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This study investigates methods that can be used for tracking features in
computational-fluid-dynamics datasets. The two approaches of overlap based
feature tracking and attribute-based feature tracking are studied. Overlap based
techniques use the actual degree of overlap between sucessive time steps to conclude
a match. Attribute-based techniques use characteristics native to the feature being
studied, like size, orientation, speed etc, to conclude a match between candidate
features. Due to limitations on the number of time steps that can be held in a
computer’s memory, it may be possible to load only a time-subsampled data set.
This might result in a decrease in the overlap obtained, and hence a subsequent
decrease in the confidence of the match.

This study looks into using specific attributes of features, like rotational
velocity, linear velocity to predict the presence of that feature in a future time

step. The use of predictive techniques is tested on swirling features, i.e., vortices.



An ellipse-like representation is assumed to be a good approximation of any such
feature. The location of a feature in previous time-steps are used to predict its
position in a future time-step. The ellipse-like representation of the feature is
translated over to the predicted location and aligned in the predicted orientation.
An overlap test is then done. Use of predictive techniques will help increase the
overlap, and subsequently the confidence in the match obtained. The techniques
were tested on an artificial data set for linear velocity and rotation and on a real
data set of simulation of flow past a cylinder. Regions of swirling flow, detected
by computing the swirl parameter, were taken as features for study. The degree
of overlap obtained by a basic overlap and by the use of predictive methods were
tabulated. The results show that the use of predictive techniques improved the

overlap.
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CHAPTER I
INTRODUCTION

Computer programs that are used to simulate temporally varying physical
phenomena typically produce large volumes of data. In computational field-
simulation applications, the disparate spatial and temporal scales required to
simulate complex physical phenomenon dictate the growth of datasets. For
example, if there are five floating-point values to be computed for every node
within a 100x100x100 grid, there are 5x10° floating-point numbers that must be
stored for a single solution. Unfortunately, the development of data-management
and visualization techniques has not kept pace with the size and complexity of
these generated datasets. The end users of such systems are usually overwhelmed
with large volumes of computed data. Discerning interesting patterns in them
could turn out to be a difficult task. The problem is more challenging when the
end users have to deal with temporally varying data that require storage of multiple

time steps.

1.1 The EVITA project

The EVITA (Efficient Visualization and Interrogation for Terra-scale Datasets)
project [1] attempts to address some of the above issues. The goal of the project
is to develop a prototype visualization system based on a representational

scheme which facilitates ranked access to macroscopic features in compressed

1
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representations within large datasets. By doing so, it gives the end user a means
to interactively transform data into pictorial forms in a manner which fosters

discovery.

For effective tera-scale visualization, data-compression is unavoidable. While
choosing the data-compression technique, care must be taken to ensure that the
compressed representation is amenable to computing parameters like gradients
and vorticity in the compressed domain. Secondly, the scheme needs to be lossless
and hence allow for a complete reconstruction of the domain from the compressed
representation. Finally, visualization is an issue as image-rendering time comes
at a price. The scheme should allow for rendering phenomena from a partial
reconstruction of the compressed dataset. Put in other words, the degree of
inflation should be open to the user depending on the system used to execute the

code.

The EVITA project focuses on features of interest in computational-fluid-
dynamics datasets. The system is built on a client-server model with three main
components: the pre-processor, the server, and the client. In the pre-processor the
data and grid are compressed using wavelet techniques while a feature-detection
algorithm is used to contextually rank and identify features directly in the wavelet
domain. The compressed representation is then transmitted to the client side.
This saves memory on the client side as it only needs to process the ranked

features that are transmitted. The schematic layout is shown in figure 1.1.

The pre-processor takes as input a structured rectilinear or curvilinear grid and

its associated field values. The Feature Detector module performs an automatic
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feature detection and stores a scalar value for each point on the grid. This
value indicates whether that particular node is significant and its degree of
significance. The Significance Map Encoder takes the scalar values at each node
and generates the significance map. The Significance Map Generator identifies
regions of interest (ROI) and labels and ranks them based on predefined criteria.
The Wavelet Transform module generates multi-scale wavelet coefficients for the
field. The Embedded Encoder takes in the grid, the wavelet transformations, and
the significance map as input and generates an embedded bitstream B. The
embedded bitstream consists of bitplanes of compressed ROI's in a particular
order. The compression system chosen for encoding should be suitable for both
scalar and vector fields and must be lossless allowing perfect reconstruction at
the client side. However, depending on user input, the compressed representation
should also allow for partial reconstruction at the user end. All the computational

work is done in a offline manner.

When the client initiates a request, the server transmits the bitstream B
to the client. In order to transmit the bitstream in a manner requested by the
client, a Transcoder is built in. A Transcoder is defined as a processor which
converts one form of coding to another. Information regarding the ranking of the
features is obtained by decoding the significance map S by the Significance Map
Decoder. When the visualization is initiated, the server transmits each bitplane
in the same order as received in B. The client has the ability to change the
rankings of the features by sending requests to the Priority Scheduler through the
Controller. The Transcoder relocates the bitplanes in B based on the requested
priority. The client side decodes the bitplanes transmitted by the server using the

significance map and the priority schedule. The Embedded Decoder performs the
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5
inverse operation of the Transcoder and the Embedded Decoder on B. It produces
a wavelet transformation on the wavelet coefficients to generate the ROI’s. This
data is transfered to the Visualization Subsystem. The Visualization Subsystem
is responsible for rendering the features. The Priority Scheduler in the client is

responsible for communicating the user control commands to the server.

Visualizing several time-varying features on a single screen may be difficult to
comprehend. Therefore, a good functionality to have in the system is the capability
to automatically track a selected ROI across multiple time steps. This will help
the user better understand the phenomena being visualized. This necessitates the

development of tracking techniques for the EVITA system.

1.2 Feature Tracking

One of the key functions of the EVITA system is tracking features in a series
of two-dimensional time-varying data sets. Tracking a series of two-dimensional
images has been addressed to a great extent in computer vision for motion
estimation [2]. Typically, the tracking process involves a matching process between
two or more images using pixels, points, lines, and blobs, based on their motion,
shape, and visual information. Aggarwal [3] uses correlation-template-tracking
techniques. A subset frame of the first frame is detected. The regions are taken
to be rectangular for convenience. The template is then used to correlate objects
in subsequent frames. For non-rigid objects, the template is adjusted to represent
regions that have changed over time. The feature-tracking begins with feature
extraction and then correlation of those features with other features in subsequent

time steps. The feature tracking problem is very much like the Correspondence
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Problem. Silver et al. [4] describe a generalized tracking algorithm that can be
used on unstructured two- and three-dimensional meshes. This technique uses the
principle of area/volume overlap to determine a best match between features. A
more detailed explanation of this technique will be given in chapter III. Reindeers
et al. [5] describe a method for tracking features based on feature attributes such
as velocity, rotation, and other characteristics that can be extracted from the

phenomena under study. A detailed explanation is given in a Chapter III.

