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A pre-optimizer has been developed which modi�es existing

turbomachinery blades to create new geometries with improved selected

aerodynamic coeÆcients calculated using a linear panel method. These

blade rows can then be further re�ned using a Navier-Stokes method for

evaluation. This pre-optimizer was developed in hopes of reducing the

overall CPU time required for optimization when using only Navier-Stokes

evaluations. The primary method chosen to e�ect this optimization is

a parallel evolutionary algorithm. Variations of this method have been

analyzed and compared for convergence and degree of improvement. Test

cases involved both single and multiple row turbomachinery. For each case,

both single and multiple criteria �tness evaluations were used.
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CHAPTER I

INTRODUCTION

1.1 Motivation

Since the �rst recorded conception of �xed wing ight by George Cayley

in 1799 [1], and the success of the Wright brothers \Flyer" in 1903 [1],

engineers have steadily improved the concept of the airfoil to a high degree of

eÆciency. The experience and intuition built up over the last century endows

current designers with the ability to create eÆcient airfoil designs for many

di�erent applications. Improvements are often diÆcult to achieve without

many iterations of design and experimental analysis. In the 1960's and 70's,

advances in computational technology and numerical techniques allowed

airfoil analysis to be conducted in the computer rather than in the wind

tunnel [2, 3, 4]. Since then, both computing ability and Computational Fluid

Dynamics techniques have evolved considerably. With current technology

it is now possible to perform fully three dimensional viscous and turbulent

analyses on complex geometries. These very accurate simulations however,

lie at the current limit of computational capability. The CPU cost for

running these analyses can be immense. It is not uncommon for a single

analysis to take several days to converge.

1
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Due to the fact that the aerodynamic properties of an airfoil are not

determined solely by the e�ects of viscosity and turbulence, it is reasonable

to assume that improvements can be made by utilizing an inviscid analysis

in design iterations. Furthermore, by neglecting some three dimensional

e�ects, the problem can be reduced to only two dimensions. With these

simpli�cations, the enormous CPU cost of an accurate analysis is reduced

to a very inexpensive approximation.

The cost reduction achieved in analysis provides the ability to test

many di�erent designs in the time it would take to perform only one

very accurate analysis. While traditionally, engineers have relied on

experience to lead them to an optimal design, the use of various numerical

optimization techniques can achieve optimal designs without the need to

rely on intuition. Obtaining optima from this increased objective design

space is the motivation for this study.

1.2 Survey of Current Literature

The work done in this thesis involves both recent and historical

developments from the �elds listed in the following subsections. This brief

survey of techniques is given to expand the reader's awareness of the many

possible areas for continuing research and application.

1.2.1 Design Optimization

The practice of inventing or improving existing designs or techniques

to meet some predetermined goal is a primary tenet of human endeavor.

Numerical design optimization provides an objective tool which is applicable
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to almost any �eld imaginable. With proper problem formulation involving

identi�cation of the objective and any known constraints, there are a wide

variety of numerical optimization techniques available [5].

The most widely used variety of numerical optimization techniques

utilizes the idea of sensitivity derivatives. These derivatives indicate how

to change the design variables in order to improve the current design.

The use of sensitivity derivatives while not at an optima, can achieve an

improvement in the objective function. A disadvantage to the sensitivity

derivative method is the need to calculate the derivatives with respect to

all design variables. In an aerodynamic design case, this would require

computation of ow over the geometry for each of the design variables in

order to complete a single iteration. This disadvantage has been recently

addressed by calculating sensitivity derivatives using a complex Taylor's

series expansion (CTSE) method [6]. Unlike other second order derivative

techniques such as the central �nite di�erence method, CTSE provides

each derivative in a single iteration and its accuracy does not su�er from

subtractive cancellation error. The sensitivity derivative method has been

considered as a candidate for use in this study and has been investigated

further in Section 3.5.1.

Another technique which has recently received much attention is the

use of a directed zeroth order method known as an Evolutionary Algorithm

(EA) [7, 8, 9, 10]. The Evolutionary Algorithm is based on the natural

mechanisms proposed in Darwin's The Origin of Species [11]. It has a

number of advantages over traditional gradient based methods. One such

advantage is that, since derivatives are not required, it is not necessary to
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run analyses equal to the number of design variables. Another advantage

to the EA is it's ability to resist stalling in the local optima of a complex

design space. The EA's major disadvantage is that it is often neccessary

to run many iterations to reach a converged solution. Also, the EA is not

guaranteed to provide an improvement in the objective function for each

iteration. For both EA and gradient based methods, a reduction in overall

time can be gained through the use of parallel processing. The Evolutionary

Algorithm was selected as the primary method for use in this study. A more

detailed description of the EA method can be found in Chapter III.

More recent studies have involved a combination of methods known

as \Hybrids". These hybrid methods typically involve an Evolutionary

Algorithm on the global scale and usually some sort of gradient based

algorithm on the local scale [12, 13, 14]. Other schemes involve utilizing

an EA in obtaining search directions within a gradient based optimization

scheme. The former hybrid method bene�ts the overall optimization

by retaining the wide design space provided through the EA and the

guarantee of �nding an actual optimum in the local domain, through the

gradient based method. Furthermore, the gradient based local optimization

can be used periodically to re�ne the quality of population members for

continued evaluation through the EA. These hybrid methods generally

outperform standard Genetic Algorithms in terms of both time and degree of

improvement [15]. A hybrid algorithm has been implemented in this study

and an analysis of its performance is presented in Section 3.5.2.
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1.2.2 Curve Approximation

Generally when given a set of data, it is necessary to organize the data

into a form more suitable for the task at hand. In this study, the relevant

data is a set of points which describe the surfaces of a turbomachine. For

analysis it is necessary to reconstruct the surfaces from the points given, and

the ability to alter these surfaces is needed for the optimization process. A

surface or curve approximation method may be used to achieve these goals.

Given a set of points, there are a number of ways to describe the curve or

surface they represent.

The most obvious way to construct a surface is to simply connect the

points with lines to create the surface. The disadvantage of this method

becomes clear when attempting to manipulate the geometry. Perturbation

of a single surface point would result in a very localized surface change which

would manifest as a sharp protrusion or depression on the surface. Fluid

ow is very sensitive to sharp changes in geometry and would therefore

be drastically e�ected by such a surface perturbation. The approximation

technique chosen therefore, must be able to perturb the geometry in such a

way that the surface remains continuous and smooth. To accomplish this, a

reduction in the amount of local control over the surface is needed.

To retain a smooth continuous curve, the most basic method would be to

use a polynomial curve approximation. This would work for a small number

of curve �t points but, as the number of points increase, the polynomial

increases in degree and eventually becomes oscillatory. For the number

of points needed to describe an airfoil, polynomial approximation is not

appropriate. One solution to this would be to use a combination of low order
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(cubic) polynomial curves attached at their endpoints in a spline [16]. The

cubic spline however, cannot represent functions with more than one value

at each point (i.e. parametric curves). Another disadvantage to the cubic

spline is that to remain smooth, it requires knowledge of the derivatives

at the endpoints of each piecewise cubic polynomial. Every subsequent

perturbation of the geometry would result in the need to recalculate these

derivatives. The ow solver used in this study employs a cubic spline for

surface representation. This does not restrict the optimizer from using

parametric curve representations, but it does require the airfoil geometry

to be divisible into two non-parametric curves.

A simpler curve approximation can be obtained by using a Bezier curve.

This parametric representation has the property of pseudo-local control

and retains the continuity and smoothness needed for an airfoil geometry.

Furthermore, the surface representation is reduced to the number of control

points selected to �t the original curve. An increase in the degree of the

Bezier curve will not result in oscillatory behavior and, because this is not

a spline, the derivatives at endpoints are not needed. A disadvantage to

Bezier curves is that they only interpolate at the endpoints. A least squares

or other best �t algorithm must be used to �nd an acceptable approximation.

The Bezier curve was selected for curve approximation in this study. Further

information on this technique can be found in Chapter III.

A possible improvement to the chosen Bezier curve approximation

method may be found in the use of Non-Uniform Rational Bezier Splines

(NURBS) [17]. This method, though more complex than a simple Bezier

curve, would provide more local control in the form of rational Bezier
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curve splines which interpolate the original curve at the spline connections.

Perturbation of surface points would result in changing only the piecewise

curve in that local area, and the rational Bezier curve weighting factor

could be manipulated to �ne tune the geometry. The parametric spline

formulation would also allow the representation of an entire airfoil using a

single spline rather than with two Bezier curves.

1.2.3 Fluid Flow Solvers

The goal of this optimization study is to be able to produce

turbomachinery designs that possess improved aerodynamic properties over

the original design. The analysis is purely computational. Therefore, it

is necessary to model the physical system as accurately as possible while

keeping the CPU cost at a minimum. Some current methods, ranging from

the most accurate to the least, have been briey presented in this section.

