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This paper presents an investigation of seven different flux splitting algorithms 

for the discretization of inviscid fluxes, which are the primary source for the non-linear 

behavior (eg. shocks, contact discontinuities). The aim of the present work is to 

enhance the accuracy and robustness of CHEM, a three-dimensional flow solver, which 

is capable of simulating a wide range of flow conditions, including chemical non-

equilibrium. Five different test cases cases are considered and thoroughly analyzed. The 

overall goal is to find a numerical scheme that can meet some stringent specifications 

of efficiency, accuracy and robustness on the widest possible spectrum of flow 

conditions. 



 

 

 
 

DEDICATION 

I would like to dedicate this research to my sister Annapurna, and my parents. 

ii 



 

 
 

 
 

 

 

   

 

   

ACKNOWLEDGEMENTS 

I would like to express my sincere gratitude to my major professor, Dr. Pasquale 

Cinnella, for his guidance and continuing assistance throughout this work. I would like to 

offer a special “thank you” to Dr. Edward Luke, who has significantly contributed to my 

learning experience during my graduate studies. I would also like to thank the rest of my 

committee, Dr. Bharat Soni and Dr. Roy Koomullil for their contributions. In addition I 

would like to thank Dr. Donald Trotter and the Engineering Research Center for 

providing financial support and facilities to this research effort. 

I would like to thank my friends Amithkumar Reddy and PhaniKant Mantena for 

always supporting and encouraging me. Also, I would like to thank Dr. Xiao Ling-Tong 

and Dr. Junxiao Wu for their help and guidance. 

iii 



 

 

 
 

  

 

 

  

 

 

  
  
  
  
  

  

  
  
  
   
  

 

  

  
  
  
  
  
  
  
  
  
 

TABLE OF CONTENTS 

Page 

DEDICATION………………………………………………………………………… ii 

ACKNOWLEDGEMENT……………………………………………………………... iii 

LIST OF FIGURES……………………………………………………………………... vi 

NOMENCLATURE……..……………………………………………………………. xix 

CHAPTER

 I. INTRODUCTION……………………………………………………….. 1 

 II. GOVERNING EQUATIONS……………………………………………. 6 

2.1 Equations in Cartesian Co-ordinates………………..……………… 6 
2.2 Curvilinear Coordinate Transformation...………………………… 9 
2.3 Viscous Fluxes……………………………………………………. 10 
2.4 Finite Volume Approach…………………………………………. 11 
2.5 Eigenvalues and Eigenvectors……………………………………. 12 

III. CHEMICAL AND TRANSPORT MODELS………………………….. 15 

3.1 Thermodynamic Models………………………………………….. 15 
3.2 Caloric Equation of State…………………………………………. 16 
3.3 Speed of Sound…………………………………………………… 17 
3.4 Finite-rate Chemistry……………………………………………... 18 
3.5 Transport Properties………………………………………………. 20 

IV. LOCI: A DEDUCTIVE FRAMEWORK FOR GRAPH  

BASED ALGORITHMS……………………………………………….. 23 

4.1 The Loci Framework..…………………………………………….. 23 
4.2 Data Models………………………………………………………. 24 
4.3 Rule Specifications……………………………………………….. 25 

4.3.1 Rule Constraints…………………………………………... 26 
4.3.2 Point-wise Rules…………………………………………... 26 
4.3.3 Singleton Rules…………………………………………….. 27 
4.3.4 Reduction Rules…………………………………………… 27 
4.3.5 Iteration Rules……………………………………………... 28 

4.4 Scheduling…………………………………………………………. 29 

iv 



 

 
     

  

 

  
  
  

 

  
  
  
    
  
  
   
  
  

  

  
  
   
   
   
  
  
  

  

CHAPTER Page 

4.5 Implementation……………………………………………………. 30 

V. NUMERICAL FORMULATION………………………………………. 32 

5.1 Spatial Discretization……………………………………………… 32 
5.2 Temporal Discretization…………………………………………... 34 
5.3 Linear System Solution…………………………………………… 36 

VI. DISCRETIZATION OF INVISCID FLUXES…………………………. 38 

6.1 Roe-Averaged Fluxes……………………………………………… 38 
6.2 Flux-Vector Splitting……………………………………………… 40 
6.3 Van Leer Flux Splitting…………………………………………… 41 
6.4 Steger-Warming Flux Splitting…………………………………… 43 
6.5 AUSM Family……………………………………………………. 44 

6.5.1 AUSMD and AUSMV…………………………………… 46 
6.5.2 AUSMDV: Mixture of AUSMD and AUSMV………….. 49 
6.5.3 AUSM+: an extension to AUSM………………………... 49 
6.5.4 Low Speed AUSM+………………………………………. 51 

VII. RESULTS AND DISCUSSION………………………………………… 55 

7.1 Shock Tube…………………………………………………………  55 
7.2 Mach 10 Blunt Cone………………………………………………. 57 
7.3 Impingement of a Convergent-Divergent Nozzle Exhaust………… 59 

7.3.1 Jet Impingement on a perpendicular plate…………………. 59 
7.3.2 Jet Impingement on an inclined plane……………………… 60 

7.4 Hypersonic Conical Flow………………………………………….. 61 
7.5 NACA 0012 Airfoil………………………………………………… 62 

 VIII. SUMMARY AND CONCLUSIONS…………………………………... 65 

REFERENCES……………………………………………………………………….. 68 

APPENDIX…………………………………………………………………………… 72 

v 



 

 
 

 
 

 

 

 

 

 

 

 

 

 

 

  

  

 

 

LIST OF FIGURES 

FIGURE Page 

I. Mach 10 Blunt Cone…………………………………………………….. 57 

II. Convergent – Divergent Nozzle…………………………………………. 58 

III. Hypersonic Conical Flow I……………………………………………….. 61 

IV. Hypersonic Conical Flow II………………………………………………. 62 

V. NACA 0012 Airfoil………………………………………………………. 63 

1 Density distribution, Ideal Air Shock tube (Before Reflection), Roe, 
Steger-Warming, Van Leer………………………………………… 73 

2 Mach Number distribution, Ideal Air Shock tube (Before Reflection), Roe, 
Steger-Warming, Van Leer………………………………………… 73 

3 Pressure distribution, Ideal Air Shock tube (Before Reflection), Roe, 
Steger-Warming, Van Leer………………………………………… 73 

4 Temperature distribution, Ideal Air Shock tube (Before Reflection), Roe, 
Steger-Warming, Van Leer………………………………………… 73 

5 Density distribution, Ideal Air Shock tube (After Reflection), Roe, 
Steger-Warming, Van Leer………………………………………… 74 

6 Mach Number distribution, Ideal Air Shock tube (After Reflection), Roe, 
Steger-Warming, Van Leer………………………………………… 74 

7 Pressure distribution, Ideal Air Shock tube (Before Reflection), Roe, 
Steger-Warming, Van Leer………………………………………… 74 

8 Temperature distribution, Ideal Air Shock tube (Before Reflection), Roe, 
Steger-Warming, Van Leer………………………………………… 74 

vi 



 

 
 

 

 

 

 

FIGURE Page 

9 Density distribution, Ideal Air Shock tube (Before Reflection), Roe, 
 AUSMD, AUSMV………………………………………………… 75 

10 Mach Number distribution, Ideal Air Shock tube (Before Reflection), Roe, 
 AUSMD, AUSMV.………………………………………………… 75 

11 Pressure distribution, Ideal Air Shock tube (Before Reflection), Roe, 
 AUSMD, AUSMV.………………………………………………… 75 

12 Temperature distribution, Ideal Air Shock tube (Before Reflection), Roe, 
 AUSMD, AUSMV…………………………………………………. 75 

13 Density distribution, Ideal Air Shock tube (After Reflection), Roe, 
 AUSMD, AUSMV…………………………………………………. 76 

14 Mach Number distribution, Ideal Air Shock tube (After Reflection), Roe, 
 AUSMD, AUSMV.………………………………………………… 76 

15 Pressure distribution, Ideal Air Shock tube (After Reflection), Roe, 
 AUSMD, AUSMV.………………………………………………… 76 

16 Temperature distribution, Ideal Air Shock tube (After Reflection), Roe, 
 AUSMD, AUSMV…………………………………………………. 76 

17 Density distribution, Ideal Air Shock tube (Before Reflection),  
 Roe, AUSMDV……….……………………………………………. 77 

18 Mach Number distribution, Ideal Air Shock tube (Before Reflection),  
 Roe, AUSMDV…..………………………………………………… 77 

19 Pressure distribution, Ideal Air Shock tube (Before Reflection),  
 Roe, AUSMDV……..……………………………………………… 77 

20 Temperature distribution, Ideal Air Shock tube (Before Reflection),  
 Roe, AUSMDV...………………………………………………….. 77 

21 Density distribution, Ideal Air Shock tube (After Reflection),  
 Roe, AUSMDV……….……………………………………………. 78 

vii 



 

 
  

 

 

  

 

FIGURE Page 

22 Mach Number distribution, Ideal Air Shock tube (After Reflection),  
 Roe, AUSMDV…..………………………………………………… 78 

23 Pressure distribution, Ideal Air Shock tube (After Reflection),  
 Roe, AUSMDV……..……………………………………………… 78 

24 Temperature distribution, Ideal Air Shock tube (After Reflection), Roe,  
AUSMDV.……………………………………………………….. 78 

25 Density distribution, Ideal Air Shock tube (Before Reflection), Roe, 
 AUSM+, Low Speed AUSM+……………………………………………… 79 

26 Mach Number distribution, Ideal Air Shock tube (Before Reflection), Roe, 
 AUSM+, Low Speed AUSM+…………………………………………………79 

27 Pressure distribution, Ideal Air Shock tube (Before Reflection), Roe, 
 AUSM+, Low Speed AUSM+…………………………………………………79 

28 Temperature distribution, Ideal Air Shock tube (Before Reflection), Roe, 
 AUSM+, Low Speed AUSM+…………………………………………………79 

29 Density distribution, Ideal Air Shock tube (After Reflection), Roe, 
 AUSM+, Low Speed AUSM+…………………………………………………80 

30 Mach Number distribution, Ideal Air Shock tube (After Reflection), Roe, 
 AUSM+, Low Speed AUSM+…………………………………………………80 

31 Pressure distribution, Ideal Air Shock tube (After Reflection), Roe, 
 AUSM+, Low Speed AUSM+…………………………………………………80 

32 Temperature distribution, Ideal Air Shock tube (After Reflection), Roe, 
 AUSM+, Low Speed AUSM+…………………………………………………80 

33 Density distribution, Dissociating Oxygen Shock tube (Before Reflection),  
Roe, Steger-Warming, Van Leer………………………………………………81 

34 Mach Number distribution, Dissociating Oxygen Shock tube, 
(Before Reflection), Roe, Steger-Warming, Van Leer………………………...81 

viii 



 

 
 

 

  

 

 

 

 

 

 

 

 

 

 

 

FIGURE Page 

35 Pressure distribution, Dissociating Oxygen Shock tube (Before Reflection),  
Roe, Steger-Warming, Van Leer………………………………………………81 

36 Temperature distribution, Dissociating Oxygen Shock tube  
(Before Reflection), Roe, Steger-Warming, Van Leer……………………..…81 

37 Density distribution, Dissociating Oxygen Shock tube (After Reflection),  
Roe, Steger-Warming, Van Leer…………………………………………… 82 

38 Mach Number distribution, Dissociating Oxygen Shock tube, 
(After Reflection), Roe, Steger-Warming, Van Leer……… 82 

39 Pressure distribution, Dissociating Oxygen Shock tube (After Reflection),  
Roe, Steger-Warming, Van Leer…………………………………………… 82 

40 Temperature distribution, Dissociating Oxygen Shock tube  
(After Reflection), Roe, Steger-Warming, Van Leer…………………….…. 82 

41 Density distribution, Dissociating Oxygen Shock tube (Before Reflection),  
Roe, AUSMD, AUSMV…………………………………………………… 83 

42 Mach Number distribution, Dissociating Oxygen Shock tube, 
(Before Reflection), Roe, AUSMD, AUSMV………………………………..83 

43 Pressure distribution, Dissociating Oxygen Shock tube (Before Reflection),  
Roe, AUSMD, AUSMV……..……………………………………………… 83 

44 Temperature distribution, Dissociating Oxygen Shock tube  
(Before Reflection), Roe, AUSMD, AUSMV…………………………….. 83 

45 Density distribution, Dissociating Oxygen Shock tube (After Reflection),  
Roe, AUSMD, AUSMV…………………………………………………… 84 

46 Mach Number distribution, Dissociating Oxygen Shock tube , 
(After Reflection), Roe, AUSMD, AUSMV……………………………….. 84 

47 Pressure distribution, Dissociating Oxygen Shock tube (After Reflection),  
Roe, AUSMD, AUSMV…………………………………………………… 84 

ix 



 

 
 

 

 

 

 

 

  

  

 

FIGURE Page 

48 Temperature distribution, Dissociating Oxygen Shock tube  
(After Reflection), Roe, AUSMD, AUSMV………………………….…..… 84 

49 Density distribution, Dissociating Oxygen Shock tube (Before Reflection),  
 Roe, AUSMDV……………………………………………………………… 85 
50 Mach Number distribution, Dissociating Oxygen Shock tube, 

(Before Reflection), Roe, AUSMDV………………………………………...85 

51 Pressure distribution, Dissociating Oxygen Shock tube (Before Reflection),  
 Roe, AUSMDV……………………………………………………………… 85 

52 Temperature distribution, Dissociating Oxygen Shock tube  
(Before Reflection), Roe, AUSMDV……….……………………………..…85 

53 Density distribution, Dissociating Oxygen Shock tube (After Reflection),  
 Roe, AUSMDV……………………………………………………………… 86 

54 Mach Number distribution, Dissociating Oxygen Shock tube, 
(After Reflection), Roe, AUSMDV……….………………………………... 86 

55 Pressure distribution, Dissociating Oxygen Shock tube (After Reflection),  
 Roe, AUSMDV……….………………………………………………………86 

56 Temperature distribution, Dissociating Oxygen Shock tube  
(After Reflection), Roe, AUSMDV……….………………………….…..… 86 

57 Density distribution, Dissociating Oxygen Shock tube (Before Reflection),  
 Roe, AUSM+, Low Speed AUSM+………………………..…………………87 

