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 The increased size and complexity of the Internet necessitates a more substantial 

measurement protocol than is currently available.  This work explores the IP 

Measurement Protocol, providing background information, covering the development of 

a reference implementation, and finally comparing its accuracy, overhead, and ease of 

implementation to the current generation of protocols used in network measurement. 

  Vmware, a hardware simulation application, was used to simulate a network on 

which to test IPMP, as well as compare it to current generation tools.  Ipmp_ping, a tool 

written to test IPMP, was pitted against ping and traceroute in order to attain round trip 

time, one-way delay, and path discovery measurements.  The accuracy and overhead of 

these tools were compared to each other. 



 

  

 Although ipmp_ping had more overhead than ping when measuring round trip 

time, it was just as accurate and more capable.  Ipmp_ping proved to be much more 

efficient than traceroute with similar accuracy.  Overall, ipmp_ping was as accurate and 

had negligibly more or significantly less overhead than the tools it was compared to while 

providing more functionality and being easy to implement.    
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CHAPTER I 

INTRODUCTION 
 

In the past five years, the Internet has seen an explosive growth in population, 

size, and complexity.  This growth has been due in part to the increased amount of 

commodity traffic.  The Internet is becoming a more integral part of the world's daily 

business.  Because of the Internet's growing importance, there is a need to keep it running 

at peak performance with little interruption in service. 

Coupled with the Internet's increased usage is an increase in its size and 

complexity.  With multiple paths between countless entities and continents, the Internet's 

complexity has increased several orders of magnitude since its inception and has even 

expanded beyond the ability of network engineers to fully understand it.  Even the 

individuals who participate in the designing and building of the individual carriers' 

networks do not have a complete understanding of the Internet's overall structure. 

The current generation of Internet Protocols lacks the ability to provide statistics 

needed to compile the desired metrics.  Many of these tools either use ICMP (Internet 

Control Message Protocol), some proprietary protocol with limited scope, or a protocol 

carried over TCP or UDP.  Although these tools get their job done with a reasonable 

amount of success, they are based on protocols that are fundamentally unsuited for the 

job of network measurement. 
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Internet Control Message Protocol, or ICMP, was originally designed as a 

protocol to send control messages across the network (Comer 1998).  The most widely 

used functionality of ICMP is the ability to send echo requests and receive responses, 

such as in "ping."  Most network measurement utilities are based on this ability or some 

derivative of it.  Since network measurement was more a peripheral issue in ICMP, the 

protocol lacks the needed mechanisms to provide effective network measurement.   

ICMP has also received much negative publicity due to its use as a mechanism for 

conducting denial of service attacks.  This bad press has caused several ISPs (Internet 

Service Providers), network carriers, and end points to either limit or deny ICMP through 

their networks.  Being treated differently from other traffic severely limits the 

effectiveness that ICMP has as a network monitoring protocol. 

It is the hypothesis of this thesis that network measurement protocols designed 

with proper facilities to gather needed network metrics will provide more accurate and 

more efficient methods for monitoring and analyzing the Internet and next generation 

internets.  
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CHAPTER II 

LITERATURE REVIEW 

 

The increasing size and complexity of the Internet coupled with its ever-

increasing importance poses serious problems in maintaining the stability and 

performance of the Internet.  In recent years, several projects have been undertaken to 

deal with the problem of monitoring an extremely large network like the Internet.  These 

projects include the Surveyor project, the National Internet Measurement Infrastructure 

project (Adams 1998), and the National Laboratory for Applied Network Research's 

Network Analysis Infrastructure project (McGregor 2000). 

Although each project has subtle differences in the exact scope and execution of 

their measurements, they all share the common goal of an infrastructure of measurement 

equipment and software used to gather statistics about the overall network condition.  

Each of these projects uses a system of network probes distributed throughout the 

Internet or particular regional or experimental network of interest.  These probes are used 

to collect and store data on the metrics of interest.  

Most of the measurement projects separate their structure and method for 

administration from the actual tools used to collect data on the particular metric of 

interest.  Some of these projects use existing tools and some use tools that were 
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developed within the project.  This separation between structure and collection method 

makes it easy for these projects to adopt other tools as they are developed.  Although the 

tools are based on the current generation of protocols, tools based on new protocols can 

easily be adopted. 

 

2.1 Surveyor 

Surveyor is one project with multiple worldwide participants for the purpose of 

network measurement.  “[Surveyor is] based on standards work being done in the IETF's 

IPPM WG, (IP Performance Metrics Working Group). Surveyor measures the 

performance of the Internet paths among participating organizations” (Kalidindi 1999). 

Surveyor is one project in which new protocols have been developed to 

accomplish the measurement goals.  One such protocol is the One-Way Delay and Packet 

loss protocol or OWDP.  OWDP measures one-way delay and packet loss on a link using 

UDP as its transport.  OWDP takes a generic approach to the problem by developing a 

means for getting at a particular metric instead of merely developing a tool that stretches 

current protocols.  Unfortunately, OWDP only measures one-way delay and packet loss 

and is insufficient to address the overall problem of network monitoring. 

 

2.2 National Internet Measurement Infrastructure (NIMI) 

Another project, the National Internet Measurement Infrastructure (NIMI), uses 

tools based on current protocols for the purpose of network measurement.  Initial funding 



 
 
 

 

5

for NIMI came from the National Science Foundation.  NIMI is currently funded by 

DARPA to measure the global Internet.  NIMI is based on Vern Paxson's Network Probe 

Daemon and was designed to be scalable and dynamic. “NIMI is scalable in that NIMI 

probes can be delegated to administration managers for configuration information and 

measurement coordination. It is dynamic in that the measurement tools are external to 

nimid as third party packages that can be added as needed" (NIMI 2000).  Two of these 

tools are Poip and TReno. 

Poip (Poisson Ping) is a tool designed to measure one-way delay and packet loss 

characteristics of a particular path (Paxson 1998).  Not actually a form of ping, Poip is 

another protocol carried over UDP.  It works by sending and receiving UDP packets at 

poisson intervals.  It uses a generic "wire time" library and includes several sanity and 

packet integrity tests.  As shown later in this paper, Poip is an example of a tool that uses 

an excessive amount of overhead to conducts its measurements.  Although UDP adds less 

overhead because of its stateless, unreliable nature, it still adds a non-trivial amount that 

can be avoided. 

"TReno is designed to measure the single stream bulk transfer capacity over an 

Internet path. It is a combination of two existing algorithms: traceroute and an idealized 

version of the flow control algorithms present in Reno TCP” (Mathis 2000).  TReno uses 

either ICMP ECHO or low ttl UDP packets to solicit ICMP errors.  Each ICMP error 

contains the sequence number of the packet that caused the response.  Although Treno’s 

method relies on standard portions of the IP and ICMP protocols, it uses several protocols 

to accomplish its measurements.  It uses ICMP for some aspects and UDP packets for 



 
 
 

 

6

others.  Although ICMP was originally designed to be used in this manner, the ttl 

functionality of IP was not.  The ttl of a packet was originally meant to be used as a way 

to protect against routing loops that cause a packet to loop infinitely.  In addition to 

creating a considerable amount of overhead, generating packets in such a way as to 

intentionally exceed the ttl is contrary to its original intent and can have side effects such 

as needlessly incrementing counters leading to a false indication of routing loops. 

 

2.3 National Analysis Infrastructure (NAI) 

The National Laboratory for Applied Network Research's (NLANR) contribution 

to the network measurement infrastructure effort is the National Analysis Infrastructure 

(NAI).  NAI is composed of several components: active measurement, passive 

measurement, SNMP (Simple Network Measurement Protocol) and BGP (Border 

Gateway Protocol) data from participating routers and servers.  The passive measurement 

project consists of several packet "sniffers" that derive workload and other traffic 

information from packet header traces.  Like the other projects, the Active Measurement 

Program (AMP) consists of approximately 100 probes that measure round trip times, 

packet loss, and topology. 

