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The thesis investigates pipeline plugging mechanisms that have occurred during interim 

stabilization transfers at Hanford. A laboratory-scale saltwell pumping test loop was 

designed to evaluate a surrogate of Hanford Tank 241-SX-104 supernate. The effect of 

surrogate flow rate, cooling water flow rate and phosphate concentrations on plugging 

mechanisms was investigated. Critical parameters like particle and agglomerate size, 

velocity and bed growth rate were determined. Theoretical models were used to compare 

the experimental pressure rise and temperature drop of the surrogate in the channel. An 

operating region in which a plug would not form was developed, based on the 

experimental results. Experiments are also reported on plug remediation. Unplugging 

experiments at varying pump pressure heads and residence time of plug in the line were 

performed. 
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                                                              CHAPTER I 

                                                          INTRODUCTION 
 
 
1.1. Background 
 
           The Hanford site, located in the state of Washington, contains one of the largest 

volumes (53 Mgal) of radioactive waste in the world [1]. High-level radioactive waste 

was generated starting in 1944 as part of the U.S. defense program. Fuel discharged from 

the nuclear reactors was processed to obtain uranium and plutonium and the resulting 

radioactive process waste was stored in 149 single shell tanks (SST) built between 1944 

and 1964 [2].  

           The single shell tanks were made of carbon steel and were installed inside steel 

reinforced concrete enclosures. The tanks were buried in the earth to minimize radiation 

effects. After 1964, the waste was stored in double shell tanks (DST), each of which had 

a secondary steel shell and a better leak detection system. To minimize the construction 

of more waste storage tanks and better utilization of the existing tanks, the liquid waste 

was concentrated by evaporation until crystallization occurred [3]. The concentrated 

liquid waste was directed to DSTs while the precipitated salts were stored in SSTs.  

              The waste resulting from the enrichment of nuclear fuel was mostly acidic. 

Sodium hydroxide was added to the acidic waste to neutralize it and reduce corrosion. 

Thus, the tank wastes are alkaline in nature, with pH values of greater than or equal to 12. 

The waste is composed of inorganic compounds like sodium hydroxide, sodium nitrate
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and sodium carbonate; radioactive species and their fission products; and chelating agents 

like EDTA and oxalate. The waste stored in the SSTs is comprised of sludge, saltcake 

and liquid waste. Sludge contains solids resulting from the neutralization of acid waste 

before being transferred to SSTs. Saltcake is made up of various salts that resulted from 

the evaporation of liquid waste. The liquid waste in the tanks is present either as 

pumpable liquid  (supernate) or interstitial liquid [4]. After the liquid waste in a tank is 

removed, saltcake is retrieved from the tank to empty and finally close the tank. Water is 

added to the tank to dissolve the saltcake and the resulting saltwell liquor is pumped out 

of the tank. 

           Many of the SSTs have exceeded their design life times and gradual corrosion of 

the steel tank surface has occurred. Waste leakage from 67 of the single shell tanks is 

either assumed or confirmed. It is estimated that approximately 1Mgal of waste has 

leaked [1]. To reduce the risk of tank leakage, an “interim stabilization” or “saltwell 

pumping” process was developed [5]. A central screen well and a jet pump are installed 

in the tank. The supernate and interstitial liquid present in the saltcake and sludge collects 

in the central well due to seepage. The liquid level in the central well is maintained at a 

minimum volume to increase the rate of seepage from the adjacent layers of saltcake and 

sludge. This is attained by constant operation of a jet pump, which pumps the liquid 

waste that collects in the central well directly to transfer lines for routing to an existing 

DST. It is estimated that a gallon of saltcake contains 1/2 – 1/3 gallon of pumpable liquid 

while a gallon of sludge contains 1/10 – 1/4 gallon of pumpable liquid. Dilution water 

can be added to the screen well to prevent solid particles from “blinding” the screen. The 

pumping is stopped when the dilution water rate exceeds the inflow of liquid into the 
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well. The rate of seepage and thus, the total time to remove the liquid waste in the tanks, 

depends on waste properties like porosity, viscosity and surface tension. 

            The liquid waste from the SSTs is transferred to the DSTs through a complex 

network of carbon steel pipes interconnected using jumpers. The carbon steel pipes are 

heat-traced and buried underground, while the jumpers are not heat-traced. Problems 

have been encountered during interim stabilization activities. The transfer of supernate 

from Hanford tank 241-SX-104, without the addition of dilution water to the central well, 

resulted in a pipeline plug [1]. Later operations performed with the addition of dilution 

water also resulted in a plug. The plug was believed to have occurred in a jumper. 

Herting identified that the main constituent of the plug was sodium phosphate 

dodecahydrate (Na3PO4⋅0.25H2O⋅12H2O) needles using PLM [6]. Tank samples were 

found to form a gel at a Na3PO4⋅0.25H2O⋅12H2O concentration of 0.044M and 

temperature of 23oC [7].  

Unit operations carried out on tank 241-U-103 also resulted in a plug in an 

unheated jumper section [1]. This blockage caused a six-week delay in operations.  Costs 

associated with such plugs vary due to the specific circumstances including the position 

of plug, the nature of the plug, etc.; however, a rough estimate for the U-103 plug was an 

approximate cost impact of $800K. This accounted for increased operations and 

maintenance costs (opening valve pits, checking and removing jumpers, etc.) and an 

associated loss of production [8]. 
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1.2 Literature Review 

1.2.1 Trisodium Phosphate Dodecahydrate (Na3PO4⋅0.25H2O⋅12H2O) 

            Trisodium phosphate is industrially manufactured by the addition of sodium 

hydroxide to disodium phosphate obtained from the reaction of phosphoric acid and soda 

ash [9]. The resulting solution is then dried to obtain trisodium phosphate crystals. The 

existence of sodium phosphate with different waters of hydration as Na3PO4⋅12H2O, 

Na3PO4⋅10H2O, Na3PO4⋅8H2O, Na3PO4⋅7H2O, Na3PO4⋅6H2O and Na3PO4⋅0.5H2O has 

been reported [10]. Recent Raman studies showed that Na3PO4⋅12H2O loses water of 

hydration when heated from 30oC to 200oC and results in Na3PO4⋅0.5H2O [11]. The 

transition from Na3PO4⋅12H2O to Na3PO4⋅6H2O was noted to occur below 84oC, while 

the subsequent transition to Na3PO4⋅0.5H2O could not be identified. The studies also 

indicated the possible existence of a new sodium phosphate hydrate, Na3PO4⋅4H2O, 

during dehydration, which had not been identified previously [11].  

              Stoichiometry studies of Na3PO4⋅12H2O indicated the presence of excess sodium 

hydroxide in the compound [12,13]. Tillmans and Baur established the crystal structure 

of sodium phosphate dodecahydrate using X-ray diffraction [14]. 

               The hydrogen molecules (tetrahedrons) are bounded by phosphate molecules 

(gray triangles) from different layers. The 12 water molecules contained in each layer are 

connected by hydrogen bonds. The top view of the crystal structure (not shown) indicates 

large voids between the water molecules, which are the only available positions for the 

NaOH molecules. The amount of NaOH present between the water molecules varies 

between 0 to 0.25, depending on the conditions under which the crystal formed. Sodium 

phosphate dodecahydrate is used in denture cleaner formulations, emulsifying salts and in  
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pH control for foods and detergent products [9]. Widespread use of sodium phosphate 

dodecahydrate in heat transfer media applications has also been reported [15,16]. 

 

1.2.2 Solid-Liquid two phase flow    
   

Interim stabilization involves the transfer of supernate, which is initially a liquid. 

When a temperature drop occurs during transfers, solids start to form. This results in a 

transition of liquid flow to solid-liquid two-phase flow. Two-phase flow is commonly 

encountered in industrial applications and includes gas-solid, liquid-liquid, solid-liquid 

and gas-liquid flows. An example of solid-liquid flow is the transport of coal as a coal-

water slurry. Much interest has been shown in this area of transport due to its relative low 

infrastructure cost and effective mode of transportation. In spite of this, the state of the 

knowledge is such that a full understanding of the basic phenomena is limited by the 

complexity of two-phase flow problems, and most of the definitions in practice today are 

governed by empirical observations.  

            Solid-liquid two-phase flow can be broadly classified into homogeneous flow,     

heterogeneous flow, moving bed flow and stationary bed flow [17]. While homogeneous 

flow involves flow in a single phase, heterogeneous flow contains solid particles 

dispersed in liquid.  Moving bed flow is a heterogeneous flow with solids forming a bed 

and moving at the bottom of the pipe. In a stationary bed flow, the bed formed at the 

bottom of the pipe is stationary while there is heterogeneous flow above the bed. As the 

height of the bed increases more depositions occur, ultimately resulting in a plug. The 

deposition of solid particles from a heterogeneous stream, is termed settling and can be 

divided into discrete, flocculant, hindered and compression types [18]. Discrete settling 
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occurs when the concentration of solid particles in the heterogeneous flow is limited and 

there is no interaction between the particles. Hindered settling occurs when the 

concentration of solids in the stream is high and the motion of a particle is limited by the 

surrounding particles. Flocculant and compression settling occur in environments with 

very high solid loading environments.      

           The terminal settling velocity of a particle in heterogeneous flow is an important 

quantity for characterizing the settling behavior of the particle. The diameter of a particle, 

a key property for characterizing particle deposition, is dependent upon the settling 

velocity (critical velocity). A particle will reach its settling velocity when the sum of the 

drag force and buoyancy force are equal to the gravitational force on the particle. Several 

equations are available in the literature for the calculation of the settling velocity. Based 

on the concept of drag force the settling velocity over a wide range of Reynolds numbers 

is obtained [19].  

( )
1)-(1 

50
2                        

.

DCpAp

p
pmgcV








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⋅⋅⋅

−
⋅⋅⋅=

ρρ

ρρ

 

where, g is the acceleration due to gravity, mp is the particle mass, Ap is the projected 

particle area in the direction of motion, ρp is the particle density, ρ is the fluid density and 

CD is the drag coefficient. The settling velocity at low Reynolds numbers can also be 

calculated from the Stokes’ law [20].    
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2
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where, µ is the dynamic viscosity of the fluid. The particle Reynolds number (Rep<1) for 

Stokes’ law to be applied. Another expression for settling velocity for irregular shaped 

particles at low Reynolds numbers was proposed by Durand [21]. 

( )
)31(         

5.0
2 −











 −
⋅⋅⋅⋅=                      pDgFrcV

ρ

ρρ

  

where Fr is the froude number obtained from charts or using Fr=V2/2gLp, D is pipe  

diameter, V is the axial velocity of the stream and Lp is the characteristic length of 

particle (generally taken as the dimension perpendicular to direction of motion). An 

expression for the settling velocity of particles in slurry transport, involving flocculation, 

compression and hindered settling, was obtained by Oroskar and Turian [22].  

4)-(1 5
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
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where Vc is critical velocity, d is particle diameter, D is pipe diameter, Cv is solids 

concentration, ρl is stream density, S is specific gravity and constants ai are determined 

by regression analysis of experimental data points. The settling velocity and the 

corresponding critical particle size obtained from these calculations enable the 

determination of flow patterns and characteristics. 

 

1.2.3 Pressure drop correlations for two-phase flows  

  Pressure drop information is a critical component in the design of efficient 

heterogeneous fluid transport pipelines. The pressure drop is generally higher in a solid-
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liquid two-phase system due to elevated frictional losses. Early correlations were 

developed by Lockhart and Martinelli for a gas-liquid two phase flow [23]. They 

developed a parameter, X, called the Lockhart-Martinelli parameter, which was the 

square root of the ratio of the pressure drop in a pipe for liquid flow to that of a gas in a 

pipeline. The parameter could be used to calculate the total pressure drop in the pipeline 

for a two-phase flow. Mao et al. later developed a correlation for three-phase flow of 

nuclear waste containing water, hydrogen and ammonia gases and gibbsite (Al2O3⋅3H2O) 

solid by adapting the Lockhart-Martinelli equation [24]. The three-phase system was 

treated as a two-phase system by considering the flow to be composed of gas (air) and 

liquid (water and gibbsite mixture).  

            Wilson considered suspended and contact loads to develop equations for solid-

liquid pipeline flow [25]. A suspended load was a flow of particles in a liquid, while a 

contact load was particles sedimenting and forming a moving bed with a heterogeneous 

flow above. Transitional cases could be defined by a combination of the two loads. The 

total pressure drop in the channel was accounted for by summing the individual pressure 

gradients due to the two loads. Doron developed a simple model for solid-liquid flow in 

horizontal pipes by considering a three-layer flow [26]. The bottom layer was a stationary 

bed, with a moving bed layer above and finally a heterogeneous layer on the top. The 

model could be simplified for use with a two-layer flow (heterogeneous flow on top and 

moving bed at the bottom). Models developed by Wilson and Doron do not account for 

mass transfer between the layers comprising the flow. This implied that the bed height in 

each of the cases was constant and did not increase with time.  
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            Mason and Levy later extended the model of Wilson and Doron by accounting for 

the mass transfer between the layers and developed a correlation for pressure profiles of a 

non-suspension gas-solids flow of fine powders [27]. The flow was assumed to consist of 

two layers: a dense gas-solid layer at the bottom, with high solids concentration and a 

dilute gas-solid layer on the top, with low solids concentration. Since the most important 

parameter in two-phase flow is the bed height, all the equations involving mass and 

momentum were expressed in terms of bed height. The pressure profiles were obtained 

by applying the conservation of mass and momentum equations to the gas and solid 

phases in each layer. The mass balance equations for gas and solid phases in each layer 

are given by: 

( ) 5)-(1                              1111 mgSAgUggr
dx
d

=⋅⋅⋅ ρ

( ) 6)-(1                                 1111 msSAsUssrdx
d

=⋅⋅⋅ ρ

 

where Smy is the mass transfer between layers of phase y, Uyk is the velocity of the 

corresponding phase in the layer, x is the length in direction of flow, ρyk is density of gas 

phase in layer k and ρs is density of solid phase in layer k. The momentum balance 

equations for gas and solid phases in each layer are given by: 
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where Fdk is the drag force between the phases in layer k, Pk is the gas phase pressure in 

layer k, β is the angle of inclination of the pipe axis above horizontal, τ is the shear stress 

between phases, Si is cross sectional perimeter and ryk is volume of phase y in layer k. 

Mass transfer from each phase is calculated using: 
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where h is the height of bed in the layer. The shear stresses in the layers are calculated 

using: 
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14)-(1                                      2
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where fyk is the wall friction factor and fyi is the layer friction factor. The drag forces are 

obtained from: 
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where Cd1 is the drag coefficient and Dp is the mean particle diameter.                         

Similar equations were developed for the temperature profiles in the two layers by the 

application of the conservation of energy. The resulting ordinary differential equations 

were solved to obtain the temperature and pressure profiles. Mason and Levy noted that 

this formalism can be used with two-phase solid-liquid flows.  

 

1.2.4 Unsteady state heat transfer correlations for forced convection  

            Heat transfer models are important in the design of heat transfer equipment 

including heat exchangers, nuclear reactors and heat-traced pipelines. Though many 

models are available for steady state heat transfer in the literature, information and 

models available for unsteady state heat transfer are limited. Unsteady state heat transfer 

models give a better understanding of temperature changes taking place during flow 

immediately after cooling or heating is applied externally. A numerical solution for 

forced convection in a channel was developed by Seigel [28]. The model was developed 

by neglecting the temperature variation within the wall. The heat transfer equations for 

the fluid were combined with those for the wall and the resulting equations were solved 

by integrating along characteristic grid lines using the finite difference method.  

            Tan and Spinner developed solutions for transient heat transfer in a shell and tube 

heat exchanger [29]. The model used a quasi-steady state approach by assuming a finite 

wall heat capacity and a finite shell-side heat transfer resistance. Analytical solutions 

were obtained for step changes in shell-side and tube-side fluids of the exchanger by 

using Laplace transforms. The model primarily depends on the ratio of heat capacities of 

fluid and wall and is thus susceptible to appreciable error at high values of the ratio and 
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changes in velocity. Sucec obtained an analytical solution for the problem of unsteady 

state convective heat transfer in a fluid flowing in a pipe, when the temperature of the 

outside medium is suddenly changed [30]. The analytical solution obtained using Laplace 

transforms provided surface heat flux and fluid and wall temperatures. Wall conduction 

was not considered. Successive models developed by Schutte et al. [31] and Yan et al. 

[32] dealt with the problem of transient heat transfer by considering wall conduction.  

Schutte et al. solved the problem using the Simplest algorithm and Hybrid scheme 

defined by Patankar [33], while Yan et al. solved the problem by writing the system of 

equations in the form of a tridiagonal matrix, which was solved using the Thomas 

algorithm [33]. The models established the effect of thermal conductivity ratio, thermal 

diffusivity ratio, wall thickness ratio, Peclet number and wall conduction on convective 

heat transfer.  