58 Mach Number distribution, Dissociating Oxygen Shock tube , 
(Before Reflection), Roe, AUSM+, Low Speed AUSM+…………………… 87 

59 Pressure distribution, Dissociating Oxygen Shock tube (Before Reflection),  
 Roe, AUSM+, Low Speed AUSM+………………………..…………………87 

60 Temperature distribution, Dissociating Oxygen Shock tube  
(Before Reflection), Roe, AUSM+, Low Speed AUSM+…………………… 87 

x 



 

 
 

 

 

 

 

 

 

 

 

FIGURE Page 

61 Density distribution, Dissociating Oxygen Shock tube (After Reflection),  
 Roe, AUSM+, Low Speed AUSM+………………………..……………….…88 

62 Mach Number distribution, Dissociating Oxygen Shock tube, 
(After Reflection), Roe, AUSM+, Low Speed AUSM+…………………….. 88 

63 Pressure distribution, Dissociating Oxygen Shock tube (After Reflection),  
 Roe, AUSM+, Low Speed AUSM+……………………..………………… 88 

64 Temperature distribution, Dissociating Oxygen Shock tube  
(After Reflection), Roe, AUSM+, Low Speed AUSM+……..…………… 88 

65 Density distribution, Dissociating Oxygen Shock tube (After Reflection),  
Mco=0.1 and Mco=0.01…………………………………..……………….… 89 

66 Mach Number distribution, Dissociating Oxygen Shock tube , 
(After Reflection), Mco=0.1 and Mco=0.01………………………………… 89 

67 Pressure distribution, Dissociating Oxygen Shock tube (After Reflection),  
Mco=0.1 and Mco=0.01……………………………….…..……………….… 89 

68 Temperature distribution, Dissociating Oxygen Shock tube  
(After Reflection), Mco=0.1 and Mco=0.01………………………………… 89 

69 Blunt body, Temperature distribution along the stagnation streamline, 
Roe, Steger-Warming (Ideal, Reactive air)………..……………………… 90 

70 Blunt body, Temperature distribution along the stagnation streamline, 
Roe, Van Leer (Ideal, Reactive air)……………………………………… 90 

71 Blunt body, Temperature distribution along the stagnation streamline, 
Roe, AUSMV (Ideal, Reactive air)……………..………………………… 90 

72 Blunt body, Temperature distribution along the stagnation streamline, 
Roe, AUSMDV (Ideal, Reactive air)…………..………………………… 90 

73 Blunt body, Temperature distribution along the stagnation streamline, 
 Roe, AUSM+ (Ideal, Reactive air)……………..………………………… 91 

xi 

https://Mco=0.01
https://Mco=0.01
https://Mco=0.01
https://Mco=0.01


 

 
 

 

 

 

 

 

 

 

 

 

 

 

FIGURE Page 

74 Blunt body, Temperature distribution along the stagnation streamline, 
Roe, Low Speed AUSM+ (Ideal, Reactive air)….……………………….. 91 

75 Blunt body, Temperature distribution along the body surface, 
Roe, Steger-Warming (Ideal, Reactive air)………..………………………… 91 

76 Blunt body, Temperature distribution along the body surface, 
Roe, Van Leer (Ideal, Reactive air)……………………………………… 91 

77 Blunt body, Temperature distribution along the body surface, 
Roe, AUSMV (Ideal, Reactive air)……………..………………………… 92 

78 Blunt body, Temperature distribution along the body surface, 
Roe, AUSMDV (Ideal, Reactive air)…………..………………………… 92 

79 Blunt body, Temperature distribution along the body surface, 
 Roe, AUSM+ (Ideal, Reactive air)……………..………………………… 92 

80 Blunt body, Temperature distribution along the body surface, 
Roe, Low Speed AUSM+ (Ideal, Reactive air)….……………………….. 92 

81 Blunt body, Mach Number contours, Roe (Ideal Air)……………………… 93 

82 Blunt body, Mach Number contours, Steger-Warming (Ideal Air)………… 93 

83 Blunt body, Mach Number contours, Van Leer (Ideal Air)………………… 93 

84 Blunt body, Mach Number contours, AUSMV (Ideal Air)………………… 93 

85 Blunt body, Mach Number contours, AUSMDV (Ideal Air)….…………… 94 

86 Blunt body, Mach Number contours, AUSM+ (Ideal Air)………………… 94 

87 Blunt body, Mach Number contours, Low Speed AUSM+ (Ideal Air).…… 94 

88 Blunt body, Temperature contours, Roe (Ideal Air)………………………… 95 

89 Blunt body, Temperature contours, Steger-Warming (Ideal Air)……………… 95 

xii 



 

 
 

 

 

 

 

 

 

 

 

 

90 

91 

92 

93 

94 

95 

96 

97 

98 

99 

100 

101 

102 

103 

104 

105 

106 

107 

108 

FIGURE Page 

Blunt body, Temperature contours, Van Leer (Ideal Air)…..……………… 95 

Blunt body, Temperature contours, AUSMV (Ideal Air)…………………… 95 

Blunt body, Temperature contours, AUSMDV (Ideal Air)………………… 96 

Blunt body, Temperature contours, AUSM+ (Ideal Air)………….……...…… 96 

Blunt body, Temperature contours, Low Speed AUSM+ (Ideal Air)……..… 96 

Blunt body, Mach Number contours, Roe (Reactive Air)…………………… 97 

Blunt body, Mach Number contours, Steger-Warming (Reactive Air)………… 97 

Blunt body, Mach Number contours, Van Leer (Reactive Air)……………… 97 

Blunt body, Mach Number contours, AUSMV (Reactive Air)……………… 97 

Blunt body, Mach Number contours, AUSMDV (Reactive Air).…………… 98 

Blunt body, Mach Number contours, AUSM+ (Reactive Air)……………… 98 

Blunt body, Mach Number contours, Low Speed AUSM+ (Reactive Air)… 98 

Blunt body, Temperature contours, Roe (Reactive Air)…………………… 99 

Blunt body, Temperature contours, Steger-Warming (Reactive Air)………… 99 

Blunt body, Temperature contours, Van Leer (Reactive Air)……………… 99 

Blunt body, Temperature contours, AUSMV (Reactive Air)…….………… 99 

Blunt body, Temperature contours, AUSMDV (Reactive Air).…………… 100 

Blunt body, Temperature contours, AUSM+ (Reactive Air)………….…… 100 

Blunt body, Temperature contours, Low Speed AUSM+ (Reactive Air)… 100 

xiii 



 

 
 

  

 

 

 

FIGURE Page 

109 2D Impingement, Pressure distribution on the wall, Roe, Steger-Warming,
 Van Leer…………………………………………………………………… 101 

110 2D Impingement, Pressure distribution on the wall, Roe, AUSMV, AUSMDV.101 

113 2D Impingement, Pressure distribution on the wall, Steger-Warming, 

114 2D Impingement, Pressure distribution on the wall, Van Leer,  

118 2D Impingement, Pressure distribution on the wall, Low Speed AUSM+, 

111 2D Impingement, Pressure distribution on the wall, Roe, AUSM+, 
Low Speed AUSM+………….…………………………………………… 101 

112 2D Impingement, Pressure distribution on the wall, Roe, Experimental……. 102 

Experimental…………………………………………………………. 102 

Experimental…………………………………………………………….  102 

115 2D Impingement, Pressure distribution on the wall, AUSMV, Experimental. 102 

116 2D Impingement, Pressure distribution on the wall AUSMDV, Experimental 103 

117 2D Impingement, Pressure distribution on the wall, AUSM+, Experimental… 103 

 Experimental……………………………………………………………….. 103 

119 2D Impingement. Density contours, Roe.…………………………………… 104 

120 2D Impingement. Temperature contours, Roe……………………………… 104 

121 2D Impingement. Density contours, Steger-Warming……………………… 104 

122 2D Impingement. Temperature contours, Steger-Warming…………………… 104 

123 2D Impingement. Density contours, Van Leer..……………………………… 105 

124 2D Impingement. Temperature contours, Van Leer…………………………… 105 

125 2D Impingement. Density contours, AUSMDV……………………………… 105 

xiv 



 

 
 

 

FIGURE   Page 

126 2D Impingement. Temperature contours, AUSMDV..…..…………………… 105 

134 3D Impingement at 30o, Pressure distribution on the wall, 

127 2D Impingement. Density contours, AUSMV……………………………… 106 

128 2D Impingement. Temperature contours, AUSMV…………………………… 106 

129 2D Impingement. Density contours, AUSM+…….…………………………… 106 

130 2D Impingement. Temperature contours, AUSM+…………………………… 106 

131 2D Impingement. Density contours, Low Speed AUSM+…………………… 107 

132 2D Impingement. Temperature contours, Low Speed AUSM+……………… 107 

133 3D Impingement at 30o, Pressure distribution on the wall, Roe, Experimental 108 

Steger-Warming, Experimental…………………………………………… 108 

135 3D Impingement at 30o, Pressure distribution on the wall, Van Leer,  

136 3D Impingement at 30o, Pressure distribution on the wall, 

137 3D Impingement at 30o, Pressure distribution on the wall 

139 3D Impingement at 30o, Pressure distribution on the wall, Low Speed AUSM+, 

140 Conical Flow, Pressure distribution, Roe, Steger-Warming, Van Leer  
 (121x61 grid)………………………………………………………………….110 

141 Conical Flow, Pressure distribution, Roe, AUSMV, AUSMDV  
 (121x61 grid)………………………………………………………………….110 

Experimental…………..……………………………………………… 108 

AUSMV, Experimental…………………………………………………… 108 

AUSMDV, Experimental………………………………………………… 109 

138 3D Impingement at 30o, Pressure distribution on the wall, 
AUSM+, Experimental…………………………………………………… 109 

 Experimental………………………………………………………………..109 

xv 



 

 
  

 

 

 

 

 
 

 

 

 
 

FIGURE Page 

142 Conical Flow, Pressure distribution, Roe, AUSM+, Low Speed AUSM+

 (121x61 grid)………………………………………………………………….110 

143 Conical Flow, Temperature distribution, Roe, Steger-Warming, Van Leer  
 (121x61 grid)………………………………………………………………….111 

144 Conical Flow, Temperature distribution, Roe, AUSMV, AUSMDV  
 (121x61 grid)………………………………………………………………….111 

145 Conical Flow, Temperature distribution, Roe, AUSM+, Low Speed AUSM+

 (121x61 grid)………………………………………………………………….111 

146 Conical Flow, Pressure distribution, Roe, Steger-Warming, Van Leer  
(81x41 grid)………………………………………………………………….  112 

147 Conical Flow, Pressure distribution, Roe, AUSMV, AUSMDV  

148 Conical Flow, Pressure distribution, Roe, AUSM+, Low Speed AUSM+ 

149 Conical Flow, Temperature distribution, Roe, Steger-Warming, Van Leer  

150 Conical Flow, Temperature distribution, Roe, AUSMV, AUSMDV  

151 Conical Flow, Temperature distribution, Roe, AUSM+, Low Speed AUSM+ 

(81x41 grid)…………………………………………………………………. 112 

(81x41 grid)…………………………………………………………………. 112 

(81x41 grid)…………………………………………………………………. 113 

(81x41 grid)…………………………………………………………………. 113 

(81x41 grid)…………………………………………………………………. 113 

152 NACA 0012 Airfoil, M=0.799, Pressure contours, Roe………………………  114 

153 NACA 0012 Airfoil, M=0.799, Pressure contours, Steger-Warming…………  114 

154 NACA 0012 Airfoil, M=0.799, Pressure contours, Van Leer…………………  114 

155 NACA 0012 Airfoil, M=0.799, Pressure contours, AUSMV…………………  114 

156 NACA 0012 Airfoil, M=0.799, Pressure contours, AUSMDV………………  115 

xvi 



 

 
 

 

 

157 

158 

159 

160 

161 

162 

163 

164 

165 

166 

167 

168 

169 

170 

171 

172 

173 

174 

175 

FIGURE Page 

NACA 0012 Airfoil, M=0.799, Pressure contours, AUSM+………………… 115 

NACA 0012 Airfoil, M=0.799, Pressure contours, Low Speed AUSM+..….… 115 

NACA 0012 Airfoil, M=0.799, Error contours, Roe, Steger-Warming……… 116 

NACA 0012 Airfoil, M=0.799, Error contours, Roe, Van Leer……………… 116 

NACA 0012 Airfoil, M=0.799, Error contours, Roe, AUSMV……………… 116 

NACA 0012 Airfoil, M=0.799, Error contours, Roe, AUSMDV………………117 

NACA 0012 Airfoil, M=0.799, Error contours, Roe, AUSM+………………… 117 

NACA 0012 Airfoil, M=0.799, Error contours, Roe, Low Speed AUSM+…… 117 

NACA 0012 Airfoil, M=1.2, Pressure contours, Roe…….…………………… 118 

NACA 0012 Airfoil, M=1.2, Pressure contours, Steger-Warming…………… 118 

NACA 0012 Airfoil, M=1.2, Pressure contours, Van Leer…….……………… 118 

NACA 0012 Airfoil, M=1.2, Pressure contours, AUSMV…………………… 118 

NACA 0012 Airfoil, M=1.2, Pressure contours, AUSMDV…..……………… 119 

NACA 0012 Airfoil, M=1.2, Pressure contours, AUSM+…..………………… 119 

NACA 0012 Airfoil, M=1.2, Pressure contours, Low Speed AUSM+……… 119 

NACA 0012 Airfoil, M=0.1, Pressure contours, Roe…….…………………… 120 

NACA 0012 Airfoil, M=0.1, Pressure contours, Low Speed AUSM+……… 120 

NACA 0012 Airfoil, M=0.1, Pressure Coefficient contours, Roe…………… 121 

NACA 0012 Airfoil, M=0.1, Pressure Coefficient contours, 
Low Speed AUSM+…………………………………………………………121 

xvii 



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE Page 

176 NACA 0012 Airfoil, M=0.01, Pressure Coefficient contours, Roe…………… 122 

177 NACA 0012 Airfoil, M=0.01, Pressure Coefficient contours, Low Speed  
 AUSM+…………………………………………………………………… 122 

xviii 



 

 

 
 

 

 

 

  

  

  

  

   

  

  

   

   

  

 

  

  

   

  

NOMENCLATURE 

Symbol 

a Speed of sound 

CFL Courant-Friedrichs-Lewy number 

cvs 
Species specific heat at constant volume 

cp Species specific heat at constant pressure 
s 
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CHAPTER I 

INTRODUCTION 

The long-term objective of the present endeavor is the development of a flow 

solver capable of accurate simulations of flow fields in the entire Mach number range. 

