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The aim of this PhD thesis is to incorporate deformation twinning in a full-field 

viscoplastic crystal plasticity model based on fast Fourier transform in an effort to gain 

insights into its role on strain localization. This work is motivated by current 

experimental evidences on the important role that dislocation reactions at the twin 

interface play on damage initiation in materials during plastic deformation. 

We began first by investigating the role of slip on stress localization. To this end, 

we simulated the effect of macroscopic deformation path, which dictates a macroscopic 

stress state, as well as pre-existing microstructure in typical ferritic steel, where plastic 

deformation is accommodated by slip mechanism. The results show that the width of 

localized strain rate regions near grain boundaries is a function of the deformation path, 

and there is a positive correlation between local Taylor factor and local stress field, which 

slightly depends on deformation path. 

For the incorporation of mechanical twinning in twinning-induced plasticity 

(TWIP) steel, we implemented predominant reorientation scheme (PTR) in vpFFT, which 

was implemented previously in the mean field VPSC. The comparison between 



 

 

 

 

 

  

 

  

 

  

 

 

 

 

 

  

 

  

 

  

 

 

experimental and simulation results indicates that twin volume fraction, final texture, and 

stress-strain curve were satisfactorily predicted. Despite that predominant twin 

reorientation scheme was not suitable to capture lamellar shape of twins in the 

microstructure, twin domains were predicted to form and grow at or close to grain 

boundary regions. 

Finally, we surveyed current literature, which aimed at capturing the characteristic 

lamellar morphology of twins. Literature review shows several unsuccessful crystal 

plasticity simulations in capturing twin nucleation and twin lamellar shape at measocale. 

These inabilities can be attributed to i) twin nucleation that is controlled by local 

atomistic configurations and stress fluctuations at the grain boundaries, and ii) the 

random or stochastic nature of twin nucleation, which has been proved by EBSD 

observation. Based on the EBSD observations, twin nucleation depends on both 

microstructural (e.g, grain size, dislocation density) and loading conditions ( e.g, stress, 

strain). Furthermore, the propensity, frequency, and morphology of deformation twins are 

different among grain with the same orientation and applied boundary conditions. 
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INTRODUCTION 

1.1 Introduction 

The reduction of greenhouse gases (GHG) and reduced dependence on 

hydrocarbon-based fuels is a key priority worldwide. The United States, Canada, China 

and the Euro-zone have engaged, in a first stage plan to reduce the mass of CO2 emitted 

by passenger vehicles a full 30-50% below current standards by the year 2020 (targets: 

95g/km for EU and China; 110g/km for the USA and Canada). Such tremendous 

improvements will require extensive vehicle mass reduction through the use of 

lightweight materials allowing for (1) a net fuel economy improvement in combustion 

engine and (2) an increase in the range of electric vehicles. In addition, all material 

developments must maintain or improve crash worthiness of current vehicles. 

Metals that have potential to satisfy these conflicting demands contain a 

hexagonal close-packed (HCP) crystal structure, twinning-induced or martensitic 

transformation-induced plasticity steel, and/or aluminum alloys. Candidate materials 

systems are based upon magnesium (Mg), titanium (Ti), as well as advanced-high 

strength steels (AHSS), including twinning-induced plasticity (TWIP), third-generation 

advanced high strength (3GAHSS), and transformation-induced plasticity (TRIP) steels. 

However, current structural applications of HCP Mg alloys, in particular, are limited to 

castings due to difficulties associated with forming wrought alloys. In order to increase 
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applications of these lightweight materials in response to the critical needs within the 

transportation sector, improvement in both their formability and ability to absorb energy 

during a crash is required. 

The plastic anisotropy of the hexagonal lattice is widely understood as the source 

the present limitations associated with HCP metals [1]. The dislocations which easily 

accommodate plasticity in HCP crystals generally have Burgers vectors within the basal 

plane. Thus, these materials suffer from an inability to easily deform along the HCP 

crystal c-axes, in the absence of a deformation twinning-based mechanism of strain 

accommodation.  Deformation twinning has long been known to alleviate the requirement 

to satisfy the von Mises criterion for polycrystalline plasticity that demands five 

independent easy dislocation slip modes [2]. However, deformation twinning-based 

plasticity can be a “double-edged sword.” Several examples [3–5] in the literature 

demonstrate where twinning is associated with fracture initiation, and there are a number 

of micro-mechanism hypotheses to explain these phenomena. 

1.2 Effect of twinning on Mechanical (anisotropic) behavior 

In HCP crystals, the most common twinning mechanism involves shear on the 

{101̅2} planes and is known as tension twinning [6] in Mg alloys; shear produces tension 

parallel to the c-axes of the crystals. It is responsible for the asymmetry characteristic of 

strongly textured alloys since the activity of this mechanism is minimized or maximized 

by just inverting the sign of the stress or by changing the strain path (Figure 1.1). 