The a�ects of body, pressure, and viscous forces on a uid element can be

completely described in the form of the Navier-Stokes equations [2, 18, 19].

These equations, developed by Navier in 1831 and in a more rigorous form

by Stokes in 1845, combine the equation of state and the conservation laws

of mass, momentum, and energy acting upon a discrete uid element. It

would seem that with the use of these equations, any type of uid ow

problem may be solved. This is true in theory however, the enormous

number of computations required to resolve a uid ow problem in this

manner is prohibitive. Additionally, the discretization and numerical errors

accumulated during the calculation can return a solution that is far from

accurate.
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Calculation of the turbulent, viscous, compressible, Navier-Stokes

equations at a single point alone involves the solution of a set of nonlinear

equations. To determine the turbulent ow about a simple two dimensional

object requires a grid of points �ne enough to resolve the turbulent e�ects at

the surface of the body and in the surrounding area. The calculations must

be made at each point and for a number of iterations to reach a converged

solution. Approximate techniques such as Large Eddy Simulation (LES)

and various Reynolds Averaged Navier-Stokes (RANS) turbulence models

can greatly reduce the computations necessary by reducing the need for high

grid resoluton.

If viscosity is neglected, the Navier-Stokes equations are simpli�ed and

become the Euler equations. By dropping the viscosity terms from the

Navier-Stokes equations, the overall number of computations is reduced.

Also, due to the fact that �ne grid resolution is not necessary to resolve

viscous e�ects, a coarser grid may be used thereby further reducing the

number of computations necessary for each iteration.

Further simpli�cation of the ow to include an irrotationality condition

reduces the problem to a Laplace equation. One method of solving the

Laplace equation is to use a panel method. Panel methods use information

from the source, doublet or vortex strengths at the boundary to calculate

the pressure distribution on the boundary. These problems require the

solution of a large system of algebraic equations, but the domain is reduced

to consider only the points at the surface of the body. Furthermore, the

equations can be linearized through approximations to produce a set of linear

equations which can then be solved using linear algebra techniques. Of the
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methods presented here, the linear panel method is by far the least CPU

intensive. A concise review of panel methods for aerodynamic applications

may be found in Reference [20].

The objective of this study is primarily focused on multiple blade row

turbomachinery design. This requires the use of an evaluation method that

can handle multiple row, blade to blade ows. In order to limit the scope

of this study, the use of existing code is desirable. A quasi 3-D, multistage,

blade to blade ow solver utilizing the linear panel method has been chosen

for evaluation in this study. The ow solver was developed by Eric R.

McFarland [21] and is detailed in Chapter II.

1.3 Objectives

As previously stated, optimization of turbomachinery using Navier-

Stokes methods for analysis is a computationally expensive task. Typically,

the time it takes to perform a Navier-Stokes analysis of an airfoil is orders

of magnitude greater than the same calculation performed by a linear

panel method. Although the linear panel method does not fully resolve

the complicated physics encountered in turbomachinery, its speed allows

the analysis of many di�erent geometries in the time it takes to run a

single geometry using the Navier-Stokes equations. Therefore, a multistage

turbomachinery pre-optimizer has been developed utilizing a linear panel

method. This approach allows near optimal designs to be produced very

quickly. Design performance veri�cation and further re�nement may be

conducted with more accurate Navier-Stokes simulations. This approach

can be used to signi�cantly reduce the overall design time.



10

The amount of design time reduction that can be achieved is a function

of the optimization technique used and how well that technique has been

tailored to a speci�c set of problems. For this purpose an evolutionary

optimization technique has been chosen which employs a form of Genetic

Algorithm (GA). The GA method was selected for exploratory investigation.

However, its relative indi�erence to the number of design variables is an

advantage in this case. A disadvantage is that GA's and other probabilistic

approaches require many objective function evaluations. This problem has

been ameliorated by the use of parallel processing, for which GA's are

inherently well suited. In Chapter III the formulation and analysis of various

con�gurations of the evolutionary optimization method used in this study

have been detailed.

It is the purpose of this study to investigate whether a limited model such

as the linear panel method can provide suÆciently accurate information that

will lead to an actual improved design. To achieve this aim, two separate

cases have been investigated.

Test case 1 is a two row turbine involving one stator and one rotor.

Comparisons of the original versus optimized geometries have been made.

Test case 2 involves a single turbine guide vane cascade. This case has

been optimized using the linear panel method and comparisons have been

made to an Euler analysis [22]. Concerns have been raised regarding the

Bezier approximation of the geometry, constraints on the design variables

(feasibility of the design), proper formulation of the �tness function, and

most importantly, the accuracy of the linear panel method.



CHAPTER II

LINEAR FLOW SOLVER

The ow solver code used for optimization analysis was PCStage. This

code and solution method were developed by Eric R. McFarland [21, 23, 24].

The method used by PCStage calculates multistage, blade to blade ows.

It solves linearized equations for steady, compressible, inviscid, irrotational

ow with some loss approximations. The quasi 3D e�ects are described by

the inclusion of stream sheet thickness variation, radius change, and blade

row rotation.

The advantage of McFarland's method in solving turbomachinery

problems is that it calculates ow based on an absolute reference frame.

Historically, ows involving multiple blade rows were calculated separately

in sections where the ow is relative to each blade row [25, 26]. This

simpli�cation introduces errors into the system by neglecting the inuence

between blade rows. A revision of the governing equations formulated by

Parker [27] has been reformulated by McFarland to utilize an absolute

reference frame and remove the neccessity for ow�eld decomposition.

McFarland has also extended the method to consider subsonic compressible

ows and radial ow machinery.

11
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This solution method, known as the panel method, is an approximation

to the solution of the governing equations consisting of the continuity

equation (equation 2.1) and the irrotationality condition (equation 2.2) listed

below. These equations describe ow on a blade to blade surface revolution

with respect to an absolute reference frame.

2.1 Governing Equations

@

@�
(�bV�) +

@

@m
(r�bVm) = 0 (2.1)

@

@�
(Vm)�

@

@m
(rV�) = 0 (2.2)

A transformation is introduced using the following variable substitutions.

y = � (2.3)

x =

Z
m dm

r
(2.4)

Vx = r�bVm (2.5)

Vy = r�bV� (2.6)

These transformations are substituted into the governing equations to

obtain equation 2.7 and equation 2.8.

@

@y

�
Vy
r

�
+
1

r

@

@x
(Vx) = 0 (2.7)
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@

@y

�
Vx
r�b

�
�
1

r

@

@x

�
Vy
�b

�
= 0 (2.8)

These transformed governing equations can be simpli�ed to form

equations 2.9 and 2.10.

@

@y
(Vy) +

@

@x
(Vx) = 0 (2.9)

@

@y
(Vx)�

@

@x
(Vy) = �

Vy
�b

@

@x
(�b) (2.10)

The governing equations are linearized by assuming that the uid density

only varies in the meridional direction. An estimation is made for the non-

linear irrotationality equation 2.10 to give the linear form of equation 2.11.

@

@y
(Vx)�

@

@x
(Vy) = �

Vyest
(�b)est

d

dx
(�b)est (2.11)

2.2 Solution Methodology

The linear governing equations 2.9 and 2.11 can be solved by a

superposition of solutions. The solution involves the uid velocities Vx, and

Vy which are composed of a uniform ow Vxc, and Vyc plus a disturbance

ow vx, and vy as shown in equation 2.12.

Vx = Vxc + vx

Vy = Vyc + vy

(2.12)
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Substitution of these equations into the governing equations gives the

following linear equations. Equation 2.16 is the estimated non-linear term

which is strictly a function of x.

Vxc = Vonset cos(�c) (2.13)

Vyc = Vonset sin(�c) + V�b (2.14)

@

@x
vx +

@

@y
vy = 0

@

@x
vy �

@

@y
vx = 0

(2.15)

V�b =

Z (�b)est
�
Vy
�b

�
est

d(�b)est (2.16)

Note, Vonset is the uniform ow value of velocity, and �c is uniform ow

value of the absolute ow angle with respect to the meridional direction.

There are three boundary conditions used in determining the ow �eld.

The ow relative to a body must remain tangent to a body's surface (i.e.

relative velocity normal to each panel is zero). The ow is uniform upstream

and downstream of a body. And, the circulation for each body is set by the

Kutta condition. For further details on these boundary conditions, refer to

the literature [21].

