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The method for developing a soil moisture inversion algorithm using Radar data 

can be approached in two ways: the multiple-incident angle approach and the change 

detection method. This thesis discusses how these two methods can be used to predict 

surface soil moisture. In the multiple incident angle approach, surface roughness can be 

mapped, if multiple incident angle viewing is possible and if the surface roughness is 

assumed constant during data acquisitions. A backpropagation neural network (NN) is 

trained with the data set generated by the Integral Equation Method (IEM) model. The 

training data set includes possible combinations of backscatter obtained as a result of 

variation in dielectric constant within the period of data acquisitions. The inputs to the 

network are backscatter acquired at different incident angles. The outputs are correlation 

length and root mean square height (rms). Once the roughness is mapped using these 

  



outputs, dielectric constant can be determined. Three different data sets, (backscatter 

acquired from multiple-frequencies, multiple-polarizations, and multiple-incident angles) 

are used to train the NN. The performance of the NN trained by the different data sets is 

compared. 

The next approach is the application of the change detection concept. In this 

approach, the relative change in dielectric constant over two different periods is 

determined from Radarsat data using a simplified algorithm. The vegetation backscatter 

contribution can be removed with the aid of multi-spectral data provided by Landsat. A 

method is proposed that minimizes the effect of incident angle on Radar backscatter by 

normalizing the acquired SAR images to a reference angle. A quantitative comparison of 

some of the existing soil moisture estimation algorithms is also made 
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CHAPTER I 

INTRODUCTION 
 
 

1.1 OVERVIEW 

The need for estimation of soil moisture may differ from an agriculturist’s, 

meteorologist’s, or a water reservoir manager’s standpoint of view. This thesis is limited 

to the estimation of soil moisture contained in the range (1 cm –5 cm) because of the 

penetration limits of radar. The moisture in these depths is generally referred to as surface 

soil moisture. Soil moisture is a constituent in the interface between atmosphere and land 

surface, or rather in the conversion of the radiant energy from the atmosphere into latent 

heat. Understanding these conversions and interpreting them meaningfully are the 

greatest challenges in hydrological sciences. Soil moisture plays an important role in the 

prediction of weather patterns, management of water reservoirs, providing early warning 

of droughts and floods, providing irrigation schedules and crop yields. Reference [1], 

defines soil moisture as the key boundary that influences the precipitation pattern in the 

southern great plains and the second most significant function in the mid-latitude 

continental regions. Hence, the role of soil moisture is important at both global and local 

scales, even though its volume is small compared to other components in the hydrological 

cycle [1], [2]. 

Soil moisture is a difficult parameter to measure because of its temporal variation. 

Soil moisture estimation using ground-based instruments are point measurements and 
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thus, cannot be used in the above mentioned global or regional applications because of 

the varying nature of soil moisture on a large scale. Space based remote sensing is 

projected to be the solution to overcome the problems of ground based estimation of soil 

moisture. An effort of more than two decades has been invested in the development of 

efficient algorithms for soil moisture estimation using remote sensing. Sensors operating 

in the visible region can provide us with some information regarding soil moisture since 

the color and the texture of soil are dependent on the levels of soil moisture. Microwave 

region offers the best potential to derive soil moisture maps and was found as early as 

1974 [3]. The most popular frequency bands in the microwave region are P, L, C and X 

bands for this application.  

Remote sensing in the microwave band can be classified into active and passive 

remote sensing. Passive systems use the Sun as their source of microwave energy and are 

known as radiometers, whereas active systems have their own source and are known as 

radar. The detection of soil moisture for passive systems is based on the fact that 

emission of microwave energy is proportional to the product of surface temperature and 

surface emissivity, which in turn are dependent on the moisture content. This microwave 

energy is termed as brightness temperature. Active microwave remote sensing offers 

several advantages over passive sensing such as its ability to penetrate cloud cover 

(making it an all weather sensor), moderate penetration of vegetation cover, independent 

source of energy, and strong function of dielectric constant.  

A series of soil moisture experiments were conducted during the past decade. The 

first major soil moisture campaign is what is known as the Washita’94 experiment. The 

experiment acquired SIR-C (Shuttle Imaging Radar) measurements over Little 
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Watershed, Oklahoma during April 94. This experiment realized soil moisture validation 

with ground truth realizable from the Synthetic Aperture Radar (SAR) perspective. The 

Southern Great Plains Experiment in 1999 (SPG99) was aimed at providing aircraft data 

sets for algorithm development. Soil Moisture Experiment 2002 (Smex02), was designed 

for development of soil moisture products from several satellite sensors like the Aqua 

Advanced Scanning Microwave Radiometer (ASMR), Radarsat, and aircraft remote 

sensing instruments. Ground based observations were also set up for validation of the soil 

moisture products developed. The study region was Walnut Creek, a watershed located 

southwest of Ames, Iowa. 

Radar data can be further classified as image and non-imaging radars. SARs, like 

the Canadian Radarsat belong to high resolution imaging radars and scatterometers, like 

the European ERS-1, belong to the non-imaging radars. Radar detects the microwave 

energy or the Radar backscatter (σ ), as a result of scattering from the surface. The 

amount of the backscatter depends mainly on the dielectric constant (ε ) of the soil 

medium and the surface parameters such as the rms height ( ), correlation length ( l ), 

vegetation cover and the incident angle (θ). The 

h

ε  is related to soil moisture through an 

empirical relation which is a function of soil texture. Soil texture is defined in terms of 

volume fractions of clay, sand and silt present in soil. Due to the dependency of σ  on so 

many parameters, formulation of an inverse algorithm for soil moisture estimation is 

often referred to as an ill posed problem. The limitations posed by SAR imagery are its 

inability to simultaneously view the region of interest with different combinations of 

polarization, frequency and incident angle. 
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Most of the researches undertaken in the past have considered only bare pixels 

and sparsely covered vegetation pixels for generating soil moisture maps. All other pixels 

are usually masked using vegetation indices such as NDVI (Normalized Difference 

Vegetation Index). Since the presently available SARs (Radarsat, ERS-1) are capable of 

acquiring only single polarized data, there is a need to develop an inversion algorithm 

based on single polarized data. HH polarized waves have more interactions with the 

surface and are less attenuated by vegetation compared to VV polarization. Radarsat, 

because of its frequency of revisits and its ability to acquire HH polarized data, is a more 

effective tool. The objective of the thesis is to develop an inverse algorithm for soil 

moisture estimation from Radarsat SAR data. Radarsat operates at C band (5.3 GHz) with 

a resolution of 25m for the standard beam mode and a resolution of 8 m for the fine 

mode. 

 
1.2 THESIS STRUCTURE 

This thesis is structured as follows: Definitions of different parameters along with 

the relationship between dielectric constant, volumetric soil moisture and radar 

backscatter are presented in Chapter 2. Chapter 3 discusses the site characteristics, 

procedure for retrieving ground parameters from the site and processing of the SAR data. 

The chapter is an introduction to two soil moisture campaigns: Washita’94 & Smex02, 

and no attempt is taken to discuss these campaigns in detail. Chapter 4 is a review and 

comparison of the existing theoretical and empirical models. 

The main challenges in the inversion algorithm have been incident angle 

correction and removal of backscatter effects due to vegetation. The SAR images 

acquired at different incident angles can be normalized to a reference angle, at least from 
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the Integral Equation Method (IEM) model standpoint and is discussed in chapter 5. It is 

impossible to eliminate the contributions due to vegetation from the total backscatter 

using Radarsat alone. With the aid of visual imagery provided by Landsat, this unwanted 

term could be minimized to some extent. It is impractical to apply the IEM model to SAR 

acquired images due to the large volume of data and the algorithm’s complexity. Chapter 

5 deals with how the IEM model can be simplified using regression. The behavior of the 

coefficients with surface parameters as a result of regression is discussed. Neural 

networks (NN) trained by backpropagation algorithm have proved to be an effective tool 

for non-linear inversion problems. Radarsat has a revisit frequency over the same ROI 

(Region of Interest) that is a function of the beam mode. Therefore, this variable revisit 

frequency of visit of Radarsat can be exploited in the development of the algorithm and 

training data set for the NN. Finally, Chapter 6 is a summary and suggestions for future 

soil moisture field campaigns. 

 

 



 

CHAPTER II 

DEFINITIONS & RELATIONSHIPS OF DIFFERENT 

PARAMETERS 

2.1 DIELECTRIC PROPERTY OF SOIL MEDIUM 

Water is a permanent dipole because of its triangular molecular structure. Any 

molecule that has separation between positive and negative charges has a dipole moment. 

When an electric field is applied water molecules tend to align with the field. This 

phenomenon is known as polarization. The hydrogen-bonded network of the water 

molecule tends to oppose this alignment. This degree of opposition is known as dielectric 

constant [4]. From an electromagnetic wave perspective, the soil medium can be divided 

into free water, bound water, air, and bulk soil based on their distinctive dielectric 

properties [5]. For instance, bound water interacts with an electromagnetic wave  

differently than free water because of the amount of water held by the soil particles. So, 

the dielectric constant will depend on the surface area of the particles, which in turn 

depends on the soil particle distribution. Hence, it can be concluded that soil texture, 

which is the percentage of clay, sand and silt, influences the dielectric constant. The 

dielectric constant is a function of frequency of the electromagnetic wave ( ), physical 

temperature, volumetric soil moisture , and soil texture [5]. The dielectric constant of 

f

vm
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dry soil is approximately 2 and around 20 for wet soil [5]. Given that the dielectric 

constant is a strong function of , it is possible to estimate  by measuring the 

dielectric constant by distinguishing the intensities of the radar backscatter with a 

reasonable accuracy. 

vm vm

 
2.1.1 Sensitivity of soil moisture to microwave 

Some of the issues that arise with respect to measurement of soil moisture using 

microwave are- Is there a significant change in backscatter with respect to change in 

dielectric constant? Can inversion models accurately determine even a slight change in 

dielectric constant in the presence of unavoidable calibration errors and errors obtained 

during determination of other depending parameters? These issues bring the sensitivity 

factor of both theoretical and empirical models.  

 
2.2 DOBSON MODEL 

The reference [5], investigates the dielectric behavior of soil medium with respect 

to soil texture, temperature and frequency. The experiments were performed at Lawrence, 

Kansas. The experimental fields were categorized as Fields 1-5, based on the soil texture. 

Two methods, wave-guide transmission technique and free-space transmission technique 

were employed in the measurement of dialectic constant of the categorized fields. From 

this experimental data set, Dobson. et al.  established an empirical relationship between 

 from the observed vm ε  and is given by:[5] 

  (2.1) 
2

210210210 )()()( vv mCcSccmCbSbbCaSaa ++++++++=ε

where ,  is the volume fraction of sand and clay present in the soil. Volumetric soil 

moisture is preferred to gravimetric soil moisture because electromagnetic waves are a 

S C

   



 - 8 - 

function of volume fraction of water present in the soil. This model takes into account the 

effects of soil texture, frequency, and temperature on the dielectric constant 

measurements and is based upon the work by Dobson. et al. [5]. 

 
2.2.1 Effects of soil texture 

Soil moisture behavioral effects are different for the real  and imaginary '  

part of the dielectric constant. Dobson. et al. [5], found out that  is directly proportional 

to the sand content and inversely proportional to the clay content at any given frequency 

and soil moisture. This is evident in the polynomial curves in the plots (Figure 2.1). 

