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Supervised learning using Hidden Markov Models has been used to train acoustic 

models for automatic speech recognition for several years. Typically clean transcriptions 

form the basis for this training regimen. However, results have shown that using sources 

of readily available transcriptions, which can be erroneous at times (e.g., closed captions) 

do not degrade the performance significantly. This work analyzes the effects of mislabeled 

data on recognition accuracy. For this purpose, the training is performed using manually 

corrupted training data and the results are observed on three different databases: TIDigits, 

Alphadigits and SwitchBoard. For Alphadigits, with 16% of data mislabeled, the 

performance of the system degrades by 12% relative to the baseline results. For a complex 

task like SWITCHBOARD, at 16% mislabeled training data, the performance of the 

system degrades by 8.5% relative to the baseline results. The training process is more 

robust to mislabeled data because the Gaussian mixtures that are used to model the 

underlying distribution tend to cluster around the majority of the correct data. The outliers 

(incorrect data) do not contribute significantly to the reestimation process. 
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Figure 1. Speech signal and spectrogram for an utterance “one one one.” Note the varia-
tion in both the signal and spectrogram for three examples of the same word. 

articulation [7,8,9], the waveform and spectrogram for these three examples of the same 

word are totally different, even for the same speaker. The goal of the acoustic front end is 

to extract salient information from the input speech signal for better classification. In the 

front end, knowledge of human speech perception and speech signal processing 

techniques [10,11,12] are combined. The front end takes advantage of the stationary 

characteristics of a speech signal. The signal is typically analyzed using a 10 msec frame 

duration and windowing is employed to smooth the frame boundary effects [10]. Cepstral 

coefficients are derived after performing an FFT analysis and a standard mel-scale filter 

bank [13,14]. The first and second derivatives for these base features are then calculated. 

The first and second derivatives help capture the temporal evolution of the spectrum that 
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Similarly, a backward probability is given by 

β ( )i = Pr(O , O , …, O ⁄ i = q , λ) ,  (6)  t t + 1 t + 2 T t i 

which is the probability of the partial observation sequence from t + 1 to the end of the 

utterance, given state qi at time t and the model λ . Both the forward and backward 

probabilities can be solved inductively assuming a lattice structure that avoids redundant 

computations [4]. This efficient implementation is known as the forward-backward 

algorithm [4,12] and is an integral part of the Baum-Welch training procedure. 

The parameters of the Gaussian distribution, namely the mean and the covariance, 

are reestimated as follows [4,33,34,35]: 

R Tr 

r r( )t � � Ljm ot 

r = 1 t = 1µ̂ jm = --------
R 
---------T ---r 

-------------------- ,  (7)  
r ( )t � � Ljm 

rwhere ( )t is the state occupancy probability, R is the total number of observations, TLjm 

r this the total duration of each utterance and o is the observation vector for the t frame int 

the rth utterance during the training process. In other words, the probability of being in a 

particular state j , is calculated across the feature vectors at all possible time instants and 

each feature vector is weighted by this probability in updating the Gaussian parameters. 

The state occupancy probability is given by 



-
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α ( )β ( )r j t j t 
( )t = ------------------------ , (8)Ljm Pr 

where P is the probability of the utterance and is used as a normalization factor.r 

Similarly, the covariance and the mixture weights are updated as follows 

R Tr 

r r r( )t (ot – µ̂ jm)(ot – µ̂ jm )' � � Ljm 
ˆ r = 1 t = 1Σjm = ------------------------------------------------------------------------------------ (9)

R Tr 

r ( )t � � Ljm 

TR r 

r ( )t � � Ljm 

r = 1 t = 1= ---------------------------------- (10)cjm R Tr 

rLj ( )t � � 

According to the EM algorithm, the Baum-Welch reestimation procedure 

guarantees a monotonic likelihood improvement on each iteration and eventually the 

likelihood converges to a local maximum. Another training procedure called Viterbi 

training [36] is also used frequently. Discriminative training methods such as Maximum 

Mutual Information Estimation (MMIE) [37] and Support Vector Machines [38,39] are 

gaining popularity and are used in conjunction with existing methods. 

1.3. Practical Issues in Training 

The theory behind supervised training was discussed in the previous section. 

However, in order to obtain a good acoustic model, there are several additional stages in 
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the actual training process. These stages include seeding the initial models, training 

silence, context-independent and context-dependent phone models, and enhancing this 

models using mixture distributions. The details of each stage are explained in this section. 

The underlying theory of using the forward-backward procedure to estimate the model 

parameters remains the same and is used iteratively. Hidden Markov Models are used with 

Gaussian mixtures as the underlying distribution. A typical training process, which is 

often referred to as a recipe, is shown in Figure 2. 

To begin the supervised training process, transcriptions should be available for all 

speech training data. The phone set and the lexicon that maps the words to their 

corresponding phone-level pronunciations should also be defined. The topology of the 

acoustic model plays an important role in the overall performance [40] and needs to be 

engineered. Before the training process is started, parameters of the HMM, namely the 

mean and variance, need to be initialized. There are several methods for seeding the 

Flat-start 
Training 

Clustered States 
Training 

‘sp’ model 
Training 

Force 
Alignment 

Training new 
Transcriptions 

Mixture 
Training 

State 
Tying 

CD 
Training 

Data 

Input 

Final 
Acoustic 
Model 

Figure 2. Various stages of the training process starting from flat start to mixture training. 
The lexicon and the phone set are predefined. 



monophone

hh  aw  d ih d  y  uw  

word-internal hh+aw hh-aw d+ih d-ih+d ih-d y+uw y-uw 

cross-word hh+aw hh-aw+d aw-d+ih d-ih+d ih-d+y d-y+uw y-uw 

how did you 

monophone 

words 

Figure 3. Example of monophone and context-dependent phone realizations for a 
transcription — “+” denotes right context and “-” denotes left-context. 

10 

parameters of HMM [3,35]. One such technique known as flat start [35] involves 

computing the global mean and variance across all training data, and then initializing all 

models with this global mean and variance. 

In a large vocabulary system, the words are broken into sub-word units called 

phones and acoustic models are built for each phone. The number of phones used to 

represent the words in a database depends on several factors such as the complexity of the 

system, amount of training data, etc. Typically for American English, 35 to 45 phones are 

used. The phone-level transcriptions for monophone training are obtained by subdividing 

each word into its corresponding phone equivalents. The phone set is predefined and only 

these predefined phones are used to obtain the phone-level transcriptions. The context 

information is not used since only monophone training is done. 

Examples of context-independent and context-dependent models are shown in 

Figure 3. In a typical training recipe, context-independent phone models, often referred to 
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as monophone models, are created using a flat-start procedure. Context-dependent models 

are then bootstrapped from these context-independent models, and trained for several 

iterations using these phone-level transcriptions. 