The ow estimates can be calculated using a throughow calculation

as the estimate or by making a one dimensional calculation of the blade to

blade ow. PCStage uses a one dimensional calculation to give the estimated

nonlinear term V�b. To solve the linear equations, the source strength is

assigned a value equal to the normal component of the uniform ow along
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the body's surface. The normal velocity boundary condition (equation 2.17)

is applied to each panel along the surface. The Kutta condition is applied

to the trailing edge of the body, and the resulting system of equations is

solved using an LU matrix decomposition. To satisfy the upstream and

downstream boundary conditions simultaneously, an iterative process on

the ow angle of the uniform ow (�c) is performed. This angle is adjusted

until the calculated upstream ow angle matches the speci�ed upstream ow

angle.

�Vonset sin(�p � �c) + (V�bp � Up) cos(�p)

+

npt�1X
i=1

Bspi�i +

nptX
j=1

Bvpj�j +
mX
k=1

BdpkÆk = 0
(2.17)

In equation 2.17, the terms without summations are the uniform parts

of the solution. The summation terms are the disturbance ow parts of

the solution. The parameters Bs, Bv, and Bd are the inuence coeÆcients

used in the integral equations. The variables �, �, and Æ are the source,

vortex, and jump singularity distributions calculated in the integral equation

solution. The variable � is the angle of the surface with respect to the

meridional coordinate and U is the wheel speed. The subscript p denotes a

point in the ow�eld.

2.3 Loss Approximations and Limitations

Losses in the system are approximated by the introduction of speci�ed

input parameters. Adiabatic eÆciency is used to control losses in mechanical
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work. Total pressure loss and viscous blockage are used to describe viscous

loss. The Kutta condition (i.e. velocity must be continuous at trailing

edge) for the trailing edge ow angle is used to control ow turning and for

modeling deviation and slip ows. This loss model allows some control over a

solution containing small viscous e�ects however, the accuracy is dependent

on prior insight into the ow being modeled.

This method is only accurate when considering subsonic ows with

very small viscous e�ects and small ow separations. For a more detailed

description of the PCStage solution method, the reader is directed to

references [21, 23, 24].



CHAPTER III

OPTIMIZATION METHOD

Clearly the objectives of any optimization method are to provide

improved feasible solutions. These solutions should also be obtained quickly

and with the best possible result. The means by which these issues are

addressed will be discussed below and in the following sections.

The ow solver PCStage was chosen for its ability to run ow

solutions quickly. This allows relatively fast aquisition of objective function

evaluations. A curve approximation technique, designed to reduce the

number of design variables, has been implemented. Although the Genetic

Algorithm is not signi�cantly hindered by large numbers of design variables,

a reduction in the number of these design variables is a bene�t to any

optimization scheme. The chosen method bene�ts more from the form of

the curve approximation used in the reduction which is explained in Section

3.1. Genetic Algorithm functions described in Section 3.2 such as Parent

Selection, Mating, and Mutation have been analyzed in order to �nd the best

convergence rates and �tness improvements, and parallelization (Section

3.3) has been incorporated to drastically reduce evaluation time. Finally, in

Section 3.5 a comparison has been made to a gradient based method, and

an EA/Gradient based hybrid has been proposed.

17
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3.1 Design Surface Parameterization

The optimization of airfoil geometries can involve many design variables.

For shape design, the variables may be selected as the coordinates of the

surface points. This choice may result in an excessive number of design

variables. This number can be reduced with the use of curve approximation

techniques. As discussed in Chapter I, the approximation technique chosen

for this study is the Bezier curve. By representing the surfaces in this

manner, the number of design variables can be reduced to the number of

control points necessary to describe the geometry.

The Bezier curve representation has been chosen due to its many useful

properties. The properties of most interest are end point interpolation and

pseudo-local control. End point interpolation requires that the endpoints of

the Bezier curve be identical to the end points of the original curve. This

property allows the precise de�nition of these critical points. Pseudo-local

control is useful for manipulating the geometry by small degrees without

adversely a�ecting the rest of the surface. Pseudo-local control is handled

in the following manner: Given a Bezier curve (see equation 3.1) with a

number of control points b0; : : : ; bm, if some control point bi is moved, then

the curve is most a�ected about the points whose parameter is close to

i=n, where n is the degree of the Bernstein polymomial. This gives the

ability to alter a localized region of the surface by moving a single point.

Some surface control is lost in this approximation, but the resulting curve

is always continous and generally smooth.

The approximation is made by taking the surface points of the original

geometry, and specifying the axial positions of the control points to be
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calculated. The arclengths between the speci�ed control points are obtained

and used to calculate the tangential positions of the control points to

construct a best �t Bezier curve. An example of an airfoil with its

corresponding Bezier control point representation is shown in Figure 3.1.

0 0.2 0.4 0.6 0.8 1 1.2

-1

0

1

2

3
Upper Surface Control Points
Lower Surface Control Points

Figure 3.1: Approximated Geometry with Bezier Points Overlaid
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A Bezier curve or polynomial of degree n is de�ned as:

C(t) =

nX
i=0

Bn
i (t)bi (3.1)

where bi�R
2 are the control points and Bn

i (t) =
�

n!
i!(n�i)!

�
(1� t)n�iti

i = 0; 1; 2; : : : ; n are the Bernstein polynomial basis functions.

One disadvantage to using a Bezier curve approximation is that some

information, particularly �ne details, can be lost. This is due to the non-

interpolative property of Bezier curves. As mentioned in chapter 1, these

approximation errors can be diminished by increasing the degree of the

Bezier curve or by utilizing piecewise Bezier curves (BSplines) on either

side of the slope discontinuity. An example of feature loss is presented in

Figure 3.2. For more information on BSplines, Bezier curves, and Bernstien

polynomials see references [17, 28]
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Figure 3.2: Feature Loss, Leading Edge Zoom
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3.2 Evolutionary Optimization

Evolutionary optimization is a technique based on the processes of

Natural Selection, otherwise known as \survival of the �ttest" which was

�rst clearly described in Darwin's The Origin of Species [11]. The selected

optimization method employs a Real Valued Genetic Algorithm (RVGA) to

encode and generate improved solutions based on a set of current solutions.

These solutions \evolve" over a number of generations to improve their

�tness values, thereby adapting to survive the �tness environment. For a

more detailed discussion of GA's and their properties the reader is directed

to the literature [29, 30, 31].

In this study each turbomachine geometry is represented as a member

of a population. Each of these members is composed of the real values

of the Bezier control point coordinates that describe its geometry. This

representation de�nes the method as an RVGA, rather than a standard GA

in which members are represented as a binary bit string. Every member

of this population is evaluated by the ow solver and is assigned a �tness

value based on the results. The �tness of a member inuences how often

it will be combined with other members to produce o�spring and whether

it will be replaced by a new o�spring member. Random mutations are

introduced to add new characteristics into the population. The application

of the evaluation, selection, combination, and mutation operations result in

the creation of a new generation. The process is repeated until a suÆcient

optimum has been achieved or a maximum number of generations has

been reached. A ow chart of the evolutionary process is shown in Figure 3.3.
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Initial Population

Evaluate each member in population and assign fitness value

Perturb original geometry to create initial population

Mutate population to introduce new characteristics

Combine members to form new solutions (Mating) 

Original Geometry

from current generation

Evolved Population

Cull worst members from population

Repeat cycle until tolerance or max iterations have been reached

If max iterations
or tolerance is reached
then output best solution

Improved 
Solution

Figure 3.3: Evolutionary Algorithm Flow Chart
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3.2.1 Fitness Criteria

The �tness criteria used in this study were based on the calculation of �ve

coeÆcients by PCStage from the integration of the surface pressure around

the body. These are the axial (Cx) and tangential (Cy) force coeÆcients,

the lift coeÆcient (Cl), the drag coeÆcient (Cd), and the moment coeÆcient

(Cm). A combination of one or all of these coeÆcients depending on the

problem formulation, de�nes the �tness function. For example, the �tness

function for an airfoil might be to maximize the ratio of Cl

Cd
. Another �tness

function useful in turbomachinery is to maximize axial and tangential force

coeÆcients while reducing drag. An illustration of the coordinate system in

which these coeÆcients are de�ned can be seen in Figure 3.5.

It should be noted that when the formulation of a �tness function is

comprised of two or more properties, the property most sensitive to change

will become the controlling factor in parent selection.

3.2.2 Generating New Solutions

Optimization using a Genetic Algorithm involves conicting processes.

To attain convergence, the solutions in the next generation must contain

the best properties of the current generation. This requires selection and

combination of only the best solutions. However, in order to avoid stalling

in local optima, a wider variety of solutions must be included in subsequent

generations, thereby hindering convergence. The balance of these conicting

processes is an active subject of study [32, 33].

The generation of new solutions is driven primarily by the �tnesses of

the current solutions. This generation process is commonly referred to in
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GA terms as Mating. Mating involves �rst selecting mating pairs, then

combining these pairs to form new solutions, and �nally introducing these

new solutions into the population. There are a variety of ways to handle

each of these steps.