            Krishan developed a simple model for unsteady heat transfer during fully 

developed flow in a pipe [34]. The model pertained to the transient change in the 

temperature profiles of the fluid in the pipe with a change in either heat flux or 

temperature at the outer surface. The conservation of energy equation was applied to both 

the wall and the fluid and combined by matching boundary equations. The equations 

were then reduced to the form of the Bessel equation and solved using Laplace 

transforms. The model was valid only for small time periods after the external heat flux 

was applied because of the presence of higher order terms in the expansion of Laplace 

transforms. The dimensionless energy equations used were: 
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2
1

2
21                 :Liquid ≤≤⋅+

∂

∂
+

∂
=

∂

∂
rC

rrdr

θθ

τ

θ

       
 



 13

17)-(1               br1                ,21
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where θ1 and θ2 denote the dimensionless temperatures, k2,k1 are thermal diffusivites , 

K2, K1 are conductivities of wall and fluid respectively, θ = (T-T0)/T0,  τ’ is the 

dimensionless time = k1t/a’2, t is time, a’ is the internal pipe radii, b is the ratio of external 

to internal pipe radii, C = 16·Pr·E, E(Eckert number) = V2/cp∆T, Pr is the Prandtl number, 

Kc is the ratio of the thermal conductivities, K2/K1, kd is the ratio of  the thermal 

diffusivities, k2/k1 and r is the dimensionless radial distance, r’/a’. The initial and 

boundary conditions were given by: 

18a)-(1                               0 ,0for     021 br ≤≤≤== τθθ

18b)-(1                                      1r ,0for    21 =>= τθθ

18c)-(1                               1r ,0for      21 =>
∂

=
∂

τ
θθ

drcK
dr

18d)-(1       flux)heat outer constant (for    br ,0for     (const) 1
2 =>=

∂

∂
τ

θ
S

r

18e)-(1    erature)outer tempconstant (for    br ,0for     (const) 22 =>= τθ S

                                                                  

The detailed solutions for temperature and pressure profiles of wall and fluid are 

presented in the original work of Krishan [34]. The resulting model was shown to result 

in good correlations for unsteady state heat transfer in a pipe. Sample calculations for the 

pressure rise and temperature drop models are given in Appendix D. 

 

 

       
 



 14

1.3 Motivation for the work 

             The risk of pipeline plugging exists for many transfers, so the development of 

sound technical recommendations on plugging mechanisms and operating envelopes for 

pipeline transfers could result in significant savings. The primary goal of this thesis is to 

develop a thorough understanding of plug formation mechanism(s) pertinent to interim 

stabilization transfers at Hanford. This includes identification of parameters such as the 

critical particle size as well as particle, agglomerate and bed growth rates. Conditions 

causing plug formation including surrogate flow rate, the rate at which a surrogate is 

cooled and variations in specific component concentration have been investigated. This 

information, in turn is expected to lead to the development of an operating envelope that 

can be used by site operators to prevent plugs. The secondary focus of the work deals 

with the unplugging of the pipeline once a plug has formed. A test loop for the study of 

solid-liquid two-phase flows was built to mimic the actual Hanford saltwell pumping 

system (Chapter 1.1). The test loop was equipped with thermocouple probes and pressure 

transducers to obtain temperature profiles of the supernate in the pipeline during flow and 

to monitor the increase in pressure in the event of a plug. An additional goal of the thesis 

includes comparison of experimental results to theoretical models.    

             A surrogate was developed based on Na3PO4⋅0.25H2O⋅12H2O, as it was 

identified as the primary constituent of the pipeline plugs at Hanford. Based on the 

discussion in Chapter 1.2.1, the surrogate containing Na3PO4⋅0.25H2O⋅12H2O would be a 

liquid above 50oC (the tank temperature of supernate in 241-SX-104) and solids were 

expected to form on cooling. The surrogate would flow purely as a liquid at or above a 

temperature of 50oC. At lower temperatures, crystallization of the sodium phosphate 
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dodecahydrate would begin and then the principles of two-phase flow discussed in 

Chapter 1.2.2 would be applicable. The transformation of homogeneous flow to a plug 

proceeds according to the following sequence: homogeneous flow, heterogeneous flow, 

moving bed flow, stationary bed flow and. Increases in the rate of particle formation and 

particle concentrations characterize the transformation from homogeneous flow to a plug. 

The important parameter in two-phase flow, critical velocity, was calculated from the 

experimental data obtained during the test loop experiments. 

             The two-phase flow anticipated during saltwell test loop experiments resulted in a 

pressure drop in the channel. This is due to the higher frictional losses expected during 

two-phase flows. The pressure drop in the channel was modeled by using the pressure 

drop correlations discussed previously (Chapter 1.2.3). The temperature of the surrogate 

would generally decrease if it were cooled, though the temperature profiles would depend 

on the cooling rate. The models discussed in Chapter 1.2.4 can be used to predict the 

temperature profiles of the surrogate. Thus, with this research, an experimental test loop 

was developed which provides insight into the pipeline plugging process and the factors 

that affect the process. Furthermore, the experiments performed define operating regimes 

over which a plug would not form. 

           Chapter 2 of the thesis describes the surrogate development and scoping tests. The 

design and construction of the test loop along with the test loop experiments are 

discussed here. The equipment used for the experiments including those for imaging, 

instrumentation and analysis. The results of the pipeline plugging experiments at various 

flow rates of surrogate, cooling rates of water and concentrations of surrogate are 

described in Chapter 3. The critical parameters of two-phase flow, obtained from image 
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analysis, are given. The results from the unplugging experiments are also discussed. An 

initial operating envelope is presented. The conclusion of the research and description of 

goals achieved is given in Chapter 4. The future scope for the research is discussed. 

       
 



  

                                                           

 

 

                                                           CHAPTER II 

                               SX-104 SURROGATE DEVELOPMENT AND  

                                             EXPERIMENTAL SECTION 

 

2.1  Introduction 

        The pipeline plugs that occurred during transfers from tanks 241-SX-104 and 

241-U-103 at Hanford were attributed to the formation of Na3PO4⋅0.25H2O⋅12H2O 

crystals [35]. In view of this, a plug simulant was developed which predominantly 

contained Na3PO4⋅0.25H2O⋅12H2O, some NaNO3 and gelled at a temperature between 

30oC and 35oC.  

 

2.2 SX-104 Surrogate Development and Scoping Tests  

2.2.1 Description of Software and Analysis Instrumentation Used 

Potential surrogates for the supernate from SX-104 were modeled using ESP 

(Environmental Simulation Program) and compared to the experimental results. ESP is a 

simulation software package developed by OLI Sytems, that allows simulation of 

chemical processes. ESP Process, a unit within the ESP software, was mainly used to 

perform simulations on the potential surrogates. ESP Process can be divided into 4 

sections: Chemistry Model, Process Build, Process Analysis and Summary. Chemistry 

Model contains different molecular species for which simulations can be performed.

          17 
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 Based on the species selected in the chemistry model, the software retrieves information 

corresponding to the different combinations of species possible, chemical reactions and 

thermodynamic data. Process Build contains various unit operations like mixing, heat 

exchange, absorption, etc. The unit operations and operating conditions at which 

simulations are to be performed were selected here. Process Analysis combines 

information from the Chemistry Model and Process Build sections and performs the 

simulations for the corresponding chemical system, unit operations and conditions. 

Process Summary directs the output from Process Analysis to various output devices as 

disk, printer etc.  

ESP simulations were initially performed on a recipe developed by R.Hunt at Oak Ridge 

National Laboratory (ORNL) [36]. This formulation was evaluated and is described later 

in this chapter. The molecular species in the recipe were selected in the Chemistry Model, 

which then generated detailed speciation, reactions and thermodynamic data 

corresponding to the chemical system. The unit operations and conditions for which 

simulations were to be performed were selected in Process Build. Typically, a mixer was 

used to simulate the mixing of the recipe adiabiatically at 50oC. The output stream from 

the mixer was sent to a heat exchanger. The output stream from the heat exchanger was 

set to different temperatures (25oC-45oC). Process Analysis was then used to couple the 

data from the Chemistry Model and Process Build and the simulations were directed to an 

excel file.   

II. Polarizing Light Microscope (PLM): An Olympus model BX50 PLM was used to 

analyze samples from the saltwell experiments. Different objective lenses (10X, 20X, 

40X) were used with an eyepiece of magnification 10. This provided final images with a 
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total magnification of 100X, 200X and 400X. The PLM was fitted with an Olympus color 

camera, model OLY-750. The camera was connected to a computer through a frame 

grabbing board. ImagePro software from Media Cybernatics was used to analyze the test 

samples and also to perform image analysis on the images from the DIAL/MSU imaging  

system. 

III. IC(Ion Chromatograph): A Dionex 500 series IC (Figure 2.1) was used to perform 

quantitative analysis on diluted samples (Appendix A). The anions determined using the 

IC were (PO4)3- and NO3
-. The IC consisted of an eluent generator, a gradient pump, an 

electrochemical detector, a detector in suppressed mode, a guard column and a separator 

column. The eluent used for the mobile phase chromatography was KOH. Ion 

Chromatography is based upon ion exchange to accomplish separation of analyte ions, 

followed by chemical suppression of eluent conductivity and conductivity detection. A 

liquid sample was introduced at the top of the separator column. The ionic eluent (KOH) 

pumped through the column caused differential migration of the sample ions down the 

column as a result of the size and affinity of the ions to the active sites of the column. The 

column effluent with the anions was then passed through a suppressor system if higher 

sensitivity was required. The purpose of the suppressor system column, containing a 

strongly acidic cation exchange resin in hydrogen form, was to chemically reduce the 

background conductivity of the eluent before entering the conductivity cell, so that the 

anions could be easily detected. In the conductivity cell, the analyte ions were separated 

into discrete bands that were detected using a conductivity detector. The detector was 

connected to a computer with Dionex software. The instrument output was a plot of 

conductivity versus time (a chromatogram). Each ion appeared as a peak in the 
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chromatogram. Identification and quantification was performed by comparing the 

retention times (time from injection to peak maximum) and peak heights to the standards 

of the sample both of which are proportional to the concentration of the analyte over a 

particular range. Samples were prepared for IC analysis as described in Appendix A.  

                               

 

                      KOH 

Pump Injector 
Eluent jar 

(KOH) 

Separator 
column 

Suppressor 
column 

Computer  

                                                                   

                             

                             Figure 2.1: Basic components of an ion chromatograph. 

IV. DIAL/MSU imaging system: The imaging system (Figure 2.2) was used to record the 

events leading to plug formation in the saltwell test loop [37]. The imaging system 

contained a camera with a resolution of 640 X 480 pixels and a lens with a focal length of 

75mm. The total magnification provided by the camera was doubled to 150mm by the 

use of an extender lens. The camera was connected to a computer preloaded with IMAQ 

frame grabbing hardware. The frame grabbing software developed by DIAL was used 

with the camera. The camera was capable of collecting 12.5 frames/sec. 

        

 

                      75 mm lens    2mm Extender  Lens           Camera 
Computer 

 

                        Figure 2.2: Block diagram of the DIAL/MSU imaging system. 
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2.2.2 Surrogate scoping tests 

The initial recipe provided by R.Hunt at ORNL was modified to obtain the 

required levels of phosphate in the plug. The following table describes surrogate 

development leading to the final saltwell test loop recipe. 

       Table 2.1: Recipes used in the development of plug simulant for saltwell test loop. 

                                                     Concentration of species in M 
Recipe NaNO3 NaOH Na3PO4⋅0.25H2O⋅12H2O NaAlO2 Na2CO3 

Rodney 2 7 2 0.2 1 0.4 
Recipe 5b 7 2 0.3 1 0.4 
Recipe 6 7 2 0.4 1 -- 
Recipe 7 7 2 0.3 1 -- 
Recipe 8 7 2 0.3 1 0.1 

 

The recipe was prepared by determining the experimental quantity required (as set by the 

experimental needs) of recipe and adding the corresponding volume of distilled water to a 

beaker. The beaker was then heated to a temperature of 55o-60oC on a hot plate. The 

temperature of the solution was monitored using a thermometer or a thermocouple. The 

amount of NaOH corresponding to the final concentration was weighed and added to the 

beaker containing the distilled water. The contents were then stirred thoroughly using a 

magnetic stirrer. After the NaOH dissolved completely, NaNO3 was added while stirring. 

The remaining constituents of the surrogate: Na3PO4⋅0.25H2O⋅12H2O, NaAlO2 and 

Na2CO3; were then added in order and stirred until all of the solids dissolved. The clear 

surrogate was then allowed to cool to 50oC. Initial details of surrogate behavior are 

discussed below. 

           The recipe provided by ORNL was made up at 55oC and cooled down to room 

temperature but the solution did not form a gel even though a lot of solids were observed. 

ESP simulations (Table 2.2) were done on a total mole basis. ESP predicted that, at room 
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temperature 39.24 gm of NaNO3 and 53.11 gm of Na3PO4⋅0.25H2O⋅12H2O would be 

present (Figure 2.3). The solids were observed under the PLM and it was seen that the 

sample contained a large number of diamond shaped crystals of NaNO3 and some rod 

shaped crystals of Na3PO4⋅0.25H2O⋅12H2O (Figure 2.4). In light of the large amount of 

NaNO3 in the solid phase, it was decided to alter the recipe such that the primary solid 

constituent was Na3PO4⋅0.25H2O⋅12H2O.  

                                   Table 2.2: ESP simulations for recipe Rodney2. 

Temp (oC) 25 30 35 40 45 50 
Liquids:       

H2O (gm) 977.78 988.34 1003 1007.21 1007.21 1007.2 
Total wt (gm) 1763.97 1831.74 1865.31 1877.36 1877.36 1877.36 
Volume in (L) 1.27 1.31 1.35 1.36 1.37 1.38 
Enthalpy (cal) -5.10E+06 -5.25E+06 -5.36E+06 -5.40E+06 -5.39E+06 -5.39E+06 
Density (gm/L) 1387.80 1392.70 1386.40 1378.90 1374.20 1364.00 

pH 15.02 14.84 14.63 14.45 14.34 14.12 
EC (mho/cm) 0.18 0.19 0.24 0.27 0.29 0.33 
Abs Visc (cP) 4.94 4.48 4.02 3.57 3.32 2.85 
Ionic Strength 11.10 11.78 12.05 12.13 12.14 12.15 

       
Solids:       

Weight (gm) 113.39 45.62 12.04 0 0 0 
Volume (L) 0.026 0.005 0.002 0 0 0 

Enthalpy (cal) -3.18E+05 -1.63E+05 -43755.3 0 0 0 
Density (gm/L) 1926.37 1768.38 1845.65 0 0 0 

       
Total solution:       
Weight (gm) 1764.00 1877.36 1877.35 1877.36 1877.36 1877.36 
Volume (L) 1.30 1.32 1.35 1.36 1.37 1.38 
Solids wt% 6.04 2.43 0.64 0 0 0 
Water wt% 55.43 52.65 53.43 53.65 53.65 53.65 

Density(gm/L) 1398.60 1394.05 1387.02 1378.83 1374.20 1364.00 
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Figure 2.3: ESP prediction for amount of solids present in Rodney2 as a function of 
temperature. 

 

           

             Figure 2.4: PLM image of recipe Rodney#2 at 25C using 20X objective 

            The recipe was further modified by reducing the carbonate concentration to 0.1M. 

This was based on the observation from other recipe attempts that illustrated that the 

amount of carbonate in the actual recipe had a direct effect on the amount of nitrate in the 
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gel. The solution was prepared at 60oC and allowed to cool down. The phosphates started 

to form in solution at 38oC and the solution gelled at 34oC, within the gel containing 

some nitrates. The ESP simulations (Table 2.3) for recipe 8 showed that the solid phase 

would contain 53.93 gms of Na3PO4⋅0.25H2O⋅12H2O and 0 gms of NaNO3 at 34oC 

(Figure 2.5). The gel was observed under the PLM (Figure 2.6) and it was seen that the 

gel contained a large number of long rod-like Na3PO4⋅0.25H2O⋅12H2O and some 

diamond shaped NaNO3 crystals. Based on the gelling temperature and the gel chemistry, 

it was decided to use recipe 8 as the plug simulant in the saltwell pumping test loop.     

                                         Table 2.3: ESP simulations for Recipe8. 

Temp (oC) 25 30 35 40 43 50 
Liquid:       
H20 (gm) 977.71 987.81 1002.20 1023.72 1028.71 1028.70 
Total wt (gm) 1742.48 1796.21 1829.18 1875.79 1884.98 1884.98 
Volume (L) 1.27 1.31 1.33 1.37 1.38 1.39 
Enthalpy (cal) -5.03E+06 -5.15E+06 -5.26E+06 -5.42E+06 -5.44E+06 -5.44E+06 
Density (gm/L) 1374.40 1376.90 1371.60 1368.20 1364.7 1355.40 
pH 15.00 14.82 14.61 14.41 14.31 14.08 
EC, 1/ohm-cm 0.19 0.22 0.25 0.29 0.31 0.36 
Abs Visc, cP 4.36 3.95 3.57 3.31 3.11 2.68 
Ionic Strength 10.48 11.00 11.27 11.64 11.73 11.74 
       
Solids:       
Weight (gm) 142.50 88.77 55.80 9.19 0 0 
Volume (L) 0.022 0.006 0.003 0 0 0 
Enthalpy (cal) -4.45E+05 -3.13E+05 -1.96E+05 -31718.8 0 0 
Density (gm/L) 1815.83 1715.48 1700.12 1630.65 0 0 

       
Total solution:       
Weight (gm) 1742.50 1884.98 1884.98 1884.98 1884.98 1884.98 
Volume (L) 1.29 1.31 1.34 1.37 1.38 1.39 
Solids wt% 7.56 4.71 2.96 0.49 0 0 
Water wt% 56.11 52.40 53.17 54.31 54.57 54.57 
Density (gm/L) 1381.79 1378.48 1372.40 1368.21 1364.70 1355.40 
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Figure 2.5: ESP prediction for amount of solids in Recipe 8 as a function of temperature. 