The need for a simulation tool optimized over a range of Mach numbers as wide as 

possible emerges in many applications, such as aero-propulsive systems, where high 

speed flow fields may contain re-circulation zones with very low speeds. High Mach 

numbers and high temperatures lead to chemical reactions and dissociation that can make 

the perfect gas model unsuitable. Furthermore, even in the case of totally subsonic flows, 

the incompressible approach can be precluded by the presence of chemical reactions and 

heat transfer, (which happens in simulations of combustion problems, for example). An 

additional motivation for a unified approach to the numerical formulation comes from the 

increasing demand of cost reduction and productivity of the “Research and 

Development” sector of the industry. 

The key issue in the present study was to analyze the discretization of the inviscid 

fluxes, which were the primary source for the non-linear behavior (shocks, contact 

discontinuities). Presently, several upwind schemes have been developed in the scientific 

literature. Most of them are usually categorized as either Flux Difference Splitting (FDS) 

or Flux Vector Splitting (FVS). The former normally uses an approximate solution of a 

local Riemann problem. The most successful and popular approximate Riemann solver is 
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2 

Roe’s method, which is the exact solution of a linearized Riemann problem[1]. It is able 

to capture any single stationary discontinuities with no numerical dissipation. 

Unfortunately non-physical solutions such as expansion shocks can be generated by this 

scheme, although they can be removed by using an “Entropy Fix[2]”. At strong 

expansions, however, the Roe scheme tends to diverge even if the entropy fix is applied. 

In addition, it is known that the Roe scheme has a more serious problem, the so called 

“carbuncle phenomenon”, which is a numerical instability that arises when capturing 

strong shock waves in multidimensional computations. Recently Quirk[3] has reported 

that even exact Riemann solvers suffer from this problem. Roe’s approximate Riemann 

solver has consistency, and this type of approximate Riemann solvers are called 

“Godunov-type” schemes[4]. Another Godunov-type scheme is the HLLE scheme, which 

simplifies the Riemann problem by expressing the solution with only two waves. 

Einfeldt[5, 6] has shown that this scheme satisfies the positivity and entropy conditions if 

some appropriate velocities are chosen for these two waves. However, the HLLE scheme 

lacks the information on contact discontinuities, so it is too dissipative to be applied to 

the Navier-Stokes equations, although the numerical dissipation is strong enough to 

remove the carbuncle phenomenon[3]. The HLLE scheme can be modified to include the 

information on the contact discontinuity under the positivity condition[7], however, that 

scheme again suffers from carbuncle phenomena. 

Other way of introducing upwinding is FVS, in which the flux function is divided 

into positive and negative parts, which give the numerical flux at a cell interface. The 

idea is to reproduce the “correct” direction of propagation of information for a hyperbolic 

system of partial differential equations. Steger and Warming[8] made use of similarity 
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transformations and the homogeneity property of the Euler equations, splitting the flux 

depending on the sign of the eigenvalues of the flux Jacobian matrix. However, this 

splitting showed errors around the sonic point, and Van Leer[9] proposed an alternative 

splitting, which gives noticeably better results and produces steady shock profiles. 

Hanel[10] further modified Van Leer’s FVS so as to preserve total enthalpy for the steady 

state solution. These FVS schemes, however, share a serious disadvantage: large 

dissipation on contact discontinuities and shear layers. 

A more recent effort to develop less-dissipative upwind schemes focuses on 

reducing the surplus dissipation of the FVS by introducing the flavor of FDS into FVS 

schemes. Liou and Steffen proposed a promising scheme named Advection Upstream 

Splitting Method (AUSM)[11, 12], in which the cell-face advection Mach number is 

appropriately defined to determine the upwind extrapolation for the convective quantities. 

The AUSM scheme can capture a stationary contact discontinuity with no numerical 

dissipation, and is robust enough to calculate strong shock waves. However, it creates a 

slight numerical overshoot immediately behind the shock. Other variants, termed 

AUSMD and AUSMV, have been developed by Wada and Liou[13] to achieve the 

following features: accurate resolution of stationary and moving shock and contact 

discontinuities , and positivity preserving of pressure and density[14]. The AUSMDV, a 

blending of AUSM, flux-difference and flux-vector splittings, improves the robustness of 

AUSM in dealing with the collision of strong shocks. However, the “carbuncle 

phenomenon” appears, albeit much weaker than the one resulting from the Roe scheme, 

which requires a fix. The AUSM+[15] is designed to be a further improvement of AUSM, 

and has the following features in addition to the earlier features of the AUSM scheme: 
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improvement in accuracy over its predecessor (AUSM) and other popular schemes, 

simplicity, and easy generalization to other conservation laws. The Low Speed AUSM+ 

scheme[16] proposes the concept of “numerical speed of sound” in the construction of 

the numerical flux. It was shown that this variable was responsible for the accurate 

resolution of discontinuities, such as contacts and shocks. As a result, the numerical 

dissipation for low speed flows is scaled with the local fluid speed, rather than the sound 

speed. Hence, accuracy is enhanced, more correct solutions at low speed are recovered, 

and the convergence rate is improved.  

The present work constitutes a preliminary step necessary to build the basis for 

future developments. A particular subject on which the attention has been focused is the 

comparative investigation of eight different algorithms for the discretization of the 

inviscid fluxes in the Euler equations (Roe, Steger-Warming, Van Leer, AUSMD, 

AUSMV, AUSMDV, AUSM+ and Low Speed AUSM+). 

In the following, Chapter II reviews briefly the governing equations for the 

general case of a flow field featuring mixtures of gases in chemical non-equilibrium. 

Moreover, the chapter introduces curvilinear coordinate transformations of the above 

equations and viscous fluxes. The finite volume approach and eigenvalues and 

eigenvectors are also briefly discussed. 

The thermodynamic models, caloric equation of state and the treatment of finite 

rate chemistry are presented in Chapter III. A brief introduction to transport properties is 

also discussed. Chapter IV deals with the Loci framework, in which the chemically 

reacting flow solver was developed.  
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The details of the spatial and temporal discretizations of the governing equations 

by means of the finite volume approach are presented in Chapter V, which also contains a 

brief description of the extrapolation of the primitive variables to the faces. Solution 

techniques for the (large) resulting linear system of algebraic equations are also 

presented. 

Chapter VI discusses the different flux-splitting techniques: the Roe flux-

difference splitting[1], Van Leer flux-vector splitting[9], Steger Warming flux-vector 

splitting[8], and the AUSM family of schemes[13, 15, 16]. 

An extensive set of steady and unsteady numerical simulations are analyzed in 

Chapter VII. Different test cases encompassing a wide variety of flow conditions, both 

viscous and inviscid, ranging from the low subsonic to the hypersonic regimes, are 

utilized to evaluate and compare accuracy, efficiency, and robustness of the eight flux-

splitting schemes. 

Finally Chapter VIII provides a summary of the work done, and some conclusions 

are drawn, focusing in particular on the advantages and the disadvantages of the various 

schemes. Future objectives of this research are also addressed at that point. 



 

 

 

 
 

 

   

 
 

  

 

  

  

CHAPTER II 

GOVERNING EQUATIONS 

This chapter describes the equations that govern the three-dimensional flow of an 

inviscid as well as a viscous, chemically reacting gas. The way in which a fluid interacts 

with its environment may be described by a system of partial differential equations, 

which represent the mathematical formulations of the physical laws of conservation of 

mass, momentum and energy. The equations used in this chapter are presented in [17]. 

For mathematical closure, they must be supplemented by the thermal and caloric 

equations of state. The equations will be first introduced in Cartesian coordinates for 

clarity, then extended to general curvilinear coordinates, which are used to describe 

problems with complicated boundaries, and finally written using a control volume 

approach, suitable for numerical discretization. 

2.1 Equations in Cartesian Coordinates 

The governing equations are an extension of the Navier-Stokes equations for a 

perfect gas, the main difference being that a mass conservation statement for each species 

must be included. That is, for a gas mixture containing NS distinct species, it is necessary 

to write NS+4 partial differential equations (NS continuity equations, three momentum 

equations and one energy equation). The production/disappearance of each chemical 

species is governed by a source term and will be discussed in detail later. 
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, H = 

ρ 2 +w p 
ρ wh 0 

Some assumptions are made in order to reduce the complexity of the governing 

equations namely, no body forces and Newtonian fluid (shear stress proportional to 

deformation). 

With the above assumptions in mind, the governing equations for a fluid flow in 

chemical non-equilibrium may be written in strong conservation law form for a three 

dimensional, time-dependent, general curvilinear coordinate system, as follows  

∂Q ∂(F - F ) ∂(G - G ) ∂(H - H )v v v+ + + = W , (2.1)
∂t ∂x ∂y ∂z 

Where the dependent variable vector, Q , and the flux vectors F , G , and H  are defined 

as 

ρ ρ ρ� �� �� �u v 
1 1 1
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�� 
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� 
� 
� 
� 
�� 

ρ ρ ρu v2 2 2 

� � � 
ρ ρ ρu vNS NS NSQ = F = ,2ρ ρ ρ+u u p uv 

2ρ ρ ρ +v uv v p 
ρ ρ ρw uw vw 
ρ ρ ρuh vhe 0 0 0 

Fv, Gv and Hv are the viscous flux vectors and are discussed in [18]. 
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7 

In the above, W is the vector of source terms, NS represents the number of 

species present in the fluid, ρs is the sth species density, ρ is the mixture density, h0 is the 

total enthalpy, e0 is the total energy per unit mass, P is the pressure, and u, v and w are the 

velocity components in the x, y and z directions, respectively. The total energy per unit 

volume, ρe0 is defined as 

ρ q 2 

ρ e 0 = ρ e + , (2.3)
2 

where 

q2 =u2 + v2 + w2 
. (2.4) 

The consistency of species conservation with global conservation results in the following 

property for the � .s 

NS 

� � s = 0  (2.5) 
s=1 

More details on viscous fluxes will be presented later in this chapter and also in chapter 

3. 

The pressure is calculated from Dalton’s Law, which states that the pressure of a 

mixture of gases is the sum of the partial pressures. Each species partial pressure is 

obtained from the ideal gas law. This is the thermal equation of state given by 

NS NS 

p = � p = � ρ R T , (2.6)s s s 
s=1 s=1 

where Rs is the species gas constant and ρs is the species density and T is the temperature. 

The species gas constant is computed by the equation 

R̂R = , (2.7)s Μ s 
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where Ms is the species molecular mass and R̂  is the universal gas constant. A caloric 

equation of state is also needed to close the mathematical problem, and will be discussed 

in more detail in chapter 3. 

2.2 Curvilinear Coordinate Transformation 

Equation 2.1 was written in Cartesian coordinates. This form of the equations is 

appropriate for problems where a uniform, rectangular grid can be used to model the 

physical geometry. In order to compute flows involving arbitrary shapes and the complex 

boundaries associated with these shapes, it is necessary to transform equation (2.1) to a 

general body-fitted curvilinear coordinate system (ξ,η,ζ ). This is accomplished using the 

transformation equations listed below (See [19] for a derivation of this transformation): 

ξ = ξ(x, y, z), 

η = η(x, y, z), (2.8) 

ζ = ζ(x, y, z), 

τ = t. 

After some algebra, equation 2.1 becomes 

∂Q̂ ∂(F̂ - F̂ ) ∂(Ĝ - Ĝ 
v ) ∂(Ĥ - Ĥ )v v+ + + = Ŵ , (2.9)

∂τ ∂ξ ∂η ∂ς 

where Q̂ is the dependent variable factor, F̂ , Ĝ , and Q̂  are the inviscid flux vectors and 

F̂ , Ĝ  and Ĥ  are the viscous flux vectors. The dependent variable vector and fluxv v v 

vectors are now defined as follows: 

ˆ ˆQ = JQ , W = JW , 
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~ ~ ~ F̂ = ξ F + ξ G + ξ H , (2.10)x y z 

~ ~ ~ F̂ = ξ F + ξ G + ξ H .v x v y v z v 

Performing the necessary algebra, F̂  becomes 

~

(2.11)

~where the  contravariant velocity, u  (normal to the ξ surface), is defined as: 

~ ~ ~ ~ u = ξ u + ξ v + ξ w, (2.12)x y z 

Similarly the fluxes in the other directions can be developed using η, ζ in lieu of ξ. The 

~ ~ ~ normalized metrics ξ ,ξ ,ξ in the equation (2.12) are given by x y z 

~ ξ 
 (2.13)

The Jacobian of the inverse transformation, J, and the metric quantities ξ , ξ , ξ  can bex y z 

evaluated from the transformations, and are presented in detail in [20]. 

2.3 Viscous Fluxes 

The general expression for the stress tensor of a Newtonian fluid contains the sum 

of the normal and shear stress components: 

σ = σ I +τ , (2.14)n 
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where I is the identity matrix, τ  is the shear stress tensor, and σ is a scalar given by the n 

following expression: 

2 ∂u ∂v ∂w� �
∇ ⋅ 

In the above, µ is the dynamic viscosity, and λ is the second coefficient of viscosity. 

Equation ( 2.15) is a function of the hydrostatic pressure p, the divergence of the velocity, 

�
�
� 

�
�
� 

σ λ= − (2.15)+ + + +µp ��
� 

��
� 

.n 3 ∂x ∂y ∂z 

2λand the bulk viscosity ��
� 

�
�
�

. Using Stoke’s hypothesis, the bulk viscosity is set to + µ
3 

zero (this also gives a relation for λ as a function of the dynamic viscosity µ). This 

assumption is acceptable as long as rotational equilibrium can be assumed, since it can be 

shown that the bulk viscosity is proportional to the relaxation time of the rotation 

energy[21]. A generic element of the shear tensor can be expressed as follows: 

∂u ∂v 2 ∂u ∂v ∂w� 
�
� 

= µ� 

whereδ xy is the Kronecker delta, and similar expressions hold for the other terms.  

