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Although remote sensing has been used in predicting, monitoring, and assessing 

hazards and disasters for over 50 years, its use in the transportation domain is still in its 

infancy. This study was conducted to identify the research needs involving the use of 

remote sensing for such applications within the transportation domain. The first step 

taken was to determine the current state of remote sensing applications in the 

transportation domain associated with the prediction, monitor, and assessment of hazards 

and disasters. The second step was to identify the impacts that such events may cause and 

the information needed to prevent or reduce their impacts. With the knowledge of the 

required information, remote sensing requirements and technology limitations were 

defined. Then according to the knowledge of the current state of research and the 

limitations of remote systems, future research needs were identified. Finally, the Analytic 

Hierarchy Process (AHP) was used to rank these research needs. 
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CHAPTER I 

INTRODUCTION 

Natural disasters happen every year and their impact and frequency seem to have 

greatly increased in recent decades, mostly because of environmental degradation, such 

as deforestation, intensified land use, and the increasing population (Vincent, 1997). We 

find that urban growth is extending into hazard prone regions such as low elevation areas 

more prone to flooding. The result is that the magnitude of the impact of a disaster 

increases since it is dependent on the susceptibility of the land and the vulnerability of the 

society (Verstappen, 1995). The vulnerability is also compounded with the increased 

complexity of interdependent systems (Comfort, 1999). Given that it is the transportation 

domain which interconnects those systems, interest has risen in determining methods 

which can be used to 1) measure transportation’s vulnerability before such a disastrous 

event, 2) monitoring its availability during an event, and 3) assess the damages after an 

event. With today’s complexity of society, response and relief from disasters has become 

a costly concern. Therefore, there is a need to shift to mitigation, which entails activities 

that strive to reduce the number of hazards and/or their impact before disasters happen 

(Comfort, 1999). 

The purposes for using remote sensing include (Verstappen, 1995): “to investigate 

the susceptibility of the land and the vulnerability of the society, to construct hazard 
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zoning maps and potential damage maps, to monitor potential hazards, and to deal with 

emergency situations after a disaster”. Before discussing remote sensing’s application in 

predicting monitoring, and assessing hazards and disasters, we should first define these 

terms. A disaster is “an event, concentrated in time and space, in which a society (or a 

community) undergoes severe danger and incurs such losses to its members and physical 

possessions (or appurtenances) that the social structure is disrupted and the fulfillment of 

all or some of the essential functions of the society is prevented” (Fritz 1961). A hazard is 

“the danger that a disaster event may develop or ensue” or “a threat to humans and what 

they value” (Kates, et al. 1985) 

The use of remote sensing depends highly on the type of disaster or hazard of 

concern. Disasters or hazards can be divided into two groups, slow and rapid. In slow, 

“creeping” ones (e.g., desertification), remote sensing is generally used for the purpose of 

monitoring and low temporal resolution images are often sufficient. In rapid, 

“instantaneous” disasters, the required capability of remote sensing varies largely. Due to 

the temporal requirements of the technology, it is usually not possible to monitor rapid 

disasters, e.g. landslide, earthquake, etc. Sometimes there is no clear distinction between 

slow and rapid when labeling a disaster. For example, a flood could either be classified as 

slow or rapid disaster depending on the conditions under which the event occurs. No 

matter what type of disaster occurs, rapid or slow, there are always some clues that 

remote sensing system can capture and use to predict a disaster (assess the hazard), 

monitor its progress, and assess the impact afterwards.  

The next section of this report begins with a statement of the problem this study 

plans to address. This will be followed by an introduction to related research in these 
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areas, and a review of the remote sensing technologies that have been used in 

disaster/hazard management. Section 3 discusses how disasters impact transportation and 

what activities can be done to reduce or eliminate those impacts. Section 4 explores the 

technological requirements for using remote sensing as a means for acquiring the 

information needed to detect and assess common phenomena usually associated with 

disaster and hazards, for example, debris forced onto roadway, building damage, etc. In 

the last section, a proposed research agenda is presented that ranks the items on the 

agenda. 



 

 
 

 

  

  

 

CHAPTER II 

STATEMENT OF THE PROBLEM 

Remote sensing technology has been used and studied for a long time. With the 

development of more and more sophisticated remote sensing sensor systems, the use of 

remote sensing has been given new life prompting further exploration of its use in 

acquiring information in agriculture, national security, oil and gas research, forestry, 

fisheries, disaster/hazard management, transportation, etc. Use of remote sensing 

technology is of interest because of its ability: 1) to provide information on a timely basis, 

2) to provide large volumes of information in a cost effective manner, 3) to acquire 

information at hazardous or difficult to reach regions, and 4) to monitor areas and events 

non-intrusively. 

Many research studies have been completed that employ remote sensing as the 

principle information source in the assessment of hazards/disasters. But, not all of the 

applications are suitable for use in the transportation domain, because of the higher 

spatial and temporal resolution required for many of the specific applications. Given the 

importance of transportation in our daily lives, there is a desire to ensure the safety and 

operation within each of the transportation domains, especially after a natural disaster. In 

most cases, post-disaster damages are not only due to the strength of the natural event, a 

large part of the damages is the result of delays in receiving, or the inadequacy of, the 
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damage assessment information (Gamba and Casciati, 1998). This is another reason why 

there is a growing interest in using remote sensing to predict, monitor, and assess 

disasters. 

Current methods utilizing remote sensing techniques applied to the assessment of 

hazards and disasters only cover limited portion of the transportation domain. Thus, there 

is a need to explore and identify the state of current research with respect to assuring 

transportation safety in the face of hazards and disasters and to identify future research 

needs in this area to promulgate the application of this growing technology within 

transportation. 



 

 
 
 

 

 

 

 

 

 

 

CHAPTER III 

BACKGROUND 

In this report, the functions utilizing remote sensing have been labeled as 

prediction, monitoring, and assessment. Prediction involves acquiring necessary 

information that indicates the presence of a hazard. The capability to identify a hazard or 

predict a disaster provides opportunities for initiating prevention and mitigation activities. 

Therefore, given this relationship, the assessment of a hazard is equated to the prediction 

of the disaster. Monitoring implies tracking and recording a disaster while it is taking 

place. It also involves providing timely information to help those performing relief and 

recovery activities, as well as warning others of potential hazardous areas that may arise 

in the near future as a result of the disaster (e.g., movement of flood waters or fire). 

Assessment is a post event activity for collecting information that can be used to gauge 

the extent of damage to help in relief and recovery activities. Assessment also includes 

determining the causes of the impacts for help with future prevention activities. 

To help define applications for remote sensing to predict, monitor, and assess the 

impact of disasters, it is first necessary that these impacts be identified. Thus the 

following sections will not only provide background on the current research state, but 

also explore the impact of different disasters on the transportation domains: roadway, 

railway, and pipeline. 
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A series of tables were developed that define the potential impacts a 

hazard/disaster may have on transportation. The impacts associated with each 

hazard/disaster are listed in a table dedicated to each domain. It is believed that any 

impact to transportation resulting from a hazard/disaster within these domains will cause 

either a partial blockage or closure of a road, rail, or pipeline, or increase the probability 

of the occurrence of an accident. Therefore, in the tables, the potential results of a disaster 

and/or hazard are grouped into these two principle categories of impacts and possible  

“causes” are listed for each. Each table also lists activities that can be used to eliminate or 

reduce identified impacts following the recognition of the cause (potentially using remote 

sensing technology). The development of these tables provides the information needed to 

determine what data is needed to support the activities listed and then to examine the 

potential for remote sensing technologies to be employed to supply the required 

information. 



 

 
 

  
 

 

 
 

 
 

 
 

 

 
 

 

8 

Remote sensing in predicting, monitoring, and assessing disasters 

Remote sensing is a useful tool in predicting, monitoring, and assessing 

hazard/disasters. This section examines remote sensing techniques that are reported as 

currently being used in the area of hazard/disasters management. Paratesi (1991) divided 

hazard/disasters into the five groups shown in Table 1. This table lists the various 

hazard/disaster events belonging to each group. 

Table 1. Types of Hazard/disasters (Adapted 
from Paratesi 1991). 

Geology Earthquake 
Volcanism 
Landslide, mudflow 
Tsunami 
Erosion 

Hydrology Floods 
Flash floods 
Drought 
Snow 
Avalanche 

Oceanography Coastal flooding 
Marine pollution 
Relative sea level rise 

Meteorology Precipitations 
Severe local storm 
Tropical storm 
Severe winter weather 
Frost and freeze 
Tornado 

Vegetation Wildfire 
Plant disease 
Drought 
Desertification 
Locust breeding 
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Given that the interest of this project is related to transportation, only those events 

that have a direct impact on the transportation domains will be discussed in this report. 

Those hazard/disaster are shown in bold in Table 1. 

Among the hazard/disasters shown in the table, it is recognized that a Tsunami 

can have an impact on coastal transportation systems. As we know, an oceanic 

earthquake or a volcanic eruption may induce a tsunami. There is still no method 

available to exactly predict a tsunami, but a tsunami warning system has been used to 

assess the occurrence and predict the movement once underway (Ministry of Attorney 

General, 1995). Due to its unpredictable and limited impact to transportation, tsunami is 

not addressed in this project. 

Erosion is generally a slow moving hazard that can affect the safety of 

transportation-related infrastructures. Erosion itself usually does not have direct and rapid 

impacts to transportation. However, when combined with some disasters, erosion may 

worsen and accelerate the onset of the damages. For example, the occurrence of a flash 

flood may increase the rate of erosion and thus increase the possibility of damage to 

infrastructures. Also, erosion may increase the probability of a landslide. Thus, in 

managing a disaster, in which erosion has a critical impact, erosion should be considered 

a factor that may contribute to a disaster’s impact and included as a component in the 

management system. Therefore, this study will not directly discuss erosion since it will 

be inherently considered a factor within each disaster where erosion occurs.    

Since the duration of flash floods is so short, it is hard to predict and monitor a 

flash flood. Aside from the temporal resolution, the remote sensing requirements for 

assessing a flash flood are similar to those for assessing a normal flood. Therefore, this 
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report does not address flash floods specifically, but aside from temporal limits the 

technological requirements and research needs discussed in the sections relating to 

normal floods can be applied. 

Drought, marine pollution, sea level rise, plant disease, desertification, and locust 

breeding have no direct relation to transportation and thus will not be included in the 

project. Frost and freeze conditions have an impact on transportation. However, frost and 

freeze conditions are currently being handled by other ground based sensor systems and 

not particularly of interest due to these existing programs (Perry, 1997). 

Storms 

Among these disasters, storms (severe local storm, tropical storm) can cause a lot 

of damage and money lost every year. Except for its direct impact to transportation, a 

storm may also induce some other disaster, such as floods and tornados. Given that the 

use of remote sensing, both ground based and air based, to detect and monitor a storm is 

well established and has been used for a long time, we will not discuss it in the following 

section. However, the direct impacts of storms are listed in Table 2, Table 3, and Table 4. 
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Table 2. Storm’s impacts to roadway. 

Impact Cause Activity 

B
lo

ck
 o

r c
lo

se
ro

ad
w

ay
 

Debris forced onto 
roadway (branches, etc. 
from wind and water) 

Close all or part of roadway (use barricade & signals as 
appropriate) 
Create alternative route(s) 
Dispatch team to clear up roadway 

Stranded vehicles on 
roadway (malfunction, 
stuck, etc.) 

Close all or part of roadway (use barricade & signals as 
appropriate) 
Create alternative route(s) 
Dispatch tow truck 

In
cr

ea
se

 th
e 

pr
ob

ab
ili

ty
 o

f a
cc

id
en

ts
 o

cc
ur

rin
g 

Degradation in road 
surface conditions 
(slippery, soft shoulders 
or road (if dirt), etc) 

Set up temporary warning signal 

Debris forced onto 
roadway (branches, etc. 
from wind and water) 

Dispatch team to clear up roadway 
Set up temporary warning signal 

Loss of traffic signals or 
signs (loss of electric 
power) 

Dispatch repair team 
Send out police officers 
Set up temporary warning signal 

Concealed traffic signs 

Greater variation in 
traffic (speed, stopping 
on shoulders, etc) 

Set up temporary warning signal 

Degradation in visibility 
(rain, fog, etc.) 
Congestion on roadway 
(stranded vehicles, 
accidents, objects, etc.) 

Create alternative route(s) 
Dispatch team to clear up roadway 
Send out police officers 
Dispatch tow truck 

* Storm may induce flood, landslide, or tornado. 
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Table 3. Storm’s impacts to railway. 

Impact Cause Activity 
B

lo
ck

 o
r c

lo
se

 ra
ilw

ay
 d

ue
 to

: 

Debris forced onto 
railway (branches, 
etc. from wind and 
water) 

Close all or part of roadway/railway (use barricade & 
signals as appropriate) 
Inform train conductor of hazard location 
Dispatch team to clear up roadway (railway) 
Scheduling 

Stranded vehicles or 
train on railway 
(malfunction, stuck, 
derailment, etc.) 

Close all or part of roadway/railway (use barricade & 
signals as appropriate) 
Dispatch repair team 
Inform train conductor of hazard location 
Scheduling 
Evacuate passenger 
Dispatch ambulance and first-aid staff 
Dispatch tow truck 

In
cr

ea
se

 th
e 

pr
ob

ab
ili

ty
 o

f a
cc

id
en

ts
 o

cc
ur

rin
g 

du
e 

to
: Degradation on 

railway conditions 
(slippery, loss of 
ballast, etc.) 

Dispatch repair team 
Inform train conductor of hazard location 

Debris forced onto 
railway (branches, 
etc. from wind and 
water) 

Inform train conductor of hazard location 
Dispatch team to clear up roadway (railway) 

Loss of traffic signals 
(loss of electric 
power) 

Dispatch repair team 
Inform train conductor of hazard location 
Send out police officers 
Set up temporary warning signal 

Concealed traffic 
signs (rain, fog, etc.) 

Inform train conductor of hazard location 

Degradation in 
visibility (rain, fog, 
etc.) 

Inform train conductor of hazard location 

* Storm may induce flood, landslide, or tornado. 
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Table 4. Storm’s impacts to pipelines. 

Impact Cause Activities 

C
lo

se
 th

e 
pi

pe
lin

e Damages to pipeline (from 
objects forced onto pipeline) 

Cut off pipeline supply 
Dispatch repair team 
Dispatch team to clear up objects onto pipeline 

Presence of potential hazard  Cut off pipeline supply 

In
cr

ea
se

 th
e 

pr
ob

ab
ili

ty
 

of
 p

ip
el

in
e 

da
m

ag
e 

Pipeline breakage or distortion 
(from weight of objects forced 
onto pipeline) 

Dispatch team to clear up objects onto pipeline 

Dispatch repair team 

Damages to pipeline facilities or 
infrastructure (from objects 
forced onto pipeline, etc.) 

Dispatch team to clear up objects onto pipeline 

Dispatch repair team 

* Storm may induce flood, landslide, or tornado. 

Wildfire 

Wildfires not only result in economic loss but also have a large impact on the 

environment, e.g., unbalance of carbon cycle, pollution of atmosphere, deforestation, and 

a climate impact (Leibrandt and Rico, 1998). However, not all forest fires should be 

suppressed immediately. Some prescribed fires and natural ignited fires are used as 

treatment for plant disease and are good for our natural ecosystem (Prevedel, 1995). 

