
Mississippi State University Mississippi State University 

Scholars Junction Scholars Junction 

Theses and Dissertations Theses and Dissertations 

12-13-2002 

Best Effort MPI/RT as an Alternative to MPI: Design and Best Effort MPI/RT as an Alternative to MPI: Design and 

Performance Comparison Performance Comparison 

Raghavendra Angadi 

Follow this and additional works at: https://scholarsjunction.msstate.edu/td 

Recommended Citation Recommended Citation 
Angadi, Raghavendra, "Best Effort MPI/RT as an Alternative to MPI: Design and Performance Comparison" 
(2002). Theses and Dissertations. 866. 
https://scholarsjunction.msstate.edu/td/866 

This Graduate Thesis - Open Access is brought to you for free and open access by the Theses and Dissertations at 
Scholars Junction. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of 
Scholars Junction. For more information, please contact scholcomm@msstate.libanswers.com. 

https://scholarsjunction.msstate.edu/
https://scholarsjunction.msstate.edu/td
https://scholarsjunction.msstate.edu/theses-dissertations
https://scholarsjunction.msstate.edu/td?utm_source=scholarsjunction.msstate.edu%2Ftd%2F866&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsjunction.msstate.edu/td/866?utm_source=scholarsjunction.msstate.edu%2Ftd%2F866&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholcomm@msstate.libanswers.com


BEST EFFORT MPI/RT AS AN ALTERNATIVE TO MPI:

DESIGN AND PERFORMANCE COMPARISON

By

Raghavendra Angadi

A Thesis
Submitted to the Faculty of
Mississippi State University

in Partial Fulfillment of the Requirements
for the Degree of Master of Science

in Computer Science
in the Department of Computer Science

Mississippi State, Mississippi

December 2002



BEST EFFORT MPI/RT AS AN ALTERNATIVE TO MPI:

DESIGN AND PERFORMANCE COMPARISON

By

Raghavendra Angadi

Approved:

Anthony Skjellum
Associate Professor of Computer Science
(Major Professor)

Donna S. Reese
Associate Professor of Computer Science
(Committee Member)

Susan M. Bridges
Professor of Computer Science
(Committee Member)

Julian E. Boggess
Associate Professor of Computer Science
Graduate Coordinator
Department of Computer Science

A. Wayne Bennett
Dean of the College of Engineering



Name: Raghavendra Angadi

Date of Degree: December 13, 2002

Institution: Mississippi State University

Major Field: Computer Science

Major Professor: Dr. Anthony Skjellum

Title of Study: BEST EFFORT MPI/RT AS AN ALTERNATIVE TO MPI: DESIGN
AND PERFORMANCE COMPARISON

Pages in Study: 59

Candidate for Degree of Master of Science

The Real-Time Message Passing Interface (MPI/RT) is an emerging real-time commu-

nications middleware standard for distributed real-time applications. The Message Passing

Interface (MPI) is the de facto standard for high performance parallel application devel-

opment. In this thesis, we describe how MPI/RT with best effort quality of service can

be used as an alternative for MPI. Mercury Computer Systems’ RACE embedded parallel

computer is used as the platform for comparison of design and performance of these two

standards. The main advantages MPI/RT has over MPI are its explicit support for com-

munication channels and its emphasis on early binding. Design and implementation of

best effort MPI/RT on Mercury is described and its performance is compared with MPI in

order to illustrate how MPI/RT features allow implementations to exploit the underlying

platform more optimally. The results for the benchmarks show that MPI/RT outperforms

MPI in almost all cases examined.



DEDICATION

To the fond memory of maa naanna.

ii



ACKNOWLEDGMENTS

This thesis would never have seen the light of the day without excellent guidance, ad-

vice and motivation from Dr. Anthony Skjellum. I thank him for his invaluable support

and encouragement. I would like to thank MPI Software Technology, Inc. for provid-

ing me an excellent opportunity to take part in implementation of MPI/RT and MPI on

Mercury embedded parallel computer. This not only provided the foundation for all the

work that is presented in this thesis, it has given me valuable education in real world high

performance software development. MPI Software Technology, Inc. has been extremely

generous in letting me use the software and hardware that is vital for this thesis. I would

like to specifically thank Zhenqian Cui, Dr. Rossen Dimitrov (former MSU students), and

Dr. Skjellum with whom I have worked closely on development of this software at MPI

Software Technology, Inc. I would like to thank my committee members Dr. Donna Reese,

Dr. Little, and Dr. Susan Bridges for their support. I always enjoyed insightful discussions

with my fellow HPC lab members. I thank them for making the lab a fun place to work.

Finally, I am grateful to Dr. Edward Allen for providing an excellent template that made

typesetting this thesis in LATEX so much easier.

iii



TABLE OF CONTENTS

Page

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

CHAPTER

I. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Message Passing Standards . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 MPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.2 MPI/RT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.3 Best Effort MPI/RT and MPI . . . . . . . . . . . . . . . . . . . 5

1.3 Hypothesis and Main Goals . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

II. RELATED RESEARCH AND LITERATURE REVIEW . . . . . . . . . . . 7

2.1 MPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.1 Basic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 Persistent Communication . . . . . . . . . . . . . . . . . . . . 9
2.1.3 MPI-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 MPI/RT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.1 Structure of an MPI/RT application . . . . . . . . . . . . . . . . 11
2.2.2 Communication Primitives . . . . . . . . . . . . . . . . . . . . 12

2.2.2.1 Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.2.2 Buffer Iterators . . . . . . . . . . . . . . . . . . . . . 13
2.2.2.3 Channels . . . . . . . . . . . . . . . . . . . . . . . . . 14

iv



CHAPTER Page

III. DESIGN OF MPI/RT AND MPI ON MERCURY . . . . . . . . . . . . . . . 17

3.1 Mercury Embedded Multicomputer . . . . . . . . . . . . . . . . . . . . 17
3.1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1.2 Shared Memory Buffers . . . . . . . . . . . . . . . . . . . . . . 18

3.1.2.1 Programmed I/O . . . . . . . . . . . . . . . . . . . . . 18
3.1.2.2 Direct Memory Access . . . . . . . . . . . . . . . . . 19

3.1.3 DX Transfer Creation . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 MPI/RT Communication Subsystem . . . . . . . . . . . . . . . . . . . 20

3.2.1 Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.2 Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.3 Committing a Ptchannel . . . . . . . . . . . . . . . . . . . . . . 23
3.2.4 MPI/RT Data Transfer Protocol . . . . . . . . . . . . . . . . . . 25

3.3 MPI Communication Subsystem . . . . . . . . . . . . . . . . . . . . . 26
3.3.1 DMA Transfers . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3.2 MPI Data Transfer Protocol . . . . . . . . . . . . . . . . . . . . 27

3.3.2.1 Synchronization and Flow Control in MPI . . . . . . . 27
3.3.2.2 The Transfer Protocols . . . . . . . . . . . . . . . . . 28

3.4 Summary of Design Differences . . . . . . . . . . . . . . . . . . . . . 30

IV. RESEARCH METHODOLOGY AND EXPERIMENTS . . . . . . . . . . . 31

4.1 Latency and Bandwidth Measurements . . . . . . . . . . . . . . . . . . 31
4.2 3-D Poisson Solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3 RT Cornerturn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.4 An image processing example . . . . . . . . . . . . . . . . . . . . . . 34

V. RESULTS AND ANALYSIS . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.2 Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.3 3-D Poisson Solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.4 RT Conrnerturn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.5 Slab – An Image Processing Example . . . . . . . . . . . . . . . . . . 45
5.6 Summary of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

VI. CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.1 MPI vs. MPI/RT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

v



Page

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

APPENDIX

COMPREHENSIVE SET OF RESULTS . . . . . . . . . . . . . . . . . . . . . . . 54

vi



LIST OF TABLES

TABLE Page

5.1 Round trip latency for MPI and MPI/RT . . . . . . . . . . . . . . . . . . . . 38

A.1 3-D Poisson Solver Results I . . . . . . . . . . . . . . . . . . . . . . . . . . 55

A.2 3-D Poisson Solver Results II . . . . . . . . . . . . . . . . . . . . . . . . . . 56

A.3 RT Cornernturn Results I . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

A.4 RT Cornernturn Results II . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

A.5 Slab Results I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

A.6 Slab Results II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

A.7 Slab Results III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

A.8 Latency and Bandwidth Measurements . . . . . . . . . . . . . . . . . . . . . 59

vii



LIST OF FIGURES

FIGURE Page

2.1 Life cycle of an MPI/RT application . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Primary steps during a message transfer on a an MPI/RT Channel . . . . . . . 15

3.1 A DX transfer creation in two stages. . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Data movement in some of the collective channels in MPI/RT. . . . . . . . . 22

4.1 Data movement in an all-to-all communication . . . . . . . . . . . . . . . . . 33

5.1 Round trip latency for MPI and MPI/RT at various data sizes . . . . . . . . . 37

5.2 Bandwidth for MPI and MPI/RT at various data sizes . . . . . . . . . . . . . 38

5.3 3D Poisson Solver with 4 Nodes . . . . . . . . . . . . . . . . . . . . . . . . 40

5.4 3-D Poisson Solver with 16 nodes . . . . . . . . . . . . . . . . . . . . . . . 41

5.5 RT Cornerturn performance with 4 processes . . . . . . . . . . . . . . . . . 42

5.6 RT Cornerturn performance with 16 processes . . . . . . . . . . . . . . . . . 43

5.7 Scalability of RT Cornerturn with matrix size 96 . . . . . . . . . . . . . . . 44

5.8 Performance of Slab with 4 processes . . . . . . . . . . . . . . . . . . . . . 45

5.9 Performance of Slab with 16 processes . . . . . . . . . . . . . . . . . . . . . 46

viii



CHAPTER I

INTRODUCTION

1.1 Motivation

The Real-time Message Passing Interface [14] is an emerging standard for real-time par-

allel and distributed computing. Though the primary focus of the standard is to provide

a portable API for real-time message passing applications, there are many features in the

standard that provide greater scope for library optimizations even for non-real-time (best

effort) applications.