1.3 Objective of Work

The objective of the present effort is to enhance existing feature-tracking
techniques. An approach to predict the physical characteristics of a feature in
a time step based on its immediate past history is studied. Several techniques
have been discussed in [4] [5] for tracking features in time. The basic assumption
in both is that features evolve consistently and that the data sets are well sampled
in time. However, this need not always be the case. In many instances, only every
fifth or tenth time step of a simulation may be saved. It is also possible that the
features may not evolve consistently and may undergo irregular forms of rotation,

translation, etc.

1.4 Overview of Work

Chapter 1II deals with an overview of techniques for detecting features and
segmenting them in a manner that is amenable to representation in a data
structure. In many computational-fluid-dynamics data sets, the vortex is an
important feature to capture. For the purpose of this study, the swirl parameter

[6] is used to detect vortices. The swirl parameter gives an estimate of the
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tendency for flow at the given node to undergo a swirling motion. It is computed
locally for every node. Various segmentation techniques, such as scan pass and

region growing, are then discussed for storing the features in useful data structures.

Chapter III discusses in detail the existing methods for feature tracking. The
various states a feature can be in are discussed. Attribute-based feature tracking
and the generalized tracking algorithm are discussed. Chapter IV discusses the
use of predictive techniques in tracking rapidly evolving or translating features.
Chapter V enlists the results obtained by testing the technique on artificial data
sets and real data sets. The real data set is a simulation of a flow past a cylinder.

Conclusions and suggestions for future work is presented in Chapter VI.



CHAPTER II
DETECTING THE FEATURES

A feature within a data set defines a region of interest. There are many ways
to define a feature. In the case of a digital image, all pixel values that fall within
a prescribed gray-scale range could be classified as important, and the rest can be
written off as not significant. For a scientist studying bathymetric data, depths
within a range of values could be of relevance for the study. In other words, we
need to develop a consensus as to how we should define a feature from the given
data field, so that it is relevant for understanding the physical phenomena that

we are trying to study.

In many computational-fluid-dynamics simulations, vortices are significant
features. For the purpose of this study, the swirl parameter [6], is computed
for a velocity-vector grid. This parameter gives an estimate on the amount of
local rotating motion that is present in a given velocity field and helps to locate
vortices in the flow. After the swirl parameter is computed at all nodes in the grid,
a feature map is generated by marking nodes that have swirl values larger than
a prescribed threshold. This is followed by the process of segmentation, which
involves segmenting features in the domain and tagging them with ID’s for future
access. There are many methods in literature for segmenting features [7] [8]. The

scan-pass algorithm and the region growing algorithm are discussed in this chapter.



2.1 Calculation of the Swirl Parameter

Swirling flow is defined as any fluid motion that rotates about a common
center, not necessarily fixed. Berdahl and Thompson [6] define a derived scalar
parameter called the swirl. As this parameter estimates the strength of rotating

motion, it can be used on a velocity vector field to detect vortices and eddies.

The eigenvalues of the velocity gradient tensor are complex in regions of swirling
flow. The velocity gradient tensor fully describes the spatial variation of velocity
vector to the first order. Thus, the variation of the velocity of a particle at a
position x with respect to the origin is

dx
— =1 2.1
o =L (2.1)

where L is the velocity gradient vector defined as

Ou  du Ou
or Jdy 0z
L=|o0 & o
or Jdy 0Oz
ow dw Ow
ox oy oz

If L has a complete set of linearly independent eigenvectors, a similarity
transform exists such that

L=TAT !

where A is the diagonal matrix of the eigenvalues of L and is defined as

A= diag()\b )\27 )\3)
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The matrix T is

T= |:7,.1’ T2, T3:|

where (71,79, 73) are the column eigenvectors of L, and the matrix 7! is given by

where (l1,1ls,13) are the row eigenvectors of L. Assuming that the elements of L
are spatially and temporally constant and by substituting X = T~'z in equation
2.1 gives

dX
— =AX.
dt

The system is now decoupled since A is a diagonal matrix, and the solution is

= |eMt Xy | - (2.2)
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The solution given in equation 2.2 consists of three decoupled motions in the
complex plane. The quantities X1, X2, and X3 represent the initial points of
the three trajectories. If \; and Ay are the complex-conjugate pair, and if A3 is
real as a consequence, then X(¢) and X5 (¢) are spiraling motions in the complex
plane with amplitudes that decay or grow depending on the sign of the real part
of the complex-conjugate eigenvalues. If the real part is zero, circular paths in the

complex plane are obtained. A period for this motion can be computed as

2T

borpip = —— . 2.3
bt = (s (2:3)

The remaining eigenvalue A3 yields an exponentially decaying or growing solution
X3(t) along the real axis. After performing an inverse transform, the solution can
be written as

z(t) = reM Xgy + e Xog + r3e Xs.

The right eigenvectors map the three motions in the complex plane to the motion in
the physical plane. For a two-dimensional case, the real eigenvalue is zero, and the
third dimension decouples because of the forms of the left and right eigenvectors.
The existence of complex eigenvalues of the velocity gradient tensor in a region is
a necessary but not sufficient condition for the presence of swirling motion. The
intrinsic swirl parameter 7 is defined as the ratio of the time it takes a particle to

convect through a region of complex eigenvalues to the orbit time

7= Lo, (2.4)
tm‘bit
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If [ is the characteristic length associated with the size of the region of complex

eigenvalues, and V,,,, is the magnitude of the velocity aligned along [ then

l

teony = 2.5
‘/vCO’IZU ( )
Substituting equation 2.4 and 2.3 in 2.5 gives
|Im(/\1 2) ‘l
== 2.6
" 2V, (26)

This result indicates that for small values of 7, the fluid convects too rapidly
through the region of complex eigenvalues to be captured in swirling motion. In
regions of large 7, the fluid is trapped in a swirling motion. In two dimensions,
the convective velocity lies in the plane of motion. Also the characteristic length
is normalized to unity. The swirl parameter 7 is computed locally for every node

in the data set. More details can be found in [6].

2.2 Generation of Feature Map

The feature map s;; is generated by tagging nodes on the grid that have swirl

values above a specified threshold 7,,;,. It can be represented as:

1 if 7> 7m

0 otherwise

where ¢ is the time-step in the dataset that the swirl significance map represents. It

may be noted that some phenomena may not be adequately sampled. It is possible
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that some nodes are marked significant for only a few time steps. An appropriate

noise filter would be needed to filter out such nodes.