 

2.4 IP Performance Metrics Working Group 

To support the work of monitoring the Internet, the Internet Engineering Task 

Force formed an IP performance metrics working group (IPPM WG).  The purpose of 

this working group is to provide a framework in which the various measurement projects 
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can better accomplish their goals.  "The IPPM WG will define specific metrics, cultivate 

technology for the accurate measurement and documentation of these metrics, and 

promote the sharing of effective tools and procedures for measuring these metrics. It will 

also offer a forum for sharing information about the implementation and application of 

these metrics, but actual implementations and applications are understood to be beyond 

the scope of this working group" (IPPM WG 1999).   

The IPPM working group is working in a top-down manner, creating guidelines 

from a generic point-of-view and converging on more specific criteria.  For example, the 

first IPPM RFC (Request for Comments) starts by defining the notion of metrics and 

measurements.  The IPPM working group further defines methods for collecting data, 

clock accuracy issues, the concept of "wire-time", and specific network metrics.  

Currently, the IPPM working group has defined metrics for connectivity, one-way delay, 

one-way packet loss, and round trip delay. 

By using the IPPM definitions and guidelines, the network measurement 

community can better define the scope and compare the data from the various 

measurement efforts.  Many of the existing projects, including NLANR's NAI , use the 

IPPM framework in development by the IETF. 

 

2.5 IP Measurement Protocol 

IPMP is a proposed Internet standard to be used for measurement of the modern 

Internet.  The primary reason for IPMP's existence is to answer the question, "Where are 

the network delays occurring?"  "[IPMP] operates as an echo protocol allowing packet 
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loss, path length, RTT and in some cases, one-way delay measurement" (McGregor 

1998).  IPMP was designed to be easy to implement, efficient, and used between IPMP 

un-aware devices.   

IPMP has the following goals and features, including but not limited to: 

• Measurement of protocol based priority queuing 

The IPMP head includes a queue type field to specify how the echoing system and 

the intermediate routers schedule the packet if they implement a packet scheduling 

discipline that is not FIFO.  If the queue type is specified and a non-FIFO discipline is 

used on the router, the IPMP packet must be scheduled as if it were a packet from the IP 

protocol specified in Queue Type.  For example, a Queue Type of 6 means schedule the 

packet as if it were a TCP packet (McGregor 1998).  In this way, an IPMP packet can 

measure more specifically the delays inherent in the way that a particular protocol’s 

packets are processed in the individual routers. 

• Support for forward and reverse path measurements of a single packet 

The IPMP packet includes provisions for the optional inclusion of a path record 

by each router the packet passes though.  In addition to the address of the router, a path 

record includes a timestamp.  The addition of the path record will obviously change the 

checksum of the packet.  The checksum can be re-computed in either an absolute or a 

relative manner.  Although more complicated, re-computing the checksum in a relative 

manner can help to lessen the effect of IPMP on busy routers.  Since the path record is 

optional, it can be left out if the router does not support the functionality or is too busy to 

expend the cycles.  
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• Supports bit error rate measurements 

IPMP provides an indication of how often a packet needs to be transmitted due to 

an error in the transmission of a single bit. 

• Allows accurate RTT measurements 

IPMP has mechanisms to account for clock skew between two end stations.  

These mechanisms allow IPMP to collect more accurate measurements even when the 

clock at the network monitoring station and the clock at the echoing station are out of 

sync. 

• Reduces the measurement overhead on the network 

One of the primary goals of IPMP is simplicity.  Because it was designed with 

network measurement in mind, there is no need to use higher level protocols like UDP or 

TCP.  In the case of TCP, extra overhead is incurred due to connection setup, flow 

control, and other factors associated with a reliable connection protocol.  Although UDP 

doesn't have the same kind of overhead that TCP does, there are extra headers associated 

with it as well.  In addition, both TCP and UDP require more processing on both the 

monitoring and echoing nodes as well as on potentially each router in between.   

IPMP also saves overhead by incorporating needed functions such as path 

records.  Whereas tools like traceroute use errors caused by sending multiple UDP 

packets with varying time-to-live values and relying on error reporting to discover the 

path, IPMP can accomplish the same function with a single packet. 

Another benefit of IPMP lies in its extremely low overhead.  Since it requires 

about as much processing overhead as IP forwarding, the opportunity for it to be used as 
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a means for a denial-of-service attack is diminished.  This makes it more likely that IPMP 

will be treated no differently from other traffic. 

 

2.6 Luckie IPMP Implementation 

In the Spring of 2000, after the beginning of this work, Matthew Luckie 

implemented IPMP in Tony McGregor’s Advanced Communications and Network 

Systems class at Waikato University in New Zealand.  The implementation includes 

IPMP echo request and echo response functionality.  In addition, Luckie developed a 

driver program with which to test his implementation. 

The document that accompanied the implementation contained some good 

background information on how the FreeBSD networking stack worked, confirming the 

research done in this thesis.  Unfortunately, there was very little analysis of IPMP itself 

and how it compared to current day protocols. 

The conclusion of the document is that IPMP “answers the requirement for a 

protocol that allows Internet measurement teams to measure networks more richly and 

accurately” (Luckie 2000).  As is shown later in this document, this is not entirely true. 

 

2.7 Summary 

There are several tools currently being used for network measurement.  Some of 

these tools use existing protocols and some of the tools use new protocols.  The tools 

using existing protocols either are not capable of getting the desired metrics or use the 

existing protocols in an unintended manner, causing inefficiency and even inaccuracy in 
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the measurements.  Unfortunately, even though there are new protocols for network 

measurement, they are limited in scope and unable to gather a reasonable range of 

measurements. 

For this reason, a protocol such as IPMP is needed in order to satisfy the needs of 

the network measurement community.  In order for this to happen, an implementation of 

IPMP needs to be tested against existing tools and protocols to verify its efficiency, 

accuracy, and flexibility. 
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CHAPTER III 

WORK INVOLVED 

 

3.1 Implementation 

The implementation phase consisted of the coding and testing of IPMP as well as 

any changes to the protocol specification that are necessitated by issues found while 

coding.  The implementation phase ended with the testing of the implementation. 

 

3.2 Testing and Comparison 

The second part of this work is the testing and comparison of the IPMP 

implementation.  One obvious problem with testing is that the protocol would not be 

needed if there were a way to gather the network characteristics needed to check IPMP.  

There are no existing active network measurement protocols that can authoritatively 

provide the needed truth to compare IPMP results against.   

One method of testing is to build a network with known characteristics on which 

to run the IPMP protocol.  Since the attributes of the network are known, the 

characteristics of interest can be calculated and used to compare against the experimental 

data.  This method is not without problems, however.  One problem lies in the inability to 

build a test network with all of the intricacies of a large network such as the Internet.  
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There will inevitably be issues that are encountered when IPMP is deployed on a real 

network with real problems. 

One possible solution to this is to use passive monitors.  Passive monitors, 

although more difficult to implement and maintain, can gather the needed statistics to 

compare with the IPMP data.  Since passive monitors can be deployed on a real network, 

it is more likely that problems directly related to measuring a large network will be 

pointed out.  One difficulty in implementing this testing method is the overhead in 

placing passive monitors throughout the Internet. 

Yet another possibility is the utilization of a software-simulated network.  Getting 

comparable measurements would either require an expansive network to create large 

enough wire times or very precise measurement probes to be able to determine the 

smallest differences in time.  Both of these methods are quite expensive in addition to the 

basic requirements of at least two routers and three hosts.  Software simulated networks 

allow for the building and instrumentation of a test network on a single host.  The 

simulated network should provide for the accurate comparison of IPMP to existing 

protocols without requiring a costly test network.   

 

3.3 Completion Standards 

It is important to define the scope of this project since it is hoped that its life will 

progress far beyond this thesis project.  The goal of the implementation phase is to 

incorporate all features mentioned in the IPMP draft proposal (McGregor 1998).  The 
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only features and fixes incorporated that are not in the IPMP draft document will be due 

to issues uncovered due to the project itself. 

