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This study investigates some of the basic aspects of conjugate, or coupled, heat 

transfer problems. The ultimate interest is in the improvement of an existing computation-

al fluid dynamics (CFD) code by the inclusion of such a coupling capability. Many CFD 

codes in the past have treated the thermal boundary conditions of a bounding solid as the 

simple cases of either a surface across which there is no heat flux, or as a surface along 

which the temperature is a constant with respect to both space and time. These conditions 

are acceptable for some applications, but many real-world problems require a more realis-

tic treatment of the thermal wall condition. 

A thermal coupling may be accomplished by maintaining a continuous heat flux 

and temperature across the fluid-solid boundary. A heat flux is calculated on the fluid-side 

of the interface, and this is used as a boundary condition for a heat-conduction solver to 

calculate the temperature field within the solid and return an interface temperature to the 

fluid. This process is executed for each time-step iteration of the code, and, therefore, the 

temperature field of the solid and the fluid-solid interface temperature are allowed to 

evolve with time and space. 



A new heat-conduction solver is developed and coupled with an existing flow 

solver. For this reason, some of the study is devoted to the testing of the accuracy of the 

new heat-conduction solver on simple problems for which there exist analytical solutions. 

Additional coverage is devoted to the possibility of thermal communication between solid 

grid blocks. This is due to the fact that multiple grid blocking of the solid may be required 

for more complex geometries. For such cases, a similar procedure as that described for the 

fluid-solid interface is used to accomplish the solid-solid block-to-block communication. 

Relatively simple test cases of fluid-solid and solid-solid coupling are conducted; 

these cases are limited to two-dimensional grids. Other limitations include: the assump-

tion of constant thermophysical properties for the solid, no consideration for thermal ex-

pansion of the solid, and no consideration for the radiation mode of heat transfer. The re-

sults indicate that the heat-conduction/flow solver shows potential. 
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CHAPTER I 

INTRODUCTION 

The technology and application of computational science have advanced greatly 

over the past fifteen years, the last ten especially. Research into numerical techniques and 

grid generation and certainly the rapid advancement of computer speed and memory capa-

bility have aided this growth of the computational sciences. The fields of computational 

fluid dynamics, heat transfer and solid mechanics continue to address ever-more challeng-

ing problems. Quite often, though, the three areas of fluid dynamics, heat transfer and sol-

id mechanics are treated independently of one another. For many applications this practice 

may be acceptable, but for many other problems the interaction, or coupling, of these dif-

ferent fields needs to be accounted for. In this work, the coupling of a heat-conduction 

solver with an existing flow solver will be investigated, the ultimate goal being to expand 

the area of application of this flow solver. 

Most flow solvers now make calculations that take into account the convective 

transport of mass, momentum and energy and diffusive transport of momentum and ener-

gy. The diffusive transport of energy is by heat conduction within the fluid. The typical 

solid-wall boundary conditions used to help solve the energy equation are either the adia-

batic wall condition (i.e., zero heat conduction across a solid boundary) or the condition of 

a constant-temperature wall. 

The existing flow solver is no exception to the above. The main code was devel-

oped over ten years ago by Arabshahi [1], and included the very useful capability to handle 

multi-block, structured grids in a relatively general format. That is to say, there is little or 

1 
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no restriction on the topology of the grids (0-, C-, or H-type may be used) or on the grid 

surfaces which are used for communicating with other blocks. This code carries the name 

"UBIFLOW". The numerical aspects of this solver are based on the work of Whitfield [2], 

and Whitfield, et al. [3]. An extensive investigation by Belk [ 4] into the actual communica-

tion concerns across grid block boundaries served as an important reference for [1]. All of 

these works were for the inviscid Euler equations as the mathematical model. Work by Simp-

son [5] and Gatlin [6] addressed the inclusion of diffusive effects into the governing equa-

tions, which served as a basis for further expanding the capability of [1] . 

An additional code development was made by Cox [7] (named "CHEQNS") whose 

work allowed for the treatment of equilibrium chemical reactions in the flow. A " black-

box" chemistry solver was attached to the flow solver of Ref. [l] to accomplish this. By as-

suming the reactions to be in local chemical equilibrium, the chemistry solver and flow solv-

er could be kept essentially separate. Therefore, the flow solver part of Cox [7] was for the 

most part the same as that by Arabshahi [1] . The CHEQNS code is the one involved in this 

work (although no chemically reacting flows will be included). 

All of the flow solvers mentioned above, having the capability to include diffusive 

effects, used simple thermal boundary conditions , such as those mentioned on the previous 

page. These codes, as well as many others over the years, have not addressed the coupling 

ofheat conduction within solid bodies that bound the flow, because this has been of little con-

cern. However, papers in the technical literature over the last five to ten years show an in-

creasing interest in this coupling of the solid heat conduction with the flow solver. This is 

often referred to as the conjugate (i.e., coupled) heat transfer problem. 