Many recognition systems use some kind of acoustic model to capture the 

interword silence [35,41]. In the ISIP-ASR system [24], a short pause model, denoted ‘sp’ 

is used. This is a 1-state HMM which can be skipped completely if needed. After four 

passes of flat-start training, short-pause training is done. During this stage of training, the 

short pause model is introduced between each word in the transcription and the training is 

continued as before. If there is a short pause between words, then the ‘sp’ model will 

model these interword short silences. Prior to this stage in the training process, silence and 

short pauses were inserted manually into the input transcriptions (and are inherently 

inaccurate). 

A related problem is that some words can have multiple pronunciations. It is 

expensive and time-consuming to have linguists manually make decisions about which 

pronunciation was actually used. Instead, we let the system choose where silence occurs 

and what pronunciations need to be chosen for a given utterance. This is done by 

performing running a Viterbi alignment [22] on the training data using word-level 

transcriptions and a lexicon. This also helps in identifying training data with erroneous 

transcriptions because these data cannot be aligned properly and are rejected. Once the 

alignment is done, monophone training is continued using the new set of phone 

transcriptions given by this alignment process. 
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In order to train context-dependent models, often referred to as triphone models, 

context-dependent transcriptions need to be generated [23]. As illustrated in Figure 3, 

context-dependent transcriptions are generated from the monophone transcriptions. If the 

contexts across words are taken into account, then cross-word transcriptions are 

generated. If only the within-word contexts are considered then word-internal 

transcriptions are generated. After the transcriptions are obtained, context-dependent 

triphone models are trained. The number of acoustic models that needs to be trained now 

increases significantly compared to the monophone stage. There might not be enough 

training data for all triphone models. Hence, states of different models are tied together so 

that they can share the same training data. This helps insure that each model has a 

sufficient amount of training data. This process of sharing training data across states is 

called state tying [42]. During state tying the states of context-dependent models are tied 

together based on phonetic contexts using decision trees [42]. The entire process is 

automated and data-driven, which allows it to be tightly integrated into the recognition 

process. State tying also helps in generating models that are not present in the training set 

but can occur in the test set. Once the models have been tied and transformed to 

context-dependent models, the training process continues as before using standard 

reestimation techniques. 

After the context-dependent models are sufficiently trained, models with multiple 

Gaussian mixtures per state are generated and trained — a process known as mixture 

training [43]. Generally, all states have the same number of mixtures per state. The idea 

behind mixture training is that each mixture component will model a different modality 
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[43,44] in the training data — male and female speakers, different kinds of background 

noise, etc. The Gaussian mixtures are split [35] by perturbing them around their mean 

value leaving their variance unchanged. Training is continued by splitting the Gaussians 

and training them until the required number of mixtures are obtained. 

It is not necessary that the above-mentioned training procedure be followed in all 

applications. The procedure can be altered depending on the complexity of the task, 

required accuracy and desired computational speed. For some complex databases, only 

word-internal contexts are used to reduce the memory requirements during recognition. 

The training procedure is simplified and systems are made to run in real time for simple 

tasks like digit recognition where high accuracy has been obtained. For complex tasks 

such as conversational speech, more rigorous training procedure is followed and complex 

models are built. 

1.4. Thesis Objective and Organization 

The primary objective of this thesis is to analyze the performance of a speech 

recognition system in the presence of mislabeled transcriptions. Several experiments have 

shown that it is possible to achieve reasonable performance using data with erroneous 

transcriptions [45,46,47]. But no significant work has been done to analyze why the 

training algorithms are robust to mislabeled transcriptions. This thesis will explore the 

reasons behind the robustness of the training algorithms at a fundamental level. The 

hypothesis of this thesis is that the EM-based supervised training is robust to mislabeled 
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data because the Gaussian distributions that are used to model the data can reject the noisy 

data present in small quantities. 

The thesis is organized in as follows. Chapter 2 describes the experimental design 

for the thesis. It describes the various experiments that were performed and how these 

experiments fit into the framework of this thesis. Preliminary results on various speech 

databases are presented. Chapter 3 provides an analysis of the training process to 

mislabeled transcriptions. Each stage in the training process is analyzed using a subset of 

the Alphadigits [48] database. Chapter 4 summarizes the findings from this thesis and 

discusses some promising avenues for future work. 



CHAPTER II 

EXPERIMENTAL PARADIGM 

The primary objective of this thesis is to explore the effect of transcription errors 

on the overall performance of a speech recognition system. It is necessary that different 

types of transcription errors be introduced in varying amounts to study their effect on the 

overall performance of the system. This analysis would help categorize the effects of 

various types of transcription errors based on their impact on recognition performance. 

Even for the same level of transcription errors, the performance of the system can vary 

depending upon the complexity of the database and the training procedure used. Hence, 

experiments were performed on three different databases of different complexities. Some 

simulated experiments were also performed to better understand the effects of 

transcription errors on the training process using Gaussian mixtures. 

2.1. Corpora 

The effect of the transcription errors could be vastly different across different 

databases. There could be several reasons for such a difference in performance. For 

example the effect could depend on the vocabulary of the database, the manner in which 

the original database was segmented or quality of the speech recordings. Experiments 

15 
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were performed on three popular databases: TIDigits [49], OGI Alphadigits [48] and 

Switchboard [50]. 

TIDigits database was collected by Texas Instruments in 1983 to establish a 

common baseline for performance on connected word recognition (CWR) [49] tasks. The 

database has a vocabulary of eleven words. This includes numbers from ‘zero’ through 

‘nine’ and ‘oh’ - an alternate pronunciation for zero. The recording conditions consisted of 

speech collected in a studio quality recording environment and included over 300 men, 

women and children. The database has about 6 hours of training data amounting to 12,549 

utterances and about 6 hours of data for testing purposes. Word error rates as low as 0.4% 

have been obtained using word models for training [51]. 

The Alphadigits (AD) database was collected by OGI [48,52] and the vocabulary 

includes all letters of the English alphabet as well as the digits — zero through nine. The 

database has about 54.6 hours of training data and 3.5 hours of test data and includes over 

3,000 speakers for training. Alphadigits is a more difficult task than TIDigits because the 

vocabulary is larger and the recording is not of studio quality. Typically, cross-word 

triphone acoustic models are trained and loop-grammar decoding [24] is performed for 

recognition. The error rates are around 10% for clustered triphone acoustic 

models [24,52]. 