                        

                          Figure 2.6: PLM image of Recipe 8 at 35oC using 20X objective. 

 

2.3. Design and construction of test loop 

2.3.1 Flow characterization 

          The DIAL/MSU saltwell test loop was designed to obtain data on saltwell 

pumping, plug formation in the pipeline and other critical information during supernate 
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transfers at the Hanford facility. The test loop was designed using the Reynolds number, 

Re, from the Hanford facility as the critical parameter. This choice of parameter was 

made so that the flow characteristics at Hanford were represented in the test loop. The 

saltwell pumping information (Table 2.4) for the transfer of SX-104 supernate at Hanford 

are listed below [38]: 

          Table 2.4: Pumping information for the SX-104 supernate transfer at Hanford.   

Parameter Value 
Pipe line Length (L) varied (200-4000 ft) 
Pipe Diameter (D) varied (0.75-3 in) 

L/D ratio varied (3200-16000) 
Pipeline cross sectional area (A) varied (0.442-7.069 in2) 

Flow rate (Q) varied (0.5-1.25 gal/min) 
Flow velocity(V) varied (0.908-0.023 ft/sec) 

Density (ρ) a 1424 kg/m3 

Viscosity (µ) b 4.164 cp 
           a[Ref 38], b from ESP 

The Reynolds number for the supernate transfer is given by: 

1)-(2                                                   ,
µ

DVρRe                                                                       ⋅⋅=

Using the above parameters:  

                                                             180<Re<1800 

The L/D ratio in the Hanford transfer line was larger than that possible in the laboratory, 

so the test loop was resized by reducing the diameter of the pipe while keeping the 

Reynolds number constant. For the saltwell test loop calculations, the density, viscosity 

and heat capacity were obtained from ESP (Table 2.3). Surrogate properties including 

density (1390 kg/m3), viscosity (4 cP) and heat capacity (3020 J/kgK) were taken as 

constants in the calculations. The thermal conductivity of the surrogate was taken as that 
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of water. The water properties were taken as functions of temperature [39]. The Prandtl 

number, Pr, was calculated using: 

2)-(2                                               Pr                                                                  k
µpC ⋅

=

 

where  CP is the specific heat, µ is the viscosity and k is the thermal conductivity of the   

fluid. The pipe diameter (Dex) of the saltwell test loop was set at ¼” ID. Based on this the 

required flow rate was calculated using the Reynolds number from the saltwell pumping 

operation at Hanford. The flow velocity (Vex) was obtained as 8.2 cm/sec from equation 

2-1. This corresponded to a flow rate (Qex) of 2.45 gal/hr. 

 

2.3.2 Heat transfer  

           Heat transfer calculations were performed to determine the length of heat 

exchanger necessary to obtain the required cooling rate. The calculations were done for a 

single shell and tube, counter flow, heat exchanger. It was noticed during the scoping 

experiments that the surrogate gelled at a temperature of 38oC in a beaker agitated with a 

magnetic stirrer and at 35oC without stirring. Assuming a 4oC loss in the temperature of 

the surrogate between the tank and heat exchanger, the following calculations were 

performed. The inlet (Tsi) and outlet (Tso) temperatures of the surrogate were fixed at 

46oC and 38oC, respectively. The inlet temperature of the cooling water (Twi) was fixed at 

26oC and the outlet temperature, Two , was determined from: 

3)-(2     ) woT-wi(TpwCwm)soTsi(TpsCsρexQ)soTsi(TpsCsmq ⋅⋅=−⋅⋅⋅=−⋅⋅=

 

where mw and Cpw are the mass flow rate and specific heat of cooling water, respectively. 
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The tube of the heat exchanger channel had an outer diameter (Dexo) of 0.5 in. Thus the 

shell of the exchanger was set at 1” to provide for efficient cooling and contact surface 

with the tube. The cooling water flow rate required to achieve the desired flow rate was 

calculated. The cooling water will exhibit good heat transfer characteristics if the flow is 

in the turbulent regime. This requires a Reynolds number (Rew) greater than 2300 [40]. 

The required flow rate was then obtained by estimating a value and iterating to obtain the 

actual rate. The shell inside diameter (Dsh) was taken as 0.96 in. The Reynolds number 

for flow in annulus is defined as: 

 

                   4)-(2                                 
)()(

4
)Re(                                             

wiTwshDexoD
wm

wm
µπ ⋅+⋅

⋅
=

where mw is the mass flow rate of cooling water. Using the above function and an initial 

estimate for mw of 0.1 kg/sec, the required cooling rate was obtained as 4.6 kg/min. The 

corresponding volumetric flow rate was then determined as  Qw=mwρw(Twi)=0.2 gal/min. 

Using the cooling water mass flow rate (mw), the cooling water outlet temperature is 

calculated from equation (2-3) as: 

                                   wiT
wiTpwCwm

q
woT  5)-(2)( +

⋅
=

 

An outlet temperature of 27.1oC was obtained.  

            Using the logarithmic mean temperature difference (LMTD) method for counter 

flow heat exchangers, the necessary length of heat exchanger corresponding to the 

surrogate temperature drop was determined [41]. The total energy lost by the surrogate 

using the LMTD method is given by: 
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6)-(2                                               lm∆ThAUq ⋅⋅=

 

where U is the overall heat transfer coefficient, Ah is the heat exchanger cross sectional 

area=πDinsideLhex and Lhex is the length of heat exchanger. 

 7)-(2                     46.15

ln

)()(
lmT Co

woTsiT
wiTsoT

woTsiTwiTsoT
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Rearranging equation (2-6), 

K
W 59.5

lmT =
∆

= qUA

 

The Nusselt number and friction factor for cooling water flowing in the shell with the 

range 0.5<Pr<2000 and 2300<Re<5·106 are given by [42]: 

8)-(2                                  21.64))wln(Re(0.79f −−⋅=

9)-(2                              



































−⋅⋅+

⋅−⋅
=

13
2

)hi(TwPr2
1

8
f12.71

)hi(TwPr1000)w(Re
8
f

wNu

 In this case since Rew=2300: 

                                                                  Nuw=14.58, 

                                                                      f=0.05                             

The cooling side heat transfer coefficient was obtained by: 

10)-(2                                           
shD

)hi(TwkwNu
wh

⋅
=
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using the values of the Nusselt number from above, hw=368.86 W/m2K. The Nusselt 

number for fully developed laminar flow, uniform heat flux and Pr>0.6 was obtained 

from the literature as Nus=4.36 [43]. The heat transfer coefficient on the tube side was 

determined from the corresponding equation (2-10) as hs=422.25 W/m2K. The overall 

heat transfer coefficient is given by: 

 11)-(2                          

k2
exD
exoDln
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h
1

exD
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1
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where, k is thermal conductivity of steel, 15 W/mK. Using hs and hw in (2-11), the overall 

heat transfer coefficient was determined as 129.18 W/m2K. The necessary length of heat 

exchanger was determined as 22.3 in. 

 

2.3.3 Saltwell Test Loop Components and Instrumentation 

          The channel diameter for the saltwell test loop (Figure 2.7) was obtained from the 

calculations above by using the Reynolds number as the critical parameter. The 

calculated surrogate volumetric flow rate was used in selecting the size of the holding 

tank, pump and rotameter. Based on the total pump head, the pressure transducers were 

chosen. The rotameters for control of cooling water flow rate were selected based on the 

heat transfer calculations. The thermocouple probes to monitor temperature and 

immersion heaters were also selected based on the heat transfer calculations. Three 

holding tanks, two for the surrogate and one for water were used. The holding tanks were 

rectangular tanks with covers. The surrogate that was to be held in the holding tanks was 

highly basic with a pH value greater than 13-13.5. Initially, polypropylene holding tanks  
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Figure 2.7: Image of saltwell pumping test loop. The designations are as follows: P, 
pressure transducer, T, thermocouple, RM, rotameter, HTR, immersion 
heater, Hex, heat exchanger, V, valve, BV, ball valve. 

 
(corrosion resistant) were used; however, there was the possibility of a fire hazard with 

the immersion heaters. Therefore, stainless steel tanks were employed in later 

experiments. The stainless steel tanks were made from 10 gauge 316 SS plates. The tank 

dimensions were 12”(length), 12”(breadth) and 14”(height) providing a maximum 

volume of 7gal. The thickness of the stainless steel tank walls was 0.135 in. The 

surrogate holding tank (Tank1) was used to hold the surrogate used in the test loop. The 

surrogate return tank (Tank2) was used to hold the surrogate that was pumped from 

           
                                                                                                                                                                         
 



 32 

Tank1 through the test loop. Both tanks were fitted with screw immersion heaters to 

maintain the surrogate temperature around 50oC. The surrogate from Tank2 was 

constantly recycled to Tank1 to operate the saltwell test loop continuously. The third 

holding tank (Tank3) was incorporated to allow dilution of the surrogate stream or the 

future injection of agents for dissolution of a formed plug. Water from Tank3 was also 

used for preheating the line and regular cleanup of the saltwell test loop to ensure that the 

line was clear after each run. 

           Two magentic drive pumps with a rating of 1/15 hp were used in the saltwell 

pumping test loop. The primary pump (Pump1) was used to pump surrogate from the 

surrogate holding tank (Tank1) into the saltwell test loop. The return pump (Pump2) was 

used to pump surrogate from the return tank (Tank2) back to the main surrogate holding 

tank (Tank1). The pumps were capable of pumping surrogate at flow rates greater than 15 

gallons per hour through the test loop. The total pressure at the pump head was 9.2 psig.          

Three screw plug immersion heaters were used in the saltwell test loop. The immersion 

heaters were used to maintain temperatures in Tank 1, 2 and 3 around 50oC. The 

immersion heater screwed into a pipe-threaded opening in the tank wall. Immersion 

heaters with sheaths made of type 304 stainless steel were used. The heaters 

corresponding to the above Tanks were named H1, H2 and H3. The power rating on the 

heaters was 1000W at a supply voltage of 120V. The heaters had an integrated 

thermostat, which enabled the temperature to be set between 60oF and 250oF. The heating 

cycle was akin to a sinusoidal wave, so the tank temperature varied from 48-52oC when 

the set point temperature was 50oC. 
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Based on the calculations described in section 2.3.2, the shell and tube heat 

exchangers had a ½” SS 316 sch 80 inner tube while the outer shell was a 1” CPVC sch 

80 pipe. The length of the exchanger was 22 in. The heat exchanger was designed such 

that it would be operated in a countercurrent fashion. Each heat exchanger shell had an 

inlet for cold/hot water and an outlet for drain water. The test loop was initially designed 

to have 4 heat exchangers (Hex1, Hex2, Hex3 and Hex4) but was later modified to 

consist of only 2 heat exchangers (Hex1 and Hex2) followed by a ¼” ID clear Acrylic 

pipe for plug formation observation purposes. Though the test loop required just one heat 

exchanger to lower the temperature of the surrogate to 38oC, the other exchanger was 

also included in view of future experiments.  

           The saltwell pumping test loop contained different rotameters. One rotameter had 

a range of 0.8-20 gph and was fitted with a valve, which could be used to adjust the flow 

rate. The rotameter for use with surrogate (RMS) contained glass and kynar fittings, 

which offered good corrosion resistance. Acrylic rotameters were used for water. The 

rotameter (RMW) near Tank2 was used to determine the amount of flush water supplied 

to unplug the pipeline. The rotameter had a range of 0-12 gph and used a valve to adjust 

the flow rate at the required level. The acrylic rotameters were also used to provide the 

required cooling water flow rate on the shell side of the heat exchanger as determined by 

the heat transfer calculations. Initially the heat exchangers (Hex1, Hex2, Hex3 and Hex4) 

had rotameters (RM1, RM2, RM3, RM4 respectively) with a range of 0-5 gpm. Later, in 

order to obtain better heat transfer control in the heat exchangers, (Hex3 and Hex4) 

rotameters (RM3a, RM4a) with range of 0-1 gpm were used in parallel with the above 

rotameters. Though the heat transfer calculations determined a cooling rate of 0.2 gpm, 
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rotameters with higher capacities were chosen. A list of equipment and instrumentation 

used in the saltwell test loop facility are given in Appendix B, Table B-1. 

          Various fittings were used in the saltwell test loop to connect the components 

discussed above. SS 304/316 fittings were used for those in contact with the surrogate 

while brass fittings were used for those in contact with water. The fittings included 

valves, bushing reducers, enlargers, couplings, unions, adapters, plugs, tees, nipples, 

elbows and caps. 

           Process instrumentation consisted of chemically resistant pressure transducers and 

thermocouple probes. The pressure transducers were used in the test loop to monitor the 

pressure increase in the line due to plug formation. Transducers with a voltage output 

were employed. Initially four pressure transducers were used with the heat exchangers 

(Hex1, Hex2, Hex3 and Hex4). Later when the clear plastic section was used, pressure 

transducer P0 was located between Hex1, Hex2 and P1 was located downstream at the  

end of the clear acrylic pipe. P0 had a range 0-60 psig while P1 had a range of 0-15 psig. 

The transducers had stainless steel pressure ports for wide media compatibility and had  

voltage output of 1-5 volts. 

            The test loop contained two different kinds of thermocouple probes. PFA 

(Perfluoro Alcoxy) coated thermocouple probes were used with the surrogate. The probes  

were rated to 400oF and had grounded junctions. The probe diameter was 1/16” and the 

thermocouple alloy was Iron-Constantan. Initially, 7 PFA coated thermocouple probes 

were used in the saltwell test loop. The location of thermocouples are given in Figure 2.7. 

Iron-Constantan thermocouples were used for monitoring heat exchangers and had a 

sheath diameter of 1/16”. 
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            A Camile Data Acquisition and control system and associated Camile TG 

software were used to monitor the saltwell test loop experiments. The data acquisition 

system was used to monitor the temperatures and pressures associated with the flow loop 

experiments. The voltage output from the transducer was converted into pressure units in 

the data acquisition system. The transducers were calibrated using a Druck pressure 

calibrator model DPI6002P0. The calibrator was set at the minimum and maximum of the 

range for each pressure transducer and the corresponding voltage output set to 1 and 5 

volts. Using these values, the linear calibration equation was obtained. The slope and 

intercept obtained from the equation were input to the Camile system. P0 was calibrated 

with a slope of 15.3229 and intercept of –14.6678, while P1 had slope of 3.7602 and 

intercept –3.7442. The temperature reading from the thermocouple probes could be 

directly interpreted by Camile in oF or oC. The data from Camile was initially saved in 

text format, which was later converted to an Excel worksheet.  

           Configuration and assembly details of the flow loop are presented in Appendix C. 

 

2.3.4 Validation of Saltwell Test Loop 

         The saltwell test loop was validated, by performing water tests on the system. The  

calculated values were obtained from the modified Bernoulli equation [41,44]: 
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where P1and P2 are the inlet and outlet pressures in the test loop, V1 and V2 are the inlet 

and outlet velocity of water, Z1(pump level, 0 ft) and Z2(test loop, 2 ft) are the inlet and 

outlet datumn(level), Ltl(15 ft) is the length of the test loop, f=(64/Rew) is the friction loss 
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due to pipe and K’ is the friction loss due to pipe fittings. The various fittings and 

corresponding friction loss coeffcients [41] are tabulated (Appendix B, Table B.2). 

Using the friction factors, equation (2-9) is modified as: 
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where ∆P was the pressure drop in the line. The total pressure drop in the line is 

measured as 1.001psi 

The pressure drop in the individual section between the two pressure transducers could be 

calculated from the Bernoulli equation by modifying the following, Z1=Z2 (since the 

pressure transducers were at the same level), L=3.5 ft (distance between the two pressure 

transducers) and K’=3·Ktee+4·Kcoupling+Kvalve. Thus, the pressure drop in an individual 

section is obtained as ∆P=0.03psi. The pressure drop in the individual section is 

calculated similarly for different flow rates of water and are compared to experimental 

values in Table 2.5. 

Table 2.5: Comparision of calculated pressure drop in individual section of test loop to 
experimental pressure drop. 

 
 Flow rate (gal/hr) Calc. pressure drop(PSIG)  Exp. pressure drop(PSIG)  

3.5 0.03 0.032 
5 0.043 0.044 

5.8 0.051 0.051 
6.8 0.06 0.061 
8 0.071 0.07 

8.5 0.076 0.077 
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Figure 2.8: Comparision of calculated pressure drop in individual section of test loop to   
                   experimental pressure drop.  

The comparison shows that the calculated pressure data is in agreement with the 

experimental pressure data and verifies the calibration. 