Some of the issues involved in parent selection and combination are the

following: How will the parents be selected? Will these parents mate only

once or multiple times? How many o�spring will each of the pairs produce

per mating? These issues all have an e�ect on the balance of convergence

and local stalling.

Some of the more common methods of parent selection are:

1. Choosing both parents strictly based on their �tness.

2. Choosing both parents randomly.

3. Choosing both parents randomly but weighted by their �tness

(tournament selection).

4. Gather a group of members into a mating pool based on their �tness

and select randomly from this pool.

Method 1 is the best way to facilitate convergence. It will also most

likely stall very early into a local optimum. Method 2 will have a poor

convergence rate, but it reduces the chance of local stalling. Methods 3 and

4 are attempts to strike a balance between the two goals.

The method chosen is a variation of method 3. Initially, the mating pool

includes all members of the population. For each mating within the cycle,

the best two members are chosen to mate. Once this mating has occurred,



26

there is a chance that one of these two parents will be removed from the

mating pool. The chance of removal is statically determined by the user. For

this study, the chance of removal was set at 40%. The next mating will again

take the top two parents, disregarding those that have been removed from

the pool. This method guarantees at least one elitist mating. It also reduces

the possibility of converging to a local optimum by allowing a wider variety

of parents to mate, thereby producing a wider variety of designs. When a

mating occurs, the single o�spring replaces the current worst member. A

subsequent mating will replace the next worst member. This guarantees

a constant population size and culling of the current worst designs. The

o�spring members, however, are still untested and may be inferior to the

ones that they replace.

3.2.3 Mating Methods

For each mating, a new design must be generated by some combination

of the parent geometries. Again, there are a myriad of ways to combine

parents. The standard GA solution is to use some sort of crossover method

[7]. Four di�erent mating methods have been analyzed in order to determine

their respective performances.

� Fixed single point crossover

Each surface of the new solution is split at the middle control point.

Half of the information comes from parent 1, the other half from parent

2. Which half each parent contributes is determined randomly. Each

child is guaranteed to be composed of half of the information of each

parent but not necessarily the best half.
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� Variable single point crossover

Like the �xed crosspoint method, each surface of the new solution

is split and information from each of the parents is distributed on

either side of the split or \crosspoint". However, in this case, the

crosspoint is determined randomly and ranges from the �rst to the

last control point. Therefore, it is possible for one parent to contribute

more information to its child than the other parent.

� Surface Exchange

In this scheme, for each body in the geometry, there is a 50%

chance that the upper surface of that body will be chosen from either

parent. The lower surface will be taken from the parent that was not

chosen. Again, each child is guaranteed to be composed of half of the

information of each parent.

� Point Average

This is the simplest method of parent combination. The Bezier control

points of each parent are simply averaged to create the child. While

this method guarantees that all of the information from each parent is

involved in child creation, it does not pass on the exact characteristics

from each parent that make those parents the most �t.

Trials were run using all four mating methods and a plot of Fitness vs.

Generation (Figure 3.4) was made to track convergence rates and degree of

improvement. Though these plots will vary with each initial random seed,

the average trend remains the same. The trials in this section were all run
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with a mutation magnitude of 0:3 and mutation rate of 0:03 (see section

3.2.4), and all had the same random seed. Trials were also run at much

higher rates and magnitudes, but due to the lack of convergence, the e�ect

of mating methods was indeterminate. From the plots it is evident that all of

the methods perform similarly, with a slightly higher �tness being achieved

by the crossover methods. The optimizer code allows selection between

mating methods, but the �xed single point method seems to consistently

outperform the others though by a small degree only.
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Figure 3.5: Coordinate system used in ow solver



31

3.2.4 Mutation

Mutation is the introduction of random perturbations to the geometry.

In the strict sense of a GA, mutation is a ip of a random bit within the

binary coding of the population member. For this RVGA, the process

of mutation takes the form of a \perturbation" operator, but the term

\mutation" will be used to signify a similar process. The mutation operator

includes a mutation rate and magnitude. The rate determines the maximum

percentage of control points which will undergo mutation. For the cases

presented in this section, the mutation magnitude determines the maximum

degree of perturbation along the tangential direction de�ned by a percentage

of the tangential component of the control point location. In subsequent

cases the magnitude is de�ned as the maximum degree of perturbation based

on a percentage of the distance along the surface normal from the control

point to the surface.

The purpose of mutation is to introduce new characteristics into a

population and thereby reduce the possibility of converging to a local

optimum. A drawback to mutation is that, depending on the degree, it can

impede convergence. A solution to this problem is to make the mutation

magnitude a function of the generation number [9]. In the beginning of the

optimization process, a variety of solutions is desireable, so the mutation

magnitude is kept relatively large. As the last generation is approached

the solution should be converging to a global optimum, so the magnitude

needs to be close to zero. Constant, linearly, and quadratically decreasing

functions have been used to control the mutation magnitude and the results

have been presented in Figures 3.6, 3.7, and 3.8. The mutation rate has also
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been varied while holding the magnitude constant. The results of varied

mutation rates are presented in Figure 3.9. For the purposes of creating a

diverse initial population, the original geometry is subjected to a series of

mutations in which a distinct initial mutation rate and magnitude are used.

A subsequent (usually much smaller) rate and magnitude are used after the

initial population has been created.
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In Figures 3.6, 3.7, and 3.8 it is demonstrated that an initial mutation

magnitude of around 10% for all variations provides the best �tness

gains while retaining convergence properties. The use of a decreasing

function applied to the mutation magnitude shows a forced convergence

towards the end of the evolution cycle. There do not appear to be any

clear distinctions between the performance of linearly and quadratically

decreasing mutation magnitudes. The e�ect of mutation rates, as shown

in Figure 3.9 follow a similar trend as mutation magnitude. The rate

that exhibits the best improvement while retaining convergence is also

around 10%. As this study progressed, new features were added such as

perturbation along a surface normal and addition of geometric constraints.

These additions had the e�ect of altering the optimal values for mutation

rate and magnitude. Furthermore, di�erent starting geometries will respond

di�erently to mutation rates and magnitudes such that it is diÆcult, if not

impossible, to generally predict optimum values for these parameters. The

study presented here serves to illustrate the existence of optimal values of

mutation rate and magnitude for any given geometry.

3.3 Parallelization

Due to the fact that probabilisticmethods often require many evaluations

of an objective or �tness function, the cost of using a sequential algorithm is

usually prohibitive. For example, in the case of the PCStage pre-optimizer

using an evolutionary algorithm, an acceptable degree of convergence should

be found after 50 generations have been evaluated. With a population

size of seven members and a PCStage evaluation time of approximately
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one minute per member, the total time necessary to produce the �nal

solution is around 5 hours and 50 minutes. However, these methods

are inherently parallelizable. That is, they are easily decomposed into

simultaneous calculations. Largely due to the current accessibility of

parallel and distributed computing, probabilistic methods are becoming

more popular.

There are a variety of ways in which a GA may be parallelized [34]. In

this study one of the simplest forms of Parallel Genetic Algorithm (PGA)

has been implemented. The decomposition simply distributes the �tness

evaluations for each member of the population to a separate processor.

This would result ideally in a reduction of the time by the total size of

the population, or at least by the number of processors available. Given

our example of 50 generations and 7 members, the parallel version of the

pre-optimzer would ideally produce the �nal solution in 50 minutes.

The actual degree of speedup is illustrated in Figure 3.10. For this

speedup comparison each trial was run for �ve generations and population

sizes were varied from one to seven. Plotting the completion time as a

function of population size, the graph shows that both algorithms increase in

a linear manner. The parallel algorithm trend has a slope of about one third

that of the sequential algorithm. An ideal speedup would show a horizontal

line at a completion time of 150 seconds. The actual speedup is obviously

not ideal, but it de�nitely illustrates the advantage of parallelization. The

trend indicates that a larger population size and hence a larger number of

processors would provide a further increase in overall time reduction. An

upper limit may exist in which communication costs outweigh the bene�t
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of more processors, but at the current level of investigation, this is not

evidenced.

For the population size of one, the reader may notice that the parallel

algorithm appears to achieve a speedup greater than that predicted by the

speedup folklore theorem [35]. This is due to the fact that for any population

size, the �tness of the original turbomachine is calculated at the beginning of

the optimization. In the sequential code, this adds one additional evaluation

to the total required. The parallel algorithm performs all evaluations on

separate processors numbered from one to population size, and reserves

processor zero for the optimization overhead, including the evaluation of

the original turbomachine. This reduces the time needed for the parallel

algorithm by one �tness evaluation, and it is the reason why it is necessary

for the number of processors to be one greater than the population size.