The most widely used database for large vocabulary conversational speech is the 

Switchboard (SWB) database collected by Texas Instruments in the early 1990’s [50]. The 

database was collected using a digital interface to the public telephone system. The data 

collection scenario involved two people talking to each other on some mutually agreed 
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upon topic. There are 2,438 conversations involving an even mix of male and female 

speakers. The vocabulary is around 100,000 words. Several factors such as disfluencies in 

speech [9], a wide range of speakers, recording conditions and a very large vocabulary 

make it a difficult task. During the last few years, much improvement has been made in 

recognizing conversational speech using the Switchboard database [53]. The word error 

rate is around 25% for state of the art systems in the recent Rich Transcription Evaluations 

[41,54,55]. 

The quality of the reference transcriptions has always been an issue, and was a 

major motivation for this work. In recent years, significant effort has resulted in a 

reduction in the transcription error rate from approximately 8% WER to less than 

1% WER [56]. Non-speech events like background noises, lip smacks, laughter, channel 

distortions etc. have also been accurately marked in these transcriptions [56,57,58]. Yet, to 

our surprise, speech recognition error rates have not dropped appreciably when using 

these improved transcriptions [59]. Understanding this phenomena was a major 

motivation for this work. 

2.2. Introducing Errors 

To analyze the performance of a system trained on erroneous transcriptions, 

transcription errors were introduced into the clean databases. The performance with 

imperfect transcriptions was then analyzed and compared with training performed using 
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perfect transcriptions. This approach is flexible because the various types of errors can be 

introduced in a controlled manner. 

Before introducing errors into a database, it is necessary to understand the types of 

errors that can be made when a database is transcribed. There are three different types of 

errors possible when a database is transcribed, namely substitutions, deletions and 

insertions. All these errors are likely while transcribing a database. Substitution errors are 

generally made when similar sounding words or phones are substituted for the original 

word. For example, the word “yeah” is usually transcribed as “the”, when the speaker 

articulates the word poorly. Deletion and insertion errors are typically made with speakers 

who repeat words or have poor articulation. For example, if the words spoken were “I I I  

know she did that”, then it is possible for the transcriber to delete or insert one “I” and  

transcribe it as “I know she did that” or  “I I know she did that” respectively. Another 

important issue related to transcription of conversational speech is the issue of partial 

words [56]. Some non-speech events, such as laughter and silence, are not properly 

identified and transcribed as words. 

When the errors were introduced in the database for this thesis, only the 

substitution, deletion and insertion type errors were introduced. Automated scripts were 

developed that introduce different types of errors in a controlled fashion (e.g., varying the 

word error rate and the context in which the error is introduced). Errors were introduced 

only in word-level transcriptions since speech is mostly transcribed at the word level. If 

the training database had 10,000 words, then a substitution type transcription error rate of 
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10% would mean that 1,000 words in the training database would be replaced with 

incorrect words. 

The process of introducing transcription errors is described below. The total 

number of words in the training database is computed. The total number of words that 

need to be in error is determined using the target transcription error rate and the total 

number of words in the database. The list of unique words in the database is given by a 

lexicon. The total number of times each word has to be in error is found from the total 

number of unique words and total number of words that need to be in error. The errors are 

introduced in two different ways: equiprobable and random. In  equiprobable mode, all 

possible words get an equal weight in corrupting a given word incase of substitution or 

insertion error. If a word ‘one’ needs to be substituted 10 times and if there are 10 other 

possible words that can replace it, then each word replaces the word ‘one’ once in 

equiprobable mode. In random mode, a given word is corrupted in a completely random 

manner by all other possible words. The utterances that are to be corrupted in the database 

are chosen to span the whole database and all speakers in the database. A combination of 

these three types of errors can also be introduced in the database. It is possible to corrupt 

the database at 10% error in which substitution errors are 5%, insertion errors are 3% and 

deletions contribute 2%. 

The process used to introduce errors as discussed above was used for relatively 

small vocabulary tasks like TIDigits and AD. However for SWB, due to its large 

vocabulary, the procedure was altered. The complete procedure was randomized. The 

number of words that needs to be corrupted in the database was calculated as before based 

https://random.In
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on the total number of words in the database and the target transcription error. Also, as 

before a list of unique words for the database is given by a lexicon. After calculating the 

number of words that needs to be in error, a word that needs to be in error is chosen at 

random from the database and the replacement word is also chosen at random from the list 

of unique words. This is repeated until the target transcription error rate is achieved. 

2.3. Experimental Results 

As mentioned earlier, experiments were performed on three databases: TIDigits, 

Alphadigits and Switchboard. For each database, automated scripts were used to corrupt 

the database by introducing the required type of error at various levels. The errors were 

introduced in equiprobable mode for TIDigits and Alphadigits and in random mode for 

Switchboard. This section describes the various experiments performed for each database. 

Experiments for TIDigits were performed on a standard training set of 12,549 

utterances and a standard test set of 12,547 utterances [49]. Training was performed using 

word models to obtain 16-mixture per state Gaussian models. Loop-grammar 

decoding [24] was done to obtain the final hypotheses. The error rate in the transcriptions 

was increased in powers of 2 to get transcription errors ranging from 1% to 64%. Baseline 

system results were obtained using a completely clean set of transcriptions. Experiments 

were performed by introducing substitution, insertion and deletion type errors. Weighted 

errors were also introduced in the database to analyze the performance of the system in the 

presence of combinations of errors. The ratio of different types of errors in the weighted 
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error scheme was 4:3:1 for the insertion, substitution and deletion categories respectively. 

This ratio was chosen because the error distribution in the baseline system without 

transcription errors was 4:3:1 for insertion, substitution and deletion errors respectively. 

The results are shown in the form of a graph in Figures 4 and 5. The independent 

variable is the base-2 log of the transcription error rate (TER) while the dependent 

variable is the word error rate (WER). It can be observed that for a small vocabulary 

system transcription errors do not make a significant impact even at a 16% transcription 

error rate. For the transcription errors to make an effect on the overall performance, they 
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have to be present in high percentages (typically more than 30%). This is true for all types 

of transcription errors, namely substitutions, deletion, insertion and weighted errors. The 

same trend can be observed for a 1-mixture system and a 16-mixture system. Both these 

system perform poorly only at significant but unlikely transcription error rates. 