An early paper by Lau, et al. [8] looks at the problem of internal fins for the possible 

application to heat-exchanger problems. Works by Yu, et al. [9] , and Pozzi and Lupo [10] 

address the coupling of external flows with conduction in simple bodies such as flat plates, 

wedges, and cones. A work by Trevino, et al. [11] analyzes the forced convection between 
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two counter-flowing streams separated by a conducting plate. Coupled solid conduction and 

natural or mixed convection are studied by Joubert and Le Quere [ 12] and Bernier and Baliga 

[13]. These last two examples are, of course, low-speed flows. A study of conjugate heat 

transfer in high-speed flow was conducted by Shope [14]; this problem dealt with the cool-

ing of a nozzle wall for a supersonic wind tunnel. A recent study by Janus and Newman [15] 

looked at the coupling of aerodynamic and thermal effects for an optimization study of tur-

bine airfoil design. A paper by Rahaim, et al. [16] provides useful numerical and experimen-

tal data for coupled heat transfer in a high-speed flow. A very recent paper by Sondak and 

Dorney [17] investigates coupled unsteady flow and heat conduction for a turbine stage; this 

paper points out that the blocks within the conduction grid can be a potential source of nu-

merical problems (a point that will be discussed in the present work). Works by Chang and 

Payne [18] and Shyy and Burke [19] look more directly at the numerical problems involved 

at interfaces where an abrupt change in diffusion coefficients occurs. The former investi-

gates averaging of these interface coefficients, while the latter looks at the characteristics of 

solving a truly coupled convection-diffusion problem by iterative methods. Finally, a recent 

paper by Ruiz and Black [20] provides a technique for the zonal decomposition of solids and 

the thermal communication among these solid sub-blocks. 

The papers listed above cover a wide range of problem applications and are only a 

sampling of the work that has been done in this area. One of the most noticeable points dem-

onstrated by these previous works is that the interest in the coupling ofconduction heat trans-

fer with flow solvers is ever on the increase. 

The objective of the present study is to enhance the present flow solver resulting from 

the works of Arabshahi and Cox. Aspects of Arabshahi's work will be used in an effort to 

provide an arbitrary arrangement of grid blocks, both fluid and solid. A number of areas will 

not be addressed, however: these include the modeling of temperature-dependent and direc-

tion-dependent properties within the solid, the possibility of thermal expansion of the solid, 
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and the possibility of radiation heat transfer. These are all potentially very important aspects 

of the general problem, and will certainly need to be included in the future for more accurate 

simulations. However, it is felt that these may be neglected at this time in order to gain some 

basic understanding of the coupled problem. 

A portion of the present work involves the code development of a heat-conduction 

solver. The goal is to then add this solver to the present flow solver and to allow for the two 

to be used either together or separately by means of defining parameters within the general 

input file. 

The general outline of the dissertation is the following. The second chapter presents 

the governing equations for both the flow and heat-conduction solvers, which are included 

as useful reference material. The third chapter discusses the general numerical algorithm and 

methods. The fourth chapter discusses the possible means of block-to-block communica-

tion for both fluid-solid and solid-solid interfaces. Chapter five presents the primary results 

from this work. Because the heat-conduction solver is new, a portion of these results are for 

the validation of this code. Finally, chapter six offers a summary and some conclusions stem-

ming from this investigation. 



CHAPTER II 

GOVERNING EQUATIONS 

Flow Solver 

A computational fluid dynamics (CFD) or computational heat transfer (CHT) code 

accomplishes its task by modeling the physics of the problem of interest. The heart of the 

physics of such problems for a CFD code involves the conservation of three fundamental 

entities: mass, momentum, and energy. The conservation laws for a compressible, viscous 

and heat conducting fluid in an unsteady state are expressed mathematically as 

(2.1) 

(2.2) 

(2.3) 

Equation (2.1) represents the conservation of mass; Equation (2.2) represents the con-

servation of momentum, and Equation (2.3) represents the conservation of total energy. 

Each of these equations is applied to a small (ideally, infinitesimal) fluid volume. The 

above partial differential equations are very general in nature and may be applied to any 

coordinate system. Also included in these expressions are the assumptions of continuous 

media with body forces (e.g., gravitational effects) neglected and no volumetric heat gen-

eration or heat sources. The left-hand side of each equation represents the sum of the time 

5 
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rate of change of each conserved quantity within a given volume and the convective flux, 

or flow, of that quantity across the boundaries of the volume. Equations (2.2) and (2.3) 

have non-zero terms on the right-hand side, which represent the diffusive flux of these 

quantities across the volume boundaries. 

The symbols and physical parameters of the governing equations are defined in the 

nomenclature. Further (mathematical) definition of the stress tensor and total energy are 

given below: 

and 

As already mentioned, the governing equations as in their current format may be 

applied to any coordinate system. If the Cartesian system is preferred, the governing equa-

tions become Equations (2.4) through (2.8) 

ap a(pu) a(pv) a(pw) _ (mass) (2.4)at + ---a:x- + a;-- + az - 0 ' 

a(pu) a r 2 ) a ( ) a + ax lfU + p - 'l'.u + d}' puv - 'l'xy + az (puw - 'l'xz) = 0 , 
(x-momentum) (2.5) 

a(pv) a (p ) a r 2 ) a (p ) _+ ax UV - 'l'xy + ay lfV + p - 'l',;y + az VW - 'l'yz - 0 , 
(y-momentum) (2.6) 

a(pw) a a ( ) a ( 2 ) _at + ax (puw - 'l'xz) + ay pvw - 'l'yz + az pw + p - 'l'zz - 0 , 

(2.7)(z-momentum)a;t + ix [(et + p )u - U'l'.u - V'l'xy - W'l'xz + qx] 

+ t[(et + p )v - UTxy - VT}Y - WT yz + qy] 

+ fz[(et + p)w - U'l'xz - V'l'yz - W'l'zz + qz] = 0 (energy) (2.8) 
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Using the assumption of A= - 2/3 µ, the shear stress components of the stress tensor may 

be expressed as Equations (2.9) through (2.14). And further assuming there to be no direc-

(2.9) 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

tional dependence of the thermal conductivity of the fluid, the heat flux terms are given as 