The United Stated Forest Service (USFS) has used fire potential indices to 

forecast the likelihood of wildfires. These indices are based on ground and remote 

sensing observations. Minardi et al. (1999) use a statistical-base fuel model to predict the 

occurrences of wildfire. The input of this model includes fuel type, elevation, 

precipitation, relative humidity, temperature, and historic record. Among these inputs, 
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fuel type (forest type), precipitation, relative humidity, and temperature can be acquired 

with low spatial resolution (1 km or more), higher spatial resolution is necessary for 

monitoring changes in this data.  

Since forests are usually spread broadly, remote sensing therefore becomes a most 

promising tool for use in wildfire management. Remote sensing is capable of being used 

in risk prevention to monitor vegetation status for early detection, to monitor fire progress, 

and to assess the damage inflicted. The most useful band in fire detection is mid-infrared 

data (3um~5um); visible, thermal infrared, and near-infrared bands are also useful 

(Leibrandt and Rico, 1998). However, optical images are not always available because of 

the appearance of cloud and haze cover during wildfire events (Siegert et al., 1999). 

Kudoh (1999) and Siegert et al. (1999) also found that the use of AVHRR channel 3A 

(1.6 µm) on NOAA-15 is effective in fire detection. Because the observation of wildfires 

is largely dependent on the infrared channel, an additional heat source, especially the sun, 

may highly aggravate the observation (because a pixel in the image is easily saturated by 

an additional heat source, a single pixel of 1.1 km2 area can be saturated by a fire on an 

offshore oil platform). There are several factors that affect the detection and monitoring 

the wildfire (Prevedel, 1995; Siegert et al., 1999):  

Nadir – The perpendicular position of the remote sensing sensor to a ground target. 

Nadir is fixed for each satellite system. It will affect the view angle and view 

distance for each system.  

Time of observation - Solar heating affects the temperature of ground objects. The 

observation time thus becomes critical to avoid misinterpretation. 
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Cloud cover– The appearance of clouds will block or degrade the observation of the 

remote sensing sensor.  

Sun reflection – This is also the problem of observation time. It happens when, for 

example, a satellite is west of target and sun is east of target. 

The speed at which forest fires spread is largely dependent on vegetation state, 

topography, and meteorological factors, such as weather and moisture. Therefore, in 

wildfire monitoring and detection, not all of a region will need to have the same review 

frequency. Generally speaking, in fire detection, recommendations state that the temporal 

resolution should not more than 15 minutes and the spatial resolution is approximately 

500 m (Leibrandt and Rico, 1998). Likewise, in monitoring of fire, a temporal resolution 

of 90 minutes is favored with a spatial resolution about 35m (Leibrandt and Rico, 1998). 

Using an optical base image in assessment of a burned area after the event is 

difficult because of rapid re-growth of vegetation. In the contrast, in radar images, there 

is a great change in image texture because the backscatter is different in a burned area 

compared to a healthy vegetation area. Burned areas are darker in radar images because 

of the low backscatter characteristic of dry soil (Siegert et al., 1999). Siegert et al. (1999) 

suggest using high temporal resolution but low spatial resolution system, such as NOAA-

AVHRR, in tracking the spreading of wildfire. Combining the radar images and ground 

information, such as landuse/landcover, in a geographic information system (GIS) 

environment enhances assessment of the impact of wildfires. 
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Table 5. Wildfire’s impacts to roadway. 

Impact Cause Activity 
B

lo
ck

 o
r c

lo
se

 ro
ad

w
ay

 

Presence of potential 
hazard 

Close all or part of roadway/railway (use barricade & 
signals as appropriate) 
Create alternative route(s) 
Set up temporary warning signal 

Heavy smoke (very 
low visibility) or fire 

Close all or part of roadway/railway (use barricade & 
signals as appropriate) 
Create alternative route(s) 
Send out fire team 
Evacuate area 

Damage to roadway 
(from heat) 

Close all or part of roadway/railway (use barricade & 
signals as appropriate) 
Create alternative route(s) 
Dispatch repair team 

Debris forced onto 
roadway (fallen trees 
or structures) 

Close all or part of roadway/railway (use barricade & 
signals as appropriate) 
Create alternative route(s) 
Dispatch team to clear up roadway (railway) 

In
cr

ea
se

 th
e 

pr
ob

ab
ili

ty
 o

f
ac

ci
de

nt
s o

cc
ur

rin
g 

Damage or loss of 
traffic signals (loss of 
electric power) 

Dispatch repair team 
Send out police officers 
Set up temporary warning signal 

Damage to traffic 
signs following event 

Dispatch repair team 
Set up temporary warning signal 

Degradation in 
visibility (smoke) 

Set up temporary warning signal 

Congestion on 
roadway (evacuation, 
accidents, etc) 

Create alternative route(s) 
Send out police officers 
Dispatch tow truck 
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Table 6. Wildfire’s impacts to railway. 

Impact Cause Activity 
B

lo
ck

 o
r c

lo
se

 ra
ilw

ay
 

Presence of potential 
hazard 

Close all or part of railway 
Create alternative route(s) 
Inform train conductor of hazard location 
Scheduling 

Heavy smoke or fire Close all or part of railway 
Inform train conductor of hazard location 
Scheduling 
Send out fire team 

Damage to railway 
(from heat) 

Close all or part of railway 
Create alternative route(s) 
Create alternative route(s) 
Inform train conductor of hazard location 
Scheduling 

Debris forced onto 
railway (fallen trees 
or structures) 

Close all or part of railway 
Inform train conductor of hazard location 
Dispatch team to clear up railway 
Scheduling 

In
cr

ea
se

 th
e 

pr
ob

ab
ili

ty
 

of
 a

cc
id

en
ts

 o
cc

ur
rin

g Damage or loss of 
traffic signals (loss of 
electric power) 

Create alternative route(s) 

Inform train conductor of hazard location 

Set up temporary warning signal 

Degradation in 
visibility (smoke) 

Inform train conductor of hazard location 
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Table 7. Wildfire’s impacts to pipelines. 

Impact Cause Activities 

C
lo

se
 th

e 
pi

pe
lin

e 

Explosion of pipeline (from heat, 
objects forced onto pipeline) 

Cut off pipeline supply 
Sent out fire team 
Dispatch repair team 

Damages to pipeline (from heat, 
objects forced onto pipeline) 

Cut off pipeline supply 
Dispatch repair team 
Send out fire team 
Dispatch team to clear up objects onto pipeline 

Presence of potential hazard  Cut off pipeline supply 

In
cr

ea
se

 th
e 

pr
ob

ab
ili

ty
 

of
 p

ip
el

in
e 

da
m

ag
e 

Pipeline breakage or distortion 
(from heat, weight of objects 
forced onto pipeline) 

Send out fire team 
Dispatch team to clear up objects onto pipeline 
Dispatch repair team 

Damages to pipeline facilities or 
infrastructure (from objects 
forced onto pipeline, heat, etc.) 

Dispatch team to clear up objects onto pipeline 
Send out fire team 
Dispatch repair team 

Earthquake 

An earthquake is caused by a sudden displacement of the earth’s crust. This 

sudden movement produces seismic waves that result in vibration when they arrive at the 

earth’s surface. The primary damages caused by earthquakes are destruction of structures, 

breakdown of transport activities, loss of public utilities, etc. To complicate matters, at 

times earthquakes may trigger other hazards, e.g. landslides, fires, floods, and tsunamis. 

The strength of an earthquake is measured by magnitude and intensity. Magnitude is the 

physical energy released, where intensity is an earthquake’s effect on the earth’s surface. 

Some aspects of an earthquake are predictable, as we will discuss latter. However, 
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today’s technology is still not able to precisely predict its time and location. And the 

whole event usually last for only a few seconds, making it near impossible to monitor an 

earthquake with a synoptic view.  

Earthquakes are the result of plate movement. This movement will produce stress 

in the earth’s crust, and thus cause small changes in surface topography. Digital elevation 

models (DEMs), or digital terrain models are critical in the study of crustal motions, and 

can be used to predict, and to assess an earthquake’s impact after the event (Massonnet, 

1995). Two types of remote sensing images can be used as input to build DEMs, e.g. 

high-resolution digital photogrammetry and interferometric synthetic aperture radar 

(InSAR) (Vincent, 1997). The spatial resolution requirement of the former must be less 

than or equal to 1 meter. Photogrammetry also needs at least two sets of different 

temporal digitized stereo images to identify the differences in topology, and it needs a 

few years of data collecting in order to build the topography database. The InSAR 

method is more dynamic and has a higher spatial resolution on the order of a few 

centimeters. It also needs two images collected from different orbit positions (Vincent, 

1997). However, an InSAR system requires a stable flight path and flying speed. Thus, a 

satellite-based system would be preferred to an airborne system. But airborne InSAR 

systems are also useful when some additional information, such as GPS data, is added to 

compensate for the drifts of the airborne system. 

An anomalistic increase in the temperature of the earth’s surface is another 

precursor used to predict an earthquake. The temperature rise is not only relative to the 

charged particles while rocks are under stress but is also relative to the release of methane 

and carbon dioxide (Vincent, 1997). Qiang Zuji and Dian Changgong (1993) use thermal 



 

 

 

20 

infrared bands of METEOSAT to collect the temperature changes in earthquake prone 

regions with a temporal resolution twice per hour. They have successfully predicted some 

earthquakes (Vincent, 1997). Since methane (CH4) is also a precursor of earthquakes, one 

could also employ an infrared sensor to detect changes in methane concentrations 

(Vincent, 1997). However, although these two methods are able to predict an earthquake, 

they are still not accurate enough to provide useful information for disaster management.    

With respect to assessing the post-event impacts of an earthquake, a ground-based 

survey is usually not a viable option because of access problems due to the resultant road 

damage and traffic jams. Remote sensing systems thus play a critical role in providing 

timely information to help assess the impact and plan relief activities. Damage to 

structures is always an index to an earthquake’s impact, and a spatial resolution of 2 

meters is necessary to detect the changes in the structures (Gamba and Casciati, 1998). 

High spatial resolution images from all kinds of remote sensing systems, such as radar 

images and photographs (both airborne and space-born), have been proven useful in 

assessing damages to buildings and other infrastructures (Gamba and Casciati, 1998). 

Also, about the acquisition of timely images, there are a lot of different recommendations 

that range from 6 to 48 hours after the event (Ozdogan and El-Baz, 2000). Airborne 

systems are able to meet this spatial resolution requirement, but, because of the large-

scale impact of an earthquake, it is difficult and time-consuming to use airborne systems 

to provide the necessary coverage. Many spaceborne systems, however, generally don’t 

have the required spatial resolution, but future satellite sensors should be able to support 

this technological need.  



 

 

21 

Outside of the spatial resolution requirements, a second problem is that it’s not 

guaranteed that a satellite will be in the right spot to provide the timely images needed. 

Therefore, Ozdogan and El-Baz (2000) suggest using moderate resolution satellite 

images for timely initial damage assessment. In their study, they used two Landsat TM 

images of western Turkey, one is pre-event image and the other one was acquired seven 

hours after the event. Multi-temporal images are required to compare the differences over 

the same area. The result shows that moderate resolution satellite images are capable of 

providing synoptic and large scale assessment, because of the albedo values (the fraction 

of incident radiation that is reflected by a surface) are generally increased in visible and 

infrared bands because of exposed material and reduced shadow (Ozdogan and El-Baz, 

2000). 
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Table 8. Earthquake’s impacts to roadway. 

Impact Cause Activity 
B

lo
ck

 o
r c

lo
se

 ro
ad

w
ay

 

Damage to roadway 
(disjointed surfaces, 
openings, etc.) 

Close all or part of roadway/railway (use barricade & 
signals as appropriate) 
Create alternative route(s) 
Dispatch repair team 

Debris forced onto 
roadway (from fallen 
or collapsed 
structures, trees, etc.) 

Close all or part of roadway/railway (use barricade & 
signals as appropriate) 
Create alternative route(s) 
Dispatch repair team 
Dispatch team to clear up roadway (railway) 
Set up temporary warning signal 

Stranded vehicles on 
roadway (driver flees, 
stuck, etc.) 

Close all or part of roadway/railway (use barricade & 
signals as appropriate) 
Create alternative route(s) 
Dispatch tow truck 

In
cr

ea
se

 th
e 

pr
ob

ab
ili

ty
 o

f a
cc

id
en

ts
 o

cc
ur

rin
g 

Loss of control of 
vehicle 
Debris forced onto 
roadway (from fallen 
or collapsed 
structures, trees, etc.) 

Dispatch team to clear up roadway (railway) 
Set up temporary warning signal 

Loss of traffic signals 
(loss of electric 
power) 

Dispatch repair team 
Send out police officers 
Set up temporary warning signal 

Concealed or 
displaced traffic signs 

Dispatch repair team 

Greater variation in 
traffic (speed, 
stopping on 
shoulders, etc) 

Set up temporary warning signal 

Congestion on 
roadway (evacuation, 
stranded vehicles, 
accidents, objects, 
etc) 

Create alternative route(s) 
Dispatch team to clear up roadway (railway) 
Send out police officers 
Dispatch tow truck 

* Earthquake may induce landslide, tsunami, flood (from damage to a dam), fire, or 
volcano. 
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Table 9. Earthquake’s impacts to railway. 

Impact Cause Activity 
B

lo
ck

 o
r c

lo
se

 ra
ilw

ay
 

Damage to railway 
(distortion, openings, 
etc.) 

Close all or part of roadway/railway (use barricade & 
signals as appropriate) 
Create alternative route(s) 
Dispatch repair team 
Inform train conductor of hazard location 

Stranded vehicles or 
train on railway 
(malfunction, 
derailment, etc.) 

Close all or part of roadway/railway (use barricade & 
signals as appropriate) 
Dispatch repair team 
Inform train conductor of hazard location 
Scheduling 
Evacuate passenger 
Dispatch ambulance and first-aid staff 
Dispatch tow truck 

Debris forced onto 
railway (from fallen 
or collapsed 
structures, trees, etc.) 

Close all or part of roadway/railway (use barricade & 
signals as appropriate) 
Create alternative route(s) 
Dispatch repair team 
Inform train conductor of hazard location 
Dispatch team to clear up roadway (railway) 
Scheduling 

In
cr

ea
se

 th
e 

pr
ob

ab
ili

ty
 o

f
ac

ci
de

nt
s o

cc
ur

rin
g 

Debris forced onto 
railway (from fallen 
or collapsed 
structures, trees, etc.) 

Dispatch repair team 
Inform train conductor of hazard location 
Dispatch team to clear up roadway (railway) 
Scheduling 

Loss of traffic signals 
of signs (loss of 
electric power) 

Dispatch repair team 
Inform train conductor of hazard location 
Send out police officers 
Set up temporary warning signal 

Concealed or 
displaced traffic signs 

Dispatch repair team 
Inform train conductor of hazard location 

* Earthquake may induce landslide, tsunami, flood (from damage to a dam), fire, or 
volcano. 
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Table 10. Earthquake’s impacts to pipelines. 