Since IPMP is merely a protocol that will be used as a facility for collecting 

network measurement and not an actual tool, creating a driver program for the testing 

phase would be a project in itself.  Therefore, each and every feature will not be tested 

since the overhead involved in such testing is high and goes beyond the scope of this 

project.  The goal of the testing phase is to test those features most used in network 

measurement tools today, such as connectivity, round-trip time, and path. 
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CHAPTER IV 

EXPERIMENTAL SETUP 

 

4.1 Operating System 

In choosing development platforms, several factors had to be considered.  First 

and foremost, the platform had to allow kernel development since the implementation of 

IPMP could not be accomplished in user accessible code.  This limited the choice of 

operating systems to those that were based on UNIX.  This is not necessarily because 

non-UNIX operating systems do not allow kernel access, but because they provide the 

easiest and most cost affective access in terms of software needed to develop kernel level 

code.  Non-UNIX operating systems such as the Windows variants do allow the addition 

of kernel level hooks, but all of the tools from the compilers to the operating system itself 

are required to be purchased.  In addition, since the kernel code is proprietary, the kernel 

source is not available to explore, hindering the developmental process.  For these 

reasons, a UNIX operating system seems the best choice for the development of this 

project. 

There are several UNIX-based and UNIX-derived operating systems from which 

to pick.  Linux, FreeBSD, and Solaris are all supported by Vmware and would each be 

possible candidates for the project.  Both Linux and FreeBSD are free and their kernel 

source code is readily available.  However, it is widely accepted that FreeBSD has a more  
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robust and better thought out networking stack.  This coupled with the fact that FreeBSD 

is widely used in the development of networking protocols make FreeBSD the best 

candidate. 

FreeBSD makes an excellent development choice for several reasons.  First and 

foremost it and all required development tools are free, and its source is readily available.  

FreeBSD distributions come with a full complement of development tools and network 

monitoring programs.  It is also easy to install.  Finally, the FreeBSD kernel is well 

constructed and documented and its kernel facilities make it easy to develop kernel level 

code. 

 

4.2 Compiler 

The choice of compilers was rather simple.  The GNU C compiler is a product of 

the GNU project originally started at MIT.  It is freely available and widely distributed.  

The FreeBSD distribution comes with the GNU C compiler installed and the kernel 

source uses it by default for compilation. 

 

4.3 Test Environment 

There exist several problems in testing a protocol developed for network testing.  

Since the premise of IPMP is that there is no good protocol for taking network 

measurements, the only way to test a network measurement protocol is to use numerous 

network probes, a network with known attributes, or a software simulated network.  Both 

the use of network probes and the construction of a network with known characteristics 
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require the utilization of several host and networking components.  Also, the number of 

hosts and networking components increases due to the fact that the protocol must be 

tested in a routed environment.  This requires a minimum of three hosts and equipment 

required for the construction of two separate networks.  For this reason, a network 

simulated in software was used to build the test environment. 

Vmware is a product that allows one or more virtual machines to be run on a host 

machine.  Along with these virtual machines, Vmware supplies virtual networks to 

connect the virtual machines.  The advantage of using Vmware is clear; there is no need 

to construct a physical network of physical machines.  Since Vmware simulates 

hardware, it can be used to obtain an accurate testing environment that mimics a real one. 

Using Vmware provides other benefits.  It is expensive to deploy enough probes 

to accurately monitor the testing of IPMP.  Since the entire testing environment runs on 

the same host machine, they all use the same clock.  This means that each of the virtual 

machines should have the same rate and drift characteristics.  Using a time 

synchronization protocol such as ntp, the virtual machine’s clocks should be able to be 

kept reasonably close enough to take proper measurements.  This allows for the use of 

simple tools, such as tcpdump, instead of expensive network probes. 

The test environment, shown in Figure 4.1, consists of three virtual machines 

(freebsd0, freebsd1, freebsd2) and three virtual networks (network0, network1, 

network2).  One virtual network, network0, connects all of the virtual machines to the 

host machine in order to share files and control the test virtual machines.  Virtual 

network1 connects virtual machines freebsd0 and freebsd1.  Virtual network2 connects 
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virtual machines freebsd1 and freebsd2.  Each of the test virtual machines has a route to 

the host machine.  Freebsd0 and freebsd2 use freebsd1 as their default gateway.  In this 

way, the only path from freebsd0 to freebsd2 is through freebsd1.  This setup provides a 

simple routed network in which to test IPMP. 

 

freebsd0

10.0.1.0/24

10.0.0.0/24

192.168.1.0/24

freebsd1

freebsd2

wiley

10.0.0.10/24

10.0.0.20/24

10.0.1.20/24

10.0.1.30/24

192.168.1.10/24

192.168.1.20/24

192.168.1.30/24

192.168.1.1/24

 

Figure 4.1 Test network diagram 
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CHAPTER V 

CODE DEVELOPMENT 

 

5.1 Background 

To add another protocol to the FreeBSD kernel, an overall understanding of the 

packet flow through the kernel is essential.  As shown in Figure 5.1, the flow begins with 

the receipt of the packet from the physical media.  The packet is first passed to ip_input 

as an mbuf.  An mbuf, or memory buffer, is a construct that allows for the manipulating 

of the memory containing the packet.  There are several tools provided to allocate, 

concatenate, free, and convert mbufs.  Using mbufs allows for the efficient manipulating 

of the packet data to achieve the best performance with the least effort. 

In ip_input, a check is made to decide whether the packet is for the local machine 

or some other machine.  If the packet is to be delivered locally, the protocol number is 

used in order to find the correct handling routines out of the protocol switch structure.  

From the switch structure, the packet could be dispatched to one of several protocol 

handlers including TCP, UDP, ICMP, and IPMP.  The particular protocol handler is 

passed the mbuf to be processed.  In case of a protocol such as IPMP, the processed mbuf 

can be handed to ip_output to be sent as a response to the sending machine. 
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Figure 5.1 Packet flow through FreeBSD kernel 
 
 
If it is decided that the packet is destined to another machine, the packet is passed 

to ip_forward for any necessary processing before it is sent.  From here, protocols such as 

IPMP can usurp the packet in order to augment its contents. 

 

5.2 Foundation 

The IPMP code is modeled on the existing ICMP code in the FreeBSD kernel.  

The reason for this approach is simple; the authors of the existing code most likely have 

more experience than I, and deriving the IPMP from the ICMP would provide a good 

foundation.  Although ICMP is considerably more complicated than IPMP, it provided a 

good foundation because it provides similar functionality to IPMP.  In addition, both 

ICMP and IPMP are layer 3 protocols.  Complexity aside, ICMP interacts with the 
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networking stack in all of the same places that IPMP will need to interact.  So, in addition 

to providing a good foundation for IPMP, using the ICMP code also provides a trail to 

follow through the kernel to find all the relevant places in the kernel that IPMP hooks 

needed to be added.    

 

5.3 Kernel Hooks 

There are two basic functions that IPMP has to be involved in: handling packets 

destined for the host and routings packets destined for other hosts.  The modifications 

start with inserting the hooks into the FreeBSD IP layer code to support IPMP.  This is 

where using ICMP as a model was particularly useful.  By searching through the existing 

files for tags relevant to ICMP, a map was made of places where hooks into the network 

code needed to be placed for IPMP.  Since ICMP is used to accomplish more tasks than 

IPMP is intended to provide, it was not necessary to add code for every occurrence of  an 

ICMP function in the network stack.  Hooks were only added in those places that IPMP’s 

functionality warranted. 

Since IPMP is a layer 3 protocol, the first step was to allocate a protocol number.  

Originally, a random free protocol number was chosen.  However, in order to test with 

Luckie’s implementation, protocol number 169 was used.  The protocol is assigned in the 

system include file /usr/src/sys/netinet/in.h as shown in Figure 5.2. 
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       /* 
        * Added by for IPMP support 
    */ 

 #define IPPROTO_IPMP            169 
 

Figure 5.2 Addition of IPMP protocol number 
 
 

The protocol number is used to select the module to which the IP packet will the 

sent.  If the protocol number is IPPROTO_TCP, the packet will be delivered to the TCP 

module in the transport layer.  Similarly, if the protocol number is IPPROTO_IPMP, the 

packet will be given to the IPMP module.   

FreeBSD uses a protocol switch structure to decide which of the various interface 

functions it needs to call for the various protocols.  The type definition for the protocol 

switch structure is found in /usr/include/sys/protosw.h, and is shown in Figure 5.3. 