However, the sensitivity of  decreases, with an increase in frequency [5].  

'ε 'ε

'ε

'ε

 
TABLE 1 COEFFICIENTS OF THE POLYNOMIAL EXPRESSION IN (2.1) [5] 

Frequency 0a  1a  21a  0b  1b  2b  0c  1c  2c  

1.4 2.862 -0.012 0.001 3.803 0.462- 0.341 119.006 -0.500 0.6333 

4 2.927 -0.012 -0.001 5.505 0.371 0.062 114.826 -0.389 -0.547 

6 1.993 0.002 0.015 38.086 -0.176 -0.633 10.720 1.256 1.522 

 

The coefficients of the polynomial in (2.1) are shown in Table 1 [5]. The soil 

texture effects can be studied by plotting the measured dielectric constant as a function of 

 for the fields with different textural composition. The behavior of m  with respect to vm v

ε  for different frequencies is illustrated in Figure 2.1. Field 1 is 51.5% volume fraction 

of sand and 13.5% volume fraction of clay and is designated sandy loam. Field 2 is 

42.0% volume fraction of sand and 8.5% volume fraction of clay and is designated  loam. 

Field 3 is 5% volume fraction of sand and 47.4% volume fraction of clay and is 
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designated as silty clay. Soils that are rich in sand content have the least specific surface, 

and thus have a very low bound water volume fraction [5]. 
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Figure 2.1 Dielectric constant as function of volumetric moisture for Fields 1, 2, 3 at 1.4, 4 and 6 GHz 
respectively 

 

This is the reason why Field 1 exhibits a higher dielectric constant than other fields. From 

the plots, it is evident that the  exhibits similar behavior at all frequencies and is texture 

dependent. It is observed that the effects of texture reduce as frequency increases. The 

imaginary part of the dielectric constant is independent of soil texture at C band and is 

most sensitive to the volume fraction of clay at L band. This is because of the dominance 

'ε
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of ionic conductivity due to the presence of liquid salts composed of calcium and that the 

calcium concentration increases with clay content [5]. 

 
2.2.2 Frequency & Temperature Effects 

The real part of the dielectric constant decreases with increases in frequency 

and the imaginary part increases with increases in frequency for all the fields [5]. A 

decrease in temperature below the freezing point drastically reduces the dielectric 

constant due to the non-availability of free water [5]. 

 
2.3 SURFACE CHARACTERIZATION 

From a statistical perspective, soil surfaces are generally expressed as rms height, 

correlation length and autocorrelation function. [6]. Determining these parameters or 

separating them from their contribution to the total backscatter (both experimentally and 

theoretically relating to backscatter) is perhaps the most challenging aspect in soil 

moisture estimation projects. 

 
2.3.1 rms Height ( ) h

The root-mean-square (rms) surface roughness (known as rms height) 

describes the variation in surface elevation. It is an estimation of the variance of the 

vertical dimension in the test surface and is given by: 

 [ ]∑ −
−

= 2)()(
1

1 phph
N

h n  (2.2) 

where  is the height of the horizontal position and h(p)  is the mean of the 

height and  is the number of samples. 

)h(pn 

N

thn
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2.3.2 Correlation Length ( ) l

Correlation length describes the similarity of the height over some distance 

along the surface. The maximum distance over which significant correlation occurs is 

known as correlation length. In other words, correlation length can be defined as the 

distance between two statistically independent points & for natural surfaces, as this 

distance increases, autocorrelation decreases. It gives a measure of  the slope of the 

terrain. The correlation length is the value obtained when correlation function decreases 

by . In Figure 2.2, the correlation length is 3 cm. When measuring l  using a 

profilometer, the length of the profilometer should be at least greater than l  [6]. 

e/1

 
2.3.3 Autocorrelation function 

Some of the popular autocorrelation functions and their spectra are shown in 

Table 2 [19]. Theoretically, the exponential function best describes natural surfaces. 

From the observed measurements in [21], the rougher fields correspond to Gaussian 

correlation functions and smoother fields are better described by exponential functions. 

 
TABLE 2 SOME AUTOCORRELATION FUNCTIONS AND THEIR SPECTRA 

Autocorrelation Function Corresponding Spectrum ( )0,sin2( θk−W ) 
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While mapping of the surface roughness profiles during the soil moisture 

experiments at Washita (Washita’94), the surface correlation function, 

 that best described the surface was when n , for most cases. This 

value of  corresponds to exponential correlation function. This thesis assumes the 

exponential correlation function. The Fourier spectrum of the correlation functions is 

used in the soil moisture inversion algorithms (Figure 2.3). A separate (Neural Network) 

NN can be trained that determines the autocorrelation type for a given surface, but it 

demands multiple incident angle data. 

( ) nL)/exp( ξξρ −=

n

1=
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Figure 2.3 Fourier transform of the auto 

correlation function 
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2.4 SYNTHETIC APERTURE RADAR (SAR) OVERVIEW 

Measurement of surface moisture from a traditional hydrological science 

perspective has been localized and largely relies on point measurements. Water has been 

recognized to play a fundamental role in Earth science. SAR plays an important role in 

Hydrology because of its high resolution, independency of the data time collection, 

immunity towards atmospheric attenuation, and its ability to see through the clouds. The 

development of SARs in the past two decades led to the transformation of hydrological 
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engineering, from its focus on a regional scale, to a global scale. In the following 

paragraphs, some of parameters related to Radarsat are defined and the technical 

specifications of Radarsat are tabulated in Table 3 [10]. 

 
TABLE 3 RADARSAT TECHNICAL SPECIFICATIONS 

Frequency 5 GHz, C band (5.6 cm) 
Polarization Horizontally transmit and receive (HH) 
Resolution 8-100 m 
Incident Angle 10°-60° 
Repeat Cycle 24 days (Minimum – 3days) 
Orbits per day 24
Beam Modes Fine, Standard, Wide, Extended High & Low, ScanSar 

High & Low 

Geometry Sun-synchronous orbit 
Altitude 798 km 
Expected Life 
time 

7 years 

 

Orbits and Swaths: Orbits can generally be subdivided in to Geo-synchronous 

Earth Orbiting Satellite (GEOS), Low EOS (LEOS) and Medium EOS (MEOS). The 

space borne sensors usually have Sun synchronous orbit and are LEOS. The orbit path 

can be either ascending or descending passes. As a satellite revolves around the Earth, it 

illuminates an area on the Earth’s plane. This illuminated area is known as the Swath. 

The path of the Satellite trajectory is known as the Azimuth and the point directly below 

the sensor is called the Nadir. Another term associated with swath is the Instantaneous 

Field of View (IFOW), which is defined as the angular cone of visibility. [8], [9]. 

Spatial Resolution: Spatial resolution is the size of the minimum possible feature 

that can be detected. The resolution cell is determined by the combination of Range 

Resolution and Azimuth resolution. Range is the minimum distance between two separate 
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objects. Theoretically, spatial resolution is half the length of the transmitted Radar pulse. 

Azimuth resolution corresponds to the minimum distance between two objects in the 

direction of the azimuth. The beam width is directly proportional to the wavelength of the 

incident wave. Therefore, azimuth resolution is lower for higher wavelengths and can be 

increased by increasing the length of the antenna. It is impossible to place large antenna 

arrays in space. This problem is overcome by the method known as the Synthetic 

Aperture Radar (SAR) that “synthesizes” a very long antenna. Therefore, the distance 

traveled by the satellite is exploited to create a very large aperture antenna and the 

responses received by it are converted to image after intensive signal processing [8], [9]. 

Frequency of operation: SAR operates in the microwave region. Microwave 

waves occupy the frequency range of the electromagnetic spectrum as shown in Figure 

2.4. Radarsat operates at 5.3 GHz. 

 

Figure 2.4 Electromagnetic Spectrum of Microwave 
 

 Polarization: Polarization is defined with respect to the orientation of the electric 

field of the incident wave. The plane that is formed by the direction of the propagating 

incident wave and normal to the Earth’s surface is known as the reference plane. If the 

electric field is in this plane then it is referred to as vertically polarized, but if the electric 

field is perpendicular to both the reference plane and normal, then it is referred to as a 

horizontally polarized wave [10]. Radarsat is capable of horizontally polarized 

transmission and reception. 
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Incident Angle: Incident angle is the angle between the planes of the direction of 

the propagating incident wave and the normal to the Earth’s surface. The local incident 

angle is the angle where the incident wave strikes the Earth’s surface (Figure 2.5). The 

interaction between the surface roughness and backscatter is a strong function of incident 

angle. For instance, the areas of similar roughness will appear brighter at the near end 

than at the far end of the SAR image. The changes in backscatter due to incident angle 

variation within an image pixel can be neglected. Since a SAR image covers a large 

distance, incident angle varies along the range direction and its effects have to be 

corrected.  

Look direction: The look direction is the orientation of the incident wave to the 

alignment of features, such as row structures with respect to the transmitted radar signal. 

It also has an influence on the appearance of the SAR image. For example, agriculture 

crops planted in parallel rows appear differently when the viewed from different look 

angles. Generally, for agricultural terrains the local incident angle is replaced by the 

incident angle for such surfaces.[10]. 

 

 
Figure 2.5 Radarsat angle descriptions 
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2.5 SURFACE SCATTERING 

The degree of smoothness is defined in terms of the Radar wavelength. The 

models described in future sections normalize the roughness parameter. Those surfaces 

that are relatively smooth like calm water and roadways reflect the incident wave 

opposite to the direction of the sensor, thus appearing dark in a SAR image. These are 

also called specular surfaces. As the roughness increases, the amount of backscatter 

increases and this is called diffused reflectance.  

 

 

Figure 2. 6Different scattering mechanisms [16] 

 

There are two type of scattering: surface scattering and volume scattering. Surface 

scattering are single scattering terms as a result of the incident wave impinging on the 

surface that is moderately rough and may also arise due to outer canopy scattering. When 

an electromagnetic wave hits the boundary between two semi-infinite media, a part is 

reflected and the rest is transmitted to the medium. If the medium is a homogeneous 

mixture and is considered smooth, then the backscatter is very less and is considered only 
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to as a surface scattering problem. As the medium becomes rougher, backscatter 

increases. Volume scattering may arise when the incident wave penetrates the surface, 

(usually when dry) and due to vegetation canopies because multiple scattering occurs 

within the medium. These types of scattering are depicted in Figure 2.6 [16].  

The IEM model described in this thesis is for surface scattering and hence the 

multiple scattering terms have to be eliminated. The multiple scattering terms can be 

removed from fully parametric Radar data using the Cloude’s target decomposition 

algorithm [11]. Since Radarsat data is not fully parametric, this algorithm cannot be 

applied on Radarsat data. These terms have to be removed with the aid of visible/ infrared 

imagery. 

 

   



  

CHAPTER III 

DATA SYNOPSIS 
 
 

This chapter summarizes two major test sites and field experiments that were 

conducted as part of the soil moisture campaign, namely the Soil Moisture Experiments, 

2002 (Smex02) experiment and the Washita’94 experiment. 

 
3.1 WASHITA’94 EXPERIMENT 

Washita’94 experiment was a large-scale hydrological field campaign conducted 

over Little Watershed River watershed, Chickasha, Oklahoma. The experiment was 

conducted jointly by NASA, USDA, and Princeton University. The main objective of the 

campaign was to provide remotely sensed data and ground measurements for analysis of 

variables that contribute to the hydrological cycle [12].  