Impact Cause Activities 

C
lo

se
 th

e 
pi

pe
lin

e Explosion of pipeline (from heat, 
objects forced onto pipeline) 

Cut off pipeline supply 
Sent out fire team 
Dispatch repair team 

Damages to pipeline (from heat, 
vibration, objects forced onto 
pipeline) 

Cut off pipeline supply 
Dispatch repair team 
Send out fire team 
Dispatch team to clear up objects onto pipeline 

In
cr

ea
se

 th
e 

pr
ob

ab
ili

ty
 o

f
pi

pe
lin

e 
da

m
ag

e 

Above ground lines being buried
underground 

Dispatch repair team 
Dispatch team to uncover the pipeline 

Pipeline breakage or distortion 
(from heat, weight of objects 
forced onto pipeline, or 
vibration) 

Send out fire team 
Dispatch team to clear up objects onto pipeline 
Dispatch repair team 

Damages to pipeline facilities or 
infrastructure (from objects 
forced onto pipeline, vibration, 
heat, etc.) 

Dispatch team to clear up objects onto pipeline 
Send out fire team 
Dispatch repair team 

* Earthquake may induce landslide, tsunami, flood (from damage to a dam), fire, or 
volcano. 

Landslide (Avalanche) 

Landslide is a rapid disaster that usually happens in an unstable slope region, 

which always includes the falling, sliding, or flowing of soil and rock. Every year, 

landslides also cause the death or injury of thousands of people and millions of dollars of 

property lost (Raju and Saibaba, 1999). Landslide can be categorized according to the 

form and amount of mass 1) block slides, 2) fan/cone slides, and 3) debris/ mudflows 

(Raju and Saibaba, 1999). There are many factors that affect or trigger the potential of a 

landslide, they are (Singhroy et al., 1998, 1995; Raju and Saibab, 1999): 
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Slope – most landslides occur when slopes are between 15o and 45o 

Landuse – landslides are likely to happen in barren lands, human activities like 

deforest, and fallow lands will increase the probability of a landslide. 

Tectonic elements –tectonic movement such as in an earthquake can trigger a 

landslide. 

Climate – heavy rainfall/snowfall will largely increase the probability of a 

landslide. 

Human activities – such as road construction, mining, agriculture, etc. will 

increase the probability of a landslide. 

Geological type – Shikada et al. (1997) point out that landslide potential is 

relative to vegetation and geological type. In their study areas, most of the 

landslide prone areas are made of Andesite and Mudstone, where most of 

the vegetation cover is cedar. In order words, vegetation cover is an index 

for geological type, which is an index for landslide.  

Landslides are predictable if terrain characteristics are available. However, it’s 

impossible to exactly predict when and where a landslide will occur because the 

relationship between the factors mentioned above is complex (Shikada et al. 1997). And 

since the whole landslide process usually last for only a few seconds, it’s usually not 

possible to monitor it.  

In order to predict and map landslide prone areas, the capability to identify ground 

features is necessary because it may provide clues to potential hazardous zones. 

Traditional point-by-point measurement of geographic data is precise but very time 

consuming and costly, it’s hard to map and analyze enormous volumes of terrain 
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characteristics (Thompson and Howarth, 1996). Some geographic features that can be 

used to produce a landslide hazard map include landcover/ landuse type, slope, tectonics, 

geology, etc. (Thompson and Howarth, 1996; Raju and Saibaba, 1999). With this 

information, protective measures can be employed along transportation routes and 

pipelines (Singhroy et al., 1998) within identified landslide hazard zones. 

Monitoring ground features and ground movement requires higher spatial 

resolution satellite data. Systems such as TM  (thematic mapper) and SPOT, generally 

don’t offer enough resolution unless merged with other high-resolution images (Singhroy 

et al., 1998). Radar imaging thus becomes a more promising resource. The spatial 

resolution of airborne SAR (synthetic aperture radar) can be less than 1 m. In order to 

provide other land cover information, such as vegetation and soils, a TM image is used in 

combination with the SAR image. The resulting SAR/TM images will have different 

colors to represent different landslide features, e.g. rock slump, block slide, scars, faults, 

rupture line, and debris lobe (Singhroy, 1995).  

InSAR (Interferometric synthetic aperture radar) is another technology for 

monitoring ground features and ground movements. Its satellite-based spatial resolution 

can be as small as a few centimeters (Grivas et al., 1998). One of the most useful 

applications is InSAR derived DEMs (digital elevation model), which can measure 

changes as small as a few centimeters over time. Another advantage of using InSAR to 

derive DEMs is that it doesn’t need to include any correlation process (Singhroy et al., 

1998). But, the acquisition of airborne InSAR is difficult in that it requires precisely 

repeating flightpaths (Grivas et al., 1998). The information provided by a GPS may be 

added to compensate vertical and horizontal drift (Singhroy et al., 1998). 



 

 

 

27 

SAR/TM and InSAR images are useful for monitoring ground features and 

ground movements. InSAR has a better representation of elevation and slope changes, 

while SAR/TM is good for characterizing retrogressive slope failures and flow features 

(Singhroy et al., 1998). These techniques can be integrated with traditional airborne 

photographs that are currently used for landslide survey. Some criteria for using remote 

sensing images in recognizing landslide are as follow (Raju and Saibaba, 1999): 

- Abrupt tonal and textural variations 

- Detached blocks of hills separated by arcuate/rectangular escarpments 

- Exposure of fresh rock surfaces along the landslide planes 

- Spread of large volumes of detached material near the foothills 

- Extensive point bar deposits, river terraces and shift in the river course at places 

In the aspect of assessment of the impact of landslides, different data layers (such 

as landuse/ landcover, DEM, infrastructures, etc.) can be overlaid and analyzed in a GIS 

system. 
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Table 11. Landslide’s impacts to roadway. 

Impact Cause Activity 
B

lo
ck

 o
r c

lo
se

 ro
ad

w
ay

 

Presence of potential 
hazard 

Close all or part of roadway (use barricade & signals as 
appropriate) 
Create alternative route(s) 

Damage to roadway Close all or part of roadway (use barricade & signals as 
appropriate) 
Create alternative route(s) 
Dispatch repair team 

Debris forced onto 
roadway (Mud, rock, 
etc.) 

Close all or part of roadway (use barricade & signals as 
appropriate) 
Create alternative route(s) 
Dispatch team to clear up roadway 

Stranded vehicles on 
roadway (crushed or 
damaged from falling 
debris) 

Close all or part of roadway (use barricade & signals as 
appropriate) 
Create alternative route(s) 
Dispatch team to clear up roadway 
Dispatch tow truck 

In
cr

ea
se

 th
e 

pr
ob

ab
ili

ty
 o

f a
cc

id
en

ts
oc

cu
rr

in
g 

Degradation in road 
surface conditions 
(slippery if mud, etc) 

Set up temporary warning signal 

Debris forced onto 
roadway (Mud, rock, 
etc.) 

Dispatch team to clear up roadway 
Set up temporary warning signal 

Destroyed or 
concealed traffic 
signs or signals 

Dispatch repair team 
Set up temporary warning signal 

Congestion on 
roadway (stranded 
vehicles, accidents, 
objects, etc) 

Create alternative route(s) 
Dispatch team to clear up roadway 
Send out police officers 
Dispatch tow truck 
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Table 12. Landslide’s impacts to railway. 

Impact Cause Activity 
B

lo
ck

 o
r c

lo
se

 ra
ilw

ay
 

Presence of potential 
hazard 

Close railway 
Create alternative route(s) 
Inform train conductor of hazard location 

Damage to railway Close railway 
Create alternative route(s) 
Dispatch repair team 
Inform train conductor of hazard location 
Scheduling 

Debris forced onto 
railway (Mud, rock, 
etc.) 

Close railway 
Inform train conductor of hazard location 
Dispatch team to clear up railway 
Scheduling 

Stranded vehicles or 
train on railway 
(crushed or damaged 
from falling debris, 
derailment, etc.) 

Close railway 
Dispatch repair team 
Inform train conductor of hazard location 
Dispatch team to clear up railway 
Scheduling 
Evacuate passenger 
Dispatch ambulance and first-aid staff 
Dispatch tow truck 

In
cr

ea
se

 th
e 

pr
ob

ab
ili

ty
 o

f
ac

ci
de

nt
s o

cc
ur

rin
g 

Degradation in 
railway condition 
(mud on railway, lost 
of ballast, etc.) 

Dispatch repair team 
Inform train conductor of hazard location 

Debris forced onto 
railway (Mud, rock, 
etc.) 

Inform train conductor of hazard location 
Dispatch team to clear up railway 

Destroyed or 
concealed traffic 
signs or signals 

Dispatch repair team 
Inform train conductor of hazard location 
Send out police officers 
Set up temporary warning signal 
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Table 13. Landslide’s impacts to pipelines. 

Impact Cause Activities 

C
lo

se
 th

e 
pi

pe
lin

e Explosion of pipeline (from 
objects forced onto pipeline) 

Cut off pipeline supply 
Sent out fire team 
Dispatch repair team 

Damages to pipeline (from 
vibration, objects forced onto 
pipeline) 

Cut off pipeline supply 
Dispatch repair team 
Dispatch team to clear up objects onto pipeline 

Presence of potential hazard  Cut off pipeline supply 

In
cr

ea
se

 th
e 

pr
ob

ab
ili

ty
 

of
 p

ip
el

in
e 

da
m

ag
e 

Above ground lines being buried
underground 

Dispatch repair team 
Dispatch team to uncover the pipeline 

Pipeline breakage or distortion 
(from, weight of objects forced 
onto pipeline, or vibration) 

Dispatch team to clear up objects onto pipeline 
Dispatch repair team 

Damages to pipeline facilities or 
infrastructure (from objects 
forced onto pipeline, vibration, 
etc.) 

Dispatch team to clear up objects onto pipeline 
Dispatch repair team 

Flood 

Floods are one of the most widespread natural disasters and cause damage to both 

agricultural crops and properties. The presence and magnitude of flood-hazards are 

relative to the associated human activities, such as the concentration of population living 

in low altitude areas, these activities may lead to retarding the hazard-reduction efforts or 

increasing the extent of damages due to flooding (Chen, 1999). Because a flood can be 

either a slow or rapid disaster, the effort needed for monitoring a flood is similar to 

assessing the damages caused by flood. Thus, monitoring floods is not only necessary for 

planning relief activities, but is also necessary to shift from relief to long-term flood 

mitigation planning. There are several types of flood hazards: stream flooding, tidal 
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floods, and waterlogging. Aerial observation is often impossible due to the bad weather 

and may be very time consuming because of the large inundation areas during the event. 

Satellite remote sensing systems that can penetrate cloud cover could thus provide a 

quick and cost effective source for flood related information. 

Timely information about a flood’s extent, intensity, duration, and impact can 

help to reduce its damages (Kogan, 1998). Chen (1999) used a flood/waterlogging hazard 

management system (M-ISM) for coastal plain lowlands. This system uses the 

information from two sub-systems, hazard-causing environment system (E-ISM) and 

hazard-delimiting system (D-ISM). Factors they used to build the different systems are 

given in Table 14. 

As we can see, some information used by the hazard management system can be 

derived directly or indirectly from remote sensing techniques. This information includes 

land use pattern, ground surface elevation, ground surface gradient, soil type, vegetation 

and crop type, surface water level, tidal level, and atmospheric conditions. 

Geological information is an important factor in flood prediction and risk 

assessment, because geo-structure is the main cause of run-off trends, erosion trends, and 

water stagnation (Baggio and Massironi, 1998). “The reconstruction of a geo-mechanical-

fracturing model of the rock substratum can be the main element to localize the lower 

plane areas that probably draw the flood (Baggio and Massironi, 1998).” Satellite 

multispectral data is useful in recognition of important tectonic elements. From these 

tectonic elements, a tectonic model can be created. 
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Table 14. Factors used in M-ISM, E-ISM, and D-ISM. 

M-ISM E-ISM D-ISM 
Land use pattern 
Protection capacity of the 
levees 
Pumping/drainage capacity 
Retention Storage capacity 

Legislation and insurance 
policies 
Investment 
Hazard monitoring and 
forecasting 
Contingency plans and 
hazard-reduction planning 
Economic production 
structure 
Hazard awareness 

Ground surface elevation 
Ground surface gradient 

Soil type 
Vegetation and crop type 

Precipitation amount 

Runoff 
Groundwater depth 

Surface water level 

Tidal level 

Atmospheric conditions 
Background of Quaternary 
geology

 Storm surge
 Astronomic factors 

Ground subsidence 
Sea-level rising 

Storm surge influx 
Heavy and long-duration 
precipitation processes 
Water levels  

Hazard-impacted area 
Future climate warming 

Water surface gradient 

The capability to distinguish between flooded area, normal water bodies, and land 

is essential in flood assessment (Islam and Sado, 1998). In order to gain early assessment 

and a synoptic view of flooding, Chen et al. (1999) used the Defense Satellite 

Meteorological Program (DMSP) Special Sensor Microwave/Imager (SSM/I) to monitor 

the flood in China. The reason for choosing SSM/I is 1) it’s a passive microwave sensor 

and thus can penetrate thick cloud cover and 2) it has a high temporal resolution (6 hours 
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revisit time). However, the low spatial resolution of SSM/I (12.5 km and 25 km) restricts 

its ability to provide more detailed information.  

For most optical sensors, the near-infrared (NIR) band is generally used to detect 

water bodies because of its lower reflectance compare to other land objects (Takeuchi, et 

al. 1999). Using multi-temporal images, both pre- and post-event images have been 

recommended to tell the differences between ground features since sometimes it’s 

difficult to identify ground changes using a single image. Then the DEMs can be 

combined with the images to produce flooded area elevation models (Islam and Sado, 

1998). Although most of the current spaceborne optical sensors support improved 

temporal resolutions and larger swath widths, due to the fact that bad weather may reduce 

the visibility of optical sensors, passive optical images can often be useful several days 

after the event for monitoring the flooded areas. Techniques exist that can distinguish 

between water bodies and land in thin cloud and cloud shadow areas (Sheng et al., 1998). 

However, there is still no optic-based method to deal with situations when clouds are 

thick. 

In contrast, spaceborne active radar, because of its penetration capacity and all 

weather characteristics, is excellent in capturing real time or near real time images in all 

weather and day or night condition (Maggi et al., 1998; Mahmood and Parashar, 1999; 

Takeuchi et al. 1999). Mahmood and Parashar (1999) use Canada’s RADARAST-1 

satellite to monitor the flood condition in Bangladesh. The flooded land areas are 

detectable in a radar image because the tone changes from dark to dark gray as the 

amount of water and inundated objects increase. Because the advanced Synthetic 

Aperture Radar (SAR) system on the RADARAST-1 satellite, it is possible to select 
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image parameters (angle of the incident beam, the width of the imaging swath, and the 

ground resolution) and the instantaneous view of flood areas in Bangladesh is acquired in 

a single image at a certain time. Takeuchi et al. (1999) claimed that using single SAR 

images in distinguishing water body and landcover is possible because of water’s low 

backscattering characteristic in a RADAR image. However, it is sometimes difficult to 

distinguish between a water body and various landcover types only by backscatter. Thus, 

in their study, they use multi-temporal images, pre- and post-event, acquired from JERS-

1 SAR and compare the backscatter of the two images. Radar images still have some 

inherent shortages, such as distortion and complex comprehension of acquired signals, 

which make preprocessing of radar images necessary.  

In the view of transportation, since it is possible to distinguish between water 

bodies and land from remote sensing images (passive and active), the combination of a 

GIS system and remote sensing images is useful in determining what roads are accessible, 

and therefore, aid in managing efforts to close roads and devise new routes.  