Equation (2.15) 

qy = - 1/JT and q _ KaT ay, z = az (2.15)

Equations (2.1) through (2.3), or (2.4) through (2.8) are typically referred to as the 

Navier-Stokes equations and are considered the governing equations for time-dependent, 

compressible, viscous flow. Using these equations, the unknown variables 

p, pu, pv, pw, and e1 are determined. The additional thermodynamic variables, pres-

sure and temperature, may then be found by means of the equation of state and the relation 

of pressure to internal energy, namely 

p =pRT (ideal gas assumption) 
(2.16) 

and p = (y - l)pei (from ei = Cv T). 
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Governing Equations in Vector Form 

A compact form of Eqs. (2.4) - (2.8) is given by 

(2.17) 

In this sense, the unknown conservative variables (i.e., p, pu, pv, pw, and e1) are 

combined into one unknown entity, the "q" vector (not to be confused with the heat flux 

vector). This vector is defined as 

(2.18) 

The terms f, g, and h are referred to as the flux vectors, and, again, these terms represent 

the transport, by both convective and diffusive means, of mass, momentum, and energy 

across the bounding surfaces of a given control volume. These flux vectors are themselves 

functions of the q-vector, i.e., f =f(q), g =g(q), and h =h(q). The flux vectors are given in 

Equations (2.19) through (2.21) on the following page 

Scaling of the Governing Equations 

Until now, the governing equations have been assumed to be in terms of dimen-

sional variables. A step that is often necessary for computations of finite precision is that 

of scaling these variables to some non-dimensional form. This process allows the vari-

ables to be expressed in roughly the same order of magnitude, where large differences in 

magnitude may be present when in dimensional format. 

The scaled format is also a very general representation in which the entire problem 

is defined in terms of a few non-dimensional parameters. For example, the convective 

terms are linked to the Mach Number, the diffusive terms to the Reynolds Number (the 

viscous shear terms) and the Prandtl Number (the heat conduction terms). Spatial terms 
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pu 
pu2 + p - 'l'xx 

(2.19)f = puv - rxy 
puw - 'l'xz 
(et + p )u - U'l'xx - VT.xy - W'l'xz + qx 

pv 
puv - rxy 

(2.20)g = pv2 + p - ryy 
pvw - 'l'yz 
(et+ p )v - uryx - vryy - W'l'yz + qy 

pw 
puw - rzt 
pvw - Tzy (2.21)h= 
pw2 + P - 'l'zz 
(et + p )w - U'l'zt - V'l'zy - W'l'zz + qz 

are associated with a so-called characteristic length, and the thermodynamic aspect to the 

ratio of specific heats, y. Most of the flow solvers in use at MSU have been scaled in this 

manner (e.g., see Janus [21], Arabshahi [1], and Chen [22]). Mach Number, Reynolds 

Number, Prandtl Number, and y are all input, and the length is accounted for in the size of 

the grid (i.e. , the grid is in terms of the characteristic length). This is satisfactory so long as 

the gas in question is of a constant and uniform makeup. The solver used in this work has 

been modified by Cox [7] so as to allow for flows in which chemical ( equilibrium) reac-

tions are involved. In this type of flow, y will change with the chemical makeup; the flow 

variables can no longer be scaled by constant, free-stream values of the Mach, Reynolds, 

and Prandtl Numbers. Cox's method of scaling is similar to the "conventional" method 

(see Arabshahi [1]), with a few exceptions, and is shown on the following page. 



A 
A A y

X = ..L_ y=- z =--z 
L,e/ L,et' L,et' 

A 

A A a,e/u = ..1:!:.... w=-w t=-
a,ef' a,et' L,e/ 

A 

p 
-
- (pa2)

p 
' 

ref 
A 

TT=-
T,e/ 

where 

µ,ef = (paL)ref' K,ef = (µR)ref' a2ref = (RT)ref 

with 

R,ef = Universal Gas Constant 

In the following relations, the " " " and the subscript "ref" represent dimensional 

quantities. Instead of inputting the Reynolds and Prandtl Numbers directly, as in the pre-

vious codes, dimensional values of pressure, temperature, velocity, density, and energy 

and a designation of which pair of these variables to use is read for initialization and scal-

ing purposes. From the designated pair of thermodynamic variables, the others are then 

calculated and initial and reference values determined. Either Mach Number or velocity is 

still input and used to determine free-stream speed. For example, suppose free-stream val-

ues of pressure and temperature are designated for initialization and scaling. From this, 

free-stream speed of sound, total energy, velocity (from the input Mach Number), and 

density are calculated. The length scale is still accounted for in the grid, but instead of a 

so-called characteristic length, a length scale of one meter is used (i.e., the grid is in terms 

of meters). All of the information needed by the above relations is now available. By scal-

ing in this manner, the non-dimensional equations take the exact same form as the the di-
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mensional ones (i.e., Equation (2.17) with the vectors defined by Equations (2.18) through 

(2.21) ). 

Curvilinear Transformation 

The Cartesian reference frame is useful for expressing the vector and tensor quanti-

ties of the governing equations in their respective component forms. However, this refer-

ence frame is not very practical for "real-world" problems. A grid that conforms to the 

shape of the geometries involved is much more useful and greatly simplifies boundary 

condition treatment. In using a body-conforming grid, the physical space of the problem 

may be mapped to a simpler computational space (see Thompson, et al [23]). 