We have implemented the MPI/RT standard with best effort quality of service (QoS)

at MPI Software Technology, Inc. on Mercury’s RACE embedded parallel computer1. We

have also ported MPI Software Technology, Inc.’s MPI [18] implementation to the Mer-

cury RACE platform2. The main motivation for this thesis work is to demonstrate, using

the above mentioned implementations, how MPI/RT can better exploit the platform spe-

cific features thus providing better performance when compared to MPI on this platform.

We would like to encourage best effort MPI/RT as an alternative to MPI by showing that

1MPI/RT implementation was developed by Zhenqian Cui and the author.

2MPI communication layer for Mercury was initially developed by the author and was later enhanced by
Zhenqian Cui. MPI Software Technology, Inc. graciously allowed us to use these middleware libraries as
well as the hardware as the basis for this thesis.

1



2

many MPI applications can be ported to MPI/RT even though programming models and

semantics differ considerably between the two standards. We also discuss various issues

that arise during the development of MPI/RT versions of MPI applications because of these

differences.

1.2 Message Passing Standards

In the message passing model of parallel computing, an application consists of a set of

processing nodes each of which has access to its local memory and communicates with

the other nodes by exchanging messages between them. Since the actual mechanism for

sending and receiving messages depends on the particular hardware platform, porting par-

allel applications developed for one class of parallel computers to another is not trivial.

In order to develop a parallel application for a specific platform, the developer needs to

gain at least minimal expertise in the specific platform. Over the last decade a number

of standards for developing parallel applications have emerged in order to address these

concerns. Such a standard, usually implemented as a middleware library, often achieves

portability and ease of programming with little loss of performance (when compared to

the programs developed on the native platform). This has been one of the primary reasons

for industry-wide acceptance of such standards. MPI is the most popular among these

standards and has emerged as the de facto standard for parallel and distributed application

development.



3

1.2.1 MPI

MPI [12] is an application programming interface (API) for message passing parallel ap-

plications. In a message passing model of parallel computing, any processing unit accesses

local memory of any other processing unit by explicit message passing. Some examples

of processing units are as follows: processes or threads in UNIX, processors on a parallel

computer etc. In this thesis, a process or a node implies a processing unit in a parallel

application unless specified otherwise.

An MPI application consists of
�

processes, each of which is assigned a unique rank

ranging from � through
�����

. MPI provides operations for both point-to-point communi-

cation and collective communication (e.g., broadcast and gather) between these processes.

In addition to these basic facilities, MPI provides many other abstractions that are com-

monly used in high performance applications and libraries. Some of the examples are its

ability to create subgroups and support for virtual topologies [8].

MPI has contributed enormously to the spread of parallel and distributed computing.

Implementations of MPI are now available for most of the commonly used computer sys-

tems. Since MPI is a well known standard, in this thesis only the relevant features are

described briefly whenever necessary, for completeness.

1.2.2 MPI/RT

In the past, many real-time applications have been developed on “bare” hardware without

any kind of operating system [3]. Though possible, it is neither convenient nor easy to



4

maintain such systems. The problem becomes much more complex when these systems

involve more than one node with real-time communication between these nodes. In recent

years, many real-time operating systems have been developed that take advantage of dis-

tributed nodes [9, 10]. In these systems, the real-time communication subsystem assumes

a central role.

Experience with MPI has clearly shown the advantages of having the standard for

reducing complexity of developing parallel and distributed applications. Real-Time Mes-

sage Passing Standard (MPI/RT) aims to achieve similar goals in real-time parallel and

distributed application development. MPI/RT is one of the first standards that addresses a

wide range of real-time programming paradigms. It supports time-based, event-based, and

priority-based models of real-time computing. Relevant features of MPI/RT are described

in more detail in later chapters.

In order to provide real-time guarantees, MPI/RT requires that most of the resource

requirements of an application be specified before the real-time phase begins. In other

words, all the MPI/RT objects (which specify resource and quality of service require-

ments) are committed a priori. The encouragement for early binding is one of the primary

differences between the MPI/RT and the MPI programming paradigms. MPI primarily

supports late binding (e.g., the parameters for communication are specified only when the

the actual communication is initiated).



5

1.2.3 Best Effort MPI/RT and MPI

All MPI applications can be categorized as applications providing best effort quality of

service (QoS). Here, the focus is on achieving high performance by reducing communi-

cation overhead and increasing parallelism. Since MPI/RT supports best effort QoS, it is

possible to provide MPI/RT versions (with best effort QoS) of many MPI applications.

The main advantage of MPI/RT over MPI for these applications is its ability to exploit

early binding. In this thesis we are primarily concerned with the performance advantages

provided by MPI/RT with best effort QoS over equivalent applications using MPI.

1.3 Hypothesis and Main Goals

The primary goals of this thesis work are as follows:

� to show the applicability of best effort MPI/RT as an alternative standard for devel-
oping high performance parallel and distributed applications.

� to show how many of the features in MPI/RT can be exploited effectively to achieve
better performance for non real-time applications when compared to the perfor-
mance of similar applications using traditional message passing standards such as
MPI.

Our main hypothesis is that MPI/RT semantics allow better optimizations and better

exploitation of the underlying platform, thus achieving better performance for best effort

QoS applications when compared to the performance of corresponding MPI applications.

We would like to validate the hypothesis through performance analysis of a set of bench-

mark applications developed using MPI/RT as well as MPI and targeted to the Mercury

RACE parallel computer.



6

1.4 Contributions

The main contributions of this thesis are as follows:

� This thesis presents the first known performance comparison of benchmarks on MPI
and MPI/RT.

� This thesis explores the influence of semantics of these two message passing stan-
dards on their design on the Mercury RACE embedded platform. The differences in
design illustrate how emphasis on early binding semantics in the MPI/RT standard
results in optimizations that benefit non-real-time applications as well.

� This thesis presents the design of the first known implementation of a best effort
QoS subset of the MPI/RT standard on any platform. This also helped as a prototype
implementation during the later developments of the standard.

1.5 Organization

The rest of the chapters are organized as follows: Chapter 2 summarizes MPI/RT and

MPI and traces the recent developments. Chapter 3 is a overview of the design of the

MPI/RT and MPI communication subsystems with emphasis on how the semantics of

these standards affect the design. Chapter 4 outlines the benchmarks used and experiments

conducted in order to validate the hypothesis. Chapter 5 discusses the results of these

experiments and analyzes the factors affecting the results. Finally, chapter 6 presents basic

conclusions, future directions, and some thoughts on MPI/RT as an alternative to MPI for

parallel application development.



CHAPTER II

RELATED RESEARCH AND LITERATURE REVIEW

In this chapter, recent developments in MPI and MPI/RT are summarized. A summary

of the basics of these standards is also presented.

2.1 MPI

The Message Passing Interface standard is a result of efforts to standardize message pass-

ing programming interface for parallel and distributed computing during the early 1990s.

An introduction to the standard is provided in section 1.2. A portable public domain imple-

mentation of MPI, called MPICH [7], has also contributed to the wide spread acceptance

of the standard.

2.1.1 Basic Model

An MPI application consists of
�

communicating processes (section 1.2.1). MPI is often

described as both large and small [8]. MPI 1.2 consists of a total of 128 functions but one

can write moderately large parallel applications using just six of the the functions. A brief

description of these six functions provides a good overview (for brevity, only the essential

arguments for the functions are shown):

7



8

MPI Init()
Initializes the library. This should be the first MPI function that is called.

MPI Comm size(size)
Gives the total number of processes participating in the application.

MPI Comm rank(rank)
Gives the rank of the calling calling process.

MPI Send(buffer, buf size, data type, dest rank)
Sends a data buffer of length buf size located at the address buffer to the
process whose rank is dest rank.

MPI Recv(buffer, buf size, data type, source rank)
Similar to MPI Send() which receives the data from another process.

MPI Finalize()
The final MPI function to clean up and finalize the library.