For long-term flood or water logging hazards, vegetation stress is another index 

for assessing soil moisture. VCI (Vegetation Condition Index) and TCI (Temperature 

Condition Index) are two indexes to identify vegetation condition. VCI is derived from 

visible and near infrared bands, and TCI is derived from thermal band. If vegetation 

stress is the result of excessive soil moisture, then VCI will decrease in value. In flood 

areas, the surface temperature will decrease, resulting in a decrease in TCI (Kogan, 1998). 

Thus, the combination of TCI and VCI measures not only can be use to assess water 

logging type flood, but also it can be used to identify wildfire prone areas. 
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Table 15. Flood’s impacts to roadway. 

Impact Cause Activity 

B
lo

ck
 o

r c
lo

se
 ro

ad
w

ay
 

Presence of potential 
hazard 

Close all or part of roadway (use barricade & signals as 
appropriate) 
Create alternative route(s) 
Evacuate area 

High water Close all or part of roadway (use barricade & signals as 
appropriate) 
Create alternative route(s) 

Damage roadway Close all or part of roadway (use barricade & signals as 
appropriate) 
Create alternative route(s) 
Dispatch repair team 

Debris forced onto 
roadway 

Close all or part of roadway (use barricade & signals as 
appropriate) 
Create alternative route(s) 
Dispatch team to clear up roadway 

Stranded vehicles on 
roadway (malfunction, 
stuck, etc) 

Close all or part of roadway (use barricade & signals as 
appropriate) 
Create alternative route(s) 
Dispatch tow truck 

In
cr

ea
se

 th
e 

pr
ob

ab
ili

ty
 o

f a
cc

id
en

ts
oc

cu
rr

in
g 

Debris forced onto 
roadway 

Dispatch team to clear up roadway 

Degradation in road 
surface conditions 

Set up temporary warning signal 

Loss of traffic signals 
(loss of electric power) 

Create alternative route(s) 
Send out police officers 

Concealed traffic signs 
Greater variation in 
traffic (speed, stopping 
on shoulders, etc) 

Set up temporary warning signal 

Congestion on roadway 
(evacuation, stranded 
vehicles, accidents, 
objects, etc) 

Close all or part of roadway (use barricade & signals as 
appropriate) 
Send out police officers 
Dispatch tow truck 
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Table 16. Flood’s impacts to railway. 

Impact Cause Activity 

B
lo

ck
 o

r c
lo

se
 ra

ilw
ay

 

Presence of potential 
hazard 

Close railway 
Create alternative route(s) 
Inform train conductor of hazard location 
Scheduling 

High water Close railway 
Create alternative route(s) 
Inform train conductor of hazard location 
Scheduling 

Damage railway Close railway 
Create alternative route(s) 
Dispatch repair team 
Inform train conductor of hazard location 
Scheduling 

Debris forced onto 
railway 

Close railway 
Inform train conductor of hazard location 
Dispatch team to clear up railway 
Scheduling 

Stranded train on 
railway (malfunction, 
derailment, etc.) 

Close railway 
Dispatch repair team 
Inform train conductor of hazard location 
Scheduling 
Evacuate passenger 
Dispatch ambulance and first-aid staff 
Dispatch tow truck 

In
cr

ea
se

 th
e 

pr
ob

ab
ili

ty
 o

f
ac

ci
de

nt
s o

r o
cc

ur
rin

g 

Debris forced onto 
railway (from water 
flow) 

Inform train conductor of hazard location 
Dispatch team to clear up railway 
Scheduling 

Degradation in 
railroad conditions 

Dispatch repair team 
Inform train conductor of hazard location 

Loss of traffic signals 
or signs (loss of 
electric power) 

Dispatch repair team 
Inform train conductor of hazard location 
Send out police officers 
Set up temporary warning signal 
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Table 17. Flood’s impacts to pipelines. 

Impact Cause Activities 

C
lo

se
 th

e 
pi

pe
lin

e 

Damages to pipeline (from 
objects forced onto pipeline 

Cut off pipeline supply 
Dispatch repair team 
Dispatch team to clear up objects onto 
pipeline 

Presence of potential hazard  Cut off pipeline supply 

In
cr

ea
se

 th
e 

pr
ob

ab
ili

ty
 

of
 p

ip
el

in
e 

da
m

ag
e 

Pipeline breakage or distortion 
(from weight of objects forced 
onto pipeline) 

Dispatch team to clear up objects onto 
pipeline 
Dispatch repair team 

Damages to pipeline facilities or 
infrastructure (from objects 
forced onto pipeline, etc.) 

Dispatch team to clear up objects onto 
pipeline 
Dispatch repair team 

Volcano 

Volcanoes are the result of endogenous energy that must be released from the earth.  

Volcanoes are classified as rapid disasters, however, since their potential locations are 

known and the whole processes may last up to several days. It gives remote sensing 

systems sufficient time to monitor the activities of volcanoes at intervals from beginning 

to the end. Volcanic hazards can be divided into five types; they are pyroclastic currents, 

lahars or mudflows, lava flows, tephra fall, and lava doming (Slob et al., 1998).  

With respect to predicting the eruption of a volcano and assessing volcanic risk, 

satellite remote sensing can help to provide volcanic information concerning soil 

deformation, temperature, gases, and aerosols (Gregori, 1995). Abnormal temperature is 

a precursor to an active volcano. Zuji and Changgong (1993) have successfully used 

thermal bands on METEOSAT (spatial resolution of 2.3 km) to detect the abnormal 
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increases in temperature, and have successfully predicted two volcanic eruptions several 

days earlier than they took place. Another precursor is the formation of lava domes, 

shortwave infrared sensors and thermal infrared bands are useful in monitoring the 

formation of lava domes. A lava dome is formed on the active volcanic vent if lava is too 

viscous to flow. Since lava domes are often found on volcanoes that erupt explosively, 

the growth of lava domes is useful information to assist in predicting volcano eruption, 

and pyroclastic flow hazards (Wooster et al., 1998). Monitoring lava domes doesn’t 

require high spatial resolution. Generally speaking, shortwave infrared and thermal 

infrared bands with a spatial resolution of 1 km is suitable for monitoring the formation 

of lava domes. 

Small ground movements are a precursor to assess the activity of a volcano. Radar 

images are suitable for small ground movement monitoring. However, radar images have 

inherent disadvantage, e.g. large distortions in the mountainous areas due to topographic 

differences. Processes such as ortho-rectification and geo-referencing have to be 

performed in order to obtain accurate morphological features (Slob, 1998). 

Visible and near-infrared bands are useful in volcanic activities monitoring. In 

(Tanaka et al., 1998), they used three satellite sensors, e.g. SPOT/HRV, Landsat/TM, and 

MOS/MESSR, to monitor and assess volcanic activities. The result shows that visible and 

infrared bands are useful in observing pyroclastic and debris flows.   
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Table 18. Volcano’s impacts to roadway. 

Impact Cause Activity 
B

lo
ck

 o
r c

lo
se

 ro
ad

w
ay

 d
ue

 to
: 

Presence of potential 
hazard 

Close all or part of roadway (use barricade & signals as 
appropriate) 
Create alternative route(s) 
Evacuate area 

Destroyed roadway Close all or part of roadway (use barricade & signals as 
appropriate) 
Create alternative route(s) 
Dispatch repair team 
Built temporal road 

Damage to roadway Close all or part of roadway (use barricade & signals as 
appropriate) 
Create alternative route(s) 
Dispatch repair team 

Debris forced onto 
roadway (lava, ash) 

Close all or part of roadway (use barricade & signals as 
appropriate) 
Create alternative route(s) 
Dispatch team to clear up roadway 

In
cr

ea
se

 th
e 

pr
ob

ab
ili

ty
 o

f a
cc

id
en

ts
 o

cc
ur

rin
g 

du
e 

to
: Degradation in road 

surface conditions 
(from ash) 

Set up temporary warning signal 

Debris forced onto 
roadway (ash, rock, 
etc.) 

Dispatch team to clear up roadway 

Loss of traffic signals 
or signs (loss of 
electric power) 

Dispatch repair team 
Send out police officers 
Set up temporary warning signal 

Concealed traffic 
signs 
Degradation in 
visibility (ash and 
smoke) 
Congestion on 
roadway (evacuation, 
accidents, objects, 
etc) 

Create alternative route(s) 
Dispatch team to clear up roadway 
Send out police officers 
Dispatch tow truck 
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Table 19. Volcano’s impacts to railway. 

Impact Cause Activity 
B

lo
ck

 o
r c

lo
se

 ra
ilw

ay
 d

ue
 to

: 

Presence of potential 
hazard 

Close all or part of railway 
Create alternative route(s) 
Inform train conductor of hazard location 

Damage to railway Close all or part of railway 
Create alternative route(s) 
Dispatch repair team 
Inform train conductor of hazard location 
Build temporary railroad 
Scheduling 

Debris forced onto 
railway (rock, ash) 

Close all or part of railway 
Inform train conductor of hazard location 
Dispatch team to clear up railway 
Scheduling 

Stranded vehicles or 
train on railway 
(crushed or damaged 
from falling debris, 
derailment, etc.) 

Close all or part of railway 
Dispatch repair team 
Inform train conductor of hazard location 
Scheduling 
Evacuate passenger 
Dispatch ambulance and first-aid staff 
Dispatch tow truck 

In
cr

ea
se

 th
e 

pr
ob

ab
ili

ty
 o

f
ac

ci
de

nt
s o

cc
ur

rin
g 

du
e 

to
:

Degradation on 
railroad condition 
(from ash) 

Inform train conductor of hazard location 
Dispatch team to clear up railway 

Debris forced onto 
railroad (ash, rock, 
etc.) 

Inform train conductor of hazard location 
Dispatch team to clear up railway 

Loss of traffic signs 
and signals 

Dispatch repair team 
Inform train conductor of hazard location 
Set up temporary warning signal 

Degradation in 
visibility (smoke and 
ash) 

Inform train conductor of hazard location 
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Table 20. Volcano’s impacts to pipelines. 

Impact Cause Activities 

C
lo

se
 th

e 
pi

pe
lin

e 

Explosion of pipeline (from heat, 
objects forced onto pipeline) 

Cut off pipeline supply 
Sent out fire team 
Dispatch repair team 

Damages to pipeline (from heat, 
vibration, objects forced onto 
pipeline) 

Cut off pipeline supply 
Dispatch repair team 
Send out fire team 
Dispatch team to clear up objects onto pipeline 

Presence of potential hazard  Cut off pipeline supply 

In
cr

ea
se

 th
e 

pr
ob

ab
ili

ty
 o

f
pi

pe
lin

e 
da

m
ag

e 

Above ground lines being buried
underground 

Dispatch repair team 
Dispatch team to uncover the pipeline 

Pipeline breakage or distortion 
(from heat, weight of objects 
forced onto pipeline, or 
vibration) 

Send out fire team 
Dispatch team to clear up objects onto pipeline 
Dispatch repair team 

Damages to pipeline facilities or 
infrastructure (from objects 
forced onto pipeline, vibration, 
heat, etc.) 

Dispatch team to clear up objects onto pipeline 
Send out fire team 
Dispatch repair team 

Snow 

The need to monitor snow cover is important for several reasons. These include 

(Standley and Barrett, 1999):  

• Snow has implications for human interaction (leisure, travel), 

• Snow affects transportation (snow extent), 

• Snow is a factor in flood prediction (water equivalent), and 

• Snow is a factor in avalanche prediction (snow depth) 

Meteorological weather systems for predicting snow precipitation have been 

developed and used for many years. This section will only address the technology of 
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detecting snow cover and snow depth for transportation purposes. Visible and infrared 

radiometers can provide high spatial resolution maps of snow areas. But due to the 

occurrence of clouds, its usage is limited. A passive microwave (PM) radiometer, with its 

near all-weather capability, has been used widely in snow cover detection. Because of the 

crystals within the snow, the scattering of microwave radiation is different, thus making it 

easy to detect by PM sensors. Although PM imagery can provide near real time snow 

cover and snow depth data, conventional ground snow depth observations are still needed 

to calibrate and validate PM data (Kelly and Atkinson, 1999). The snow depth and 

ground elevation have strong associations. Thus geostatistical interpolation of DEMs and 

PM images can be used to estimate more accurate snow depth (Kelly and Atkinson, 

1999). The PM imagery is not perfect because the discrimination of snow cover areas and 

precipitation cloud areas is sometimes doubtful. In order to distinguish between cloud top 

or snow cover on the ground, IR data can be added to detect temperature difference 

(Standley and Barrett, 1999). Generally speaking, in monitoring snow cover over large 

areas, it doesn’t require high spatial resolution. Spatial resolutions equal or less than 1 km, 

and temporal resolutions equal to 1 day are sufficient. 

In the beginning, the use of SAR to detect snow extent mainly relied on the 

difference in backscattering between snow and other ground objects. However, 

sometimes it is not so easy to discriminate between snow and ground objects just by 

backscattering value (Shi et al. 1997). Thu, Shi et al. (1997) use Spaceborne Imaging 

Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) multi-pass images, which 

have selectable spatial resolution from 10 to 200 meters, to detect the changes. This 
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method has two main advantages: 1) it can detect both dry and wet snow, and 2) it 

doesn’t require any topographic information.  

For transportation use a higher spatial resolution is needed, e.g. it’s hard to 

identify if a road segment has snow buildup on it using a 1 km spatial resolution image. 

Thus, airborne radar sensors such as the Danish EMISAR and ESAR are used to provide 

2 m or better spatial resolution in detecting snow cover extent (Noll et al. 1996).  Since 

modern remote sensing techniques have the capability to identify snow cover area and 

estimate snow depth. The combination of GIS and remote sensing images can provide 

near real time information to manage and control snowplowing and transportation routing. 
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Table 21. Snow and ice’s impacts to roadway. 

Impact Cause Activity 
B

lo
ck

 o
r c

lo
se

 ro
ad

w
ay

 

Presence of potential 
hazard 

Close all or part of roadway (use barricade & signals as 
appropriate) 
Create alternative route(s) 

Snow or ice buildup Close all or part of roadway (use barricade & signals as 
appropriate) 
Create alternative route(s) 
Set up temporary warning signal 
Dispatch snowplows 

Stranded vehicles on 
roadway 
(malfunction, stuck, 
etc) 

Close all or part of roadway (use barricade & signals as 
appropriate) 
Create alternative route(s) 
Dispatch tow truck 

In
cr

ea
se

 th
e 

pr
ob

ab
ili

ty
 o

f a
cc

id
en

ts
 o

cc
ur

rin
g 

Degradation in road 
surface conditions 
(slippery, soft 
shoulders or road (if 
dirt), etc) 

Set up temporary warning signal 

Loss of traffic signals 
(loss of electric 
power) 

Dispatch repair team 
Send out police officers 

Concealed or 
displaced traffic signs 

Dispatch repair team 

Greater variation in 
traffic (speed, 
stopping on 
shoulders, etc) 

Set up temporary warning signal 

Degradation in 
visibility (snow fall) 

Set up temporary warning signal 

Congestion on 
roadway (evacuation, 
stranded vehicles, 
accidents, objects, 
etc) 

Create alternative route(s) 
Send out police officers 
Dispatch tow truck 
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Table 22. Snow and ice’s impacts to railway. 

