit scheme.



DEDICATION

To the holy feet of shree sai baba and to Sarada, my dear wife, for her love,

understanding, and constant companionship.

ii



ACKNOWLEDGMENTS

I am gratefully indebted to my thesis advisor Dr. Anthony Skjellum for his able
guidance, and funding with out which, I could not have completed this program.
I am very thankful to my committee members Dr. David H. Huddleston, and Dr.
Seth F. Oppenheimer for their interest in this work and for their advise.

I take this opportunity to record my thanks to Dr. Ioana Banicescu for funding
part of this research activity and for all her support in this endeavor. I must thank
Mr. Glenn Brook for the OpenMP code, and Dr. Carino for his collaboration in
implementation of the MPI version of the code, and Dr. Paul Oppenheimer for his
feedback.

I also would like to thank Dr. Bradly Carter, and Dr. David Marcum for
providing computational facilities and excellent work environment. Additional
thanks to my colleagues at the High Performance Computing Laboratory, for their
help and friendship. I am very thankful to Dr. Raghu Machiraju for his timely
advise and help in switching my interests into Computational Engineering.

Deepest thanks go to my mother, and brothers for all the encouragement they

have provided and the faith they have shown in me.

iii



TABLE OF CONTENTS

Page

DEDICATION . ii

ACKNOWLEDGMENT ... e iii

LIST OF FIGURES . . . .. e vi

NOMENCLATURE . ... e vii
CHAPTER

I.  INTRODUCTION . ... e 1

1.1 Wave Packet Method ......... . ... ... ... ... ... .. .... 3

1.2 Quantum Fluid Dynamics............ ... .. ... .. ... .... 4

1.3 Previous Studies ....... ... .. ... ... 5

1.4 Transient Effect .. ...... ... ... .. . .. . ... . 6

1.5 Present Study ....... ... .. . ... 7

IT.  BACKGROUND . ... e 12

2.1 Governing Equations. ... ....... .. .. .. . . 12

2.2 Quantum Trajectory Method ... ........................ 14

2.3 MLS Algorithm . ..... ... ... . .. . . . 15

2.3.1 Pseudocode .......... .. ... 16

2.4 Numerical Approach . ... ... ... .. ... .. . 16

2.4.1 Governing Equations.......... ... .. ... ... ... ... 17

2.4.2 Discretization Method . .......................... 17

2.5 Shared-memory Model .......... ... .. ... .. ... . ... ... 18

III. IMPLEMENTATION ... ... e 21

3.1 Velocity Distribution........... ... ... ... ... ... ... ... 21

3.2 Message Passing Interface.............. ... .. ... ... ... 23

3.2.1 Fully Explicit Method . .......................... 23

3.2.2 Pseudocode ....... ... ... 23



CHAPTER Page

IV.  ACCURACY STUDY ... e 26

4.1 Initialization ........ ... . ... . . 26

4.2 Numerical Experiments. .. ........ .. ... ... .. ... ... ... 26

V. RESULTS AND DISCUSSION. . ... ..o 28

VI.  SUMMARY AND CONCLUSIONS ...... .. ... .. 35
VII. FUTURE WORK . ... 38
REFERENCES . ..o 40



LIST OF FIGURES

FIGURE

1.1

1.2

1.3

1.4

2.1

2.2

3.1

5.1

5.2

9.3

5.4

9.5

Spreading of a moving free particle wave-packet ..............

Dependence of accuracy of probability density on Ax when

At = 0.1 o

Dependence of accuracy of probability density on At when

Az =0.005 ...
Transient Effect for At=0.001 and Az=0.095 ................
Moving Least Squares Approximation Algorithm .............
Algorithm for QTM using MLS on OpenMP . ... .............
Algorithm for QTM using MLS on MPL.....................

Dependence of the transient effect on Ak with At=0.0625......

Gradient of velocity during the transient region with Ak = 0

and At=0.0625 . . ... ...

Gradient of velocity during the transient region with Ak =

0.005 and At=0.0625 . ... ... ..

Dependence of accuracy on time step size with Ak=0.005 ... ...

Dependence of accuracy on the initial velocity spread with

At=0.0625 . ...

vi



3> > ™ 2 My 3O

>t

NOMENCLATURE

Momentum

Mass

Energy

Number of pseudoparticles
Width of the wave-packet
Wave vector

initial wave vector
Probability density
Initial velocity

Quantum Potential
Quantum Force

Classical Potential
Classical Force
Amplitude function
Phase function

Time

Frequency of plane wave
timestep size

spatial resolution
Hamiltonian opeartor

Momentum operator

Planck’s Constant divided by 27

Vil



CHAPTER I
INTRODUCTION

The quantum world is inexplicable in classical terms. Predictions of Newtonian
mechanics fail in quantum mechanical regimes particularly because of the apparent
indeterminism associated with quantum mechanics. This means, that individual
atomic events are unpredictable, uncontrollable, and literally seem to have no
cause. Regularities in these systems emerge only when one considers a large
ensemble of such events. This indeed is generally considered as conceptual problem
with quantum mechanics, necessitating a fundamental revision of deterministic
classical theory. Some of the principal phenomena of interest in quantum mechanics
are interference, tunneling [1] and nonlocal correlations[2]. All these phenomena
with fundamentally discrete, statistical, and nonlocal character, and clearly conflict
with continuous, deterministic, and generally local structure of classical mechanics.
Thus, the challenge now is to develop a theory of individual material systems such
that, their mean behavior corresponds to the predictions of the statistical (or
nondeterministic) behavior of quantum mechanics.