All messages that are sent have a tag associated with them so that these messages can

be identified on the receiving side. It can also be noted that for send and receive operations,

the application provides the address of the data and the communicating node’s rank as the

arguments to the operation. The MPI library does not have prior knowledge of the location

of the data and the communicating node. These late binding semantics of MPI preclude

some of the optimizations possible on many platforms.

MPI supports both blocking and non-blocking modes of communication. MPI also has

other modes of communication such as synchronous and ready modes. MPI has explicit

support for collective communication operations such as broadcast, scatter and gather. It

also makes collective communication much more flexible through communicators. Com-

municators provide a way of forming subgroups of processes.



9

2.1.2 Persistent Communication

MPI provides limited support for early binding through persistent communication, which

can be used when repeated calls to MPI Send() or MPI Recv() with the same argu-

ments are made. Though it is possible to optimize communication in this case by binding

the list of arguments, it does not provide full functionality of a conventional channel [12].

MPI persistent communication does not bind both sending and receiving sides. It mainly

reduces the overhead of argument passing and argument checking. In practice, few imple-

mentations of MPI actually are optimized for persistent communication. Little emphasis

is placed on this mode of communication in MPI. On the other hand, channels form the

core of the MPI/RT communication model.

2.1.3 MPI-2

As experience with MPI has increased, many researchers have proposed extensions to the

standard [17]. These include extensions that improve the performance and scalability as

well as support for more models of parallel programming. MPI-2 [13] adds a number

of new features in addition to extending the existing functionality. MPI 1.2 (as well as

MPI/RT 1.0) supports the static process model where the number of processes partici-

pating does not change. MPI-2 provides dynamic process management where new pro-

cesses can be added or spawned. The standard includes an API for parallel file I/O and

data distribution among the processes. MPI-2 introduces one sided communication where

communication is explicitly initiated only on one side. However, there is little change in



10

support for early binding or channels in MPI-2. Prototype implementations of the standard

are under development at various institutions, and a few commercial implementations are

nearly completed as of now.

2.2 MPI/RT

MPI/RT is an emerging standard for a wide range of distributed real-time applications.

The main goal of MPI/RT is to provide message-passing functionality with quality-of-

service (QoS). MPI/RT supports time-driven, event-driven, and priority-driven models of

real-time applications. The wide functionality and the real-time guarantees provided by

MPI/RT pose “middle out” requirements on the system; it has a strong influence on the

design of both the underlying platform and the applications1 . At present, there are few

operating systems and platforms which can support a complete MPI/RT implementation.

A time based real-time kernel based on RT-Linux called TURTLE [1] has been developed

at Mississippi State University. The feasibility of basic MPI/RT communication chan-

nels with time-driven QoS has been successfully demonstrated [15] using this kernel with

Myrinet [4] as the underlying physical network.

MPI/RT also supports best effort QoS. In a best effort QoS application, no real-time

guarantees are provided. High performance applications, such as MPI applications, can

be considered to be best effort QoS applications. An MPI/RT implementation with best

effort QoS has been developed for the Mercury RACE embedded parallel computer at MPI

1The idea of middle out requirements was first popularized by Dr. Vijay Madisetti



11

Software Technology, Inc. In order to validate our hypothesis, we describe the design of

MPI/RT and MPI on Mercury and compare the performance of the two standards on this

platform.

2.2.1 Structure of an MPI/RT application

In order to provide predictable performance and QoS guarantees, it is essential for a system

like MPI/RT to have advance knowledge of the application requirements during the real-

time phase. As shown in figure 2.1, an MPI/RT application primarily consists of a real-time

inner loop in between non real-time stages.

Initialize MPI/RT

Create Objects

 Commit Objects

Inner Loop

Uncommit Objects

Free Objects

Finalize MPI/RT

Real-time Mode

Non Real-time Mode

Non Real-time Mode

Figure 2.1 Life cycle of an MPI/RT application



12

After initializing the MPI/RT system using MPIRT Init(), the application creates

all necessary MPI/RT objects (e.g., communication channels, buffers and QoS objects).

These objects are then committed using MPIRT Commit(). During this operation the

system learns about the application requirements of various resources such as CPU time,

network bandwidth and the QoS guarantees. MPI/RT allocates the required resources dur-

ing this stage. An admission test to verify if it is possible to provide the required QoS is

also performed during this stage. If the Commit operation succeeds, the application enters

the real-time mode (“Inner Loop” in figure 2.1). In the real-time mode, only a subset of

MPI/RT operations are allowed. For example, the application cannot create new objects or

change the properties of the existing objects during this stage. The application enters the

non real-time mode by invoking MPIRT Uncommit(). During Uncommit the system

deallocates the resources created during the commit stage. MPIRT Finalize() cleans

up the library and ends the MPI/RT mode. The structure of a best effort MPI/RT appli-

cation does not differ from that of a real-time application, except that QoS arguments are

defaulted.

2.2.2 Communication Primitives

This section describes the essential objects that form core of the MPI/RT communication

layer.



13

2.2.2.1 Buffer

A buffer is an object that holds the data that is used in message passing between the nodes.

The buffer space for the data can be either supplied by the application or the application can

request that MPI/RT allocate the space during the Commit operation. Allowing the system

to allocate buffer space makes platform specific optimizations possible. For example, a

system might allocate buffer space from a region where the network device can directly

copy from in order to save an extra copy. After commit, the application can obtain a

pointer to the buffer data by invoking Get base() operation on the buffer object.

2.2.2.2 Buffer Iterators

A buffer iterator holds the buffers that are inserted into it. The buffers can be taken from

the iterator through Remove() operation. One of the parameters of a buffer iterator is a

policy that defines the order in which the buffers are placed for removal. The four basic

policies are as follows:

1. MPIRT BUFITER FIFO: First in first out. The buffers are taken from the iterator
in the order they are inserted.

2. MPIRT BUFITER LIFO: Last in first out.

3. MPIRT BUFITER SORTED: The buffers are ordered from the lowest label to the
highest label. The application can specify a label for each buffer.

4. MPIRT BUFITER UNORDERED: No particular oder specified.

Each buffer iterator can have a set of allowed buffers associated with it. Only the buffers

that are part of the allowed buffers set are allowed to be inserted into the iterator. If no set



14

is defined, then any buffer is allowed to be inserted (and removed). All the buffers that are

inserted into an iterator have the same size and data type.

2.2.2.3 Channels

A channel is a persistent virtual connection between sending and receiving nodes. A

channel object primarily consists of the peer node(s) (the nodes participating in the com-

munication), buffer iterators and QoS associated with the channel. A channel has an in-

put buffer iterator and an output buffer iterator. When MPI/RT performs a data transfer

over a channel, it removes a buffer out of the input buffer iterator and uses the buffer in

the communication. When the communication is completed, it inserts the buffer into the

output buffer iterator. There are two modes of activating data transfers over a channel:

MPIRT Channel start() and MPIRT Channel activate().

MPIRT Channel start() initiates one data transfer. This operation is non-blocking.

The message transfer takes place according to the QoS specified. For best effort QoS,

MPI/RT tries to achieve minimum latency and maximum bandwidth thus completing the

transfer as soon as possible. MPIRT Channel Wait() on a started channel blocks until

the last initiated transfer (over this channel) is completed.

MPIRT Channel activate() changes the state to the activated where the data

transfers take place according to the QoS without explicit calls each time. For example,

transfer takes place automatically once in every 10 millisecond window of time over a

real-time channel if the QoS specifies a 10 millisecond period. The application needs to



15

make sure that buffers are available in the input buffer iterator before the start of each

period.

SEND SIDE RECEIVE SIDE

USER

User Inserts Buffer into input buffer iterator

MPI/RT Removes a buffer out for transfer
Virtual Channel

MPI/RT Inserts the buffer into output buffer iterator 

User removes the buffer from the iterator

USER

MPI/RT

MPI/RT

Figure 2.2 Primary steps during a message transfer on a an MPI/RT Channel

The primary steps in a message transfer over a channel are shown in the figure 2.2.

The application makes sure that the input buffer iterator is not empty by inserting buffers

if necessary. MPI/RT takes one buffer out of the iterator and uses it in the data transfer. The

send-side of the channel sends the data in the buffer and the receive-side of the channel

fills the buffer. After the transfer is finished, MPI/RT inserts the buffer into the output

buffer iterator which can be used by the application.



16

MPI/RT supports collective channels and subgroups of processes for collective com-

munication. The design of the MPI/RT implementation on the Mercury RACE platform is

described in the next chapter.



CHAPTER III

DESIGN OF MPI/RT AND MPI ON MERCURY

In this chapter we describe the design of relevant parts of MPI/RT and MPI communi-

cation layer over the Mercury RACE platform. Here, we also present a brief description of

Mercury RACE system [11]. Basic knowledge of relevant features of the underlying plat-

form is necessary in order to understand how one middleware might better exploit some

of the capabilities of the platform, over the other.

3.1 Mercury Embedded Multicomputer

In this section as well as in this thesis “Mercury” refers to the complete Mercury RACE

embedded multicomputer including the hardware as well as its operating system.