2.3 Feature Segmentation

The previous section describes the generation of the swirl significance map.
However for the purpose of analysis, the swirl significance map is of little use, as
it does not exist in a format to give structure to the physics of the phenomena
that the user is investigating. In order to better discern the evolving phenomena,
we need to identify the significant nodes that are physically contiguous. This is

shown in the figure 2.1. However, using this idea of contiguity, it is not possible to

THESE ARE FEATURES

1
1 ¢

LY
1 11
1 1 1 1

1 1 1 1

1 /11 1 1 1

Figure 2.1: Illustration of Individual Features

correctly segment two distinct features that are touching each other. Alternative
techniques would have to be used to discern whether the touching features are in

reality one feature or two. This problem is beyond the scope of this effort.
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This leads us to the definition of a feature as a set of nodes that are defined to
be significant and are contiguous. Assume f; is a feature which is initially a null

set, where ¢ is the time step, i.e.,

if s;; is significant, then

fe < fr U {si}

and for every significant sy in the logical neighborhood of s;;, the following is true

fi — frU{su}

When applied recursively over the entire domain, we get a set of f; which is called
the Feature Set F, defined over the entire domain for that particular time-step t.

Stated formally,
Fi = {f t}'

There are several ways to implement the aforementioned steps including region
growing and the more traditional scan pass algorithm. The scan pass algorithm is

not directly intuitive, however the region growing algorithm is very much intuitive.
2.3.1 The scan pass algorithm

This subsection describes the scan pass algorithm [7] [8]. It takes as input the
swirl significance map and outputs a segmented swirl significance map. The scan-
pass algorithm works for structured curvilinear meshes. Every node is visited, and

is assigned a tag ID. The tag ID is allocated based on the tag ID’s of the node’s
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neighbors. A node is given the same ID as its neighbor previously visited. If
there are no neighbors with a tag ID, a new ID is allocated. The next stage is a
recursive merge where in all the connected tag ID’s are assigned to the lowest ID

in the group. The end result is that all connected nodes have the same tag ID.

// The scan pass algorithm
// First pass assigns labels to each point:NxN is the grid size
id =1
for j =0 to N
for i = 0 to N
if(s_(i,j)!'= NO_SWIRL)
{
possible_ids = number_of_non_zero_neighbor_ids();
if ( possible_ids > 1 )
{
mask(i,j) = Minimum(mask(i-1,j-1),mask(i+1,j-1),mask(i,j-1),mask(i-1,j));
for each neighbor_id in possible_ids

newid(neighbor_id) = mask(i,j);

else
{
mask(i,j) = id++;
}
end i;

end j;
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// Merge newid labels using recursive calls.

for i = 0 to id
newid(i) = recursive_merge(newid(i));

end i;

// Now replace old labels with new ranked labels.
for j =0 to N

for i =0 to N

mask(i,j) = newid(mask(i,j));

end i;

end j;

The region growing algorithm [4] is more intuitive than the scan pass algorithm.
A recursive technique is used in this algorithm. All significant nodes are marked
unvisited at the beginning. A seed is chosen as one of the nodes that has been
defined as significant. This choice can be made interactively or by the system. All
the unvisited neighboring nodes of this seed are added to the feature and marked
as visited. The algorithm recurses with all the neighbors as a seed. The recursion

continues until there are no more neighbors to grow into.

// The region growing algorithm.
// node_list is a list of nodes, feature_list is a list of features.
for i =0 to N

for j =0 to N

if ( s(i,j) !'= NO_SWIRL)
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mark s(i,j) as visited;
grow(i,j);
end 1i;
end j;
// the grow() routine is mentioned here.
grow(i,j)
{
add s(i,j) to node_list;
for each significant logical neighbour of (i,j) not visited.
mark (i,j) as visited;
grow(i,j);
end;

}

It may be noted that the scan pass algorithm runs through the entire set of
nodes twice whereas the region growing runs through them once. This makes the
execution of the region growing algorithm somewhat faster than the scan pass
algorithm. However, the region growing algorithm, being a recursive function,
could have the problem of a function stack memory overflow as the depth of the
recursion may become large depending on the size of the feature the algorithm is
trying to segment. However this can be overcome by placing a tab on the depth
of recursion depending on the available system memory, followed by a recursive
merge of adjacent features logically connected together. As this method uses
recursive merge to a small extent, it is in some sense, is a hybrid of both the

algorithms mentioned above.
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2.3.2 Feature Representation

Segmenting the nodes into individual features is the first step to study evolving
phenomena. This is necessary, but not sufficient. This signals a need for them
to be organized in a manner that is general enough to handle a wide variety of
shapes and features. Simplicity of representation also needs to be factored in,
as it would ease tracking and quantification. Physically based models have been
used for tracking in computer vision [2]. Work was also directed for representing
features by their centroids and second-order moments [7].

To be of any use for analysis, the segmented features need to be associated with
information regarding their position (for example the centroid (Zcen, Yeen)) and the
time-step they belong to ¢. An ellipse-like representation of the feature is also
stored. This includes, the lengths of the major and minor axis and the orientation
of the axes. The feature is also given a tag integer ID «, so that they are easily

available for look up by other routines.



CHAPTER III
FEATURE TRACKING

Chapter II discusses the issues related to defining features on datasets and
procedures to segment and classify features in a meaningful manner to make them
amenable for tracking. In this chapter, we shall discuss the various methods
that have been used to track these segmented features across multiple time-
steps. Tracking relevant features is a useful visualization tool for studying evolving

phenomena as it gives greater insight into the physics of the problem.

3.1 Feature States

Having defined a feature, we can classify any evolving feature in a time-varying
dataset as either undergoing Creation, Continuation, Bifurcation, Amalgamation
or Dissipation over time [7]. Creation occurs when a feature appears in a data
set at time-step ¢ and cannot be matched to a feature in data set at the previous
time-step t — At. Continuation occurs when a given feature continues to exist, not
necessarily in the same location, shape and size, in a time-step ¢ from the previous
time step t — At. Bifurcation is the state when a particular feature in time step ¢
breaks up into two or more features in time step t+ At. Amalgamation is the state
when two or more features from time step ¢ merge into one feature in time step
t+ At. Dissipation is the state when a feature in time step ¢ ceases to exist in time

step t + At. It may be noted that Amalgamation in forward time is Bifurcation
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in backward time. Similarly Creation in forward time is Dissipation in backward
time. Silver [7] notes that it is sufficient to capture Continuation, Bifurcation,
and Creation in forward time, Amalgamation and Dissipation can be captured by

running the same algorithm back-wards.

3.2 Silver’s Approach to Feature Tracking

Matching a feature in one time-step to the next is called the correspondence
problem. Silver et al. [4] [7] use a simple idea that a match among features
in adjacent time-steps can be generated using an area-overlap test. A matching
metric can be defined as some parameter that gives a quantitative measure on
the degree of correspondence. Typically, the metric would need to be maximized.
Many simple techniques have been proposed for feature tracking using elementary
matching metrics. If there are two features O, and Oy, the degree of area overlap

can be computed as follows

_ Area(O, () Oy)
V/Area(O,) Area(Oy)

(3.1)

In practice the degree of area overlap needed to imply a match is taken to be

greater than a specified tolerance, i.e.,

R > Tolerance.