 
3.1.1 Satellite Data 

The Washita’94 experiment was conducted during April 11-17, 1994 so that it 

coincided with Shuttle Imaging Radar & C- Band/ X band SAR (SIR-C/X-SAR) mission. 

SIR-C provided images at L, C and X bands with the following polarization combinations 

:HH,HV,VV. The incident angles and the polarization combinations of some of the 

images that were used to derive soil moisture maps are shown inTable 4. Multi-spectral 

imagery was provided by Landsat TM. The images were acquired on April 12, 1994 with 

a resolution of 30m. 
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TABLE 4 RADARSAT & SIR-C DATA COVERAGE [7] 

Date & UTC Time Look angle 
&A/D∗  
modes 

Incident angle 
at center 

Pixel Spacing Latitude &Longitude 

June 14, 2002 34.15 
D 

41.48 50.00 43.61 -92.29 

June 14, 2002 29.52 
A 

33.48 12.5 41.99 -93.20 

June 24, 2002 40.26 
A 

46.46 12.5 42.38 -93.30 

June 24, 2002 20.38 
D 

22.88 12.5 41.93 -93.26 

June 28, 2002 23.82 
A 

26.84 12.5 41.99 -93.44 

June 28, 2003 38.21 
D 

43.91 12.50 41.93 -93.44 

July 1, 2002 34.15 
A 

41.48 50.00 41.59 -93.95 

July 8, 2002 34.15 
D 

41.48 50.00 42.36 -94.37 

July 18, 2002 40.23 
D 

46.42 12.5 41.99 -93.31 

July 18, 2002 20.38 
D 

22.88 12.5 41.94 -93.26 

July 22, 2002 23.82 
A 

26.84 12.5 41.98 -93.43 

July 22, 2003 38.21 
D 

43.92 12.5 41.92 -93.43 

SIR-C 
Date A/ D modes Incident angle 

at center Resolution 
Polarization  Processing+ 

April 11, 1994 A 28.0 30 HH, HV, VV slc 
April 12, 1994 A 42.3 30 HH, HV, VV slc 
April 13, 1994 A 50.1 30 HH, HV, VV slc 
April 15, 1994 A 56.3 30 HH, HV, VV mlc 

*Ascending/Descending 
+File Formats slc: Single look Complex, mlc: Multi-look Complex 

 

3.1.2 Site Characterstics 

A number of surface measurements were sampled from various locations to fit 

with a general correlation function [13]: 

  (3.1) ))/(exp()( nlξξρ −=
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It is found that exponential function ( ), provided the best fit followed by 

when . Therefore, during the development of the SM (Shi Model (SM)), the 

correlation functions with  are chosen for IEM simulations [13].  

1=n

4.1=n

4.1≤n

The sites were categorized based on the characteristics that describe the region 

and are shown in Table 5. 

 
TABLE 5 PARAMETERS MEASURED DURING WASHITA ’94 SITE CHARACTERIZATION 

Vegetation Biomass Surface Roughness Land 
Cover 

Bulk 
Density Dry 

Biomass 
Wet 

Biomass 
Vegetation 

Water 
content 

rms 
height 

Correlation 
length 

 

3.1.3 Methods for measuring soil roughness 

Laser Profilometer: The system consists of a laser measurement unit mounted on 

an automated ( yx, ) positioning table. The table is placed at a height of 1.5 m from the 

surface ( yx, ) to be measured. The vertical distance from the table to the point is 

measured. The position of the laser on the yx,  plane can be accurately controlled and the 

linear and complete surface profile can be mapped [7]. 

Paint and paper profiler: A graph paper is wrapped around a thin metal sheet and 

inserted in to the surface such that the horizontal plane is in level. Black paint is sprayed 

so that the surface profile is imprinted on the graph paper. The vertical distance from the 

paint line is recorded at uniform horizontal positions thus transforming to numerical data. 

By using a long sheet, a continuous surface profile can be recorded [7] 
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Figure 3.1 Laser Profilometer [7] 

 
Figure 3.2 Paint & Paper Method [7] 

 

3.1.4 Measuring Soil moisture 

Gravimetric soil moisture is obtained from samples that were obtained from 

different sites of the experimental area. The volumetric soil moisture is calculated by 

multiplying gravimetric soil moisture by the soil bulk density. The volumetric soil 

moisture was also obtained using Time Domain Reflectometry instrument. The 

experiments plan and site characteristics are described in detail in [12] & [14].  

 
3.2 SMEXO2  

The key objective of the Smex02 is to develop soil moisture products from data 

provided by satellite platforms that include radiometers, (AMSR), radar (Radarsat, ERS-

2, Quicksat) and visible/infrared observations (Landsat, NOAA AVHRR). TheSmex02 

were conducted in the months of June & July, 2002 over Walnut Creek (WC) watershed, 

south of Ames, Iowa [15]. 

 

3.2.1 Land Cover 

Agriculture crops, Soybean and Corn cover the study region by 95% and the 

remaining percentage being forage and grains [15]. Soil types vary a lot within the 
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region. Vegetation characteristics such as plant height, LAI, green and dry biomass were 

sampled throughout the WC sites.  

 
3.2.2 Measurement of Surface Parameters  

Three types of sampling are made for measuring volumetric soil moisture, 

which are Watershed sampling, Regional sampling, Tower sampling. Watershed 

sampling, and Regional sampling are made with an objective of providing validation for 

soil moisture inversion algorithms derived from aircraft and satellite platforms 

respectively. Volumetric soil moisture is calculated by converting dielectric constant 

measured using a theta probe at a depth of 0-6 cm. The paint & paper profile method was 

used in Washita’94 experiment is used for measuring surface roughness. The Smex02 

surface parameters data are not released for performing analysis & validation. 

 
3.2.3 Satellite Data 

Landsat 5 & 7 were employed to provide multi-temporal coverage in the 

visible/infrared bands. Landsat data can provide valuable data such as vegetation water 

content maps, vegetation classification maps, and LAI for soil moisture estimation.  

The temporal coverage of Radarsat data is provided in Table 4 along with date, incident 

angle, pixel spacing and look angle details. The Radarsat data format depends on the 

facility that converts the raw SAR data to images that can be used for analysis. The 

Radarsat beam modes that are best suited for soil moisture are fine & standard modes. 

The fine and the standard modes have a resolution of 8 m and 25 m respectively. All the 

Radarsat images are in ASF (Alaska SAR Facility) format. The Radarsat data have to be 

first calibrated and removed of speckle noise. The reflected Radar may experience 
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random fluctuations or fading resulting in brighter or darker pixels than the mean 

associated with the backscatter. One method of removing the “speckle” from the input 

image is by removing the high frequency components by a 3x3 or 5x5 low pass filter. 

Then the image is geocoded so that it includes all the WC sites and has the resolution of 

Landsat image (30 m). 

Two images acquired by Radarsat that are calibrated and geocoded are shown in 

Figure 3.3. The images are acquired at an incident angle of 41.48 (at the center of the 

image) on June 27 & July 20.  

 

  

Figure 3.3 Geocoded and Calibrated Radarsat images of Walnut Creek, Iowa on June 27 & July 20 

 

   



 

CHAPTER IV 

CURRENT KNOWLEDGE & METHODS 
 
 

Scattering models for isotropically random surfaces (soil surfaces) can be categorized 

into theoretical and empirical models. This chapter gives a quantitative comparison of the 

theoretical and existing empirical models and briefly discusses the results obtained 

through them. 

 
4.1 THEORETICAL MODELS 

Theoretical models are classified based on the region of their validity, and region 

refers to surface roughness. The next sections compare these models within their validity 

against IEM model, because of unavailability of actual data. 

 
4.1.1 Physical Optics Model (PO, Relatively smooth surface) 

Generally, the backscatter coefficient received (4.1), consists of coherent and 

non-coherent terms. Coherent term has a major contribution at near normal incidence and 

the non-coherent term is important at all the angles [16]. 

  (4.1) 000 )()( ppnppcpp σθσθσ +=

where p  denotes the polarization type. The coherent term is developed by Fung. and 

Eom. and is given by [16]: 
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2 2/ββ += −KRB ) )(θpΓ is the reflection coefficient, θ is the incident 

angle, λπ /2=k , σ is the surface rms height, is the range of the antenna to the center 

of illumination and β is the one sided beam width of the antenna. The non-coherent term 

can be expressed as [16]: 

0R

  (4.3) 

∫

∑
∞

∞

=

⋅

⋅−Γ=

0
0

1

222

2220

)sin2()(

]!/)cos4[(

])cos2(exp[)(cos2)(

ξξθξξρ

θσ

θθθθσ

dkJ

nk

kk

n

n

n

pppn

where σ is the rms height and is the zero order Bessel function of the first kind and 0J

)(ξρ  is the surface correlation function. The model is referred to as Kirchhoff model 

under scalar approximation or physical optics model [16]. The model is valid only for 

bistatic cases or specular surfaces. 

 
TABLE 6 VALIDITY CONDITION FOR THEORETICAL MODELS [16] 

Theoretical model Validity range 

Physical optics 25.0<m ,  and  6>kl σλ76.22 >l
Geometric optics ( ) 10cos2 2 >θσk  and  σλ76.22 >l
Small Perturbation 
Model  

3.0<σk ,  3.0<m

 

4.1.2 Geometric Optics Model (GO, Relatively Rough Surfaces) 

For relatively rough surface the geometric model or otherwise known as 

Kirchhoff model under stationary phase approximation, is used [16]: 

 
θ
θθσ 42

22
0

cos2
)2/tanexp()0()(

m
m

ppn
−Γ=  (4.4) 
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where is the rms slope and m )0(Γ  is the Fresnel reflectivity at normal incidence. The 

non-coherent term is dominant for rough surfaces and the coherent term can be neglected. 

From Figure 4.1, as rms height increases the slope of the backscatter curve decreases. 
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Figure 4.1 GO model simulations for varying rms 
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4.1.3 Small Perturbation Model (SPM, For slightly rough surface) 

The backscattering coefficient is given by [16]: 

 )sin2()(cos8)(
24240 θθαθσθσ kWk ppppn =  (4.5) 

where  is the normalized roughness spectrum and W )(θα pp  is the polarization 

amplitude. The expressions given above show a direct relationship between the 

backscatter coefficient and the reflection coefficient. The SPM is valid for regions with 

. From the plots above, IEM and SPM are in excellent agreement. Theoretically, 

IEM reduces to an expression “similar” to SPM (4.5) for small rms height [17]. The 

correlation degrades as rms height increases (Figure 4.2). The regions of validity for all 

the three theoretical models are tabulated in Table 6. 

6<kl
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4.1.4  Integral Equation Method (IEM) 

According to Fung. et al. [17], “The IEM is a backscattering model for 

scattering from a randomly rough dielectric surface that is based on an approximate 

solution of a pair of integral equations for the tangential surface fields”. The IEM model 

for HH polarization contains two types of coefficients, single and multiple scattering 

terms and contributions due to single scattering terms are dominant in the case of small 

and medium dielectric surfaces. Therefore, the multiple scattering terms can be ignored. 

The model described below is suitable for dielectric surfaces with small and medium 

roughness (  [17]. Detailed derivation of the IEM model is dealt in [17] and is 

beyond the scope of this thesis. The following are the results of special cases of the final 

derived result in [17]. 