The heat flux vector due to conduction in a gas in thermal equilibrium can be 

calculated by means of Fourier’s law: 

q = −k∇T , (2.17) 

where k is the coefficient of thermal conductivity [22]. 

2.4 Finite Volume Approach 

The numerical solution of the fluid equations presented in the earlier sections is 

obtained by applying the finite volume method. The integral form of the equations is used 

for this purpose. This method is selected because it can guarantee that numerical 

�
��
� 

� �τ µδ− (2.16)+ + +��
� 

��
� 

,xy xy∂y ∂x 3 ∂x ∂y ∂z 
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truncation error does not violate conservation properties. Before introducing the finite 

volume formulation, it is helpful to transform the mass, momentum and energy equations 

into a form that is more readily usable for the numerical discretization. Green’s theorem 

and other identities are used and the equations are recast in integral form, for an arbitrary 

volume(cell) c, as follows 

d ~ ~ 
�� QdV +� (F − Fv )dS = �WdV . (2.18)

dt Ω ∂Ω Ωc c c 

�In the above equation, Ω represents the control volume, ∂Ω is its surface. Q, W  are 

~ unchanged from equation (2.2). F  represents F̂ , Ĝ  or Ĥ , depending on the orientation 

of ∂Ω. Similar is the case for Fv. 

2.5 Eigenvalues and Eigenvectors 

The Jacobian matrix and the eigensystem of the inviscid fluxes are important for 

the propagation of information and for the derivation of a scheme. From Cox [23] and 

Cinnella [22], the eigenvalues of the inviscid flux Jacobians for the coordinate ξ are 

λi ~ = J ∇ξ u , i = 1,......., NS + 2 

NS +3 ~λ = J ∇ξ (u + a) , (2.19) 

NS +4 ~λ = J ∇ξ (u − a) , 

where a is frozen sound speed, to be defined in chapter 3. The eigenvalues for the 

coordinates η and ζ can be derived similarly. 

Notice the multiplicity of the first eigenvalue. For a three-dimensional, 

compressible, perfect-gas formulation, there are five eigenvalues with the first eigenvalue 
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having a multiplicity of three. For the finite-rate formulation, the multiplicity of the first 

eigenvalue is NS+2. 

The right and left eigenvectors of the inviscid flux Jacobians are also obtained by 

following [23] and [22]. The matrix R, whose columns are the right eigenvectors, is given 

by 

 (2.20) 

he pressure derivatives are listed in the Appendix of 

~ [20]. Also, l  and m ~ are unit vectors orthogonal to each other and perpendicular to ∇ξ . 

The matrix L, whose rows are the left eigenvectors, is given by 
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�

, (2.21)

~γ −1 1 ∂pwhere φ = and ψ = . i γ~ −1 ∂ρ i 
2a 
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CHAPTER III 

THERMOCHEMICAL AND TRANSPORT MODELS 

In a high-temperature environment, the modeling of thermodynamic and chemical 

processes becomes a major concern. In most cases, the gas can be considered as a 

chemically reacting mixture of thermally perfect components. In this chapter the 

thermodynamic and chemical models used to describe fluid flows in chemical non-

equilibrium are discussed first, followed by transport properties. 

3.1 Thermodynamic Models 

From the theory of thermodynamics, four types of fluid flows may be identified 

based on the fluid temperature and the molecular interactions within the fluid. According 

to Anderson[24] the four types are defined as follows: 

1. Calorically Perfect Gas: by definition this gas has constant specific heats and thus 

a constant ratio of specific heats γ= CP/CV (γ= 1.4 for air). 

2. Thermally Perfect Gas: a thermally perfect gas is defined as one in which the 

specific heats are functions of temperature only. Consequently, γ varies with 

temperature only. 

3. Mixture of thermally perfect gases: components are thermally perfect, and the 

mixture is thermally perfect if no chemistry is present. The mixture is not 
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thermally perfect in the presence of chemical reactions, and the enthalpy and energy 

of the mixture are functions of temperature and flow composition. 

4. “Real” Gas: In this case, intermolecular forces must be included. A “real” gas 

occurs in the presence of very high pressures or low temperatures. The thermal 

equation of state (2.6) is no longer valid. The mixture enthalpy and energy are 

now functions of temperature and a second state variable (e.g. density or 

pressure). 

A real gas is usually not considered to be chemically reacting. It should be noted that 

sometimes in the scientific literature the term “real gas” has been used to denote mixtures 

of chemically reacting, thermally perfect gases, in most cases with the added assumption 

of local chemical equilibrium[23]. In this study, the fluid will be considered to be a 

mixture of thermally perfect gases (see 3 above). 

3.2 Caloric Equation of State 

The thermal equation of state (2.4) relates pressure to temperature, T. The 

governing equations introduced in chapter 2 are expressed in terms of conserved 

variables, such as momentum and energy, and do not directly describe temperature, 

which is determined from the internal energy of the gas. The governing equations remain 

valid for flows where high temperatures exist, but it becomes necessary to modify the 

caloric equation of state from the simple, calorically perfect, low temperature model. In 

many cases, high temperatures cause the onset of chemical reactions, which lead to the 

dissociation of molecules and ionization of neutral species. For a gas consisting of a 

15 
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mixture of species, the caloric equation of state is computed by writing the mixture 

internal energy, e, introduced in equation (2.2), as the sum of the species energies, as in  

NS 

eint ernal = � ρ ses . (3.1) 
s=1 

For ideal gases, the relationship between internal energy and temperature is linear. 

However, for reacting gases, the molecules in addition to having transitional movement 

also have rotational and vibrational modes. At relatively large temperatures these 

additional effects lead to a non-linear relationship between internal energy and 

temperature. The general form of the equation for species energy is given by the equation 

T 

e s = c (τ ) d τ + h f , (3.2)v� s s 

Tref 

where h fs is the species heat of formation, or the energy required to create that species 

at Tref, and cv is the specific heat at constant volume for species s. If the translational, 
s 

rotational and vibrational components are assumed to be in thermodynamic equilibrium, 

and the vibrational mode is modeled using a simple harmonic oscillator[21], then the 

species energy is given as  

NVTs Rs v,ses = ns RsT + � /T , (3.3)v ,s 
+ hfs 

v=1 e −1 

where NVTs is the number of the vibrational modes, v,s is the characteristic vibrational 

temperature(s), and ns is a constant that specifies the translational and rotational 

contributions to internal energy. Equation (2.3), with equations (3.1) and (3.3), is the 

caloric equation of state. 
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3.3 Speed of Sound 

Another thermodynamic property that is of great interest in fluid flow problems is 

the speed of sound, which is the speed at which disturbances are propagated throughout 

the flow field. For a chemically reacting flow two limiting cases arise for the calculation 

of the speed of sound. The first one occurs when the flow is assumed to be in local 

equilibrium; the second one is when the flow is assumed to be frozen, i.e. no chemical 

reactions are taking place. For non-equilibrium flows, the frozen speed of sound plays a 

dominant role in the governing equations, and is needed for the calculations. The frozen 

speed of sound is defined as 

∂p� 
�
� 

= � 

where s is the entropy per unit mass. Using the Laws of Thermodynamics and the thermal 

equation of state, after some algebra, the final form for the frozen speed of sound is found 

to be [25] 

�
��
� 

2 (3.4)a ,
∂ρ s ,ρ / ρi 

�
��
� 

p 
ρ 
�
��
� 

, (3.5)2 γ~ a = 

~where γ  is the mixture ratio of frozen specific heats. 

3.4 Finite rate chemistry 

At this point, the inviscid governing equations are fully defined, once the species 

production rates, ω� , are specified for a general chemistry model. The generic equation s 

for a chemical reaction (assuming that NR reactions are occurring simultaneously) is 

given by 
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NS NS 

�ν ' m,r X m ⇔ �ν '' m,r X m  r =1,2,…,NR, (3.6) 
m=1 m=1 

Where Xm is a chemical species in the fluid, v'm,r are the stoichiometric coefficients for 

the reactants and v",m,r are the ones for the products (both related to species m in reaction 

r). From stoichiometry, the rate of change for a given species can be defined as[20] 

' " 
NR 

'' 'ω�i = Mi �(vi,r −vi,r 
r=1 

) K 
� 
� 
�
� 

f ,r 

�v vm,r m,rNS NSρ ρ∏ 
m=1 � 

−Kb,r ∏ 
m=1 

� 
�
� 

m m 
, (3.7)M M �m m 

where Kf,r is the forward reaction rate for reaction r and Kb,r is the backward reaction rate. 

The forward reaction rate is usually described, for a given reaction r, by an Arrhenius-like 

equation 

η f ,r − f ,r / TK f ,r = C f ,rT e . (3.8) 

The coefficients Cf, ηf and f have been obtained experimentally for many different 

reactions over a wide range of temperatures. Similarly, the backward rate reaction can be 

written as: 

ηb ,r − b ,r /TK = C T eb,r b,r . (3.9) 

Both rates depend on accurate experimental data in order to provide valid results. The 

equilibrium rate constant, Kc,r can be used in lieu of the backward rate reaction, and is 

related to the two previous quantities as follows  

K f ,rK c ,r = 
K . (3.10) 

b ,r 

Using the above equations, equation (3.7) can be rewritten as: 



  

        
 

 −e 
− v,s 

T 
�
�
�
� 
−(1+n )ln(T)s + 

�
�
�
� 

hf s0 � s 
NVTs �

�
�
� 
−
�
��
� 

Ωs (T) 1+ + � s= ns ��
�

, (3.14)RsT Rs 

�
�
�
� 

ln 1 
v=1 
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� �ρ 
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vm,r m,rNS NS 

∏� 
�
� 

NR 1 ∏'' 'ω� i = Mi �(vi,r −vi,r )K m − m 
. (3.11)f ,r M K Mr=1 m=1 m � c,r m=1 m � 
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The equilibrium rate constant, like the forward and backward rates, can be represented in 

an Arrhenius form using experimental data. Another option for defining the equilibrium 

rate, (the one used in this study,) is based on the minimization of Gibbs free energy at 

constant pressure and internal energy. This method is not dependent on experimental 

data, but on reference thermodynamic values, which are easily obtained. The method 

does depend on the thermodynamic model used, and will be affected by any 

shortcomings or assumptions included in it. The expression for the thermodynamic Kc,r 

presented here are borrowed from the wok of Carey Cox[23]. The equation for Kc,r is 

given as 

NS " ' 
s=1

(vs ,r −vs ,r ) NSpref � " ' �Kc,r = �� exp�− �Ωs (T )(vs,r − vs ,r )� . (3.12)RT � s=1 � 

In the previous equation the function Ωs(T) is determined by the equation 

(τ)dτ� 
�
� 

ps 

where c p is the specific heat at constant pressure for species s. 
s 

In general the final form of this equation depends on the particular thermodynamic model 

used. For the model stated in equation (3.3), Ωs(T) is given as 

� 
�
� 

1 T T c 
(τ)dτ −�Tref 

T�T 
Ωs −T(sref )(T) = +hfs 

c (3.13)ps s ,τRsT ref 
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NVTs / Trefv,s− + − − −( ) R (1 s ) ln(Tref ) ln(1 )� e v ,ss = s n (3.1ref ./ Trefs s s (e )Tref 
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where s 0 is a constant of integration that is derived from measured thermodynamic s 

properties. The value of s 0   for this thermodynamic model is given as s 

where sref is the measured entropy at reference temperature Tref and pressure pref. 

3.5 Transport Properties 

The dynamic viscosity and thermal conductivity of a mixture of gases can be 

obtained by applying particular mixture rules, like Wilke’s rule[24], to the values 

obtained for a single species. A popular way to obtain the species dynamic viscosity is by 

means of Sutherland’s formula[24], which relates µi to the temperature: 

T 3 / 2 

µ i = c1 , (3.16)
T + c2 

where c1 and c2 are constants for a given gas. A similar formula can be used for ki. At low 

temperatures, or in general for a frozen flow condition, the mixture thermal conductivity 

can be related to the viscosity by the following expression: 

c µ
k = p , (3.17)

Pr 

where the Prandtl number, P , is assumed constant. When the accuracy of the abover 

procedures is not sufficient, more complex calculations of the transport coefficients can 

be made by assuming a model for the intermolecular forces and applying kinetic theory 

[21]. For polyatomic gases the thermal conductivity can be evaluated by taking into 

account the contributions due to the different energy modes. 
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The diffusion of molecules of species i in a mixture can be modeled, with good 

approximation, using Fick’s Law, which yields 

�
��
� 

ρ i ���
� 

, i=1,2,…..,NS, (3.18)ρ iV = −ρDi∇Di ρ 

where Di is the multi-component diffusion coefficient, related to the binary diffusion 

coefficients Dij (for the diffusion of species i into species j) by means of the approximate 

expression, 

ρ i M1− 
ρ M iDi = , i=1,2,….NS. (3.19)

NS ρ j M 1 
� 
j=1 ρ M j Dij 

where M is the molecular mass of the mixture. 

Since the diffusion velocities obtained by equation (3.18) must satisfy the 

following constraint (necessary for consistency with global mass conservation): 

NS 

� ρ iVDi = 0 , (3.20) 
i=1 

the diffusion coefficients cannot be prescribed independently of each other. A simple 

approximate approach that satisfies equation (3.20) is the use in equation (3.18) of only 

one global diffusion coefficient, given by: 

Le µD = , (3.21)
ρ Pr 

where the Lewis number, Le, is assumed constant in most applications. 

https://i=1,2,�.NS


 

 

 

 
 

 

  

 

  

 
 

  

 

 

 

 

CHAPTER IV 

LOCI: A DEDUCTIVE FRAMEWORK FOR GRAPH-BASED ALGORITHMS 

This chapter briefly describes the Loci framework within which the flow 

simulation code was developed. The material presented in this chapter is obtained from 

[17] and [26]. The Loci system was used to develop a chemically reacting compressible 

flow solver for simulating high speed and combustion flow problems (The code is called 

Chem). As part of the present effort, various flux-splitting methods were implemented in 

this code and tested for some standard test cases. The flux algorithms and the results will 

be presented in the next chapters. 