Making the needed substitutions for the protocol number and the input function to  

the protocol and leaving the other values as set by ICMP, we get the inetsw definition in 

/usr/src/sys/netinet/in_proto.c as shown in Figure 5.4. 

This structure acts as a dispatch table, matching protocol numbers to the input 

function of the appropriate module.  In addition to the protocol switch structure, sysctl 

support for IPMP can be added in this file.  Sysctl is a utility to get and set kernel state.  It 

is useful for changing kernel level values from user land code. 

The last hook to add, shown in Figure 5.5, was in /usr/src/sys/netinet/ip_input.c.  

This file contains the ip_forward function that FreeBSD uses to forward packets from one 

interface to another when being used in a router capacity.  Although the packet is not 
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    struct protosw { 
    short pr_type;            /* socket type used for */ 
    struct domain *pr_domain;  /* domain protocol a member of */ 
    short pr_protocol;        /* protocol number */ 
    short pr_flags;           /* see below */ 
    /* protocol-protocol hooks */ 
    void (*pr_input) __P((struct mbuf *, int len)); 
       /* input to protocol (from below) */ 
    int (*pr_output) __P((struct mbuf *m, struct socket *so)); 
       /* output to protocol (from above) */ 
    void (*pr_ctlinput)__P((int, struct sockaddr *, void *)); 
       /* control input (from below) */ 
    int (*pr_ctloutput)__P((struct socket *, struct sockopt *)); 
       /* control output (from above) */ 
    /* user-protocol hook */ 
    void *pr_ousrreq; 
    /* utility hooks */ 
    void (*pr_init) __P((void)); /* initialization hook */ 
    void (*pr_fasttimo) __P((void)); 
     /* fast timeout (200ms) */ 
    void (*pr_slowtimo) __P((void)); 
     /* slow timeout (500ms) */ 
    void (*pr_drain) __P((void)); 
     /* flush any excess space possible */ 
    struct pr_usrreqs *pr_usrreqs; /* supersedes pr_usrreq() */ 
    }; 
 

Figure 5.3 Protocol switch table definition 
 
 

    struct protosw inetsw[] = { 
    […] 
    { SOCK_RAW,     &inetdomain, IPPROTO_IPMP, PR_ATOMIC|PR_ADDR, 
      ipmp_input,   0,              0,              rip_ctloutput, 
      0, 
      0,            0,              0,              0, 
      &rip_usrreqs 
    }, 
    […] 
    }; 
 

Figure 5.4 IPMP addition to protocol switch table 
 

destined to the host, a path record must be appended to the packet traversing the host.  In 

ip_forward, the packet is temporarily usurped and passed to the ipmp_append_pathrecord 

function to have a path record appended to it. 
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    if(ip->ip_p == IPPROTO_IPMP) 
    { 
        ipmp_append_pathrecord(m); 
    } 
 

Figure 5.5 Addition of IPMP path record in ip_forward 
 

Adding the appropriate code in the places shown enabled the networking code to 

call the appropriate IPMP function whether the packet is destined for the host or 

traversing it.  With the hooks put into the networking code, the next step was to change 

the ICMP code to make it handle IPMP. 

 

5.4 First Revision 

As mentioned before, the IPMP code development started with ICMP as a 

template.  The ICMP source files are kept in the netinet directory of the FreeBSD kernel 

source tree.  Ip_icmp.c includes all of the functions relevant to the operation of ICMP.  

These functions include: icmp_error, icmp_input, icmp_reflect, icmp_send, ip_next_mtu, 

and badport_bandlim.  It is intuitively obvious to all but the most casual observer that 

only a subset of these functions needs to be mirrored into IPMP. 

The include file ip_icmp.h contains all generic ICMP definitions and icmp_var.h 

contains all definitions pertaining to the particular implementation of ICMP in FreeBSD.  

This file structure was utilized to form the basis of IPMP. 

The first revision did nothing more than use the copied structure of ICMP to send 

echo send and receive packets with no changes other than the protocol number.  Success 
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at this point gave confirmation of a successful base on which to build.  It verified that all 

of the appropriate places in the networking stack were located and modified in order to 

support IPMP. 

The next step involved striping down the myriad of unneeded functions in the 

adopted ICMP code and changing the packet header to the definition in the IPMP draft 

specification.   

When a packet is passed to icmp_input from the protocol switch table, the 

checksum is verified and the message type is inspected.  Operations are performed 

specific to the packet type.  If the packet must be re-sent after processing, it is given to 

the icmp_reflect function, which among other things, switches the source and destination 

addresses and re-sets the ttl.  From the icmp_reflect function, the packet is passed to 

icmp_send.  Icmp_send calculates the checksum then passes it back to the network layer 

to be sent on to its destination.  This structure is warranted given ICMP’s complexity.  

However, ICMP’s complex structure is not needed for the simple tasks that IPMP has to 

carry out.  For this reason, much of this complexity was stripped out of later versions of 

the IPMP code. 

 

5.5 IPMP File Structure 

As with ICMP, the main body of the IPMP codes resides in ip_ipmp.c.  Unlike 

ICMP, it is composed of only two main functions: ipmp_input and 

ipmp_append_pathrecord.  These two functions, along with the API provided by the 

FreeBSD networking stack, is all that is needed to accomplish the implementation of 
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IPMP.  Likewise, the include file structure also mirrors the include file structure of ICMP 

discussed earlier.  Ip_ipmp.h contains all definitions needed for IPMP in general.  

Ipmp_var.h contains all definitions specific to this implementation of IPMP. 

 

5.6 The Journey Begins 

An IPMP packets journey begins with the ipmp_input function called from the 

networking stack’s protocol switch. 

 
void ipmp_input(register struct mbuf *ipmp_mbuf; int off, proto); 
 

Figure 5.6 Ipmp_input prototype 
 

After Ipmp_input is called with a pointer to an mbuf containing the packet, the 

header offset, and protocol (Figure 5.6), the first step is to check to see if the entire IPMP 

packet was received.  This is accomplished using m_pullup as seen in Figure 5.7.  

M_pullup takes as an argument the mbuf pointer and a minimum buffer size.  The 

fragments of the mbuf are coagulated into a contiguous piece of memory.  If the 

fragments don’t add up to at least the minimum packet size, the m_pullup command fails 

and the packet is discarded.  The minimum packet size is calculated by taking the size of 

the ipmp header structure and adding the IP header.  The size of the packet falls below 

this value, some part of the structure was lost and the packet needs to be discarded.  The 

packet is discarded by freeing the mbuf and returning from the function call. 
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i = hlen + sizeof(struct ipmp); 
if (ipmp_mbuf->m_len < i && (ipmp_mbuf = m_pullup(ipmp_mbuf, i)) == 0)  
{ 
  /* icmpstat.icps_tooshort++; */ 
    if (ipmpprintfs) { 
       printf("IPMP packet too short.\n"); 
    } 
goto freeit; 
} 
 

Figure 5.7 Checking of packet size with m_pullup 
 

 

  After a successful m_pullup call, all pointers into the mbuf must be reset since it 

is likely that the addresses into the packet have changed. 

As delivered, the mbuf points to the beginning of the entire IP packet.  To get 

access to the IPMP portion of the packet, we have to adjust the mbuf pointer by offsetting 

it the size of the IP header.  Once this is done, a pointer is assigned to the beginning of 

the IPMP portion of the packet.  With the mbuf pointer adjusted, the mbuf is passed to 

the checksum routine.  If the checksum calculation is incorrect, then the mbuf is freed 

and the function returns.  With the pointer assigned and the checksum calculated, the 

mbuf pointers are returned to their original positions.  This process is shown in Figure 

5.8. 

 
ipmp_mbuf->m_len -= hlen; 

 ipmp_mbuf->m_data += hlen; 
 ipmp = mtod(ipmp_mbuf, struct ipmp *); 
 if (in_cksum(ipmp_mbuf, ipmplen)) { 
   /* icmpstat.icps_checksum++; */ 
   goto freeit; 
 } 
 ipmp_mbuf->m_len += hlen; 
 ipmp_mbuf->m_data -= hlen; 
 

Figure 5.8 Manipulation of mbuf to access IPMP packet and perform checksum 
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This ends the generic processing section of the ipmp_input function.  The rest of 

the actions are applied based on the packet type. 