Alphadigits experiments were performed using a standard training set of 51,544 

utterances and a test set of 3,329 utterances [52]. For all experiments, 12-mixture state-

tied cross-word acoustic models were used. Decoding was performed with a loop 
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Table 1. Comparison of the baseline system (clean transcriptions) with systems trained on 
transcriptions with substitution errors. At a 16% transcription error rate, the word 
error rate does not increase significantly compared to the baseline system for the 
three databases 

Corpora Acoustic Models 

Transcription Error Rate 
WER 

0% 2% 16% 

TIDIGITS 1 mixture word 3.8 4.0 5.1 

16 mixture word 0.8 1.0 2.3 

Alphadigits 1 mixture xwrd 31.9 32.3 36.2 

16 mixture xwrd 10.8 10.8 12.1 

SWB 12 mixture xwrd 41.1 41.8 44.6 

grammar. Baseline experiments were performed with a clean set of transcriptions using 

1-mixture and the final 12-mixture acoustic models. Only substitution type errors were 

introduced in the database. Experiments were done with transcription error rates of 2% 

and 16% respectively and the results were compared with the corresponding baseline 

systems. The results are shown in Table 1. 

Training for SWB was performed using the SWB-I training set [60,61]. This 

amounted to 60 hours of training data covering 1,925 conversation sides. The test set had 

38 speakers and a total duration of 30 minutes. Twelve-mixture state-tied cross-word 

acoustic models were trained. Decoding was performed using a lattice rescoring 

mode [24] to generate the final hypotheses. A baseline experiment was performed with a 

clean set of input transcriptions. Two more experiments were performed by introducing 

substitution type errors in the database in a completely random manner. The transcription 
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error rates for these experiments were 2% and 16% respectively. The results are also 

tabulated in Table 1. 

It can be observed from Table 1 that the transcription errors do not make a 

significant impact on any of the databases. Also, as the acoustic model is enhanced using 

multiple mixture Gaussians per state, the transcription errors have a smaller impact on the 

recognition performance. Even for a complex database like SWB, the word error rate 

degrades only by 3.5% (absolute) at a 16% transcription error. These experiments seem to 

indicate that the training process is robust to transcription errors that are normally present 

in a database. 

2.4. Simulated Experiments 

Simulation is a process of designing a model of the real system and performing 

experiments with this model. Simulated experiments are generally done when the actual 

experiments cannot be performed due to several constraints [62]. In the case of simulation, 

it is also possible to control one particular variable and analyze the behavior of the system, 

which might not be possible in a real system. In the previous section we saw that 

transcription errors do not degrade the performance significantly. But since the whole 

process is complex, this robustness to transcription errors cannot be attributed to one 

single phenomenon. Hence, simulated experiments were performed to better understand 

this robustness to transcription errors. 
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An important problem with real speech recognition data is the dimensionality of 

the space in which recognition is performed [3]. The input feature vectors in a speech 

recognition system have a dimensionality of more than thirty which is not easy to 

visualize and the computations are not easily tractable. Hence for easy visualization and 

tractable computations, simulated experiments were carried out with one dimensional 

data. It should be easy to extend the results from the one-dimensional data to 

multidimensional data because the real system is built under the assumption that feature 

vectors are not correlated [24]. Also in a real system, there are many competing models 

that add to the overall complexity. A good starting point would be to understand the case 

in which there are only two models under consideration and one of the models is corrupted 

by the data from the other. Using simulated experiments, several variables in the training 

process, such as the forward and backward probabilities can be eliminated. 

The experimental setup for the simulated experiments is discussed below. Two 

Gaussian distributions were considered, one of them being the original correct distribution 

and the second one being a corrupting distribution. These distributions can have arbitrary 

means and variance. A new distribution is estimated from the data generated from these 

two distributions. At zero percent transcription error, the data for estimating the 

parameters of this new distribution is obtained from the original correct distribution. As 

the transcription error rate is increased, the data for estimating the parameters of the new 

distribution is obtained from both the correct distribution and the corrupting distribution at 

required percentages. This is analogous to what happens with imperfect transcriptions 
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distribution. Typically, for a binary classification problem using equiprobable single 

dimensional Gaussian distributions, the decision region is chosen to be the point of 

intersection of the two distributions as shown in Figure 6. The black and red colored 

Gaussians are the two distributions corresponding to class ω1 and ω2 respectively. The 

probability of error is calculated using (12) after finding the decision region on the x-axis. 

Any data point to the left of the decision region is classified as belonging to Class 1. 

Similarly, any point to the right of the decision region is classified as belonging to Class 2. 

The probability of error is the minimum for the decision region shown in Figure 6. Any 

other point on the x-axis would give a larger probability of error value [3]. 

For the simulated experiments, the new estimated distribution is used to define the 

decision boundary. This decision boundary is the point of intersection of the estimated 

distribution and the corrupting distribution. The decision boundary in conjunction with the 

Figure 7. Probability of error calculation for various data error rates. The figure on the left 
shows the distributions at zero percent data error where the original distribution 
and the estimated distribution are the same. The figure in the right shows the dis-
tributions at 20 percent error where the estimated distribution (in blue) has a 
wide variance and the probability of error has increased significantly. 
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Table 2. Probability of error for various transcription error rates on acoustically similar and 
dissimilar phones. Note that the probability of error does not increase 
significantly in either case 

Data Probability of Error 

Error 
Rate ‘b’ - ‘d’ (acoustically 

similar pair) 
‘aa’ - ‘s’ (acoustically 

dissimilar pair) 

0 44.1 6.84 

2 44.1 6.89 

4 44.1 7.01 

6 44.1 7.12 

8 44.1 7.25 

10 44.1 7.37 

12 44.1 7.49 

14 44.1 7.60 

16 44.1 7.70 

18 44.1 7.79 

20 44.1 7.87 

two original distributions is used to compute the probability of error. This process is 

shown in Figure 7. The original distribution is represented by a black colored Gaussian 

and the corrupting distribution is represented by a red colored Gaussian. The decision 

boundary is found for various percentages of corrupted data and the probability of error is 

calculated. The idea behind such an experiment is that as the data gets corrupted, the 

estimate of the original distribution would be inaccurate which leads to an incorrect 

decision region. Hence, the probability of error would increase. This increase in 
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probability of error is similar to the likely increase in word error rate as the models get 

corrupted. The estimate of the correct distribution is calculated for various data error rates 

and is represented by a blue-colored Gaussian. If the estimate of the original correct 

distribution is accurate, then the probability of error is minimum. If the estimate of the 

original correct distribution is inaccurate, then an improper decision region is chosen and 

the probability of error increases. Figure 7 shows the probability of error for zero percent 

and twenty percent corrupted data. 

Two experiments were performed using the above described simulated setup to 

determine how acoustically similar and dissimilar phones perform in the presence of 

transcription error. For acoustically similar phones, the phones ‘b’ and ‘d’ (plosives) were 

chosen from the AD set. Also, for acoustically dissimilar phones, ‘aa’ and ‘s’ were 

chosen. Only one dimension was considered for this experiment. The means and variances 

of the Gaussians were obtained from an AD acoustic model. In the acoustically confusable 

pair, the original distribution is that of phone ‘b’ and phone ‘d’ is the corrupting 

distribution with mean values of 0.704 and -0.461 respectively. For the other experiment, 

phone ‘aa’ is the original distribution and phone ‘s’ is the corrupting distribution with 

mean values of 4.038 and -5.717 respectively. The transcription error rate was varied from 

0% to 20% in steps of two. The results are tabulated in Table 2. 