4.1 The Loci Framework 

The Loci system is an application framework that seeks to reduce the complexity 

of assembling large-scale finite-difference, finite-volume or finite-element applications, 

although it could be applied to many algorithms that are described with respect to a 

connectivity network or graph. The design of the Loci system recognizes that a 

significant portion of the complexity (and bugs) associated with developing large-scale 

computational field simulations derives from errors in control and data movement. Many 

of these problems are subtle, and result from gradual evolution of the application over 

time, giving rise to inconsistencies between various application components. The Loci 

framework addresses these problems by automatically generating he data and control 
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movement operations of an application from component specifications, while 

guaranteeing a level of consistency between the components. 

4.2 Data Models 

The most fundamental concept in the Loci library is the entity. Entities are places 

where values can be stored. In Loci, these entities are given integer identifiers, and sets of 

entities are represented by an entitySet. The entitySet is used in Loci for control and 

allocation. These sets provide an efficient interface for sets of integer identifiers. In the 

Loci system, computational graphs are represented by collection of entities and collection 

of maps or connectivity lists. For example: the entities in a finite-volume calculation may 

represent faces, cells, and nodes of the mesh. Maps may connect faces to their left and 

right cells, or cells to their nodes, and so forth. Values are bound to the entities via the 

store construct, which provides an injective mapping from entities to values. The 

parameter construct provides a singleton interface to value, where a set of entities is 

mapped to a single value. Relationships between entities are provided by the map 

construct. The map construct can be composed with the store construct to provide an 

abstraction of indirection. The constraint construct, used to constrain computations to 

some subset of entities, provides an identity mapping over a given set of entities. These 

constructs are illustrated in figure 1. 
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store parameter map  constraint  
maps entities to maps many entities maps entities to specifies a set of 
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These basic constructs are used to formulate a database of facts that describe the 

problem. The database is the fundamental starting point for logic programming systems. 

The definition of the problem to be solved begins as a collection of facts stored in a 

database, while the result of rule applications is the creation of new facts. Thus the 

database becomes a center of communication for programs derived from the 

specifications. It should be noted that, although the term database might be associated 

with files stored on disk, here it refers to a model of data and associated data structures. 

Each fact provides information about some subset of entities, such as positions of nodes, 

or maps relating cells to nodes. Each of these facts is given an identifier that consists of a 

name, an iteration label, and an iteration offset. The iteration label corresponds to the 

nested iteration levels of a loop. 

4.3 Rule Specifications 

In addition to a database of facts that includes the problem specification, a 

database of rules describes transformations that can be used to introduce new facts into 

the database. These rules correspond to fundamental computations involved in solution 

algorithms, such as rules for evaluating areas of faces, or for solving equations of state. 

These rules are specified using text strings, called rule signatures, which describe the 
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input stores, parameters, and maps required to perform a computation, plus the list of 

stores or parameters that it generates. Rule signatures are of the form head ←  body, 

where head consists of a list of variables that are generated by the application of the rule, 

while the body contains a list of variables that are accessed while performing the 

computation. 

4.3.1 Rule Constraints 

Any rule that is specified can be constrained to only compute values for some 

subset of entities. In addition to constraining rule applications, constraints also provide 

assertion semantics. A constraint implies that a rule must provide for every entity in the 

constraint. In many cases this can be used to automatically detect inconsistencies caused 

by incomplete information. For example, an improperly specified boundary condition 

yields a rule that cannot satisfy its constraint, due to insufficient information. Thus, if a 

boundary condition is applied to an interior node of the domain, then an error would 

result, caused by a conflict between the boundary condition and stencil specifications. 

4.3.2 Point-wise Rules 

The most common rule in finite-difference or finite-element applications is the 

point-wise rule. The point-wise rule represents an entity-by-entity computation of values 

that are placed in the stores listed in its head. The computation specified in the rule is 

referentially transparent and local. The semantics of the point-wise rule application 

requires that an output variable can only define one value per entity (this is a variation of 

the single assignment semantic). If an ambiguous specification produces two rules that 
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compute values for the same entity, it is flagged as an error during scheduling. Recursion 

is allowed in point-wise rules, provided that the “single value per entity” criterion is not 

violated. Thus, recursion in point-wise rules is bounded by the number of entities in the 

simulation mesh. 

4.3.3 Singleton Rules 

A rule specification that consists exclusively of parameters for inputs and outputs 

is a singleton rule. Singleton rules specify a single computation that provides value for 

the parameters specified in its head. Like point-wise rules, these rules cannot violate the 

uniqueness of parameter values. Any conflicts of value assignment are reported as 

ambiguity errors during scheduling. 

4.3.4 Reduction Rules 

A reduction rule is composed of three components: a function that is applied to a 

set of values, an associative and commutative operator ⊕ that is defined on the type 

returned by the above mentioned function, and an identity element for operator ⊕, e. 

Thus a reduction, r, over values, {vi | i 1, N }[ ] , using function f and operator ⊕ is 

defined as 

f ( )v ⊕ f ( )⊕ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⊕ f ( )v ⊕ ⋅⋅ ⋅ ⋅ ⊕ f ( )  r = v v1 2 i N 

When the reduction is evaluated using a left or right precedence rule, then a 

sequential evaluation is derived; however, the associative property of ⊕ allows for 

different parallel evaluation orders. For example, the set of values can be partitioned into 

subsets that can be evaluated concurrently, as in 



 

 

 

 

  

   

  

    

 

  

    

 

 

 

 

    

 

    

 

27 

{ ( )  ( )  ( )} { ( ) ( ) ( )}r = e ⊕ f v ⊕ f v ⊕ ⋅⋅ ⋅ ⋅ ⋅ ⋅ ⊕ f v ⊕ e ⊕ f v ⊕ f v ⊕ ⋅⋅ ⋅ ⋅ ⋅ ⋅ ⊕ f v .1 2 p p+1 p+2 N 

Parallel partitioning of reduction operations can be expressed when given three 

basic computational methods, identified as unit, apply, and join, as listed in table 1. The 

unit rule initializes a reduction variable to the identity element, the apply rule 

“accumulates” the partial results. The algorithm for partitioning this reduction operation 

among parallel processors is accomplished by creating a copy of the reduction variable 

on each processor participating in the reduction. Each reduction variable is initialized to 

the identity, and then followed by the application of all apply rules that are in that 

processor’s partition. Finally, the partial results for each processor are reduced to the final 

result using join operations. 

Rule Type Function Rule Signature 
Unit Rule 

Apply Rule 

Join Operation 

0r = e 
j+1 j ⊕r f(vj)= ri 
m+n m nr = r ⊕ r

 r ←CONSTRAINT(v), UNIT(e) 

r ← r, v, APPLY( ⊕ ) 

   Derived (No signature) 

4.3.5 Iteration Rules 

Iteration is defined by way of three types of rule specifications: build rules that 

construct the iteration, advance rules that advance the iteration, and collapse rules that 

terminate the iteration. This specification follows an analogy to the inductive proof: build 

rules are analogous to an inductive base, while advance rules are analogous to an 

inductive hypothesis. For example, an iteration where a variable named q is iterated to a 

converged solution may be described by the following three rules: 1) a build rule of the 

form q{n = 0}← ic , 2) an advance rule similar to q{n +1}← q{ }n , dq{ }n , and 3) an 

iteration collapse rule solution ← q{ }n ,CONDITION(converged{ }n ). Iteration in this 
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example proceeds by initializing the first iteration, q{n=0}, using the build rule (initial 

conditions). Next, termination of iteration begins with checking for the convergence: if 

the test succeeds then the collapse rule terminates the iteration. Finally, the iteration 

advances in time by the repeated application of the advance rule. Note that the 

completion of these rules may require invoking other rules specified in the rule database. 

In this case, rules that compute converged{n} and dq{n} will also need to be scheduled. 

To support iteration, variables that exist in lower levels of the iteration hierarchy are 

automatically promoted up the iteration hierarchy. Thus a variable that is computed in 

iteration {n} is communicated to iteration {n,it} automatically. In addition, rules that are 

specified completely at the stationary level will be promoted to any level of the hierarchy. 

This allows for the specification of relations that are iteration independent (for example, 

n n n np = ρRT implies p = ρ R T ). 

4.4 Scheduling 

In Loci, the mesh, boundary conditions, initial conditions, and other modeling 

information is stored in a database of facts using stores, parameters, maps and constraints, 

as already discussed. Scheduling occurs in three steps. The first step involves creating a 

dependency graph that connects the variables stored in the fact database to the goal, using 

the rules in the rule database. This step involves iteratively exploring the space of known 

variables and determining which rules can apply, which may in turn generate new 

variables. Once this graph is produced, it is pruned to only those rules that generate the 

requested goal, sorted into iteration hierarchies, and reduced to a directed acyclic graph 

(DAG) by clumping recursive dependency loops. The next step is an existential 
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deduction phase, which determines what attributes can be assigned to which entities. For 

example, the rule p ← ρ , R,T specifies that entities that have attributes ρ, R, and T also 

have the attribute p. The existential deduction begins with the given facts, and follows the 

DAG topological order, computing the entities associated with each attribute until the 

goal is reached. During this existential deduction, recursive loops are iteratively 

evaluated until all possible attributes are generated. The result of the existential deduction 

phase is a concurrent schedule that obtains the requested goal. However, since it is 

possible that some attributes may exist for entities that do not contribute to the requested 

goal, a final optimization step prunes this schedule. The pruning operation starts from the 

goal and works backwards through the DAG, until the schedule only computes those 

values that are needed to provide the requested goal. 

The scheduling process automatically produces a concurrent schedule. Only 

partitioning of entities to processors is needed to generate a schedule for parallel 

processors (on distributed memory architectures, a communication schedule would also 

need to be deduced). Thus, the numerical model does not have any references to parallel 

execution: this derives naturally from the specification. 

4.5 Implementation 

The fundamental design strategy in the Loci system has been the use of shallow 

inheritance hierarchies, combined with templated containers and composers. As already 

mentioned, the most basic data type for the Loci system is the entitySet, a value class that 

describes arbitrary sets of entities, and provides fast intersection, union, and complement 

operations. These entity sets are necessary for the existential deduction phase of 
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scheduling, and used for controlling and allocating functions. The data models described 

in section 4.2 are implemented as templated container classes. These containers provide 

features that facilitate their storage in the fact database and their automatic binding in rule 

invocations. The rules described in section 4.3 are implemented via a shallow inheritance 

hierarchy. Users create new rules by providing a constructor, which creates the rule 

specification, and a virtual member function called compute, which performs the 

specified computation. In Loci, a value class sequence is used to represent loop control 

structures. Sequences are automatically generated by the scheduling process, and may 

describe both sequential and parallel looping structures. The template function do loop 

provides a fast interface to the sequence control information. The combination of the two 

(compute and do loop), transfers the specific details of loop optimization to the Loci 

framework. Loci provides a register rule template that adds rules to the global rule 

database when constructed. This allows rules in separately compiled modules to be 

automatically added to the global rule database. More details regarding the rules and their 

functions are available in [17] and [26]. 



 

 
 

   

   

 
 

       
 

  

CHAPTER V 

NUMERICAL FORMULATION 

The governing equations presented in Chapter II are a system of hyperbolic partial 

differential equations. In general, there is no closed form analytical solution to these 

equations, which makes a numerical solution the only practical alternative. Upwind 

methods have become very widely used in the numerical solution of fluid dynamic 

equations for both perfect and chemically reacting gases. Flux-Vector and Flux-

Difference Splitting are two of the most popular procedures for discretizing the inviscid 

fluxes in a way that best models the physics of the problem. This chapter describes the 

numerical formulation employed in this study. Details on the various flux-splitting 

methods that were implemented as part of the present efforts will be provided in Chapter 

VI. 

5.1 Spatial Discretization 

The numerical integration of equation (2.14) in Chapter 2 begins with 

approximations to volume and surface integrals. For the volume integrals a second order 

midpoint rule is used. According to this rule  

Q (x , y , z , t )dV = Q ( )t ϑ , (5.1)c c�Ω c 

where Q ( )t  is the value of Q at the cell centroid, andϑ  is the cell volume. c c 
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ϑc = dV . (5.2)� 
Ωc 

Cells are assumed to be fixed and rigid for simplicity. The extension to moving and 

deforming control volumes can be found in [17]. 

The numerical integration of the surface integral in equation (2.18) is 

�
�
� 

accomplished by summing the contributions of each of the NF faces of cell c. Each 

individual contribution is again approximated using the midpoint rule. The inviscid flux 

function itself will require additional numerical treatment, and will be discussed in the 

next Chapter. For now, it is sufficient to assume that both inviscid and viscous fluxes can 

~ be approximated by a function, F (Ql ,Q ) , of conservative values to the left and right of r 

the face. From this, F is given by 

�
�
� 

NF NFc c~ ~ ~ ~ ~ ~ 
� (F − Fv )dS = � � (F − Fv )dS ≈ � Ac, f [F (Ql , f ,Qr , f )− Fv (Ql , f ,Qr , f ) , (5.3) 

∂Ω j=1 ∂Ω j=1 c c , f 

where the area of the face Ac, f , is defined as 

Ac, f = � dS . (5.4) 
∂Ωc 

Now equation (2.18) is numerically approximated by the equation 

cd NF ~ ~[ϑcQc ( )t +� Ac, f [F (Ql , f ,Qr , f )− Fv (Ql , f ,Qr , f ) = ϑcW� c ( )t , (5.5)
dt j=1 

which is a system of ordinary differential equations of the form 

d Qc = Rc , (5.6)
dt 

where R  is given by the expression c 

)
NFc1 [F − Fv (Ql , f ,Qr , f . (5.7)R − Acϑ W� �= , fc c cϑ f =1c 
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Equations 5.6 and 5.7 can be used numerically to model the time evolution of the fluid 

when simultaneously satisfied for all cells in the mesh. 