Time-dependent Schrédinger equation (TDSE)

h2
—%VZ +V, (1.1)

f
|
>
S
)
Il

offers the mathematical model for quantum dynamics. TDSE represents the
governing equation of a quantum mechanical system composed of a single particle

of mass m moving in a potential V', and H is the Hamiltonian operator which is a
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sum of the kinetic energy operator and the interaction potential V. The solution of
the TDSE represents the system wavefunction W(7,¢) that inherits the statistical
nature of the quantum mechanics.

Since there is no way to describe individual processes using just the
wavefunction, de Broglie [3, 4, 5] proposed that the wavefunction be associated
with an ensemble of identical particles differing in their positions and distributed
in space such that the total probability density |¥|? = 1. Thus, the wavefunction
not only determines the likely location of a particle but also acts as a ‘pilot-wave’
that guides the particle (only one of which accompanies each wave), into regions
where W is most intense.

With a view to introducing the particle concept into quantum mechanics,

Madelung [6, 5] expressed the wavefunction in polar form

U(7,t) = R(F,t)eST/h (1.2)

where, R is the real-valued amplitude function and S is the real-valued phase
function. This interpretation yields information on the overall structure of a
wave as a single physical entity propagating in space. Since this interpretation is
analogous to a wave-packet (see next section) whose amplitude is appreciable only
in a limited region, they are widely used to study atomic, molecular, chemical,
and condensed matter physics. The time-dependent wave-packet methods have
several advantages. Their computational analysis is closely related to experimental
laboratory methods. Since the wavefunction represented by time-dependent wave-
packet is normalizable and is defined in the standard Hilbert space, these methods

are popular in scattering theory (see [7] for example).



1.1 Wave Packet Method

It is reasonable to suppose that a free particle of momentum p is associated
with a harmonic plane wave of vector k such that p=hk. Further E, the energy
of a classical particle, has its quantum analogue defined by E=hAw where, w is the
frequency of the wave. To represent a physical particle (confined to a region in
space), with a plane wave(that could spread upto infinity), several plane waves
(also called wavefunction, solution of the TDSE (Eqn. 1.1) could be superposed
and by arranging their amplitudes and phases so that they constructively interfere
in a restricted region of space, and destructively interfere outside this region. By
exploiting the analogies of particle and wave properties of matter, and to ascertain
physical properties represented by a plane wave, let us assume that only a finite
range of k values contribute to the physical properties. Such an approximation is
known as wave-packet approximation. According to the correspondence principle,
such a wave-packet centered around the coordinate origin (ko), must describe
classically the motion of a free particle.

Using the classical relationship E=p?/2m and using the above definitions for

p and E, we get

h2k?

= (1.3)

W

In the above w—k relationship, 5i2/2m is the rate of spreading (relative separation of
the trajectories with time) of the wave-packet. Typical spreading of a wave-packet
with QTM is shown in Fig. 1.1. Considering one-dimensional case for which k,=k,
and k,=k,=0, the motion of the wave-packet, that represents a moving free particle

in one-dimension, can be approximated by expanding w(k) around kg to get

w(k) Zw(k0)+j—:(k—ko)+%(k—ko)2+ (14)
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If |k — kol is sufficiently small then, the contribution of the quadratic term could
be safely ignored with out loss of generality. Then, the above equation is reduced
to
dw

w(k) = w(ko) + @(k — ko) (1.5)

Physically this means that, a wave-packet formed by superposing a finite set of
plane waves, each with a different &, centered around some kq accurately represents

a particle. In the above equation (Eqn. 1.5), vg:‘;—‘;c’,

with dimensions of velocity,
is called the group (average) velocity of the wave-packet. Thus, v, corresponds to

the particle velocity.

1.2 Quantum Fluid Dynamics

Bohm [8, 9] extended the particle concept in quantum mechanics to establish
a relationship between two physical theories of matter: classical mechanics and
quantum mechanics to describe the spacetime picture of quantum mechanics.
Although there are several approaches, such as expressing classical mechanics in
Hilbert space [5], introducing a kind of phase space to quantum mechanics through
Wigner functions [10], Bohm associated a well-defined phase space (simultaneously
with real position, and momentum) with the quantum mechanical processes in
spacetime. By treating both classical and quantum mechanical phenomena as
particular instances of a suitably generalized Hamilton-Jacobi (HJ) theory, Bohm
developed a hydrodynamic formulation in quantum mechanics, also called quantum
fluid dynamics (QFD), analogous to computational fluid dynamics (CFD). With
generalized HJ theory providing a mathematical procedure for how one passes from
the quantum to the classical domain, Bohm derived a formalism that connects
classical and quantum mechanical pictures through @), the quantum potential. In

the QFD approach, the fluid is characterized by p, the density of a compressible
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and irrotational fluid and, v the velocity field of the fluid, and m is the mass of a
particle traveling in the fluid. With the QFD formulation since R and S are nearly
monotonic functions of time, this formulation is computationally advantageous for
parallel processing.