It can be seen in Table 2 that the probability of error is high even at a 0% percent 

transcription error rate for acoustically similar phones. This is because the distributions for 

these phones have significant overlap. Also, as the transcription error increases the 

probability of error does not increase. In the case of acoustically dissimilar phones, the 
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distributions have a small overlap. Hence the probability of error is low at a 0% percent 

transcription error rate. With the increase in transcription error rate, the probability of 

error increases but only marginally. This is due to the fact that the Gaussian distributions 

tend to cluster around the mean of the data. Hence, even at a 20% transcription error rate, 

the estimate of the original distribution is not significantly different from the estimate of 

the original distribution for a 0% transcription error rate. In both the cases we see that the 

corrupting the model does not increase the probability of error significantly. This is similar 

to what was observed in the previous section by introducing transcription error in different 

databases. 

In this chapter, the corpora in which the experiments were performed were 

discussed. The procedure that was used to corrupt each of these databases was discussed 

in detail. The experiments performed on TIDIGITS, Alphadigits and Switchboard suggest 

that the transcription errors do not cause a significant degradation in word error rate. To 

better understand this robustness to transcription errors, simulated experiments were 

performed in a controlled manner using single dimensional Gaussians and probability of 

error as an error measure. It was observed that the probability of error does not change 

significantly with an increase in transcription error rate because the Gaussian models tend 

to cluster around the mean and need large amounts of erroneous data to cause a significant 

change in the probability of error. 



CHAPTER III 

EXPERIMENTAL ANALYSIS 

In chapter 2, it was observed that the transcription errors do not cause any 

significant degradation in word error rate even at a 16% transcription error rate. The 

simulated experiments also show that Gaussian probability distributions are adequately 

robust to model data that is significantly erroneous. In this chapter, we further analyze the 

effect of transcription errors on the overall acoustic model training process. A small subset 

of Alphadigits data was chosen for this analysis. Additionally, robustness to erroneous 

data is analyzed for each stage in the training process. 

3.1. Experimental Setup 

In chapter 1, we saw that during the training process, the training data is 

normalized by a value called state occupancy. The state occupancy value is used to 

calculate the model parameters such as the mean and variance during the reestimation 

process. The mean calculation is given by the following equation 

32 



33 

R Tr 

r r( )t o∑ ∑ Ljm t 
r = 1 t = 1µ̂ = -------------------------------------------jm R Tr 

( )t∑ ∑ Ljm
r 

r = 1 t = 1 

(13) 

rwhere ( )t is the state occupancy probability, R is the total number of observations, TLjm 

r this the total duration of each utterance and o is the observation vector for the t frame int 

the rth utterance during the training process. In other words, the probability of being in a 

particular state j , is calculated across the feature vectors at all possible times and each 

feature vector is weighted by this probability in updating the Gaussian parameters. 

The state occupancy value can also be defined as the probability of the input data 

belonging to the model given the current model parameters. The state occupancy values 

give valuable information about the input data. If the input data matches the model 

closely, it is likely that the state occupancy value will be high, and the data contributes 

more to the model reestimation process. On the other hand, if the state occupancy value 

for the input data is less, then its contribution to the model reestimation process is small. 

Hence, by comparing the state occupancy values for the correct data (data without 

transcription errors) and incorrect data (data with transcription errors), it is possible to 

evaluate the contribution of the incorrect data to the model reestimation process. 
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transcription errors. If the state occupancy values are low for the erroneous 
portion of the data then it implies that their contribution to the model 
reestimation process is low. 

3.2. Flat Start And Monophone Training 

The initial experiments that were performed on various databases (refer to 

Section 2.3) did not show any significant degradation in performance in the presence of 

transcription errors. Hence, the hypothesis is that the state occupancy values for the 

Table 3. Average state occupancy values for the center state in the model ‘ow’ in the 
correct transcriptions and the model ‘ay’ in the incorrect transcriptions during 
monophone training. The state occupancy values are higher for the correct 
transcription. This difference widens after each iteration 

Iteration Center State 
of ‘ow’ 

Center State 
of ‘ay’ 

1 0.037 0.037 

2 0.122 0.057 

3 0.355 0.078 

4 0.590 0.150 

5 0.633 0.150 

6 0.634 0.173 

7 0.641 0.159 

8 0.639 0.153 

9 0.660 0.143 

10 0.655 0.153 

11 0.659 0.155 

12 0.660 0.151 
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frames with erroneous data are very low and do not contribute to the model reestimation 

process. To verify this hypothesis, the state occupancy for the center state of the phone 

‘ay’ was observed for the incorrect utterances (the utterances in which the word ‘o’ was 

replaced with the word ‘i’). Similarly, the state occupancy for the center state of the phone 

‘ow’ was also observed for the correct utterances (the 100 correct utterances that were 

added later to the list). The state occupancies were analyzed for all iterations of flat start 

and monophone training. Also, the state occupancy values were normalized by the number 

of frames for which their values were greater than zero. The normalized state occupancy 

values for the center state of the model ‘ay’ and ‘ow’ corresponding to the incorrect and 

correct utterances is shown for all stages of flat start and monophone training in Table 3. 

It can be seen that the state occupancy values for the correct center state 

(corresponding to the model ‘ow’) are significantly higher than that of the incorrect center 

state (corresponding to the model ‘ay’). Also, it was observed that the number of frames 

for which the state occupancies were greater than zero is significantly more for the correct 

state than for the incorrect state. In the utterances with transcription errors, the erroneous 

data typically gets mapped to the silence model. This shields the center state of the ‘ay’ 

model from the erroneous data. The incorrect data that occurs when ‘ay’ is substituted for 

‘ow’, is mostly rejected during the training process due to its low state occupancy value. 

Hence, the model learns very little from the incorrect data. 

To verify how much the erroneous data contributes to the reestimation of the 

model (‘ay’ in this case), the state occupancy of the center state of the model ‘ay’ was 

analyzed from 275 correct utterances (without any transcription error). The state 
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occupancy for the center state of ‘ay’ in these 275 correct utterances was observed to be 

0.53 after normalization while the state occupancy of ‘ay’ from the incorrect utterance is 

0.148. This shows that the incorrect data does not contribute to the overall reestimation 

process significantly since its weights are low. 

3.3. Context-Dependent Training 

Context-dependent training is performed after the monophone models are 

completely estimated. In this section, we analyze the effect of context dependency and 

data sharing via state tying on the training process in the presence of transcription errors. 