The fluxes described in the later chapter require left and right states. For first 

order formulations these values simply correspond to the left and the right cell values that 

correspond to either sides of the face. For higher order schemes, these left and right states 

are extrapolated from neighboring cell values. The approach that is used in the present 

study is applicable to meshes composed of hexahedral cells [17]. The primitive variables 

are extrapolated to the faces using the Monotone Upstream-Centered Schemes for 

Conservation Laws (MUSCL) extrapolation approach [27].  

The application of high-resolution upwind schemes to solutions with 

discontinuities leads in general to the appearance of oscillations. Unlike central schemes, 

where oscillations are allowed to form and are subsequently eliminated by artificial 

dissipation, the approach followed for upwind schemes consists of preventing the 

generation of oscillations by acting on their production mechanism. In the vicinity of 

regions with large gradients, introducing non-linear correction factors, called limiters, 

modifies the extrapolation formulae. There are a variety of limiter functions that are 

described for conservation law equations. Barth[28] and Venkatakrishnan[29] limiters 

were used in the present study. 

5.2 Temporal Discretization 

The numerical integration of the system of equations 5.6 and 5.7 can be 

performed by a variety of methods. For this study, the family of schemes described by 

Janus[30] is used. These schemes are given by the time-discretized equation  



       
 

n n−1(1+ψ )∆Q −ψ∆Q = (1−θ ) n Qn + Rn+1 ( n+1 ),R (  ) θ Q
∆t 
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 (5.8)

where 

n n+1 n∆Q = Q −Q . (5.9) 

In the above, n represents the time level and θ,ψ are two parameters that control the 

accuracy of the discretization. Equation (5.8) represents a set of implicit time integration 

1θ = 1,ψschemes, including the second-order three point backward ��
� 

�
�
�

, backward= 
2 

1 �
�
� 

0 . It also includes explicit 

schemes such as forward Euler (θ = 0,ψ = 0) . 

The solution of equation (5.8) for Qn+1 given Qn  is the goal of the time integration 

procedure. However, the solution is complicated by the fact that that Rn+1 (Qn+1) is a non-

linear function with a non-trivial inverse. Instead of solving equation (5.8) directly, a 

common approach is to employ the Newton iterative method for the solution of the non-

linear homogeneous equation given by 

n+1 n+1 n ∆t n n+1 ψ n n−1Υ(Q )=Q −Q − [(1−θ )R (Q )+θR (Q ) − (Q −Q )= 0. (5.10)
1+ψ ψ +1 

The vector form of the Newton method is used to obtain the zero of the vector valued 

function, Υ( )Q . Consequently, the Newton method should converge to the vector value 

of Qn+1. The Newton method proceeds by iteratively solving the equation 

n+1, p n+1, p+1 n+1, p n+1, Υ′(Q )(Q −Q ) = −Υ(Q p ), p ≥ 0 , (5.11) 

where the Newton iteration is initialized using the previous time-step values, thus 

n+1, p=0 n +1, Q = Q . The Jacobian, Υ′(Qn p ) , is given by the equation  

�
�
�

(θ = 1,ψ = 0) θ ,ψEuler , and Crank-Nicholson = = 
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(5.12)

The Jacobian in equation 5.12 is a sparse matrix with dense sub-blocks. The off-diagonal 

blocks are terms generated by the flux Jacobians, due to their functional dependence on 

neighboring cells. 

5.3 Linear System Solution 

Each Newton iteration step given by equation (5.11) requires solving a linear 

system of equations of the form 

Ax = b , (5.13) 

where, 

+1, n+1, p+1 n+1, +1, A = Υ′(Qn p ), x = (Q − Q p ), b = −Υ(Qn p ). (5.14) 

The matrix, A, of this linear system is given by equation (5.12) and is typically a 

matrix with sparse structure that is composed of dense sub-blocks. Most of the terms of 

equation (5.12) contribute to the diagonal block of the matrix, while the flux terms, being 

a function of left and right Q values, contribute to off diagonal terms. Inviscid flux 

Jacobian terms are treated as Jacobians of the first order functions in an effort to increase 

the sparseness of matrix A, and similar steps are taken for the viscous flux Jacobians. 

Both analytical and numerical Jacobians can be employed [17]. The matrix A can be 

factored into a lower, upper, and diagonal blocks, as in 
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A = L + D +U . (5.15) 

For first order flux Jacobians, each internal face of the mesh contributes a term to the 

diagonals of the cells to either side, while also contributing one block to the lower matrix, 

L, and one block to the upper matrix, U. The system of equations is solved using a 

symmetric Gauss-Seidel method. Iterative methods of this form are rather efficient at 

solving systems of equations produced by finite volume schemes applied to hyperbolic 

equations, such as the fluid dynamics equations presented here. The symmetric Gauss-

Seidel iterative solver works by a two-pass method. These two passes, a forward and a 

backward pass, are a consequence of the solution of the factored equations 

*i+1 i(L + D)x +Ux = b , 

*i+1 i+1and Lx + (D +U )x = b , (5.16) 

where x *i+1 is the result of the forward pass of the symmetric Gauss-Seidel iteration. The 

iteration is initialized with the first pass of a block Jacobi iterative method. 

x 0 = D −1b . (5.17) 

In the solution of equations (5.15) and (5.16), a dense GAXPY (General A x Plus y) LU 

method[31] is employed to invert the diagonal blocks of D. This LU factorization is 

performed once before the Gauss-Seidel iteration proceeds, and is used in both passes. 



 

 

 

 
 

  

  

 

  

 

 
 

   

CHAPTER VI 

DISCRETIZATION OF INVISCID FLUXES 

The numerical treatment of the inviscid flux function needs to be done carefully, 

in order to avoid oscillatory behavior around solution discontinuities such as shocks. 

Dissipation that damps high frequency signals can be added to the numerical fluxes. 

Unfortunately, there is a tradeoff between this damping and the accurate resolution of 

discontinuities. It is generally agreed that characteristic-based algorithms are better suited 

to resolve solution discontinuities. In the next sections several different flux-splitting 

techniques are discussed, which were investigated as part of this study. Only the Roe 

scheme is a flux-difference splitting method, while all the other schemes are flux-vector 

splitting methods. 

6.1 Roe-Averaged Fluxes 

The essential features of flux difference split algorithms involve the solution of 

local Riemann problems arising from the consideration of discontinuous states at cell 

interfaces on an initial data line. The Roe averaged flux formulation is based on a 

linearization of the Riemann problem, and is the most widely used approach. The form 

suitable for chemically reacting flow problems has been developed by Cinnella[22]. 

In the following, the arithmetic average of a quantity f will be denoted by: 
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    1ˆ ˆ ˆ ˆ ˆF (Q ,Q ) = F − ( F + F + F ). (6.3l r 2 A B C 

 

 (6.1)

with the subscript l indicating the left state and the subscript r the right state, respectively. 

Also, the jump of a quantity f will be defined as 

f = f − f l , (6.2)r 

and the ∧ notation will be used for Roe-averages, to be defined later. 

The solution of the approximate Riemann problem involves the determination of 

the cell interfaces fluxes as a summation over wave speeds. The final result for 

F̂ (Ql ,Q ) , the flux function in the -direction, for example, reads: r 

)

= ~F̂Here, the term corresponds to the eigenvalue λA u  and may be written as: 
A 

where 

 (6.5)

Similarly, the terms associated with e given by 
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q ĉv = (γ̂  −1)� �
� 

� 
�
� 

ˆ 2a ρ̂ ê− − + � .s s2 s=1 

 

39 

(6.6)

Similar results hold for the flux functions in the other directions. The Roe averaged speed 

of sound, â , is given by the equation  

In the above, the Roe averaged values for the flow variables are given as  

(6.8)

(6.7)
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6.2 Flux-Vector Splitting 

Upwind schemes compute the inviscid flux vector at a cell interface by taking into 

account the correct direction of propagation of information. Flux-vector splitting 

techniques are based upon the definition of the inviscid flux vector as the sum of two 

components: a positive one, which carries the information propagating from the left of 

the interface; and a negative one, which carries the information propagating from the 

right, 

F̂ (Ql ,Q ) = F̂ + (Ql )+ F̂ − (Q ). (6.9)r r 

The original formulation of these techniques is based on the diagonalization and 

decomposition of the flux Jacobian matrix, working with the quasi-linear form of the one-

dimensional Euler equations, according to the sign of the eigenvalues. In multi-

dimensional flows, the flux splitting approach is based on a locally one-dimensional 

eigenvalue decomposition, which is equivalent to the assumption that the propagation of 

information is in the direction normal to the cell phases. This introduces a dependence of 

the solution on the mesh orientation. In the Chem code, a generalized grid approach was 

developed, which reduces the effect of the mesh on the solution[32]. 

6.3 Van Leer Flux Splitting 

The scheme introduced by Van Leer was obtained by imposing a certain number 

of conditions on F̂ +  and F̂ − in equation 6.9. In particular, F̂ ± and the associated flux 

Jacobians ∂F̂ ± ∂Q  are requested to be continuous functions of the Mach number and 

expressed as polynomials of the lowest possible order. In addition, the eigenvalues of 

must be positive or zero (non negative), and those of ∂F̂ − ∂Q  negative or zero 



 

 

 

   

  

 

 

 

 

 

  

  

   

41 

(non positive). The Mach number used as a parameter in the scheme is defined as the 

ratio between the contravariant velocity relative to the direction under consideration and 

the frozen speed of sound, as follows 

~ uM = . (6.10)
a 

It is useful to point out that this parameter can be positive or negative, depending upon 

the direction of the flow relative to the interface. 

When the Mach number calculated with the dependent variables associated with 

the left side of the interface, M l , is larger than 1, or when the Mach number 

corresponding to the right side, M , is less than –1, a supersonic flow regime exists and r 

the corresponding flux vector ( F̂ +  and F̂ − respectively) is simply computed using the 

upstream flow conditions. 

In the subsonic regime, ( ≤ 1 and M r ≤ 1)  two splitting polynomials are M l 

introduced. The first one is used for the Mach number, and produces weighing 

coefficients for the mass flux, the convective portion of the momentum flux, and the 

energy flux. A separate splitting is used for the pressure: 

M ± = ± 1 (M l / r ±1)2  (6.11)
4 

2± pl / rp = (M ±1) (2 � M ) . (6.12)l / r l / r4 

In the above, the + sign is for l and – sign is for r. The final expression for the inviscid 

flux vector at an interface is given by: 
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where the metric terms correspond to the cell face under consideration. Since the original 

formulation of the splitting of the energy flux does not ensure the exact constancy of the 

total enthalpy for steady inviscid flows, an alternate treatment of the energy splitting 

proposed by Hanel[10] has been used in equation (6.13). The original splitting was given 

by: 

~ 2 
± 
� (u � a) � 

F̂ 
NS 
±

+4 = M �ρa h0 − � , (6.14)
� (γ +1) ��� � L / R 

where the subscript NS+4 indicates the last element of the split flux vector. However, the 

error introduced by the original formulation is of the order of the truncation error and 

does not seem to have any significant effect on the numerical calculations. Considering 

equation (6.14) to be a special case of h0 − m(u ~ ± a)2  with m = 1 , in the current 
γ +1 

implementation it is assumed that m is equal to zero. 

Evaluating the derivative terms of equations (6.13) result in relatively simple 

expressions for the components of the split-flux Jacobians. They are presented in detail in 

the Appendix of [33]. 

(6.13)



  
~ ~ u ± u
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k = J ∇ ,
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6.4 Steger-Warming Flux Splitting 

The governing equations introduced in Chapter 2 are hyperbolic. The Steger 

Warming method exploits the hyperbolic nature of the Euler equations by splitting the 

flux at a cell face into two parts: one part contains the information propagating upstream 

(associated with negative eigenvalues), and the other part contains information 

propagating downstream (positive eigenvalues). 

The Steger Warming method uses the homogeneity of the Euler equations in order 

to split the fluxes (and hence the flux Jacobians matrices). Cinnella showed that 

homogeneity is preserved for flows with chemical non-equilibrium[22]. 

Extending the procedure of Cox[23], with extensions to finite-rate chemistry, the 

generic flux vector F̂ (Ql ,Qr ) may be split into components (see equation (6.9)), 

where F̂ ± = F̂ 
A + F̂ 

B + F̂ 
C , corresponding to the signs of the three distinct eigenvalues. 

These components are given by 

ρ� �

where now 
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~ ~(u + a)± u + a
N +3( )±λk = J ∇  , (6.16)

2 

~ ~(u − a)± u − a
N +3( )±λk = J ∇ . 

2 

The derivative terms which form the components of the split-flux Jacobians are 

relatively complicated, and are presented in detail in the Appendix of [34]. 

6.5 AUSM family 

The most popular schemes that employ the flux-vector splitting approach have 

been the Van Leer/Hanel scheme[35] and the AUSM algorithms[11, 12]. These schemes 

feature several favorable properties: conservation of enthalpy for steady flows; small 

dissipation in the shear layer. In the present study, five different variations within the 

AUSM family of algorithms were implemented. 

It is useful to first review briefly the basic AUSM scheme. An alternative form for 

the numerical flux is given in [12], as  

1 (Φ − Φ )]+ P , (6.17)F̂ (Q ,Q ) = [u (Φ + Φ )− ul r 1/ 2 l r 1/ 2 r l 1 / 2 2 

where 

tΦ = (ρ1 , ρ2 ,....ρ NS , ρu, ρv, ρw, ρh0 ) , (6.18) 

~ ~ ~ t
P = (0,0,......0, p , p , p ,0) . (6.19)1/ 2 x 1/ 2 y 1/ 2 z 1/ 2 

Here the interface velocity u1/2 and pressure p1/2 are defined as 

u1/ 2 = ul 
+ + ur 

− , (6.20) 

where 
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~if u ≤ a 
(6.21)

otherwise 

and 

p1/ 2 
−+ + p ,= pl r (6.22) 

where 

p ± = 

�
� 
�
�
�� 

p(M ± 1)2 (2 � M ) / 4, if | u ~ |≤ a
 (6.23) 

~ p(u ~ ± u ~) / 2u , otherwise . 

6.5.1 AUSMD and AUSMV 

These schemes are derived from the AUSM scheme, and “D” and “V” denote a 

flux-difference-splitting-biased scheme and flux-vector-splitting-biased one, respectively. 

More details are given in [13]. 