3.1.1 Overview

The basic building block of Mercury is its compute environment (CE). Each CE consists

of a processor, memory, timers, interrupt control, and a DMA controller. Each of the

CEs runs Mercury’s POSIX like embedded operating system MC/OS. Usually there is

more than one CE on a motherboard. These CEs are connected by RACEway which is a

network of crossbar switches. RACEway connections give CEs on the same motherboard

access to the other CEs’ memory at almost the same bandwidth as local memory. Each CE

17



18

can run more than one program on it. Mercury is connected to a host machine which is

usually desktop such as Sun machine running Solaris. Any CE can be directly controlled

from the host machine. A process running on a CE can also spawn processes on other

CEs.

3.1.2 Shared Memory Buffers

A shared memory buffer (SMB) defines a random access storage block [11]. For a pro-

cess it does not look different from dynamic memory allocated through malloc(). The

primary difference is that SMB is can be accessible by processes on the other CEs though

the RACEway network. Thus, all the data involved in communication between the CEs is

stored in SMBs. An SMB can also be allocated from memory on the devices such as frame

grabber that are attached to a CE. Coarse-gain virtual memory management and large page

sizes are evidently used with SMBs.

A process can create an SMB from its local memory (using smb create() system

call) or it can obtain a handle for a remote SMB by attaching to it. A remote SMB can be

accessed in one of two ways: Programmed I/O or Direct Memory Access (DMA).

3.1.2.1 Programmed I/O

A remote SMB can be mapped into a process address space using smb map(). After

mapping, a process can access the area just as it accesses any other memory. Since each

mapping takes up page registers, which are limited, Mercury has a provision to group a set



19

of SMB mappings together. When we actually want to access the SMB, the corresponding

mapping can be enabled using smb enable.

3.1.2.2 Direct Memory Access

Mercury provides a device independent interface called DX for high-speed data transfers

over RACEway. On the machine where we have conducted our experiments, DX uses the

Direct Memory Access (DMA) engine on each CE for this purpose. An application can

create a DMA transfer object (or a handle) between a local SMB and a remote SMB and

this handle can be used for subsequent DMA transfers.

For large data transfers, DMA is more efficient and for small data transfers (such as 4

or 8 byte transfers), programmed I/O is more efficient.

3.1.3 DX Transfer Creation

A DX (or DMA) transfer object is created in two stages. First, a DX template is created

by specifying source and destination SMBs. This operation establishes the path between

the source and the destination and usually consumes a considerable amount of resources

and time. In the second stage, the amount of actual data transfer and the offsets from

the beginning of the SMBs are specified for creating a DX transfer object. Figure 3.1

shows creation of a DX transfer object. If another DX transfer object for the same

SMBs with different offsets is required, we need not create another DX template ob-

ject. Creating a DX transfer object consumes less vital system resources than creating



20

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

DX_transfer (Actual data to be 
transferred).

DX_template
(contains route and relevant info
 expensive operation)

SMB1 SMB2

STEP 2

STEP 1

Figure 3.1 A DX transfer creation in two stages.

a DX template object. In order to achieve scalability, we need to minimize the number

of SMBs created (or attached) and the number of DX template objects created. The

next section explains how MPI/RT semantics allow such an optimization of resource con-

sumption. Currently, the offset for a DX transfer object should be a multiple of 8 bytes.

3.2 MPI/RT Communication Subsystem

In this section, we outline the design of MPI/RT channels on Mercury.



21

3.2.1 Buffers

On each of the processes, only one large SMB for all MPI/RT buffers is created. During

the commit stage (section 2.2.1) of an MPI/RT application, the system (MPI/RT library)

has complete knowledge of all the buffers that are created by the application. So the system

creates one large SMB sufficient for all the buffers and allocates memory from this. Since

each of the processes creates only one SMB, each process in an MPI/RT application needs

to attach to at most one remote SMB located at the other processes. As there is a limit on

the number of SMBs that can be created or attached, this scheme minimally impacts the

scalability of the system. Similarly there needs to be at most one DX template object

(section 3.1.3) between two given nodes. We observed that the limit on the number of DX

template objects that can be created is more stringent than that on the number of SMBs

that can be attached.

3.2.2 Channels

An MPI/RT channel (section 2.2.2.3) is a virtual connection between the nodes used for

data transfer. MPI/RT supports the following kinds of channels (Figure 3.2), which are

patterned after MPI collectives:

MPIRT Ptchannel: Point-to-point channel consists of one send-side and one receive
side.

MPIRT Bcast channel: Root node sends data to all the nodes (including itself) in
the group.

MPIRT Scatter channel: Root sends portions of its data to each of the nodes in the
group. The section of the buffer a node receives depends on its rank in the group.



22

MPIRT Gather channel: Similar to a scatter channel except that the root receives
the sections of the buffer from each of the nodes in the group.

MPIRT Reduce channel: The root gathers data from each of the nodes and performs
an operation (such as sum or maximum) on the data from each of the nodes and
stores the result.

MPIRT Barrier channel: Does not involve any explicit data transfer. When
MPIRT Channel wait operation (section 2.2.2.3) returns after
MPIRT Channel start, it implies that all the nodes in the group have executed
MPIRT Channel start operation on this channel.

A

A A AA

B C DA

A B C D

Root

All Nodes 

Scatter Channel

B C DA

A B C D

Root

All Nodes 

Gather Channel

Root

All Nodes 

Broadcast Channel

Figure 3.2 Data movement in some of the collective channels in MPI/RT.



23

MPI has a corresponding operation (such as MPI Scatter()) for each of these chan-

nels. MPI also supports MPI Alltoall() and MPI Gatherall(), which can be

emulated in MPI/RT 1.0 using other collective channels.

In this section, a point-to-point channel (ptchannel) is used as an example for describ-

ing the commit process and the data transfer protocol . The methods for the other channels

are similar.

3.2.3 Committing a Ptchannel

Every MPI/RT object has a name (string) associated with it, which can be set by the ap-

plication during creation of the object. To establish a ptchannel, both ends (sending and

receiving ends) must have a Ptchannel object with the same name and the same group.

During commit, MPI/RT matches the two ends of a channel based on the name and the

group. This highlights the primary difference between an MPI/RT channel and MPI per-

sistent communication (section 2.1.2), where there is no binding between both sides of the

communication.

Each channel has an input buffer iterator (section 2.2.2.2), which contains buffers in-

serted into it. Each buffer iterator has an associated set of allowed-buffers. It is illegal to

insert a buffer that is not a part of a buffer iterator’s allowed-buffers. In the current imple-

mentation, the receiving node of a ptchannel initiates the DMA request for the data trans-

fer. So only the receiving side of the channel needs information about the allowed-buffers

on the other side. During the commit operation, the sending side sends the information



24

about its allowed-buffers to the receiving side. This information includes the offset of each

of the buffers in the large SMB that was created.

The application might insert any of the allowed-buffers on the sending side and any

of the allowed-buffers on the receiving side for a data transfer over a channel. This im-

plies that the DX transfer objects used for DMA transfer should be created for all

the combinations of these buffer pairs. Thus, if the sending side of the channel has �

allowed-buffers and the receiving side has � allowed-buffers, then ��� transfer objects

need to be created. The buffer iterators have a mapped form of each of the policies men-

tioned in section 2.2.2.2. A mapped policy (such as MPIRT BUFITER FIFO MAPPED)

for input buffer iterators on both sides of the channel implies that for any data transfer,

if
�����

buffer (in the allowed-buffer set) is used on one side of the channel then the other

side also uses
� ���

buffer in its allowed-buffer set. This drastically reduces the number of

DX transfer objects that are created. There is an ordered form of the policies (e.g.,

MPIRT BUFITER FIFO ORDERED) where buffers are inserted into the buffer iterator in

the same order in which they appear in the allowed-buffer set. Thus if the policy is or-

dered, the system knows a priori the order in which the buffers appear on both sides of the

channel. Such a commitment from the application might be used to reduce the protocol

overhead on some platforms. In the current implementation, ordered buffer iterators are

treated in the same way as the mapped iterators when both sides have equal number of

buffers in the allowed-buffer set.



25

MPI/RT has limited support for late binding semantics where the application may in-

sert any buffer as long as the buffer is suitable for the channel (i.e., with the same size

and the same data-type). This can be achieved by specifying a null object for the set of

allowed-buffers for the buffer iterator. In this case, the current implementation creates an

internal buffer for data transfer and uses an extra copy operation.

3.2.4 MPI/RT Data Transfer Protocol

The data communication over a channel follows a 3-way protocol for communication. The

three stages for a ptchannel are as follows:

1. The sending side does a remote-write (programmed I/O) to a predefined location on
the receiving node indicating the buffer. This location is predefined and exchanged
during the commit phase in MPI/RT.

2. The receiver reads the send-side buffer information from this predefined location and
then resets the location. It then obtains the local buffer information and retrieves the
DX transfer object corresponding to this pair of local and remote buffers. A
DMA transfer is initiated using this transfer object.

3. After the transfer is completed, the receive side does a remote-write to the send-side
indicating that the transfer is completed. An error is indicated if the transfer failed
or was not performed.