This condition can be thought to be necessary but it is not sufficient. There may

be cases where an overlap need not imply a match.
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An example of such a case is shown in figure 3.1. A set of features may translate

uniformly causing the overlap criterion to produce erroneous results.

5
& i
3 %

&

TIMESTEP=t1 TIMESTEP =t2

Figure 3.1: Example of a case when overlap does not imply a match.

3.2.1 The Brute-Force Implementation

The simplest form of a tracking algorithm described in [4] is basically a brute-
force technique. In this technique, the bounding box of every feature in time step
t is compared with the bounding box of every other feature in time step ¢ + At. A
node by node comparison is made if and only if the bounding boxes of the features
overlap. This saves some time. Yet another assumption that is made for this
technique is that the datasets are closely sampled over time, and so the features
do not change or move to a large extent to make overlap impossible. In summary,

the feature-tracking algorithm works as a two-stage process.
1. Determine the set of features from adjacent time-steps that overlap.

2. Perform a best-matching test on the features that overlap. An area-overlap

test can be used to determine the best match.

Figure 3.2 illustrates this technique. The comparisons made are (A—1,A—2, A —
3,A—4,A-5) and (B—1,B—2,B—3,B—4,B—5). The number of comparisons
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made grows exponentially with the number of features n. The complexity becomes

O(n?) and hence the method is inefficient.

SO R
\\///1
1 @/\@ /ﬁ% rime=tz
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Time=t1

Figure 3.2: Illustration of the Brute-Force Technique.

3.2.2  Quad-tree-Based Implementation

If an area-overlap test is chosen, a quad-tree-based data structure is a good
choice for spatially partitioning the features present in a time step. The features
are given unique feature ID’s and stored in an quad-tree. The union of all the
quad-trees representing the features in an entire dataset is called a quad-tree
forest.  The quad-tree data structure is useful for algorithms which require
the spatial location of a given point within a two-dimensional domain. The
basic principle of a quad-tree is to divide a planar region into sub-domains and
then to recursively partition the sub-domains into smaller sub-domains, until
each sub-domain contains a suitably uniform subset of the phenomena under
surveillance as shown in figure 3.3. The quad-tree and related types of partitions
have many applications in computational geometry and geometric applications,

including data clustering, shape representation, molecular modeling and mesh
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generation.

The quad-tree-based tracking algorithm operates on two-dimensional
structured meshes. Although the basic idea is extensible, the implementation here
cannot be extended to unstructured meshes. Sampling an unstructured mesh at
nodes and transforming into a regular mesh is a possibility. However, there would

be a loss of accuracy due to aliasing.

e
70 N

OO0 OCOOO

Figure 3.3: Illustration of the Quad-tree Data Structure

/

The number of times the sub-domain needs to be split can be based upon
a predetermined knowledge of the size of the feature. The figure 3.4 shows a
hypothetical case of features in consecutive time-steps. The arrows show the
number of comparisons that need to be made if the brute-force technique is used.
Its evident from figure 3.4 that five comparisons are needed to establish a best
match. Note that the comparisons between a-1,b-2 and b-3 are not necessary

because they are not located in the immediate vicinity of each other in the domain.

The quad-tree data structure stores the features based on information about
the location within a domain such as the coordinates of its centroid. This is
illustrated in figure 3.5. Feature « is in sub-domain I, hence it would be compared

with features in the same sub-domain in the next time step. The same goes for b
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Figure 3.4: The Brute-Force Technique.

which is in I1.2. It is evident from figure 3.5 that the number of comparisons have

now dipped from 5 to 3.

b —1
ﬁﬁ i | n2 2 " "2
T —— s
| 1.3 1.4 I n3 N4
v 11 v 11

1 t2

Figure 3.5: The Quad-tree Technique.

The technique, however, has its pros and cons. Consider the case when the tree
is not deep enough. This would result in a congestion of features within a sub-
domain. If, on the other hand, the domain was decomposed to several different
sub-domains, we would not maximize the gains of using the tree-based technique.
This is because a feature may end up residing in several sub-domains and time
would be spent traversing the tree in order to get an estimate of the area overlap.

In order to maximize the gains from a domain-decomposition technique, the
depth of subdivision needs to be ascertained before the tracking process is initiated.

In order to get this number, an estimate of the average size of the feature with the
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entire dataset needs to be ascertained. Only sub-domains which have features in
them need be subdivided. Thus, techniques for local decomposition of sub-domains

also need to be used.
3.2.3 Silver’s Tracking Algorithm Implementation

The algorithm described in [4] [7] uses the techniques discussed in this section.
The features from time step ¢; and ¢;,1 are used to compute the overlap between
them. Every feature is given an integer feature ID. Let there be n; features in time
step t; and m;yq in time step ¢;,1. An overlap table is created with n; rows and n;,4
columns. The table entry values are set to zero initially. This stage is shown in the
figure 3.6. The purpose of the overlap table is to evaluate which of the features in

adjacent time-steps overlap, and, if so, what is the degree of overlap.

n(i+1)
0/0/0]0
0/0/0]0 0o
n(i) 0/0/0]0
0|0|0|0
.
* ]
. .

o|o|o|o
o|lo|o|o
o|lo|o|o
o|lo|o|o

Figure 3.6: Initialized Overlap Table.

Every node within the grid stores information on whether or not that particular
node is significant, and if so, the feature ID of the feature it is associated with.
An assumption made here is that the grid connectivity does not change between
time ¢; and ¢;11. The nodes from both time-steps are compared in a scan-pass

fashion. If a node is significant at both times the corresponding entry in the
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overlap table, marking the feature ID in time step ¢ on the rows, and the feature
ID in ¢ + At denoting the column are incremented by one. The individual entries

within the overlap table give us an estimate of the degree of area overlap as defined

by Oa N Os.

NodelD | ni |ni+l|ni®2|ni+3 Node 1D i [niv|niv2|ni+3
Significance| Y | Y | vin | ! Significance | yn |y | yn | yn
Feature D |id_i |id i+1|id i+2] id_i+3 FeatureID | id.i |id i+1]id i+2]id_i+3|

Overlap Detection

b

Overlap Table

Figure 3.7: Generation of Overlap Table.

The overlap detection is implemented by having index pointers to the first
node of each grid representing the time steps ¢t and t + At. These pointers are
incremented serially until the entire grid is traversed. The overlap detection is

done before incrementing them. The algorithm is described below.