The three-dimensional, time-dependent, curvilinear coordinates are defined in a 

general form as 

£ = £(x,y,z,t), rJ = rJ(x,y,z,t), = ~(x,y,z,t), r = t . (2.22) 

By use of the chain rule, the following relations give the Cartesian derivatives in terms of 

their curvilinear counterparts: 

(2.23) 

The partial derivative terms in Equation (2.23) are given by the expressions at the top of 

following page. 
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utes on an SGI RIO000 processor for 21 different values of x, 3 different values of y, and 

only 1 value of time, t. Summing m and n to 10000 would increase this run time by rough-

ly a factor of 4, so that about an hour would be required to get temperature results for each 

value of time, with the same number of x and y values. 

The heat-conduction solver uses a grid of size 71 x 71 x 2 to discretize the 1 m x 1 

m physical domain; equal spacing gives grid cells that are approximately 1.43 cm x 1.43 

cm with a depth of 1 cm. A minimum time step of 0.01 seconds is used to march the solu-

tion to its steady state. Thermal diffusivity is not an input, per se, for the conduction solver. 

The density, specific heat, and thermal conductivity are input for the given solid material. 

The conductivity and specific heat of aluminum (167 W/(m- K) and 883 J/(kg- K), respec-

tively) were used, and the density was adjusted to a value of approximately 1.62 kg/m3 to 

match the diffusivity value for the analytical method above. A diffusivity of 0.117 m2/sec, 

time step of 0.01 sec, and cell length L = 0.0143 m results in a Fourier number of about 

5.73, which is roughly 23 times the explicit-limit value of 0.25 for two-dimensional prob-

lems. The boundaries at x =0 and x =1 m are specified to be at the constant temperature of 

300 K. The boundary at y = 0 is a constant heat flux of - 8350 W/m2 (this will match the 

temperature derivative specified for the analytical problem); that at y = 1 mis an adiabatic 

wall. 

The plots for this steady-state example are shown in the next three figures. Each is 

a graph of temperature vs x-direction at constant y-direction values of 0, 0.5 and 1.0 m, 

respectively. Each curve or group of symbols is for a different point in time; these plots 

show the transient of this problem as it advances to the steady state. As before, the symbols 

represent the analytical results (Equation (5.7)), and the solid curves are for the conduction 

solver results. All of the plots have the same minimum and maximum values of tempera-

ture to give a visual impression of the relative change experienced at the different y-direc-

tion values within the slab. 
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heat flux will adjust accordingly, resulting in the smaller magnitude of the x-wall tempera-

ture derivatives. 

In summary, these results show good agreement between the results of conduction 

solver and Equation (5.7). The maximum discrepancy appears to be no worse than 0.5 de-

grees in magnitude at any point, and this seems acceptable considering the use of first-or-

der time accuracy and a moderate time-step for the conduction solver. 

Next an unsteady, two-dimensional case was run. The parameters used were simi-

lar to those before, the exception being the boundary condition at x = 1 m. Before, this 

boundary condition was set to a constant temperature of 300 K; this will be changed to a 

Neumann condition that is a sinusoidal function of time (same at all y- locations). The 

magnitude of the derivative will be the same as that for they = 0 boundary from the prior 

case, with a frequency of 1.25 Hz (i.e. dT/dxlx,,,l =50 sin rnt Kim, rn =2.5:n sec1). 

The change in the boundary condition will also mean a change in the analytical 

expression for T(x,y,t). The transform kernels remain unchanged, as do the v-eigenvalues; 

the change is to the ~-eigenvalues. The new ~-eigenvalues are the positive roots of: 

cos(f3ma) = 0 =;, f3m = [(2m + l)n]/(2a) , m = 0, 1, 2, ... (5.11) 

Yet another small code to approximate Equation (5.7) is needed as a result of the new 

time-dependent boundary condition. The summations will again be stopped at 5000 for 

both them and n eigenvalue parameters. 

The same grid will be used for the conduction solver. The x = 1 m boundary condi-

tion was changed, with the heat flux at this boundary set to q~ Ix= 1 = 8350 sin wt W /m2 , 

w = 2.5Jt sec 1. The time step was reduced from 0.01 to 0.002 seconds, resulting in a 

Fourier number of about 1.15, and the test run from t = 0 tot= 5 seconds. 

Figure 5.6 through Figure 5.8 show temperature is plotted vs x-direction at y-di-

rection values of 0, 0.5 and 1 m, respectively. The pattern of the plots is similar at these 
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different y locations, with the most noticeable effect at the y = 0 location and a diminishing 

effect away from this boundary. As before, each plot uses the same temperature scale to 

help show this decreasing effect at the interior y-values. 

At time values of 1 and 5 seconds, sin (wt)= 1; therefore the heat flux will be exit-

ing the boundary at its maximum magnitude (8350). This is visible in each plot by the 

equal negative slope for both of these time curves. The opposite is true at t = 3 seconds 

where sin (wt)= -1 giving a heat flux of maximum magnitude entering the boundary. The 

boundary is adiabatic at the times of 2 and 4 seconds, where sin (wt) = 0. Both the 2- and 

4- second temperature curves are very nearly perpendicular to the y-axis at x = 1. The 

results of the analytical and numerical solutions agree very well, and they also behave as 

expected with respect to the specified boundary conditions. 

A time step of 0.002 seconds was used by the conduction solver for this case. A 

quick test case was run to see the effect of a much larger time step: this step value was 

increased to a value of 0.02 seconds, resulting in a Fourier number of approximately 11.5. 

The code behaved well with respect to stability, but the time accuracy of the results is no-

ticeably (and expectedly) worse than before. Figure 5.9 illustrates this point for they= 0 

boundary. 