MPI/RT uses DMA for all the data sizes during the data transfer (step 2) above. This

differs from MPI’s approach where it uses programmed I/O for data transfers up to 32

bytes and DMA for larger transfers.



26

3.3 MPI Communication Subsystem

At MPI Software Technology, Inc., a commercial, portable MPI implementation has been

developed where the platform independent upper layer is built over the platform dependent

layer. This is further described in [5]. The platform dependent layer includes the commu-

nication layer, a major portion of which is an efficient implementation of point-to-point

communication between any two nodes in the distributed system. This section briefly de-

scribes the communication layer design for Mercury with emphasis on how it differs from

MPI/RT communication layer.

3.3.1 DMA Transfers

We mentioned in section 3.1.2 that on Mercury, an application needs to create shared

memory buffers (SMBs) in order to initiate DMA transfers. In MPI/RT, we create one large

SMB from whence we allocate the MPI/RT buffers used for data transfers. But in MPI,

applications supply the buffer for data transfers. This buffer could be located anywhere in

the application’s memory. Since Mercury does not allow DMA transfers between arbitrary

memory locations, we could use a large SMB for data exchange and copy the data to and

from the application specified buffers. This scheme would be expensive as it involves

an extra memory copy. To overcome this, Mercury allowed us to use an undocumented

feature where we can treat the whole of a remote node’s memory as an SMB. Since this is

an undocumented feature, we are not sure if it incurs an extra penalty compared to a DMA

transfer between regular SMBs. We expect the penalty to be insignificant in any event.



27

Since MPI needs to support DMA between arbitrary locations of memory, it initially

creates one DMA transfer object (section 3.1.3) and modifies its parameters before each

data transfer. This modification is roughly equivalent to creation of a new DX transfer

that is done for each pair of buffers during the MPI/RT commit phase. The overhead

incurred for run time modification of the DMA object is one of the primary differences

between MPI and MPI/RT DMA transfers.

3.3.2 MPI Data Transfer Protocol

In the MPI/RT protocol (section 3.2.4), the two end points of the communication use

predefined memory locations for communicating the state of the channel and the buffers

used for data transfer. These locations are determined for each channel during the commit

phase. Because of absence of such a location for each transfer in MPI, the implementation

incurs overhead of flow control for each each data transfer. The following section describes

the flow control mechanism in MPI.

3.3.2.1 Synchronization and Flow Control in MPI

The MPI implementation allocates a fixed number of small blocks of memory, which we

call control blocks, that are used for exchanging information on a data transfer. Each node

allocates an array of control blocks for each of the other nodes in the cluster. For each

data transfer, one control block is used on each side of the transfer. Since there are only a

fixed number of these blocks there can be only a fixed number of outstanding transfers at



28

any given time. When an MPI application requests more non-blocking transfers1, the data

transfer protocol is delayed until a control block is available if all the blocks have been

consumed. This flow control is not needed in MPI/RT. Flow control results in an extra

remote write through programmed I/O.

Since each node needs to allocate the control blocks, these blocks are made sufficiently

large so that they can hold a fixed amount of data that needs to be transferred. MPI uses

a 3-way protocol similar to MPI/RT for larger data transfers and uses a shorter 2-way

protocol for smaller data transfers. The 2-way protocol uses space available in the control

block for transferring the data. Currently the 3-way protocol is used for messages larger

than 1024 bytes.

3.3.2.2 The Transfer Protocols

The 3-way protocol is essentially the same as that in MPI/RT implementation. The sender

remote-writes the information regarding the transfer and the receiver reads this information

and remote-writes confirmation after completing the data transfer. The primary difference

is in the amount of information that is written on the remote node’s memory for the trans-

fer. MPI needs around 28 bytes (in each direction) as opposed to 4 bytes in MPI/RT. The

fields that MPI needs to write include a tag, a context id, rank of the node, length of

the data, and physical address of the buffer. Many of these fields are a direct result of the

MPI semantics. As mentioned above, MPI requires another four byte remote-write for flow

1An MPI application typically starts multiple data transfers using its non-blocking communication API
and later waits for these transfers to finish.



29

control. All the remote-writes mentioned above are performed through programmed I/O

because it is more efficient for small data writes to the remote node’s memory. Even for

small messages, overhead of programmed I/O linearly increases with the size of the data.

So it takes nearly four times as long to write 32 bytes than it takes for 8 bytes. The con-

siderable difference in number of remote-writes is one of the primary reasons for higher

latency in MPI. This difference is even more prominent in the case of collective communi-

cation since programmed I/O is less scalable than DMA on Mercury’s RACEway network

that connects all the nodes.

In the shorter 2-way protocol that is used for data sizes less than 1024, the third step

is eliminated. Here, when the sender first writes the information regarding the transfer to

the remote node’s control block, it also transfers the actual data to the space allocated on

the block. When the receiver notices that the data size is less than 1024, it just copies the

data from the control block to the application’s buffer instead of transferring it from the

sender’s node.

MPI/RT could certainly use a similar 2-way protocol for small data transfers. But the

effect of this would be less dramatic in MPI/RT because, unlike in MPI, the third step in the

3-way protocol involves only four bytes of data. The manufacturer of this system evidently

advises its users to minimize programmed I/O because of its issues with scalability and

stability at high loads. In all of the performance results presented in this thesis, MPI

uses different protocols based on the size of data whereas MPI/RT always uses the 3-way

protocol.



30

3.4 Summary of Design Differences

This section summarizes the main differences in communication layers in MPI and MPI/RT

that contribute to the differences in their performance. These are as follows:

1. MPI needs to modify the DMA transfer object before each DMA transfer.

2. MPI incurs an overhead for flow control that involves a remote-write.

3. Each side of the data transfer needs to write more data to the other side in MPI than
in MPI/RT. The cost of remote-writes increases linearly with data size.

Any compliant MPI implementation has to have the key ingredients noted above, or

else suffer from lack of robustness. But depending the underlying platform, such differ-

ences could have bigger or smaller impacts on performance.



CHAPTER IV

RESEARCH METHODOLOGY AND EXPERIMENTS

Our hypothesis (section 1.3) that MPI/RT can achieve better performance than MPI

is verified by analyzing the performance of a set of MPI/RT and MPI applications along

with latency and bandwidth measurements. This chapter outlines the various experiments

that have been conducted to compare MPI/RT and MPI performance both in terms of

efficiency and scalability. Scalability has been tested up to 16 nodes. It is expected that the

following experiments not only illustrate performance benefits of MPI/RT over MPI, but

also demonstrate the general applicability of best effort MPI/RT as an alternative to MPI

for common high performance parallel applications.

4.1 Latency and Bandwidth Measurements

A simple application with two nodes is used to measure the latency and bandwidth between

the two nodes. The round-trip times are measured using data transfers of various sizes. The

primary aim of this experiment is to examine the overhead incurred by MPI/RT and MPI

for basic point-to-point communication. The results of this experiment establish the basic

characteristics of these two middleware libraries that are also reflected in other experi-

ments that involve various forms of collective communication and data transfer patterns.

31



32

In order to obtain the results in similar environments, we use persistent communication

(section 2.1.2) in MPI for data transfer.

4.2 3-D Poisson Solver

In this application, a differential equation (Poisson equation) is solved over a 3-D rect-

angular grid. Here, the 3-D grid is decomposed in the � , � , and � dimensions and are

assigned to the participating nodes. This is a typical application that simulates data move-

ment patterns in many scientific computing applications. The performance is measured

with various sizes of the grids and with different numbers of processes. Adaptability of

MPI/RT with respect to ease of programming is also examined. Since this application

primarily involves point-to-point communication, we compare MPI/RT performance with

MPI’s persistent communication. MPI does not provide a persistent communication inter-

face for collective communication.

4.3 RT Cornerturn

The RT Cornerturn benchmark, developed at MITRE [6], measures the performance of

distributed matrix transposition (corner-turn). Here, an arbitrary size matrix is distributed

over an arbitrary number of processes. In MITRE’s MPI implementation of the bench-

mark, a square matrix of single precision complex data is distributed among a specified

number of processes by rows. Each process performs a local transpose of its data. Then an

all-to-all communication is performed using MPI Alltoallv() (figure 4.1). After the



33

communication, each process reorganizes the data to complete the corner-turn. Now, each

of the processes contains its portion of the transposed matrix. This application primarily

tests the efficiency of the collective communication of the messaging layer.

A1 A2 A3 A4 A1 B1 C1 D1

A2 B2 C2 D2

A3

A4

B3

B4

C3

C4

D3

D4

Before

Proc1

Proc2

Proc3

Proc4

B1 B2 B3 B4

C1 C2 C3 C4

D1 D2 D3 D4

After

Data transfer
All-to-All

Figure 4.1 Data movement in an all-to-all communication

MPI has explicit support for all-to-all communication (figure 4.1) which is missing in

MPI/RT 1.01. In MPI/RT, all-to-all communication can be achieved by using
�

scatter or

gather channels, where
�

is the number of processes participating in the collective com-

munication. The performance is measured with different sizes of the square matrix and

with different number of processes. We have adopted MITRE’s MPI implementation of

1In MPI/RT 1.1, an all-to-all channel was added, but that is not exploited in this implementation.