 

5.7 Packet Type Processing 

The meat of the ipmp_input function is a switch statement to perform different 

functions depending on the packet type.  The four currently supported packet types are 

echo request, echo response, info request, and info response. 

As seen in Figure 5.9, the first step in handling an IPMP Echo Request is to 

change the packet type and exchange the source and destination address.  This readies the 

packet to be sent back and be recognized as an echo response.  Then the returned ttl field 

is set to the ttl of the received ipmp echo request packet so that it is not overwritten with 

the new ttl value.  In this way, the sending host knows the number of hops on both the 

forward and reverse paths.  Knowing this information can help detect routers that are 

either not configured to insert IPMP path records or who are too busy to do so.  The last 

step is to append the path record to the ipmp packet. 

 

switch (ipmp->ipmp_type) { 
case IPMP_ECHOREQUEST: 

ipmp->ipmp_type = IPMP_ECHOREPLY; 
  tempaddr = ip->ip_dst; 
  ip->ip_dst = ip->ip_src; 
  ip->ip_src = tempaddr; 
    ipmp->ipmp_returned_ttl = ip->ip_ttl; 

ipmp_append_pathrecord(ipmp_mbuf); 
    break; 
 

Figure 5.9 IPMP echo request processing 
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The next type of packet to handle is an IPMP echo response.  An IPMP echo 

response is received when the host previously sent out an IPMP echo request.  Since this 

is the end of the packet’s life cycle, the only job that needs to be done here is to append 

the final path record as seen in Figure 5.10.  The packet is then passed to the waiting 

ipmp_ping or other user land program that sent the packet. 

 
case IPMP_ECHOREPLY: 

ipmp_append_pathrecord(ipmp_mbuf); 
    break; 
 

Figure 5.10 IPMP echo reply processing 
 

For an IPMP info request packet, the first action performed is to change the 

packet type to IPMP info reply.  Although the IPMP info request and the IPMP info reply 

headers are different, the first 8 bytes are constructed the same and therefore the response 

is able to use the same first 8 bytes as the IPMP info reply packet.  An mbuf for the rest 

of the IPMP info request packet is allocated.  The size of the new mbuf containing the 

additional section of the IPMP info reply is added to the length of the previous IPMP info 

request packet.  The length, performance data pointer, accuracy, and processing overhead 

fields are then filled in.  Currently, these fields are either not supported, or not relevant to 

this implementation.  Finally, the two mbufs are concatenated together to make the entire 

IPMP info reply packet.  The handling of the info request packet is shown in Figure 5.11. 
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case IPMP_INFOREQUEST: 

  ipmp->ipmp_type = IPMP_INFOREPLY; 
 
   
    inforeply_mbuf = m_get(M_DONTWAIT, MT_DATA); 
    if(inforeply_mbuf == 0) return; 
    inforeply_mbuf->m_len = sizeof(struct ipmp_info_reply); 
    info_reply = mtod(inforeply_mbuf, struct ipmp_info_reply *); 
  
    i = sizeof(struct ipmp_info_reply); 
    ip->ip_len += i; 
    info_reply->ipmp_length =  

htons(ntohs(info_reply->ipmp_length) + i); 
    info_reply->ipmp_performance_data_pointer =  

info_reply->ipmp_length; 
    info_reply->ipmp_ip_address  = ip->ip_src; 
    info_reply->ipmp_accuracy  = 0; 
    info_reply->ipmp_processing_overhead  = 0; 
  
    m_cat(ipmp_mbuf,inforeply_mbuf); 
    ipmp_mbuf->m_pkthdr.len += i; 
    break; 
 

Figure 5.11 IPMP info request processing 
 
 

Like an IPMP echo response packet, this is the last leg of the journey for an IPMP 

information response packet.  The only difference is that there need not be a path record 

appended to the end of the IPMP information response packet.  The packet is simply 

handed to the awaiting user level application. 

 

5.8 Appending the Path Record 

The last of the IPMP code deals with the appending of a path record to an IPMP 

echo request or echo response involving the host.  The ipmp_append_pathrecord is used 

both to append path records to packets sent from monitor hosts and reflected from echo 

hosts, as well as adding path records to packets that are passed through from one interface 
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to another.  The appending of the path record was the only non-trivial function that 

needed to be carried out more than once.  Therefore, it was broken out into its own 

function. 

Since a pointer to the mbuf is passed in with the pointers pointing to the 

beginning of the entire IPMP packet, the pointers to the IPMP portion of the packet need 

to be re-assigned.  This is the only duplicated code in the ipmp_append_pathrecord 

function. 

Next, a mbuf is allocated to hold the path record structure and a pointer assigned 

to the beginning of the path record structure.  The address of the host passing the packet, 

as well as a timestamp containing both whole seconds and fractional seconds is placed in 

the pathrecord structure.  Depending on the performance implications, the timestamp can 

be either the true time, or some counter that is easily accessible from within the kernel of  

the routing device.  The path pointer field in the IPMP header and the length field in the 

IP header are updated to reflect the new size of the packet.  This process is shown in 

Figure 5.12. 

The last step, shown in Figure 5.13, is to actually append the path record structure 

to the end of the packet, and calculate the checksum.  The function then returns to either 

the ipmp_input function of the ip_forward function, depending on the stage of life the 

IPMP packet is in. 
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pathrecord_mbuf = m_get(M_DONTWAIT, MT_DATA); 

 if(pathrecord_mbuf == 0) return; 
 pathrecord_mbuf->m_len = sizeof(struct ipmp_pathrecord); 
 

path              = mtod(pathrecord_mbuf, struct ipmp_pathrecord 
*); 

 /* find the IP address to put in the path record */ 
 IFP_TO_IA(ifp, ia); 
 if (ia) 
   path->ip = IA_SIN(ia)->sin_addr; 
  
 getnanotime(&path->timestamp); 
 /* strncpy(ctime_buf, ctime(&path->timestamp.tv_sec), 24); */ 
 ctime_buf[24] = '\0'; 
 path->timestamp.tv_sec  = htonl(path->timestamp.tv_sec); 
 path->timestamp.tv_nsec = htonl(path->timestamp.tv_nsec); 
 

Figure 5.12 Creation of IPMP path record 
 

m_cat(ipmp_mbuf, pathrecord_mbuf); 
 ipmp_mbuf->m_pkthdr.len += i; 
 
 ipmp_mbuf->m_data += hlen; 
 ipmp_mbuf->m_len -= hlen; 
 ipmp->ipmp_checksum = 0; 
 ipmp->ipmp_checksum = in_cksum(ipmp_mbuf, ip->ip_len - hlen); 
 ipmp_mbuf->m_data -= hlen; 
 ipmp_mbuf->m_len += hlen; 
 ipmp_mbuf->m_pkthdr.rcvif = (struct ifnet *)0; 
 return; 
 

Figure 5.13 Concatenation of IPMP path record 
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CHAPTER VI 

RESULTS 

 

IPMP will be compared to other protocols in two ways, accuracy and overhead.  

First, we will look at the overhead of IPMP for three metrics: one-way delay, round-trip 

time, and path discovery. 

 

6.1 Vmware Shortcomings 

Using Vmware was a benefit in the testing of the work, although not as much as 

was hoped.  Vmware did provide a good environment in which to quickly assemble a 

network and test the functionality of IPMP.  Building a comparable test network would 

have required considerably more time and resources and tied the experimentation to a 

particular facility.  Using Vmware allowed for the use of a single, although well 

equipped, computer for the entire development cycle.  Vmware also did a good job of 

simulating the hardware in a realistic, if not real-time, manner. 