Impact Cause Activity 
B

lo
ck

 o
r c

lo
se

 ra
ilw

ay
 

Presence of potential 
hazard 

Close railway 
Create alternative route(s) 
Inform train conductor of hazard location 
Scheduling 

Snow or ice buildup Create alternative route(s) 
Inform train conductor of hazard location 
Scheduling 
Dispatch snowplows 

Stranded vehicles or 
train on railway 
(malfunction, 
derailment, etc.) 

Close railway 
Dispatch repair team 
Inform train conductor of hazard location 
Scheduling 
Evacuate passenger 
Dispatch ambulance and first-aid staff 
Dispatch tow truck 

In
cr

ea
se

 th
e 

pr
ob

ab
ili

ty
 o

f
ac

ci
de

nt
s o

cc
ur

rin
g 

Degradation in road 
surface conditions 
(slippery, etc.) 

Inform train conductor of hazard location 

Scheduling 
Loss of traffic signals 
or signs (loss of 
electric power) 

Dispatch repair team 
Inform train conductor of hazard location 
Send out police officers 
Set up temporary warning signal 

Concealed traffic 
signs (from snow fall) 

Inform train conductor of hazard location 

Degradation in 
visibility (snow fall) 

Inform train conductor of hazard location 
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Table 23. Snow and ice’s impacts to pipelines. 

Impact Cause Activities 
Close the 
pipeline 

Low temperature may 
congest pipeline 

Increase the 
probability of 
pipeline damage 

Pipeline breakage or 
distortion (from cold 
temperature) 

Dispatch repair team 

Tornado 

Tornados represent an on-going research area for many, but due to the rapid 

nature of the event no system can predict exactly when and where it will take place. With 

respect to post-event damage assessment, because tornados are usually accompanied by 

storms involving thick clouds and strong winds, using airborne remote sensing to acquire 

timely data can be dangerous. Spaceborne radar systems thus provide a promising safe 

method to assess post-event damages. The spatial and temporal resolution requirement of 

assessing ground damage is similar to those involved in the assessment of earthquakes. 

The acquisition of timely images between 6 and 48 hours after the event is recommended 

(Ozdogan and El-Baz, 2000). A spatial resolution of 2 m or better is required in assessing 

infrastructure damage. Higher spatial resolutions of 0.25 m are required to detect 

common objects that may be forced onto roadways by strong wind (Jensen and Cowen, 

1999). However, most spaceborne systems can’t currently meet these technological 

requirements. 

Since a tornado’s damage is often restricted to relatively small regions, roadway 

access is usually available to some degree after such events. Air and ground based 
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surveys are the best way to assess such damages for now. However, as the technology 

progresses in the future, we may see increased use of spaceborne radar-based sensor 

systems for assessment of tornado damage. 
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Table 24. Tornado’s impacts to roadway. 

Impact Cause Activity 
B

lo
ck

 o
r c

lo
se

 ro
ad

w
ay

 d
ue

 to
: 

Presence of potential 
hazard 

Advertise Tornado warning 

Damage to roadway Close all or part of roadway (use barricade & signals as 
appropriate) 
Create alternative route(s) 
Dispatch repair team 

Debris forced onto 
roadway (from wind) 

Close all or part of roadway (use barricade & signals as 
appropriate) 
Create alternative route(s) 
Dispatch team to clear up roadway 

Stranded vehicles on 
roadway (abandoned, 
transplanted, etc) 

Close all or part of roadway (use barricade & signals as 
appropriate) 
Create alternative route(s) 
Dispatch tow truck 

In
cr

ea
se

 th
e 

pr
ob

ab
ili

ty
 o

f a
cc

id
en

ts
 o

cc
ur

rin
g 

du
e 

to
: 

Degradation in road 
surface conditions 
(slippery, soft 
shoulders or road, 
etc) 

Set up temporary warning signal 

Debris forced onto 
roadway (from wind) 

Dispatch team to clear up roadway 

Loss of traffic signals 
(missing or loss of 
electric power) 

Dispatch repair team 
Send out police officers 

Missing traffic signs Dispatch repair team 
Set up temporary warning signal 

Greater variation in 
traffic 

Set up temporary warning signal 

Degradation in 
visibility (rain, etc.) 
Congestion on 
roadway (evacuation, 
stranded vehicles, 
accidents, objects, 
etc) 

Create alternative route(s) 
Dispatch team to clear up roadway 
Send out police officers 
Dispatch tow truck 

* Tornado may induce storm 
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Table 25. Tornado’s impacts to railway. 

Impact Cause Activity 
B

lo
ck

 o
r c

lo
se

 ra
ilw

ay
 

Presence of potential 
hazard 

Inform train conductor of hazard location 

Damage to railroad Close all or part of railway 
Dispatch repair team 
Inform train conductor of hazard location 
Scheduling 

Debris forced onto 
railroad (from wind) 

Close all or part of railway 
Inform train conductor of hazard location 
Dispatch team to clear up railway 
Scheduling 

Stranded vehicles or 
locomotive on 
railway (abandoned, 
transplanted, 
derailment, etc.) 

Close all or part of railway 
Dispatch repair team 
Inform train conductor of hazard location 
Scheduling 
Evacuate passenger 
Dispatch ambulance and first-aid staff 
Dispatch tow truck 

In
cr

ea
se

 th
e 

pr
ob

ab
ili

ty
 o

f a
cc

id
en

ts
 

Degradation in 
railroad conditions 
(slippery, lost of 
ballast, etc.) 

Dispatch repair team 
Inform train conductor of hazard location 

Debris forced onto 
railway (from wind) 

Inform train conductor of hazard location 
Dispatch team to clear up railway 

Loss of traffic signals 
(missing or loss of 
electric power) 

Dispatch repair team 
Inform train conductor of hazard location 
Send out police officers 
Set up temporary warning signal 

Missing traffic signs Dispatch repair team 
Inform train conductor of hazard location 
Set up temporary warning signal 

Degradation in 
visibility (rain, etc.) 

Inform train conductor of hazard location 

* Tornado may induce storm. 
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Table 26. Tornado’s impacts to pipelines. 

Impact Cause Activities 

C
lo

se
 th

e 
pi

pe
lin

e 

Explosion of pipeline (from 
objects forced onto pipeline) 

Cut off pipeline supply 
Sent out fire team 
Dispatch repair team 

Damages to pipeline (from 
vibration, objects forced onto 
pipeline) 

Cut off pipeline supply 
Dispatch repair team 
Dispatch team to clear up objects onto pipeline 

In
cr

ea
se

 th
e 

pr
ob

ab
ili

ty
 

of
 p

ip
el

in
e 

da
m

ag
e 

Pipeline breakage or distortion 
(from weight of objects forced 
onto pipeline, or vibration) 

Dispatch team to clear up objects onto pipeline 

Dispatch repair team 

Damages to pipeline facilities or 
infrastructure (from objects 
forced onto pipeline, vibration, 
etc.) 

Dispatch team to clear up objects onto pipeline 

Dispatch repair team 



 

 
 

 

 

 

CHAPTER IV 

TECHNOLOGICAL REQUIREMENTS OF REMOTE SENSING 

This section explores the technological requirements for using remote sensing as a 

means for acquiring the information needed to detect and assess the causes for the various 

disaster/hazards presented in the previous section.  

Debris on roadways and railway 

It’s always preferred to detect objects on the roadway as soon as possible. Since 

access to real-time images is not always possible, a temporal resolution of 5 to 60 

minutes can provide reasonable performance (Jensen and Cowen, 1999). However, no 

spaceborne remote sensing system currently meets this temporal requirement and also 

provides the necessary spatial resolution as listed in Table 27. Geo-synchronous orbit 

satellites, such as GOES, can provide the necessary temporal resolution, but only provide 

spatial resolutions on the order of 1 km and can’t cover all the areas needed. Jensen and 

Cowen (1999) identify two other methods that can provide 5 to 60 minute temporal 

resolution, (1) repetitive aerial photography (very costly), or (2) the placement of 

dedicated sensors on the top edge of buildings and posts to obtain oblique views. But 

both of these two methods are not capable of monitoring large areas and are easily 

compromised by bad weather. Therefore, in each of the cases discussed below involving 

51 
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the detection of debris, there is a need for access to a cost-effective source for imagery 

that possesses enhanced temporal resolution. 

There are several types of objects that may commonly be deposited onto a 

roadway/railway as a result of the various disaster/hazards. Proposed technological needs 

for detecting each of these objects in terms of the temporal, spatial, and spectral 

resolutions are given in Table 27. 

Table 27. Remote sensing requirements for detecting objects on the roadway. 

 Temporal Spatial Spectral 
Type of objects Resolution Resolution Resolution 
Tree ASAP ~ 0.25 m V-NIR 
Rock ASAP ~ 0.25 m Pan-Radar 
Vehicle ASAP ~ 1 m Pan-V 
Mud < 1 day ~ 1 m Pan-V 
Snow & Ice < 1 day ~ 1 m V-NIR-Passive microwave 
Ash < 1 day ~ 1 m Pan-V 
Lava * ~ 30 m Pan-V-NIR 
Water < 1 day < 1 m Pan-V-NIR-Radar 
Building debris ASAP < 2 m Pan-V-NIR-Radar-Lidar 
* The temporal resolution of lava is depend on the location of occurrence of 
lava. 

Tree and Rock 

Trees and rocks are hard objects that may cause traffic accidents or damage to 

vehicles when encountered on roads and potential derailment when present on railways. 

The appearance of these objects also implies that there may be damage to the 

roadway/railway. Objects with a principal dimension greater than 0.5 meter are large 
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enough to induce a traffic accident and thus should be removed from a roadway/railway 

as soon as possible. A spatial resolution of less than 0.25 meter is required to detect 

objects of this size (Jensen and Cowen, 1999). An ability to use this information to detect 

objects will contribute to ensuring the operational safety of roadway/railway 

transportation especially following an event that is likely to deposit objects onto a 

roadway/railway (e.g., floods, tornados, etc.).  

To detect a tree or branch in a single image is easier than detecting a rock because 

the spectral signature of plants doesn’t vary a lot between different species. Thus, if 

spatial and temporal resolution requirements are met, a multi-spectral or hyper-spectral 

remote sensing system should be effective in detecting wood on the roadway. In contrast, 

the spectral signature of rocks usually differs largely because the composition of rocks 

changes. Thus a multi-spectral sensor may not work efficiently unless the composition of 

rock of certain areas are known and constrained. The use of high spatial resolution multi-

temporal images is currently more attractive for detecting changes on the roadway. So, if 

the spectral signature of a roadway is known, the use of high spatial resolution multi-

temporal, multi-spectral or hyper-spectral sensors represents a promising technology 

when used with automatic differencing for object detection. 

Since optical-based sensors are easily affected by weather conditions and not 

usable during the night, a radar image represents another source for use in detecting 

roadway objects. Because of the promising high spatial resolution of radar images, highly 

accurate DEMs derived from radar images make it possible to detect the sudden changes 

on the roadway, thus enabling the detection of objects. Using the difference between two 

DEMs may be easier for automatically identifying roadway objects. Airborne light 
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detection and ranging (LIDAR) is another sensor that can generate high accuracy DEMs. 

Its potential high spatial resolution of 0.3 m and relative speed at generating DEMs 

makes it potentially suitable for this application. However, as mention above, temporal 

resolution is still a limitation. 

Mud, snow, ice, and ash 

Mud, snow, ice, and ash are small particles that may cover the roadway, and cause 

degradation on the roadway/railway surface possibly leading to an accident. When these 

coverings build up to a certain thickness, it may also prompt consideration of the closure 

of a roadway/railway. Accurate assessment of the location of such debris is important 

information for the coordination of activities to setup warning markers, as well as clean 

and clear such debris (e.g. snowplow dispatching and routing). Generally speaking, 

assuming that those objects will become potential hazards only when they cover at least 

half of the roadway, a spatial resolution of about 1 meter will be required to detect a 

patch size of 6 ft * 6 ft (based on a roadway width of 12 feet).  Temporal resolution 

requirements vary among these objects. For snow and ice, a temporal resolution of a day 

is recommended for detection (Standley and Barrett, 1999). However, a temporal 

resolution of less than one day is more than likely necessary given that snow and ice may 

build up on the roadway/railway in a period shorter than a day. Mud and ash patches are 

most often associated with disaster events (flood, volcano, etc.) and will only require 

focused assessment within a confined area and the assessment can more than likely be 

scheduled. 
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Passive microwave, radar, and infrared sensors are widely used to detect snow 

and ice, because of their crystalline structure and thermal absorbing characteristic (Shi et 

al. 1997; Noll et al. 1996). Thus it should be no problem to utilize remote sensing 

techniques in transportation management if the spatial and temporal resolution matches 

with the need. For mud and ash, because their spectral signatures may be similar to the 

roadway, it’s not easy to detect them from a single image. Given that multi-image 

differencing enhanced detection of water bodies (Takeuchi et al., 1999), this approach 

may be applicable to mud and ash as well. 

Water 

Water may cause slippery roadway conditions. Also, the appearance of standing 

water on the roadway may be indicative of additional damage underneath (e.g., potholes). 

Identifying the location and patch size is important for roadway maintenance and safety 

purposes. The appearance of a water pocket on the railroad track bed is another kind of 

hazard for railway transportation, and it will be discussed in the next section. The spatial 

and temporal resolution for detecting a water patch is similar to the requirements of 

detecting a snow patch. A water body is generally detected using near-infrared (NIR) 

bands because of its low backscattering characteristic. A problem with using an optical 

sensor in detecting water bodies is that the visible and NIR bands are easily affected by 

atmospheric conditions, surface reflection of sun light, and water turbidity. In order to 

avoid those disruption, Takeuchi et al. (1999) used Normalized Difference Vegetation 

Index (NDVI) computed from visible band and NIR band data of Landsat TM (NDVI = 

(NIR –RED) / (NIR + RED)). The reason for using NDVI in detecting a water body is 



 

 

 

 
 

56 

that 1) its more stable in most conditions, and 2) the water reflectance is lower than other 

landcover types. The method mentioned above is used for detecting floods and we know 

the spatial resolution of Landsat TM is far below the required resolution for detecting 

objects on the roadway. However, it’s a potential method when higher resolution optical 

sensors become available. 

An active radar system is another potential method for detecting a water body. 

SAR backscatter on a calm water surface is the lowest level among different kinds of 

landcover types (Takeuchi et al. 1999). Although RADAR sensors have all weather 

capability and relative high spatial resolutions, it’s sometimes difficult to distinguish 

between a water body and landcover just by backscatter in one image. Thus, Takeuchi et 

al. (1999) suggested using the difference between multi-temporal radar images for 

improved detection of water bodies. 

Besides the patch size of a water body, its depth is another important factor to 

gauge its potential as a hazard. As the depth increases, its potential as a hazard increases. 

Water’s spectral characteristics change when depth increases. Multispectral sensors of 

wavelength between 0.4 µm ~ 1.1 µm have different water penetration rates, and thus can 

be used to detect water depth (Belokon et al., 1997).  But this method is only good for 

clear water, since water in the roadway puddles is always turbid. Turbid water has a 

different and complex spectral signature, thus, future work is needed to identify the 

proper remote sensing sensors to detect the depth of water bodies.   
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Lava 

Lava has a heat radiation property that makes it easy to detect with an infrared 

channel. The heat sensitivity characteristic of infrared bands makes it easy to detect lava 

flow without high spatial resolution. Generally speaking, a spatial resolution of 30 meters 

or less will be sufficient. Since lava always appears in certain volcanic areas, the 

appearance of lava flow is always carefully monitored and it is possible to use this 

information in concert with roadway maps to establish the necessary actions for road 

closures. 