With close parallelism between CFD and QFD, and with demonstrated success
of CFD for classical domain [11], it would be interesting to explore the applicability
of CFD techniques in QFD. With this insight, Lopreore and Wyatt [12] developed
and implemented the quantum trajectory method (QTM). This is a new wave-
packet method derived from the QFD approach for solving the QFD-equations
of motion (QFD-EOM) [12]. In this method, the derivatives of the field vectors
namely, p, v, and @ are computed using the moving least squares (MLS) algorithm
[12]. Further details of the QTM and MLS methods will be discussed in Chapter
2.

The present application of the QTM is to compute the solution of the
TDSE (Eqn. 1.1). In order to simplify the implementation of the method all
quantities are expressed in atomic units (a.u.) (A=m.=e=1) where, f is Planck’s
constant divided by 27, m, is the mass of the electron, and e is its charge. Though
H, the Hamiltonian operator, explicitly depends on time through an interaction

potential, for current applications, H is assumed to be time-independent.

1.3 Previous Studies
Lopreore and Wyatt [12] derived and implemented one-dimensional QTM using
an MLS algorithm on a serial computing environment. Brook et al. [13] parallelized
the MLS algorithm for shared-memory model using OpenMP directives. They
employed a partially implicit method for updating the density and velocity fields

and an explicit method for remaining component vectors. They also conducted



6
accuracy study of the probability density of a free particle moving with a velocity
vg. In their study, they used a Gaussian wave-packet (GWP) to represent the
initial wavefunction. With the density field initialized directly from the GWP,
their accuracy study exhibited a strange behavior in relative error during 0-125
a.u. of propagation of the wave-packet. For the remainder of the discussion, this
behavior is referred to as the transient effect. This effect, at the outset, contradicts
a nearly monotonic behavior of density with the QFD formalism [8, 9]. Brook et
al. [13] also observed that, the amplitude of the transient effect is more sensitive
to the size of the time step (At) compared to the spatial resolution (Az). Their

results (reproduced in the present work) are shown in Figs. 1.2 and 1.3.

1.4 Transient Effect

From Fig. 1.3, it is clear that the amplitude of the transient effect is decreasing
with decreasing At. This could mean that the transient effect is due to the
numerical inaccuracies and discretization errors. If the transient effect were due
to the discretization errors it should vanish completely for sufficiently small At.
With such a choice, it is also expected to reproduce the trends in relative error in
conformity with the expected nearly monotonic behavior in density with the QFD
formalism.

With this view, numerical experiments of Brook et al. [13] were repeated using
At=0.001 and N=21. The relative error is as shown in Fig. 1.4. From this figure,
though the relative error is very small, the relative amplitude of the transient effect
with respect to the maximum error is more or less independent of At. This means,
the strange behavior of the relative error remains regardless of the size of the time
step. Thus, it is clear that the transient effect has a physical origin apart from

numerical inaccuracies.



1.5 Present Study

Shared-memory parallel computers are not as widely popular as the distributed
memory computing environments. Since large scale computational simulation is
efficient and cost effective on a distributed computing environment particularly
with the availability of architecture independent Message Passing Interface (MPI)
communication libraries, the presented study employed the MPI version of the
QTM.

With distributed computing environment, since the partially implicit scheme
contributes more to the communication overhead than to the accuracy (at least
for the present study), a fully explicit scheme is employed for propagating the
wave-packet in the current investigation. The present work validated the MPI
implementation of the QTM by conducting the accuracy study of a free particle.

Since @) depends on the curvature of the density rather than its amplitude [12],
onset of the transient effect for probability density transforms into similar behavior
in the relative error for (). Since quantum mechanics is abstracted through () in
the QFD formalism, its accurate representation is vital for appropriate simulation
of quantum dynamics. Identification of the physical origin of the transient effect
and its resolution thus, formed the motivation of the present work.

The remainder of the thesis is organized as follows. Chapter 2 provides a
synopsis of the QFD-EOM, MLS algorithm, and the QTM. Chapter 3 details on
the fully explicit algorithm and its implementation on MPI. Chapter 4 introduces
a new method for removing the anomalies due to the transient effect. Results and
discussions are provided in Chapter 5 followed by summary and conclusions, and

the future work in Chapter 6.
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CHAPTER II
BACKGROUND

2.1 Governing Equations

The first step in deriving the QFD-EOM is to choose between the Eulerian
formulation [14, 15, 16] and Lagrangian formulation [17]. The present study
used Lagrangian formulation in view of its advantages. The Lagrangian equations
resemble Newton’s second law and the continuity equation [12, 18|. In Lagrangian
formulation, the computation is focused onto “regions of highest probability as an
optimal adaptive grid” [18]. Also, the Lagrangian formulation is advantageous for
formulating problems for parallel processing.