Overlap Detection
{
pl <- 0 /* set pl to point to beginning of time step tl */
p2 <- 0 /* set p2 to point to beginning of time step t2 */
while (p1<Number of Nodes and p2<Number of Nodes)
{
R1 = p1;R2 = p2;
if (R1 and R2 are significant)
{

OverlapTable[R1.ID] [R2.ID]++
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}
p1++ ; p2++;
}

The worst-case complexity for the overlap-detection algorithm is O(p+¢q), where p
is the number of significant nodes associated with features within time step ¢, and
q is the number of significant nodes associated with features in time step ¢ + At.
The next stage to this process is the best-matching process. The table generated
from the overlap-detection process is used for the best-matching process. The
maximum-intersection criteria is used for the best-matching process. The features
are considered matched if their normalized correspondence metric, equation 3.1, is
maximized and also satisfiers a tolerance constraint. The tolerance value chosen
depends on the nature of the datasets and the sampling frequency. A simple
technique that can be used is to check for all row values within the overlap table
which satisfy tolerance constraints for bifurcation and continuation, and column

values for amalgamation. However this technique has some problems.

@A

:{)

Timestep =t1 Timestep =t2
A B
1| 10 | &
2 0 50

Figure 3.8: A Problematic Case t; = t, to = t + At.
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In the figure 3.8, the technique would yield the incorrect result that feature

1 splits into features A and B. A technique is needed that would process the
information in the scoreboard and indicate which is a more probable event. Silver
et al. define what they call a scoreboard. The scoreboard has the same size as
the overlap table but stores normalized areas of intersection. The rows in the
scoreboard represent features from time step ¢, and the columns represent objects
from time step t+ At. The next step is to generate a list of all nonzero values within
every row and column. This is called the overlap list. All possible combinations of
entries from the overlap list are taken. This list of all possible combinations gives
a handle on what are the various possibilities of bifurcation and continuation that
could have happened. This is followed by computation of the normalized area of
intersection for each of the combinations. The lower scoreboard values are replaced
by higher ones. This step is included so that the combination which has the highest
degree of area overlap would dominate in the end. The same process is done for
all the columns. Once the scoreboard is computed, we are in a position to perform
feature correspondence. Entries with the same score in a row indicate bifurcation,
and entries of the same score in columns indicate amalgamation. Entries which
were not used in the above process are continuation. The remaining that do not
satisfy tolerance constraints are tagged off as dissipation and creation in time steps

t and t 4+ At respectively. The algorithm is described below.

Best Matching

{
/* Initialize ScoreBoard to zero */
For each feature in ti

check OverlapTable for non zero entries in the row.Store it in Overlaplist
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For all combinations of features within OverlapList
Compute R the degree of area overlap.
For each feature within OverlapList
if R > ScoreBoard value for that entry

Replace ScoreBoard value with R.

For each feature in t2
check OverlapTable for non zero entries in the colum.Store it in OverlaplList
For all combinations of features within Overlaplist
Compute R the degree of area overlap.
For each feature within OverlapList
if R > ScoreBoard value for that entry

Replace ScoreBoard value with R.

/* identify tracking events */

Same ScoreBoard values within a row which satisfy tolerance constraints
are classified as bifurcation
Same ScoreBoard values within a column which satisfy tolerance constraints
are classified as amalgamation
Highest ScoreBoard value which is still in the search space as continuation.
Remaining in t1 as dissipation.

Remaining in t2 as creation.
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This generalized tracking algorithm creates an event graph. The event graph
maps features in time-step ¢ to features in time-step ¢ + At. The brute-force
technique is not an efficient way for tracking features in time-varying datasets.
The quad-tree-based technique is useful for structured meshes. However, it may
not be useful if the mesh is unstructured. In unstructured meshes, there could
be triangles/quadrilaterals that are present in adjacent sub-domains. Assigning
which triangle/quadrilateral goes into which sub-domain will slow the process of
domain decomposition. The generalized tracking algorithm by Silver et al. [7] is
a technique that will work on unstructured meshes. However, it assumes that the

features evolve consistently, and that the data sets are well sampled in time.

3.3 Attribute-Based Feature Tracking

The technique described above basically uses position as a measurable physical
characteristic of the feature to compare it with features in subsequent time
steps. The maximizing parameter given in equation 3.1 was the degree of area
overlap. This technique does not exploit other characteristics of the physical
phenomenon to track features. Reinders et al. [5] describe a tracking technique
which utilizes feature attributes. The feature data consists of basic attributes
such as position, size, speed, orientation, etc. For each set of attributes, a number
of correspondence functions can be tested, resulting in a correspondence factor.
This factor makes it possible to quantify the goodness of the match between two
features in successive time frames. Since the algorithm uses feature data, it is

efficient in execution.
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The tracking algorithm proposed is based on a simple assumption. Features
evolve consistently and that they have attributes which can be used to track them.

Some examples are listed below.
3.3.1 The Sense of Rotation

A simple example of one such characteristic from a fluid-dynamics perspective
would be the sense of rotation of a vortex in a flow field. Vortices usually maintain
their sense of direction, i.e., clockwise or counter clockwise, over time as they
evolve, unless there is some shearing flow changing the sense of rotation. If it is
known beforehand that it is two-dimensional vortices that we are comparing, then
it would help to store the sense of rotation of the vortex as a feature attribute. The
problem is more complicated in three dimensions. This flag can be used to reduce
redundant comparisons for evaluating a best match. This concept is illustrated in
the figure 3.9. In figure 3.9, the closed boxes represent sub-domain having features
labeled (a,b) in time step ¢ and (1,2) in time step ¢2. Typically, the comparisons
that would need to be done are (a-1,a-2,b-1,b-2). However, as we do know from the
rotation flag, which signifies the sense of rotation, that a-2 and b-1 are superfluous.
This accelerates the process. There are other attributes to examine apart from the
sense of rotation.

Another salient attribute of a feature is its strength. The size/mass of the
feature may be representative of its strength. If we store the information about
how “strong” a feature is, we can assume a “strength” gradient to exist and hence
conclude that the strength cannot increase/decrease beyond a certain limit between
adjacent time steps. This further reduces the number of redundant comparisons.
The figure 3.10 illustrates this concept. As in figure 3.9, comparisons a-2 and b-1

are made superfluous.
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Figure 3.9: Using the sense of rotation as an attribute.
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Figure 3.10: Strength Based Comparison.
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3.3.2 Evaluating Correspondence

In order to detect a correspondence between candidate features, a series of
correspondence functions C'y,p. are evaluated for each pair. Each of the functions
is accompanied by a tolerance 7; and a weight W;. The value attained by Cyp, is
kept within [0, 1] if the deviation is kept within tolerance 7;. It is given a negative

value otherwise. This is shown below.

1 Exact Match

Crunc =140 Limit of Tolerance

< 0.0 No Match
\

The total correspondence between any two pair of features being compared is
computed as a weighted sum of all the contributing correspondence functions.
The result is stored as Ceory. If Njpyne is number of contributing functions, then

the correlation is as defined below.

Ny
> izt CruneWi
Nfunc
Zi:l Wi

Ccorr =

The number of correspondence functions, Ny,n., depends on the attribute sets of
the features under study. An event graph over time for all the features is plotted.
This is a mapping of how the features evolve over time. The correspondence
functions are used to determine a confidence index for a given path of evolution
of a feature. Reinders et al. [5] define a parameter 7, called the growth factor,
as the length of the minimal path of evolution. In order to track a feature, the
evolution of the feature in the event graph has to be followed. As the event graph

is a directed graph, several paths may exist. In order to choose the best path, a
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confidence parameter C,,, s is calculated over the constituent edges.