The original plan was to monitor the packet’s travel by sniffing the virtual 

network interface.  Unfortunately, the virtual network is implemented in a switched 

manner.  Consequently, the network sniffing did not see packets that were not destined to 

or that did not originate from the interface being sniffed.  As a result, sniffing the virtual 
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network as a whole could not be effective and an alternative was sought.  In addition to 

the hindrance that a switched network presented to sniffing, there is also the fact that 

sniffing the network as a whole would still only provide an indication of when the packet 

was put onto the network, not when it was received by a particular interface.  This 

problem could be overcome by outfitting the Vmware networking code itself to give an 

indication of when a particular network host “received” the packet off of the network.  In 

addition to being more work that fell outside of the scope of the project, this method was 

rejected for reasons mentioned later in this chapter. 

The next attempt was to sniff the ingress and egress interfaces for a particular 

network.  In this manner, a timestamp of when the packet was “transmitted” and when 

the packet was “received” would be available.  The differential in these two timestamps 

gives the “wire time” of the packets and therefore the desired measurement.  

Unfortunately, using probes placed on two different hosts presents a problem with 

keeping the two virtual machine’s clocks synchronized.  The ingress and egress interfaces 

on the virtual network exist on each of the three virtual machines.  This means that the 

sniffer’s timestamps are no longer relative to one clock, but to three.  This means that any 

measurements taken are susceptible to the inaccuracies of the various clocks. 

In order to attempt accurate measurements, the host’s clocks have to be 

synchronized.  Since all of the virtual hosts use the same hardware and therefore the same 

clock, they should be able to keep close enough to make accurate measurements. 

For the first attempt to synchronize the clock, Network Time Protocol (NTP) was 

used.  The NTP software on the host machine was configured to use its clock as its time 
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source since no outside clock was available.  Each of the three virtual machines was told 

to use the host machine as its time server.  Unfortunately, the clocks could not keep 

themselves close enough, often straying from the host machine’s clock by 2-3 seconds.  

This variation fell outside of tolerances and caused the NTP sessions to be lost. 

The degree in which the Vmware software simulates a machine was quite 

complete, simulating the hardware of three separate clocks.   

The second attempt at measuring using the Vmware network was to use a GPS 

connected through the serial interface.  Since the Vmware machines use the same 

hardware, they should be able to share the serial port.  With the GPS hooked to the single 

shared serial interface, the Vmware machines should be able to share the GPS signal, 

enabling them to keep their clock synchronized.  However, the three virtual machines 

were not able to share the same device.  The first machine to get to the serial port would 

block access to the other two.  The mechanisms available to put the serial port in a multi-

access mode were unsuccessful.  In addition, it is doubtful that even if each of the hosts 

was able to read the GPS signal, that the clock would be kept synchronized.  This is due 

to the nature in which the NTP daemon works.  NTP converges on the correct time using 

a number of samples.  Because of the software simulation of the clock, it is likely that 

NTP would not be able to properly converge on the correct time. 

Since all reasonable attempts to synchronize the clocks were exhausted, 

attempting to compare the protocol’s numbers to real numbers were abandoned.  In 

retrospect, these measurements would not have yielded extremely useful results due to 

the emulated nature of the test environment.  Any results would have been skewed by the 
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manner in which Vmware needs to operate.  For example, the Vmware processes being 

context switched through the processor in a quasi-random manner would render quasi-

accurate results.  In addition, the time differentials involved would have been so small 

that they would have been lost in the noise. 

Where Vmware fell short was in its ability to provide a sufficient measurement 

environment.  The very attribute that makes it desirable for the functional test, namely the 

utilization of a single computer for testing, contributed to its inability to be used to take 

measurements.  Because of the manner in which the individual entities shared the 

hardware on a multi-user, non real-time, operating system, Vmware was unable to 

properly simulate the true nature in which an individual network entity operates separate 

from other networks entities.  Sharing the same hardware meant that one node was able to 

affect another node in a way other than what it would on a network.  This fact in itself 

makes Vmware unwise to use when taking measurements.  Another problem is that the 

time a packet takes to traverse the virtual nodes and networks is so small that any 

differences between the respective measurements would be lost in the noise. 

 

6.2 Round Trip Time 

Ping is the most common network monitoring tool used today.  Ping is the 

common name for the application that utilizes ICMP echo requests and echo responses to 

ascertain connectivity and round trip times.  In order to function, a single ICMP echo 

request is sent to a host, which returns an ICMP echo request.  The round trip time is 
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derived by simply taking the difference between the time the echo request is sent and the 

time the echo response is received. 

On the test network, three ICMP packets were sent from freebsd2 to freebsd0 

using ping.  The output is shown in figure 6.1. 

 
freebsd2# ping 10.0.0.10 
PING 10.0.0.10 (10.0.0.10): 56 data bytes 
64 bytes from 10.0.0.10: icmp_seq=0 ttl=254 time=2.409 ms 
64 bytes from 10.0.0.10: icmp_seq=1 ttl=254 time=1.587 ms 
64 bytes from 10.0.0.10: icmp_seq=2 ttl=254 time=1.472 ms 
^C 
--- 10.0.0.10 ping statistics --- 
3 packets transmitted, 3 packets received, 0% packet loss 
round-trip min/avg/max/stddev = 1.472/1.823/2.409/0.417 ms 
 

Figure 6.1 Ping from freebsd2 to freebsd0 
 
 
First, the packet arrives at freebsd1 since it is the gateway for the network on 

which freebsd0 resides.  Although tcpdump sees that the packet is an ICMP echo request, 

there is no special processing required by the networking stack.  Freebsd1 just forwards 

the echo request as it would any other IP packet as seen in Figure 6.2. 

   

freebsd1# tcpdump -i lnc3 
tcpdump: listening on lnc3 
23:47:31.579947 freebsd2-net1 > freebsd0-net0: icmp: echo request 
23:47:31.582834 freebsd0-net0 > freebsd2-net1: icmp: echo reply 
23:47:32.584110 freebsd2-net1 > freebsd0-net0: icmp: echo request 
23:47:32.585380 freebsd0-net0 > freebsd2-net1: icmp: echo reply 
23:47:33.602035 freebsd2-net1 > freebsd0-net0: icmp: echo request 
23:47:33.603328 freebsd0-net0 > freebsd2-net1: icmp: echo reply 
 

Figure 6.2 Tcpdump output of freebsd1's network1 interface 
 
 
Next, the echo request packet arrives at freebsd0 which formulates and returns an 

echo response packet as shown in Figure 6.3. 
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freebsd0# tcpdump -i lnc1 
tcpdump: listening on lnc1 
23:47:31.528005 freebsd2-net1 > freebsd0-net0: icmp: echo request 
23:47:31.529728 freebsd0-net0 > freebsd2-net1: icmp: echo reply 
23:47:32.526861 freebsd2-net1 > freebsd0-net0: icmp: echo request 
23:47:32.528577 freebsd0-net0 > freebsd2-net1: icmp: echo reply 
23:47:33.543177 freebsd2-net1 > freebsd0-net0: icmp: echo request 
23:47:33.545025 freebsd0-net0 > freebsd2-net1: icmp: echo reply 
 

Figure 6.3 Tcpdump of freebsd0's network0 interface 
 

As the packets return to freebsd2, it calculates the return trip time to be 2.409ms, 

1.587ms, and 1.472ms.  Two possible reasons for the variance of the three times is the 

short path that the packet takes through the network and the non real-time nature of 

Vmware. 

The header overhead involved in sending a pair of ICMP echo and response 

packets is relatively trivial.  Each packet contains a 20 byte IP header, and a 8 byte, 

ICMP message giving a total header size of 28 bytes.  An optional variable length data 

entry can be inserted into the echo request to help distinguish packet. 

Comparing the header efficiency of ICMP to the header efficiency of IPMP 

becomes a bit more complex.  Sending an IPMP echo request packet from freebsd2 to 

freebsd0 starts out with the IP header being the exact same size.  Adding the 16 byte 

IPMP echo request header size to the 20 byte IP header size yields an overhead of 36 

bytes.  Like ICMP, IPMP can include variable length data as its payload.  Where ICMP 

and IPMP differ in header size is with the first device that inserts a path record.  An 

overhead of 12 bytes is incurred every time a path record is inserted.  So for our test 

network, we have a total of 5 path records inserted.  Two path records are added by 
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freedbsd2 itself, one before it enters the network, and one when it comes back.  Freebsd1 

also adds two path records since the packet passes through it on both the forward and 

reverse paths.  And finally, freebsd0 adds a single path record midway through the 

journey.  This gives us a total packet size of 96 bytes.  This is more than 3 times greater 

than the header overhead for the ICMP echo request and echo response.  In addition, the 

header overhead will increase as the number of hops in the path increases.  It is obvious 

the overhead for IPMP is greater than the header overhead of ICMP when seeking round 

trip time.  