 

2.4. Description of Experiments 

2.4.1 Saltwell Test Loop Experiments 

             The general procedure followed in running the saltwell experiments is discussed in 

this section. Initially, Tank3 was filled with water and heater3 was turned on to raise the 

tank temperature to 50oC. Clear flexible plastic tubing was fitted to the Valve5 and the 

other end was left in Tank3. This was done to recycle the water back to Tank3. After 

Tank3 reached the desired set temperature, Valve3 was opened and the surrogate pump 

(Pump1) turned on. Hot water from Tank3 was used to preheat the line. Water flushed the 
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line until the thermocouples in the line achieved temperatures greater than 50oC. At this 

point, Pump1, Valve3 and Valve5 were turned off and the flexible PVC tubing 

disconnected from the line. Pump1 and Valve1 were then turned on and surrogate started 

flowing in the line. About 500 cc of liquid was collected from the line using the 

downstream Valve5 and the remaining surrogate directed to Tank2 through a flexible 

PVC tube. This was done to remove any water left in the line following preheating. The 

surrogate flow rate was initially set to a maximum (20 gph) and then reduced to the 

required level. The surrogate flow continued until T5 reached a temperature of 46oC. This 

was an arbitrary temperature used at which the heat exchanger was turned on. The 

surrogate in Tank2 was periodically recycled back to Tank1 using Pump2.  

            In the experiments without the clear section, FM3 or FM4 was used at a specified 

flow rate of cooling water and correspondingly, Hex3 or Hex4 cooled the line and the 

surrogate temperature decreased. Based on the heat exchanger used, the temperature of 

the section downstream of the exchanger decreased. In this way, the surrogate 

temperatures fell to around 40oC where solids formation and deposition were observed 

followed by eventual plug formation. The pressure and temperature profiles 

corresponding to the flow were monitored using the Camile system. Plug formation was 

preceded by an increase in pressure eventually attaining a maximum, which corresponded 

to the pump head. At this point all flow ceased. When the clear section was used, the 

cooling water flow meter was set at a predetermined flow rate and the section 

downstream of Hex2 cooled.  

           Plugging experiments were done at different surrogate flow rates, cooling water 

flow rates and varying phosphate concentrations in the recipe. Though most experiments 
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required the use of only one heat exchanger, some experiments at lower phosphate 

concentrations required two exchangers.  For some experiments, particles and bed growth 

were observed using a color video camera. The images were then analyzed to provide a 

better understanding of the plug formation phenomena. Because of the resolution of this 

camera, the images were not clear. In later runs, the DIAL imaging system was used to 

provide better images. Before image analysis of each run, images were calibrated using 

the spatial selections in the imaging software. The time to plug varied from about 4 min 

to 8100 min based on the surrogate flow rate. 

           At the end of an experiment, the section upstream of the heat exchanger was 

cleared of the surrogate by turning the ball valve in front of the exchanger to the off 

position and the sample port on. The section of the plug downstream of the heat 

exchanger was then unplugged using hot water from Tank3. Unplugging was recorded 

using the video camera and typically ranged from 14 min to 2 hrs based on the time the 

plug was left in the test loop. The unplugging video was used to analyze the process in 

greater detail. 

 

2.4.2 Test Matrix 

          The test matrices for plugging and unplugging experiments in the saltwell test loop 

are in Tables 2.6-9.  

Table 2.6: Test matrix for saltwell plugging experiments at varying surrogate flow rates.                     

Surrogate Temperature 
oC 

Surrogate Flow Rate 
(Gal/hr) 

Cooling Water Flow Rate 
(Gal/min) 

50 3.5 1.2 
50 5 1.2 
50 5.8 1.2 
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Table 2.6: Test matrix for saltwell plugging experiments at varying surrogate flow rates -
continued.     

                 
50 6.8 1.2 
50 8 1.2 
50 8.5 1.2 

    

       Table 2.7: Test matrix for saltwell plugging experiments at varying cooling rates. 

Surrogate Temperature 
oC 

Surrogate Flow Rate 
(Gal/hr) 

Cooling Water Flow Rate 
(Gal/min) 

50 6.8 0.4 
50 6.8 0.6 
50 6.8 0.7 
50 6.8 1.2 

 

Table 2.8: Test matrix for saltwell plugging experiments at varying phosphate  
                  concentrations. 
 

Surrogate 
Temperature 

(C) 

Phosphate 
Concentration 

(M) 

Surrogate Flow 
Rate 

(Gal/hr) 

Cooling Water 
Flow Rate 
(Gal/min) 

50 0.22 6.8 1.2 
50 0.15 6.8 3 
50 0.11 6.8 1.2, 3a 

a Cooling rate of 1.2 gpm on Hex1 and 3 gpm on Hex2. 

                          Table 2.9: Test matrix for saltwell unplugging experiments.     

Temperature of Flush  
               
                Water(C) 

Surrogate Flow Rate 
(Gal/hr) 

Time for which plug is left 
in test loop(hrs) 

50 3.5 2 
50 3.5 6 
50 3.5 12 
50 3.5 25 
50 3.5 49 
50 5 26 
50 6.8 2 
50 6.8 6 
50 6.8 25 

           
                                                                                                                                                                         
 



     
 

                                                            

 

 

                                                              CHAPTER III 

                                                                RESULTS  
 
 
3.1 Introduction 
                 

Details of the saltwell pumping test loop experiments are discussed in this section. 

The design and construction of the saltwell test loop were discussed previously (Chapter 

2.3). Experiments to understand the formation of pipeline plugs were performed as well 

as tests to examine the efficiency of unplugging with water. The pipeline plugging 

experiments were performed at different surrogate flow rates and cooling rates and 

different phosphate compositions. Results center on the experiments where the clear 

channel was installed and images of particles, agglomerates and plug formation were 

obtained. 

 

3.2 Plugging Experiments 

3.2.1 Experiments at Surrogate Flow Rate of 3.5 gph 

             Multiple experiments were done at a flow rate of 3.5 gph (Re=223) as discussed 

earlier (Chapter 2.4). Heat Exchanger (Hex2) was used with a cooling water flow rate of 

1.2 gpm. The thermocouple T2 was located before Hex2 and T4 downstream after the 

section of clear piping as shown in Figure 2.7. Pressure transducers P0 and P2 were 

located adjacent to T2 and T4. The pressure and temperature profiles for a typical 

experiment with surrogate flow at 3.5 gph are given in Figure 3.1. Temperature profiles
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from the thermocouples on the test loop and for the holding tanks are included. The 

profiles correspond to the time following activation of the heat exchanger. 

Figure 3.1: Temperature and pressure profiles in experiment with surrogate flow rate of 
3.5 gph.  

 
Variations in tank and channel temperatures were observed for longer duration runs due 

to the cycling of the immersion heater in the surrogate holding tank. Hex2 was turned on 

when the temperature of T4 reached ≈ 46oC. The profile of T4 showed that the 

temperature decreased gradually and stabilized around 40oC. The reason for the slight 

increase in temperature of T4 around 160 seconds is not known. The increase was not 

observed in any other runs under similar conditions, indicating a possible error in the 

thermocouple reading. The temperature profiles of T1, T2 and Tank1 remained stable and 

were not affected by the cycling of the immersion heater (short run duration). P0 

remained constant until about 150 seconds after Hex2 was activated, then it started to 
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increase gradually. The increase in P0 became rapid around 190 seconds and continued 

until the test section finally plugged around 250 seconds. The maximum pressure reading 

on P0 was about 8.8psig, which corresponded to the total pump pressure. The pressure 

reading on P2 remained constant throughout the run, which indicated that the plug 

formed between P0 and P2, possibly in the clear section. The constant pressure reading of 

P2 could be attributed to the higher downstream temperature that prevented plug 

formation in that section. Based on the temperature and pressure profiles, the plug 

formation properties such as the time to plug, the temperature at plug, the total 

temperature drop and  the total pressure increase were obtained (Table 3.1 & Table 3.2).  

            Table 3.1: Results of experiments at surrogate flow rate of 3.5 gph (Re=223) 

Date Surrogate 
Flow 

Rate(gph) 

Hex2 
Cooling Rate 

(gal/min) 

Time to 
Plug 
(sec) 

Pressure at 
Plug(PSIG) 

T5 Rate of 
Temp Change 

(C/sec) 

T5 at 
plug 
(C) 

3/6/2001 3.5 1.2 254 8.81 0.06 38.77 
3/11/2001 3.5 1.2 262 8.91 0.06 38.45 
3/12/2001 3.5 1.2 255 8.87 0.05 38.91 
3/17/2001 3.5 1.2 259 8.93 0.07 39.16 
3/18/2001 3.5 1.2 261 8.83 0.05 39.01 

 

Table 3.2: Average values of experiments at surrogate flow rate of 3.5 gph. 

 Time to 
Plug (sec) 

Pressure at 
Plug (PSIG) 

T5 Rate of Temp 
Change (oC/sec) 

T5 at Plug 
(oC) 

Change in T5 
(oC) 

Average 258.20 8.87 0.06 38.86 5.77 
Std. Dev 3.56 0.05 0.01 0.27 0.16 
Std. Err% 1.38 0.58 14.43 0.69 2.75 

 

In Table 3.1, the time to plug was the time between activation of the heat exchanger and 

the formation of the plug. The rate of temperature change was the change in T4 

temperature for the duration of the process. Based on the data in Table 3.2, it was 

observed that the plug formation process was reproducible.  
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                 To obtain a better understanding of the plug formation process, image analysis 

of the plugging process was performed by replacing a section of the test loop with a clear 

plastic pipe. Initial analysis was performed using a color video camera with an automatic 

zoom feature. The video from the camera was saved on the computer as a video file 

(Appendix E, Movie 1). The video file was then framed to obtain images corresponding 

to each frame. The video provided an insight into the plugging process; however, critical 

information like particle size and growth characteristics could not be ascertained from the 

images because of the limited spatial resolution of the camera. Further, the process was 

tedious although frame analysis could be performed. In view of this, the video camera 

was later replaced with the DIAL imaging system as discussed previously (Chapter 

2.4.1). Images were collected in a 2” clear section located about 19” from Hex2 and at a 

frequency of 12.5 frames/sec. The surrogate flow rate required that the images be 

collected frequently, such that the particle and agglomerate growths could be viewed in 

greater detail. Bitmap images from the imaging system were converted to grayscale, 

which were enhanced and cropped prior to analysis.  

              Images were collected during the experiment with surrogate flow rate at 3.5gph. 

The corresponding temperature and pressure profiles are presented in Figure 3.1. Image 

collection started around 150 seconds after Hex2 was activated and continued until a plug 

formed. The resolution of the imaging system was 13.1 pixels/mm with an accuracy of  

+/- 1 pixel, which corresponded to a minimum particle resolution of 80 microns. The first 

“observable” particles were seen in the channel after 150 seconds, though smaller 

particles may have previously been in the line. The results of image analysis were divided 

into four sections, namely: single free particles, single sedimenting particles, 
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agglomerating particles and bed development. The particles are consistent with those 

shown in the PLM image (Figure 2.6) and are identified as Na3PO4·0.25 NaOH ·12H2O. 

             Single free particles were defined as the particles, which traversed the section of 

the channel without being deposited. Representative frames for 2 sets of single free 

particles are shown in Figures 3.2 and 3.3. 

 
Figure 3.2: Representative frames for single free particles observed 208.72 seconds after   

       Hex2 was activated. 
 

 

 
Figure 3.3: Representative frames for single free particles observed 202.08 seconds after   
                   Hex2 was activated. 
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In Figure 3.2, the single free “rod-shaped” particle first appeared over the 19 7/8” mark. 

In the consecutive frame, the particle grew in size and appeared over the 20 ¼” mark. 

The particle continued to grow while traversing approximately the same distance in the 

subsequent frames. This implied that the velocity of the particle in the particular data set 

was approximately the same while it continued to grow in size. In Figure 3.3, the first 

particle appeared over the 20 ¼” mark and exhibited the same kind of behavior as in 

Figure 3.2.      

              Image analysis was performed to obtain the length and width of the particles in 

each of the images. The area of the particle was calculated by using the length and width, 

with the length being in the direction of flow and assuming an elliptical shape. The axial 

ratio was obtained as a ratio of length to width of the particles. The velocity of the 

particle in the direction of the flow was calculated by taking the ratio of the distance 

traversed by the particle over the time difference between the frames. Consolidated data 

for all the single particles observed are given in Table 3.3. Dimensions correspond to 

those measured in the last image and thus, represent the largest size attained by the 

particle before it moved out of the 2” observation region. Similar comments apply to the 

velocity. The time corresponding to the observation of the first and last image of the 

single particle in each data set is given. 

                            Table 3.3: Image analysis results for free single particles. 

Start End Length Width Avg. L/W Std. L/W Area Vx Std. Vx 
(sec) (sec) (mm) (mm)   (mm2) (cm/sec) (cm/sec) 

196.24 196.56 2.21 0.47 4.86 0.69 0.82 7.96 0.18 
202.08 203.32 2.77 0.51 5.44 1.64 1.10 7.92 0.26 
208.72 208.96 2.10 0.58 4.94 1.13 0.95 7.42 0.33 
209.60 209.92 1.92 0.31 4.59 1.83 0.47 6.77 0.38 
212.56 212.80 2.22 0.56 3.63 1.04 0.98 6.96 0.22 

 

              



    47 
   
 

Table 3.3: Image analysis results for free single particles - continued. 

214.96 215.28 2.15 0.62 3.45 0.24 1.05 6.48 0.38 
217.92 218.40 3.46 0.56 5.81 1.10 1.53 6.27 0.31 
218.96 219.28 3.30 0.45 6.71 0.59 1.16 6.21 0.24 

 

The first single free particle was observed 196.24 seconds after Hex2 was activated while 

the last one was observed after 218.96 seconds. The final length to which the particle 

grew varied between 1.92 to 3.46mm while the final width of the particle varied between 

0.31 to 0.62mm. This was indicative of the varying growth rates and position where the 

particles started to grow in the channel. The axial ratios varied from 3.45 to 6.71 

validating the assumption of an elliptical shape in the calculation of area. The area of the 

single particles varied from 0.82 to 1.53 mm2 based on the length and width of the 

particle. The stream velocity decreased as particles formed and resulted in a decrease in 

particle velocity. The standard deviation values of the axial ratio and velocity of the 

particles indicate the variation within each data set. Within a set, the length of a single 

particle generally increases more than the width resulting in increases in the axial ratio. 

The velocity changes result from the variation in length of  particles in successive frames.  

              Single sedimenting particles have been defined as those particles that deposited in 

the channel and are shown in Figure 3.4.  
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Figure 3.4: Representative frames for single sedimenting particles observed 194.72 

seconds after Hex2 was activated. 
 
A single particle was observed over the 19 1/2” mark. The particle grew in the 

consecutive frame before it deposited in the channel at the 20 ¼” mark. The consolidated 

data for all the single sedimenting particles observed are given in Table 3.4. 

                      Table 3.4: Image analysis results for single sedimenting particles. 

Start End Length Width Avg. L/W Std. L/W Area Vx Std. Vx 
(sec) (sec) (mm) (mm)   (mm2) (cm/sec) (cm/sec) 

194.72 195.12 3.14 0.71 4.83 0.15 1.76 7.89 0.26 
217.52 217.84 3.98 1.09 4.55 1.21 3.41 5.45 0.68 

 

The length and width of each particle calculated using the imaging software were used to 

obtain the axial ratio, area and velocity as before. The lengths and widths of the 

sedimenting single particles were greater, as expected, than that of the free single 

particles. This implied that the dimensions of the sedimenting particles exceeded the 

critical dimensions (see below).  

            Agglomerates were defined as clusters of single particles that occurred in the 

channel due to inter-particle interaction. Because of the presence of multiple particles, the 

agglomerates were much bigger than the single or sedimenting particles. The 

representative frames for two sets of agglomerates are presented in Figure 3.5 and Figure 

3.6. 
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 Figure 3.5: Representative frames for agglomerating particles observed 207.84 seconds    
      after Hex2 was activated. 
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Figure 3.6: Representative frames for agglomerating particles observed 215.92 seconds 

after Hex2 was activated.  
 
 The agglomerate was first observed, in Figure 3.5, over the 19 ¼” mark. The 

agglomerate continued to grow and deposited at the bottom of the channel at the 19 7/8” 

mark. The particles and agglomerates, which deposited at the bottom of the channel, 

continued to move along with the flow and constituted a “moving” bed. The bed 

continued to grow with time as more deposits occurred. The first set of images in Figure 

3.5 was in the early part of the deposition when the bed area was negligible while the 

second set in Figure 3.6 was during the later part of the run when the bed area was 

increasing. Based on the images in Figures 3.5 and 3.6, bed area did not appear to affect 

the formation and deposition of the agglomerates. Results from image analysis of the 

agglomerates are collected in Table 3.5.  

                           Table 3.5: Image analysis results for agglomerating particles. 

              

Start End Length Width Avg. L/W Std. L/W Vx Std. Vx 
(sec) (sec) (mm) (mm)   (cm/sec) (cm/sec) 

204.08 204.40 3.48 1.38 4.67 2.03 7.85 0.23 
206.00 206.48 4.54 1.69 2.60 0.28 7.51 0.57 
206.40 206.64 3.18 1.10 4.19 1.52 6.14 0.48 
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      Table 3.5: Image analysis results for agglomerating particles - continued. 