Ceonf(path) =1 — er

edges

1= Z Ccorn—
=1

More details can be found in [5]. An example of some simple attributes of features

described by [5] that can be used for tracking is shown in table 3.3.2.

Correspondence Function | Correspondence factor Consistency Rule
MTVp—Vell
”V _%” — maz(Vp,Ve) .
m <Tvo Coo=1-— TZ consistent growth
dist(p, c) < Thos Cpos =1 — ’ﬁ%(ops’c) consistent speed
1 — |[cos(£(p,E))|| < Tangte | Cangte =1 — M consistent rotational speed
angle

In the expressions in table 3.3.2, the subscript p stands for the feature in time
step t and ¢ for time step t+ At. Attributes listed are the volume, rotational speed
and position.

The attribute-based technique can be used if the phenomena under study
assigns to the features, data such as size/mass that are easy to capture. This
would greatly improve tracking time. However it is not possible to apply this

technique on all classes of features.



CHAPTER IV
PREDICTIVE FEATURE TRACKING

Chapter III discussed the various techniques used for tracking features in time
varying datasets. In this chapter, we present an enhancement to improve upon

those techniques by incorporating predictive techniques.

4.1 Predictive Techniques

Motion correspondence has a number of applications in computer vision
including motion analysis, object tracking, surveillance, etc. Several techniques
have been mentioned in [9] [10]. These include, the nearest neighbor model, which
assumes that features move as little as possible from time ¢ to ¢ + At. This
is equivalent in concept to the method of Silver [7] for feature tracking. Sethi
and Jain [11] suggest a smooth-motion model which assumes that the velocity
magnitudes vary in magnitude and direction gradually. A heuristic model is given
in [11]. The prozimity-uniformity model by Rangarajan and Shah [12] assumes

little motion in addition to constant speed.

The rationale behind the current effort is to combine the generalized tracking
algorithm and attribute-based techniques to develop a technique for predicting

the physical location and orientation of a feature and exploit this additional

35
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information to improve our confidence in the tracking process. Implicitly, we are

employing additional information for conducting comparisons between features.

4.2 Motion of Features

There are three broad classes of motion that a feature can undergo.

1. Translation.
2. Rotation.
3. Deformation.

This study attempts to estimate the translation and rotation about the centroid
of a feature for prediction. In essence, we are saying that the salient attributes of
a feature are its translational motion and rotational motion. No attempt is made
to estimate the deformation of the feature. As stated above, the general tracking
algorithm assumes that features evolve consistently over all time. The technique

we study assumes the following:

1. That the features evolve consistently over a set of three consecutive time

steps.

2. Over this period, the features undergo rigid translation and uniform rotation

about its centroid.

If there are two time steps, then there is no way to predict anything about the
features in the second time step based on the first one alone, and the basic tracking
algorithm is employed. If there are three time steps, the information from the first
two time steps can be used to predict the physical location and angular orientation

of the feature in the third time step. If there are four or more time steps, the
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following is proposed. The data set is sampled at three consecutive time-steps to
predict the physical location of the feature in the fourth time-step. This technique
is applied repeatedly over the second, third and fourth time-steps to predict the
fiftth. The fifth, sixth and seventh time-steps are used to predict the eighth time

step, and so on. The figure 4.1 makes this clear.

Predictor

Figure 4.1: The Predictive Scheme

4.3 The Issue of Various Grid Types

The general tracking algorithm proposed by Silver [7] works for an unstructured
mesh. However, implementing a technique to preserve and translate a shape from
one location on the grid to another is difficult to implement on unstructured
meshes. The issue persists for structured, non-cartesian meshes also. A simple
solution is proposed.

An ellipse that encompass the feature is made as representative of the feature.
The shape of an ellipse is chosen over a rectangle/square shape because this
study focuses on studying vortices as features and an ellipse would be a good
approximation for the shape. The major axis of the ellipse is taken to be the

principal axis and the minor axis perpendicular to the major axis. Let (z;,y;)
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represent the set of n nodes that define a feature. The principal axis can be
defined as the line passing through the feature such that the sum of the distances

of all the points to that line is a minimum as shown in equation 4.1

n

Z(yi — f(2))? = minimum. (4.1)

1=0

The slope of such a line is given by equation 4.2

C 0 - (Ta)(Tay)
O (4.2)

tanf =

The equation of any ellipse centered at the centroid (Zcen, Yeen) Of a feature is

(x - xcen)2 (3/ - ycen)2
a2 + b2

~1. (4.3)

In order to completely define the ellipse encompassing the feature, two points that
lie on the ellipse are needed. The two points are chosen to be the farthest points

from the major and minor axes. Figure 4.2 illustrates the process. Let these points

(x2y2)

Figure 4.2: The Ellipse Representation

be (z1,y1) and (x9,y,). Substituting the values z = x1,y = y; and = = 29,y = o
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gives us two equations

(xl - xcen)Q (yl - ycen)2

o~ + 2 =1 (4.4)
(-771 - xcen)z (yl - ycen)2
= + 2 =1. (4.5)

Solving for a and b gives us

| yﬂm 7?92 — 9 (@ — )
b_\/ [CEENEr—y | 9

From basic geometry, it is known that the foci’s of an ellipse, centered at the
origin, are on the major axis, a distance ¢ away along the positive and negative

x-direction. The value of ¢ is given by
c=Va?— b2

An ellipse which has its major axis slope of tanf,,;,, and passing through

(Zcens Yeen) has the equation

Y — Yeen = tan emajor (,’13 - xcen)- (48)

The x-coordinates of the foci’s are Tcen, == € €08 0pgjor. Substituting

C

V/1+ tan? O, 0r
c

V14 tan? 0,0 0r

(4.9)

T focusy — Lcen +

(4.10)

T focuss = Lcen —
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gives us the values of the y-coordinates of the foci’s

n ctan Opqjor
\/1 —+ tan2 gmajor
ctan Op,q50r

V14 tan? 0,0 0r .

(4.11)

Yfocusi = Ycen

(4.12)

Yfocuss = Ycen —

The next step in the process of generating an ellipse-like representation of the
feature is to make all nodes that lie within the defined ellipse as significant. From
the definition of an ellipse, it is known that an ellipse is described as the loci of a
point P which moves such that the sum of the distance from any two fixed points

(the foci’s, say F; and Fy) is a constant 2a.

\PF\| + |PFy| = 2a (4.13)

All points P that lie within this ellipse, would have the property

|PF| + |PFy| < 2a. (4.14)

Equation 4.14 is used to switch on all the nodes within the ellipse as significant.

The application of predictive techniques for feature tracking follows.