The next step is to substitute the wavefunction in polar form

(7, t) = R(7,t)e!STD/R (2.1)
into the TDSE.
ov . 12
ihmr = HV, H= —%VQ +V, (2.2)

Separating into real and imaginary parts and defining

p(7,t) = R*(¥,t)  probability density, (2.3)

1
v(Ft) = EVS(F’ t)  velocity and, (2.4)
j(7t) = p(F,t)o(r,t)  flux (2.5)

12
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we get the Euler QFD-EOM:

_apg,t) = V. [p(F,t)%ﬁsmt)}, (2.6)
_asg:,t) = %[6S(F,t)]2+V(F,t)+Q(p;ﬁt), (2.7)

(Eqn. 2.7) is the quantum Hamilton-Jacobi (HJ) equation. This is identically in
the form of classical HJ equation except for the last term (), the quantum potential

which is inherently global in nature. () is defined as follows:

11 1 1
LI v ) S SR v ISV
QoTit) = —5 - FVR=—o— pl/QV p .
| 1 .
- = 1 /2 1 1/2|2 )
5 (Vlogp'/" + |V log p/7[%)
Taking the gradient of (Eqn. 2.7) the velocity update is derived as follows:
dv - > o
mo = -VV+Q)=fc+ fq (2.9)
where, f, = —VV (the classical force term) and f(; = —VQ (quantum force term).
Applying the Lagrangian time derivative
d 0 -
=247 2.10
itV (2.10)

to (Eqn. 2.6) one obtains

L1 d .
[Q+g.v]p:_p:_pv.a, (2.11)
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which on integrating produces the density update equation
(7t + dt) = p(,t)e 47 (2.12)

From (Eqn. 2.7), it can be seen that the quantum effects are encapsulated into
(), which is a function of the curvature of the amplitude [12, 5]. Thus, quantum
theory is connected to the corresponding classical picture via (), the essence of
Bohm’s [8, 9] hydrodynamic formulation.

The mathematical equations describe the relations among the physical
variables. Accurate representation of the initial and boundary conditions guided by
the physical phenomena under investigation is thus, necessary for computational
accuracy. Since propagation of the velocity (Eqn. 2.9) and density (Eqn. 2.12)
field equations coupled through @, is equivalent to solving the TDSE (Eqn. 1.1),
appropriate initialization of these fields would be necessary for computational

accuracy.

2.2 Quantum Trajectory Method

In this method, a collection of N quantum sub-particles (also referred to as
‘pseudoparticles’ or fluid mass points), each of mass m, is used to represent
a physical particle with each pseudoparticle executing a “classical trajectory”
governed by the Lagrangian QFD-EOM [12] and the quantum potential Q.
(Eqn. 2.8). A mean behavior of all these “classical trajectories” trace a “quantum
trajectory”. Thus, this method is fully quantum mechanical and is distinct
from classical or semi classical methods although it employs classical trajectories.
Derivatives of p, v, and @) in the Lagrangian QFD-EOM are obtained by surface-

fitting the corresponding component vectors of the pseudoparticles using the MLS
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algorithm described in the next section. A weight factor is associated with each
pseudoparticle depending on its location. Thus, the method is more appropriately
called the moving weighted least squares (MWLS) algorithm. Since MWLS is
a special case of MLS algorithm, in the present work the acronym MLS is used

though the actual implementation is based on the MWLS approach.

2.3 MLS Algorithm

The moving least squares approximation (MLS), also known as the “meshless”
method, is one of a class of recently developed methods. These methods are useful
for spatial discretization [19, 20].

In MLS method, a function f(z), in one-dimension, is assumed to have been
defined on an unstructured set of points (or pseudoparticle positions) {z;} where,
i=1,..,N, (N, is the number of pseudoparticles in the set). Note that N, < N
where, N is the total number of pseudoparticles. The objective of the MLS method
is to find an approximate value of f in the neighborhood of each {z;}. A set of
polynomials {p; } with j=1..N, (where N, is the number of basis states) were defined

using a standard basis

20-1)
pi(z) = =1 (2.13)
such that
Ny
file) = ajpi(x — a5), (2.14)
j=1

then, to determine the coefficients {a;}, the approximation in (Eqn. 2.14) is
constrained to pass through N,, the size of the stencil, points in the neighborhood
of Z;.

Ny
filzg) = Zajpj(xk —z;); k=1,2,...,N,. (2.15)
j=1
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These equations are solved as an over-determined (N, > N,) linear least squares
problem using a weight factor w(zg;). The system of linear equations is solved
using LU decomposition. Solving the linear system to minimize the error for {a,}
leads to an equation for the solution vector @ (of dimension N, x 1) in terms of the
known function vector f (of dimension N, x 1). Thus, the derivatives of f can be

expressed in terms of the known function values for the points in the stencil [12].

2.3.1 Pseudocode
Let {p1,---,pn} be the pseudoparticles, {z,---,z,} be their positions and,
{f1,-++, fn} are the function values corresponding to the set {pi,---,p,}. of
pseudoparticles. Here, n < N, the total number of pseudoparticles. Flow of

the MLS algorithm is shown in Fig. 2.1.