 

6.3 One Way Delay and Path Discovery 

Next we take a look at one way delay and path discovery.  Traceroute is among 

the most popular ways of finding one-way delay measurements and path discovery.  As 

with finding round trip time, finding one-way delay and path discovery starts with 

freebsd2.  The traceroute output is shown in Figure 6.4. 

 
freebsd2# traceroute 10.0.0.10 
traceroute to 10.0.0.10 (10.0.0.10), 30 hops max, 40 byte packets 
 1  freebsd1 (10.0.1.20)  3.188 ms  2.125 ms  1.034 ms 
2 freebsd0 (10.0.0.10)  5.185 ms  1.654 ms  2.328 ms 
 

Figure 6.4 Traceroute from freebsd2 to freebsd0 
 

As seen in Figure 6.5, traceroute sends three udp packets to freebsd1 each with a 

ttl of 1.  As freebsd1 gets the packets, it decrements the ttl seeing that the packet must 

die.  So it sends an ICMP time exceeded message back to freebsd2.  In this way, freebsd2 

is able to see what the next hop in the path is. 
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freebsd1# tcpdump -i lnc2 
tcpdump: listening on lnc2 
23:48:19.989212 freebsd2-net1.36421 > freebsd0-net0.33435: udp 12 
[ttl 1] 
23:48:19.989826 freebsd1-net1 > freebsd2-net1: icmp: time exceeded 
in-transit 
23:48:19.991151 freebsd2-net1.36421 > freebsd0-net0.33436: udp 12 
[ttl 1] 
23:48:19.991467 freebsd1-net1 > freebsd2-net1: icmp: time exceeded 
in-transit 
23:48:19.993108 freebsd2-net1.36421 > freebsd0-net0.33437: udp 12 
[ttl 1] 
23:48:19.993289 freebsd1-net1 > freebsd2-net1: icmp: time exceeded 
in-transit 
23:48:19.994294 freebsd2-net1.36421 > freebsd0-net0.33438: udp 12 
23:48:19.998046 freebsd0-net0 > freebsd2-net1: icmp: freebsd0-net0 
udp port 33438 unreachable 
23:48:19.999312 freebsd2-net1.36421 > freebsd0-net0.33439: udp 12 
23:48:20.001440 freebsd0-net0 > freebsd2-net1: icmp: freebsd0-net0 
udp port 33439 unreachable 
23:48:20.003276 freebsd2-net1.36421 > freebsd0-net0.33440: udp 12 
23:48:20.005195 freebsd0-net0 > freebsd2-net1: icmp: freebsd0-net0 
udp port 33440 unreachable 
 

Figure 6.5 Traceroute traffic through freebsd1 
 

With freebsd1 found, traceroute increments the ttl to 2 and sends three more 

packets.  Three UDP packets arrive at freebsd0 with a ttl of 1.  Like freebsd1, freebsd0 

decrements the ttl by one and sees that the packet must die.  Freebsd0 then sends an 

ICMP time exceeded message back to freebsd2, enabling freebsd2 to see freebsd0.  

Figure 6.6 shows the traffic flowing through freebsd0. 
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freebsd0# tcpdump -i lnc1 
tcpdump: listening on lnc1 
23:48:19.830295 freebsd2-net1.36421 > freebsd0-net0.33438:  udp 12 
[ttl 1] 
23:48:19.832281 freebsd0-net0 > freebsd2-net1: icmp: freebsd0-net0 
udp port 33438 unreachable 
23:48:19.832840 freebsd2-net1.36421 > freebsd0-net0.33439:  udp 12 
[ttl 1] 
23:48:19.834424 freebsd0-net0 > freebsd2-net1: icmp: freebsd0-net0 
udp port 33439 unreachable 
23:48:19.834755 freebsd2-net1.36421 > freebsd0-net0.33440:  udp 12 
[ttl 1] 
23:48:19.836101 freebsd0-net0 > freebsd2-net1: icmp: freebsd0-net0 
udp port 33440 unreachable 
 

Figure 6.6 Traceroute traffic through freebsd0 
 

The overhead involved increases relatively dramatically when using traceroute.  

For each hop in the path, at least one UDP packet and one ICMP time exceeded packet 

needs to be sent.  Each UDP packet includes at least a 20 byte IP header and a 12 byte 

UDP header, yielding a total of  32 bytes.  Each ICMP time exceeded packet is also 32 

bytes.  So for each host, 64 bytes worth of packets need to be sent.  For a network of two 

hosts, a minimum of 128 bytes is needed.  Traceroute sends three packets for each hop 

for a total of 384 bytes.  As hops are added, an additional 64 bytes per host is needed as 

compared to 24 bytes for IPMP.  Although different implementations of traceroute may 

vary, IPMP has less overhead than traceroute for even the minimum case. 
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Figure 6.7 The increase in overhead using traceroute as the number of hops increases 
 
 

As seen in Figure 6.7, the number of bytes used in route discovery by traceroute 

(solid line) increases rather dramatically as the number of hops goes up. 

 

6.4 IPMP Ping 

Now we take a look at using IPMP for attaining one-way delay, round trip time, 

and path discovery.  Whereas previously, multiple commands were needed to attain these 

metrics, now we just need one.  Ipmp_ping is a combination of user-level code and a 

kernel loadable module to send and receive IPMP echo request and echo reply packets.  

The kernel loadable modules are needed to formulate and send the IPMP echo request 

packets.  From the output of this invocation of ipmp_ping, shown in Figure 6.8, we see 

that we get the 5 path records discussed earlier. 
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freebsd2# ./ipmp_ping 10.0.0.10 
IP Measurement Protocol (IPMP) - Echo Test Routing 
Sending the echo request... 
Calling syscall 210 (ipmp_ping) 
Waiting.... 
Parsing Echo Response... 
IP   payload size 96 
IPMP version      0 
     queue type   6 
     type         0 
     ttl at turn  254 
     return type  0 
     length       60 

      path pointer 96 
      path records 5 
   0        10.0.1.30 Fri Apr 20 23:46:53 2001  90103823 
   1        10.0.1.20 Fri Apr 20 23:46:52 2001 947735249 
   2        10.0.0.10 Fri Apr 20 23:46:52 2001 998242471 
   3        10.0.0.20 Fri Apr 20 23:46:52 2001 982853025 

3 10.0.1.30 Fri Apr 20 23:46:53 2001 132477074 
4  

Figure 6.8 Ipmp_ping from freebsd2 to freebsd0 
 

 In Figure 6.9, we see that the 16 byte IPMP echo request packet arrives at 

freebsd1 with a 12 byte path record inserted by freebsd2.  Freebsd1 then inserts it’s own 

path record and sends the packet on to freebsd0.  On its return path, freebsd1 adds 

another path record and returns the packet to its origin. 

 
freebsd1# tcpdump -i lnc3 
tcpdump: listening on lnc3 
23:46:52.950363 freebsd2-net1 > freebsd0-net0: ip-proto-169 28 
23:46:52.986093 freebsd0-net0 > freebsd2-net1: ip-proto-169 64 
 

Figure 6.9 Ipmp_ping traffic through freebsd1 
 

  
 Figure 6.10 shows the IPMP echo request packet arriving at freebsd0 with 2 path 

records.  Freebsd0 adds its path record and sends the packet back to freebsd1. 
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freebsd0# tcpdump -i lnc1 
tcpdump: listening on lnc1 
23:46:52.999575 freebsd2-net1 > freebsd0-net0:  ip-proto-169 40 
23:46:53.022557 freebsd0-net0 > freebsd2-net1:  ip-proto-169 52 
 

Figure 6.10 Ipmp_ping traffic through freebsd0 
 
 
The life cycle of the IPMP packets is relatively straightforward and efficient.  