The good results from both the 1-D and 2-D test cases suggest that the heat-con-

duction solver works well. The implicit nature of the solver provides good numerical sta-

bility; this was demonstrated in both cases with Fourier numbers significantly larger than 

the explicit limit. The conduction solver used only one grid block for each of these test 

cases. The next step is to address the thermal block-to-block communication if more than 

one grid block is required for a solid region. 
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then passed to the higher-numbered block for use as its boundary condition. The ratio of 

diffusi vities at an interface is Ra = a1owcr / ahiohcr 
I;> 

. 

As a first example, suppose that Ra > 1; the diffusivity of the lower-numbered 

block is then the greater of the two and that block will experience a greater change than the 

higher-numbered block, assuming the same grid size on both sides of the interface for 

some given time step. In this methodology the lower-numbered block is the "initiator" of 

action at the interface; the higher-numbered block takes the supplied boundary condition 

and then provides a "response" (in the form of a interface temperature) to the lower block. 

For the case of Ra> 1, the lower-numbered block provides a boundary condition that the 

higher block can not adequately respond to. The temperatures along the interface will di-

verge quickly to non-physical values. The greater the value of Ra, the worse is this prob-

lem. 

Another way to look at this situation is in terms of the grid-cell Fourier number at 

the interface, and this is where interface grid spacing (and thus cell size) comes into play. 

Initially, the grid spacings were specified as being the same at the interface (though non-

uniform for the g1id block itself). By increasing the spacing in the lower-numbered block 

(of higher diffusivity), the grid-cell Fourier number is reduced. The lower the block 1 

grid-cell Fourier number relative to that of block 2, the more stable the interface commu-

nication was found to be. 

Assume block 1 to consist of silver and block 2 of bronze; the value of Ra is then 

approximately 12.4. A grid spacing of 0.001 mis given for either side of the interface with 

equal grid sizes of 41 x 71 x 2; an initial time- step value of 0.2 seconds is specified. The 

calculation aborts in less than 10 iterations after a negative (absolute) temperature is calcu-

lated. Reducing the time step by a factor of 10 still fails to get the solver past 10 iterations. 

In fact, continuing to make order-of-magnitude reductions in the time step gains little. 

However, by increasing the size of the cell on the silver side of the interface, some success 
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is found. By increasing the interface spacing of the silver block to 0.024 m (the maximum 

i-dimension value is also reduced from 41 to 36), a time step of 0.2 could be used. Of 

course, this increasing of cell size should be held somewhat in check so as to maintain as 

much possible accuracy of the temperature derivative at the interface. 

Plots of temperature vs x-direction, for various y-direction values and a given 

time, are shown in Figure 5 .10 through Figure 5 .12. Pictures of temperature contours for 

two different times are given in Figure 5.13 and Figure 5.14. All of these figures give a 

good view as to how each side of the interface progresses and the abrupt change in slope of 

the temperature plots at the interface. 

As a short side note, there is nothing special about the value of 0.2 for time step. 

The purpose here is to gain some idea of what is necessary to get a relatively high value of 

time step and still maintain numerical stability with these explicit block-to-block bound-

aries. As will be seen later, the time step values required for fluid-solid thermal coupling 

are often governed by the fluid aspect of the problem; this is certainly true in high-speed 

flows. lf time step values on the order of 0.01 seconds or greater can be obtained for solid 

block- to- block grids, then numerical stability at these boundaries should be of little con-

cern in fluid-solid coupling problems. The required time steps for the fluid aspect of the 

problem are often at least an order of magnitude smaller than that for the solid. 

Assume now that the blocking arrangement from the previous page is reversed, 

with block I being bronze and block 2 being silver. The value for Ra is now less than one. 

Assume, too, that the grid spacings on either side of the interface are again equal (0.001 m 

with grid sizes of 41 x 71 x 2). Block l will pass a heat- flux boundary condition to block 2 

as before. In this case, however, block 1 has the smaller diffusivity and will naturally prog-

ress at a slower thermal rate compared to block 2. That is, the grid-cell Fourier numbers of 

block l are already lower than those of block 2 without any changes in cell size needed. 
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stSimulation runs with time steps of 1 second were successful using 1 -order time accuracy. 

Time-step runs of 2 seconds were successful by increasing time accuracy to 2nd-order. 

Another favorable aspect of the bronze-silver blocking arrangement has to do with 

adequate resolution of the interface derivatives. Since the conductivity of bronze is much 

less than that of silver (i.e., RK = 1<:lowc/Khighcr < 1), the temperature derivative on the 

bronze-side of the interface will be much greater than that of the silver side. Therefore, if 

sufficient grid spacing is specified for resolution of the derivative on the bronze side, equal 

spacing on the silver side will be more than enough for resolution of its derivative. 

Another small test was run in which the spacing on the silver side of the interface 

was set to double that of the bronze side (i.e., 0.001 m for bronze, 0.002 m for silver). This 

test was just to see what, if any, effect would result, since the equal spacing of 0.001 m on 

the silver side was not required from the derivative resolution standpoint. The stability de-

teriorated, and a smaller time step than before was required. Doubling the grid size re-

duced the Fourier number of the silver-side grid cells, which is a less stable situation. 