4.4 The General Approach

The general idea is to use techniques for predicting the physical location and
angular orientation of a feature in the fourth time step based on its location at
the previous three time steps. The predicted feature is stored as an ellipse-like
representation. In order to encode translation, it is assumed that the feature

undergoes uniform acceleration. It may be noted that the rotation prediction
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helps us by giving more overlap and therefore more confidence on the predicted

match. The process can be described as follows.

1. The location of the centroid of the feature is predicted based on its position

in previous time-steps.

2. An ellipse-like representation of the feature (based on its shape in the

previous time-step) is placed at this location.

3. The major axis of the ellipse is rotated by an angle predicted based on the

orientation of the feature in previous time-steps.

For the purpose of analysis in subsequent sections, let us assume that
(1,91),(22,y2) and (x3,ys) are positions of the centroid of a feature in time steps
t, t+ At and ¢ + 2At. Let the centroid of the feature to be predicted be (z,,,)-

The various techniques used are discussed in subsequent sections.

4.5 Translation

If a particle is at point (xg, 3o), undergoing motion with an initial velocity ug,
with a constant acceleration 50’, then the predicted position of the particle after a

time interval At is given by

1
Tp = Zo + ug At + iawAtQ (4.15)

1
yp = Yo -+ 'U;yAt + §ayAt2. (416)

It is assumed that a constant time step, At, is used.
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Predicting the location of a feature in a future time-step based on two previous

time-steps is now discussed. It is not possible to predict acceleration by using two

time-steps. Assume that the feature is at location (x1, y;) at time ¢; and at location

(z2,y2) at time ¢y, the predicted location (z,,y,) at time ¢3 can be computed using

To — 1
Yo = Ay
_Y2—
Y= AL

az; =ay =0

which implies

To —T1

At

Tp = To +

Yo — Y1
At
At

Yp = Y2 +

and yields

Tp = 2%9 — T

Yp = 2Y2 — Y1.

(4.17)
(4.18)

(4.19)

(4.20)

(4.21)

(4.22)

(4.23)

The case of prediction using three previous time-steps is now considered. A

feature’s initial velocity can be calculated based on the location of its centroids at



time steps t1,to and t3 as follows

_ 3x3 — 4xy + 11

o = 9AL
w = 33— Ayt
y 2At

The acceleration is then computed as

T3 — 2%9 + 21

ta A2
_Ys— 2y + U
ay = —AtZ .

Substituting values for a, and a, in equation 4.15

_ (3z3 — 4z + 1) 1(z3 — 229 + 1) 5
Ty = T3 + AL At + 3 Ap? (At)
(3ys — 4y2 + v1) 1(ys — 22+ 11) 1 12
= At + — A
Up =Ys+ 9At I3 A B

ZTp = 3x3 — 3Tz + T

Yp = 3Ys — Y2 + Y.

4.6 Rotation
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(4.24)

(4.25)

(4.26)

(4.27)

(4.28)

(4.29)

(4.30)

(4.31)

In order to capture rotation, it is assumed that the difference in the orientation

of the principal axis gives the angle by which the feature has rotated. Recall that

the principal axis is defined as the line passing through a feature such that the sum

of distances of all nodes within the feature to the line is a minimum as defined in

equation 4.1. The slope of such a line is tan #, where tan @ is defined by equation

4.2. Let 0,0, and 605 be the orientations of the feature in the three time steps.
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Following in the same lines as equation 4.15 gives us

305 — 405 + 0 105 —20,+0
3 o + 1At+—3 o + 01

b =0+ =55 27 (At)?

At? (4.32)

When the angular acceleration is zero, the third term in equation 4.32 is zero. For

the case of features rotating at constant angular velocity, equation 4.32 yields
0, = 205 — 6. (4.33)
If there is angular acceleration, equation 4.32 yields
0y = 305 — 36, + 0. (4.34)

As is the case with predicting translation based on two previous time-steps, it is
not possible to predict the angular acceleration. This value 6, is used to evaluate

the orientation of the principal axis in the fourth time step.



CHAPTER V
RESULTS AND DISCUSSION

The predictive feature tracking algorithm discussed in the previous chapter was
tested on an artificially generated data set which had a single accelerating feature.
Yet another dataset had a feature undergoing approximately uniform angular
rotation and displacement. The artificial dataset is included to demonstrate that
additional overlap can be obtained using predictive techniques. The algorithm was
also tested on a real data set for viscous flow past a cylinder. In this case, the
cylinder sheds vortices and the vortices are convected downstream by the flow.
Plots of overlap values obtained using the prediction based on two previous time-
steps and three previous time-steps are plotted. As discussed in chapter II, the
swirl parameter is used to detect the vortices and the region growing algorithm is

used to segment the field into regions of interest.

5.1 Artificial Data Sets

A set of artificial time varying data was generated as a preliminary test case.
The grid dimensions were 100 x 100. The data set had a moving geometric figure
(a square) that represented a feature. The velocity and acceleration of the object
was predefined. In order to demonstrate the algorithm, the object is given a size

2

of 10210 nodes, and an acceleration of 2nodes/sec’. Those values were chosen

so there would be no physical overlap in adjacent time-steps after the 4 time-
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step. The predictive module is then used to estimate the feature’s location in
the next time step. The figures 5.1, 5.2, 5.3, 5.4 and 5.5 illustrate the process.
The overlapping areas are shown in green. The square in the earlier time-step
is shown in red and the later time-step is shown in yellow. The position of the
ellipse-like representation of the feature using the predictive techniques is rendered.
The status bars on the right of snapshot show the degree of overlap as computed
by equation 3.1. The overlap values obtained with the predictive techniques are

shown in table 5.1. The overlap values indicate overlap with the previous time

step.

Time Basic Overlap | prediction prediction
using 2 time- | using 3 time-
steps steps

2 36.00 96.67 -

3 16.00 56.67 100

4 4.0 56.67 100

5 0 56.67 100

6 0 56.67 100

7 0 56.67 100

Table 5.1: R values for feature ID 0,undergoing uniform
acceleration, using basic overlap and prediction using

information from the previous two and three time steps

As was stated earlier, the feature has finite acceleration. This causes the basic
overlap to become zero at the fourth time-step. It can also be seen in table 5.1

that the prediction using three previous time-steps gives a better estimate than
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using two previous time-steps. This is because it is not possible to predict the

acceleration of a feature using its location at two previous time-steps. However,

the use of two previous time-steps for prediction is better than basic overlap as

it gives a better estimate, if not the best, of the location of a feature in a future

time-step.
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Size in t1 = 10
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36, 00%

o]

100%

56, 67
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Figure 5.1: Snapshot of the Artificial Dataset using predictive tracking (time step

:1)

The rotation prediction routines are tested on artificially generated data. This

dataset has a rectangle undergoing coupled rotation and translation. The rectangle

in yellow in the later time-step and red in earlier time-step. The green area

shows the area of overlap detected. The ellipse-like representation of the feature
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Figure 5.2: Snapshot of the Artificial Dataset using predictive tracking (time step
= 2)
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Figure 5.3: Snapshot of the Artificial Dataset using predictive tracking (time step
= 3)
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Figure 5.4: Snapshot of the Artificial Dataset using predictive tracking (time step
= 4)
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Figure 5.5: Snapshot of the Artificial Dataset using predictive tracking(time step
= 5)
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shows how the use of predictive techniques increased overlap. Table 5.2 shows the

improvement in the overlap obtained using predictive techniques.