With one packet, ipmp_ping is able to gather statistics on one-way delay, round-trip time, 

and path discovery. 
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 In Figure 6.11, we can see the increase in the amount of traffic needed by IPMP 

as the number of hops increases.  The graph shows that a little less than 2500 bytes are 

needed with 100 hops.  This is less than even the minimal case of the traceroute method, 

which requires over 5000 bytes for the same number of hops. 

 

6.5 Accuracy 

Although it is difficult to test the accuracy of IPMP due to unsynchronized clocks, 

some level of verification can be reached.  Looking at the tcpdump output from freebsd1 

(Figure 6.8), a time difference of 35.7 ms exists between the passage of the IPMP packet 

on its forward and return paths.  This agrees with the 35.1 ms time difference shown in 

the ipmp_ping output (Figure 6.7).  Looking at the ping command and packet trace 

output, its accuracy was also verified in the same manner.  In this way, the method used 

to verify IPMP’s accuracy can be affirmed, increasing the confidence in the results.  

Although the numbers between ipmp_ping and ping are different, ipmp_ping is able to 

accurately take the required measurements. 

 
6.6 Luckie Implementation 

 
As noted earlier, another implementation of IPMP surfaced during the 

development of this implementation allowing for interoperability testing.  The two 

implementations worked well with each other and yielded similar results.  The only 

problem was the updating of the length field.  The Luckie implementation increases the 

length field when adding path records.  The specification says to leave the length field 
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unchanged when adding path records.  This difference caused problems in determining 

the number of path records, but was overcome by changing ipmp_ping to use the path 

record pointer field in determining the number of path records. 

The fact that the two implementations interoperated verifies that the IPMP draft 

was relatively straight-forward and easy to implement. 
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CHAPTER VII 

CONCLUSIONS 

7.1 Accuracy 
 
Because of the problems with the testing environment, the results can not be used 

to proclaim absolute accuracy.  However, there is sufficient data to prove that the 

measurements taken by IPMP are accurate within the constraints of the test environment.  

 
7.2 Overhead 

 
Although IPMP has more overhead than using simple pings, it provides much 

more information.  In addition, IPMP proves to have much less overhead than traceroute 

while also providing more functionality.  Therefore, IPMP does provide the statistics 

sought while using less packet overhead. 

Another aspect of overhead, the impact on the router, is a cause for concern.  

Measurements show that the routers took an average of 8ms to process the IPMP packet.  

This is far greater than the 1ms average of a normal ping; however, the work required by 

an IPMP echo is obviously greater than the work required by an ICMP echo.  This does 

not seem to be an unreasonable result, merely the price of added functionality.  It should 

be noted that the Luckie implementation showed the packet processing times to be less 
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than 1ns.  These results are suspect since the average PC’s clock cycle is far greater than 

1ns; therefore, the difference in two subsequent measurements must be greater than 1ns.  

In either case, IPMP allows for this by specifying an IPMP processing overhead field to 

provide measurement programs with the difference in processing time between an IPMP 

packet and a similar IP packet giving the ability to derive an accurate measurement. 

 However, even though the processing overhead does not affect the measurement, 

it does affect the router in a non-trivial manner.  Today’s core Internet routers handle a 

large and ever increasing amount of packets.  They are able to do this in large part 

because of fast path routing done with application specific integrated circuits or ASICs.  

ASICs can handle the routing of a packet much more rapidly and efficiently than the 

router’s management or general-purpose processors.  The last thing that a network 

administrator wants is for a packet not to go through a router’s fast path, because it can 

affect its performance greatly.  Unfortunately, implementing IPMP in hardware would 

likely be a difficult proposition and only helpful for new routers.  Likewise, special 

purpose network processors, if available in a particular router, are usually there to do 

another high impact function and would not be able to spare the processing cycles to 

handle IPMP.  Therefore, IPMP packets would have to be handled by the router’s 

management or general-purpose processors, which would be an unacceptable burden in 

many cases.  In addition, the high processing overhead would leave the routers open to 

denial of service attacks by making the router process a large number of IPMP packets, 

causing it to get too busy to do its normal job.  It is true that the router could choose to 
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eliminate much of the processing burden by choosing not to append a path record, but 

this would also eliminate much of the usefulness of IPMP. 

7.3 Ease of Implementation 

One of the benefits of IPMP is that it is easy to implement.  Obviously, difficulty 

in implementing the protocol would mean that it is less likely to be implemented and 

therefore, IPMP would not be a viable protocol no matter how accurate and efficient it is.  

Keeping this fact in mind, ease of implementation is a rather important metric in the 

evaluation of IPMP. 

IPMP only has two sets of functionality: echo request and echo response, info 

request and info response.  Because of its lean nature, IPMP requires little code within 

the kernel of the hosts and routers.  The majority of the functionality is accomplished by 

either moving a packet somewhere, or adding a pathrecord to a packet.  The only 

calculation involved is in generating the checksum.  However, even calculating the 

checksum is not difficult since most environments will provide this functionality.  The 

most difficult part of implementing IPMP in FreeBSD was learning the FreeBSD kernel 

and how it handles packets.  This learning curve would not be an issue for a company that 

is already familiar with the product that it produces. 

The majority of the complexity involved in taking measurements with IPMP is in 

the driver program itself.  The protocol allows for the measurements to be taken, but it is 

the driver program that is left to interpret the results and correlate and information request 

responses.  However, the driver program only needs to be written once and ported to 



 
 
 

 

50

different platforms.  Therefore, even if the driver program were to figure into the 

implementation costs of IPMP, it would be a one time cost and worth the effort. 

7.4 Overall Conclusion 
 

 The IPMP specification was well thought out and well designed.  It achieved 

many of its goals, including accuracy, ease of implementation, and low packet overhead.  

Even though this overhead is relatively small, many of today’s routers have very few 

processing cycles to spare.  Therefore, it is the opinion of this work that it would be 

difficult to implement into any large production network in the foreseeable future. 
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APPENDIX A 

GLOSSARY OF TERMS  
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ICMP (Internet Control Message Protocol) - A protocol used for sending control 

messaged between networked hosts for such applications as limiting traffic flow and 

determining connectivity. 

 

IETF (Internet Engineering Task Force) - The organization charged with the task of 

investigating and stardardizing new Internet technology. 

 

IPMP (IP Measurement Protocol) - A protocol developed by Tony McGregor for 

network measurement.  It allows for such measurements as one-way delay, round trip 

time, and path discovery 

 

IPPM Working  Group - A working group within the IETF created to facilitate the 

development of network measurement protocols. 

 

Mbuf (Memory Buffer) - An mbuf is a common construct used to manipulate packetized 

data.  It allows for efficient manipulation with the least amount of effort. 

 

NIMI (National Internet Measurement Infrastructure) - The National Internet 

Measurement Infrastructure is a DARPA funded measurement network.  It utilizes a 

daemon (nimid) that collects measurements with tools based on current generation 

protocols. 
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NAI (National Analysis Infrastructure) - The National Analysis Infrastructure is a 

measurement network constructed by NLANR composed of both active and passive 

measurement probes. 

 

NLANR (National Laboratory for Applied Network Research) - The National Laboratory 

for Applied Network Research is a NSF funded organization charged with providing 

technical, engineering, and traffic analysis support for the next generation Internets. 

 

One-Way Delay - The time is takes a packet to travel from its origin to its destination. 

 

RTT (Round Trip Time) - The time it takes a packet to travel from its origin, to a 

destination, and back. 

 

TCP (Transmission Control Protocol) - A connection oriented, error-correcting protocol 

used by such applications as telnet and http. 

 

ttl (Time To Live) - A measure of how long a packet is to remain in a forwarding path.  If 

the ttl is exceeded for reasons such a routing loop, the packet is discarded and the sending 

host is informed via an ICMP message. 

 

UDP (User Datagram Protocol) - A connectionless protocol used by such applications 

as NTP and the Domain Name System used for translating Internet names to IP 

addresses. 
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User land code - Code that is intentionally run without certain permissons and access to 

parts of the FreeBSD kernel. 
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