34

this benchmark with minor modifications and developed an MPI/RT version for compari-

son.

4.4 An image processing example

An MPI/RT application, Slab, which performs a parallel image enhancement has been

developed by SKY Computers, Inc. We have used this MPI/RT version with minor mod-

ifications and developed an MPI version to compare the performance. The outline of the

application is as follows:

� The root process distributes a frame among the processes.

� Each process processes the data and then sends its local minimum and maximum to
the root.

� The root process broadcasts the global minimum and global maximum values to all
the processes.

� All the processes scale their parts of the image according to the global minimum and
maximum.

� The root collects the image sections from all the processes.

Most of the collective channels available in MPI/RT are utilized in this application.

This benchmark is expected to capture the communication and computation patterns in a

typical real-time image processing applications.



CHAPTER V

RESULTS AND ANALYSIS

This chapter presents the results of various experiments described in the previous chap-

ter. The performance benefits of MPI/RT over MPI are demonstrated with the following

experiments:

1. Latency measurements for various data sizes.

2. A scientific computing application that solves Poisson equation over a 3-D rectan-
gular grid.

3. RT Cornerturn benchmark which transposes a square matrix distributed over multi-
ple nodes.

4. An image processing application called Slab.

The following section describes the experimental set up in terms of hardware and soft-

ware used. The subsequent sections describe the results of each of the experiments.

5.1 Experimental Setup

The Mercury hardware, Mercury OS (MC/OS), and MPI and MPI/RT libraries used in

these experiments were provided by MPI Software Technology, Inc. The Mercury embed-

ded multicomputer has 32 processors, where 16 of them are 300 MHz PowerPC processors

and the other 16 are 400 MHz processors. Each mother board contains four processors

35



36

and the processors are connected by Mercury’s proprietary internetwork called RACE-

way. Each of these processors has 64 MB RAM and runs MC/OS version 5.6. In order to

run the experiments using homogeneous nodes only the 400 MHz processor nodes were

used. So all the applications except latency test are run with up to 16 nodes. MPIPro 1.6.3

for Mercury is used for the MPI library. The MPI/RT library used is MPI/RT-Pro 1.0 for

Mercury.

The timings have been measured over a number of iterations and the average time for

each iteration is represented in the graphs. All the timings shown in this chapter are in

microseconds ( ��� ). Instead of presenting one graph for each set of readings, an effort is

made to provide a subset of graphs that is enough to illustrate the performance of MPI and

MPI/RT. All the graphs are plotted on a logarithmic scale. Furthermore, the complete set

of numerical results are provided in the appendix. The source code for MPI/RT and MPI

applications developed for these experiments can be accessed at the URL provided in the

appendix.

5.2 Latency

One of the primary factors that influences performance of a message passing application

is the latency of message transfer between two nodes. As mentioned in section 4.1, we

measure round trip latency for various sizes of data. Figure 5.1 plots these measurements

and Table 5.1 shows these values for small message sizes.



37

1 4 16 64 256 1024 4096 16384 65536
Data Size (bytes)

16

64

256

R
ou

nd
tr

ip
 T

im
e 

(m
ic

ro
 s

ec
on

ds
)

1 4 16 64 256 1024 4096 16384 65536

16

64

256

MPI
MPI/RT

Latency

Figure 5.1 Round trip latency for MPI and MPI/RT at various data sizes

As expected, MPI has better latency for small data transfers. As described in sec-

tion 3.3, MPI uses programmed I/O when the message size is less than or equal to 32

bytes and uses a shorter 2-way protocol for when the message size is less than or equal to

1024 bytes. MPI/RT always uses DMA and the 3-way protocol. Because of programmed

I/O, MPI latency varies even between four and eight byte messages. On the other hand, the

MPI/RT latency stays constant at 28 ��� , which is essentially a measure of DMA transfer

latency. The rest of the data points clearly show the benefits of MPI/RT as summarized in



38

Table 5.1 Round trip latency for MPI and MPI/RT

Message Round Trip Latency ( ��� )
Size MPI MPI/RT

4 20 28
8 22 28

16 23 28
32 28 28
64 31 28

128 32 28
256 36 30
512 43 33

1024 58 40
2048 83 52
4096 110 79

1 100 10000 1e+06
Data Size (bytes)

1e+05

1e+06

1e+07

1e+08

B
an

dw
id

th
 (

by
te

s/
se

c)

1 100 10000 1e+06
1e+05

1e+06

1e+07

1e+08

MPI
MPI/RT

Bandwidth

Figure 5.2 Bandwidth for MPI and MPI/RT at various data sizes



39

section 3.4. The primary overhead MPI incurs over MPI/RT is the cost of modifying DMA

transfer parameters and more programmed I/O required for protocol synchronization. As

the message size increases, the latency is dominated by the cost of actual data transfer, in

which case both MPI and MPI/RT converge in performance.

In figure 5.2, the bandwidth between the nodes is plotted against the message size.

The bandwidth is calculated as inverse of latency. In this setup, we are able to achieve

more than 1200 Mbps one way. Even with large messages, there is a little more than

1% difference between MPI and MPI/RT. This could be because MPI needs to utilize an

undocumented feature where it treats whole of the remote node’s memory as an SMB and

MPI/RT does not.

The results presented in this section provide strong support for our hypothesis that

emphasis on early binding in MPI/RT help achieve better performance even for non-real-

time applications when compared to MPI. The rest of the experiments explore how these

advantages translate to better performance in more realistic message passing applications.

5.3 3-D Poisson Solver

In this application, a 3-D rectangular grid is divided into multiple rectangular cubes and

distributed among all the nodes. Each node performs computation on its portion of the grid

(in this case, it recalculates the value at each point based on the changed boundary values).

At the end of the iteration, each node exchanges its boundary elements with its neighbors.



40

A node can have up to six neighbors, one in each of the three dimensions. Most of the

message transfers takes place over point-to-point communication between the neighbors.

1 4 16 64
Problem Size 

100

1000

10000

1e+05

T
im

e 
fo

r 
E

ac
h 

It
er

at
io

n 
(m

ic
ro

 s
ec

on
ds

)

MPI
MPI/RT

3D Poisson Solver with 4 Nodes

Figure 5.3 3D Poisson Solver with 4 Nodes

The data is stored in a 3-D array on each node. Since a node’s neighbors could be

in any one the three directions, the plane it shares with its neighbor is not necessarily

contiguous in the 3-D array used for storage. While exchanging such a non-contiguous

plane, we need to first pack the non-contiguous data into a single buffer on the send-side

before the transfer and unpack the data on the receive-side. MPI provides a useful API

where the packing and unpacking of data is completely transparent to the application.



41

4 8 16 32 64
Problem Size 

100

1000

10000

1e+05

T
im

e 
fo

r 
E

ac
h 

It
er

at
io

n 
(m

ic
ro

 s
ec

on
ds

) MPI
MPI/RT

3D Poisson Solver with 16 Nodes

Figure 5.4 3-D Poisson Solver with 16 nodes

MPI allows applications to create new data types that can represent non-contiguous data.

These data types can be used everywhere as though the data is contiguous. Since this API

is missing in MPI/RT 1.01, we must explicitly pack and unpack the data on either side

of the channel. This certainly makes MPI/RT application more complicated to write and

thus more error prone. MPI/RT requirement that the application needs to commit all the

resources a priori also makes application development more complicated. This is some of

the cost of enforcing early binding semantics and supporting the real-time paradigm.

1and 1.1 versions of the standard. Improvements are suggested for MPI/RT 1.2 or 2.0 but these are not
actively pursued at present.



42

Figures 5.3 and 5.4 show the results using four and 16 processes respectively. MPI/RT

performs significantly better than MPI at smaller grid sizes. This is expected since MPI/RT

has better latency variation than MPI. Table A.1 and Table A.2 provide numerical results

for various configurations. The difference between MPI and MPI/RT increases with in-

crease in the number of processes, indicating better scalability of MPI/RT. We look at

scalability in more detail in the next section where performance of collective communica-

tion is more vital than it is for this solver.

5.4 RT Conrnerturn

16 64 256
Matrix Size

10

100

1000

10000

T
im

e 
fo

r 
E

ac
h 

It
er

at
io

n 
(m

ic
ro

 s
ec

on
ds

) MPI
MPI/RT

RT Cornerturn with 4 Processes

Figure 5.5 RT Cornerturn performance with 4 processes



43

16 64 256 1024
Matrix Size

100

1000

10000

1e+05

T
im

e 
fo

r 
E

ac
h 

It
er

at
io

n 
(m

ic
ro

 s
ec

on
ds

) MPI
MPI/RT

RT Cornerturn with 16 Processes

Figure 5.6 RT Cornerturn performance with 16 processes

The RT Cornerturn benchmark is described in section 4.3. A square matrix is dis-

tributed (by rows) among the participating nodes. The matrix is transposed and verified in

each iteration. The measurements are made over 100 iterations. This benchmark stresses

performance of collective communication. In MPI, all communication is performed in

one invocation of MPI AlltoAll() (section 4.3). The effect of all-to-all communica-

tion in MPI/RT is achieved through multiple scatter channels. The computation involves

transposing the local portion of the matrix and verifying the globally transposed matrix.