Both AUSMD and AUSMV schemes can be defined in a general form, by using 

mass flux (ρu ~)  instead of numerical flux, as follows: 

1ˆ ~ (Ψ − Ψ )]+ P , (6.24)(ρu )F (Q ,Q ) = [ (ρu ) (Ψ + Ψ )−l r 1/2 l r r l 1/ 21 / 22 

where 

 (6.25)

The original AUSM is a special case of the above, because equation (6.24) reduces to 

AUSM when the mass flux is defined as 

1~(ρu ) = [u (ρ + ρ )− u (ρ − ρ )]. (6.26)1/ 2 1/ 2 l r 1/ 2 r l2 
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Previously Liou and Steffen proposed a different version of the AUSM scheme, which 

was based on Mach number splitting[11]. The present scheme also includes this different 

version, if the mass flux is defined as follows 

1~(ρu ) = [M (ρ a + ρ a )− M (ρ a − ρ a )], (6.27)1/ 2 1/ 2 l l r r 1/ 2 r r l l2 

where 

 (6.28) 

Equation (6.24) represents both AUSMD and AUSMV. AUSMV differs from AUSMD 

only in the treatment of the momentum fluxes. For AUSMV, the formula used is a 

modification of equation (6.24), namely, 

~ + −(ρuu ) = u (ρu) + u (ρu) , (6.29)AUSMV l l r r 

while that of AUSMD reads exactly as in equation (6.24), that is: 

1~ ~ ~(ρuu ) = [ (ρu ) (u + u )− (u − u )], (6.30)AUSMD 1/2 l r r l(ρu )1/ 2 2 

~and similar formulas apply to ρvu and ρwu ~ , respectively. 

The AUSMV includes the Van Leer/ Hanel scheme[35], in which the mass flux is given 

as 

~ + −(ρu )1/ 2 = ul ρ l + ur ρ r . (6.31) 

It should be noted that for both equations (6.28) and (6.31) u ±  are defined in Eq.(6.21). 

On the other hand, the mass flux and the pressure and velocity splittings of the AUSMD 

and AUSMV schemes have to be introduced next. 

The main drawback of the Van Leer/Hanel scheme is the numerical viscosity at 

contact surfaces, while that of the original AUSM is the numerical overshoot at shock 

waves. This overshoot is mainly due to the mass flux differencing. This is probably 

https://Eq.(6.21
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because the AUSM mass fluxes of equation (6.26) or equation (6.27) do not directly take 

into account the density behind the shock waves. All this was taken into consideration by 

the modified AUSMD and AUSMV schemes. (For details please refer to [13]). First the 

mass flux is defined as 

~ + −(ρu ) = u ρ + u ρ , (6.32)1/ 2 l l r r 

where the velocity splittings ul 
+ ,ur 

− are no longer the familiar Van Leer splittings of 

equation (6.21), rather include terms designed to capture stationary/moving contact 

discontinuities:  

~ ~~(ul + am ) ~ ~ ~2 

α 
� 

l 

��
�
�� 

+ +�
� 

u u u u ul l l l l− if ≤ 1; + ,
4 2 2a a��+ (6.33)m mu = l ~ ~ u + ul l , otherwise,

2 

�
�
� 
� 
�� 

�
α 

~ ~~− (u − a ) ~ ~ ~2 − −��
� 

�
� 

u u u u ur r r r r− if ≤ 1; r m + ,r 4 2 2a a− �� �� (6.34)m mu = r ~ u ~ 
r − ur , otherwise,

2 

�
�
� 
� 
�� 

where 

(6.35)

and 

(6.36) 

Moreover, the pressure flux is 

(6.37) 

where 
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~ul / rif ≤ 1; 
am  (6.38)

otherwise.

Substitution of equation (6.32) and equation (6.37) into equation (6.24) results in the 

AUSMD numerical flux. In addition, if the momentum flux is replaced by equation(6.29), 

we have the scheme AUSMV. 

6.5.2 AUSMDV: Mixture of AUSMD and AUSMV 

In order to determine whether AUSMD or AUSMV was preferable, numerical 

experiments were conducted in [13]. From the experimental study it was seen that both 

the original AUSM and AUSMD schemes showed noticeable oscillations, although 

AUSMD was a little better than AUSM. On the other hand AUSMV gave fairly good 

solutions, indicating that it has a higher shock-capturing capability than AUSMD. In 

some other test cases, AUSMV produced serious oscillations, although it worked well 

when the CFL number was reduced to 0.5. Hence, a hybrid momentum flux was 

considered. This was called the AUSMDV scheme. In this, the momentum flux is defined 

as 

(6.39)

where s is a switching function, which depends on the pressure gradient:  

(6.40)

https://equation(6.29


 

 

 

 
 

 

 

 

 

  

 

  ~ ~Μ l = u 1/ 2 , and Μ r = ur a1/ 2 ,l a
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~ ~In this study, a constant parameter K=10 is taken. Similar formulas for ρvu and ρwu 

can be developed. 

6.5.3 AUSM+: an Extension to AUSM 

The AUSMDV scheme just presented improves the robustness of the AUSM 

family of algorithms in dealing with strong shocks. However, the “carbuncle 

phenomenon” appears, albeit much weaker than the one resulting from the Roe scheme, 

and it requires a fix. Moreover, the AUSMDV scheme does not capture a stationary 

shock exactly. Hence a new version called AUSM+, has been derived in [15]. It has the 

following features: exact resolution of a stationary normal shock or contact discontinuity, 

positivity-preserving property, improvement in accuracy, simplicity, and easy 

generalization to other conservation laws. 

The AUSM+ algorithm can be simply summarized as follows (for details refer to 

[15]): given left and right states, the corresponding ”Mach numbers” can defined as 

follows 

 (6.41) 

where, the speed of sound a1/2 will be defined shortly. Then, flux formula (6.17) can be 

used for AUSM+, provided the terms u1/2 and p1/2 are redefined, as follows: 

+ −m1/ 2 = M (Μ l )+ M (Μ r ), and u1/ 2 = a1/ 2 m1/ 2  (6.42) 

+ −p = P (Μ )p + P (Μ )p , (6.43)1/ 2 l l r r 

In the above, the split Mach numbers are defined as follows (a detailed analysis of the 

derivations can be found in [15]):  



 a1/ 2 = al ar .
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M ± ( )Μ = 
1 (Μ ± Μ ), if Μ ≥ 1,
2 (6.44) 

�
� 
�
�
�� M β

± ( )Μ , otherwise 

where 

± Μ 2 2 2 1 1( ) (  ( )M β = ± Μ ±1) ± β Μ −1 , − ≤ β ≤ (6.45)
16 2 

and the split pressures are defined as : 

P ± ( )Μ = 

�
� 
�
�
�� 

1 (1± sign( ) ,Μ ) if Μ ≥ 1,
2 (6.46) 

P ± Μα ( ), otherwise 

with 

1 2 2 2 3 3± ΜP ( ) = (Μ ±1) (2 � Μ)±αΜ(Μ −1) , − ≤ α ≤  (6.47)α 4 4 16 

From experimental studies, it was proven that the best values of α and β for an accurate 

solution were equal to 3/16 and 1/8, respectively[15]. 

In order to achieve the unification of the velocity and Mach number splittings [11, 

12], one can no longer use left and right values for the speed of sound, al or ar, instead a 

common one should be used. Many formulae were suggested in [15], however for 

reasons of simplicity the following splittings were implemented: 

1 (a = a + a ) , (6.48)1/ 2 l r2 

 (6.49) 

However, numerical results are insensitive to the choice of the splittings implemented. 
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6.5.4 Low Speed AUSM+ 

One more member of the AUSM family of fluxes can be derived by using the 

concept of “numerical speed of sound” in the construction of numerical flux[16]. This 

variable is shown to be responsible for the accurate resolution of discontinuities, such as 

contacts and shocks[36]. Moreover, this concept can be readily extended to deal with low 

speed and multiphase flows. For example, the numerical dissipation for low speed flows 

is scaled with the local fluid speed, rather than the sound speed, hence accuracy is 

enhanced, the correct solution is recovered, and the convergence rate improved.  

It is widely known that the standard form of the compressible equations, 

discretized with either centered or upwind schemes, suffers from two major drawbacks as 

the flow speed approaches zero: (1) a drastic slowdown or level-off of convergence rate, 

(2) an inaccurate or even incorrect solution[36]. An effective way of dealing with the first 

problem is by inserting a premultiplying matrix to the time-derivative term. This is called 

the local preconditioning technique. Regarding the second problem, the inaccuracies in 

the upwind schemes are primarily due to the incorrect scaling of the dissipation terms as 

M → 0. In fact, the dissipation turns out to be scaled by the sound speed at low Mach 

numbers, thus yielding excessive numerical dissipation. This suggests that numerical 

fluxes need to be modified to correct this situation. 

Preconditioning essentially alters the eigenvalues of the hyperbolic systems so 

that the wave speeds become more or less equalized. Using the time-derivative 

premultiplying matrix proposed by Weiss and Smith[37], the two-dimensional time 

dependent governing Euler (or Navier-Stokes) equations are cast in the following form 

(using Cartesian co-ordinates again for simplicity): 



             
 

2 � 2 2 2 2 �1+ M * � (1− M * ) M + 4M * � u ± a = u ± a ,� 2 �2 � 1+ M * �
� � 
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∂W ∂F ∂GΓ + + = 0  , (6.50)
∂t ∂x ∂y 

where W is a vector of primitive variables, (p ,u ,v, T)T and all other variables have been 

introduced in chapter 2. The preconditioning matrix takes the form: 

1 ρΘ + 0 0 − 
RT T 

1 ρu u Θ + ρ 0 − 

� � 
� 
� 
� 
� 
� 
� 
� 
� 
�
� 

� 
� 
� 
� 
� 
� 
� 
� 
�
� 

RT T�

� 

Γ = , (6.51)1 ρv v Θ + 0 ρ − 
RT T 

h01 ρu ρv ρH Θ + −1 C p − 
RT T� � 

where 

2 2 2M = min (1, max (M , M )). (6.53)* co 

The cut-off parameter Mco is introduced to prevent a singularity at a stagnation 

point. It is a user-specified parameter: unfortunately, it does have some effects on the 

solution in some situations (the effect of Mco generally is minor, but could be of 

significance in some cases). A pressure difference term, as suggested by Weiss[38], could 

also be added to enhance robustness near the stagnation point. The reference quantity 

M *
2 is bounded from above to unity if the local M exceeds one. As a result, the 

Γ−1eigenvalues of the flux Jacobian of F with respect to W, i.e., ∂F ∂W  are u , and 

 (6.54)

 (6.52)



 

 

 

 

 

  

  

 

 

 

  

   
 

 

22 2 2(1− M * ) M + 4M *f (M , M * ) = 2 .
1+ M * 
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uwhere M = is the unscaled Mach number. Several remarks can be made concerning the 
a 

eigenvalues of the preconditioned system. First, we have a constraint for the coefficient 

in equation(6.54). 

1 1+ M *
2 

< ≤ 1. (6.55)
2 2 

Moreover, the speed of sound is now re-scaled by a scaling factor f (M ; M * ). Thus, a 

new speed of sound can be defined. 

~ =a f (M , M * )a , (6.56) 

 (6.57)

The scaling factor is also bounded, 

� 
� M , if 1 >> M 2 >> M 2 ,

1 ≥ f ≥ � 
co  (6.58) 

� 2 22M , if 1 >> M >> M ,co co� 

which is, the scaling factor f is bounded from below by the smaller of the local and cut-

off Mach numbers. 

Now equipped with a newly defined numerical speed of sound, we can readily 

incorporate it into the formulation of the AUSM-family schemes. The mass flux of the 

~AUSM+ scheme now can be rewritten by using the numerical speed of sound, a1/ 2 

defined by equation (6.56), in place of a1/2 of either equations (6.48) or (6.49). The rest of 

the procedure is same as that of the AUSM+ scheme. More details can be obtained from 

[16]. 

https://equation(6.54


 

 

 
 

 
 

 

 

 

CHAPTER VII 

RESULTS AND DISCUSSION 

To validate the code, five different test cases were considered. The intent is to 

compare the accuracy, efficiency, and robustness of the various flux-splitting schemes 

described in the previous chapter. The test cases encompass a wide variety of flow 

conditions, ranging from the one-dimensional unsteady flow in a shock tube to the axi-

symmetric steady viscous hypersonic flow past a cone. Other cases considered include 

the inviscid steady flow over a blunt cone, and the impingement of a convergent-

divergent nozzle jet onto a flat plate. Viscous calculations were also made for a NACA 

airfoil at very low speed, transonic, and supersonic regimes. 

7.1 Shock Tube 

The simulation of a shock tube is a relatively simple test case, which involves 

several physical phenomena such as shocks, expansions, and contact surfaces. 

Consequently, it is suitable for evaluating simulations of the unsteady propagation of 

discontinuities. The exact solution to this particular problem, for an ideal gas model, can 

be obtained from the system of one-dimensional Euler equations. Experimentally, a 

shock tube flow can be realized by the sudden rupture of a diaphragm in a long tube 

separating two regions (driver and driven), filled with gases at different initial 
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pressures (and possibly density). After removing the diaphragm, the pressure 

discontinuity propagates in the low-pressure region, and simultaneously an expansion fan 

propagates in 

the high-pressure gas. In addition, a contact discontinuity separating the two gas regions 

propagates towards the low-pressure region of the tube. 

The computational grid for the shock tube simulations employed 1000 cells 

equally distributed between the driver and the driven regions at t=0. The initial 

conditions on the driver side (left) and driven side (right) of the shock tube are: 

Driver Side: 1*106 Pa; T = 3000.0 K; u = 0.0 m/s 

Driven Side: 1*105 Pa; T = 3000.0 K; u = 0.0 m/s 

Both regions are assumed to contain the same gas. To maintain time accuracy, a second 

order three point backward time integration was performed using three Newton iterations. 

In addition, four Gauss-Seidel iterations were performed in the iterative solver. The Barth 

limiter[28] was used. Both the ideal gas and a dissociating oxygen model[21] were used 

to simulate the shock tube scenario. All the results from the different flux splitting 

methods are compared with the Roe scheme, which reproduces the exact solution with 

good accuracy[1]. 