2.4 Numerical Approach
This section provides the development of numerical formulas based on the
differential form of the governing equations. Current computational methods
for simulating wave-packet dynamics use space-time grids, basis sets, or some
combination of both. Present study employed a uniform spatial grid in one-
dimension. For the sake of completeness first, let us list the field equations and

their correspondence with physical variables followed by discretized forms.
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2.4.1 Governing Equations
Re-arranging the terms in the governing equations derived in the previous

section we get the following equations

p(7,t +dt) = p(7,t)e~ V) density, (2.16)
v(Ft+dt) = wmﬁ velocity, (2.17)
7(t + dt) = 7(t) + ¥dt  position, (2.18)
f;=—VQ  quantum force and, (2.19)

fe=—VV  classical force (2.20)

2.4.2 Discretization Method
A fully explicit scheme is employed to update the field vectors. Since the present
work is based on one-dimensional QTM with wave-packet propagating along the
positive x-direction, discretized form of the governing equations are presented for
one-dimension (along x-direction) and, generalization to two- and three-dimensions

should be straightforward. Governing equations in discretized form are as under:

pitt = p?e_m(g_z) density, (2.21)
0 1%
U]’-‘H = vy — %At velocity, (2.22)
x
ot =2 +vfAt  position, (2.23)
0
fo= _O_Q quantum force and, (2.24)
x
ov
fe= o classical force (2.25)
x

In the present study, for a free particle, the classical potential V=0 and force

fe=0. All the remaining spatial derivatives are computed using the MLS algorithm
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while, the temporal derivatives are approximated using a forward differencing
scheme. All pseudoparticles are uniformly distributed to provide a uniform grid

for spatial distribution.

2.5 Shared-memory Model

Brook et al. [13] parallelized Lopreore and Wyatt’s [12] MLS algorithm on
an a shared-memory parallel computer using OpenMP directives. A high level
description of the algorithm to track the state of the system is given in Fig. 2.2.
In this algorithm, Let x[],v[], and p[] denote the arrays of values of the positions,
velocities, and probability densities respectively, of N pseudoparticles in the wave-
packet representing the physical particle. These arrays are initialized before the
first simulation step. During each time step, values for the classical potential c¢V[],
and classical force cF[] are computed for each pseudoparticle. In this model, the
main computational loop running over the pseudoparticles contains several sub-
loops that perform desired calculation.

In the MLS algorithm, each pseudoparticle sorts its nearest neighbors based on
a parametric value that determines the neighborhood to form the set {z;} where
i=1,..,n. Their corresponding {f;} will be used to compute the coefficients {a,}
using (Eqn. 2.15). Thus, each pseudoparticle has its own set of {z;} and {f;}.
This set is to be formulated in every time step of the simulation. For computing
the derivatives of p (for computing @), v (for computing p), and @ (for computing
quantum force), an MLS call will be issued for each of the pseudoparticles. Since
MLS routine requires information from the other members of its set {z;} and
{fi} for surface fitting, a barrier synchronization would be necessary. There are
four barrier synchronization calls (three MLS calls plus one main loop for thread

synchronization) in the OpenMP implementation. In this algorithm, an implicit
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Do for each pseudoparticle in turn:

1. Sort pseudoparticles with respect to p; Set up the n x m polynomial
basis matrix P

1 Il .’1312 e .’121"

. 1 zo 3322 s :an
P(’L,]) -

1 Ty Zm? - Ty

2. Let W be the n x n diagonal weight matrix such that W (i,:) = w; for
i=1,..,n. Now set up the m x m matrix A = PTWP
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4. Solve the linear system Az = R which is equivalent to solving Pz = f
to obtain the coefficients {a;} that “best fits” the polynomial where,
T = {$1;$27 "7$n}T

Figure 2.1: Moving Least Squares Approximation Algorithm

method is employed for computing the density, and velocity of each pseudoparticle,

and an explicit scheme is used for computing all other terms.



Initialize x| |, v[ |, p[ |
for each time step do
for pseudoparticle i =1 to N do
Call MLS (4, z[ ], p[ ])
Compute quantum potential ¢V'[i]
end for
for pseudoparticle i =1 to N do
Call MLS (4, z[ |, ¢V ])
Compute quantum force ¢F[i]
end for
for pseudoparticle i =1 to N do
Compute classical potential ¢V [i], force cF[i]
for pseudoparticle 2 =1 to N do
Update position using velocity from previous time step
Update velocity using classical and quantum forces computed
in this time step
end for
for pseudoparticle i =1 to N do
Call MLS (4, z[ |,v[ ])
Compute gradient of velocity dv[i] using velocities
just computed
end for
for pseudoparticle 2 =1 to N do
Update density using the divergence of the velocity
field just computed
end for
Output time, z[ [, o[ ], p[ ], V[ ],cF[],¢V[],¢F[ ], dv] ]
end for
end for

Figure 2.2: Algorithm for QTM using MLS on OpenMP
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CHAPTER III
IMPLEMENTATION

3.1 Velocity Distribution

With group velocity approximation, a wave-packet centered around some kg
accurately represents a particle moving with a velocity vy. Thus, appropriate choice
of Ak = |k — ko| such that, the wave-packet is narrowly peaked around kq is
the key for accuracy in this representation. With N pseudoparticles distributed
in coordinate space representing the wave-packet in QTM, choice of Ak implies
distribution of velocities among these pseudoparticles. In the previous work by
Brook et al [13], all pseudoparticles in momentum space were initialized with the
particle velocity vg. That is, they chose Ak=0 in their accuracy study.