The time taken for each iteration with four and 16 processes is plotted in figures 5.5 and

5.6. MPI/RT performs increasingly better with smaller sizes and more processes. The extra



44

1 2 4 8 16 32
Number of Processes

1000

T
im

e 
fo

r 
E

ac
h 

It
er

at
io

n 
(m

ic
ro

 s
ec

on
ds

) MPI
MPI/RT

Scalability of RT Conrnerturn with Matrix Size 96

Figure 5.7 Scalability of RT Cornerturn with matrix size 96

overhead incurred by MPI in terms of programmed I/O affects its scalability because the

underlying platform scales better with DMA than with programmed I/O. Figure 5.7 plots

scalability of RT Cornerturn with a matrix size of 96. The negative scalability of MPI

between 12 and 16 processes is largely due to the proportional increase in programmed

I/O. Since MPI/RT involves smaller percentage of programmed I/O, it maintains better

scalability. Table A.3 and Table A.4 provide the complete set of numerical results.



45

4 16 64 256
Slab Size

100

1000

10000

1e+05

T
im

e 
fo

r 
E

ac
h 

It
er

at
io

n 
(m

ic
ro

 s
ec

on
ds

) MPI
MPI/RT

Image Processing with 4 Processes

Figure 5.8 Performance of Slab with 4 processes

5.5 Slab – An Image Processing Example

This benchmark is outlined in section 4.4. Slab mimics an embedded image processing

application where it receives a frame and the frame is distributed between all the nodes for

processing. Slab uses most of the collective channels available in MPI/RT: scatter, gather,

broadcast, and barrier channels. It uses an equivalent API on MPI.

Figures 5.8 and 5.9 show the results with four and 16 processes respectively. These

graphs have similar characteristics as in the case of RT Cornerturn. This is expected since

in both the applications, the main emphasis is on performance of collective communica-



46

16 64 256
Slab Size

100

1000

10000

1e+05

T
im

e 
fo

r 
E

ac
h 

It
er

at
io

n 
(m

ic
ro

 s
ec

on
ds

) MPI
MPI/RT

Image Processing with 16 Processes

Figure 5.9 Performance of Slab with 16 processes

tion. Tables A.5, A.6, and A.7 in the appendix present the results of more configurations

of this experiment.

5.6 Summary of Results

The results presented in this chapter show how syntax and semantics of MPI/RT result

in better performance on Mercury platform, both in terms of latency and scalability. The

results for all the experiments fall in line with the expectations. Though the round trip

latency is less for MPI for small messages, MPI/RT performs better in the benchmarks at

smaller problem sizes. As described in the earlier sections, this behavior is expected since



47

MPI/RT requires less programmed I/O. For applications involving collective communica-

tion MPI/RT shows better than 50% gains for smaller problem sizes. These results confirm

both parts of the hypothesis (section 1.3).

As an application becomes more coarse-grain with increase in problem size, its per-

formance essentially becomes bandwidth limited. In this case, the difference between

MPI and MPI/RT is insignificant. The early binding semantics provide better peformance

benifits for fine-grain applications on this platform.



CHAPTER VI

CONCLUSIONS

In our hypothesis, we claimed that MPI/RT with best effort QoS can be used for many

parallel message passing applications and its emphasis on early binding results better per-

formance when compared to MPI applications on the same platform. Chapter 3 describes

how differences in MPI/RT and MPI semantics yield different implementations on Mer-

cury embedded platform. It also enumerates primary advantages of MPI/RT design that

contributes to its performance. The subsequent two chapters describe a set of experiments

and analyze the results. These results show that MPI/RT performs considerably better in

the case of fine-grain problems. For coarse-grain applications, where the performance is

bandwidth limited, the difference is much less noticeable. We are more likely to encounter

fine-grain problems in embedded platforms such as real-time image processing systems.

The next section presents some thoughts on MPI and MPI/RT based on the work pre-

sented in this thesis. We conclude the chapter with some suggestions for future work.

6.1 MPI vs. MPI/RT

Though this thesis clearly demonstrates MPI/RT performance advantages, we do not ex-

pect MPI/RT to replace MPI as the primary interface for message passing applications.

48



49

Two of the great virtues of MPI are its elegance and simplicity. MPI also provides a

vast set of convenient API often used in parallel applications. But we do hope that work

presented in this provides support for extensions to MPI that allow implementations and

applications to better exploit advantages of early binding on many platforms.

While developing large scale parallel applications, software engineering advantages

of programming paradigm used can outweigh performance advantages. Even though we

have not developed large MPI/RT applications for this thesis, our experience shows that

MPI/RT programs are usually more complicated to develop than equivalent MPI programs.

This is primarily because MPI/RT is really meant for real-time applications. We expect

MPI/RT will be more prevalent on platforms with low latency and high bandwidth net-

works than on high latency platforms like networks of workstations (NoWs). As the cost

of hardware keeps on dropping, large clusters with thousands of individual commodity

computers are becoming more commonplace. MPI is better suited for these platforms.

The embedded platforms are usually much more restrictive and often operate in environ-

ments where adding extra nodes to increase the performance is not an easy option. MPI

would be much more applicable in these environments if the standard provides extensions

that utilizes precious resources better.

Initially, we had planned to compare the performance of Integer Sorting benchmark

from the NAS parallel benchmarks [2]. This benchmark involves transfer of messages

whose location and the size dynamically vary over time. Since MPI/RT 1.0 does not allow

a communication channel to change the size of data transfered, this benchmark was not



50

implemented in MPI/RT. This is an example where late binding semantics provided in MPI

are much more natural.

6.2 Future Work

We have measured scalability of the benchmarks up to 16 processes. Testing with larger

number of nodes would provide more insight into the performance characteristics of these

libraries. One of the criteria that affects a real world message passing parallel application

is its ability to overlap its communication with its computation. The experiments presented

in this thesis do not emphasis this overlap. It would be interesting to compare these two

middleware libraries with such applications, though the ability to overlap communication

with computation would depend more on the application requirements and implementation

details than the semantics of these standards.

A natural extension for this thesis would be to propose and implement a set of optional

extensions to MPI standard that let applications take advantage of early binding. The

following aspects could be taken into account while designing such an extension:

� Persistent communication API for collective communication.

� Ability to use system buffers in communication.

� A channel abstraction that ties persistent communication API and the buffers.

� A setup phase similar to commit phase in MPI/RT.

Such extentions have already been proposed, for example, in [16]. Many of the above

extensions can coexist with the current tried and tested API. An implementation can always



51

implement these API as wrappers over the existing API if the platform does not provide

significant benefits with early binding. This would make MPI a lot more suitable for

latency sensitive embedded applications.



REFERENCES

[1] M. Apte, S. Chakravarthi, , A. Pillai, A. Skjellum, and X. Zan, “Time-based Linux
for Real-Time NOWs and MPI/RT,” Real-Time Systems Symposium 1999 held in
Phoenix, AZ, Dec. 1999.

[2] D. H. Bailey, T. Harris, W. Saphir, R. van der Wijngaart, A. Woo, and M. Yarrow,
The NAS Parallel Benchmarks 2.0, Tech. Rep. NAS–95–020, Numerical Aerospace
Simulation, NASA Ames Research Center, Dec. 1995.

[3] M. Barabanov, A Linux-based Real-Time Operating System, master’s thesis, New
Mexico Institute of Mining and Technology, June 1997.

[4] N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik, C. L. Seitz, J. N. Seizovic,
and W.-K. Su, “Myrinet: A Gigabit-per-Second Local Area Network,” IEEE-Micro,
vol. 15, no. 1, Feb. 1995, pp. 29–36.

[5] R. Dimitrov, Overlapping of Communication and Computation and Early Binding:
Fundamental Mechanisms for Improving Parallel Performance on Clusters of Work-
stations, doctoral dissertation, Mississippi State University, May 2001.

[6] R. A. Games, Benchmarking Methodology for Real-Time Embedded Scalable High
Peroformance Computing, Tech. Rep. MTR 96B00000010, The MITRE Corpora-
tion, 1996.

[7] W. Gropp, E. Lusk, N. Doss, and A. Skjellum, “A High-performance, portable im-
plementation of the MPI Message Passing Interface Standard,” Parallel Computing,
vol. 22, no. 6, Sept. 1996, pp. 789–828.

[8] W. Gropp, E. Lusk, and A. Skjellum, Using MPI: Portable Parallel Programming
with the Message-Passing Interface, The MIT Press, Cambridge, Massachusetts,
1994.

[9] C. Lee, K. Yoshida, C. Mercer, and R. Rajkumar, “Predictable Communication Pro-
tocol Processing in Real-Time Mach,” Proceedings of 2nd Real-Time Tech., and
Appl. Symposium, June 1996.

[10] A. Mehra, A. Indiresan, and K. G. Shin, “Structuring Communication Software for
Quality-of-Service Guarantees,” Proceedings of the Real-Time Systems Symposium,
Dec. 1996.