Building Debris 

Infrastructures damages are often found after a disaster event. Some disasters, 

such as earthquakes and landslides, may even cause buildings to collapse. Objects from 

the collapsed buildings or roadway infrastructures may fall on the transportation lines and 

thus become a potential hazard to traffic safety. Gamba and Casciati (1998) recommend 

that imagery with a spatial resolution of 2 m or less from both optical-based and radar-

based, airborne or spaceborne, systems are useful for detecting building and other 

infrastructures damages. Also, the acquisition of timely images, between 6 to 48 hours 

after the event, is recommended (Ozdogan and El-Baz, 2000). Since high spatial 

resolution images are not always available during the 6 to 48 hours recommended period, 

moderate resolution optical-based images can be used to provide synoptic and large scale 

early assessment because the albedo value increases in damaged areas due to the exposed 

material and reduced shadow (Ozdogan and El-Baz, 2000).  
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Damage to Roadway/Railway 

Providing timely information concerning roadway and railway damage is very 

important for ensuring transportation safety. However, timely images during or after a 

disaster are not always available. For example, bad weather may hamper the ability to 

obtain low-altitude images and thick clouds may restrict the use of optic-based high-

altitude or space-based sensors. Even if timely images are available, the possibilities that 

a large variety of objects may be resting on the roadway will make it hard to identify and 

discern the damages to the infrastructure underneath. For example, during a flood, even 

an inch of water on the roadway will make it hard or near impossible to identify the 

presence of damage.  

There are different kinds of roadway damage possible. Larger areas of damage 

that may result from such events as road openings and large cracks after an earthquake 

will require spatial resolutions on the order of 1-2 meters.  Less severe damage, such as 

potholes that arise after flooding, will need higher spatial resolution images (0.25 ~ 0.5 m) 

for identification and assessment (Jensen and Cowen, 1999).  

Soft shoulders are another hazard to transportation safety. Currently, not a lot of 

effort is spent on identifying soft shoulders since they usually do not cause serious 

damages. Soft shoulders are usually the result of accumulations of water or snow. Since 

the albedo value of wet road shoulders decrease in optical-based images, and the low 

backscattering in radar images, both optical-based and radar-based sensors are useful in 

this application. The width of a road shoulder varies, but the spatial resolution 

requirements for detecting soft shoulders are approximately the same as for detecting 

water patches on the roadway. 
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Given that railroads represent a principal source of transportation, it’s important 

to maintain the integrity and safety of railway systems. Derailment is a prevalent disaster 

in railroad transportation. Common phenomena that may lead to derailment include track 

defects and a deteriorated track bed. Most common track defects are wide gage (a 

condition where the distance between the rails exceeds the allowable standards), 

defective switch points/track hardware at turnouts (Federal railroad administration, 2000). 

That’s why derailment usually happens when a train passes a turnout (Miyamoto, 1996). 

Currently, a defective rail is detected by hand held or vehicle mounted sensors. These 

approach are costly and time consuming, and can not always be relied upon to provide 

timely information after a disastrous event. These sensors have a very high resolution 

(<1mm), which is required to detect a rail defect. Thus, given such accuracy requirements 

and the current state of remote sensing, this application will not be possible until major 

breakthroughs occur in sensor technology. 

Erosion, lost of ballast, and water pockets are common problems associated with 

deteriorated track beds. These conditions usually cannot be detected by visual inspection, 

but can be associated with anomalous temperature changes along the track bed. Given 

that infrared sensors are sensitive to the thermal fluctuations and have proven useful in 

locating subsurface anomalies (Weil, 1995), it may be possible to make use of airborne or 

spaceborne infrared sensors for this application. The limitation of current infrared 

sensory information is that it can’t provide depth information, which is very important in 

track bed maintenance. A ground penetrating radar system is currently coupled with an 

infrared sensor on single vehicle that traverses the track to provide depth information 
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(Weil, 1995). Airborne and spaceborne penetrating radar system are not currently 

available that can be used in this application. 

Traffic load and flow speed 

Traffic monitoring is of common interest for the purpose of short-term traffic 

management and long-term studies of traffic capacity. Monitoring is concerned with both 

the load on transportation routes as well as the speed of movement through those routes. 

These variables combine to define the congestion that a link is experiencing. A secondary 

effect of some disasters is traffic congestion. This congestion arises due to such events as 

evacuation, reductions in the number of available routes, weather conditions, etc. The 

onset of congestion represents a hazard that can lead to accidents and pose additional 

hazards. Therefore, it would be beneficial if congestion could be quickly detected at these 

times and remedied through various mechanisms (warnings, rerouting, signal 

manipulation, etc.). Thus there is a need for using remote sensing to acquire traffic flow 

and flow speed information. 

Although remote sensing has been proposed to be useful for vehicle counting and 

possibly speed (Merry, 1996), one point of contention regarding its use in traditional 

studies is that it is unable to provide vehicle weight information for the purpose of 

roadway maintenance (Gardner, 2000). But, when used in the context of a disaster event, 

information such as traffic load and speed is of principle interest and no information 

concerning vehicle weight is needed.  

Traffic load is calculated traditionally by counting vehicles either automatically or 

manually. Both of these methods suffer from accuracy and coverage problems, and are 
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usually only employed for performing predefined scheduled assessments of heavy traffic 

segments (Kim et al., 1997). For automated counting, these assessments are performed 

using instruments permanently or temporarily located at the site. Due to the random 

occurrence and location of disasters, traditional methods are not likely to provide the 

timely information about really traffic conditions that would be needed for disaster 

related purposes. Some methods have been developed to calculate vehicle number from a 

single optical-based image (Gardner, 2000; Kim et al., 1997). But the application of those 

methods are still restricted mostly by the available spatial and temporal resolution of 

remote sensing images (not to mention the degradations that result with the use of these 

airborne or optic-based sensors in the presence of bad weather or thick clouds). There is a 

need to identify the potential use of spaceborne radar sensors in this application. Merry et 

al. (1996) used air-borne images in their study and stated that 1-meter spatial resolution is 

capable of counting and classifying vehicles with 90% accuracies. They are able to detect 

vehicle speed by taking two images within a short period, and tracking the spatial 

changes of a vehicle (Merry et al., 1996). This method is also useful in detecting stranded 

vehicles on the roadway, which may be caused by a disaster event, such as flood, 

earthquake, etc. 

Once in place, the sensor based systems associated with the efforts of the 

Intelligent Transportation System (ITS) program should be able to provide the 

information needed in urban areas eliminating the need for air or space-based sensors to 

do the job. However, rural applications may still require the use of the non-standard 

approaches. 
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Damage to pipeline 

There are various kinds of pipelines, such as gas pipeline, oil product pipeline, 

water pipeline, electricity line, sewer line, etc. Damage to a pipeline not only leads to loss 

of the contained resource, but may also threaten the safety of nearby persons or 

infrastructure. Table 28 lists the potential impacts to pipelines and their causes, as well as 

the activities that can help to reduce these impacts. The most common pipeline damage 

following a disaster is ruptures. Since the size of pipelines varies largely, as well as the 

scale of breakage, various spatial resolution are needed to detect the different possible 

ruptures that may result. In those cases where these has not been a disaster and persons 

are just interested in assessing the integrity of an exposed pipeline, a spatial resolution of 

less than 2 meters and a temporal resolution of approximately 4 months are 

recommended (Currie and Dechka, 1995). However, lower temporal resolutions are 

useable for post disaster assessment to assess such anomalies as breaks, leaks, etc. since 

the impact of these events results in detectable changes to the immediate environment on 

a larger scale.  

Except for direct detection of pipeline breaks on exposed lines, which is 

traditionally performed regularly by visual observation, detection of gas or liquid leaks, 

which accompany pipeline ruptures, is another problem which is more suitable for using 

current remote sensing systems because it requires a lower spatial resolution. Leakage is 

usually hard to detect by traditional visual observation, but thermal plumes and heat loss 

that usually accompany pipeline leakage can be detected by thermal infrared. Such 

abnormal temperature changes along the pipeline are indicators that a pipeline segments 

is in need of maintenance.  As for serious damages resulting in an explosion or flame, 
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infrared bands are also useful. For oil product pipeline leakages, Lidar system has been 

proven to be able to detect problems accurately and quickly (Petuchov et al. 1999). 

Table 28. Disaster/hazards’ impacts to pipelines. 

Impact Cause Activities 

C
lo

se
 th

e 
pi

pe
lin

e 

Explosion of pipeline (from heat, 
objects forced onto pipeline) 

Cut off pipeline 
Sent out fire team 
Dispatch repair team 

Low temperature may congest 
pipeline 
Damages to pipeline (from heat, 
vibration, objects forced onto 
pipeline) 

Cut off pipeline 
Dispatch repair team 
Send out fire team 
Dispatch team to clear up objects onto 
pipeline 

Presence of potential hazard 
(flood, landslide, wildfire, 
volcano, etc.) 

Cut off pipeline 

In
cr

ea
se

 th
e 

pr
ob

ab
ili

ty
 o

f
pi

pe
lin

e 
da

m
ag

e 

Above ground lines being buried
underground (from slide, 
earthquake, volcano, etc.) 

Dispatch repair team 
Dispatch team to uncover the pipeline 

Pipeline breakage or distortion 
(from heat, cold temperature, 
weight of objects forced onto 
pipeline, or vibration) 

Send out fire team 
Dispatch team to clear up objects onto 
pipeline 
Dispatch repair team 

Damages to pipeline facilities or 
infrastructure (from objects 
forced onto pipeline, vibration, 
heat, etc.) 

Dispatch team to clear up objects onto 
pipeline 
Send out fire team 
Dispatch repair team 

As for underground pipelines, traditional methods include 1) using “crawl crews” or 

other visual inspection means, and 2) taking samples by sounding or boring at certain 

pipeline segment. These methods are dangerous, time consuming, costly, and not 

accurate. Weil (1992, 1995) proposed the using of infrared thermography to identify the 
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underground pipeline damages. By coupling this sensor with ground penetrating radar, it 

has been proved that location and depth of damaged pipelines can be detected accurately 

and successfully. However, these sensors are currently used in the form of either hand-

held or vehicle-mounted instruments. There is a need to explore the potential to enhance 

such systems for airborne or spaceborne use.  

Distortion of a pipeline is a hazard in that it represents a potential increase in 

stress in a pipeline that may result in a break or rupture in the future. Such distortions 

may be detectable using high spatial resolution remote sensing sensors (both optical- and 

radar-based). However, given that pipeline size may vary, different spatial resolutions are 

needed. Generally speaking a spatial resolution of 1 meter or less is sufficient (Herb et al., 

1996). 

Presence of potential hazard 

The phrase “presence of potential hazard” appears in Tables 2 through 26 as a 

common cause for many impacts of the disasters. The presence of a potential hazard 

indicates that conditions exist for the creation of one or more hazards which themselves 

may lead to a disaster or worsen the impact of the current one. This cause was included in 

this study to ensure that persons consider these potential hazards when performing an 

assessment of an area in association with a disaster. However, for each type of disaster, 

there are many conditions that may fit this situation, and for each a different set of remote 

sensing requirements may exist. As well, there may be many different methods available 

to predict or assess the same disaster. For example, volcanic eruptions can be predicted 

by monitoring the ground elevation changes and abnormal temperature changes. Table 29 
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lists the data that may be used to help predict a disaster. Note that even if all the data are 

available, no one can be totally sure where and when a disaster will take place, because 

predicting a disaster is often a complex function involving several of the factors shown in 

the table. 

Table 29. Data required for predicting potential hazard. 

Flood 

Cloud type, temperature, topology, runoff model, water levels, ground 
cover, Land use pattern, Ground surface elevation, ground surface 
gradient, soil type, precipitation amount, runoff model, tidal level, 
atmospheric conditions, 

Snow and ice 
Atmospheric conditions, Cloud type, temperature, snow extend, snow 
depth, topography 

Wildfire 
Location and trend of fire, soil moisture, wind, temperature, vegetation 
condition 

Landslide Land cover, slope, soil moisture, depreciation, soil density 
Volcano Topography, soil deformation, temperature, the forming of lava dome 

Predicting a potential hazard is important in disaster management as well as in 

transportation. The presence of a potential disaster may lead to road closure, rerouting, as 

well as the execution of evaluation and prevention activities. Some disasters are 

predictable but due to the current technology limitation, these applications are restricted 

because of the poor accuracy of available information or the lack of enough time to 

prepare. For example, a tsunami warning system has been used for more than 50 years, 

but the warning time of a tsunami is usually less than 1 hour (Ministry of Attorney 

General, 1995). This is rarely sufficient time to make the necessary arrangements to 

properly address safety concerns. An earthquake is predictable, but giving the poor 

accuracy in being able to specify nothing more than a range of possible time within 
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which it may occur (i.e., next month), nothing can effectively be done during such a 

warning period.  

In addition to their use in prediction of the onset of a disaster, information 

concerning these factors can also be used in the case of slower disasters, such as wildfires 

and floods, to provide important data for use in modeling the movement of the disaster so 

strategists can make plans to issue warnings to those areas in the potential path of the 

disaster. To support such efforts, there is a need to integrate prediction and modeling 

tools that make use of a variety of data sources (terrestrial, air-borne, and space-borne) to 

provide the relevant information concerning a disaster that planners can use to aid in their 

decision making duties.  

Damaged traffic signs and signals 

Traffic signs and signals are vital elements for ensuring the safety of 

transportation. It is possible that a disastrous event may cause the malfunction, 

displacement, and/or concealment of one or more traffic signs or signals. Research 

involving the use of remote sensing to do roadside inventory may be applicable for 

detecting these problems. However, the spatial resolution requirements would be extreme 

and require careful documentation of the desired position of all existing signs and signals. 

As for the detection of malfunctioning signals, such as from a loss of electricity, these 

anomalies would be easier detected through the use of terrestrial sensors and many such 

reporting systems will be available as a part of the ITS initiative. 

Given the high spatial resolution requirement (< 0.1 m) for detecting the signs and 

signals damages, most of the current sensors available are not applicable. However, Lidar 
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has been used to detect the integrity of power transmission lines (Al-Turk and Uddin, 

1999). With its high spatial resolution, Lidar may be a potential sensor for this 

application. Another possible application to explore may be the use of low oblique sensor 

views to detect damaged signs, since a low oblique view will reduce the spatial 

requirements. 

Degradation in visibility 

Degradation in driving visibility in the presence of rain, snow, fog, or heavy 

smoke is not only a hazard that may lead to traffic accidents, but it can also cause traffic 

congestion due to the associated voluntary reduction in traffic speed. There is not much 

that can be done to change nature; therefore, the interest is in detecting these events to 

afford opportunities for providing drivers with weather forecasts or warnings and to 

direct crews to take measures to reduce the hazard (e.g., salting roads, erecting warning 

signs, etc.), close roads, and reroute traffic. Rain and snow detection is currently handled 

by various kinds of sensors, such as Doppler radar systems and spaceborne optical-based 

sensors. Rain, snow, and fog are predictable by well-built weather forecasting systems 

that have been used for many years. Information is easily accessed via various kinds of 

media. Smoke, usually covers a large area and does not require high spatial resolution to 

detect it. 