As in monophone training, one would expect the state occupancy values to be low for 

incorrect transcriptions and hence not contribute significantly to the reestimation process. 

But in the case of context-dependent training, each context-dependent model gets a 

Table 4. Average state occupancy values for the model ‘sil-ay+ey’ during 
context-dependent training before state tying. The average state occupancy value 
for the model in the correct transcriptions is significantly more than those in the 
incorrect transcriptions 

Iteration 
Average State 

Occupancy for Correct 
Transcriptions 

Average State Occupancy for 
Incorrect Transcriptions 

1 0.5223 0.0794 

2 0.5808 0.0871 

3 0.5827 0.1201 

4 0.5772 0.1461 



38 

smaller amount of training data compared to the monophone models. Hence, the 

percentage of incorrect data the model sees is likely to increase. It is possible that the 

incorrect data contributes more to the reestimation process and the models can become 

corrupted. 

The cross-word model ‘sil-ay+ey’ was chosen for analysis from the cross-word 

transcriptions. This model occurs 25 times in the chosen set of utterances of which 4 

occurrences were due to the transcription errors introduced earlier as described in 

Section 3.1. This amounts to a 16% transcription error for this triphone model. Another 

model ‘f-ay+eh’ was also considered for analysis. This model occurs only three times, and 

two of these occurrences were due to transcription errors. Hence, this model has a 66% 

transcription error at the start of context-dependent training. 

Table 5. Average state occupancy values for the model ‘sil-ay+ey’ during 
context-dependent training after state tying. The transcription error rate is reduced 
from 16% to 0.05% by performing state tying 

Iterations 
Average State 
Occupancy for 

Correct Transcription 

Average State 
Occupancy for Incorrect 

Transcription 

1 0.5829 0.1490 

2 0.5807 0.0851 

3 0.5913 0.0873 

4 0.5915 0.0873 

5 0.5910 0.0876 
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The state occupancy for the center state for the model ‘sil-ay+ey’ is observed for 

both correct and incorrect transcriptions. This is done for the four iterations of 

context-dependent training before state tying. The state occupancy values are tabulated in 

Table 4. The state occupancy for the correct state stabilizes at 0.57 after 4 iterations. The 

state occupancy values for the state in the incorrect transcriptions increases after every 

iteration. The reason behind high state occupancy values for the state in the correct 

transcriptions is that the context-dependent models were seeded from well-trained 

monophone models. The state occupancy values for the state occurring in the correct 

transcriptions are significantly higher when compared to the state occurring in the 

incorrect transcriptions even during the first iteration. But due to a relatively high 

transcription error rate (16% in the case of the model ‘sil-ay+ey’), the state occupancy 

values increase after every iteration for the state in the incorrect transcription. However, 

this is insufficient to corrupt the model reestimation process. 

During state tying the states of context-dependent models are tied together based 

on several conditions which are estimated in a data-driven framework [42]. The 

state-tying mechanism attempts to increase the amount of training data for each 

context-dependent model. The transcription errors for the models can change depending 

on the actual data that was shared. If the amount of correct data that is shared outweighs 

the incorrect data then the transcription errors decrease. This would in turn result in the 

state occupancy values for the states occurring in the incorrect transcriptions to decrease. 

Hence, the model would be less corrupted during the reestimation process as a result of 

state tying. The following analysis is performed to evaluate the above hypothesis. 
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Table 6. Average state occupancy values for the model ‘f-ay+eh’. The state occupancy 
values decrease from 0.56 before state tying to 0.16 after five passes of training 

Iterations Average State Occupancy in 
Incorrect Transcriptions 

1 0.3246 

2 0.2020 

3 0.2059 

4 0.1726 

5 0.1621 

After state tying is performed, the center state of ‘sil-ay+ey’ is shared with other 

models. This increases the number of instances of correct data for this model from 25 to 

190 while the number of incorrect instances increases from 4 to 10. The transcription error 

rate for the model ‘sil-ay+ey’ is reduced to 0.05%. After state tying, 5 more iterations of 

training were performed and the state occupancies were observed for the center state 

occurring in the correct and incorrect transcriptions. The results are tabulated for the 

model ‘sil-ay+ey’ in Table 5. 

Table 5 shows that the state occupancy value reduces after each iteration for the 

center state of the model ‘sil-ay+ey’ in the incorrect transcriptions. It can also be seen that 

the state occupancy value for the state occurring in the correct transcriptions increases 

after each iteration. This is because the transcription error reduces after state tying and the 

model is now exposed to more clean data than it was before state tying. Hence, the model 

effectively rejects the incorrect data better than it did before state tying. The state 
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Table 7. Average state occupancy values for the model ‘sil-ay+eh’ after each stage of 
mixture training. 

Training Stage State occupancy in 
correct transcriptions 

State Occupancy in 
incorrect transcriptions 

After 1mixture 0.5372 0.1488 

After 2mixture 0.5384 0.1404 

After 4 mixture 0.5644 0.1282 

occupancy value for the center state in the incorrect transcriptions decreases drastically 

after the first iteration and stabilizes after that at 0.08. 

The model ‘f-ay+eh’ was also used to verify the hypothesis that state tying 

improves robustness to incorrect transcriptions. This context-dependent model had a 

transcription error of 66% before state tying. Before state tying, the average state 

occupancy value for this model in the incorrect transcriptions was 0.56. State tying 

significantly decreases the effective transcription error for this model. The state 

occupancies for the center state of the model ‘f-ay+eh’ in incorrect transcriptions are 

shown in Table 6. The state occupancy value decreases rapidly from 0.56 before 

state-tying to 0.16 after 5 passes of reestimation. This shows that state tying adds 

robustness to the training process by decreasing the transcription error and preventing the 

models from getting corrupted. 
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3.4. Mixture Training 

To analyze the effect of transcription errors on multiple Gaussian mixtures per 

state, an experimental setup similar to monophone and triphone training was used. The 

idea behind multi-mixture Gaussians per state is that each Gaussian mixture component 

can model the variations in the training data. One Gaussian mixture in a state can model 

the erroneous portion of the data for that model. If this were to happen then the state 

occupancy values would increase even for the incorrect portion of the data since at least 

one Gaussian mixture component would closely match the data. On the other hand, if 

there are several modalities in the correct portion of the data, then the incorrect portion of 

the data would be further rejected and hence have low state occupancy values. This 

hypothesis is verified in the following analysis. 