It is well known that a wave-packet moving with a velocity spreads (relative
separation of trajectories with time) non-uniformly and a wave-packet at rest
spreads uniformly. It is also known that the rate of spreading is proportional
to B, the width of the initial Gaussian wave-packet for t>0, and it corresponds
to the spread Ak in the momentum space via the uncertainty principle. Since
the p operator commutes with H and p is independent of time for a free particle
moving with constant velocity, the width Ak of the wave-packet in momentum
space chosen at t=0 is preserved at all times. Thus, appropriate choice of Ak that
satisfies the group velocity assumption would be necessary to accurately represent
a free particle via wave-packet methods.

For a chosen At, the evolution of the probability density (Eqn. 2.16) is mostly

dependent on the gradient of the velocity. And the velocity update (Eqn. 2.17)
21
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depends on the probability density via the quantum force (hence, the quantum
potential). In the absence of classical force, for a free particle, the velocity
update (Eqn. 2.17) is slow, especially when m is large. The velocity of each
pseudoparticle is further used to update its position after each time step At. Since
the probability density field is initialized directly from the state function, and the
validity of the MLS algorithm in approximating the dynamics has been amply
demonstrated, the transient effect is mainly a result of inappropriate initialization
of pseudoparticle velocities. Hence, remaining part of this section is devoted for
deriving velocity distribution among pseudoparticles.

In the accuracy studies of Brook et al. [13, 21], a free particle is represented

by a Gaussian wave-packet (GWP) with center ky and width 3 given by

U = (¥> : exp(—B(z — 20)* + ikox), (3.1)

where ky = 10.45715361, 5 = 10 and xy = 2. Here, z is the center of the wave-
packet.

Fourier transform of the initial GWP (Eqn. 3.1) in position space is employed to
obtain the corresponding momentum distribution function ¢(k). Squared modulus
of ¢(k) is obtained using the equation

$(k)"¢(k) = K%)1/4(%)1/26_4113(’“_'“0)2}2 (3.2)

Using the normalization condition

/ TlemP =1 (3.3)
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to compute the normalization factor, one obtains squared modulus of the
normalized momentum distribution function |¢(k)|?. Using this function and its
parametric width Ak, pseudoparticle velocities can be derived by distributing them
in the interval [|¢(k)[*> — Ak, |¢(k)|?+ Ak] and using pseudoparticle mass m=2000

a.u.

3.2 Message Passing Interface
In distributed memory computing, contrary to the shared-memory model,
most of the overhead is a result of explicit communication calls between the
processing elements. Implicit update of the velocity and density fields is a source

of communication overhead in distributed memory computing environment.

3.2.1 Fully Explicit Method

The present study employed a fully explicit algorithm for propagating the
wave-packet. In this method, the computational interdependencies are reduced by
enforcing that all the terms in the current time step depend only on the previous
time step. This approach enables efficient problem distribution among available
processors. Since the QFD formalism is casted into an IVP via the density and
velocity field equations, the accuracy of the method is more sensitive to field
initialization compared to propagation. Thus, the difference between fully explicit

and partially implicit update is not expected to produce an accountable error.

3.2.2 Pseudocode
A high level description of the algorithm to track the state of the system is given

in Fig. 3.1. The algorithm implements fully explicit update for all component
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vectors of each of the pseudoparticle. All of the for loops are parallel loops. The
iterates could be performed in any order and further, the iterates of a loop perform
the same computations.

From Fig. 3.1, it is clear that large part of the computational overhead is
mainly due to the MLS calls. Since the MPI version also employs the same MLS
algorithm that is used by Brook et al. [13], barrier synchronizations would still be
necessary in the current implementation.

One way to reduce barrier synchronizations is through further reducing
computational interdependencies. This could be accomplished, particularly with
the fully explicit method, by replicating the data arrays on all processors. Since the
MLS routine contributes largely to the computational overhead, its parallelization
is expected to improve the speedup significantly.

By reorganizing the updates, and computations, number of synchronizations
required has been reduced to two in the current implementation. The first
synchronization is needed after the computation of qV| | to make the results
available to all processors for computation of qF[ | and the second one required to
gather the results of the computations of qF[ | and dv[ |. From timing experiments
using N=2001 for the one-dimensional harmonic oscillator problem, a speedup of
about 26.4 with an efficiency of about 82% were obtained using 32 processors.
Further details on the implementation and performance analysis can be found in

Carifio et al. [22].