52



53

[11] Mercury Computer Systems, Inc, Developer’s Guide, Mercury Computer Systems,
Inc, Chelmsford, Massachusetts, 1997.

[12] MPI Forum, “MPI: A Message Passing Interface Standard,” June 1995,
http://www.mpi-forum.org/docs/mpi-11.ps.

[13] MPI Forum, “MPI-2: Extentions to Message Passing Interface,” July 1997,
http://www.mpi-forum.org/docs/mpi-20.ps.

[14] MPI/RT Forum, “Document for the Real-time Message Passing Interface Standard
(MPI/RT-1.0) Draft Standard,” June 1999,
http://www.mpirt.org.

[15] J. P. Neelamegam, Zero-Sided Communication: Challenges in Implementing Time-
Based Channels Using The MPI/RT Spcification, master’s thesis, Mississippi State
University, May 2002.

[16] A. Skjellum, “High Performance MPI: Extending the Message Passing Interface for
Higher Performance and Higher Predictability,” Proceedings of the 1998 Interna-
tional Conference on Parallel and Distributed Processing Techniques and Applica-
tions (PDPTA’98), Las Vegas, Nevada, 1998.

[17] A. Skjellum, N. E. Doss, K. Viswanathan, A. Chowdappa, and P. V. Bangalore, “Ex-
tending the Message Passing Interface (MPI),” Proceedings of the Scalable Parallel
Libraries Conference II held in Mississippi State, MS, October, 1994, A. Skjellum
and D. S. Reese, eds. Oct. 1994, IEEE Computer Society Press.

[18] M. Snir, S. W. Otto, S. Huss-Lederman, D. W. Walker, and J. Dongarra, MPI: The
Complete Reference, The MIT Press, Cambridge, Massachusetts, 1996.



APPENDIX

COMPREHENSIVE SET OF RESULTS

54



55

The tables provided here present more complete set of results for the experiments

described in chapter 5. All the times are in microseconds. The source code for the bench-

marks is available at the following URL:

http://hpcl.cs.msstate.edu/ � angadi/mpi-vs-mpirt.tgz

Table A.1 3-D Poisson Solver Results I

Grid
�������

Matix
�������

Grid
�	����


Size MPI MPI/RT Size MPI MPI/RT Size MPI MPI/RT
2 125 76 2 213 113 2 290 134
4 169 115 4 238 138 3 298 143
8 499 445 8 409 309 6 356 196

12 1405 1331 12 861 762 9 515 353
16 3183 3125 16 1776 1648 12 751 591
24 10351 10295 24 5425 5319 18 1856 1633
32 24595 24510 32 12430 12330 24 3884 3692
48 84426 84387 48 42026 42183 36 12039 11927
64 201065 201104 64 99956 99832 48 28286 28234

96 339611 339422 60 54823 54790
72 94924 95112
84 153045 153336



56

Table A.2 3-D Poisson Solver Results II

Grid Time taken for each iteration ( ��� )
Size

������� ������� � ��� � � 

MPI MPI/RT MPI MPI/RT MPI MPI/RT

4 340 186 415 205 455 226
6 375 223 450 226 480 253
8 437 286 498 279 517 282

12 681 530 662 438 656 410
16 1139 990 990 809 901 653
24 3092 2899 2347 2040 1947 1618
32 6679 6501 4926 4661 3813 3505
48 21251 21126 14550 14393 11203 10970
64 50139 50067 34791 34732 25787 25603
84 114700 114951 76157 76272 57604 57343
96 171918 172199 115755 115127 86614 86334

128 409078 406107 278505 276657 204648 205324

Table A.3 RT Cornernturn Results I

Matrix
�������

Matix
�������

Matrix
��� ���

Size MPI MPI/RT Size MPI MPI/RT Size MPI MPI/RT
4 108 29 8 221 59 16 484 125
8 120 40 16 256 81 32 544 172

12 138 57 24 292 119 48 626 253
16 164 83 32 349 175 64 744 375
24 257 157 48 554 336 96 1264 738
32 360 259 64 780 584 128 1757 1271
48 652 551 96 1439 1213 192 3197 2742
64 1096 994 128 2428 2184 256 5270 4821
96 2366 2268 192 5108 4859 384 11092 10497
128 4137 4038 256 8869 8681 512 19261 18788
168 6999 6933 336 15002 14775 672 32881 32840
192 9137 9045 384 19583 19409 768 42953 43032
256 16284 16193 512 34903 36097 1024 77304 78605
384 37764 38150 768 80053 80736 1536 173439 179895
512 68861 69632 1024 141191 144883



57

Table A.4 RT Cornernturn Results II

Matrix
����� � � Matix

�	��� � �
Matrix

������� 

Size MPI MPI/RT Size MPI MPI/RT Size MPI MPI/RT
20 629 161 24 788 201 32 1066 284
40 693 223 48 846 282 64 1145 401
60 801 336 72 976 442 96 1328 618
80 957 507 96 1168 659 128 1600 928

120 1719 992 144 2245 1300 192 3031 1761
160 2412 1703 192 3165 2208 256 4258 3016
240 4435 3671 288 5781 4704 384 7810 6347
320 7277 6462 384 9537 8231 512 12748 11089
480 15251 14228 576 19832 18187 768 26597 24507
640 26324 25355 768 33962 32266 1024 45512 43178
840 44784 43936 1008 57479 55672 1344 76913 74528
960 58358 57706 1152 75008 72715 1536 100202 97956

1280 104452 105143 1536 133627 130461 2048 177455 176129

Table A.5 Slab Results I

Frame
����� �

Frame
�������

Frame
����� 


Size MPI MPI/RT Size MPI MPI/RT Size MPI MPI/RT
2 337 80 4 599 112 6 885 157
4 359 95 8 646 149 12 945 220
8 423 158 12 715 217 24 1239 503

12 529 264 16 812 308 36 1756 974
16 681 411 24 1126 568 60 3180 2483
24 1115 834 32 1470 935 84 5357 4746
32 1703 1431 48 2483 1986 108 8415 7773
48 3390 3134 64 3914 3464 132 12246 11560
64 5875 5532 80 5846 5367 180 22265 21489
80 9065 8625 96 8209 7693 228 35290 34423
96 12972 12457 112 10990 10449 276 51415 50383

112 17503 16938 128 14229 13632 300 60638 59501
128 22716 22094 192 31426 30650
192 50596 49520 256 55563 54487
256 89800 88019



58

Table A.6 Slab Results II

Frame
�������

Frame
������� � Frame

��� � � �
Size MPI MPI/RT Size MPI MPI/RT Size MPI MPI/RT

8 1083 189 10 1357 247 12 1564 279
16 1193 300 20 1527 393 24 1782 494
24 1375 484 40 2282 1015 36 2161 849
32 1656 737 60 3240 2061 60 3305 1977
48 2432 1472 80 4559 3522 84 4855 3659
64 3401 2497 100 6264 5393 108 6896 5903
96 6116 5419 140 11265 10401 132 9597 8710
128 10249 9526 180 17996 17097 168 14906 13988
160 15564 14811 240 31316 30356 204 21476 20545
192 22133 21324 300 48420 47349 240 29396 28427
256 38726 37842 350 65539 83154 300 45390 44308
320 60102 59042 400 85920 84223 360 65012 63779

500 133616 131348 420 88503 86829
480 115156 113289
540 145502 143219

Table A.7 Slab Results III

Frame
����� � 


Frame
����� � 


Size MPI MPI/RT Size MPI MPI/RT
16 1992 380 320 47300 46077
32 2378 731 352 56948 55762
48 3217 1303 384 67861 66395
64 3900 2110 400 73503 72109
96 5883 4389 448 91827 90247

128 8766 7577 496 112226 110561
160 12779 11683 560 142667 140836
192 17831 16712 624 176782 174680
224 23782 22682 688 214579 212228
256 30701 29555 720 234856 232395
288 38564 37372



59

Table A.8 Latency and Bandwidth Measurements

Message Round Trip Latency ( � � ) Bandwidth (bytes/sec)
Size MPI MPI/RT MPI MPI/RT

4 20 28 400000 285714
8 22 28 727272 571428

16 23 28 1391304 1142856
32 28 28 2285714 2285714
64 31 28 4129032 4571428

128 32 28 8000000 9142856
256 36 30 14222222 17066666
512 43 33 23813952 31030302

1024 58 40 35310344 51200000
2048 83 52 49349396 78769230
4096 110 79 74472726 103696202
8192 164 132 99902438 124121212

16384 274 239 119591240 137104602
32768 492 453 133203252 144671080
65536 928 879 141241378 149114902

131072 1799 1733 145716508 151266012
262144 3544 3432 147936794 152764568
524288 7030 6852 149157324 153032106

1048576 14006 13696 149732400 153121494
2097152 27945 27377 150091392 153205390
4194304 55831 54737 150250004 153252972


	Best Effort MPI/RT as an Alternative to MPI: Design and Performance Comparison
	Recommended Citation

	tmp.1625165283.pdf.TVqsZ