206.72 207.04 4.37 1.25 3.55 0.66 7.42 0.38 
207.44 207.60 2.87 1.30 3.50 1.15 6.32 1.13 
207.84 208.40 3.36 1.63 2.69 0.44 7.23 0.35 
208.48 208.72 3.61 1.25 3.40 0.45 6.14 0.37 
213.44 213.68 5.15 1.39 3.00 1.27 5.47 0.73 
213.84 214.32 3.54 1.48 2.78 0.73 5.52 0.15 
215.28 215.60 4.01 2.15 2.20 0.66 5.42 0.09 
215.92 216.56 4.37 1.84 2.47 0.87 5.13 0.29 
216.72 217.04 2.92 1.90 2.12 0.88 5.08 0.13 
217.04 217.52 3.88 1.16 3.59 0.66 4.75 0.58 
217.52 217.84 4.02 1.33 4.00 1.74 5.09 0.37 
217.92 218.16 3.86 2.14 1.63 0.21 4.75 0.5 
217.92 218.32 5.95 1.54 4.27 0.90 4.61 0.15 
220.08 220.48 4.02 1.91 3.92 2.14 4.62 0.64 
220.16 220.32 4.37 2.06 2.29 0.22 4.61 0.22 
221.84 222.08 4.61 2.48 2.30 0.45 4.01 0.56 
222.08 222.40 5.18 2.14 2.32 0.44 3.8 0.15 

 

From Table 3.5, it is evident that the agglomerates were much larger in size compared to 

the single particles in Table 3.3. The calculated axial ratios of the agglomerates were less 

than that of the single particles suggesting that the agglomerates grew more in their width 

than length when compared to the single particles. The velocity of the agglomerates 

gradually decreased over the course of the run suggesting that the stream velocity 

reduced with the formation of agglomerates and increased bed area.  

           The image analysis data from Tables 3.3 and 3.5 were regressed against time to 

obtain the growth rates of the single particles and agglomerates. This also enabled a 

better understanding of the occurrence of higher axial ratios of agglomerates when 

compared to single particles. The regression data for the growth in area of single particles 

and agglomerates are given in Tables 3.6 and 3.7. 
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                       Table 3.6: Regression data for area growth of single particles.  

Start 
(sec) 

End 
(sec) 

Slope 
(mm2/sec) 

Intercept 
(mm) 

Correlation 
Coefficient 

196.24 196.56 2.4 -467 0.91 
202.08 203.32 1.5 -292 0.73 
208.72 208.96 2.8 -573 0.98 
209.60 209.92 1.7 -360 0.85 
212.56 212.80 2.0 -474 0.98 
214.96 215.28 1.8 -383 0.84 
217.92 218.40 2.4 -516 0.84 
218.96 219.28 1.9 -409 0.96 

 Average 2.1   
 Std. Dev 0.4   

  

                         Table 3.7: Regression data for area growth of agglomerates. 

Start  
(sec)  

End 
(sec)   

Slope 
(mm2/sec) 

Intercept 
(mm) 

Correlation 
Coefficient 

206.00 206.48 7.7 -1540 0.91 
206.40 206.64 4.9 -1603 0.90 
207.44 207.60 10.2 -2117 0.99 
207.84 208.40 4.2 -860 0.78 
208.48 208.72 10.7 -2249 0.94 
213.44 213.68 21.6 -4612 0.78 
213.84 214.32 6.9 -1470 0.97 
215.28 215.60 19.5 -4165 0.93 
215.92 216.56 9.3 -2002 0.83 
216.72 217.04 11.9 -2584 0.91 
217.92 218.16 17.6 -3822 0.63 
217.92 218.32 15.4 3400 0.99 
220.08 220.48 10.0 -2189 0.90 
220.16 220.32 13.5 -2965 0.97 
221.84 222.08 21.6 -6124 0.98 
222.08 222.40 24.8 -5525 0.91 

 Average 13.1   
 Std. Dev 6.3   

 

From the regression data of the single particles in Table 3.6, it is seen that the growth of 

area was 2.0±0.4 mm2/sec while the agglomerates in Table 3.7 had a growth rate of 

13.1±6.3 mm2/sec. It was also noted that the growth rate of single particles was almost 
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the same for all the data sets collected while the agglomerates grew as a function of time. 

A linear fit was used for regression of data in the absence of a better fit. As the 

correlation coefficients were reasonable for both the single particles and agglomerates, 

the linear fit was assumed to be adequate.  

              To further investigate the cause of higher area growth rates in agglomerates than 

single particles, regressions were performed on the length and width data from the image 

analysis. The growth in length of the single particles was determined as 2.9±1.7 mm/sec 

while that of agglomerates was 5.9±4.7 mm/sec. Similarly, the growth in width of single 

particles was determined as 0.6±0.9 mm/sec and that of agglomerates was 3.1±1.5 

mm/sec. From the regression data, it was observed that though the growth in width of 

agglomerates was about 5 times that of single particles, the growth in the length of the 

agglomerates was just 2 times that of the single particles. This indicated that the 

agglomerates grew more in their width compared to length resulting in smaller axial 

ratios.  

             As the agglomerates were defined as clusters of single particles, the growth rate 

of agglomerate was a function of growth of the single particles and the number of 

particles comprising the agglomerate. The growth rate of single particles was observed to 

be constant from the regression data (Table 3.6). This observation suggests that the 

increasing growth rate of agglomerates with time may have been due to the greater 

number of single particles comprising the agglomerates. In order to investigate the 

observation, the agglomerate growth rate was divided by the average single particle 

growth rate to obtain a calculated number of single particles comprising the agglomerate. 

The calculated value was then compared with the number of particles from visual 
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observation. The values are plotted in Figure 3.7. The calculated and observed number of 

particles comprising the agglomerate increase with time, thus resulting in an increase of 

agglomerate growth with time. 

           Figure 3.7: Calculated and observed # of particles comprising agglomerate.             

           The area growth rates of the single particles and the agglomerates along with the 

pressure and temperature profiles are plotted against time in Figure 3.8. This enabled an 

understanding of the transition from single particle growth to agglomerate formation 

prior to bed development.  Further the particle growth and agglomerate formation could 

be related to the pressure increase in the channel. The pressure data in the plot are from 

the transducer located before the heat exchanger, Hex2. The transducer showed a 

pressure reading of about 1psig even before the first particle was observed. This indicated 

the existence of particles in the line before 190 seconds, either smaller than the set 

resolution of the camera or up or downstream of the 2” section used for image analysis. It 
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Figure 3.8: Plot of particle, agglomerate area and Pressure0 as function of time after 
activation of Hex2. The triangles in the plot represent the single particles 
while the circles represent the agglomerates. The blue solid line with squares 
represents Pressure0 and red solid line with circles represents T4. 

  
appears likely that the initial deposition of the particles occurred downstream of the plug 

location. If particle sedimentation and agglomeration had occurred upstream of the probe 

volume, particles and agglomerates would be observed at earlier run times. Some 

movement of the agglomerates along the bottom of the channel would have also been 

observed in the initial images. The surrogate stream mainly consisted of single particles 

until about 206 seconds when the agglomerates started to form. Following this time, the 

single particles were still observed although agglomerate formation became predominant. 

The single particle growth was uniform throughout, while the agglomerate growth 

increased with time. The stream velocity gradually reduced with time causing the 

agglomerates to increase in size or “pile-up” over the existing agglomerates forming 
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bigger agglomerates as shown in Figure 3.5 and Table 3.5. This supports the observation 

that the agglomerates grew more in width than in length.  

           The pressure rise in the transducer was gradual until about 213 seconds and then 

increased rapidly as observed from the two distinct slopes in Pressure0 before and after 

213 seconds. Prior to 213 seconds, the stream mainly contained single particles and the 

obstruction to flow was less and the corresponding pressure rise was gradual. Later, when 

the agglomerates became predominant, the rate of bed formation also increased resulting 

in flow obstruction and a rapid increase in pressure. It was observed from the plot that 

when the last agglomerate was seen in the channel (223 seconds after Hex2 activation), 

the pressure reading was close to the maximum value. At this point, the moving bed was 

fully developed and a decrease in the velocity was observed followed by plug formation. 

The line plugged about 230 seconds after activation of Hex2 when the maximum pressure 

was observed. This indicated that the pressure drop in the channel was directly 

proportional to the particles in the line. Thus the pressure drop, because of frictional 

effects, increased with increasing particle concentration. The temperature in the channel 

remained fairly constant throughout the duration of image analysis. Hex2 was turned on 

at T4 temperature of 46oC and the temperature stabilized around 40oC after 150 seconds 

and even slightly increased towards the end of the runs. The depositing single particles 

and agglomerates formed a bed, which continued to move along with the flow. Bed areas 

obtained at regular run times are analyzed using the image analysis software. The bed 

fraction (ratio of bed area to total channel area) was plotted against time to understand the 

effect on pressure rise and is shown in Figure 3.9. An increase in the pressure is observed 

with increasing bed fraction. The bed started to form around 200 seconds due to the  
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                    Figure 3.9: Plot of bed fraction and Pressure0 as function of time.            

depositing single particles in the channel. The bed growth was gradual until about 208 

seconds, when it started to increase rapidly. This was attributed to the agglomerates, 

which were clusters of single particles that deposited in the channel causing the bed to 

grow rapidly. The bed fraction reached the maximum value of 1 around 225 seconds 

indicating that the bed had fully developed in the channel. The bed movement gradually 

slowed down because of the frictional effects before finally ceasing around 240 seconds 

and resulted in a plug. 

 

3.2.2 Experiments at Surrogate Flow Rate of 6.8gph 

            In view of the short plugging time in experiments at 3.5 gph, further experiments 

were done at a higher flow rate of 6.8 gph(Re=436). The main idea was to investigate the 

effect of higher flow rates on the plugging process. The experiments were done in a 
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similar fashion as before while varying the surrogate flow rate. The temperature and 

pressure profiles from a typical experiment are shown in Figure 3.10. As before, the heat 

exchanger (Hex2) was turned on at 1.2 gpm when the exit temperature of surrogate at T5 

reached about 46oC. The surrogate temperature at T5 stabilized around 42oC and the 

channel finally plugged around a temperature of 41.6oC. The pressure profile remained 

constant until a time of approximately 2000 seconds and then started to increase. This 

could be compared to 150 seconds in the 3.5 gph run when the pressure remained 

constant. The pressure rise in P0 was gradual between 2000 seconds and 2800 seconds 

and then increased rapidly. The channel plugged at a run time of 2940 seconds after Hex2 

was activated. The variation of the tank temperature and the temperature measured at T1 

Figure 3.10: Temperature and pressure profiles in experiment with surrogate flow rate of    
                     6.8 gph. 
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and T2 was due to the cycling of the immersion heater in the surrogate tank. The 

variation appeared more prominent when compared to the 3.5 gph run because of the 

longer experimental time. The constant profiles of inlet and outlet heat exchanger 

temperatures (TCW and TW2) indicated that the cooling heat flux supplied by Hex2 was 

constant. The pressure reading of P2 remained constant throughout the run indicating that 

the plug occurred upstream of P2, in the clear section. The temperature and pressure 

profiles were used to obtain the time to plug, the plugging temperature and other 

information pertinent to plug formation and are presented in Table 3.8 and Table 3.9. 

          Table 3.8: Results of experiments at surrogate flow rate of 6.8 gph (Re=436) 

Date Surrogate 
flow rate 

(gph) 

Hex2 
cooling 

rate (gpm) 

Time to 
Plug 
(sec) 

Pressure at 
Plug (PSIG) 

T5 Rate of 
Temp Change 

(oC/sec) 

T5 at 
plug 
(oC) 

2/22/2001 6.8 1.2 3478 8.94 0.06 42.22 
3/10/2001 6.8 1.2 3371 8.86 0.07 41.87 
5/22/2001 6.8 1.2 2930 8.98 0.06 41.72 

 

              Table 3.9: Average values of experiments at surrogate flow rate of 6.8 gph. 

 Time to 
Plug (sec) 

Pressure at 
Plug (PSIG) 

T5 Rate of Temp 
Change (oC/sec) 

T5 at Plug 
(oC) 

Change in T5 
(oC) 

Average 3260 8.93 0.06 41.94 5.45 
Std. Dev 290.47 0.06 0.01 0.26 0.32 
Std. Err% 8.91 0.68 7.98 0.61 5.85 

 

From Tables 3.8 and 3.9, it is observed that the average plugging time in the 6.8 gph run 

was 3260 seconds and the average temperature at plug was 41.94oC. These results can be 

compared to the average plugging time of 258.2 seconds and plugging temperature of 

38.86oC in the 3.5 gph run. This indicated that the plugging temperature was directly 

related to the surrogate flow rate. Further, it could also be noted that the experiments 

were reproducible.   
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            Image analysis was performed on the plugging process with a surrogate flow rate 

of 6.8 gph. Particles were first observed in the line around 2500 seconds. The image 

analysis has been divided into free particles, agglomerates and bed development.             

The representative images for free single particles observed in the channel have been 

given in Figure 3.11.     

Figure 3.11: Representative frames for single particles observed 2681.8 seconds after  
                    Hex2 was activated.  
 
The single particle was first observed above the 19 3/8” mark. It continued to grow in the 

subsequent frames and was last observed over the 20.5” mark. The particle approximately 

moved the same distance in each of the frames indicating that the velocity of the single 

particles was approximately the same. As before, particle lengths, widths, velocities and 

axial ratios were obtained. In view of the large number of images, typical results are 

given below.  

                          Table 3.10: Image analysis results for free single particles. 

              

Start 
(sec) 

End 
(sec) 

Length 
(mm) 

Width 
(mm) 

Avg. L/W Std. L/W Area 
(mm2) 

Vx 
(cm/sec) 

Std. Vx 
(cm/sec) 

2549.56 2549.8 2.19 0.59 4.41 0.95 1.01 15.21 0.22 
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     Table 3.10: Image analysis results for free single particles - continued. 

2564.6 2564.84 2.58 0.50 4.53 0.60 1.02 14.89 0.70 
2600.2 2600.44 2.40 0.62 4.39 0.54 1.16 14.13 0.68 
2624.44 2624.68 2.19 0.71 4.13 1.27 1.23 13.81 0.17 
2648.52 2648.76 2.20 0.61 4.84 1.92 13.87 0.64 
2692.36 2692.6 2.43 0.34 5.51 1.24 0.65 12.46 0.49 
2739.08 2739.32 2.75 0.70 4.53 0.60 1.50 12.33 0.02 
2784.52 2784.76 2.11 0.71 3.54 0.96 1.17 10.99 0.61 
2833.48 2833.8 2.82 0.57 5.31 0.63 1.26 10.39 0.39 

1.06 

 

The length of the single particles varied between 2.11 and 2.82 mm, while the width 

varied between 0.34 and 0.71 mm. The single particle dimensions in Table 3.10 are 

comparable to the single particle dimensions in Table 3.3. This indicated that the single 

particle size did not vary appreciably with the surrogate flow rate. The single particle 

velocity reduced from 15.21 cm/sec at 2550 seconds to 10.39 cm/sec at 2833 seconds 

owing to particle formation in channel.  

             Sedimenting particles were not observed in the 2” imaging length during the 

experiment. Particle dimensions were smaller than those required for settling (see below) 

and thus were carried away by the stream.  

            Agglomerates were observed in the channel and form the starting point for plug 

formation. Representative frames obtained from image analysis are shown in Figure 3.12. 
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Figure 3.12: Representative frames for agglomerates observed 2818.68 seconds after  
                    Hex2 was activated.  
 
A typical agglomerate was first observed over the 19 3/8” mark. The agglomerate grew 

over the successive frames and deposited close to the 20 3/8” mark. A second 

agglomerate was observed in the 3rd frame in Figure 3.11 above the 19 ¾” mark. The bed 

at the bottom of the channel, consisting of the deposited particles and agglomerates, was 

observed in the images. Results of some of the typical image sets are given in Table 3.11.  

                                Table 3.11: Image analysis results for agglomerates. 

Start 
(sec) 

End 
(sec) 

Length 
(mm) 

Width 
(mm) 

Avg. L/W Std. L/W Area 
(mm2) 

Vx 
(cm/sec) 

Std. Vx 
(cm/sec) 

2615.56 2615.8 2.93 0.88 3.35 0.41 2.02 12.84 0.68 
2693.24 2693.48 2.77 1.15 2.42 0.30 2.51 12.50 0.73 
2739.08 2739.24 2.99 1.42 2.80 1.15 3.34 11.69 0.17 
2768.92 2769.16 4.41 2.29 1.59 0.45 7.95 11.14 0.27 
2784.44 2784.68 3.95 1.82 2.68 0.50 5.65 9.49 0.91 
2805.72 2805.88 3.29 1.93 2.19 0.87 4.98 9.71 0.08 
2818.68 2818.84 3.40 2.53 1.68 0.41 6.75 9.53 1.10 
2839.32 2839.48 4.57 1.61 2.41 0.63 5.78 8.75 0.40 
2867.88 2868.04 2.90 1.75 2.16 0.87 3.97 7.96 0.35 
2900.28 2900.44 3.84 1.84 2.45 0.67 5.55 7.27 0.24 

 
 
The agglomerate velocities reduced from 12.84 to 7.27 cm/sec indicating that particle and 

agglomerate deposition in the channel affected the stream velocity. From Tables 3.10 and 

3.11, it is observed that the agglomerates grew to a bigger size than the single particles, 

because agglomerates were comprised of multiple single particles. The axial ratios of the 

agglomerates were smaller than the single particles indicating that the agglomerates grew 

more in width than length when compared to the single particles. To investigate this 
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effect, the growth rates of the single particles and agglomerates were determined as in the 

3.5 gph run. The area, length and width of single particles and agglomerates were plotted 

against time and regressed to obtain the corresponding growth rates. Area growth rate of 

single particles was found to be 2.1±0.8 mm2/sec while that of agglomerates was 

20.8±12.6 mm2/sec.  The length growth rate of single particles was 3±1.7 mm/sec while 

that of agglomerates was 8.3±5.2 mm/sec. The width growth rate of single particles was 

0.6±0.8 mm/sec and it was 5.5± 3.4 mm/sec in agglomerates. The growth rates of single 

particles and agglomerates from the 3.5 gph and 6.8 gph runs are compared in Table 3.12. 