Though most of the analysis was done using eight processors, the method

would certainly bene�t from a larger number of processors, and hence a

larger population size. This would allow for a greater diversi�cation of

solutions and may o�er greater performance through tailoring of the mating

process.
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3.4 Error Handling/Geometric Constraints

The absence of an engineer's subjective, experiential, guidance from the

optimization process presents a diÆcult problem. Designs which are clearly

infeasible would likely be identi�ed and discarded by an engineer. These

designs must also be identi�ed by the optimization program as infeasible.

This results in the need to impose contraints, based on experience, while

keeping these constraints to a minimum in order to limit restrictions on

the design space. The following constraints were identi�ed as critical and

were therefore included in the optimization process. Geometries that return

errors in the ow solver are assigned the minimum �tness value of zero. If

they are not replaced by subsequent matings during the current round, they

will be reset to the original geometry. Also, during the mutation stage, each

blade of each member is checked for minimum thickness at every point. To

retain the Kutta condition, the trailing edge control points (i.e., the last

three for each surface) are held constant to �x the trailing edge ow angle.

Further studies on constraint handling for Evolutionary Algorithms can be

found in reference [36].

3.5 Investigation of Alternative Optimization Methods

3.5.1 Gradient Based Method

For the purposes of comparison, an unconstrained, gradient based (or

sensitivity derivative) method was implemented using the Broyden, Fletcher,

Goldfarb, Shanno (BFGS) variable metric method for direction �nding [5].

These gradient based methods, briey described in Section 1.2.1, use the
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derivatives of the objective function with respect to each design variable to

indicate the best way to alter the design variables in order to achieve an

improvement in the objective function. Unlike the Evolutionary Algorithm,

the performance of these methods in terms of CPU time is heavily dependent

on the number of design variables involved. The gradient based method

has the capability of �nding the exact optimum, but has the tendency

to become stalled in local optima. Like the EA method, gradient based

methods are well suited to parallelization. This method has been parallelized

such that each of the derivatives with respect to the objective function are

calculated simultaneously. In addition, the line search performs a number

of simultaneous function evaluations at distinct intervals along the search

direction. The BFGS method was chosen due to the fact that it does not

require exact line searches to achieve improvements each iteration. This

allows us to be less precise in our line searches thereby reducing the number

of ow solutions necessary per design iteration.

The test case used for this comparison was the VKI turbine guide vane

cascade whose properties are described in Section 4.2. The objective for the

following case is to increase the value of the axial thrust coeÆcient. The

BFGS method used for direction �nding is an unconstrained optimization

method. This means that every value within the domain is treated without

bias. Constraints have been applied to the geometry by simply limiting the

domain for each design variable such that a minimum thickness is enforced

and axial boundaries are maintained. These constraints are the same as

those de�ned for the Evolutionary Algorithm in Section 3.4 and additional

constraints are described in section 4.2.
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Table 3.1 lists the �ve aerodynamic coeÆcients calculated by PCStage.

These coeÆcients are: axial thrust (Cx), tangential thrust (Cy), moment

(Cm), lift (Cl), and absolute drag (jCdj). The parallelized sensitivity

derivative algorithm was run using eight processors and took approximately

one hour to run eight iterations. This optimization generated a 2:0% increase

in the axial thrust coeÆcient. The geometry produced by this optimization

is compared to the original in Figure 3.11.

Table 3.1: VKI PCStage Analysis, Optimized Using Sensitivity Derivatives
(Increased Cx )

Cx Cy Cm Cl jCdj

Original 14.00077 7.307141 1.645532 15.79246 0.1187053

Optimized 14.27599 7.820427 -1.505815 16.27588 0.2424562
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Using Sensitivity Derivatives.
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3.5.2 Hybrid Evolutionary-Gradient Based Method

The ability of gradient based methods to provide exact optima is

the ultimate goal of all optimization e�orts. However, their tendency

to stall in the local optima of a complex design space is a signi�cant

drawback. Evolutionary algorithms have the ability to provide improved

geometries that are near optimal in the global domain, though their

inability to produce exact optima renders them less than perfect. These

methods both excel where the other fails, thereby lending themselves to

a complementary combination. For further information on the variety

of \hybrid" optimization schemes, the reader is directed to the literature

[13, 14, 15].

A trial has been run in which the initial optimization of the VKI cascade

was performed using the EA. This optimization ran for twenty generations

which took approximately 18 minutes and produced a 22:1% increase in

the axial thrust coeÆcient, compared to the 2:0% increase obtained by the

gradient based method in the previous example. This indicates that the

gradient based method had converged directly into a local optimum. The

EA improved geometry was then re�ned using the BFGS gradient based

method which converged in seven design iterations taking approximately 40

minutes, and resulted in a 104:5% overall improvement. These results are

listed in Table 3.2.
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Table 3.2: VKI PCStage Analysis, Optimization Utilizing an Evolutionary
Algorithm with Re�nement via Sensitivity Derivatives
(Increased Cx )

Cx Cy Cm Cl jCdj

Original 14.00077 7.307141 1.645532 15.79246 0.1187053

EA Optimum 17.09682 8.129745 2.003717 18.93064 0.1584643

SD Re�ned 28.64504 11.05988 -2.140496 30.70276 0.4470350

The results of this test case clearly illustrate the advantage of utilizing

zeroth order and gradient based methods in conjunction to overcome the

disadvantages of both. The EA produced an optima that was clearly more

globally �t than that produced by the gradient based method alone. The

large improvement obtained from using gradient based re�nement on the

result of the EA optimization indicates that the near optima was far from

exact. The resulting geometry therefore has the property of being much

more globally �t and is at the peak of �tness in its local domain. The

geometries produced by the successive design steps are shown in Figure

3.12.
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CHAPTER IV

RESULTS AND DISCUSSION

Two turbine geometries have been examined in this study. The �rst

case is a single stage (stator-rotor) turbomachine which was experimentally

tested at the United Technology Research Center's (UTRC) Large Scale

Rotating Rig Facility. The results for this particular turbine geometry were

presented in a paper by Dring [37] and subsequently used for comparison in

McFarland's PCStage veri�cation [21]. The second case is a von Karman

Institute (VKI) designed turbine guide vane cascade [38, 22]. This guide

vane cascade geometry has been optimized and the PCStage results have

been compared with an Euler analysis to determine any discrepancies

between the panel method solutions and those of higher �delity methods.

The geometries were optimized for various properties and the analysis has

been presented in the following sections. For all cases, a linearly decreasing

mutation magnitude was used, and the crossover method chosen was �xed

single point for each surface in the geometry.

4.1 Dring's Low Speed Axial Turbine

Dring's low speed axial turbine, which will be referred to as \DAT",

consists of two blade rows. Row one, located upstream from row two, is

48
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a stator containing 28 blades and has a trailing edge ow angle of �67o.

Row two contains 28 blades and rotates at a speed of 408:1 RPM in the

positive tangential direction (as de�ned in Figures 4.1,4.3,4.5,4.7). Row two

has a trailing edge ow angle of 61:5o. The inlet ow velocity is 75 ft=sec

with a ow angle of 0o. The outlet ow angle is calculated at 40o with

a velocity of 100:2 ft=sec. The working uid is air with an upstream

total pressure and temperature of 2116 lb=ft2 and 520 R, respectively. The

initial and subsequent mutation magnitudes were 7% and 3%, respectively.

The mutation rate was set at a constant 30%. The coeÆcient of pressure

calculated by PCStage and used for comparison in this chapter is formulated

in equation 4.1. The value of Minlet is calculated directly from the input

ow values.

Cp =
(P � Pinlet)

1
2PinletM

2
inlet

(4.1)

Optimization trials were run to improve the aerodynamic coeÆcient

values of axial thrust (Cx), tangential thrust (Cy), and absolute drag (jCdj)

separately. A fourth optimization was then conducted utilizing a linear

combination of these coeÆcients as the �tness function. The results are

presented in Sections 4.1.1, 4.1.2, 4.1.3, and 4.1.4.

For these inviscid cases the value of the PCStage calculated drag

coeÆcient (Cd) is composed of two parts: A measure of the numerical error

which is second order accurate with respect to panel size, and the value

of the integrated pressure forces along a mean ow angle. The integrated
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pressure forces do not sum to zero for an airfoil in a cascade due to the

e�ects of ow turning at upstream and downstream in�nity.

4.1.1 Increased Average Axial Thrust

The objective of this �rst optimization is to increase the average value of

the axial thrust coeÆcient (Cx). Table 4.1 lists the values of the aerodynamic

coeÆcients for each blade row in the turbomachine and the average of these

values. A comparison is made between the original geometry of Gen = 0

and the �nal \evolved" geometry of Gen = 25. By inspection of the data

for the target coeÆcient Cx, it is evident that although the value has been

increased for the stator, it has been reduced on the rotor. The combination

still results in an overall improvement in average Cx. Inspection of the other

coeÆcients show that average Cy and Cl have been reduced while average

Cm and jCdj have been increased.