)3<kh

Soil surface is treated as an inhomogeneous rough surface and the backscatter 

coefficient for HH polarization is given by [17]: 

 ∑
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 , is the Fresnel reflection coefficient for horizontal polarization and is given by  ⊥R
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⊥R  reduces to 1, for perfectly conducting surfaces. The local incident angle in the 

relation (4.10) can be replaced by incident angle. W  is defined as the Fourier 

transform of the th power of the correlation function [13]. Exponential and Gaussian are 

the popular types of correlation functions used. Exponential correlation functions 

describe smooth natural surfaces while Gaussian correlation functions correlate well with 

rough surfaces [21]. The Fourier transform of the n  power of a correlation function is 

given by [13]: 
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where  is the Bessel function of first kind, 0J θsin2kK =  for backscatter from a 

dielectric surface. The behavior of the backscatter can be studied by simulation of the 

IEM model, for different variable parameters. The main parameters ε,, lh  are varied and 

the backscatter is plotted against the incident angle for HH polarization below.  

 
4.1.4.1 Behavior of  h

It is evident from Figure 4.3 that as  increases, backscatter increases. It can 

be observed that the change in backscatter widens with increase in incident angle. 

Therefore, at lower incident angles the effect of  is negligible. This conclusion can also 

be made from Figure 4.4. The plot also shows that the backscatter at lower incident angle 

reaches saturation faster than at a higher incident angle. Multiple scattering terms tend to 

h

h
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dominate single scattering as frequency of the incident wave increases or with an increase 

in . h
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Figure 4.5 Backscatter as a function of ε , for 

different surfaces,  cm 15=l
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Figure 4.6 Backscatter as a function of dielectric 
constant for various incidence angles, , 

, Frequency=5 GHz. 
cm 2=h

cm 20=l

 

4.1.4.2 Behavior of ε  

With the help of Figure 4.5, and Figure 4.6, the behavior of dielectric constant 

can be explained. Backscatter increases with increase in dielectric constant, but the 

increase reaches a saturation when 30>ε . Another important observation is that the 

change in ε  only changes the level of the backscatter curve, but change in  changes 

the level and shape of the curve. This was also pointed out by Fung. et al. [18], and is an 

,l h
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important feature in the training data set for the back propagation model. A change in 

value of dB 5.10≈hhσ  is observed when dielectric constant is changed from 2 (dry soil) 

to 25 (wet soil) at . 30=θ

,l ,cm 1= =εh

 

Figure 4.7 Backscatter as a function of 
10  

Figure 4.8 Effect of correlation length on 
backscatter, band L 10,  =ε , h  cm 1=

 

4.1.4.3 Effect of correlation length 

The effect of correlation length on backscatter is much greater at Gaussian 

correlation than at exponential correlation (Figure 4.8). As correlation length increases, 

backscatter drops of faster (Figure 4.7). Generally, backscatter values, as a function of 

exponential correlation, is much higher than Gaussian correlation at larger incident 

angles. Natural surfaces correlate well with exponential correlation function at lower 

incident angles and for slightly rough surfaces [19].  

 
4.1.4.4 Transition model 

The Fresnel reflection terms are evaluated at either incident angle or specular 

angle. These two options lead to an ambiguity as to what angle is suitable for different 
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surfaces. There is also an uncertainty regarding the cases ( ) that fall in the middle 

category [20]. This may cause a sudden transition in the backscatter. To compensate for 

these effects a transition model was derived and the Fresnel reflection coefficients 

modified [20]: 

lh,

 [ hihhihh RRRTR ]γθθ )()0()()( −+=  (4.12) 

where  is the modified reflection coefficient, )(TRh )( ihR θ  and  is the reflection 

coefficient evaluated incident angle and specular angle respectively. The transition 

function for HH polarization is given as [20]: 

)0(hR
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The term  is calculated by letting  of 4.14 to 1, i.e. 0
hhS n σk  is close to unity. hγ  

has values between 0 and 1. For relatively smooth surfaces ( σk ~0), hγ  approaches 0 and 

)()( ihh RTR θ→  and  for rough surfaces [20]. Similarly, in the low 

frequency region, 

)0()( hh RTR →

)() ihRT(hR θ= , and  in the high frequency region. The )0(( hh RTR ) =

 



 - 32 - 

behavior of the transition coefficient is illustrated in Figure 4.9, Figure 4.10, & Figure 

4.11.  
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Figure 4.9 Comparison of different cases of 
Fresnel reflection coefficients, Gaussian 

correlation function,  cm 10,cm 42.1 == lh
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Figure 4.10 Comparison of different cases of 
Fresnel reflection coefficients for Gaussian 

correlation function, at  cm 8,cm 14.1 == lh
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Figure 4.11 Frequency trends of backscatter for Fresnel reflection coefficients for 

 cm 0.3,cm 42.0 == lh

 

At small incident angles, there is not much difference in the behavior of the 

backscatter for all three cases of the reflection coefficients. The new model was verified 

using a moment method simulation [20]. The transition model can be applied to surfaces 

having Gaussian and 1.5 power correlation functions [20]. 
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4.2 EMPIRICAL MODELS 

Theoretical models like the SPM, GO and the PO models mentioned in the 

previous section predict soil moisture well but cannot be applied to natural surfaces 

because the ground parameters obtained from these surfaces fall outside the validity of 

these models. To overcome these limitations, empirical models are derived and are 

discussed in the following sections [21], [1]. Dielectric constant is a difficult parameter to 

measure, because Radar backscatter will depend on too many unknown parameters, 

namely correlation length, rms height, correlation function, and soil texture.  

It is necessary to have data takes at multi-polarizations, multi-frequency or multi-

incident angles to derive these parameters. Tsan. et al. [22] derived a simple model to 

derive these parameters using dual frequency. Oh. et al., Dubois. et al., and Shi. et al. 

derived soil moisture algorithms from multi-polarized data and is discussed in detail. The 

OH, Dubois, and Shi models (From the first authors of the respective models) are the 

most popular and referred empirical soil moisture inversion models. These algorithms 

were applied to SIR-C (Shuttle Imaging Radar) measurements at L band during the 

Washita’94 experiment and their results are discussed. 

 
4.2.1 OH Model 

An empirical inversion algorithm is determined from parametric radar 

measurements that are obtained from ground-based scatterometers. The University of 

Michigan’s LCX POLARSCAT (truck based scatterometers) obtained radar backscatter 

at frequencies 1.25(L), 4.75(C) GHz and 9.5(X) GHz at incident angles ranging from 10  

to [21]. Four different surfaces namely S1, S2, S3, S4 are chosen for study. The 

ο

ο70
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surface dielectric constant of these surfaces is measured using a field portable probe that 

operates at C band. The surface characteristics and experimental observations are shown 

in Table 7 [21]. 

 
TABLE 7 OH MODEL EXPERIMENTAL RESULTS 

Measured 
surface ε  (4.8 

GHz)  

Calculated 
surface 

ε (4.75 GHz) Surface rms height(cm) Correlation 
Length(cm) 

Wet Dry Wet Dry 
S1 0.40 8.4 14.15 6.58 15.42 8.77 
S2 0.32 9.9 14.66 4.87 14.47 6.66 
S3 1.12 8.4 15.20 7.04 15.23 8.50 
S4 3.02 8.8 8.80 7.28 9.64 8.04 

 

The autocorrelation of these surfaces are found to be exponential for smooth 

surfaces and Gaussian for rough surfaces. Soil moisture at a depth of 4 cm is also 

observed for wet and dry surfaces  

 
4.2.1.1 OH model characteristics 

The behavior of the observed measurements would be similar to the derived 

model. Therefore the model simulations are used here for discussing the analysis and 

would be compared with IEM model (Figure 4.12, Figure 4.13). 

Cross-polarized ratios vvhvq σσ /=  and co-polarized ratios vvhhp σσ /=  are 

calculated from the observations obtained by the scatterometer, as a function of 

normalized surface roughness kh . An empirical function is determined that provided the 

best fit for the observed data and is given by [21]: 

 [ )exp(123.0 khq
vv

hv −−Γ==
σ

]σ
 (4.16) 
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Figure 4.12 Angular comparisons of IEM and 
OH model for surface S1 ( =0.4 and =8.4 at 

L band) 
h l
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Figure 4.13 Angular comparisons of IEM and 
OH model for surface S2 ( =1.1 and =8.4 at 

C band) 
h l

 

where Γ is the Fresnel reflectivity at incident angle =90 : ο
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Similarly the co-polarized ratio is given by [21]: 
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 (4.18) 

The next task is to determine the horizontal and vertical backscattering 

coefficients as a function of surface parameters from the observed data and the 

backscattering coefficients are obtained as [21]: 

 [ )()(cos),,(
3

θθθεθσ hvrvv p
gkh Γ+Γ= ]  (4.19) 

where  [ ]))(65.0exp(17.0 8.1kh−−=g  (4.20) 

and  [ )()(cos),,( 3 θθθεθσ hvrhh pgkh Γ+Γ= ]  (4.21) 

hhσ  and vvσ  are proportional to the average of horizontal and vertical Fresnel 

reflection coefficients [21]. The difference between hhσ  and vvσ  increases with increase 

 



 - 36 - 

in incident angle and decreases with increase in soil roughness (Figures above) [21]. The 

functions p and  of 4.16 and 4.18 are plotted in Figure 4.14, and Figure 4.15 

respectively. The ratio  is in agreement with Radar observations and theoretical 

models. This ratio increases with surface roughness and becomes independent of incident 

angle [21]. 

q

1>p

≤≤ kl

 

Figure 4.14 Co-polarized ratio as a function of rms 
height at 40º 

Figure 4.15 Cross-polarized ratio as a function of 
rms height at 40º 

 

4.2.1.2 Conclusions 

The OH model requires the knowledge of cross-polarized backscatter ratio 

and its behavior is quite different from co-polarized ratio. The region of validity of this 

model is given as 2  and . OH model is one of the first 

empirical models that inverted  using multi-polarized radar observations with an rmse 

of 0.04 when compared to ground results [21]. OH model did not provide promising 

results when applied to SAR data [23].  

,205.

vm

31.009.0 ≤≤ vm
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4.2.2 Dubois Model (DM) 

Similar to the OH model discussed in the previous section, Dubois. et al., 

developed an empirical model from the data set obtained from a wide range of surfaces 

using LCX POLARSCAT & RASAM scatterometers. The RASAM is also a truck-based 

scatterometer, and is capable of observing both co-polarized and cross-polarized 

backscatter over the incident angle range 30º-60º. This algorithm is developed to 

determine soil moisture from multi-polarized data. The algorithm is developed for 

. The rms error in the estimated soil moisture using DM 

is found to be less than 4.2 % [1]. 

%35& cm 5.2,30 <<> vmkhοθ

 
4.2.2.1 Experimental data set 

The data set acquired using LCX POLARSCAT scatterometer is discussed in 

the previous section. The second set of data is obtained using RASAM scatterometer-

radiometer. The RASAM data set included  polarized backscattering 

coefficients taken at incident angles in the range 30 . Only those coefficients 

backscattered from bare soil surface pixels are considered for the data set. The surface 

profiles are mapped using a laser profilometer [24]. 

vhhvvvhh ,,,

οο 60−

The relationship between the backscattering coefficients and dielectric constant, 

rms height and incident angle is derived as follows. LCX POLARSCAT was used to 

measure backscatter coefficients of the same pixel at two different moisture conditions 

for different surfaces (Table 7). The RASAM scatterometer operates at frequencies in the 

range of 2.5-11 GHz. The scatterometers covered surfaces ranging from 0.57-1.12 cm. 