Summary 

As seen from the discussion in this section, the technological factors that limit the 

potential applications involving remote sensing entail one or more constraints in terms of 
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the ability of the available sensor systems to provide the required spatial, temporal, 

and/or spectral resolution. Future research is needed to develop sensor systems and 

processing methods that overcome these limitations. When available these systems will 

then need to be matched with the potential applications presented and deployed.  

As well, the activities outlined in Tables 2 through 26, e.g., devising new routes, 

deciding on road closures, effecting an evacuation, etc., need a composite of information 

from various sources. Decision systems need to be developed that aid in processing and 

properly presenting to the user the relevant information gathered from the fusion of 

remote sensor data and possibly other data (terrestrial sensors).  



 

 
 
 

 

 
 

 

 

CHAPTER V 

PROPOSED RESEARCH AGENDA 

Based on a review of the research presented and the needs identified in Sections 3 and 4, 

a table was created that summarizes the general research needs required to support 

continuing growth in the use of remote sensing in the predication and assessment of 

hazards and disasters. These needs are listed in Table 30. The identified research needs 

encompass research in both the development and enhancement of existing sensor 

technologies as well as methods of processing collected data.  

Table 30. Level 1 Research Items. 

1. Development of decision systems to aid in processing and properly presenting 
to the user the relevant information gathered from the fusion of remote sensor 
data and possibly other data (terrestrial sensors) for the purpose of performing 
the activities outlined in Tables 2 through 26 (e.g., devising new routes, 
deciding on road closures, effecting an evacuation, etc.).  

2. Enhance the ability of remote systems to provide timely, accurate predictions 
of earthquakes. 

3. Enhance the ability of remote systems to provide timely, accurate detection 
and identification on roadways/railways. 

4. Develop or enhance existing processing methods for using sensor information 
to assess the extent of damages resulting from disasters. This includes 
assessment of damage to both infrastructure and the environment. 

5. Enhance the ability of remote systems to provide timely, accurate detection 
and identification of defects and damage to above- and underground pipelines. 

6. Develop or enhance existing methods and tools for using sensor information to 
predict the propagation of slow moving disasters such as flooding.  
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Given that the items shown in Table 30 represent general research needs, we felt 

it was necessary to provide additional details concerning the needs of item number 3 in 

the list. These additional details are given to provide a better understanding of the 

research needs in this area. These needs are defined as level 2 items (numbered 3.x in 

Table 31), with the further detailed breakdown defined as level 3 items (numbered 3.x.x 

in Table 31). These labels are needed to support discussion in the section that follows. 

Table 31. Level 2 and Level 3 Research Items. 

3.1 Congestion (traffic flow and speed, stranded vehicles) 
3.2 Infrastructure (road, track, bridge, etc.) defects and damage. 

3.2.1 Particularly in the presence of varying levels of floodwater. 
3.2.2 Infrastructure for roadways includes: road, surface, shoulders, 

bridges, etc. 
3.2.3 Infrastructure for railways includes: rails, track beds, etc. 

3.3 Hazardous driving conditions 
3.1.1 Buildup of water, mud, ash, snow and ice. 
3.1.2 Low visibility conditions (e.g. fog, smoke, heavy rain, blizzard, etc.) 
3.1.3 Soft shoulders. 

3.4 Damaged, missing, or accidentally relocated traffic signs or signals. 
3.5 Foreign objects (tree, rocks, lava, building debris, etc.) 

Ranking of the Research Needs 

In order to help provide direction with respect to the prescribed research agenda, 

we believed it would be beneficial to rank these needs. The Analytic Hierarchy Process 

(AHP) (Saaty, 1982) was chosen because it provides a way to rank the agenda items by 

only having to make pairwise comparisons for each of the different criteria.  These 

comparisons rely on users selecting a value on a scale from 1 to 9 with designations for 

the scores being “1 - equally preferred”,  “2 – equally to moderately preferred”, … “8 – 
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very to extremely strongly preferred,” and “9 – extremely preferred”. Also given the 

small number of items in the list, use of AHP would not result in the need to process too 

many comparisons making the process of ranking the alternative relatively easy and 

straightforward.  

To rank the list of research items requires that criteria be defined for the basis of 

the ranking. The following criteria were selected.  

1. The impact that research in this area would have on transportation. Specifically 

with respect to (1) the reduction in money lost due to disasters, and (2) the 

resulting improvements in transportation safety. 

2. The cost of remote sensing, which is a function of the spatial, spectral and 

temporal resolution requirements required of the application. 

It is realized that specific sensor type (e.g., infrared, passive-microwave, Lidar, etc.) and 

the required preprocessing are also important factors that influence the cost of remote 

sensing images. But since it may be possible to use one or more sensor types to 

accomplish the same task for a particular identified research need, it would be hard to 

include “sensor type” as one of the criteria in that it would be necessary to list and 

evaluate each. As well, a majority of the preprocessing of remote sensing images is often 

performed by the image providers and included in the total cost of obtaining the image, or 

the amount and cost of processing is a function of the specific application and difficult to 

determine at this point. Therefore, both of these factors were not specifically considered 

in the evaluation. Availability of data from remote sensing is another possible criteria for 

ranking the items in the agenda. However, giving that each research need may use 

different sensors and different techniques to support its needs, performing a comparison 
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becomes too tedious. In addition, availability of data has a close relationship with the 

existing “cost of remote sensing” criterion. Another possible criterion is the 

improvements that result from employment of the new method over existing methods. 

However, it would be hard for us in this study to determine these relationships. Readers 

are reminded that independent of the criteria used, the AHP method can easily be applied 

using their own set of criteria using the method outlined in Appendix A. 

The items listed in the agenda at Level 1 focus principally on software 

development and the use and integration of various sources of data. Therefore, the second 

criterion “cost of remote sensing” is not suitable because one would have to take into 

consideration and rank all the specific remote sensing sources possible. Thus, only the 

first criterion is used, e.g. impact to transportation. Since there are two sub-criteria in the 

first criterion, e.g. “improve safety” and “reduce money lost”. The process of using AHP 

to rank level 1 agenda items requires first ranking the priorities of these two criteria. In 

our analysis, these two sub-criteria were deemed to have equal priority.   

Next the actual level 1 items in the list were ranked separately according to each 

criteria “improve safety” and “reduction in money lost”. Table 32 and Table 33 show the 

results of the pairwise comparison of level 1 agenda items for each of the criterion. In 

these tables the headings for the rows and columns represent the numbers associated with 

the level 1items in Table 30. The entries are the score assigned by the person performing 

the ranking. For example, the entry for row 2, column 1 states that in terms of improving 

transportation safety item 2 is four times more important than item 1. The entry for row 1 

column 2 is then just the inverse of this score (1/4 or 0.25 in this case). 
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Table 32. Level 1 pairwise comparison using the criterion - “improve safety”. 

No. 1 No. 2 No. 3 No. 4 No. 5 No. 6 Result 
No. 1 1 4 0.5 2 6 3 0.261 
No. 2 0.25 1 0.25 0.5 4 1 0.095 
No. 3 2 4 1 3 6 3 0.356 
No. 4 0.5 2 0.333 1 5 2 0.158 
No. 5 0.167 0.25 0.167 0.2 1 0.5 0.040 
No. 6 0.333 1 0.333 0.5 2 1 0.089 
Total 4.25 12.25 2.583 7.2 24 10.5 1 

Table 33. Level 1 pairwise comparison using the criterion - “reduction in money 
lost due to disaster”. 

No. 1 No. 2 No. 3 No. 4 No. 5 No. 6 Result 
No. 1 1 0.333 1 3 4 2 0.182 
No. 2 3 1 0.5 4 6 5 0.305 
No. 3 1 2 1 6 7 2 0.309 
No. 4 0.333 0.25 0.167 1 2 1 0.068 
No. 5 0.25 0.167 0.143 0.5 1 2 0.060 
No. 6 0.5 0.2 0.5 1 0.5 1 0.075 
Total 6.083 3.95 3.31 15.5 20.5 13 1 

Using the priorities of criteria and priorities of agenda items, AHP permits us to 

calculate the final priorities of agenda items. The results are shown in Table 34.  

The level 2 agenda items are more focused on certain phenomena that can 

actually be monitored and detected by certain remote sensing sensors. Therefore, both 

criteria, impact and cost, are used to rank these agenda items. The detail of AHP process 

of level 2 ranking is referred to Appendix. Level 3 items in the agenda are not ranked, but 

included to provide additional detail to the agenda.  
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Table 34. Resulting priority of level 1 agenda items. 

Item AHP Score 
No. 1 0.222 
No. 2 0.200 
No. 3 0.333 
No. 4 0.113 
No. 5 0.050 
No. 6 0.082 
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Results of Ranking 

The final ranking of the research items represent the proposed research agenda 

and is shown in Table 35. The six items listed at Level 1 indicate the preferences based 

on the potential that research in these areas could have on improving transportation safety 

and reducing the money lost due to the occurrence of such related disastrous events. The 

five sub-items listed below the first Level 1 item indicate the ranking taking into account 

remote sensing cost. This would indicate that applications aimed at “hazardous driving 

condition” would be cheaper to implement and at the same time improve transportation 

safety. “Infrastructure defects and damages” is important to transportation safety, 

however, it usually require higher spatial resolutions that are harder and more costly to 

acquire. “Congestion”, “foreign objects”, and “damaged, missing traffic signs or signals” 

pose less threat to transportation safety and they do not usually result in a substantial loss 

of money. 

The second Level 1 item in the proposed research agenda, “Development of 

decision systems to aid in processing and properly presenting to the user the relevant 

information gathered from the fusion of remote sensor data,” is another important need 

that has been under development by various departments. This application still needs 

more effort to provide the right information to the right person who needs it. The third 

item, “Enhance the ability of remote sensing systems to provide timely, accurate 

predictions of earthquakes,” is of critical importance in certain geographic areas. Current 

techniques of predicting an earthquake are not accurate enough to provide any helpful 

warning, thus more efforts are needed in this area. The fourth item, “Develop or enhance 

existing processing methods for using sensor information to assess the extent of damages 
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resulting from disasters,” includes using various kind of remote sensing sensors, e.g. 

visible, infrared, radar, etc., to assess the damages caused by all kinds of disasters. This 

task has been of interest for various purposes for many years. But with the invention of 

new sensors and software, future work is still needed. The fifth item, “Develop or 

enhance existing methods and tools for using sensor information to predict the 

propagation of slow moving disasters,” is a very difficult task because the occurrence of a 

disaster is a complex function dependent on a range of factors. Progress in this area will 

largely improve the safety of transportation and society as a whole. The last item on the 

agenda, “Enhance the ability of remote systems to provide timely, accurate detection and 

identification of defects and damage to above- and underground pipelines,” emphasizes 

continued development of airborne and space borne sensors. Several sensors used today 

are limited to ground use due to such issues as sensitivity and noise, and therefore are 

laborious to use over long lengths. By shifting from ground sensors to airborne or space 

borne sensors will increase the coverage and provide cheaper methods of monitoring the 

integrity of pipeline networks. The ranking of the items in the research agenda is a 

function of the ratings assigned in the pairwise comparison. Given the subjective nature 

of this scoring exercise, it is advisable for those interested to perform their own ranking. 

The complete analysis via AHP is provided in the Appendix for illustration and to 

provide an understanding of the values assigned subjectively that resulted in the ranking 

shown in Table 35. 
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Table 35. Research agenda. 

• Enhance the ability of remote systems to provide timely, accurate detection and 
identification on roadways/railways of: 

o Hazardous driving conditions 
� Buildup of water, mud, ash, snow and ice. 

o Low visibility conditions (e.g. fog, smoke, heavy rain, blizzard, etc.) 
o Soft shoulders. 
o Infrastructure (road, track, bridge, etc.) defects and damage. 

� Particularly in the presence of varying levels of floodwater. 
� Infrastructure for roadways includes: road, surface, shoulders, 

bridges, etc. 
� Infrastructure for railways includes: rails, track beds, etc. 

o Congestion (traffic flow and speed, stranded vehicles) 
o Foreign objects (tree, rocks, lava, building debris, etc.) 
o Damaged, missing, or accidentally relocated traffic signs or signals. 

• Development of decision systems to aid in processing and properly presenting to 
the user the relevant information gathered from the fusion of remote sensor data 
and possibly other data (terrestrial sensors) for the purpose of performing the 
activities outlined in Tables 2 through 17 (e.g., devising new routes, deciding on 
road closures, effecting an evacuation, etc.). 

• Enhance the ability of remote systems to provide timely, accurate predictions of 
earthquakes. 

• Develop or enhance existing processing methods for using sensor information to 
assess the extent of damages resulting from disasters. This includes assessment 
of damage to both infrastructure and the environment. 

• Develop or enhance existing methods and tools for using sensor information to 
predict the propagation of slow moving disasters such as flooding. 

• Enhance the ability of remote systems to provide timely, accurate detection and 
identification of defects and damage to above- and underground pipelines. 

Notation: • = Level 1;  ○ = Level 2;    = Level 3 



 

 

 
 

 

 

 

 

 

CHAPTER VI 

CONCLUSION 

The goal of this study was to develop a research agenda that identifies areas of 

research that need to be addressed to enhance the application of remote sensing to the 

assessment of hazards, safety, and disasters which impact transportation. Remote sensing 

has been used for more than 50 years in various areas. But as for its application to this 

domain of transportation, it’s still a relatively young technology. However, remote 

sensing has the potential capability to provide the information that can increase the 

operation and safety of transportation.  

In order to devise a future research agenda, the current state of the research in this 

area was identified. The disaster/hazards that have critical impacts on transportation 

domain were first identified (shown in Table 1) and then potential impacts of each 

disaster/hazard were defined (Tables 2 through 26) and activities that might reduce or 

prevent these impacts listed. Based on these findings, the information requirements posed 

by these activities were defined and discussed for each phenomenon, e.g. debris on the 

roadway, damages to pipeline, etc. This resulted in a list of potential research items that 

were categorized and ranked using the Analytical Hierarchy Process (see Table 35). This 
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agenda represents a proposal of what directions need to be taken to advance the research 

in the area of applying remote sensing to hazard, safety, and disaster assessment. 
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Criteria 

Two criteria are used to rank the items in the research agenda, they are: 

1. The impact that research in this area would have on transportation. Specifically with 

respect to (1) the reduction in money lost due to disasters, and (2) the resulting 

improvements in transportation safety. 

2. The cost of remote sensing, which is a function of the spatial, spectral and temporal 

resolution requirements required of the application 

Level 1 AHP ranking process 

For ranking level 1 items (see listing in Table 30), only the first criteria is used. 

Thus, the first step is to weight its sub-criteria: “reduce money lost” and “improve safety”. 

These two sub-criteria are assigned the same weight on “the impact that research in this 

area would have on transportation”, so a unit weight is given to comply with AHP’s 

definition that a value of 1 indicates “equally preferred”. 

Table A.1. Comparison of “improve safety” and “reduce 
money lost”. 

Improve Safety Reduce money lost 
Improve Safety 1 1 

Reduce money lost 1 1 
Total 2 2 
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These weights are then normalized so that the sum of each criterion becomes 1. After 

normalization, the result of above table becomes: 

Table A.2. Result after normalization. 