Table 4.1: DAT PCStage Analysis (Increased Average Cx )

Gen Row Cx Cy Cm Cl jCdj

0 1 6.510614 4.264202 1.243707 1.537078 7.629476
2 1.070044 -6.462905 -1.197102 -6.397294 1.410233

Avg 3.790329 -1.099351 0.0233023 -2.430108 4.519854

25 1 7.200757 4.502012 1.662351 1.265173 8.397520
2 0.7400496 -6.877953 -1.083056 -6.604517 2.057732

Avg 3.970403 -1.187971 0.2896475 -2.669672 5.227626



51

The evolved geometry generated for an improved average Cx is shown

in Figure 4.1. There is a very small change in the stator geometry, and a

much larger change in the rotor geometry resulting in a rather blunt leading

edge. These changes were not indicated by the relatively large increase of

Cx on the stator and small decrease of Cx on the rotor. The percentage

di�erence in Cx however, does indicate these changes. The optimization

e�ects a 10:6% increase of Cx on the stator. A decrease of 30:8% is achieved

on the rotor. Although the optimizer results show an increase in average Cx,

the drastic change in geometry produces a rather large percentage decrease

on the rotor alone. This indicates that the use of a �tness function based

on average coeÆcient values is a poor indicator of performance for blade

rows whose coeÆcient magnitudes vary signi�cantly. A more judicial �tness

function may utilize average percentage changes to indicate performance

improvements.

The pressure coeÆcient plot in Figure 4.2 shows very little pressure

change due to stator geometry but a rather large pressure change just after

the leading edge of the rotor on the suction surface corresponding to the

increase in surface area and blunt leading edge.
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4.1.2 Increased Average Tangential Thrust

The objective is here to increase the average value of tangential thrust

(Cy). From Table 4.2, a comparison is made between the coeÆcients of the

original and evolved geometries. The optimization results in an increase of

tangential thrust for both blade rows.

Table 4.2: DAT PCStage Analysis (Increased Average Cy)

Gen Row Cx Cy Cm Cl jCdj

0 1 6.510614 4.264202 1.243707 1.537078 7.629476
2 1.070044 -6.462905 -1.197102 -6.397294 1.410233

Avg 3.790329 -1.099351 0.0233023 -2.430108 4.519854

25 1 6.469320 4.282306 1.384830 2.119511 7.463104
2 0.5252466 -6.033959 -1.168760 -5.909227 1.328749

Avg 3.497283 -0.8758234 0.1080346 -1.894858 4.395927

Due to the fact that the relative magnitudes of Cy are more comparable

here than of Cx in the previous example, the �tness function is a�ected

more evenly by changes in both geometries. The geometric result of this

more evenly weighted evaluation can be seen in Figure 4.3. The stator

undergoes a slight thinning, and the rotor now has an increasingly blunted

leading edge and reduced thickness along the chord due to a attening of

the suction surface.

With the exception of the rotor suction surface, the coeÆcient of pressure

plotted in Figure 4.4 shows a distribution very similar to the original.
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4.1.3 Decreased Average Drag

The objective for this optimization was a decrease in the average absolute

drag coeÆcient (jCdj). The results listed in Table 4.3 show a decrease in

jCdj for both blade rows. E�ects on the other coeÆcients are an increase in

average Cy and Cl and a decrease in average Cx, and Cm.

Table 4.3: DAT PCStage Analysis (Decreased Average jCdj)

Gen Row Cx Cy Cm Cl jCdj

0 1 6.510614 4.264202 1.243707 1.537078 7.629476
2 1.070044 -6.462905 -1.197102 -6.397294 1.410233

Avg 3.790329 -1.099351 0.0233023 -2.430108 4.519854

50 1 3.642239 3.159335 0.2051005 2.449147 4.153190
2 1.233360 -4.348439 -0.6978505 -4.499727 0.4272640

Avg 2.437800 -0.594552 -0.2463750 -1.025290 2.290227

To achieve this drag coeÆcient reduction, the evolved geometry in Figure

4.5 exhibits a large change in both blade rows. As one might expect, the

thickness of the blades has been reduced drastically and the surfaces are

becoming aligned with the mean ow angle. The stator exhibits a slight S-

curve near the trailing edge. The optimization clearly shows a decrease in the

total amount of drag. However, this may be in part a result of the inability

of the low �delity simulation to accurately model the physics in the vicinity

of the trailing edge. The stator in particular has a trailing edge angle that is

clearly di�erent from the original geometry. Due to the fact that the trailing

edge angle for the Kutta condition is �xed to match the original velocity

triangle, the ow on the optimized stator is subjected to a twist at the
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trailing edge to match the Kutta angle. The actual trailing edge ow angle

will most likely deviate from the expected angle, therefore the reliability

of this result is in question. Problems such as this may be overcome by

applying more stringent constraints to the trailing edge geometry.

The pressure coeÆcient plot for this result is shown in Figure 4.6. As

expected, the pressure coeÆcients of the new design vary drastically from

the original, particularly along the surface of the stator.
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4.1.4 Multiobjective Optimization

Table 4.4 lists the results of a multiobjective �tness function designed

to increase the sum of the averages of Cx, and Cy, while decreasing the

average value of jCdj. A comparison of the average coeÆcients of the original

geometry to those of the evolved geometry illustrates a decrease in average

Cx, an increase in average Cy, and a decrease in average jCdj. The sum

results in a total increase for the combined coeÆcients.

Table 4.4: DAT PCStage Analysis (Increased Combination: Cx+Cy�jCdj)

Gen Row Cx Cy Cm Cl jCdj

0 1 6.510614 4.264202 1.243707 1.537078 7.629476
2 1.070044 -6.462905 -1.197102 -6.397294 1.410233

Avg 3.790329 -1.099351 0.0233023 -2.430108 4.519854

25 1 5.351418 3.858809 0.8009851 1.807322 6.345208
2 2.081053 -5.646716 -1.175747 -6.017885 0.035184

Avg 3.716235 -0.8939535 -0.1873810 -2.105282 3.190196

Combined CoeÆcients at Gen=0 -1.828876
Combined CoeÆcients at Gen=25 -0.3679145

The evolved geometry for this case, shown in Figure 4.7 is quite di�erent

from the previous examples. The stator remains relatively unchanged, but

the rotor deviates drastically. The leading edge of the rotor is quite thin

and creates a large increase in the blade curvature. A downward pointing

cusp was created at the leading edge due to the �xed leading edge control

point constraint.

Although the geometry is very similar for the stator, the coeÆcient of

pressure plot, as seen in Figure 4.8 shows a pressure increase on the suction
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surface near the trailing edge. As expected, the new rotor geometry results

in a drastic change in pressure coeÆcients. The new design exhibits a much

greater magnitude in the pressure spike at the leading edge of the rotor. The

pressure then returns to a much higher value than the original and remains

higher overall for the rest of the span.
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4.1.5 Summary of Results for Dring's Axial Turbine

According to PCStage, all four of these trials have resulted in an overall

improvement of the selected aerodynamic coeÆcients. The reality of these

results has yet to be seen. The results for decreased drag are suspect, due to

the linear panel method's use of a Kutta condition at the trailing edge. Also,

the design resulting from the multiobjective optimization has a cuspidal

leading edge which may cause large ow separations that would not be

predicted by PCStage. Although constraints have been included to reduce

the amount of geometric infeasabilities, it is clear that further constraints

for all cases need to be imposed. In addition, a reduced mutation magnitude

would result in geometries more closely resembling the original and therefore

less likely to contain questionable features. For multiple row cases such as

this, a more evenhanded �tness function should be implemented in order to

reduce the tendency of the optimizer to focus only on improving the blade

with the largest coeÆcient value.

The next test case incorporates some of the lessons learned from the

DAT optimization study. The mutation magnitudes have been reduced

and greater constraints have been imposed. In addition, veri�caton will

be conducted by comparing the results with an Euler analysis.

4.2 VKI Guide Vane Cascade

The VKI guide vane shown in structured grid form in Figure 4.9, is a

linear cascade composed of blades with a chord length of approximately

67 mm. For the PCStage input deck the ow was determined by the
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following parameters: The inlet ow Mach number is 0:1 and inlet ow

angle is 0o. The working uid is air, with a freestream temperature of 416 K

and pressure of 0:32570 � 106 N=m2. The mutation magnitudes were kept

quite small for this case. The initial magnitude was 3% and the subsequent

magnitude was 1%. The subsequent mutation rate was �xed at 30%.

Figure 4.9: Original VKI Geometry and Structured Grid
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The constraints applied to the VKI case are as follows: The control points

interpolating the leading and trailing stagnation points are held constant.