Table 3.12: Comparison of single particle and agglomerate growth rates for 3.5 gph and  
                    6.8 gph runs. 
 

Single Particle Growth Rate Agglomerate Growth Rate Surrogate 
Flow 

rate (gph) 
Area 

(mm2/sec) 
Length 

(mm/sec) 
Width 

(mm/sec) 
Area 

(mm2/sec) 
Length 

(mm/sec) 
Width 

(mm/sec) 
3.5 2.04±0.4 2.90±1.7 0.64±0.9 13.10±6.3 5.94±4.7 3.06±1.5 
6.8 2.08±0.8 2.97±1.7 0.62±0.8 20.82±12.6 8.27±5.2 5.47±3.4 

 

The single particle growth rates from the 3.5 gph and 6.8 gph runs are the same. This 

suggests that the particle growth rate does not depend on the surrogate flow rate. The 

agglomerate growth rate was greater in the 6.8 gph run when compared to the 3.5 gph 

run. This was because the stream velocity was higher in the 6.8 gph run causing the 

agglomerates to grow to a larger size prior to deposition. From Table 3.12, the growth in 

the length of agglomerate was 2.8 times that of single particle, while growth in width was                         

8.8 times. This could be compared to agglomerate length growth of 2 times over single 

particle and width growth of 5 times from the 3.5 gph run. In view of this, a similar 

approach was adopted as in the 3.5 gph run to obtain the calculated number of particles in 

the agglomerate. These are shown in Figure 3.13.             
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Figure 3.13: Calculated and observed # of particles comprising agglomerate. 

The calculated and observed number of particles comprising the agglomerate 

compare well. The number of particles forming the agglomerate was less initially, so the 

agglomerate size and growth rate were less. The agglomerate size increased rapidly with 

time because the number of particles comprising the agglomerate increased. This was 

because the velocity of the stream decreased with time causing the agglomerate to 

increase in size or “pile-up” resulting in an increase in number of particles in an 

agglomerate. 

            The single particle and agglomerate growth along the pressure profile from the 

data acquisition system are plotted against time in Figure 3.14. The pressure reading of 
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transducer Pressure0 was about 1 PSIG even before 2500 seconds indicating the 

existence of particles, smaller than the resolution of the camera, or up or downstream,  

Figure 3.14: Plot of particle, agglomerate area and Pressure0 as function of time after 
activation of Hex2. The triangles in the plot represent the single particles 
while the circles represent the agglomerates. The solid brown line represents 
Pressure0 and solid red line represents T5. 

 
from the measurement location. The pressure rise appeared to be gradual until about 2750 

seconds, when it started to increase rapidly. This coincided with the time when 

agglomerate formation became predominant. The formation of the agglomerates and 

subsequent bed formation caused obstruction to flow resulting in the pressure rise. Single 

particles were first observed in the line after 2550 seconds while agglomerates started to 

appear after about 2680 seconds. The single particle growth was constant while the 

agglomerate growth rate increased with time. The last set of agglomerates was observed 

in the channel around 2900 seconds, when the pressure reading was about 6 psig. No 
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further agglomerates were observed after that time as the bed developed. Bed movement 

continued for about 40 seconds and then stopped. The pressure reading at that instant was 

a maximum of 8.9 psig, which was the pressure at the pump head. The temperature of the 

surrogate had reduced to about 42oC from 46oC by the time the image analysis was 

started. The temperature of the surrogate remained constant while the image analysis was 

performed indicating that the formation of particles and agglomerates did not affect the 

temperature. The bed fraction and pressure profiles are plotted against time to observe the 

effects of bed fraction on pressure rise and are shown in Figure 3.15.  

                    Figure 3.15: Plot of bed fraction and Pressure0 as function of time.            

 The bed started to form around 2700 seconds, when the pressure reading in the 

transducer was about 2 psig. The pressure rise was gradual until about 2750 seconds, 

when the bed fraction reached about 0.2. After 2750 seconds, agglomeration became 

prominent and the bed fraction increased rapidly resulting in a quick pressure rise. The 
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bed became fully developed in the channel around 2905 seconds and moved for about 35 

seconds before movement ceased and plugged the line. 

 

3.2.3 Experiments at Different Flow Rates  

The results of the image analysis of 3.5 gph and 6.8 gph runs were compared to 

observe the effect of flow rate on plugging. The order of events leading to the plug 

formation started with the growth of free single particles, followed by sedimentation of 

single particles and agglomerates and ended with bed formation. The events were 

comparable in both the runs with the exception of the absence of sedimenting single 

particles in the 6.8 gph run. In the 6.8 gph run, the single particles were carried away by 

the stream and did not deposit. The single particle growth rate was about the same in both 

cases indicating that the particle size was unaffected by the surrogate flow rate. The 

single particles grew to a comparable final size in both the runs suggesting that the final 

size may be governed by the concentration of phosphate in the surrogate and additional 

experiments to investigate the effect are discussed below. The agglomerate growth rate 

increased with time for both the flow rates and the pressure reading was about 1 psig 

before the first particle was observed in the channel. The pressure profile had two distinct 

slopes to it in both runs, with the first gradual slope attributed to the single particles and 

the second steep slope attributed to the agglomerates and bed formation. In both cases, 

there was an initial induction time before which the particles started to form in the 

channel. The induction time was longer in the second case due to the slower growth rates. 

Based on the similarities observed in the two runs, it was concluded that the mechanism 
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of plug formation was the same for the two runs at different Reynolds numbers but with 

the same cooling rate.     

            From the image analysis, it was concluded that the plug formation mechanism did 

not vary with the flow rate though the time to plug was different. In order to investigate 

the time to plug in greater detail, multiple experiments were carried out at higher flow 

rates. Experiments were carried out at 5 gph, 5.8 gph, 8 gph and 8.5 gph apart from the 

3.5 gph and 6.8 gph experiments done before. The Reynolds numbers corresponding to 

the above flow rates are 223, 319, 370, 436, 510 and 542 respectively. The experiments 

were carried out as before and Hex2 was turned on at 1.2gpm when the temperature of 

surrogate at T5 reached about 46oC. The pressure profiles from the different runs were 

plotted together against time and are shown in Figure 3.16.  

Figure 3.16: Pressure profiles from experiments at varying flow rates plotted against  
                      time.         
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It is observed from the plots that the experiment at 3.5 gph plugged in the shortest time of 

about 258 seconds. The run at 8.5 gph took the longest time, about 8000 seconds, to plug. 

The characteristics of the above runs are collected in Table 3.13.  

                 Table 3.13: Characteristics of experiments at varying Reynolds numbers. 

Surrogate Flow Rate (gph) Reynolds Number (Re) Time to Plug (sec) 
3.5 223 258 
5 319 760 

5.8 370 1786 
6.8 436 3397 
8 510 5810 

8.5 542 8102 
 

The pressure profiles from the different experiments exhibited the same behavior.  All of 

them illustrated an exponential rise in pressure after an initial “induction” period. This 

observation was comparable with the image analysis results presented above (Chapter 

3.2.1 and 3.2.2). Here, the formation of single particle was a function of the surrogate 

flow rate. At higher flow rates, single particle and agglomerate formation were delayed 

resulting in a delayed pressure rise and a longer time to plug.  

Each of the pressure profiles had two distinct slopes, the initial gradual slope 

corresponding to the induction period during which the particles began to form in the line 

and a steep slope which corresponded to the agglomerate formation and bed growth. In 

order to obtain an estimate of the time taken for the line to plug at higher flow rates, the 

data from the different runs were regressed and extrapolated. Surrogate flow rates were 

plotted against the time to plug from Table 3.14 in Figure 3.17. The time to plug 

increased exponentially with the surrogate flow rate (or the initial surrogate velocity).  
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                      Figure 3.17: Plot showing time to plug against surrogate flow rate. 

 

 3.2.4 Experiments at Different Cooling Rates 

            In order to investigate the effects of cooling rate on plugging, experiments were 

carried out at the surrogate flow rate of 6.8 gph and cooling rates of 0.7 gpm, 0.6 gpm 

and 0.4 gpm apart from the 1.2 gpm experiments done previously. The imaging system 

was used in an experiment with a cooling water flow rate of 0.4 gpm to observe the effect 

of cooling rate on growth rates. The results are given in Table 3.14 and plotted along with 

the pressure and temperature profiles in Figure 3.18.  

              Table 3.14: Characteristics of experiments at varying cooling water rates. 

Cooling Water Flow Rate (gpm) Temperature at Plug (oC) Time to plug (sec) 
1.2 41.62 2950 
0.7 41.58 3359 
0.6 41.97 3613 
0.4 42.6 4207 
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The results indicated that the plugging temperature increased with decreasing cooling 

rate. At the higher cooling rates, the cooling fluid extracted more energy out of the 

surrogate and thus, resulted in a lower temperature of the surrogate. There was an 

increasing trend in plugging temperature with the exception of the experimental run at a  

Figure 3.18: Temperature and pressure profiles from plugging experiments at different  
                     cooling rates. 

cooling rate of 1.2gpm. The deviation was due to the slightly higher temperature (47.1oC) 

at which Hex2 was turned on. The plugging time also increased with decreasing cooling 

rate. This was expected since, upon reducing the cooling rate, more time was required to 

attain a given temperature. A longer induction time, which increased the time to plug, 

was the practical result. The cooling rates are plotted against time in Figure 3.19. From 

the data in Figures 3.18 and 3.19, the time to plug increased with decreasing flow rate. 

The best fit for the experimental data was obtained using a logarithmic fit. This result was 
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complimentary to the plot of surrogate flow rate against time to plug in Figure 3.17, 

which gave an exponential curve fit. 

The experiment with the imaging system showed that the overall plugging 

mechanism did not vary with the cooling rate. The area growth rate of the single particles 

was obtained as 1.5±0.7 mm2/sec, while the length growth rate was 1.5±0.8 mm/sec and 

                              Figure 3.19: Plot of cooling rate against time to plug. 

width growth rate was 0.5±0.3 mm/sec. The area growth rate of agglomerates was 

18.6±9.4 mm2/sec, length growth rate was 6.7±3.7 mm/sec and width growth rate was 

5.3±2.6 mm/sec. This indicated that the growth rates decreased with cooling rates. The 

lower cooling rates caused the surrogate to cool slowly, resulting in lower growth rates.  
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3.2.5 Experiments at Different Na3PO4·12H2O·0.25NaOH Concentrations  

 Experiments were done with the surrogate obtained by reducing the 

Na3PO4·0.25NaOH·12H2O concentration to 0.2 moles and 0.15 moles in the actual 

recipe, while leaving the other constituents unaltered. The purpose of the experiments 

was to determine the effect of phosphate concentration on the time to form a plug and 

particle and agglomerate growth rates. In the experiment with 0.2 moles concentration of 

Na3PO4·0.25NaOH·12H2O, Hex2 was used with cooling water flow rate of 3 gpm.  The 

time to plug was 3715 seconds and the temperature at plug was 35.9oC. At lower 

phosphate concentrations, the phosphate crystals form at a lower temperature resulting in 

a lower plugging temperature. The images from the imaging system showed that the 

plugging mechanism was the same as before. The area growth of single particle was 

calculated as 1.4±0.6 mm2/sec, length growth was 1.4± 0.8 mm/sec and width growth 

was 0.5± 0.3 mm/sec. The growth rate in area of agglomerate was 15.4± 7.2 mm2/sec, 

length was 6.2± 2.6 mm/sec and width was 5± 2.6 mm/sec. The reduced availability of 

phosphate in the surrogate at lower phosphate concentrations causes the particles to grow 

slower. 

 Heat exchangers Hex1 and Hex2 were used in the experiment with 0.15 moles 

Na3PO4·0.25NaOH·12H2O to reduce the temperature of the surrogate. The channel 

plugged after 2530 seconds and the temperature at the plug was 33.4oC. As two heat 

exchangers were used in the experiment, the plug formed inside Hex2 and as a result 

image analysis could not be performed. 
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3.3 Unplugging Experiments 

3.3.1 Experiments to Determine Time to Unplug the Line 

           Unplugging experiments (Chapter 2.4) were carried out using water after each 

experimental run to unplug the line of the Na3PO4·0.25NaOH·12H2O plug. Temperature 

and pressure profiles from a typical unplugging experiment are shown in Figure 3.20. 

 The experiment under consideration was carried out after the line plugged from an 

experiment at 6.8 gph. The 6ft plug was left in the line for ≈ 24 hours before being 

unplugged. The water used in unplugging was stored in Tank3 at a temperature of 50oC. 

The water flow rate used for unplugging was set at 10gph, which corresponded to the  

         Figure 3.20: Temperature and pressure profiles from unplugging experiment. 

available pump head. Thermocouples T1 and T2 were located upstream, while T5 was 

located downstream of the plug section. Initially, when the pump was started, the 

transducer upstream of the plug showed a maximum, corresponding to the pump head, 
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while the downstream transducer showed a reading of 0 PSIG because of the plug in the 

line. Later, as time progressed, the downstream pressure began to rise indicating that 

water was percolating through the plug. At the start of the experiment, water that had 

percolated through the plug section slowly dripped out at the end of the test loop. The 

slow drip gradually transformed into a flow at the end of the experiment when the line 

was unplugged. This compared well to the pressure profiles obtained from the acquisition 

system that indicated a gradual pressure rise until about 600 seconds and a quick rise 

towards the end of the experiment. The line was unplugged about 900 seconds after the 

pump was started. Though water was stored in the tank at 50oC, the temperature upstream 

of the plug gradually decreased to about 28oC before the line was unplugged. This was 

due to conduction losses in the absence of any significant flow. The temperature of the 

section downstream of the plug remained around 22.5oC (room temperature) until the line 

was unplugged. After the line was unplugged, the temperatures of T1, T2 and T5 rose to 

the temperatures they would exhibit if hot water from Tank1 flowed in the channel. The 

variation in Tank3 was due to the cycling of the immersion heater in the tank.  

           In order to observe the unplugging experiments in greater detail, the color video 

camera was used. A video of the process is given in Appendix E (Figure E.2). Initial 

experiments were done with water, while later experiments were done with water mixed 

with green food dye. The purpose of the food dye was to provide a better color contrast to 

help identify the exact location to which the water had percolated. A tape measure was 

placed on top of the clear plastic section to obtain the rate at which water percolated 

through the plug. Images from the video camera are shown in Figure 3.21. 
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Figure 3.21: Images of unplugging experiments from video camera using water mixed  
                    with food dye.  
 
Images from Figure 3.21 indicate that water percolated from the 20” section to 30” 

section in 3 minutes. From the video, it is observed that unplugging occurred in different 

phases. Initially, water percolated through the plug section and dripped at the end of the 

clear section. The location to which water percolated could be identified using the tape 

measure. Due to water percolation, the plug material gradually weakened into a soggy 

gel. The soggy gel then began to dissolve, in some parts, due to continued percolation. 

This led to a gradual increase in the rate of water percolation, which carried away the 

dissolved material. Finally, the whole structure broke up and was carried away by water. 

The line was then unplugged, which corresponded to the transformation of water drip into 

flow. The rate of water percolation was obtained from the experiments and is shown in 

Figure 3.22.  

The distance to which water percolated increased exponentially with time. This 

indicated that water percolated faster at the end of the plug section than at the beginning. 

This is attributed to the fact that the plug partially dissolved as water percolated. The less 

dense gel was then more amenable to percolation. An unplugging experiment was done in  

which the pump was turned off after water mixed with food dye had percolated to the end 
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Figure 3.22: Rate of water percolation from unplugging experiments. 

of the plug section and before the plug material began to dissolve. The plug material was 

 then extruded and sectioned. The sections were green colored, indicating that water had 

percolated through the plug.  

           Unplugging experiments were done after the lines were plugged at different flow 

rates. The time to unplug did not vary with the plugging flow rate. This was attributed to 

the plugging mechanisms, which were identical to those discussed previously. Further 

experiments were done to observe the effect of pressure at the pump head and the plug 

residence time. 
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3.3.2 Experiments at Varying Pressure Heads at Pump   

The experiments were done by adjusting the surrogate flow meter (RMS) to 

different water flow rates, which corresponded to different pump pressure heads. The 

results from the experiments are presented in Figure 3.23. 

               Figure 3.23: Time to unplug plotted against total pump pressure exerted. 

The time to unplug decreased with increasing pump pressures. Higher pump pressures 

would exert more pressure on the plug material resulting in more rapid percolation. 

 

3.3.3 Experiments at Varying Residence Times of Plug in Line 

           Unplugging experiments were done by varying the residence time of the plug in 

the line. The experiments were done at residence times 2, 6, 12, 24 and 48 hrs of after 

formation of the initial plug. The results from the experiments are shown in Figure 3.24. 
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          Figure 3.24: Time to unplug plotted against residence time before unplugging.  

It was observed, from the experimental results, that the time to unplug decreased with an 

increase in plug residence time until 24 hrs and then remained constant. Experiments 

were performed after plugging the line at flow rates of 3.5, 5 and 6.8 gph. The time to 

unplug decreased with the residence time of the plug in the channel. This behavior is 

expected to be due to Ostwald ripening of the plug material, which is characterized by the 

growth of the larger crystals at the expense of the smaller crystals. As the phosphate 

crystals grow larger with time, the interstitial spaces between the crystals increase. This 

allows easier access of water to the plug material causing the channel to unplug faster. 