Time Basic Overlap | prediction prediction
using 2 time- | using 3 time-
steps steps

2 36.12 89.10 -

3 35.99 89.22 88.98

4 36.02 88.42 88.35

5 36.06 88.99 89.51

6 36.09 88.91 89.07

7 36.09 89.97 90.28

8 35.90 92.06 90.53

Table 5.2: R values for feature ID 0,undergoing uniform
rotation, using basic overlap and prediction using

information from the previous two and three time steps

A rectangle, is rotated with uniform angular velocity, and translated, to
simulate a coupled translating rotating feature. As the feature rotates and
translates, the basic overlap between time-steps is small as shown in table 5.2.
However, the use of two previous time-steps to prediction the location and
orientation of the feature in a later time-step has increased the overlap. The
use of the previous three time-steps has yielded similar results as the feature has
no angular acceleration. The increase in overlap has increased the confidence in

the match obtained for tracking the feature.
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Figure 5.6: Snapshot of overlap with rotation prediction ( time step = 2)
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Figure 5.7: Snapshot of overlap with rotation prediction ( time step = 3)
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Figure 5.8: Snapshot of overlap with rotation prediction ( time step = 4)
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Figure 5.9: Snapshot of overlap with rotation prediction ( time step = 5)
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Figure 5.10: Snapshot of overlap with rotation prediction ( time step = 6)
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5.2 Flow Past Cylinder

A time-varying simulation of viscous flow past a cylinder was downloaded from
the Internet at [13]. The cylinder starts shedding vortices and these vortices are
convected downstream with the flow. The grid used for this simulation is shown
in figure 5.11. The process of representing features, as described in chapter IV, is
implemented. The original data had dimensions 64 x 64 x 32. The z-slice at 20

was chosen.
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Figure 5.11: Snapshot of the Grid used for flow past a cylinder

The swirl values are computed at all the nodes. Nodes with 7 values greater
than a specified threshold are marked as significant. The nodes are segmented

into features by the region growing technique mentioned in Chapter III. The time
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interval of sampling is varied to demonstrate the variation of the overlap computed
using the basic overlap technique (Silver [7]), prediction using only two previous
time steps, and prediction using three time steps. The time interval is varied from
one to ten. The variation of the overlap parameter is shown in figures 5.12 and

5.13.

Overlap parameter R
Lo T T T T T T

L] T
‘wary,dat' using 1:3
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L

1 2 3 4 5 G 7 8 3 10

Delta t

Figure 5.12: Plot of R value for At = 1...10 for the 3"¢ time step using 2"¢ and 1%

The lower green line indicates the degree of area overlap obtained using basic
overlap techniques. The upper blue line indicates the increment in overlap obtained
using predictive techniques. For the purpose of this study, one feature is kept
visible and tracked. This is chosen to be a vortex shed from under the cylinder. It
is observed that this vortex travels fairly linearly, and is well suited as a test case

for this study. Figures 5.14-5.16 illustrate this process.
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Figure 5.13: Plot of R value for At = 1...10 for the 4" time step using 37¢, 2"4
and 1°.

Use of the predictive technique has helped develop a better overlap value. The
figures 5.12 and 5.13 also indicate that we can afford to subsample the time variant

data set by not compromising overlap. This could help save memory.



61

w /driver - X

Size in t1 = 10

Size in t2 = 13

100%

56,13

0
Basic Owverlag

o 100% 100%
‘l || 67,63
0E00% 0%

Using 3 Using 2

Figure 5.14: Snapshot of the use of predictive techniques for time ¢ = 37 using
features from ¢ = 31 and ¢ = 25
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Figure 5.15: Snapshot of the use of predictive techniques for time ¢ = 43 using
features from ¢ = 37 and ¢ = 31
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Figure 5.16: Snapshot of the use of predictive techniques for time ¢ = 43 using
features from ¢t =37, t =31 and t = 25



CHAPTER VI
CONCLUSIONS AND FUTURE WORK

The present work deals with predictive feature tracking techniques for time
varying data sets. The general tracking algorithm was tested on an artificial data
set with features undergoing both translation and rotation. When the general
tracking algorithm was applied to the artificial data set, it was noticed that some
features, being the same, did not show sufficient overlap. The new algorithm
helped track such features by employing predictive techniques. The translation
estimation techniques were effectively used to predict the centroid of a feature
in a future time step. The rotation estimation techniques helped increase the
confidence in the match by increasing the overlap. The algorithm was also tested
on a time varying data set of a flow past a cylinder. The figures 5.12 and 5.13
indicate that we could subsample the data set while loading it into memory as
the predictive techniques help increase the overlap. In general, prediction based
on two previous time-steps does a better job of estimating the location of a
feature in a future time-step than using three previous time-steps. It is also of
interest to note the results in table 5.1. When equation 4.22 is used to predict
the location of a feature in a future time-step, there is a constant “phase-lag”
between the predicted location and the actual location. This can be verified
mathematically. Use of previous two time-steps for prediction is a viable option in

datasets which have relatively slow moving features. However the technique has
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certain limitations. The algorithm handles all translation as approximately linear
motion. The case of a feature, moving along a complex random curve, is difficult
to track. An ellipse-life representation of a feature was used to predict overlap.
The feature was assumed to have a shape which could be contained within an
ellipse. This need not always be the case. It is also assumed that the feature

rotates about its centroidal axis. This is another limitation of the algorithm.

In summary, this technique can be used effectively on data sets which have a few
features, undergoing rapid translation/rotation. It may not be effective in cases

when there are a large number of features undergoing various forms of motion.

6.1 Future Work

The idea of translating a shape based on its shape to a future time-step and
checking to see overlap is difficult to implement on unstructured grids. A means for
parameterizing shapes on unstructured grids, and effectively reconstructing them
at any location, is needed. The idea of using ellipse-like representations of features
to represent their shape is one way of predicting the size of a feature based on its
size in the previous two/three time steps. Yet another approach could be to define
control points around feature boundary and use a curve fit as a boundary of that
feature. The movement of these control points can be used to predict the shape
of the feature in a future time step. The case of preserving the characteristics of a
feature undergoing rotation, shape change, and translation is difficult to capture
on an unstructured grid. The application of translational/rotational predictive
techniques for unstructured meshes which preserve the shape of the feature is also

challenging. This is the scope for future work.
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