In addition, perturbation of the control points above and below the leading

point are constrained to have an x position greater than or equal to the

leading point. Furthermore, the adjacent control points above and below

the leading point are constrained such that their y positions are greater and

less than that of the leading point respectively. These constraints reduce the

possibility of producing a cuspidal leading edge. Around the trailing edge,

the group of points surrounding the stagnation point have been �xed in order

to maintain the predetermined trailing edge ow angle. In addition to these

constraints, a lower limit on the allowable thickness has been set to 1:5 mm

which is equal to the thickness of the original trailing edge. Due to the fact

that the VKI case involves only a single blade row, the �tness function was

not modi�ed to reduce unevenly weighted components. A weighted function

may however, be bene�cial in the multiobjective �tness function in order to

evenly balance the importance of each of the objectives involved.

The VKI analysis follows the same procedure as DAT. The VKI guide

vane was optimized for the three separate aerodynamic coeÆcients of axial

thrust (Cx), tangential thrust (Cy) and absolute drag (jCdj) respectively.

A fourth optimization was performed in which the �tness function was

composed of a linear combination of the same three coeÆcients of the

previous examples.

The VKI optimized geometries are also compared to the results of an

Eulers solution for the same geometry. The Euler solution was calculated

using the inviscid mode of the Navier-Stokes solver NS2D developed by
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Mark Janus [22]. The original VKI geometry grid used in the Euler solution

is shown in Figure 4.9. The inlet Mach number calculated by the Euler

algorithm is dependent on the outlet uid pressure. In order to approximate

the desired inlet Mach number (used as a starting condition in the PCStage

calculation) the value of outlet pressure calculated by PCStage was used as

an input parameter for the Euler code.

The Euler code returns the values of average axial (Fx) and tangential

(Fy) forces in Newtons, and the nondimensional loss coeÆcient (�). The

loss coeÆcient is de�ned in equation 4.2. Though not directly comparable,

Fx and Fy are linear functions of Cx and Cy and should follow the same

trend. The values of jCdj and loss coeÆcient � are less comparable due to

the fact that for the inviscid case, the calculated outlet velocity should be

the same as the isentropic outlet velocity, so � will only be a measure of

numerical error. A percentage change is calculated to better illustrate the

relative comparability of these methods.

In addition to comparing calculated force coeÆcient values, the Cp plots

calculated by each method are compared for each VKI optimization case.

The de�nition of Cp used in the Euler code is shown in equation 4.3. The

values of Cp calculated by PCStage and NS2D should be equivalent provided

the NS2D calculation is normalized with the inlet Mach number (Minit) as

used in the PCStage calculation.

Although e�orts were made to ensure a similar degree of convergence for

all geometries, the convergence of the Euler solutions for the original and

perturbed designs are not identical. Therefore the comparison of the Euler
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calculated properties between the original and optimized geometries should

be close but are not expected to be exact.

The formulation of Cp for the Euler solution is presented in equation 4.3.

� = 1�
V 2
out

V 2
out;isen

(4.2)

Cp =
(P � Pinlet)

1
2�init a

2
initM

2
init

(4.3)

The results and analysis are presented in Sections 4.2.1, 4.2.2, 4.2.3,

4.2.4.

4.2.1 Increased Axial Thrust

The aerodynamic coeÆcients calculated by PCStage are presented in

Table 4.5 for both the original (Gen = 0) and redesigned geometry (Gen

= 20). The desired result in this case, is an increase in the value of the

axial thrust coeÆcient. The results show an improvement in both Cx and

Cy with a very small increase in jCdj.

Table 4.5: VKI PCStage Analysis (Increased Cx )

Gen Cx Cy Cm Cl jCdj

0 14.00077 7.307141 1.645532 15.79246 0.1187053

20 16.48850 7.951503 2.125335 18.30527 0.1194973
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Table 4.6: VKI Euler Analysis (Increased Cx)

Gen Fx (N) Fy (N) � (%)

0 608.8968 330.3311 2.026984

20 726.8404 358.7554 2.137962

Table 4.6 lists the results of an Euler analysis of the original and

redesigned geometries. Table 4.7 lists the percentage change calculated by

each method. The changes in Cx and Cy are very similar to the changes in

Fx and Fy. The change in jCdj however, is not mirrored very well by the

change in �. This is expected due to the di�erences in de�nition.

Table 4.7: VKI Percentage Change in Selected Aerodynamic CoeÆcients
(Increased Cx)

PCStage Cx = 17:7% Cy = 8:8% jCdj = 0:67%

NS2D Fx = 19:4% Fy = 8:6% � = 5:4%

At Gen = 20, the Euler computed values show an increase in Fx, Fy, and

loss coeÆcient �. The optimizer has produced a geometry that according

to the Euler analysis, has the desired improvement in Cx. The increase

in both Fy and � were also predicted by PCStage. When examining the

relative agreement between the PCStage panel method and Euler solution

for this and the following cases it's important to keep in mind the relative

CPU costs of each. For PCStage a typical ow solution takes approximately

one minute to complete. The Euler solution typically takes about one hour
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to produce a converged solution. Therefore, any discrepancies between the

solutions are mitigated by a large CPU cost reduction.

The geometry produced by this optimization (Figure 4.10) exhibits a

slight elevation along the length of the suction surface, leaving the rest of

the surface relatively unchanged.

A comparison between the pressure coeÆcients calculated by PCStage

and the Euler code is presented in Figure 4.11. The plot shows relatively

good agreement, with some deviation along the suction surface.
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Figure 4.10: Geometry Comparison for VKI with Increased Cx.
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Figure 4.11: Cp Comparison for VKI with Increased Cx .
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4.2.2 Increased Tangential Thrust

The results for the optimization designed to increase tangential thrust

are presented in Table 4.8. PCStage calculates an increase in both Cx, Cy,

and jCdj.

Table 4.8: VKI PCStage Analysis (Increased Cy )

Gen Cx Cy Cm Cl jCdj

0 14.00077 7.307141 1.645532 15.79246 0.1187053

20 16.29585 7.933486 1.855481 18.12367 0.1656370

Table 4.9: VKI Euler Analysis (Increased Cy )

Gen Fx (N) Fy (N) � (%)

0 608.8968 330.3311 2.026984

20 690.7169 348.1418 2.133284

The Euler veri�cation of the optimized geometry (Table 4.9) shows an

increase in Fx, Fy, and �. The target coeÆcient Cy has been improved

and the increase in Fx and � are reected in the PCStage analysis. The

percentage change listed in Table 4.10 does not show very good agreement

in the percentage change of tangential thrust.
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Table 4.10: VKI Percentage Change in Selected Aerodynamic CoeÆcients
(Increased Cy )

PCStage Cx = 16:4% Cy = 12:7% jCdj = 39:5%

NS2D Fx = 13:4% Fy = 5:39% � = 5:2%

The geometry generated for improved Cy (Figure 4.12) is very similar to

the previous example involving improved Cx with the addition of a slightly

raised pressure surface. The corresponding PCStage and Euler calculated

pressure coeÆcients shown in Figure 4.13 also deviate very little from the

previous example.
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Figure 4.12: Geometry Comparison for VKI with Increased Cy.
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4.2.3 Decreased Drag

The PCStage results for a decreased absolute drag coeÆcient

optimization are shown in Table 4.11. The values of Cx and Cy have been

decreased slightly and jCdj has been greatly reduced.

Table 4.11: VKI PCStage Analysis (Decreased jCdj )

Gen Cx Cy Cm Cl jCdj

0 14.00077 7.307141 1.645532 15.79246 0.1187053

20 12.96702 6.938470 1.366316 14.70666 0.01288605

Table 4.12: VKI Euler Analysis (Decreased jCdj )

Gen Fx (N) Fy (N) � (%)

0 608.8968 330.3311 2.026984

20 577.8099 329.7541 1.896473

The Euler results for this geometry are presented in Table 4.12 and

show a reduction in Fx and �, and a very small reduction in Fy. The

changes e�ected in these properties are not of the magnitude expected from

the PCStage results. Further indication of the poor agreement in degree of

change can be seen in Table 4.13.
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Table 4.13: VKI Percentage Change in Selected Aerodynamic CoeÆcients
(Decreased jCdj )

PCStage Cx = �7:4% Cy = �5:04% jCdj = �89:1%

NS2D Fx = �5:1% Fy = �0:17% � = �6:4%

The optimized geometry plotted in Figure 4.14 shows a reduced

curvature along both surfaces, with a rather drastic lowering of the

pressure surface. The PCStage and Euler computed pressure coeÆcients

for the redesigned geometry (Figure 4.15) show a maximum pressure drop

(excepting the Euler calculated trailing edge spike) around the quarter chord

distance along the suction surface. Unlike the previous cases the pressure

quickly rises before leveling o� at the trailing edge value.