Future experiments to investigate the effect of residence time on unplugging are planned. 
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                                                             CHAPTER IV 

                                                             DISCUSSION 

 
4.1 Introduction 
            
             The image analysis results discussed previously (Chapter 3.2) indicated that the 

pipeline plugging was characterized by the events discussed below. The decrease in 

temperature of the surrogate caused particles to form in the channel. The particles grew to 

a particular size and deposited. Finally the single particles and agglomerates formed a 

bed, which gradually increased causing a pressure rise and plugged the line. Models for 

these events were developed and are discussed in this section.   

 

4.2 Models for Critical Parameters 

4.2.1 Model for Critical Velocity 

               Several models are available in the literature to determine the critical velocity of 

particles in solid-liquid two-phase flow as discussed previously (Chapter 1.2.2). Most of 

the models required particle size distribution while others required the evaluation of 

constants to obtain the critical settling velocity. A model developed by Durand was used 

to obtain critical velocity owing to the ease in its usage and data requirements. The model 

enabled the calculation of the critical particle size corresponding to a set stream velocity, 

which could be compared to the experimental value. Particles with sizes greater than the 

critical particle size would deposit in the channel, while the particles with lower sizes are 

carried away by the flow.   

              



               81 
  

                                                                       
 
           The stream velocity was taken as the free single particle velocity, while the 

characteristic length was taken as the width of the particle (since it was normal to the 

direction of flow). The density of solid particles was taken as that of Na3PO4·0.25NaOH 

·12H2O and surrogate density was obtained from ESP calculations (Chapter 2.3.1). 

            The image analysis of the 3.5 gph surrogate run discussed previously (Chapter 

3.2) was used to obtain the critical sizes. The critical sizes calculated from the Durand 

equation are compared to experimental particle sizes in Table 4.1. The other entries in the 

table include the start and end time for image analysis of each set, area and velocity of the 

single particle observed in the last frame in each set. 

           Table 4.1: Comparison of experimental and calculated critical particle sizes. 

Set 
Number 

Start Time 
(sec) 

End Time 
(sec) 

Area 
(mm2) 

Vx 
(cm/sec) 

Width=Lexp 
(mm) 

Width=Lcal 
(mm) 

1 196.24 196.56 0.82 7.96 0.47 0.58 
2 202.08 203.32 1.10 7.92 0.51 0.58 
3 208.72 208.96 0.95 7.42 0.58 0.54 
4 209.60 209.92 0.47 6.77 0.31 0.50 
5 212.56 212.80 0.98 6.96 0.56 0.51 
6 214.96 215.28 1.05 6.48 0.62 0.47 
7 217.92 218.40 1.53 6.27 0.56 0.46 
8 218.96 219.28 1.16 6.21 0.45 0.45 

 

The calculated critical sizes are comparable to the experimental critical sizes in most 

cases. Some exceptions in sets 5, 6 and 7 were when the bed formation was predominant. 

In these cases, because the bed velocity was lower than the stream velocity, the particle 

sizes increased before they deposited. The calculated critical velocities indicated that 

particles with larger dimensions that formed in the channel would deposit in the channel. 

This compared well to the agglomerates (Chapter 3.2), which were much bigger in size 

than the critical dimensions and thus deposited in the channel.  
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            A single sedimenting particle was observed during image analysis, which had 

exceeded the critical particle size and thus deposited. The particle had a width of 0.47  

mm when first observed and grew to a final width of 0.64 mm. The velocity of the 

particle correspondingly decreased from 8.11 cm/sec to 7.42 cm/sec. The particle was 

observed about 195 seconds after the activation of Hex2, when the bed did not form. The 

calculated critical particle size at that time was 0.58 mm, which was smaller than the 

actual particle size resulting in particle deposition. It should be noted that the particle 

sizes were relative to the location where image analysis was performed and that all the 

particles would eventually exceed the critical particle and deposit. 

            Similar calculations were performed to determine critical particle sizes in the 6.8 

gph run and typical results are shown in Table 4.2. 

           Table 4.2: Comparison of experimental and calculated critical particle sizes. 

Set 
Number 

Start Time 
(sec) 

End Time 
(sec) 

Area 
(mm2) 

Vx 
(cm/sec) 

Width=Lexp 
(mm) 

Width=Lcal 
(mm) 

1 2549.56 2549.80 1.01 0.59 15.21 1.11 
2 2557.40 2557.64 1.83 0.72 14.85 1.09 
3 2571.56 2571.80 1.64 0.76 14.79 1.08 
4 2611.88 2612.12 1.51 0.72 13.90 1.02 
5 2644.92 2645.16 1.16 0.50 13.68 1.00 
6 2709.72 2709.96 1.14 0.49 12.45 0.91 
7 2739.08 2739.32 1.50 0.70 12.33 0.90 
8 2751.96 2752.20 0.87 0.51 11.68 0.86 
9 2784.52 2784.76 1.17 0.71 10.99 0.81 
10 2833.48 2833.80 1.26 0.57 10.39 0.76 

 
The calculated single particle sizes were greater than the experimental sizes in the 6.8gph 

run indicating that none of the single particles would sediment. This compared well to the 

image analysis results, during which no sedimenting single particles were observed. The 

agglomerates observed during image analysis had greater dimensions than the critical 
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sizes and thus deposited. The calculated critical particle sizes and experimental critical 

particle sizes from Tables 4.1 and 4.2 were plotted against the stream velocities and are 

shown in Figure 4.1. 

Figure 4.1: Comparison of calculated and experimental critical particle sizes from  
                   3.5gph and 6.8gph image analysis experiments.     
                
The calculated single particle sizes were greater than the experimental sizes in the 6.8 

gph run indicating that none of the single particles would deposit. This compared well to 

the image analysis results, during which no sedimenting single particles were observed. 

The agglomerates observed during image analysis had greater dimensions than the 

critical sizes and thus deposited. The calculated critical particle sizes and experimental 

critical particle sizes from Tables 4.1 and 4.2 were plotted against the stream velocities 

and are shown in Figure 4.1. 
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4.2.2 Model for Temperature Drop of Surrogate 

            The temperature profiles of surrogate from Figures 3.1 and 3.10 indicated that the 

downstream temperatures decreased rapidly after the activation of the heat exchanger. A 

gradual temperature drop then followed before a constant temperature was attained that 

varied with the surrogate flow rate. At a higher flow rate, the cooling water extracted less 

energy out of the system resulting in a higher final temperature. Similarly at a lower 

surrogate flow rate, a lower surrogate temperature resulted from the same cooling rate as 

before. 

           The effect of particle formation on temperature drop of the surrogate was 

examined to obtain the right model. During the image analysis of surrogate at 3.5 gph, the 

first particle was observed in the channel about 190 seconds after the activation of Hex2. 

At 6.8gph, the first particle was observed about 2550 seconds after the activation of 

Hex2. The plug occurred in the 3.5 gph run after 230 seconds, while it occurred after 

2930 seconds in the 6.8 gph run. To analyze both the experiments on the same scale, 

normalized time (ratio of actual time to time to plug) was used. On the normalized scale, 

Hex2 was turned on when time was 0 and final temperature reached when time was 1. 

The first particle formed in the 3.5 gph run when the normalized time was 0.85. 

Similarly, in the 6.8 gph run the first particle formed at a normalized time of 0.87. This 

indicated that the heat transfer was convection driven until about 85% of the total run 

time after Hex2 was activated. Further, the temperature of the surrogate did not exhibit 

any significant variations after the particles started to form in the channel. The single 

particles and agglomerates, which deposited in the channel, formed a bed that was in 

motion until the line eventually plugged. This implied that the plugging process was 
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mainly convection driven, with negligible conduction effect due to particle formation. 

The analogy reduces the temperature drop of the surrogate during the plugging process to 

that of an unsteady state convection problem. 

           Several models are available in the literature for the unsteady state convection 

problems as discussed previously (Chapter 1.2.4). The model developed by Krishan was 

used to compare with the experimental temperature profiles. The model deals with 

unsteady heat transfer to a fully developed flow in a heat-conducting pipe of finite 

thickness when the outer periphery of pipe undergoes a step change in heat flux or 

surface temperature. Since the cooling water temperature profiles from Figures 3.1 and 

3.10 remained constant after Hex2 was activated, the solution of Krishan for step change 

in heat flux was used to obtain the calculated temperature profiles. 

           Temperature distribution equations were applied to the surrogate and pipe wall and 

using boundary conditions at the surrogate-pipe interface, the equations were combined. 

The equations were solved by the use of Laplace transforms, which were later inverted to 

obtain series solutions for the temperature distributions. The resulting distributions were 

applicable only for small periods of time because of the series solution.  The temperature 

distributions were obtained for different surrogate and cooling water flow rates. The 

model failed in some cases when the time to plug was greater than 2000 seconds. In such 

cases, the temperature distributions were extrapolated over the remaining time. The 

experimental and calculated temperature profiles for the experiments are shown in Figure 

4.2. 

 The calculated temperature profiles were best described by an equation of the 

form y=a⋅ln(x)+b, where y is the temperature, x is the normalized time and a, b are 
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constants. The experimental profiles were then fitted using a logarithmic equation and 

compared to the calculated values. The experimental and calculated values for slope, 

intercept and r2, are given in Table 4.3 and 4.4. 

Figure 4.2: Comparison of experimental and calculated downstream temperatures for 
surrogate experiments at 3.5 gph and 6.8 gph. 

 
Table 4.3: Comparison of experimental and calculated values for experiments at  
                  varying surrogate flow rates. 
 

 Experimental Calculated 
Flow rate(gph) Slope Intercept R2 Slope Intercept R2 

3.5 -1.27 39.29 0.64 -1.41 39.53 0.99 
5 -1.16 40.43 0.92 -0.83 40.90 0.98 

6.8 -0.85 41.80 0.96 -0.74 41.56 0.99 
 

Table 4.4: Comparison of experimental and calculated values for experiments at  
                  varying cooling water flow rates. 
 

              

 Experimental Calculated 
Flow rate(gph) Slope Intercept R2 Slope Intercept R2 
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Table 4.4: Comparison of experimental and calculated values for experiments at  
                  varying cooling water flow rates - continued. 
 

1.2 -0.85 41.80 0.96 -0.74 41.56 0.99 
0.7 -0.37 41.61 0.83 -0.46 41.32 0.94 
0.6 -0.28 42.28 0.65 -0.38 42.06 0.98 
0.4 -0.24 43.21 0.65 -0.26 43.03 0.94 

 

The intercept or the plugging temperature increased with the surrogate flow rate. This 

was attributed to better heat transfer at higher flow rates. Similarly, the slope decreased 

with cooling rate because higher cooling rates extracted more energy out of the surrogate 

and vice-versa. The low correlation value in the 3.5 gph was attributed to the slight 

increase in temperature at the end of the experiment, which was uncommon, as discussed 

previously (Chapter 3.2). Similarly, the low correlation values in the experiments at 

varying cooling rates are attributed to the variation in tank temperature, which became 

prominent due to the longer plugging time. Overall, the slope and intercept of the 

experimental and calculated profiles compare well indicating that the model of Krishan 

adequately describes the observed temperature distributions and analogy of unsteady state 

convection. 

 

4.2.3 Model for Pressure Rise in Channel 

The pressure profiles in Figures 3.1 and 3.10 showed that the pressure upstream of the 

heat exchanger began to increase with the occurrence of particles in the channel. This 

indicated that the pressure rise was dependent on the amount of solids precipitating out of 

the surrogate. Further, Figures 3.9 and 3.15 showed that the rapid pressure rise of the 

transducer corresponded to the bed formation and development. Based on the 
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experimental observations, a two-layer model developed by Wilson was used to compare 

with experimental results (Chapter 1.2.3).  

           The model assumed the flow to be characterized by a bed, comprised of dense 

solids, flowing at the bottom and liquid at the top. Conservation equation for mass and 

momentum were applied to each layer and solved to obtain the pressure profile. It was 

assumed that the solid and liquid layers shared a common pressure. Though the model 

provided equations for mass and momentum transfer between the layers, their scope was 

limited to modeling the experimental pressure rise in the channel.  

               The critical parameters required by the model were obtained from image 

analysis. The average bed height was obtained by dividing the bed area with bed length 

obtained from image analysis. The bed and stream velocities were also obtained from 

image analysis. The increase in bed area caused a corresponding rise in pressure. The 

calculated and experimental pressure profiles are shown in Figure 4.3.  
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Figure 4.3: Comparison of experimental and calculated pressure profiles for experiments 

at 3.5 gph and 6.8 gph. Corresponding temperature profiles are also shown.  
 
The mass and momentum transfer equations used by the model compared well to the 

experimental observations such as the liquid (stream) velocity decreasing with the solids 

(bed) formation and vice-versa. The pressure profiles from the model showed good (bed) 

with the experimental data.  

 

4.3. Development of Operating Envelope for Saltwell Pumping Experiments 

 Saltwell pumping experiments were carried out at varying surrogate flow rates, 

cooling rates and at different surrogate concentrations. The purpose of the experiments 

was to identify the effect of the variables on the plugging mechanism, temperature and 

time. The results from the individual experiments are consolidated to develop an 

operating envelope for saltwell pumping operations. 

 The plugging temperature is the primary parameter in developing the operating 

envelope, which is plotted against the experimental variables. To develop a simple two-

dimensional plot, the different experimental variables are combined into a single variable, 

which is plotted against plugging temperature. The surrogate flow rate is combined with 

the Na3PO4·0.25NaOH·12H2O molar concentration to obtain molar flow rate of 

Na3PO4·0.25NaOH ·12H2O. Different cooling rates were applied to the surrogate causing 

a variation in the plugging temperature. By neglecting the heat losses, the energy gained 

by cooling water is approximated as energy lost by the surrogate. Thus, the heat flux is 

used to account for the variation in cooling rates and was calculated using:   

1)-(4                )spTsi(TpsCsρsQ)spTsi(TpsCsmq −⋅⋅⋅=−⋅⋅=
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where ms is the mass flow rate of surrogate, Cps is the specific heat of surrogate, Tsi is the 

temperature of surrogate when heat exchanger is activated, Tsp is surrogate plugging 

temperature, Qs is volumetric flow rate of surrogate and ρs is density of surrogate.  

Finally, the heat flux is divided by the molar flow rate of surrogate to combine them into 

a single variable, encompassing all the experimental variables. The resulting ratio has the 

units of W·hr/mole and is the product of specific heat of the surrogate, average molecular 

weight of surrogate and temperature drop of surrogate resulting in a plug. Thus the plot of 

ratio of heat flux and molar flow rate against temperature at plug is expected to be a 

straight line as shown in Figure 4.4. 

Figure 4.4: Operating envelope for saltwell pumping experiments. Solid symbols indicate 
experiments that resulted in plugs, while hollow symbols indicate 
experiments that did not end in plugs. Violet, green and red solid lines are 
obtained by regression of the data points at each concentration. Operating 
envelope (black solid line) is obtained by regression of plugging 
temperatures at different concentrations. 
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The plot shows that the temperature at plug decreases with decreasing phosphate 

concentration. At the same flow rate, greater heat flux or cooling rate is required to cause 

the surrogate to plug at lower phosphate concentrations. There is maximum probability of 

a plug occurring in the region below the operating envelope, while the chances are 

minimum for regions above the envelope. The phosphate concentrations in the recipe are 

plotted against plugging temperatures and are shown in Figure 4.5. 

        Figure 4.5: Pipeline plugging temperatures at different phosphate concentrations. 

The experimental data points are fitted to a straight-line equation. The temperature at 

plug is best described by the straight-line equation y=m⋅x+c, where m is the slope of the 

line, obtained as 76.13oC/M (temperature/ concentration) and c is its intercept, 25.29oC. 

The data points show good agreement with the straight line fit. The straight line is 

extrapolated, to compare the experimental results with actual tank sample plugging 
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temperature obtained by Herting and Steen [6,7]. Regression of experimental data 

indicates that the tank sample would plug at 28.5oC, while it actually plugged at 23oC. 

The difference in the actual and regressed plugging temperatures can be mainly attributed 

to the variation in component concentrations and or temperature dependence of physical 

properties. The possible presence of additional solids (apart from the plug causing 

phosphate crystals) might vary the plugging mechanism and thus the plugging 

temperature. Future efforts are planned to establish these effects. 

 The saltwell pumping test loop experiments showed that the time to plug 

increased with increasing flow rate. This cannot be applied to the saltwell pumping at 

Hanford as the pumping rate is dependent on the rate of seepage of supernate into the 

central well. By maintaining the supernate at a high temperature or at low phosphate 

concentration, the plug formation can be prevented. Although the ideal phosphate 

concentration and temperature of supernate required to prevent plugging can be obtained 

from the operating region in Figure 4.4, certain operating difficulties persist. These arise 

due to the variation of phosphate concentration within the tank and lack of thermocouple 

probes inside the pipes to provide exact temperature measurements.   

 The average concentration of phosphate in the tank can be obtained. This can be 

plotted on the operating region plot (Figure 4.4) to obtain an estimate for the temperature 

at which the supernate should be maintained to prevent plugging. The thermocouple 

probes on the outside of the pipe can be used to calculate the temperature of supernate 

flowing inside the pipe, at a given outside ambient temperature. Based on this 

information, the dilution water temperature or flow rate required to prevent a plug can be 

determined.