From these measurements, the coefficient multiplying θε tan  is calculated. The 

 



 - 38 - 

backscatter at VV and HH polarizations, derived from the above-mentioned data set is 

given by [1]: 

 7.04.1tan028.0
5

5.1
75.20 )sin(10

sin
cos10 λθ

θ
θσ θε khhh

−=  (4.22) 

 7.01.13tan046.0
3

35.20 )sin(10
sin
cos10 λθ

θ
θσ θε khvv

−=  (4.23) 

where vvhh σσ ,  are the backscattering coefficients, θ  is the incident angle, kh  is the 

normalized rms height with respect to a frequency of 1.5 GHz, λ  is the wavelength of 

the incident wave. 

As mentioned in the previous section, the backscatter using the POLARSCAT 

scatterometer is measured at incident angles with intervals of 10  in the range 

. It is observed that the angular behavior follows a tangential behavior [1]. The 

roughness characteristics are found from the measurements obtained by both the 

scatterometers, by dividing with 

 ο

οο 7010 −

ε , θ  [1]. The parameter θsinkh  is treated as a 

dimensionless quantity of the projected rms height on the incident wave plane [1]. This 

model predicts vvhh σσ >  which is contradictory to GO & IEM model predictions and the 

observed SAR data [1]. To ensure this validity, the DM is restricted to kh and to 

. Most of the natural surfaces fall within this range. The backscatter obtained, 

from the relation developed by Dubois. et al. [1] do not follow the SPM. It is reasoned 

out in [1] that the ratio 

cm 5.2≤

οθ 30>

vvhh σσ /  increases with increase in roughness because of the 

difference in power, but SPM predicts that the ratio does not increase with increase in 

roughness. Figure 4.16, shows not much correlation between DM and SPM & IEM 
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models for very smooth surfaces ( ) for a wide range of incident angles. IEM 

model and DM correlate well in the incident angle range 30°-70°(Figure 4.17).  

cm 2.0=h

l

θ 130)(cos10 −

 

 
Figure 4.16 Angular trend comparison of Dubois 

model with SPM and IEM for h =0.2 cm, =5 
cm 

 
Figure 4.17 Angular trend comparison of Dubois 
model with SPM and IEM for =2 cm, =5 cm h l

 

One of the main advantages of DM over OH model, is that the dielectric constant 

can be calculated by eliminating rms height from co-polarized data rather than from 

cross-polarized data because co-polarized data channels can be calibrated with passive 

targets and cross-polarized channels are calibrated using co-polarized channels, thus less 

accurate [1]. One other factor is that co-polarized channels are more sensitive to 

vegetation. After eliminating the rms height using 4.22 and 4.23, ε  can be written in 

terms of backscatter acquired through horizontal and vertical polarizations [1]: 

 { }
θ

λθσσε
tan36.3/

)(10log21)(sin10loglog25511145.26 •−−−+= hhvv  (4.24) 

where θ  is the incident angle and λ is the wavelength of the incident wave. 
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Figure 4.18 Soil moisture maps (Color code unit is percentage) of Washita’94 site on April 11, 12, 13, 
& 15, derived using the Dubois model showing a general drying trend. 

 

4.2.2.2 Conclusion 

Since the DM can be applied only to bare soil pixels, Dubois. et al developed 

a criteria to eliminate vegetation covered pixels based on the cross-polarized ratio 

( vvhv σσ /

vvhv / =

). They found out that this ratio was a good vegetation index. A regression 

curve describing the ratio as a function of NDVI is plotted and found out that 

dB11−σσ  corresponds to NDVI of 0.4. The algorithm was applied to SIR-C 

images acquired as part of the Washita’94 experiment (The pixels with dBvvhv 11/ −>σσ  

were masked and the inversion algorithm resulted in an rms error of 1.6 % for soil 
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moisture when compared to ground truth. From the calculated soil moisture, rms height 

for the area was calculated. In this case, the rmse between measured and calculated was 

0.15.  

The effect of look angle and correlation length, an important surface parameter is not 

taken in to account. The authors of [1] argue that no correlation is found between these 

parameters and backscatter coefficients even though IEM model demonstrates strong 

dependence. It is also pointed out that the correlation length is a difficult parameter to 

physically measure. The effect of topography is also excluded during the development of 

the model. 
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4.3 SHI MODEL (SM) 

Both the empirical models discussed in the previous sections (OH & DM) do not 

take surface power spectrum, or correlation length in to consideration. This is not in 

agreement with the theoretical model predictions [13]. Another reason, which led to 

development of the SM inversion algorithm is that the OH & DM are site specific and 

thus a synthetic data set generated by the IEM model, which covers wider range of 

surface parameters, is relied upon. This algorithm was applied to SIR-C and AIRSAR 

measurements acquired over Little Washita watershed in southwest Oklahoma [13]. The 

rms error between measured and calculated rms height and soil moisture are found to be 

3.4 % and 1.9 dB respectively [13]. 

 
4.3.1 Development of Inversion Algorithm 

Single scattering IEM model (4.6) can be used to retrieve soil moisture and 

rms height from SIR-C and AIRSAR measurements. Direct application of the IEM model 

introduces computation inefficiency because of the large size of the SAR data. SAR 

image is a result of single and multiple reflections. This can result in errors when inverted 

using the IEM model, because the theoretical model is valid only for single scattering. 

This is done with the help of target decomposition technique developed for fully 

parametric data. This mechanism breaks the average covariance matrix in to three 

decomposed covariance matrices that correspond to single, double and multiple 

reflections respectively. As a first step the authors simulated the IEM model for a wide 

range of parameters to study their relationship. Some of their observations are as follows: 

The relation between σ  and  is non-linear. vm σ  increases for low values of m  and gets v
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saturated for high values of . Both vm hhσ  and vvσ  do not show much variation with 

change in  for the incident angle range is 30°-50°. The authors of [13 ] found a good 

agreement between scatterometer results and IEM model simulations for the trend in 

backscatter with change in rms height. The effect of correlation length increases on 

backscatter as rms height increases.  

vm

70

2sin
=hh

From the observations and IEM model simulations the authors concluded that 

IEM model is a potential for inversion of soil moisture from SAR images. The range and 

step sizes of the IEM parameters used in the generation of the synthetic data are shown in 

Table 8 [13]. 

 
TABLE 8 PARAMETERS USED IN THE GENERATION OF THE SIMULATED DATA 

Parameters Minimum Maximum Step Size 

Volumetric Soil Moisture 2.0 % 50.0 % 2.0 % 

rms height 0.2 cm 3.6 cm 0.2 cm 

Correlation Length 2.5 cm 35 cm 2.5 cm 

Incidence Angle ο25  ο  ο1  
Correlation Function N=1,1.2, 1.4 

 

A brief note on why the power of correlation functions (N) is chosen to be 1, 1.2 

and 1.4 is given in Chapter 3. Most of the natural surfaces fall within the range of 2.5 cm. 

Thus  can be considered small ( =0.78 at L band) and  of (4.7) can be reduced to 

the polarization amplitude

kh kh n
ppI

ppα  of the small perturbation model and ppα  is given by [13]: 

 
2)(cos

1

θεθ
εα

−+

−

r

r  (4.25) 
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The normalized rms height is combined with the correlation function to form a 

new parameter, . The inverse normalized backscattering coefficients WkhSR
2)(=

vvvv σα /2 , ( ) ( hhvv σα +2 )vvhh σα+ /2

RS

 are simulated using the parameters in Table 8 and 

their relationship is plotted in Figure 4.19, Figure 4.20, & Figure 4. 21. It is found that 

small values of  have a good linear relationship with the inverse normalized 

coefficients. An approximate relation between  and the inverse normalized 

coefficients are determined through the regression analysis of the data generated by the 

IEM model and is given by [13]: 

RS
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 (4.27) 

where )(),( θθ ba  are coefficients obtained as a result of regression and for vertical 

polarization [13]: 

 ))log(sin(051.1)tan(492.5901.6)( θθθ −+−=vva  (4.28) 

  (4.29) )(sin475.0)sin(896.0515.0)( 2 θθθ −+=vvb

The parameter , which is a function of surface roughness parameters, can be 

eliminated if both horizontal and vertical polarizations measurements are available.  

RS
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Figure 4.19 Relationship between inverse 

normalized vvvv σα /2
 and 1 at θ=35° RS/
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Figure 4.20 Relationship between inverse 

normalized sum and 1  RS/
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Figure 4. 21 Relationship between inverse normalized sum and inverse normalized product 

 

After replacing  with the co-polarized measurements (4.27) can be written as: RS
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The combination of co-polarized coefficients hhvvσσ  and hhvv σσ +  is least sensitive to 

calibration accuracy and vegetation effects and most sensitive to soil moisture changes 

[13]. Now, replacing ppσ  and qqσ  with hhvvσσ  and hhvv σσ +  provides the best for both 

exponential and Gaussian correlation functions [13]: 
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The rmse between 4.30 and IEM model, and 4.31 and IEM model is found to be 

0.35 dB & 0.36 dB respectively [13]. These errors are within the absolute and relative 

calibration error of SIR-C and hence the SM can be applied to SAR data. These errors 

increase with larger incident angles [13]. 

 
4.3.2 Conclusion 

The SAR image is first removed of speckle noise and multiple scattering 

terms. Shi. et al. also employed the DM criteria to remove vegetation pixels. The ε  

obtained as a result of application of the algorithm is then converted to soil moisture 

maps using the Dobson model. The rmse between the estimated surface soil moisture and 

rms height is found out to be 3.4% and 1.9 dB respectively. The surface roughness 

parameter is fairly constant during the measurement period [13]. 

 

 



  

CHAPTER V 

METHODOLOGY & DISCUSSIONS 
 
 

Since the IEM model described in (4.6), is valid only for single scattering terms 

arising due to surface scattering, it is a requirement to remove multiple scattering terms 

contributed by vegetation canopies.. At C band, sparse vegetation cover can be neglected. 

The contribution of the soil volume scattering terms is usually neglected because at C 

band the penetration is less than 2 cm [25]. The vegetation model discussed in this 

section demands extensive experimental data sets. The model discusses the underlying 

principle and the variables that influence the vegetation backscatter. Unlike OH and DM, 

the simplified inversion algorithm developed from the IEM model for surface scattering 

is not site specific. Finally, the vegetation backscatter determined is deducted from the 

Radarsat image. This image can then be treated as a backscatter image due to bare soil 

alone.  

 
5.1 SIMPLIFIED ALGORITHM (USING THE IEM MODEL) 

Instead of determining the absolute soil moisture, the algorithm is developed to 

determine the relative change in soil moisture using Radarsat time series measurements. 

The estimated relative moisture change can then be coupled with a hydrological model 

thus improving the accuracy of soil moisture measurement. Since most natural surfaces 

have a normalized rms height of less than 3 cm, multiple scattering terms can be ignored, 
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thus justifying the use of single scattering IEM model. Computational efficiency is the 

other factor that demands for a simplified form of the IEM model. IEM model cannot be 

directly used to invert soil moisture because of its complexity and the large volume of 

SAR data. The algorithms developed in the past [1], [21], [26], have proved that to invert 

so many unknown parameters, it is necessary to acquire multi-polarized, multi-frequency 

or multi-incident angle data. Determination of soil moisture is a much simpler problem, 

given a pixel viewed at different incident angles at the same instant. This section explores 

the option of multi-incident angle data. Therefore, knowledge about the Radarsat beam 

mode during collections is critical.  