The pressure coeÆcient comparison of Figure 4.15 indicates a

discrepancy between the solution methods. The pressure minimum around

the quarter length of the suction surface is predicted by both methods but

the Euler solution shows a much larger decrease in pressure. The Euler

method also exhibits a much larger pressure spike at the trailing edge. This

is evidence of the linear panel methods error due to approximation. It is also

evident from the plot that the surface resolution used by PCStage is much

coarser than the grid used in the Euler calculation. An increased surface

resolution may help to reduce the errors illustrated in this example.
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4.2.4 Multiobjective Optimization

As in the DAT case, a multiobjective optimization was run for the VKI

cascade that aimed to increase the combination of Cx+Cy�jCdj. The results

of the optimization listed in Table 4.14 show an increase in the values of Cx,

Cy, and jCdj. Despite the increase in jCdj, the combination results in a total

overall improvement.

Table 4.14: VKI PCStage Analysis (Increased Combination: Cx+Cy�jCdj)

Gen Cx Cy Cm Cl jCdj

0 14.00077 7.307141 1.645532 15.79246 0.1187053

20 17.22413 8.151585 1.745002 19.05521 0.1335359

Combined CoeÆcients at Gen=0 21.89205
Combined CoeÆcients at Gen=20 25.24244

Table 4.15: VKI Euler Analysis (Increased Combination: Cx + Cy � jCdj)

Gen Fx (N) Fy (N) � (%)

0 608.8968 330.3311 2.026984

20 751.1648 366.4052 2.211776

Combined CoeÆcients at Gen=0 937.2009
Combined CoeÆcients at Gen=20 1115.358

The Euler computed coeÆcients of the evolved geometry for the

multiobjective optimization are listed in Table 4.15. As in the previous

cases, the changes predicted by PCStage are reected in the Euler analysis.



83

The percentage change (Table 4.16) shows a very close agreement between

the methods for axial and tangential thrust.

Table 4.16: VKI Percentage Change in Selected Aerodynamic CoeÆcients
(Increased Combination: Cx + Cy � jCdj)

PCStage Cx = 23% Cy = 11:55% jCdj = 12:5%

NS2D Fx = 23:3% Fy = 10:9% � = 9:11%

PCStage Combined CoeÆcient Change 15:3%
NS2D Combined CoeÆcient Change 19%

The evolved geometry presented in Figure 4.16 exhibits a rather large

elevation along the �rst half of the suction surface. The corresponding

pressure coeÆcient calculations of PCStage and the Euler equations are

plotted in Figure 4.17. As expected, the elevated peak of the suction

surface results in a signi�cant pressure drop just behind the peak. The

comparison shows a rather good agreement along the pressure surface with

some deviation along portions of the suction surface.
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4.2.5 Summary of Results for VKI Guide Vane Cascade

The results from the VKI Guide Vane Cascade test case indicate three

important pieces of information. First of all, the addition of greater

constraints (see Section 4.2) on the optimization process appears to have

been e�ective in producing more feasible designs. Secondly, the results of

the multiobjective optimization show that the �tness function which was

used, unevenly weighted the relative importance of each of the objectives.

The third and most important piece of information gained from this case

is that the simpli�ed model of the linear panel method appears to provide

information which is consistent with higher �delity methods.



CHAPTER V

CONCLUSIONS

The results of this study clearly show that the PCStage linear panel

method, used in conjunction with an evolutionary optimization method

is e�ective in quickly producing turbomachinery designs with improved

selected aerodynamic coeÆcients. The ability of the PCStage method to

complete ow solutions approximately 60 times faster than an Euler method

is purchased with an acceptable loss in �delity. Also, the applicability is

limited to designs with little or no viscous e�ects, limited ow separation

and no shock conditions. Also, care must be taken in formulating adequate

constraints to ensure feasability. The results produced by the pre-optimizer

provide a signi�cantly improved starting point for further analysis using

higher �delity methods.

5.1 Future Work and Suggested Improvements

There are many ways in which the accuracy and speed of this technique

may be improved. Three major areas have been recognized as candidates

for improvement. These areas are: the ow solver, surface representation

methods, and the optimization technique. Some solutions which have been

suggested in previous sections will be restated here.

87
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Due to the inviscid linear panel method's inability to capture the viscous

contribution to the problem, the ow solver may be coupled with a boundary

layer code to improve the accuracy of the solution. This would require

iteration between the ow solver and the boundary layer code to achieve a

convergence in the boundary layer displacement thickness. Due to the fact

that this would add considerable time to the process if it were done for every

function evaluation, it could be performed periodically or only on the �nal

solution.

Originally, the cubic spline surface parameterization performed within

PCStage set the maximum number of panels to 90 per blade. The original

data �le for the VKI case uses 169 points to describe the guide vane. The

grid used for Euler veri�cation also uses 169 surface points to describe the

guide vane. A closer agreement between methods should result if PCStage

were altered to allow a larger number of surface points to be used.

Utilization of a single BSpline rather than two Bezier curves to represent

a blade surface would be useful in eliminating possible discontinuous �rst

derivatives (cuspidal shapes) and reduce the need for constraints at the

leading edge. This would also allow the possibility of re�ning the geometries

by altering the weights of the control points rather than their locations. A

more exible method should also be devised in order to alter the shape of

the trailing edge without altering the ow angle. Currently this problem is

handled by rigidly �xing the control points surrounding the trailing edge.

An alternative would be to include the trailing edge angle in the �tness

evaluation. Any geometries whose trailing edge ow angle deviates from
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the desired ow angle would be penalized according to the magnitude of

deviation and would therefore be replaced by more �t solutions.

In section 3.5.2, the advantage of utilizing a hybrid EA-gradient based

method was illustrated. Due to the fact that the gradient based method may

stall in local optima of a complex design space, an eÆcient optimization is

suggested in which an EA optimization is run to produce a single global

near-optimum. A gradient based optimization is subsequently performed on

the near optimum to provide an exact globally �t optimum.

The method used in this study to obtain sensitivity derivatives for the

gradient based optimization was a central �nite di�erence method. This

method requires two perturbed function evaluations to achieve a single

derivative with a second order truncation error. Using the Complex Taylors

Series Expansion method (CTSE), second order derivatives may be obtained

in a single step, and without subtractive cancellation error. To utilize CTSE,

the ow solver code must be converted to use complex numbers for selected

internal calculations.

According to the data presented in Figure 3.10 an increase in the

population size will result in an increase in the the overall CPU time required

for an EA optimization. Despite this fact, an increase in population size

would result in a more globally �t solution and may reduce completion

time by increasing the degree of improvement for each iteration. These

improvements can be achieved in the following manner:

1. First of all, a larger population size would allow more sophisticated

methods of parent selection. The current method is to choose the best

two members from the available pool and combine them. For each
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mating, one of the parents has a possibility of being removed from the

available pool for the rest of the current generations mating process.

This method was used due to the limited number of parents available.

It has the property of always selecting the best two members at

least once, but can potentially produce an entire generation consisting

of only these original parents and their o�spring. This eventuality

may cause the process to stall into a local optimum. With a larger

population, greater diversity may be obtained by allowing a smaller

segment to reproduce, leaving more of the less �t solutions to survive

to the next generation. For example, the mating pool may consist

of the best 20% of the population, which would then be combined

randomly within this pool.

2. Secondly, a larger population size would produce a larger number

of un�t members which could then be replaced by o�spring. This

would allow parent combination to produce two or more o�spring

per mating, thereby producing more varied combinations of desirable

parental traits.

3. Thirdly, a large population size allows the use of many di�erent

parallelization schemes. One such scheme is the multiple population

scheme [39]. In this method, the total population is divided into

a number of distinct populations which evolve separately over a

number of generations. These distinct populations are periodically

interupted to perform a migration, which allows the transfer of the

best members from each distinct population into the others. This
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mechanism provides a much wider design space and thereby produces

a solution which is much more globally �t.

Another parallelization scheme has been devised which more strictly

determines parent selection and member culling [40, 41]. The

population is envisioned as occupying a two-dimensional grid. Each

member can only be combined with a member in an adjacent square.

The o�spring may replace the worst members adjacent to either

parent. In this process, the best solutions propagate through the

population like a ripple on a pond. The purpose of this method

is to restrict the best solutions from quickly dominating the entire

population. Similar to the multiple population scheme, this has the

e�ect of producing a wider variety of solutions and therefore results in

a more globally �t converged solution.

For multiple blade row geometries, a more precise �tness evaluation

may be used rather than the average of the desired integrated property

coeÆcient. In Section 4.1.1 it was suggested that a percentage change should

be utilized as a more even handed evaluation method for multiple blade rows

and multiple �tness criteria.

There are no doubt, many other possible solutions that have not been

touched upon here, but suggestions have been made for all identi�ed areas

of possible improvement.
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