The shock tube calculations were continued until the shock reached the solid wall 

at one end and reflected in the opposite direction. A solid (impermeable) wall boundary 

condition was imposed at the end of the tube. Figures 1 to 64 show the density, Mach 

number, pressure and temperature plots for all the different schemes, before and after the 

shock has reached the solid wall, for both ideal and dissociating oxygen models. In most 
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cases, all the schemes featured satisfactory results. However in some cases the contact 

surface was captured with some oscillations. 

Figures 1 to 8 compare the Steger-Warming and Van Leer methods with the Roe 

scheme. It can be seen that the results were almost identical. Figures 9 to 16 compare the 

AUSMD and AUSMV schemes to the Roe scheme. It can be seen that some oscillations 

are present in the case when the shock reaches the wall and is reflected back, especially 

the AUSMD scheme. Figures 17 to 24 compare the AUSMDV scheme to the Roe 

scheme. This scheme has more oscillations, when the shock reached the wall and 

reflected back. Figures 25 to 32 feature the AUSM+ and Low Speed AUSM+ schemes. 

These algorithms have fewer oscillations when compared with other AUSM schemes. 

Figures 33 to 64 are similar plots in which the dissociating oxygen chemistry model was 

used. The relative behavior of all the schemes was roughly unchanged by the presence of 

chemical reactions. 

Finally, the test case was run for the low speed AUSM+ scheme and changing the 

value of the parameter Mco. Figures 65 to 68 compare the scheme for two different values 

of Mco (0.1 and 0.01 respectively). It can be seen that when the value is 0.1 the 

oscillations in the plots are reduced. 

7.2 Mach 10 Blunt Cone 

The second case that is used to evaluate the flux-splitting schemes is a hypersonic 

blunt-body case. A blunted 9-deg half-angle cone defines the geometry. The nose radius 

for this geometry is r = 6.35 cm. The free stream conditions are given by a Mach 10 flow 

with an ambient pressure of p=2.65*104 Pa and temperature of T=223 K. A second order 
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three point backward time integration was performed using one Newton iteration. In 

addition, four Gauss-Seidel iterations were performed. The Barth limiter[28] was used. 

The grid used has 71 points distributed along the solid boundary and 26 points in the 

normal direction (Figure I). Two cases were run: 1) an ideal gas model, and 2) air with 5 

species and 17 reactions [39]. 

 

 

  

 

 

 
 

 

 
 
 

 

   

 

 

Mach 10 Blunt Cone 
Figure I 

Figures 69 to 74 show temperature profiles along the stagnation streamline, and 

figures 75 to 80 depict the variation along the body surface, respectively. Both 

temperature levels and shock locations are strongly affected by the inclusion of real-gas 

effects. It can be seen from figures 70 and 73 that the Van Leer and AUSM+ schemes 

behave almost exactly like the Roe scheme. Figures 69 and 75 show that the Steger-

Warming method is highly dissipative and deviated more from the Roe scheme. AUSMV 
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and AUSMDV schemes deviated slightly from the Roe scheme, while the Low Speed 

AUSM+ scheme deviated more in the case when the ideal gas model was used. 

For completeness, figures 81 to 108 show the Mach number and temperature 

contours for all the schemes, using both the ideal gas and the chemically reacting air 

models. 

7.3 Impingement of a Convergent–Divergent Nozzle Exhaust 

Simulations were carried for a convergent-divergent nozzle in order to study the 

jet impingement on a perpendicular plate (2-D), and an inclined plate (3-D)[40]. 

Convergent-Divergent Nozzle 
Figure II 
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7.3.1 Jet Impingement on a perpendicular plate 

The convergent-divergent nozzle is shown in figure II. A three-block structured 

grid is used for this case. The grid is clustered near the impingement plate. The distance 

between nozzle and perpendicular plate was set to 0.5D, where D is the nozzle exit 

diameter. The air jet is channeled from a high-pressure reservoir into the atmosphere and 

impinges on the flat plate. The ratio between reservoir pressure (p0) and ambient pressure 

(pa) for this case is 20. An Euler time integration scheme was used, with one Newton 

iteration per time step. In addition, four Gauss-Seidel iterations were performed. The 

Venkatakrishnan limiter[29] was used.  

The pressure distribution along the wall distance is presented in Figures 109, 110 

and 111. Figures 112 to 118 compare all the schemes with the experimental results. In 

these plots the wall pressure is plotted against the non-dimensionalized distance (ratio of 

the distance along the wall to the radius of the jet). The density and temperature contours 

for all the different schemes are presented in figures 119 to 132. From these figures it can 

be seen that there are discrepancies in shock structure and location between predictions 

from Steger-Warming, AUSM+ and Low Speed AUSM+ on one hand, and Roe, Van 

Leer, AUSMV and AUSMDV on the other. The experimental results are not truly 

conclusive as to which schemes do a better job for this case. AUSM+ and Low Speed 

AUSM+ predicted the wrong location of the shock even when the iterations were started 

from a converged solution (Van Leer’s method). 



 

 

  

  

 

 

 

 

 
 

 

   

 

    
 

60 

7.3.2 Jet Impingement on an inclined plate 

The distance between nozzle exit and the center of the plate is chosen to be 2DN, 

where DN is the nozzle exit diameter. The angle that the plate makes with the nozzle axis 

is taken to be 30o.The pressure ratio between nozzle exit pressure (pe) and ambient 

pressure (pa) is chosen to be 1.2. 

Figures 133 to 139 show the distribution of the plate wall pressure for the 

different schemes, compared with the experimental results (the latter are obtained from 

Lamont & Hunt[41]). From these it can be seen that the behavior of Roe and Van Leer 

schemes was similar to that of the experimental results. Also, the results from the 

AUSMV, AUSMDV, AUSM+ and Low Speed AUSM+ schemes are in reasonable 

agreement with the experimental results, while the Steger-Warming method deviates the 

most. 

7.4 Hypersonic Conical Flow 

This case involves the study of viscous hypersonic flow around a cone. The code 

was run using both a fine and a coarse grid, as shown in figures III and IV, respectively. 

The freestream conditions used for the calculations correspond to hypersonic flow, with 

M∞ = 7.95 and a Reynolds number of 420,000, (based on the distance from the apex). The 

circular cone had a 10-degree half-angle. A Prandtl number equal to 1 was chosen, so that 

the theoretical adiabatic wall temperature 

T γ −1w = 1+ M ∞ = 13.64 
T∞ 2 

could be used to check the accuracy of the numerical solutions. The grids used for 

calculations are composed of 41 points in the streamwise direction and 81 in the normal 
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direction (coarse grid) and 61 points in the streamwise direction and 121 in the normal 

direction (fine grid). The Euler time integration was selected, using one Newton iteration 

per time step. In addition, five Gauss-Seidel sub-iterations were performed. The Barth 

limiter[28] was used. A Sutherland model was used for transport properties. 

 

 

 
 
 

 

 

 

 

 

 

 

 
 
 

 

      

     

 

 
 

Hypersonic Conical Flow 
Figure III 

Figures 140 to 145 show pressure and temperature distributions as a function of 

angle θ, at a distance from the apex of the cone corresponding to the given Reynolds 

number, roughly at the mid-point of the grid. Figures 146 to 151 show the same variables 

for the coarse grid simulation. It can be seen that when the grid is refined, all the schemes 

tend to behave similarly to the Roe scheme. However, when the grid was coarser, the 

AUSMV and AUSMDV schemes deviated more from the Roe scheme. In both cases, 

Steger Warming deviated the most because it is highly dissipative. 
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Hypersonic Conical Flow 
Figure IV 

7.5 NACA 0012 Airfoil 

The final case used to evaluate the flux splitting schemes was the flow around a 

NACA 0012 airfoil. A portion of the grid close to the airfoil is shown in figure V. The 

grid employed for the present calculations is a C-type grid, composed of 290x81 points. 

Four separate flow conditions were considered: a) M∞ = 0.799 and angle of attack = 2.86 

degrees (transonic flow); b) M∞ = 1.2 and angle of attack = 0.0 degrees; c) M∞ = 0.1 and 

angle of attack = 2.86 degrees; and d) M∞ = 0.01 and angle of attack = 2.86 degrees. 

Cases c) and d) were considered in order to study the behavior of the low speed AUSM+ 

scheme at such low speeds. 

Figures 152 to 158 show the pressure contours for the various schemes for case 

a). Next, a relative error 
�
�
�
� 
error = 

p − pother roe 

proe 

�
�
�
� 

 was calculated with respect to the Roe 

scheme and its contours were generated and shown in figures 159 to 164. From these 



63 

figures it can be seen that the shock location was different when different schemes were 

implemented. Thus in the error contours large errors can be seen at two different 

locations, one corresponding to the Roe scheme shock location, and the other 

corresponding to the location predicted by the other scheme. Also some error can be seen 

in the lower surface of the airfoil. 

 

 

 

 
 

 

 

 
 

 

NACA0012 Airfoil 
Figure V 

Figures 165 to 171 show the pressure contours for the supersonic case (case b). 

All the schemes performed quite similarly, capturing both the bow shock and the fish-tail 

shock. Figures 172 and 173 show the pressure contours when the Mach number is equal 

to 0.1 (case c). The pressure coefficient was calculated, and its contours are also shown in 

figures 174 and 175. It can be seen that the low speed AUSM+ scheme works fine when 

the Mach number is small. However, when the Mach number is further reduced to 0.01 

both the Roe and the Low Speed AUSM+ scheme behave abnormally. This can be seen 

from figures 176 and 177. 
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Additionally, lift coefficients were calculated for cases a, c, and d. The values are 

tabulated as follows: 

Mach Number Roe Scheme Low Speed 
AUSM+ 

Theoretical 

0.799 0.3033 0.3601 0.38 

0.1 0.252 0.329 0.32 

0.01 0.21 0.3505 0.318 

2 αFrom [42] it can be estimated that the lift coefficient of an airfoil is equal to

where M ∞ is the free stream Mach number and α is the angle of attack. For the above 

experiments the angle of attack was 2.86 degrees. Therefore, the low-speed lift 

coefficient according to the above formula is roughly 0.32. It can be seen from the table 

that at low speeds (M=0.1 in particular) the low speed AUSM+ scheme tends to behave 

more accurately than the Roe scheme. However, using the Low Speed AUSM+ is not as 

effective as employing a preconditioning method[43]. 



 

 

 
 

   

    

 

 

   

 

    

  

CHAPTER VIII 

SUMMARY AND CONCLUSIONS 

The present work is concerned with enhancing the accuracy and robustness of 

CHEM[17], a three-dimensional flow solver which is able to simulate a wide range of 

flow conditions, including chemical non-equilibrium. The governing equations 

considered in the present study are an extension of the Navier-Stokes equations for a 

perfect gas. A finite volume approach has been used for the spatial discretization of the 

integral form of the conservation equations. The three-dimensional flow solver can be 

easily applied to the special cases of axisymmetric, two-dimensional, and one-

dimensional flows. 

Seven different flux-splitting techniques have been implemented for the 

discretization of the inviscid fluxes, and high-order accuracy has been achieved by means 

of the MUSCL extrapolation applied to primitive variables. Moreover, analytical 

Jacobians for the Steger-Warming and Van Leer methods were implemented. These 

reduce the cost of computations, as well as improving the efficiency of the flow solver. 

A systematic comparison of all the different schemes with the Roe scheme is the 

main feature of the present work. The overall goal is to find a numerical scheme that can 

meet some stringent specifications of efficiency, accuracy and robustness on the widest 

possible spectrum of flow conditions. 
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The Roe scheme is very accurate, especially in the presence of discontinuities, but 

is not robust enough, as seen in the case of a very-low speed airfoil (when M=0.01). The 

Van Leer scheme seems to be more robust, but at the cost of reduced accuracy, especially 

for viscous problems, where an excessive numerical dissipation may significantly 

degrade the solution. The Steger Warming algorithm is highly dissipative, and that can be 

seen especially from the blunt-body cases. 

The AUSMD scheme presented spurious oscillations for the shock tube test case. 

It is not very robust as the residuals didn’t converge in other cases, and as a result no 

solution was obtained. AUSMV and AUSMDV behaved similarly in most cases. 

However, in some cases AUSMDV produced a very accurate solution, while AUSMV 

reported some oscillations. AUSM+ and the Low Speed AUSM+ behaved very similarly 

to the Roe scheme. However, for the case of a jet impingement on a perpendicular plate, 

the two schemes couldn’t locate the position of the shock accurately. At low Mach 

numbers the Low Speed AUSM+ scheme tends to behave more accurately than the Roe 

scheme. This can be seen in the case of an airfoil when M=0.01. However, using the Low 

Speed AUSM+ is not as effective as employing a preconditioning method[43]. 

Further work can be done to eliminate the oscillatory behavior found in some of 

the solutions obtained with the AUSM family of schemes, possibly by using different 

splitting polynomials for pressure and velocity. Also, a pseudo time can be introduced as 

an iteration strategy, so that time accuracy for solving the unsteady equations can be 

better preserved. 

Also the code was run with higher CFL numbers for better performance. Roe, 

Steger-Warming and Van Leer methods were robust enough to run at very high CFL 
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numbers (upto 10000), while the AUSM schemes could run for a maximum CFL number 

of 19. Also the time performance of the code can be increased when analytical jacobians 

were used. 

Additional work to enhance the performance of the code includes incorporating 

analytical Jacobians for the AUSM family, which would be less computationally 

expensive than the presently used numerical Jacobians. Finally, due to the overwhelming 

number of calculations involved in a non-equilibrium simulation, the performance of the 

code must be improved by considering the scheduling costs and optimizing its 

performance on parallel computer architectures. 
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Pressure Contours for an Airfoil 
Case B 

Roe  
Figure 165 

Steger 
Figure 166 

 

 

 
 

 

Van Leer 
Figure 167  

AUSMV 
Figure 168 



119 

AUSMDV 
Figure 169 

AUSM+ 
Figure 170 

 

 

 

 

 Low-Speed AUSM+ 
Figure 171 



120 

Pressure Contours for an Airfoil 
Case C 

 

 

 

 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Roe 
Figure 172 

Low Speed AUSM+ 
Figure 173 



121 

Pressure Coefficient Contours for an Airfoil 
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