Improve Safety Reduce money lost 
Improve Safety 0.5 0.5 

Reduce money lost 0.5 0.5 
Total 1 1 

Thus the resulting priorities are: 

Improve safety: (0.5+0.5)/2 = 0.5 

Reduce money lost: (0.5+0.5)/2 = 0.5 

The second step is to perform a pairwise comparison between each item for each 

of the two criteria “improve transportation safety” and  “reduce money lost due to 

disaster”. For example, the entry for row 2, column 1 in the table below, states that in 

terms of improving transportation safety, item 2 is four times more important than item 1. 

The entry for row 1 column 2 is then just the inverse of this score (1/4 or 0.25 in this case) 

indicating that item 1 is four time less important.  After completing the pairwise 

comparisons, the next step is to normalize the entries in each column of the table. The 

results are as shown in the following two tables. 
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Criterion: Improve transportation safety 

Table A.3. Level 1 comparison according to criterion “improve transportation 
safety”. 

No. 1 No. 2 No. 3 No. 4 No. 5 No. 6 
No. 1 1 4 0.5 2 6 3 
No. 2 0.25 1 0.25 0.5 4 1 
No. 3 2 4 1 3 6 3 
No. 4 0.5 2 0.333 1 5 2 
No. 5 0.167 0.25 0.167 0.2 1 0.5 
No. 6 0.333 1 0.333 0.5 2 1 
Total 4.25 12.25 2.583 7.2 24 10.5 

Table A.4. Normalization of level 1 comparison according to criterion “improve 
transportation safety”. 

No. 1 No.2 No. 3 No. 4 No. 5 No. 6 
No. 1 0.235 0.327 0.194 0.278 0.250 0.286 
No. 2 0.059 0.082 0.097 0.069 0.167 0.095 
No. 3 0.471 0.327 0.387 0.417 0.250 0.286 
No. 4 0.118 0.163 0.129 0.139 0.208 0.190 
No. 5 0.039 0.020 0.065 0.028 0.042 0.048 
No. 6 0.078 0.082 0.129 0.069 0.083 0.095 
Total 1.000 1.000 1.000 1.000 1.000 1.000 

The resulting priority for each row according to criterion “improve transportation 

safety” is then computed as: 

No. 1: (0.235+0.327+0.194+0.278+0.250+0.286)/6 = 0.261 

No. 2: (0.059+0.082+0.097+0.069+0.167+0.095)/6 = 0.095 

No. 3: (0.471+0.327+0.387+0.417+0.250+0.286)/6 = 0.356 
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No.4: (0.118+0.163+0.129+0.139+0.208+0.190)/6 = 0.158 

No. 5: (0.039+0.020+0.065+0.028+0.042+0.048)/6 = 0.040 

No. 6: (0.078+0.082+0.129+0.069+0.083+0.095)/6 = 0.089 

Criterion: Reduce money lost due to disaster 

Table A. 5. Level a comparison according to criterion “reduce money lost due 
to disaster”. 

No. 1 No. 2 No. 3 No. 4 No. 5 No. 6 
No. 1 1 0.333 1 3 4 2 
No. 2 3 1 0.5 4 6 5 
No. 3 1 2 1 6 7 2 
No. 4 0.333 0.25 0.167 1 2 1 
No. 5 0.25 0.167 0.143 0.5 1 2 
No. 6 0.5 0.2 0.5 1 0.5 1 
Total 6.083 3.95 3.31 15.5 20.5 13 

Table A.6. Normalization of level 2 comparison according to criterion “reduce 
money lost due to disaster”. 

No. 1 No.2 No. 3 No. 4 No. 5 No. 6 
No. 1 0.164 0.084 0.302 0.194 0.195 0.154 
No. 2 0.493 0.253 0.151 0.258 0.293 0.385 
No. 3 0.164 0.506 0.302 0.387 0.341 0.154 
No. 4 0.055 0.063 0.050 0.065 0.098 0.077 
No. 5 0.041 0.042 0.043 0.032 0.049 0.154 
No. 6 0.082 0.051 0.151 0.065 0.024 0.077 
Total 1.000 1.000 1.000 1.000 1.000 1.000 

The result priorities according to criterion “reduce money lost due to disaster” is 

then: 
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No. 1: (0.164+0.084+0.302+0.194+0.195+0.154)/6 = 0.182 

No. 2: (0.493+0.253+0.151+0.258+0.293+0.385)/6 = 0.305 

No. 3: (0.164+0.506+0.302+0.387+0.341+0.154)/6 = 0.309 

No. 4: (0.055+0.063+0.050+0.065+0.098+0.077)/6 = 0.068 

No. 5: (0.041+0.042+0.043+0.032+0.049+0.154)/6 = 0.060 

No. 6: (0.082+0.051+0.151+0.065+0.024+0.077)/6 = 0.075 

Level 1 items ranking 

Using the derived priorities from the evaluation of both criteria above and the 

weighting assigned for each criterion, the ranking for the priority of level 1 items is: 

No. 1: 0.5*0.261 + 0.5*0.182 = 0.222 

No. 2: 0.5*0.095 + 0.5*0.305 = 0.200 

No. 3: 0.5*0.356 + 0.5*0.309 = 0.333 

No. 4: 0.5*0.158 + 0.5*0.068 = 0.113 

No. 5: 0.5*0.040 + 0.5*0.060 = 0.050 

No. 6: 0.5*0.089 + 0.5*0.075 = 0.082 

Level 2 AHP ranking process 

Both criteria, e.g. “cost of image” and “impact to transportation”, are used to rank 

level 2 items. Thus as before, the first step is to weight these two criteria and then 

normalize the weighting. 
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Table A.7. Pairwise comparison of “cost of image” and “impact to 
transportation”. 

Cost of image Impact to transportation 
Cost of image 1 0.25 

Impact to transportation 4 1 
Total 5 1.25 

Table A.8. Normalization of pairwise comparison of “cost of image” and 
“impact to transportation”. 

Cost of image Impact to transportation 
Cost of image 0.2 0.2 

Impact to transportation 0.8 0.8 
Total 1 1 

Thus the resulting priorities are: 

Cost of image: (0.2+0.2)/2 = 0.2 

Impact to transportation: (0.8+0.8)/2 = 0.8 

The second step is to compare weight the sub-criteria of each criterion, e.g. 

compare “improve to safety” vs. “reduce money lost”, and compare “spatial resolution 

requirement”, “temporal resolution requirement”, vs. “spectral resolution requirement”. 

The pairwise comparison and results after normalization are: 
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Table A.9. Pairwise comparison of sub-criteria under “impact to 
transportation”. 

Improve Safety Reduce money lost Priority 
Improve Safety 1 1 0.5 

Reduce money lost 1 1 0.5 
Total 2 2 1 

Table A.10. Pairwise comparison of sub-criteria under “cost of image”. 

 Spatial 
resolution 

requirement 

Temporal 
resolution 

requirement 

Spectral 
resolution 

requirement 
Spatial resolution requirement 1 6 8 

Temporal resolution requirement 0.167 1 6 
Spectral resolution requirement 0.125 0.167 1 

Total 1.292 7.167 15 

Table A.11. Normalization of pairwise comparison of sub-criteria under “cost 
of image”. 

 Spatial 
resolution 

requirement 

Temporal 
resolution 

requirement 

Spectral 
resolution 

requirement 
Spatial resolution requirement 0.774 0.837 0.533 

Temporal resolution requirement 0.129 0.140 0.400 
Spectral resolution requirement 0.097 0.023 0.067 

Total 1.000 1.000 1.000 

The resulting priorities are then computed as: 

Spatial resolution requirement: (0.774+0.837+0.533)/3 = 0.715 

Temporal resolution requirement: (0.129+0.140+0.400)/3 = 0.223 
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Spectral resolution requirement: (0.091+0.023+0.067)/3 = 0.062 

After comparing both criteria and their sub-criteria, the next step is to pairwise 

compare level 2 items (as listed in Table 31) according to each sub-criterion. The 

following tables show the pairwise comparison and results after normalization.  
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Criterion: Spatial resolution requirement 

Table A.12. Level 2 item comparison according to “spatial resolution 
requirement”. 

No. 3.1 No. 3.2 No. 3.3 No. 3.4 No. 3.5 
No. 3.1 1 3 0.25 4 3 
No. 3.2 0.333 1 0.167 2 0.5 
No. 3.3 4 6 1 8 6 
No. 3.4 0.25 0.5 0.125 1 0.5 
No. 3.5 0.333 2 0.167 2 1 
Total 5.917 12.5 1.708 17 11 

Table A.13. Normalization of level 2 item comparison according to “spatial 
resolution requirement”. 

No. 3.1 No. 3.2 No. 3.3 No. 3.4 No. 3.5 
No. 3.1 0.169 0.240 0.146 0.235 0.273 
No. 3.2 0.056 0.080 0.098 0.118 0.045 
No. 3.3 0.676 0.480 0.585 0.471 0.545 
No. 3.4 0.042 0.040 0.073 0.059 0.045 
No. 3.5 0.056 0.160 0.098 0.118 0.091 
Total 1.000 1.000 1.001 1.000 1.000 

The resulting priorities of level 2 items according to “spatial resolution 

requirement” are then: 

No. 3.1: (0.169+0.240+0.146+0.235+0.273)/5 = 0.213 

No. 3.2: (0.056+0.080+0.098+0.118+0.045)/5 = 0.079 

No. 3.3: (0.676+0.480+0.585+0.471+0.545)/5 = 0.551 

No. 3.4: (0.042+0.040+0.073+0.059+0.075)/5 = 0.052 
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No. 3.5: (0.056+0.160+0.098+0.118+0.091)/5 = 0.105 

Criterion: Temporal resolution requirement 

Table A.14. Level 2 item comparison according to “temporal resolution 
requirement”. 

No. 3.1 No. 3.2 No. 3.3 No. 3.4 No. 3.5 
No. 3.1 1 4 0.5 0.125 1 
No. 3.2 0.25 1 4 0.5 7 
No. 3.3 2 0.25 1 0.25 8 
No. 3.4 8 2 4 1 9 
No. 3.5 1 0.143 0.125 0.111 1 
Total 12.25 7.393 9.625 1.986 26 

Table A.15. Normalization and calculation of priorities for level 2 item 
comparisons according to “temporal resolution requirement”. 

No. 3.1 No. 3.2 No. 3.3 No. 3.4 No. 3.5 Priority 
No. 3.1 0.082 0.541 0.052 0.063 0.038 0.155 
No. 3.2 0.020 0.135 0.416 0.252 0.269 0.218 
No. 3.3 0.163 0.034 0.104 0.126 0.308 0.147 
No. 3.4 0.653 0.271 0.416 0.504 0.346 0.438 
No. 3.5 0.082 0.019 0.013 0.056 0.038 0.042 
Total 1.000 1.000 1.000 1.000 1.000 1 
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Criterion: Spectral resolution requirement 

Table A.16. Level 2 item comparison according to “spectral resolution 
requirement”. 

No. 3.1 No. 3.2 No. 3.3 No. 3.4 No. 3.5 
No. 3.1 1 1 0.5 2 4 
No. 3.2 1 1 1 2 3 
No. 3.3 2 1 1 3 4 
No. 3.4 0.5 0.5 0.333 1 2 
No. 3.5 0.25 0.333 0.25 0.5 1 
Total 4.75 3.833 3.083 8.5 14 

Table A.17. Normalization and calculation of priorities for level 2 item 
comparisons according to “spectral resolution requirement”. 

No. 3.1 No. 3.2 No. 3.3 No. 3.4 No. 3.5 Priority 
No. 3.1 0.211 0.261 0.162 0.235 0.286 0.231 
No. 3.2 0.211 0.261 0.324 0.235 0.214 0.249 
No. 3.3 0.421 0.261 0.324 0.353 0.286 0.329 
No. 3.4 0.105 0.130 0.108 0.118 0.143 0.121 
No. 3.5 0.053 0.087 0.081 0.059 0.071 0.070 
Total 1.000 1.000 1.000 1.000 1.000 1 
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Criterion: Improve transportation safety 

Table A.18. Level 2 item comparison according to “improve transportation 
safety”. 

No. 3.1 No. 3.2 No. 3.3 No. 3.4 No. 3.5 
No. 3.1 1 2 1 3 2 
No. 3.2 0.5 1 0.333 3 1 
No. 3.3 1 3 1 2 3 
No. 3.4 0.333 0.333 0.5 1 1 
No. 3.5 0.5 1 0.333 1 1 
Total 3.333 7.333 3.167 10 8 

Table A.19. Normalization and calculation of priorities for level 2 item 
comparisons according to “improve transportation safety”. 

No. 3.1 No. 3.2 No. 3.3 No. 3.4 No. 3.5 Priority 
No. 3.1 0.300 0.273 0.316 0.300 0.250 0.288 
No. 3.2 0.150 0.136 0.105 0.300 0.125 0.163 
No. 3.3 0.300 0.409 0.316 0.200 0.375 0.320 
No. 3.4 0.100 0.045 0.158 0.100 0.125 0.106 
No. 3.5 0.150 0.136 0.105 0.100 0.125 0.123 
Total 1.000 1.000 1.000 1.000 1.000 1 
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Criterion: reduce money lost 

Table A.20. Level 2 item comparison according to “reduce money lost”. 

No. 3.1 No. 3.2 No. 3.3 No. 3.4 No. 3.5 
No. 3.1 1 0.333 1 0.5 0.333 
No. 3.2 3 1 3 3 1 
No. 3.3 1 0.333 1 2 2 
No. 3.4 2 0.333 0.5 1 0.333 
No. 3.5 3 1 0.5 3 1 
Total 10 3 6 9.5 4.667 

Table A.21. Normalization and calculation of priorities for level 2 item 
comparisons according to “reduce money lost”. 

No. 3.1 No. 3.2 No. 3.3 No. 3.4 No. 3.5 Priority 
No. 3.1 0.100 0.111 0.167 0.053 0.071 0.100 
No. 3.2 0.300 0.333 0.500 0.316 0.214 0.333 
No. 3.3 0.100 0.111 0.167 0.211 0.429 0.203 
No. 3.4 0.200 0.111 0.083 0.105 0.071 0.114 
No. 3.5 0.300 0.333 0.083 0.316 0.214 0.249 
Total 1.000 1.000 1.000 1.000 1.000 1 

Level 2 items result priorities 

According to the results from the above three tables, the final ranking of Level 2 

items is obtained from the following calculations. 

No. 3.1: 0.2*(0.715*0.213 + 0.223*0.155 + 0.062*0.231) + 0.8*(0.5*0.288 + 

0.5*0.100) = 0.195 

No. 3.2: 0.2*(0.715*0.079 + 0.223*0.218 + 0.062*0.249) + 0.8*(0.5*0.163 + 

0.5*0.333) = 0.223 
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No. 3.3: 0.2*(0.715*0.551 + 0.223*0.147 + 0.062*0.329) + 0.8*(0.5*0.320 + 

0.5*0.203) = 0.299 

No. 3.4: 0.2*(0.715*0.052 + 0.223*0.438 + 0.062*0.121) + 0.8*(0.5*0.106 + 

0.5*0.114) = 0.116 

No. 3.5: 0.2*(0.715*0.104 + 0.223*0.042 + 0.062*0.070) + 0.8*(0.5*0.123 + 

0.5*0.249) = 0.167 
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