Radarsat has multiple beam modes (S1-S7), which means that it can acquire the 

region of interest (ROI) at different incident angles, but not at the same instant. Radarsat 

also has a very brief revisit frequency over the same ROI that is a function of the beam 

mode. Therefore, this variable revisit frequency of Radarsat can be exploited in the 

development of the algorithm. The simplified algorithm should be more sensitive to 

change in dielectric constant and less to surface parameters. It is reasonable to assume 

that during the Radarsat repeat-passes soil roughness parameters can be considered 

constant. The temporal variations of surface parameters are small compared to soil 

moisture during the revisit period [26]. 

 
5.1.1 Change Detection Approach 

The first approach is the change-detection approach [27] with the following 

assumptions. There should be no change in surface roughness parameters ( h ) during 

Radarsat revisits. The temporal variation of soil moisture is much larger compared to the 

above-mentioned parameters, if there is no anthropogenic activity. It is reasonable to 

l,
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assume these parameters are constant between Radarsat repeat-passes. This paper will 

deal with pixels having range and azimuth dimension of 30m because of the limit in the 

resolution of Landsat TM. 

 
5.1.1.1 IEM Model Simulations 

As a first step, the IEM model is simulated with possible combinations of 

dielectric constant and the ratio of the radar backscatter acquired on the first visit to the 

backscatter acquired during the second visit. By performing simulations for a wide range 

of surface roughness, a simplified relation between the radar backscatter and the 

reflectivity can be developed for bare soil pixels using the data set. From the data set 

generated by the IEM model [28], a simplified algorithm is developed and is given by 

[29]: 

  (5.1) )()( θθσ ba Γ=

where the parameter )(θa

(

 is dependent on the type of polarization, , and the type of 

correlation function and 

lh,

)θb  depends on incident angle (θ ) as it is evident in Figure 5. 

1. σ  and Γ  are radar backscatter and the Fresnel reflection coefficient, respectively. The 

transmitted and reflected polarization of the incident wave here is horizontal (HH). The 

correlation function is best determined by plotting the radar backscatter as a function of 

the incident angle, which is impossible due to the limitations of Radarsat. Plotting σ  as a 

function of θ  has to rely either on truck-based scatterometer measurements or assume the 

correlation function to be exponential or Gaussian. Natural surfaces fall within these 

functions and here it is assumed to be exponential. One other drawback of the IEM 
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model, apart from being sensitive to the correlation function, is the transition from 

incident angle to specular angle in the Fresnel reflection term, and this is rectified in [28]. 

 

 
Figure 5. 1 Coefficient b as a function of incident 

angle 

 
Figure 5. 2 Error between IEM model and (5.2) 

 
Figure 5. 3 Reflectivity as a function of soil 

moisture 

 
Figure 5. 4 Reflectivity ratio Vs. backscatter 

ratio 

 

If two visits of Radarsat over the ROI are available at the same incident angle, 

then their ratios can be written as [29]: 
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The term )(θa  cancels out given the condition that surface roughness remains constant. 

The parameter )(θb  can be pre-determined from the IEM model simulations and requires 

only the knowledge of the incident angle. The reflectivity ratio and backscatter ratio is 
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illustrated in Figure 5. 4. A comparison of the simplified algorithm and the IEM model is 

shown in Figure 5. 2 and the maximum error  0.1 dB for . The error between the 

relation described in (5.2) and IEM model increases with increase in incident angle. An 

approximate linear relationship exists between volumetric soil moisture ( ) and 

≈ οθ 20=

vm Γ  

(Figure 5. 3). So, if a change in reflectivity is known then change in soil moisture can be 

determined. 

 
5.2 VEGETATION MODEL 

The vegetation canopy is modeled as a homogeneous layer of scattering particles 

sandwiched between air and soil. It is important to determine the conditions when the 

volumetric term is dominant over surface scattering. Research has been conducted that 

permits the determination of vegetation water content using visible imagery [33]. The key 

question is how to relate radar backscatter to vegetation water content. Theoretical 

models have shown that vegetation backscatter is influenced by [30]: 

(1) Shape, size and orientation of scattering particles in the canopy 

(2) Canopy architecture 

(3) Dielectric constant of the scatterers 

Since the variables in (1) and (2) vary with crop type, it is difficult to develop 

theoretical models because of the mathematical complexity. This is the key reason for 

relying on semi-empirical models. Semi-empirical models determine these variables by 

varying them in order to minimize the error between the observed and theoretical 

backscatter in the forward mode. Once these parameters are determined, they can be 

assumed constant for a crop type and then used for inverting the backscatter. Before 

proceeding to the underlying principle, some of the assumptions are that the scatterers are 
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spherical, have identical shapes and are uniformly distributed. The terms, as a result of 

scattering between canopy and ground are neglected. It is known that HH polarized wave 

gets less affected by vertical scatterers, such as stems than VV polarization. It is not very 

clear at this point behavior of HH polarization with stalks, though some canopies like 

wheat have very small amount of total plant water in stalks and their backscatter is 

neglected [42]. The authors of [42], consider vegetation canopy as a two-layer medium, 

leaf and stalk scatterers, but for VV polarized wave. 

The main principle behind the vegetation model is that the backscatter due to 

vegetation depends mainly on vegetation water content and crop type (but to a lesser 

extent). Gravimetric moisture content is defined as the ratio of the mass of the water 

content in the leaf to the total mass of the leaf [31]. At leaf level, the direct method to 

retrieve vegetation water mass is to minimize the error between simulated PROPSECT 

model [32] reflectance and real reflectance for an unknown water content. The difference 

between simulated reflectance and real reflectance is actually the absorption factor, which 

is proportional to the water content. This has to be extended to canopy level. 

The crop type influence on the backscatter cannot be neglected. According to 

Roo. et al. [29], the total backscatter for a given polarization is given by: 

 ggcgcggcctotal σσσσσ +++= −  (5.3) 

where cσ  is the backscatter due to canopy alone, cggc−σ  is the contribution of the ground-

canopy and canopy-ground terms, gcgσ  is due to ground-canopy-ground interactions and 

finally gσ  term is the contribution of soil surface alone, but also includes two-way 

vegetation canopy attenuation. The ground-canopy-ground scattering contribution term 
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can be neglected for HH polarization [31]. The following section focuses on the 

procedure for determination of cσ  alone. 

(

abC

*1159
0052.

The PROSPECT (Leaf reflectance model) model requires the following inputs for 

the simulation of the reflectance values for the wavelength ranging from 450 nm to 2500 

nm [32]: 

• Refractive index  )(n

• Leaf Mesophyll structure  )N

• Pigment concentration (  )

• Effective Water Thickness (EWT). 

Equivalent water thickness is defined as the ratio of the total leaf water content 

per unit area. Ceccato. et al. [33], showed that SWIR (Short Wave Infrared) band is a 

potential for estimation of leaf water content. From the plots below (simulated using 

PROSPECT model) it is evident that NIR (Near Infrared) region is greatly influenced by 

changes in leaf structure and chlorophyll content. The reflectance values in the SWIR 

band are mainly influenced by the leaf structure parameter. Therefore, inverting EWT 

from SWIR alone will not produce accurate results. Since NIR is also affected by these 

parameters, it is combined with SWIR to invert EWT. A simple ratio of SWIR to NIR has 

the potential to derive EWT, at least theoretically. A regression line equation is derived 

from LOPEX 93 data [33] that related EWT to the simple ratio and is given by: 

 EWT
EWT

oSimpleRati *976.6
1

1666.0 −
+

+=  (5.4) 

where  
820

1600

ρ
ρ

=oSimpleRati  and (5.5) 

1600ρ , 820ρ  are the reflection coefficients at SWIR and NIR respectively. 
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5.2.1 Atmospheric Correction 

At NIR and SWIR bands, aerosol and water vapor are found to affect the 

reflectance values received by a satellite. This can be resolved by the using the blue band, 

which is significantly affected by the aerosols. 
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Figure 5. 5 Hyperspectral signature for different 

leaf structure parameters [32] 
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Figure 5. 6 Hyperspectral signature for different 

pigment concentrations [32] 
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Figure 5. 7 Reflectance for various values of dry 

matter content (d=0.001 to 0.01)[32] 
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Figure 5. 8 Regression fit derived from 

LOPEX’93 data set.[32] 

 

The equation used to minimize this effect, is given by Gobron et al. [33]: 

 ( ) ( ) (
( ) ( ) ( )

)
nirbluenirblue

nirbluesnirblueNIRrect
ρρρρ
ρρρρ

593.5)81.23(0109.0)132.0(3.204
13.65)2614.4(2929.0)169.2(12.1

22

22

+++−−
++++−

=  (5.6) 
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where blueρ  and nirρ  are reflectance normalized by the anisotropic reflectance function 

and is derived using Rahman, Pinty, Verstraete (RPV) model [34], [33]. 

 
5.2.2 Backscattering cross-section of a leaf 

This section is mainly a summary of the work done by Senior et al. [35]. Their 

work deals with how gravimetric moisture content of a leaf is related to the backscatter, 

and extinction cross-sections. Now, the backscatter of a point scatterer is influenced by 

its shape, orientation, and dielectric properties [35]. Leaves form a major constituent of a 

canopy and the study of their behavior with incident microwaves has to be understood. A 

detailed derivation of the relation between the moisture content and backscatter is 

presented in the paper [35] and only some of their results are presented here.  

A leaf can be considered to be a thin layer of dielectric material, with dielectric 

constant ε , with thickness τ , and it offers a resistivity given by [35]: 

 
)1( −

=
ετk
iZR  (5.7) 

where Z  is the intrinsic impedance of free space (377 ),  is the propagation 

constant. The justification for the inclusion of the thickness term is made from the 

observation that drying of moisture in a leaf is not uniform and its variation with the 

thickness is given by [35]: 

Ω k

  (5.8) 075.0091.00032.0 2 ++= gg mmτ

The relation between the gravimetric moisture and dielectric constant is derived 

from a measured data set obtained at 10 GHz and 22  [35]: cο

  (5.9) 
68.269.2

25.295.3
)15.2(''

)79.2('
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−=
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The backscatter and extinction cross-section as a result of their derivation is given 

by [35]: 

 pchh σσ 2Γ=  and  (5.10) 

  (5.11) )Re(cos2 Γ= θσ Aext
hh

where pcσ  is the backscatter cross-section of a perfectly conducting plate and Γ  is the 

reflection coefficient for a horizontally polarized wave,  is the area of the leaf. A hhσ  and 

 are normalized with respect to a perfectly conducting plate and are plotted as a 

function of in Figure 5. 9 for a leaf of area =39.5 . The study in [35], shows 

that the backscatter and extinction cross-section are mainly a function of moisture 

content, but are restricted to leaves which are oriented to backscatter specularly from the 

surface [35], [31].  

ext
hhσ

gm A 2cm
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Figure 5. 9 Normalized Extinction and Backscatter as a function of moisture content 
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5.2.3 Extension of backscatter from a leaf to canopy 

The main parameters that affect the reflectance at the canopy level are sensor 

zenith angle, leaf orientation, Leaf Area Index (LAI), Sun zenith angle and soil. This can 

be extended to the canopy level simply by: 

  (5.12) LAIEWTEWTcanopy ×=

where LAI is the leaf area index, and  is the quantity of water per 

unit area in the canopy and its unit is . Based on NIR and SWIR bands, a new index 

is derived to estimate the vegetation water content [33]: 

EWTcanopy

2−gm

 
)02.0()1.0(
)02.0()1.0(

+++
+−+

=
SWIRNIRrect
SWIRNIRrectGVMI  (5.13) 

The relation between GVMI (Global Vegetation Moisture Index) and 

 is derived using regression [33]: EWTcanopy

 )(
))(1(

EWTcanopyc
EWTcanopyd

baGVMI +
+

+=  (5.14) 

where , ,  &  are constants as a result of the regression. The GVMI reaches 

saturation at . The GVMI is valid for 2 <LAI <5, because of 

soil effects and the saturation problems associated with LAI. The GVMI and the 

 for the Washita’94 experiment site obtained trough Landsat is shown in 

Figure 5. 10 and Figure 5. 11. 

a b c d

2  2100 −> mgEWTcanopy

EWTcanopy

This index is derived for a pixel, where the contribution of both soil and 

vegetation cannot be ignored from a radar perspective. Thus to validate this statement, a 

saturation limit in terms of LAI or NDVI has to be determined (In this case LAI is  
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chosen). When soil backscatter is the dominant term from a single pixel, determination of 

vegetation moisture content using optical data may be unreliable. This holds true vice-

versa. Another debate issue is whether to consider the effect of stalks at C band. It was 

observed that VV polarization underwent considerable attenuation than HH polarization 

during an experiment conducted in [36].  