Initialize z[ |, v[ ], p[ |
for each time step do
for pseudoparticle i =1 to N do
Call MLS (4,z[ |, p[ ])
Compute quantum potential ¢V [i]
end for
for pseudoparticle i =1 to N do
Call MLS (4,z[ |, ¢V ])
Compute quantum force ¢F[i]
end for
for pseudoparticle 2 =1 to N do
Call MLS (%, z[ |,v] ]) Compute gradient of velocity dv][i]
end for
for pseudoparticle 1 =1 to N do
Compute classical potential cV[i], force cF[i]
end for
Output time, z[ [,v[ ], o[ ], V[ ],cF[ ], ¢V[],¢F[ ], dv ]
for pseudoparticle i =1 to N do
Update density pli]
end for
for pseudoparticle i =1 to N do
Update position z[i] and velocity v][i]
end for
end for

Figure 3.1: Algorithm for QTM using MLS on MPI



CHAPTER IV
ACCURACY STUDY

4.1 Initialization
All the pseudoparticles are uniformly distributed around z in order to represent
a physical particle of size 2.0 a.u. such that the spatial resolution Az is given by
2.0/N. Each pseudoparticle is initialized with velocity computed from |¢(k)|? and
a parametric choice of Ak that satisfies the group velocity assumption, and its
probability density is set to the square of the modulus of the state function at each
position. The wave-packet is then propagated for a specified number of time steps

using a step size At.

4.2 Numerical Experiments

With approximately symmetric ¢(k) around kg, accuracy of the computed
solution a for non-uniformly spreading wave-packet could be conceived by
appropriate choice of At. Thus, appropriate choice of Ak that satisfies group
velocity assumption, and At for wave-packet propagation would be necessary for
computational accuracy.

With this view, the numerical experiments of Brook et al. [13, 21] were
repeated with Ak from the set {0, 0.001, 0.005, 0.01} and At from the set {0.0625,
0.125, 0.25, 0.5} and the number of pseudoparticles from the set {21, 51, 81,
111, 141}. For all these experiments six basis functions were used to construct
the polynomials in the MLS algorithm. All pseudoparticles formed the stencil for

computing the derivative of the quantum potential ) while, half of them were used
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for computing the derivatives of velocity and density. Further details on these
choice considerations are available in Brook et al. [13]. The spatial resolution
was fixed at Az = 0.095, corresponding to N=21. This choice was based on the
observation, from Figure 1.2, that the relative error for N=21 set an upper bound

and the impact of choosing the (Ak, At) pair would be significant.



CHAPTER V
RESULTS AND DISCUSSION

The influence of initializing the pseudoparticle velocities, by parametric choice
of Ak, on the transient effect for a fixed At=0.0625 is demonstrated in Figure 5.1.
It can be seen from this figure that, the transient effect completely vanishes with
Ak = 0.005 as the parameter for the initial velocity distribution compared with
Ak = 0 for which the initial pseudoparticle velocities are set to the particle velocity.
However, the maximum error is almost double with Ak = 0.005 compared to that
with Ak = 0.

It is well known that nearly monotonic variation of both the probability density
and phase! density are the essential ingredients of the QFD formulation. Onset
of the transient effect during the boost phase with Ak = 0 contradicts this
vital aspect. For a given W(z,0) representing a particle moving with a velocity,
there exists a Ak in momentum space that accurately represents the particle
velocity. That is, inappropriate choice of Ak (hence, inappropriate velocity field
initialization) contributes to error in computing the particle velocity as well as the
particle position. Since the density update (Eqn. 2.12) depends on the velocity
gradient, the transient effect resulting from improper velocity field initialization
(via inappropriate choice of Ak) could be responsible for the apparent accuracy

with Ak = 0.

!The phase effects are cancelled out in the present study with choice of probability density
|&*¥| for the accuracy study.
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The behavior of the gradient of the velocity of each pseudoparticle with
Ak = 0 and Ak = 0.005, for fixed At=0.0625, are illustrated in Figs 5.2 and 5.3,
respectively. The time region of interest is the range 30-110 a.u., at which the
transient effect is manifested.

In Fig. 5.2 where Ak=0, the gradient of velocity continues to increase with
a positive slope. This means, in order to maintain nearly monotonic behavior
of probability density, sufficiently small At has to be chosen to compensate for
the growth in velocity gradient in the density update equation (Eqn. 2.12). The
transient effect thus is more sensitive to At, which is in conformity with dependence
of the amplitude of the transient effect on At shown in Fig. 1.3.

In Fig. 5.3, where Ak=0.005, the increase in gradient of velocity saturates
during the peak region (t=70-80 a.u. of propagation) of the transient effect. From
then on, the slope is invariant; thus, the corresponding density update is nearly
monotonic as required by the QFD formalism.