Since the action of the previous paragraph destabilized the interface, another small 

test was tried in which the silver-side grid spacing at the interface was the reduced from 

0.001 m to 0.0005 m. Now the Fourier number of the grid cells of the silver block (at the 

interface) was increased by roughly a factor of 4 over that of the 0.001-spacing, thus d1iv-

ing the respective Fourier numbers farther apart to the more stable condition. These results 

were quite interesting; time step values as high as 20 seconds were executed using l st-or-

der time accuracy with no problems. Figure 5.15 through Figure 5.17 compare the results 

of bronze-silver blocking an-angement canied at a time of 1,000 seconds and three differ-

ent values of they- direction. The first run used a time step of 1 second (1,000 iterations) 

with equal grid spacing of 0.001 m on both sides of the interface. The second and third 

runs are at time steps of 10 (100 iterations) and 20 (50 iterations) seconds, respectively. 

The results do not seem to differ greatly, considering the difference in time step size. 
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The previous example using bronze and silver as the two materials gives a relative-

ly large difference between both the diffusivities and conductivities. Another example us-

ing materials with prope1ties closer in value will be examined to gain some idea of this 

effect. The materials of aluminum and copper are chosen for this case. The nominal prop-

erty values are: 'Kcopper = 401 W/(m-K), Ccopper = 385 J/(kg-K), Pcopper = 8933 kg/m3 and 

= 237 W/(m-K), = 903 J/(kg-K), = 2702 kg/m3 'Kaluminum CaJuminum Patuminum . The result-

ing diffusivity values are approximately acopper = 1.17e-04 m2/sec and aaluminum = 

9.7e-05 m2/sec. The ratios of both diffusivity and conductivity (copper/aluminum) are be-

tween 1 and 2. With diffusivities so close in value, the respective Fourier numbers at the 

interface will be closer in value than previously. The same grid size as before is used, as 

well as an equal interface grid spacing of 0.001 m. Also, the initial and boundary condi-

tions from before are used. The aluminum block is designated block 1, the copper one 

block 2. 

The bronze-silver example demonstrated that the greater the difference in Fourier 

numbers at the interface, the more stable the problem. The diffusivities, and thus naturally 

the Fourier numbers, for this case of copper and aluminum are much closer than before. 

This fact suggests that the maximum achievable time steps will be smaller than previously, 

and this is indeed the case. A time-step value of approximately 0.05 seconds turns out to 

be the maximum attainable for this grid and its accompanying initial and boundary condi-

tions with 1st-order time accuracy (lower-numbered block is aluminum, higher-num-

bered one is copper). Increasing the time accuracy to 2nd-order allows the time step to be 

increased to roughly that of 0.075 seconds. Figure 5.18 through Figure 5.20 shows that the 

thermal effects are progressing, as expected, at almost the same pace throughout the solid. 

Also, the change in the temperature plot at the interface is much less abrupt due to the 

relatively close conductivity values. 
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the time steps involved (these values were small due to the fluid part of the problem). 

There was still a desire to reduce the concern of time-step limitations due to possible solid 

block-to-block interfaces, since it is felt that a significant number of fluid-solid problems 

will involve a homogeneous solid. A basic description of a different method of block cou-

pling within the Gauss-Seidel iteration loop was given in the previous chapter. The 

strength of this method is that it should give the same results as if there were only one solid 

grid block; this allows for larger time-step values. 

As a quick reminder, this "Gauss-Seidel coupling" primarily consists of reversing 

the orders of the grid-block loop and the Gauss-Seidel loop (i.e., the block loop is now 

contained within the Gauss- Seidel loop rather than vice- versa). Also, the part of the solu-

tion vector (that is, the Tn values for each grid cell) along the interface is passed from 

block to block instead of heat-flux or temperature boundary conditions. 

Testing of this procedure was accomplished by using the same basic two-dimen-

sional slab grid (along with the same initial and boundary conditions) as that for the 2-D 

validation of the conduction solver, since both analytical and single-block numerical re-

sults are already available for comparison. The I-block grid size from the validation case 

is 71 x 71 x 2; this will be divided at the x = 0.5 point into two blocks of 36 x 71 x 2 

(evenly spaced). Only the unsteady problem from above will be discussed (time step = 

0.002 seconds with a Fo = 1.15). 

The comparison is made to the numerical results from the validation case. Tf the 

code works correctly, there should be no difference between the 1-block and 2-block re-

sults. The I- block case compared very well with the analytical solution, so comparison of 

the numerical results of the 1-block and 2-block cases should be sufficient. Figure 5.21 

through Figure 5 .23 show both the 1-block and 2-block results, with the 1-block numeri-

cal results represented by the symbols and the 2-block results by the curves: the solutions 

are the same. The values plotted in these figures are cell-centered values and have been 
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The simulation was run for 5,000 iterations (10 seconds). It was felt that this time 

length would be sufficient to reach a steady state, given the thickness of the plate. As it 

turns out, this was more than enough; interface temperatures near the leading edge (where 

the greatest temperature difference was seen) had settled out after the first 1,000 iterations. 

Figure 5.25 is a plot of the Nusselt Number vs streamwise direction, x. The circular 

symbols are for the theoretical solution given by Equation (5.12). The solid curve is from 

the coupled flow/heat-conduction solver and agrees well with the theoretical prediction. 

The actual heat flux values that are passed from the fluid block to the solid block and the x 

values of points along the boundary are output to a file. This file is then input to a small 

code that evaluates the convection coefficient along the boundary by means of Newton's 

law of cooling. Reynolds Number and Prandtl Number are calculated using fluid proper-

ties evaluated at the so-called "film temperature" (the simple average of the wall and 

free-stream temperatures, 180.5 Kin this case; Prandtl Number, too, is at this tempera-

ture). Nusselt Number is then calculated using the convection coefficient, the x-position, 

and the film-temperature conductivity. 