After finding the moisture content present in vegetation, the next step is to find a 

relation between  and backscatter. Another requirement to do this is to identify the 

type of vegetation, because backscatter is also influenced by canopy architecture [31]. 

gm

So the next step involved in the elimination of backscatter due to vegetation is to 

classify ROI using Landsat imagery based on the crop structure from an SAR perspective 

[37]. The next section summarizes the classification schemes. This study narrows down 

the canopy types classified, based on the height or short vegetation and structure. Broad 

classification of the stems of short vegetation is either shrub like or grass like. The shrub 

like vegetation can be further categorized, based on the leaf structure in to needle-like 

pods and broad leaf types. Small stemmed can again be classified based on the leaf 
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structure: -broad or blade-like leaves. Some of the examples of crop types based on the 

above mentioned classifications are Corn, Wheat and Soybean [37].  

 
5.2.4 A brief overview on classification methods used in Smex02 site 

Supervised classification is used to classify Smex02 site from Bands 3, 4, 5, & 

7 acquired by Landsat [38]. Supervised classification uses samples of known identity to 

classify unclassified pixels. The most common type of clustering algorithm is the 

ISODATA algorithm. Initially, the analyst determines  number of clusters using feature 

vectors in the training data set. Iterations are performed until the cluster means do not 

vary much from a predefined threshold. The pixels are assigned to each cluster by the 

Mahalanobis distance measure. There exits parametric and non-parametric classification 

techniques [39], [40]. 

n

 
5.2.1.1 Parallelepiped Classifier 

The largest and the smallest digital numbers in bands, usually 3 and 4, or 

sometimes a set of standard deviations that lie on either side of class means, define 

rectangular decision areas in two-dimensional scatter plots known as parallelepipeds. 

The pixels are classified by deciding whether they lie in these decision areas and those 

that do not are labeled unknown. This method is computationally efficient but performs 

badly with classes that exhibit high covariance [39], [40]. 
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Figure 5. 12 Classified image, Walnut Creek Watershed, Iowa during Smex02 experiment 

 

5.2.1.2 Mahalanobis Distance 

Unlike the non-parametric classifier, parametric classifier uses statistical 

methods parameters such as mean and covariance matrix. A pixel is assigned to a cluster 

by finding the minimum distance between means of Mahalanobis measure, which is 

given by (5.15) [40]. The cluster takes an ellipsoidal shape. 

  (5.15) )()( 1
jij

T
ji mXCmXD −−= −

where  is the pixel that has to be classified, m denotes the mean of the cluster and C  

is the variance-covariance matrix for a cluster. The classified Landsat image is shown in 

Figure 5. 12. 

iX j j

The main physical parameters that describe the canopy structure are 

canopy height, shapes and orientation of leaves. According to Attema. and Ulaby. [41], a 

vegetation canopy can be modeled as identical water particles bounded by air and soil 

surface. This “water cloud” assumption is based on the findings that the backscatter is 

mainly a function of dielectric constant due to the vegetation water content in the leaves 
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and stems [42]. Now, neglecting contribution of backscatter from the stems for HH 

polarization and assuming scattering particles to be uniformly distributed, the 

backscattering coefficient due to canopy minus the soil contributing term is given by 

[31]: 

 [ ] 0020 1
2
cos

gcgcggc
e

v
can σσγ

κ
θσσ ++−= −  (5.16) 

where, vσ  is the backscattering cross-section per unit volume( m ).  is the 

combined contribution of ground-canopy and canopy-ground scattering. This term 

requires the knowledge of soil reflectivity, which cannot be determined, and thus is 

neglected from this point forward.  is the ground-canopy-ground scattering 

contribution and can be neglected for HH polarized waves in the C band [31], 

32 / m 0
cggc−σ

0
gcgσ

eκ  is the extinction coefficient, 

)sec(θκγ hee−= , and 

h  is the effective canopy height. 

 
5.2.5 Cross-section & m  Relation g

There is a difference in the findings of the relation between moisture content 

and cross-section coefficients by Roo. et al. [31] and Senior. et al. [35]. According to 

Roo. et al. [31]: 

 hma wv /2=σ , and  (5.17) 

 hma whh /4=κ  (5.18) 
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where  are scattering terms, and are constant for a specific crop type with 

respect to frequency, polarization. The units of a  are  and  

respectively. 

42 , aa

42  and a kgm /2 2/1)//( mkgNp

A non-linear regression program uses an algorithm, such as the Levenberg-

Marquardt algorithm that minimizes the LSE between experimental (Where the 

assumptions when developing 5.3 holds true) and the theoretical backscatter (5.3) to find 

these free parameters. The values of these parameters for Soybean at C and L band for 

HH polarization are found in [31], and are shown in Table 9. It is important to establish a 

database of these parameters for major crop classifications. Both the scattering 

parameters ( , ) dominate at C band than at L band. Bistatic scattering contributes to 

the second term in 5.16, but is less dominating than the backscatter for C band and for L 

band it is vice-versa. The next method is to relate the backscatter cross-section and 

extinction coefficient to LAI [42]. 

2a 4a

 
TABLE 9 FREE PARAMETER VALUES FOR SOYBEAN CROP CANOPY 

Frequency 
2a  4a  

C 0.151 0.341 

L 0.0 0.126 

 

5.2.6 Cross-section related to LAI 

Since the radar backscatter is a strong function of , which in turn are 

related to the LAI, Ulaby. et al. [42], proposed an indirect relation between backscatter 

and LAI. The authors of the paper [42], also relate the vegetation contribution from a 

canopy backscatter to the first term of the relation described in (5.16), but do not consider 

hmw
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second order or multiple scattering terms. Under the assumption that the canopy can be 

modeled as a “water cloud”, the following relation holds true [42]: 

 [ ] 020 1
2
cos

stem
e

v
can σγ

κ
θσσ +−=  (5.19) 

where: 

 )(
2

Nf
e

v =
κ

σ
, (5.20) 

  (5.21) )]/exp(1[)( hLBANf ll −−=

where  and  are constants for a given crop type, incident angle and polarization and 

 is the LAI. Currently, backscatter from a few vegetation canopies, at VV polarization 

incident at a specific incident angle is only available. These constants for crop types 

mentioned previously are tabulated in [42]. It would be interesting to find how the 

parameters vary for angle and crop types.  

lA lB

L

 
5.2.7 Incident Angle Normalization 

The variation of local terrain has significant effect on the backscatter, 

especially in the case of large illumination area, which is the case of a Radarsat image. 

When dealing with temporal SAR images, it very important to remove the effects of 

incident angle. Generally we assume the local terrain is relatively flat, hence the local 

incident angle can be replaced by the incident angle. CCRS (Canada Center for Remote 

Sensing) initiated a study for compensating the incident angle effects. Three dates of 

Radarsat images over Manitoba, Canada were acquired [43]. Soil moisture was observed 

to be constant during these acquisitions. After analysis, the authors of [43] concluded that 

a change in backscatter per degree ( θσ /∆ ) of 0.38 dB is associated with crops and 

θσ /∆  of 0.28 dB for bare pixels for the study area [43]. These results are localized due 
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to limited data set. From prior studies, it was shown that at higher incident angles (>40), 

shadowing becomes more evident.  

The incident angle variation within the resolution cell is minimal and can be 

ignored. The backscatter as a function of incident angle is dependent of many surface 

parameters. So, it is important to know the behavior of the backscatter with these 

parameters. This again forces us to depend on the IEM model (Due to limited availability 

of SAR images). It is observed that the slope of the backscatter as function of incident 

angle does not vary much when the dielectric constant changes. This behavioral pattern 

could be utilized in the elimination of incident angle dependence. 
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Figure 5. 13 Relation between coefficient )(θa  at different incident angles 30° and 40° 

 

Normalization of incident angle to a reference angle may be possible at least 

from an IEM model point of view. For instance, consider two data takes at 30° and 40°. 

From the IEM model simulations, a regression fits approximately a  to a , 

which can then be substituted back in the (5.1) to yield in terms of : 
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This normalizes  to a reference angle 30°, provided surface roughness does 

not change between data takes. The parameter 

οσ 40

)(θb  can be predetermined from IEM 

simulations. The rmse between  and  (  obtained from ) is found to 

be 0.0048 or 0.74 dB. Since moisture changes between data takes, (5.21) has to be 

extended to determine relative moisture change. This correction is valid only for surface 

scattering. 

οσ 30 40/30
oσ οσ 30

οσ 40

 
5.3 BACKSCATTER MODEL 

The popularity of the backpropagation (BP) algorithm is attributed to its ability of 

learning functions from multi-dimensional data. BP algorithm uses a gradient search that 

minimizes the difference between actual and desired outputs [44]. It is a generalization of 

the minimum mean square error algorithm [44]. Convergence of BP algorithm depends 

on the initial guess of the weights and bias values [45]. The training cycle is repeated 

until the cost function is reduced to an acceptable value. The architecture of a Multi-layer 

perceptron (MLP) network (Figure 5.15) can generally be described as a hierarchal 

design of interconnected processing units or neurons [46]. A classical architecture 

consists of an input layer, hidden layer and an output layer and each layer is a collection 

of processing units. A network may contain more than one hidden layer. The processing 

units may or may not be fully interconnected. A fully interconnected network is more 

efficient in learning non-linear functions. The input layer passes on  input vectors n
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without processing to the hidden layer. The hidden layer accepts the input vector and is 

modeled as shown in Figure 5.14. 

 

 

Figure 5.14 Neuron Model 

 

The activation (h) and the output Y is calculated using the following relation [45]: 

  (5.22) ϕ+= xwh T

 )  (5.23) (ySY =

where x  is input vector,  represents weight vectors, S is the activation function and is 

usually sigmoid and 

w

ϕ  is an additive bias. 