              



                   
   
   
             
 

  

                                                             CHAPTER V 

                               CONCLUSION AND FUTURE CONSIDERATIONS 

  
  The main focus of the this research is the study of mechanisms underlying 

pipeline plugging during interim stabilization operations at Hanford by evaluating those 

parameters affecting plug development and formation. A test loop was developed in the 

laboratory to perform experiments that simulated actual pipeline plugs. The test loop 

contained pressure transducers, thermocouple probes and flow meters, which were used 

to monitor the process flow conditions. The instrumentation readings were monitored by 

a data acquisition system. An imaging system was used to view the process in detail. 

Images from the system were processed using imaging software, which helped in the 

identification of the critical parameters. 

 A recipe containing Na3PO4·0.25NaOH·12H2O was developed, which was 

identified as the primary constituent of pipeline plugs at Hanford. The dependence of 

variables such as surrogate flow rate, cooling water flow rate and phosphate 

concentration on pipeline plugging were examined. An increase in surrogate flow rate 

increased the time to plug, which was attributed to the “induction time” and slower 

cooling of the surrogate. A decrease in the cooling water flow rate increased the time to 

plug due to the reasons mentioned above. The lowering of phosphate concentrations in 

the recipe reduced the plugging temperature because of the formation of 

Na3PO4·0.25NaOH·12H2O crystals at lower temperatures. Plugging experiments were 

carried out at phosphate concentrations of 0.22M, 0.15M and 0.11M in the recipe, while
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the actual Hanford supernate had a Na3PO4·0.25NaOH·12H2O concentration of 0.07M. 

This enabled the study of pipeline plugs at higher temperatures and phosphate 

concentrations that could be used during interim stabilization operations.     

 Image analysis of the experiments showed that the events leading to plug 

formation. The cooling of the surrogate caused a reduction in its temperature, when 

single particles started to form in the channel. The particles grew to a critical size and 

deposited. The increasing number of single particles in the channel caused them to 

agglomerate and deposit. The single particles and agglomerates formed a bed and moved 

along with the flow at the bottom of the channel. The moving bed gradually grew and 

encompassed the entire channel. The frictional effects become predominant at this point 

and all movement ceased, resulting in a plug. Image analysis indicated that the single 

particle growth rate did not vary with the surrogate flow rate. The growth rate decreased 

with phosphate concentration and decreased with cooling water flow rate. The pressure 

and temperature profiles from the data acquisition system were coupled with the results 

from image analysis to show the effect of particle, agglomerate and bed formation on the 

pressure and temperature readings. The maximum size to which a single particle could 

grow without depositing and the corresponding critical velocity was calculated for 

experiments at different surrogate flow rates. Models available in the literature were 

adapted to explain the temperature drop of surrogate when heat exchangers were 

activated and pressure rise due to the single particles, agglomerates and bed movement.  

The research was also directed towards the development of an operating regime, 

which would minimize the chances of plugging during the unit operations. The results 

from plugging experiments at different flow rates and surrogate concentrations were 
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combined to this effect. An operating region, which would not result in plug formation, 

was identified. The secondary focus of the work is on the unplugging of pipeline plugs. 

The mechanisms underlying unplugging have been investigated and the effect of pump 

head and residence time of plug in channel on unplugging rate was studied.  

Future efforts should be directed towards extending the results of the present 

research to other plugging mechanisms, such as those involving entrained solids prior to 

plug formation. This would enhance the understanding of the formation of pipeline plugs 

and enable the development of better resources to prevent them from occurring. Focus 

can also be directed to the development of chemical/physical processes for unplugging by 

extending the current research. In conclusion, this research presents an understanding of 

plugging mechanisms underlying pipeline plugs at Hanford and develops an operating 

region, which would reduce the risk of pipeline plugs and result in significant cost 

savings.
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APPENDIX A 

             DILUTION OF RECIPE FOR IC ANALYSIS 
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                                                       Appendix A.1: Notes 

 

The anionic concentrations obtained for the saltwell surrogate from ESP were 

compared to those obtained from the IC. The IC was capable of analyzing (NO3)- and 

(PO4)3-. ESP simulations (Table 3.3) predicted a liquid phase (NO3)- concentration in the 

range of 228,000-223,000ppm and  (PO4)3- concentration in the range of 2800-3000ppm. 

The surrogate samples were diluted below 100ppm for IC analysis. The liquid phase 

concentration of (NO3)- was about 100 times that of the (PO4)3- concentrations, so the 

surrogate samples were initially diluted 100 times for  (PO4)3- and then further diluted 

100 times (total 10000 times) for (NO3)-  sampling. The dilutions were based on mass. 

The diluted solutions for (NO3)- and (PO4)3- were then analyzed in the IC. 

 

 

     
  
 



                  
   
   
                        
                                                                 

 

 

 

 

 

 

 

 APPENDIX B 

EQUIPMENT, INSTRUMENTATION AND FITTINGS USED IN 

SALTWELL TEST LOOP 
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                             Appendix B.1 Equipment and Instrumentation Used  

Equipment/ 
Instrumentation 

Description Number 

Tank1-3 Stainless steel tanks with capacity of 7 gal 3 
Pump1-2 Magnetic drive pump with 1/15 hp rating 2 
Heater1-3 Screw plug immersion heater to maintain surrogate 

temperature in tank aroun 50oC 
3 

Hex1-4 Heat exchangers used to reduce surrogate 
temperature 

4 

RMS Rotameter for use with surrogate. Range 0-20gph 1 
RMW Rotameter for use with water. Range 0-5gpm 1 
RM1-4 Rotameters for control of cooling water 4 

RM3a-4a Rotameters for control of cooling water 2 
P0-3 Pressure Transducers used to monitor pressure in line 3 

T0, T6, Tw PFA coated thermocouple probes used to monitor 
temperature of surrogate in Tanks1-3 

3 

T1-5 PFA coated thermocouple probes used to monitor 
temperature of surrogate in test loop 

5 

Tw,Tw0-4 Thermocouple probes used to monitor cooling water 
inlet and outlet temperature in test loop 

6 

 

         Appendix B.2: Various fittings and Corresponding Friction Factors Used  
 

Fitting Used Number Friction Factor 
Union 2 0.04 

90o Standard elbow 3 0.75 
90o Long radius elbow 3 0.45 

Coupling 15 0.04 
Tee 14 0.4 

Ball valve 6 3fT 
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where ε(0.0015ft) is the roughness of the pipe, Kent(0.78) is the entrance loss and Kexit(1) 

is the exit loss.Based on the K’ values for individual fittings the total K’ is defined as: 

 
(B.2)                                                                             exitKentKvalveK6        
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APPENDIX C 

ASSEMBLY OF THE SALTWELL PUMPING TEST LOOP 
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                                             Appendix C.1: Notes 

 

The surrogate was stored in Tank1 and maintained at a temperature around 50oC 

using Heater1. Tank1 had an elongated nipple at the bottom that was fitted to an SS 304 

ball valve, used to turn off the surrogate supply to the test loop. The ball valve (Valve1) 

was connected to a ½” SS 316 pipe, leading to Pump1, using a union coupling. The union 

coupling enabled the separation of the surrogate tank from the test loop for cleaning. 

Tank3 held water at a predetermined temperature for preheating, unplugging and 

cleaning. Tank3 had an elongated nipple that lead to a tee joint. One section from the tee 

joint was connected to a ½” copper pipe, through a ball valve (Valve3), that lead to 

Pump2. This section was used to flush the recycle line after each use. The other section of 

the tee joint was connected to a ½”copper pipe which lead to the water rotameter 

(RMW). The ½” copper pipe from outlet of RMW was connected to a ball valve 

(Valve2). The other end of Valve2 was connected to a ½” SS 316 pipe that was welded 

with the pipe from Tank1. This pipe was connected to the Pump1 through a union 

coupling. Pump1 was connected to a tee joint with a ½” SS 316 pipe. One section from 

the tee joint lead to surrogate rotameter (RMS) while the other was connected to a 1/8” 

SS 316 pipe that lead back to the Tank1 through a ball valve (Valve4). This arrangement 

was made, by opening Valve4, to constantly stir the contents of Tank1 when surrogate 

was being pumped and to maintain the entire surrogate at the same temperature.  

            The surrogate rotameter was connected to the heat exchanger, Hex1, through 

fittings (Table B.2). The ball valves were used to isolate individual sections in the event 

of a plug. The tee joints for thermocouples were fitted with ¼” caps, with 3/16” bore  
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through which thermocouples could be screwed into the line. The pressure transducers 

could be screwed directly into the tee joints. The ball valves were used to isolate sections 

of the test loop in the event of a plug. Initially, the arrangement of fittings was repeated 

for all the 4 heat exchangers (Hex1-4). Clear tubing was connected downstream of Hex2. 

The end of the clear tubing was fitted with tee joints for a pressure transducer and a 

thermocouple probe followed by a 3-way valve (Valve5). Cooling was not applied to the 

clear tubing. Sample ports were used in between heat exchangers to clear the line 

upstream of the plug and to collect surrogate test samples.    

          One section from Valve5 was directed to Tank2 while the other section was 

directed either to drain or Tank3, based on need, using flexible tubing. If the line was 

being unplugged then the section was directed to drain; if the line was being preheated it 

was directed to Tank3.  

           Preheating was a procedure followed before each of the saltwell pumping 

experiments in which water heated to around 50oC in Tank3 was pumped through the 

salwell loop and returned back to Tank3 through flexible tubing connected to Valve5. 

The purpose of preheating was to maintain the saltwell test loop at or near a temperature 

of 50oC before the surrogate was pumped, so that a temperature drop did not occur prior 

to the heat exchangers. The surrogate directed to Tank2 was maintained around 50oC and 

was recycled back to Tank1 using Pump2. The Pump2 was connected to Tank1 by a ½” 

SS 316 pipe with the provision for draining the line using a tee joint fitted to a valve. The 

section from the tee joint of Tank3 discussed above was used to flush the line after each 

recycling operation. This was done to clear the line of any plug that might form in the 

recycle line from the surrogate left behind after recycling.                 
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           Cooling water for the heat exchangers was supplied from the tap. PVC tubing was 

used to connect the hose to the copper tubing, supplying the cooling water to heat 

exchangers. The rotameters (RM1-4 and RM3a, 4a) were used to regulate water supply. 

Thermocouples fitted at the inlet and outlet of each heat exchanger were used to monitor 

the cooling water temperatures. The water from each of the heat exchangers flowed back 

via copper tubes to a PVC tube that was sent to drain. 

 

 

 

    



                   
   
   
          

 

 

 

 

 

 

 

APPENDIX D 

SAMPLE CALCULATIONS FOR TEMPERATURE DROP AND 

PRESSURE RISE MODELS 
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                                Appendix D.1: Heat Transfer Model 

   

  The temperature drop in the surrogate due to the use of heat exchangers is 

compared to a theoretical model developed by Krishan [34]. The theory and procedure to 

obtain solutions are discussed in Chapter 1.2.4. The Mathcad program used is given 

below: 

Heat Transfer Model

b 1 0.5 in. ................................................................ Outer dia of pipe

a 1 0.25 in. ............................................................... Inner dia of pipe

b
b 1
a 1

....................................................................... Ratio of inner and outer dia

V 16.2
cm
sec
. ............................................................. Flow velocity

C pl 3020
J

kg K.
. ....................................................... Specific heat of surrogate

∆ T 7 K. ................................................................... Total temperature drop of surrogate

k l 0.615
W

m K.
. ......................................................... Thermal conductivity of surrogate

µ l 4 cp. ................................................................... Viscosity of surrogate

ρ l 1390
kg

m3
. ............................................................. Density of surrogate 

Pr l C pl
µ l
k l
. .............................................................. Prandtl number of surrogate

E l
V2

C pl ∆ T.
.............................................................. Eckert number of surrogate

C l 16 E l. Pr l.

k s 15
W

m K.
. .............................................................. Thermal conductivity (TC) of steel
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K r
k s
k l

.................................................................... Ratio of  TC of steel and surrogate

C ps 500
J

kg K.
. ........................................................ Specific heat of steel

ρ s 8027
kg

m3
. ............................................................ Density of steel 

α s
k s

ρ s C ps.
........................................................... Thermal diffusivity of steel

α l
k l

ρ l C pl.
............................................................. Thermal diffusivity of surrogate

α
α s
α l

..................................................................... Ratio of thermal diffusivites

Z
α

K r

0.5
................................................................... Conjugation parameter

Z 1 1 Z

Z 2
1 Z( )
1 Z( )

t 600 sec. ................................................................ Time elapsed

r 1 .......................................................................... Dimensionless dia 

τ α l
t

a 1
2

. .............................................................. Fourier number

u 0

b nr n( ) 2 n. 1( ) b 1( ). α r 1( ).( )0.5

b nru n( ) 2 n u( ). b 1( ). α r 1( ).( )0.5

A 1 n( ) 0 i( ) erfc
b nr n( )

2 α τ.( )0.5.
.
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To  ................................................................................. Initial temperature   

T .................................................................................... Final temperature 

θ
T 0 T

T 0
................................................................. Dimensionless temperature

The temperature distibution of surrogate is obtained for constant heat flux by the formula:

θ l
0

∞

n

Z 2
n

Z 1 r0.5.
=

2 S 1. b α. 4 τ.( )0.5. A 1 n( ).
0.5

. 2 C l. Z. 4 τ.( )

3
2. A n 3,( ).

C l 4. τ. A n 2,( ) 16 τ. A n 4,( ).( ).+

....

C l r2. τ. 2 C l. τ 2.+

...

sum i( ) θ 1 0

θ 1 θ 1
Z 2

n

Z 1 r0.5.
2 S 1. b α. 4 τ.( )0.5. A 1 n( ).

0.5
.

2 C l. Z. 4 τ.( )

3
2. A n 3,( ).+

...

C l 4. τ. A n 2,( ) 16 τ. A n 4,( ).( ).+

...

.

n 0 i..∈for

sum 1000( ) 0.081 0.035i=

p Re sum 10000( )( ) C l r2. τ. 2 C l. τ 2.

T 46.216 1 p( ).

T 42.264=

                                           Appendix D.2: Pressure Rise Model 

 
 The pressure rise in the channel due to the formation of particles and bed growth 

is compared to a theoretical model developed by Wilson [27]. The model was developed 

assuming a two-layer flow (liquid on top and solids at bottom) where the fraction of 
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solids increases from 0 to 1 resulting in a plug. The fraction of solids can be directly 

obtained from the height of solids or bed width in the line. The theoretical model is 

programmed in Mathcad to obtain the solutions.   

Pressure Rise Model

h 0.040 in. ................................................................... Height of bed in the pipe 

D 0.25 in. ..................................................................... Pipe internal diameter 

D p 0.4 mm. ................................................................. Particle diameter 

x 6 ft. ................. .......................................................... Length of pipe section 

V l 7.95
cm
sec
. ................................................................. Stream velocity 

ρ l 1390
kg

m3
. ....................................... .......................... Surrogate (stream) density

µ l 4 cp. ................................................................. ...... Viscosity of surrogate  

V s 7.72
cm
sec
. Bed Velocity  

ρ s 1620
kg

m3
. ............................................................... B ed (solid) density 

x s
h
D

....................................................................... Bed fraction 

x l 1 x s ................................................................. Stream fraction

S s D acos 1 2
h
D
.. ............................................... Solid fraction wetted perimeter 

S l D π acos 1 2
h
D
.. ......................................... Liquid fraction wetted perimenter 

A s

D S s. 2 D2. h
D

h
D

2 0.5

. 1 2
h
D
..

4
......... Solid fraction cross-sectional area  
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S i 2 D.
h
D

h
D

2 0.5

. ............................................... Dimensionless wetted perimeter 

S ml

x l ρ l. V l. S i. dh
dx
.

2
................................................... Mass transfer in liquid phase  

S ms

x s ρ s. V s. S i. dh
dx
.

2
............................................... Mass transfer in solid phase 

Re D h( ) V l.
ρ l
µ l
. ......................................................... Reynolds number (stream) 

f l
64
Re

............................................................................. Friciton factor 

τ l
f l ρ l. V l

2.

2
............................................................. Shear between wall and liquid 

C d
g ρ s ρ l. D p.

ρ s V s
2.

................................................... Drag coefficient 

F d
3 x s. A s.

4 D p. C d. ρ l. V l V s. V l V s. ........... Drag force 

The pressure drop in the pipe is thus given by:

∆ P ρ l x l. A l. V l
2. x l ρ l. V l

2. S i. h
2
. τ l x l. S l. x. F d x.

1
x l A l.
.

∆ P 0.261 psi=

∆ P act ∆ P 0.6258 psi. (where ∆Pact

observed using imaging system)
∆ P act 0.887 psi=
 
  
 

     
  
 



        
   
                                                  

 

 

 

 

 

 

 

 

APPENDIX E 

MOVIE CLIPS OF PLLUGGING AND UNPLUGGING PROCESSES 
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Appendix E.1: Movie clip of plugging process at surrogate flow rate of 3.5 gph.  
                         Place mouse on image and right click to play movie.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Appendix E.2: Movie clip of unplugging process.  
                         Place mouse on image and right click to play movie.  
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