A plot of the numerical and theoretical convection coefficients vs the x- direction is 

given in Figure 5.26. The most disagreement here is in the region between the leading 

edge and x = 0.05 m, where the numerical values are slightly less than the theoretical (i.e., 

the curve appears to be at the "edge" of the circles representing theoretical values). This 

stands to reason in that the temperature values here are slightly less than 200 K due the 

conduction within the solid. Figure 5.27 is a close-up view of the temperature contours 

near the leading edge of the plate. The maximum temperature difference in the plate is just 

over 0.1 K. The " cold spot" , as much as it can be called that here, is at the leading edge. 

A second flat-plate test case was conducted with the same basic conditions as the 

one just described. ln this case, though, the thickness of the plate was increased to 0.05 m. 

Moreover, the plate conductivity was reduced by a factor of 100, in order to see a notice-
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able temperature difference in the direction normal to the fluid-solid interface. The plate 

density and specific heat were both reduced by a factor of 10 so that the plate diffusivity 

will remain the same as before. The combination of thicker plate and smaller conductivity 

(and thus larger temperature derivative) means that the number of points in the j-direction 

needs to be increased (this was set at 51, so the solid grid block is now 181 x 51 x 2). Since 

the plate is much thicker and the conductivity smaller, a higher temperature condition must 

be specified on the boundary opposite the fluid-solid interface G= 1), so that the tempera-

ture along this interface can be approximately 200 K; this new temperature condition is set 

to 203.5 K. The same time step of 0.002 seconds is used and the code is executed for 

20,000 iterations. The temperatures along the fluid- solid interface by this point have 

changed less than 0.05 K since the iteration count of 18,000 (i.e., the last 4 seconds). 

Figure 5.28 and Figure 5.29 are plots of the Nusselt Number and convection coef-

ficient ( vs x) for this thicker flat plate. The shapes of the respective curves are very close to 

those of the thin-plate case, and the agreement is close to the theoretical. And as for the 

thin plate, the primary difference between the numerical and theoretical results is in the 

region of x = 0.025 to x = 0.05 m. A greater temperature drop occurs across (i.e. , normal 

the fluid-solid interface) due to the smaller conductivity. Therefore, a smaller heat flux 

(relative to the theoretical) is experienced in the leading-edge region , and the convection 

coefficient curve is less than the theoretical here. 

Figure 5.30 is a view of the temperature contours within the plate; the general con-

tour pattern is very similar to the thin plate with the "cold spot" at the leading edge. T he 

interface temperature reaches a maximum of approximately 199 .6 Kand is within 0.1 K of 

this value over roughly the last 0.018 m (0.75 inches) of the plate. The contour pattern 

shows that heat flux in the solid (normal to the contours) has components both tangential 

and normal to the interface. 
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Figure 5.26 Convection Coefficient vs X for Thin Flat-Plate Test 
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Figure 5.25 Nusselt Number vs X for Thin Flat-Plate Test 

84 













90 

The most probable cause of this disagreement is the boundary conditions for the 

wedge. The paper by Rahaim did not specify the conditions used on the base of the wedge 

or at the two end faces (the constant-k boundaries for this case). This is a two-dimensional 

grid assumed to be a cross-sectional slice at the center of the wedge; for this first attempt 

at the problem, these boundaries were set to adiabatic wall conditions. During the early 

pati of the run, however, these boundary conditions would probably have little effect, and 

this is felt to be the reason for the good agreement within the first few seconds. 

Another test case was tried with this configuration to see if a change in the bound-

ary condition on the base of the wedge would have any effect. For this second case, the 

wedge (solid) grid was modified such that it was only one block. The three fluid blocks 

were combined into one, also. This change was made to see if the block-to-block bound-

aries had any effect on the disagreement just discussed. 

The wedge base was arbitrarily set to a constant temperature of 300 Kand main-

tained at this value of the first second of the run. After one second, the base temperature 

was further reduced to 220 K, in an effort to improve the agreement with the NASFLO 

solution. 

Figure 5.33 is the same as the previous one, except now the results from 

QCHEQNS with a 1-block fluid and 1-block solid grid are added. This plot shows practi-

cally no difference between the 4--block and 1-block wedge grids through t = 0.5 seconds. 

After that, the 1-block curve can be seen to be slightly below that of the 4-block grid 

curve. This effect can be seen more between t = 1 and t = 2 seconds, though the difference 

is still small. The agreement between the 1-block and 4-block curves in the early part of 

the run suggests that the block-to-block boundaries of the 4-block grid are working ap-

propriately and that the base boundary condition has yet to be felt. Where the base effect 

can be noticed, it is seen to be small. So the question of appropriate wedge boundary con-

ditions still remains, and the best answer probably lies with a full three-dimensional simu-
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not being supplied through any of the other boundaries (practically the same as the leading 

edge of the flat plate shown before). Consequently, the heat flow tends to become more 

and more in the direction of the nose. 

Figure 5.37 shows the temperature in the external flow about the wedge. The 

blunt-nosed wedge causes a detached bow shock, which is easily seen upstream of the 

nose. The fluid temperature approaches the stagnation temperature of 293 K (behind the 

shock and along the symmetry boundary), except right at the interface of the wedge; the 

fact that this stagnation temperature is below the temperature of the wedge is the reason 

for the nose being the coolest portion of the wedge. 