The weights and bias of the BP after each training pattern is updated according to 

the following rule [45]: 

  (5.24) 
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where  and  are gradient of rmse of networks weights and additive bias 

respectively. 

iW∆ i∆Φ

µ  is the learning rate. 
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Figure 5.15 MLP Architecture 

 
5.3.1 Preparing the training data set 

The training data set is formed with a theoretical forward scattering model, 

IEM model in this case. Since the NN depends heavily on the theoretical model the 

“correctness” of it has to be ensured. The advantage is that the IEM model is a fairly 

accurate model and the parameters can be varied freely. The sensitivity of the parameters 

has to be studied first, in order to leave out of the training patterns to ensure efficient 

learning [47]. This is done to approximately determine the range of parameters and their 

step sizes. It is reasonable to consider a maximum of four incident angles because the 

total revisit time would be a total of 12 days and surface characteristics can be assumed to 

be constant during this period. 

The training data set depends on the practical availability of satellite-induced 

parameters (frequency, incident angle, polarization). Therefore the forward scattering 

model has to generate the data set according to this. Theoretically, the following divisions 
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can be made: Based on frequency, polarization, and incident angle, the surface 

parameters can be inverted by training the network using the IEM model. The main 

concern is whether it is feasible to obtain SAR data based on the categorization and what 

would be the drawbacks of each categorization. Researchers in the past have tried to 

combine these categorizations to improve the efficiency of the inversion algorithm. The 

popular frequency bands are L, C and X. The first training data set is the data acquired at 

these bands at one particular incident angle and polarization. Let it be denoted as multi-

frequency data. The next possibility is multi-polarized data. Data acquired through HH 

and VV polarization also can be exploited to determine surface parameters. Data acquired 

through different incident angles is perhaps the best approach to invert the unknown 

parameters. The major drawback is that simultaneous multiple viewing is not possible by 

available SARs.  

 
5.3.2 SPMA (Single Polarization Multi-Angle) For Radarsat 

A dataset that would match Radarsat acquired data is simulated using the IEM 

model. The exact incident angles Radarsat acquired during Smex02 are mentioned in 

Chapter III.  

 
TABLE 10 PARAMETERS USED IN THE GENERATION OF THE TRAINING DATA SET 

Training data Parameters 
min: step size: max 

Test data rmse  

h (cm) 0.2:0.4:2.8 0.2:0.5:2.8 0.0073 

l (cm) 5:5:25 5:6:25 0.1550 

ε  Possible combinations in the range 2:5:25 for 4 incident 
angles  
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The acquired data can be normalized to incident angles 20  

using the proposed data. During these acquisitions ,  are constant but dielectric 

constant may change. Therefore possible combinations of 

οοοο 50,40,30,

h l

ε  are included in the training 

data set. The network’s performance is tabulated in Table 10 for test data set.  

The next sections discuss how the surface parameters can be inverted with NN 

with reasonable accuracy. These categorizations cannot be applied to Radarsat data and 

are shown for comparison and require simultaneous viewing of the ROI. 

 
5.3.3 SPMA (Single Polarization Multi-Angle) 

The parameters for training data set for single polarization, multi-angle data 

(at 20º, 30º, 40º & 50º) are shown in Table 11. A total of 1232 training patterns are fed to 

the NN. A learning rate and momentum of 0.2 and 0.8 is used during the training and was 

validated every 50 cycles. A total of 1500 iterations are performed. The number of hidden 

layers in all the combinations of data set is two, and the number of hidden neurons is 30.  

 
TABLE 11 PARAMETERS USED IN THE GENERATION OF SPMA DATA SET 

Training data Parameters 
min: step size: max 

Test data rmse 

h (cm) 0.2:0.2:2.8 0.3:0.2:2.8 0.0015 

l (cm) 2:3:23 3:3:23 0.0286 

ε  2:2:22 3:2:22 0.0303 

 

5.3.4 SAMF (Single Angle Multi-Frequency) 

This combination of input backscatter generated a total of 924 training 

patterns. A learning rate and momentum of 0.2 and 0.8 is used during the training and are 
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validated every 50 cycles. A total of 1500 iterations are performed. The total number of 

inputs is 3 (at ), which are input backscatter at L, C and X band respectively. The 

limit in the training data set for h  is 1.4 because IEM model is valid for . The 

performance is shown in Table 12. 

o20=θ

3<kh

 
TABLE 12 PARAMETERS USED IN THE GENERATION OF SAMF DATA SET 

Training data Parameters 
min: step size: max 

Test data rmse 

h (cm) 0.2:0.2:1.4 0.3:0.2:1.2 0.0056 

l (cm) 2:3:23 3:3:21 0.1441 

ε  2:2:22 3:2:20 0.1302 

 

5.3.5 Single Angle Multiple Polarization (SAMP) 

Combination of both horizontal and vertical polarizations at 20°, generate the 

data set in Table 13. The number of inputs in this case is 3 and the performance of the 

NN with respect to h  is the poorest. 

 
TABLE 13 PARAMETERS USED IN THE GENERATION OF SAMP DATA SET 

Training data Parameters 
min: step size: max 

Test data rmse 

h (cm) 0.2:0.2:2.8 0.3:0.2:2.7 0.0115 

l (cm) 2:3:23 3:3:21 0.1841 

ε  2:2:22 3:2:20 0.0930 
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5.3.6 Multi-Angle Multi-Polarization (MAMP) 

Keeping in mind the limit Radarsat poses on the number of data takes on the 

ROI at different incident angles, a maximum of only four different incident angles is 

considered. Initially, a combination of 2 incident angles at HH and VV polarization, 

which is a total of 4 inputs, is used as the training pattern. This is increased to 4 incident 

angles, thus generating a maximum of 8 different backscatter values for the same surface 

(Table 14). The network architecture for this combination is 8-30-30-3. The rmse of the 

networks discussed are compared in Figure 5.16.  

 
TABLE 14 PARAMETERS USED IN THE GENERATION OF MAMP DATA SET  

Training 
data    

Parameters 
min: step 
size: max 

Test data rmse 
ο30,20 VV, HH, o

rmse 
 

ο

ο

40

30,20 VV, HH, o
rmse 

οο

ο

50,40

30,20 VV, HH, o

h (cm) 0.2:0.2:2.8 0.3:0.2:2.8 0.0043 0.0020 0.0017 
l (cm) 2:3:23 3:3:24 0.0246 0.0295 0.0251 

ε  2:2:22 3:2:20 0.0355 0.0222 0.0158 
 

The performance of the NN (SPMA for Radarsat) trained using a data set 

generated by IEM model that simulated Radarsat acquisitions is comparable to SAMF 

and better than SAMP trained NN. By using four incident angles and HH polarization 

alone, the performance of the NN is comparable to the NN that required both HH and VV 

observations. It can be concluded that increasing the number of incident angles enhances 

the inversion of surface parameters. Multi-frequency data limits the data range to which 
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IEM model can be applied (In terms of , almost by half at C band) because of the 

presence of X band. 

h

 

 
Figure 5.16 rmse performance of the BP NN for different input combinations 

 

 



 

CHAPTER VI 

CONCLUSION & RESULTS 
 
 

Surface soil moisture can be estimated by measuring the received backscatter 

from a dielectric such as the soil medium at L, C, & X bands. The dielectric constant of 

the soil medium in turn is a strong function of soil moisture. From this study, it can be 

concluded that the science behind the estimation of surface soil moisture and the 

interactive behavior of the most influencing parameters (rms height, correlation length, 

dielectric constant, surface power spectrum, incident angle) on the radar backscatter are 

quite well understood. The soil moisture estimation models discussed in this thesis 

namely, Dubois and Shi models, have reasonable results when applied to SAR data.  

Several inversion algorithms, both theoretical and empirical, have been developed 

to estimate surface soil moisture from radar data. The first theoretical models like the GO 

& SPM cannot be applied successfully over a wide range of dielectric surfaces. This 

paved the way for the development of empirical algorithms like the OH & the Dubois 

model. The OH model is developed from the empirical data sets provided by a truck-

based scatterometer, but is unsatisfactory when applied to SAR data. The Dubois model 

is developed from a similar data set. The model was applied to SAR data during the 

Washita’94 experiment and resulted in an rmse of 4.2% for the soil moisture estimated. 

Correlation length, an important surface parameter is not taken into consideration in the 

Dubois inversion algorithm. To overcome the site-specific problem suffered by the 
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empirical models, the authors of [13] developed an inversion algorithm using a 

theoretical model called as the IEM model. They improved rmse between estimated and 

observed soil moisture during the Washita’94 experiment site to 3.4%. All three models 

estimate soil moisture from multi-polarized data. 

This thesis is an effort to develop an inversion procedure (using the IEM model) 

that completely utilizes the potential of Radarsat and by no means leads to a conclusion 

that Radarsat is the most effective tool available. The development of a soil moisture 

inversion algorithm can be approached in two ways: the multiple-incident angle approach 

and the change detection method. The following observations can be made for 

consideration for further research and for future soil moisture field campaigns.  

In real time, it is difficult to obtain Radarsat data of ROI at the same incident angle with 

brief revisit time, which calls for an incident angle correction scheme for SAR images. It 

is possible to normalize the backscatter obtained at different angles to a reference angle 

from an IEM model standpoint. The rmse between backscatter obtained at 30º and the 

backscatter obtained at 40º normalized to the reference angle 30º using the proposed 

approach is found to be 0.0048. 

IEM simulations show that the surface roughness controls the trend in angular 

variations of backscatter. SAR images acquired through multiple-incident angles have the 

potential to map the surface roughness of the ROI, even though dielectric constant varies 

during the acquisitions. This conclusion is drawn from the performances of the NN when 

trained using different data sets. Based on prior research, and NN performances, it can be 

stated that soil parameters can be estimated with reasonable accuracy using a NN if: 

• Multi-polarized, multi-frequency or multi-incident SAR data are available 
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• The network is trained with datasets from a fairly accurate theoretical model like 

the IEM model. 

The current available SARs do not provide multi-polarized or multi-frequency data 

that is necessary to invert the above-mentioned parameters. However, Radarsat has a very 

brief re-visit period over the same ROI and this re-visit frequency along with the 

simplified algorithm discussed in 5.1, [48] is utilized in determining the relative moisture 

change over the ROI. This method is referred to as change-detection method in the 

literature. 

Since the IEM model or the simplified algorithm developed in Chapter V can only be 

applied on bare soil or scantly covered vegetation pixels, a method has to be developed to 

eliminate backscatter due to vegetation and interaction with the surface. Combining 

visible/infrared and microwave region remotely sensed data offers a good potential for 

elimination of vegetation backscatter. Briefly, the steps involved would be classification 

of crop type, calculating GVMI from NIR/SWIR bands, relating it to vegetation water 

content, and determination of backscattering coefficients from the estimated vegetation 

water content. For pixels covered by vegetation, radar backscatter (apart from surface 

parameters) is mainly a function of moisture contained in the vegetation, but through a 

set of free parameters. An extensive database of these free parameters for major crop 

types (discussed in Chapter V) should be established with the proposed procedure to 

reduce the effects of backscatter due to vegetation. A method to eliminate the interaction 

terms between canopy and surface ( cggc−σ ) of (5.3)) has to be established. It would be 

interesting to find out how the free parameters vary with incident angle and crop types. It 
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is proposed that LAI or GVMI can be used indirectly to estimate the backscatter due to 

vegetation. However, the performance of these two methods has to be compared. 

The required data (both satellite & ground) provided by NASA & USDA are still 

under review and limited distribution, and is expected to be available in September 2003. 

When the desired ground truth and satellite imagery becomes available, the methodology 

proposed in this thesis would be applied. 
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