In order to verify this hypothesis, the state occupancy for the center state of the 

model ‘sil-ay+ey’ was observed for the correct and incorrect transcriptions. The results are 

tabulated in Table 7. It can be seen from the table that the state occupancy values for the 

states in the incorrect transcriptions are again lower than that for the center state in the 

correct transcriptions. Also, the state occupancy values for the center states in incorrect 

transcriptions decreases as the number of mixtures is increased. This is because the initial 

estimates for the Gaussian mixtures are chosen from well-trained single mixture models. 

Also, during the mixture splitting process, only the mean is perturbed and the variance of 

the original Gaussian is left unchanged. This results in peaky models even during the 

beginning of the mixture training process. This means that the correct portion of the data 

gains more prominence even during the first pass of mixture training. As the number of 
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mixtures is increased, the model tries to capture all the modalities in the correct portion of 

the data since it is present in large quantities. Thus the incorrect data is rejected in most of 

the cases and does not gain any prominence in any of the mixtures. 

3.5. Conclusions 

From the analysis performed in this chapter, it can be seen that the transcription 

errors do not corrupt the acoustic models significantly. This is primarily due to the fact 

that the Gaussian mixtures that are used to model the underlying distribution need a large 

amount of incorrect data to get corrupted. But since the incorrect data is usually present in 

very small amounts compared to the correct data, the models are not corrupted 

significantly. This leads to the effective rejection of incorrect data. The process of 

iteratively training the models also adds more robustness to the acoustic models. Also, the 

process of state tying helps in reducing transcription errors by sharing data across different 

states. This is particularly helpful when the amount of incorrect data tends to increase at 

the start of context-dependent training. As the number of mixtures is increased, the 

incorrect portion of the data is further rejected since each mixture tries to capture the 

variations in the correct portion of the data and none of the mixtures components model 

the incorrect data. 



CHAPTER IV 

CONCLUSIONS AND FUTURE WORK 

The previous chapters of this thesis analyzed the effects of transcription errors on 

the accuracy of a speech recognition system. The training procedure and practical issues in 

training a speech recognition system were discussed in detail. Experiments performed on 

different corpora suggest that transcription errors do not cause severe degradation in the 

performance of a recognition system. This is primarily due to the fact that the Gaussian 

distributions tend to cluster around the majority of the correct data and the outliers 

(incorrect data) do not contribute much to the reestimation process. It was also observed 

that the algorithms used for training give lower weight to the mislabeled data, thereby 

reducing their contribution to the acoustic model estimates significantly. 

4.1. Thesis Contribution 

This thesis has explored the robustness of training algorithms to mislabeled data at 

a fundamental level. This is done by analyzing different types of transcription errors on 

three different databases: TIDigits, Alphadigits and Switchboard. For Alphadigits, at a 2% 

transcription error rate, the performance of the system was not affected. With 16% of the 

data mislabeled, the performance of the system degrades by 12% relative to the baseline 

44 



45 

results. For a complex task like Switchboard, at 16% mislabeled training data, the 

performance of the system degrades by 8.5% relative to the baseline results. 

The work presented in this thesis also explores the robustness of the training 

algorithms in the presence of mislabeled transcriptions at a probabilistic level. This was 

done by analyzing the state occupancies of the correct and mislabeled data at every stage 

of the training process. The results indicate that it is not necessary to have a very clean 

database for training. The startup cost of training a system can be reduced and the amount 

of training data can be increased by using other source of transcriptions such as 

closed-caption data [46,47,63]. 

4.2. Experimental Setup and Results 

Experiments for this thesis were performed by introducing errors into the three 

databases. Automated scripts were developed which introduce errors in the corpora in a 

controlled fashion. The initial experiments on these databases show that the transcription 

errors do not degrade the performance of the system. To simplify the computations and for 

easy visualization, simulated experiments were performed using one-dimensional data. 

These experiments indicate that the Gaussian distributions that are used to model the data 

are robust to mislabeled data. In other words, they reject the outliers (mislabeled data) 

present in small quantities compared to the correct data. 

Further experiments were performed, as described in Chapter 3, to understand the 

effects of transcription errors on the overall acoustic model training process. A small 

subset of Alphadigits data was used for these experiments. Every stage of the training 

process was analyzed. The state occupancy values are very low for the mislabeled data 
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when compared to the correct data. Hence, the erroneous data does not have a significant 

contribution in the model reestimation process. Also, the process of state tying adds 

robustness to the overall training process by sharing states across the models. This helps in 

the increasing the amount of correct data during context-dependent training, thereby 

further reducing the contribution of the mislabeled data to the model reestimation process. 

4.3. Future Work 

Though the best performance from a system is obtained by using a clean set of 

transcriptions, the results of this thesis have proven that highly accurate transcriptions are 

not essential for training an acoustic model. It is possible to closely match the performance 

of such a system by using other sources of transcriptions such as closed captions, provided 

there is ample data to overcome the deficiencies of the transcriptions. It would be 

interesting to quantify how much of these other sources of data are required to match a 

clean set of transcriptions in terms of system performance. For example, the system could 

be 90% accurate using 10 hours of clean training data on a database of interest. It is 

possible that this performance can be matched by using a significantly larger amount of 

noisy data. Quantifying the exact amount of noisy training data needed to match the 

performance of clean training data can be an interesting research area to explore in the 

future. 

The experiments performed in this thesis have shown that the Gaussian 

distributions are more robust to erroneous data because they tend to cluster around large 
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quantities of clean data. Since the mislabeled training data are present in small quantities, 

the Gaussian distribution rejects them as outliers and this adds to the robustness to the 

overall training process. Another interesting topic for future research would be to analyze 

whether the training procedure is equally robust when using non-Gaussian statistical 

models such as Laplacian distributions [64,65] to model the data. 
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	INTRODUCTION


	An automatic speech recognition system is a machine that converts the input speech signal to text...
	The problem of recognizing speech can be formulated mathematically using Bayes theory�[1]. The pr...
	(1)

	The recognizer should choose the most likely word sequence given the acoustic evidence and a voca...
	, (2)

	where is the probability of the string of words and is usually given by the language model�[1]. i...
	. (3)

	is estimated using an acoustic model which is trained from audio speech data and transcriptions. ...
	1.1.� Overview of a Speech Recognition System

	A speech recognition system consists of three major components. They are the acoustic front end t...
	The speech signal and the spectrogram of an utterance “one one one” are shown in Figure�1. Since ...
	Typically, speech recognition systems generate a 39-dimensional feature vector. Some normalizatio...
	Acoustic models used in speech recognition are typically based on hidden Markov models�(HMM) [1,3...
	The output probability distribution at each state of an HMM is a continuous probability distribut...
	(4)

	where is the dimension of the observation vector and the subscript j denotes the jth state. Model...
	The decoder finds the best possible word sequence given a set of acoustic models and a set of inp...
	1.2.� Supervised Learning in Speech Recognition