The accuracy of probability density with fixed Ak=0.005 and At chosen from
the set {1, 0.25, 0.0625} is shown in Fig. 5.4. From this figure, it is evident that
At=0.0625 offers the best accuracy. Experiments with fixed At=0.0625 and varied

Ak from the set {0, 0.001, 0.005, 0.01}, shown in Fig. 5.5, confirm this observation.
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Figure 5.1: Dependence of the transient effect on Ak with At=0.0625
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Gradient of velocity during the boost-phase
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Figure 5.2: Gradient of velocity during the transient region with Ak = 0 and
At=0.0625
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Gradient of velocity during the boost-phase
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Figure 5.3: Gradient of velocity during the transient region with Ak = 0.005 and
At=0.0625
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Figure 5.4: Dependence of accuracy on time step size with Ak=0.005
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CHAPTER VI
SUMMARY AND CONCLUSIONS

Quantum Fluid Dynamics replaces solving the time-dependent Schrodinger
equation by a density and velocity field equations coupled through the quantum
potential @), which is inherently global in nature. In this formalism, a quantum
mechanical system is represented by a compressible and irrotational fluid of
density (p) and of mass m moving with an average velocity (v). In this
formalism, the amplitude and phase of the system wavefunction ¥ are nearly
monotonic functions of time. With close parallelism of the QFD with CFD,
Bohm’s hydrodynamic formalism connects quantum dynamics with its classical
counterparts through Hamilton-Jacobi theory. In this approach, the “quantum
potential” (@) encapsulates all the quantum mechanical effects. Thus, Bohmian
dynamics offers a formalism to move a step closer to unify the nondeterministic
(quantum) and deterministic (classical) theories of matter.

The Quantum Trajectory Method is derived from Bohm’s hydrodynamic
formalism. In this method, a collection of N pseudoparticles (or quantum sub-
particles) represent the system wavefunction and each pseudoparticle executes a
“classical trajectory” governed by the QFD-equations of motion and ). These
trajectories span the propagation of the wave-packet. The characteristic vectors of
the fluid, namely p, v, and @, are obtained by surface-fitting the pseudoparticles
using an MLS algorithm.

The Quantum Trajectory Method, although utilizing classical trajectories,

is a fully quantum mechanical model, which is distinct from classical or semi-
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classical paradigms. The QTM provides an excellent model for simulating quantum
dynamics on parallel and distributed computing environments. The present study
sets another example for this observation.

The Quantum Trajectory Method is implemented on distributed memory
computing environment using MPI communication libraries, with fully explicit
method for updating the wave-packet. This implementation has reduced the
number of barrier synchronizations to two from four with OpenMP implementation
by Brook et al.

From the present study, computational accuracy of QTM for a free particle
depends on appropriate initialization of both the density and velocity fields. For a
free particle, with the probability density of each pseudoparticle computed directly
from the state function, the onset of the transient effect is a result of inappropriate
initialization of the velocity field. More appropriate pseudoparticle velocities were
assigned using |¢(k)[?, the normalized squared modulus of the initial momentum
distribution function, and parametric choice of the width Ak. ¢(k) was obtained
by the Fourier transform of the initial Gaussian wave-packet for a free particle.

Numerical experiments with parametric choice of Ak from the set {0, 0.001,
0.005, 0.01}, and At from the set {0.0625, 0.125, 0.25, 0.5} for N=21 reveal that the
onset of the transient effect is sensitive to initialization of the velocity field (hence,
choice of Ak), and its amplitude depends on At. These experiments also suggest
that Ak = 0.005 and At = 0.0625 offer the best accuracy for the probability
density while, satisfying nearly monotonic behavior (an essential ingredient of the
QFD formulation).

A thorough investigation of the interdependency of Ak and At that amounts to

computing the rate of spreading could be a useful guide for more accurate choice
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of Ak. Since the effect of the choice of Ak looses much of its significance in the

presence of a classical force, the current work is confined to a parametric study.



CHAPTER VII
FUTURE WORK

The present study does not validate the nearly monotonic nature of the real
valued phase function S with respect to size of the time step. This is mainly
because of the cancelation of phase effects with the computation of probability
density. A method to compute the probability density directly from R, the real
part of the wavefunction, would be helpful in retaining S (the imaginary part of
the wavefunction) and thus, the phase effects from cancelling out. These phase
effects are expected to provide significant insight to the stability analysis of the
QTM. Since the gradient of S' is useful for assigning pseudoparticle velocities, this
effort may also improve the accuracy of the probability density. Hence, resolving
these issues would be the immediate future interest.

It is well known that one-dimensional methods are good for model problems.
Any realistic application needs at least a 2D and preferably 3D implementation.
Hence, these options will be explored in continuation of the present work. Also,
the present study employed a uniform computational grid with fixed time step size
throughout the simulation. However, adaptive temporal and spatial resolutions
would be more appropriate for efficient simulations especially in the presence of
time varying fields. Since implicit methods have much to offer for both stability
and accuracy with adaptive time stepping, investigation of these aspects formed
an essential component of the future work.

It is clear that the MLS method is largely contributing to computational

overhead in the present one-dimensional implementation of the QTM. In 2D, and
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3D QTM, one has to deal with mixed and higher order derivatives as well. Hence,
efficient parallelization of the MLS method might be necessary. Exploring the
applicability of parallel math libraries such as BLAS and LAPACK for solving
the system of equations in the MLS method would be resourceful. Hence, this
effort would form an important component for extending the QTM into higher
dimensions.

It would also be of tremendous interest to investigate the accuracy of the
Quantum Trajectory Method for multi-particle correlations (at least two particles
to start with) in the presence of time-dependent potentials. This effort, though not
straightforward, has significant impact on validating the applicability of Bohm’s
hydrodynamic formalism for research in Quantum Computing (QC) and Quantum

Information Processing (QIP).
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