Transient Two-Dimensional Total-Temperature Probe 

The final test case that assumes the coupling of the flow solver with the heat-con-

duction solver is based on a total-temperature measuring probe. The description and tests 

of this device are given by Buttsworth, et al. [44]. Figure 5.38 gives a view of the overall 

grid structure. It consists of 4 fluid blocks and 1 solid block; the dimensions are given in 

the Table 5.7 following the figure . Initial spacing at the nose of the probe for the fluid 

block is 3e-06 m and 6e-06 m for the solid block modeling the probe. 

Again, a two-dimensional approximation is being made to what is indeed a three-

dimensional problem; the actual measuring device is composed of two cylindrical probes 

in close proximity, with nearly-spherical ends (one of these probes is heated, while the 

other is not). 

The test time is just over 0.5 seconds, and it is reasoned that little effect in the cir-

cumferential direction (with respect to heat flow) will occur in this time. Also, only one of 

the probes will be modeled since the measuring end of each experiences very nearly the 

same condition as the other. Therefore, a two-dimensional grid with adiabatic conditions 

is applied to the constant-k surfaces (again in the plane of flow) and a symmetry plane 

along the centerline is used. 
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Figure 5.34 Temperature Contours for 4-Block Blunt-Nosed Wedge, 
Time = 0.33 Seconds 
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Figure 5.35 Temperature Contours for 4-Block Blunt-Nosed Wedge, 
Time =0.65 Seconds 
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Figure 5.37 Temperature Contours of Flow External to Blunt-Nosed Wedge 
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Figure 5.36 Temperature Contours for 4-Block Blunt-Nosed Wedge, 
Time= 1.0 Second 
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Viscous fluxes for the j---direction (normal to the fluid-solid interface) were calculated 

with turbulent eddy viscosities included for the blocks nearest the probe. 

The solid block was initialized to a constant temperature of 410 Kin accordance 

with Buttsworth f441. All boundaries except that in contact with the fluid were treated as 

adiabatic. Note that a portion of the inner boundary of the solid is off of the centerline. 

This accounts for the fact that pa11 of the probe is hollow to allow space for a small elecuic 

heater to be inserted. The probe is made of fused quartz and the thermophysical properties 

for this (at 400 K) are conductivity, 'K = 1.51 W/(m-K), density, p = 2220 kg/m3 , and 

specific heat, c =905 J/(kg-K). The conductivity and specific heat were adjusted at vari-

ous times within the run by linear interpolation with these same values at 300 K ('K = 1.38 

W/(rn-K) and c = 745 J/(kg-K), respectively). 

Temperature values at the nose of the probe in the fluid block (number 2) were re-

corded at various time levels. These values were taken from the files used to view the solu-

tion. The difference between the temperatures at the surface and just off the surt·ace (i.e., 

j = 1 and j = 2) was taken to calculate a 1 st_order temperature derivative normal to the 

probe surface. The product of this approximate derivative and the conductivity of air was 

taken to get a heat flux at the nose of the probe. The conductivity of air was adjusted at 

l 0-degree intervals by linear interpolation between the values at 400 Kand 350 K (0.0338 

and 0.03 W/(m-K) ). These property values for quartz and air were again taken from the 

appendices of Incropera and DeWitt [ 41]. 

Figure 5.39 is a plot of the nose temperatures vs time. The time is listed from 0 -

600 ms to agree with the plots from Buttsworth [44] (actual flow was not initiated until 

100 ms, at which point a diaphragm was ruptured). The numerical values agree with ex-

periment quite well for the first 50 - l 00 ms. Disagreement after that point continues to 

increase for the duration of the run. Though the quantitative comparison of the numerical 

and experimental temperatures is not perfect, qualitative results are in good agreement. 
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Notice that the trend of the numerical curve matches that of the experiment with no abrupt 

changes. 

Figure 5.40 plots the heat flux at the nose (calculated as desc1ibed above) vs time. 

As can be expected from the temperature plot, the agreement is the best in the l 00 - 200 

ms time frame. Beyond that point, the numerical results disagree with experiment. The 

numerical values predict a higher heat flux than experiment. This is physically consistent 

with the temperature plot: the higher-than-experiment nose surface temperature will have 

a greater temperature difference with the incoming air flow, and, thus, a higher heat flux. 

As with the temperature plot, the encouraging aspect of this plot is that the shape of the 

numerical curve matches very well with that of the experiment. Even though the agree-

ment is not perfect, the numerical and experimental values are relatively close. 

Figure 5.41 through Figure 5.43 give a view of the temperature contours around 

and within the probe. These pictures are focused on the nose region of the probe, and the 

solid black lines mark the edges of the probe grid. The flow can be seen to separate near 

where the leading-edge curvature turns fully downstream (this separation region contin-

ues to grow and extend downstream with time). The contours within the probe evolve in a 

manner similar to that of the wedge: the heat flow takes on an early pattern of being pri-

marily in the upstream direction toward the nose. The temperatures can be seen to continue 

to drop at the nose and within the probe. The multi-dimensional effect of the energy diffu-

sion can certainly be seen. 



Heat Flux vs Time for Quartz Total-Temp Probe 
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Figure 5.40 Heat Flux vs Time at Nose of Total-Temperature Probe 

Temperature vs Time for Quartz Total-Temp Probe 
M_inf = 0.38, T_total = 293 K, P _total= 101 kPa 
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Figure 5 .39 Temperature vs. Time at Nose of Total-Temperature Probe 
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Figure 5 .41 Temperature Contours for Total-Temperature Probe, Time = 200 ms 
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Figure 5.42 Temperature Contours for Total-Temperature Probe, Time= 400 ms 
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Figure 5.43 Temperature Contours for Total-Temperature Probe, Time = 600 ms 
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