	Learning [3] is an algorithmic process of reducing the modeling error on a set of training data. ...
	In a speech recognition system, the maximization of the probability in�(3) defines the process of...
	, (5)

	is defined as the probability of the partial observation sequence (until time t) and being in the...
	Similarly, a backward probability is given by
	, (6)

	which is the probability of the partial observation sequence from to the end of the utterance, gi...
	The parameters of the Gaussian distribution, namely the mean and the covariance, are reestimated ...
	, (7)

	where is the state occupancy probability, is the total number of observations, is the total durat...
	The state occupancy probability is given by
	, (8)

	where is the probability of the utterance and is used as a normalization factor. Similarly, the c...
	(9)
	(10)

	According to the EM algorithm, the Baum-Welch reestimation procedure guarantees a monotonic likel...
	1.3.� Practical Issues in Training

	The theory behind supervised training was discussed in the previous section. However, in order to...
	To begin the supervised training process, transcriptions should be available for all speech train...
	In a large vocabulary system, the words are broken into sub-word units called phones and acoustic...
	Examples of context�independent and context�dependent models are shown in Figure�3. In a typical ...
	Many recognition systems use some kind of acoustic model to capture the interword silence�[35,41]...
	A related problem is that some words can have multiple pronunciations. It is expensive and time�c...
	In order to train context-dependent models, often referred to as triphone models, context-depende...
	After the context-dependent models are sufficiently trained, models with multiple Gaussian mixtur...
	It is not necessary that the above-mentioned training procedure be followed in all applications. ...
	1.4.� Thesis Objective and Organization

	The primary objective of this thesis is to analyze the performance of a speech recognition system...
	The thesis is organized in as follows. Chapter 2 describes the experimental design for the thesis...
	CHAPTER II
	EXPERIMENTAL PARADIGM


	The primary objective of this thesis is to explore the effect of transcription errors on the over...
	2.1.� Corpora

	The effect of the transcription errors could be vastly different across different databases. Ther...
	TIDigits database was collected by Texas Instruments in 1983 to establish a common baseline for p...
	The Alphadigits�(AD) database was collected by OGI�[48,52] and the vocabulary includes all letter...
	The most widely used database for large vocabulary conversational speech is the Switchboard�(SWB)...
	The quality of the reference transcriptions has always been an issue, and was a major motivation ...
	2.2.� Introducing Errors

	To analyze the performance of a system trained on erroneous transcriptions, transcription errors ...
	Before introducing errors into a database, it is necessary to understand the types of errors that...
	When the errors were introduced in the database for this thesis, only the substitution, deletion ...
	The process of introducing transcription errors is described below. The total number of words in ...
	The process used to introduce errors as discussed above was used for relatively small vocabulary ...
	2.3.� Experimental Results

	As mentioned earlier, experiments were performed on three databases: TIDigits, Alphadigits and Sw...
	Experiments for TIDigits were performed on a standard training set of 12,549 utterances and a sta...
	The results are shown in the form of a graph in Figures�4�and�5. The independent variable is the ...
	Alphadigits experiments were performed using a standard training set of 51,544 utterances and a t...
	Training for SWB was performed using the SWB-I training set�[60,61]. This amounted to 60 hours of...
	It can be observed from Table�1 that the transcription errors do not make a significant impact on...
	2.4.� Simulated Experiments

	Simulation is a process of designing a model of the real system and performing experiments with t...
	An important problem with real speech recognition data is the dimensionality�of the space in whic...
	The experimental setup for the simulated experiments is discussed below. Two Gaussian distributio...
	The goal of the simulated experiment is to quantify the effect of erroneous data on the estimated...
	, (11)

	where and are two continuous distributions. The K-L distance measure is asymmetric, because if an...
	The probability of error measures the theoretical error between two distributions and is given by
	, (12)

	where and are the two regions after classification, belonging to the two classes and and is the i...
	For the simulated experiments, the new estimated distribution is used to define the decision boun...
	Two experiments were performed using the above described simulated setup to determine how acousti...
	It can be seen in Table�2 that the probability of error is high even at a 0% percent transcriptio...
	In this chapter, the corpora in which the experiments were performed were discussed. The procedur...
	CHAPTER III
	EXPERIMENTAL ANALYSIS


	In chapter 2, it was observed that the transcription errors do not cause any significant degradat...
	3.1.� Experimental Setup

	In chapter 1, we saw that during the training process, the training data is normalized by a value...
	(13)

	where is the state occupancy probability, is the total number of observations, is the total durat...
	The state occupancy value can also be defined as the probability of the input data belonging to t...
	To analyze the robustness of the training process in the presence of transcription errors, a subs...
	The experiments were performed to verify the following hypotheses:
	3.2.� Flat Start And Monophone Training

	The initial experiments that were performed on various databases (refer to Section�2.3) did not s...
	It can be seen that the state occupancy values for the correct center state (corresponding to the...
	To verify how much the erroneous data contributes to the reestimation of the model (‘ay’ in this ...
	3.3.� Context-Dependent Training

	Context-dependent training is performed after the monophone models are completely estimated. In t...
	The cross�word model ‘sil-ay+ey’ was chosen for analysis from the cross-word transcriptions. This...
	The state occupancy for the center state for the model ‘sil-ay+ey’ is observed for both correct a...
	During state tying the states of context-dependent models are tied together based on several cond...
	After state tying is performed, the center state of ‘sil-ay+ey’ is shared with other models. This...
	Table�5 shows that the state occupancy value reduces after each iteration for the center state of...
	The model ‘f-ay+eh’ was also used to verify the hypothesis that state tying improves robustness t...
	3.4.� Mixture Training

	To analyze the effect of transcription errors on multiple Gaussian mixtures per state, an experim...
	In order to verify this hypothesis, the state occupancy for the center state of the model ‘sil-ay...
	3.5.� Conclusions

	From the analysis performed in this chapter, it can be seen that the transcription errors do not ...
	CHAPTER IV
	CONCLUSIONS AND FUTURE WORK


	The previous chapters of this thesis analyzed the effects of transcription errors on the accuracy...
	4.1.� Thesis Contribution

	This thesis has explored the robustness of training algorithms to mislabeled data at a fundamenta...
	The work presented in this thesis also explores the robustness of the training algorithms in the ...
	4.2.� Experimental Setup and Results

	Experiments for this thesis were performed by introducing errors into the three databases. Automa...
	Further experiments were performed, as described in Chapter�3, to understand the effects of trans...
	4.3.� Future Work

	Though the best performance from a system is obtained by using a clean set of transcriptions, the...
	The experiments performed in this thesis have shown that the Gaussian distributions are more robu...
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