However the interactions involving slip, twinning, and microstructural feature which are 

responsible for the rapid strain hardening shown in region II of Figure 1.1 are much less 

understood. Similarly, the interactions which lead to rapid strain incompatibilities and 
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localization between grains and damage initiation are only qualitatively understood [7– 

10]. 

 

II 

I 

II 

III 
III 

TTC 
IPC 

Rolled sheet 

I 

Figure 1.1 Plastic anisotropy of magnesium 

(Left) Stress-plastic strain curves typical of rolled sheets when deformed by in-plane 
compression (IPC) and through thickness compression (TTC) [11]. This anisotropy is 
caused by minimal twinning during TTC and profuse {101̅2} twinning upon IPC. The 
IPC curve presents a Regime II characterized by pronounced increase in strain hardening 
rate. (Right) Orientation image maps produced by sequential EBSD show deformation 
twins (red) growing in the parent (blue) when an extruded Mg alloy, AM30, was 
compressed [12]. 

Interactions involving slip and twinning within a given grain clearly underlie the 

rapid strain hardening shown in region II of Figure 1.1. However, nearly a century of 

focus on the strain hardening of materials accommodating plasticity by dislocation slip 

alone has diverted scientists from determining the relationships which govern the strain 

hardening during twin accommodated plasticity. For example, recall the well-accepted 

Taylor hardening expression, 𝜏 = 𝜏0 + 𝛼𝜇𝑏√𝜌, where 𝜏 is the critical resolved shear 

stress and 𝜌 is the dislocation density, α is a geometrical parameter, 𝜇 and b are shear 
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modulus and burger vector, respectively. Similarly, the plastic strain incompatibilities 

between neighboring grains clearly underlie the rapid fracture initiation. However, the 

ductile fracture of metals and alloys with face centered cubic (FCC) and body centered 

cubic (BCC) crystal structures are largely dictated by second-phase particle fracture 

and/or interface debonding. Depending on the initial microstructure, as mentioned above 

other interactions appear to additionally drive damage initiation in HCP alloys, e.g. Mg. 

1.2.1 Twin nucleation at grain boundaries 

Single crystal tests aimed at addressing whether or not twinning is a type of 

pseudo-slip deformation mechanism generally show substantial scatter in the critical 

resolved shear stress (CRSS) [6,13,14]. In general, the twinning stress exhibits an as of 

yet poorly understood dependence on microstructure, strain rate, temperature, stress state, 

prior slip, and crystallographic texture. Fundamental studies on the generation of highly 

glissile twinning dislocations and their crystallography have since then been undertaken 

in an effort to develop physics-based models suitable for higher length scale simulations 

such as crystal plasticity [15,16]. A significant number of researches [14,15,16] have 

shown the scatter in CRSS to the state of pre-existing defects in test sample. This 

suggests that the casting, or other preparation methods, affect the twinning stress. Hence, 

the Schmid law should still be in principal applicable to twinning [20–22], but with a 

marked sensitivity to initial material impurity. This has led to the suggestion that twin 

embryos always pre-exist in the investigated samples [23]. Alternatively, other authors 

have suggested that a twin originates either from spontaneous nucleation in the elastic 

field due to a stress concentration agent, such as an internal defect, [18,19,24,25], or from 

dissociations of prior slip dislocations [26–30] also be favored by stress concentrators. 
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The above three mechanisms (pre-existing defect, “growth accidents”, and spontaneous 

nucleation due to stress concentration) for twinning nucleation are still the subject of 

intense debate in the research community. 

Following the premises of micro-plasticity suggested by Meyers et al. [11] and 

Armstrong et al. [32] developed a dislocation pile-up based constitutive model to account 

for the negative grain-size effect [4,33,34]. The main idea relies on the primary role of 

dislocation pile-up on twin nucleation. The grain size has to be large enough to permit 

sufficiently long pile-ups capable of increasing the internal stress to the level required for 

a twin nucleation event, otherwise the twin will simply not form. These approaches were 

later refined and used to explain the strong dependence of twinning on grain size [35] and 

even an apparent disappearance of twinning when the grain size drops below a critical 

value usually in the one micron range [33,36]. The work by Barnett et al. [37] 

emphasized the size effects inherent to twinning, which are mainly reflected by the 

square dependence of the number fraction of twins to the grain size. The apparent 

vanishing of twins in very small grains created controversy since twinning was observed 

in nanocrystalline aluminum and copper at even slow strain rates and low temperatures 

[38,39]. These controversies have stimulated theories supporting a double-inverse grain 

size dependence [38,40] 

Recent endeavors have highlighted that {101̅2} twins in HCP metals may 

preferentially nucleate from low-angle grain boundaries (GBs) [41–43] (Figure 1.2), or 

from artificially introduced {101̅2} stacking faults in molecular dynamics (MD) 

simulation schemes. Nucleation from a defect-free environment inside a single crystal, 

though possible, requires excessively high stresses [44]. 
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Figure 1.2 EBSD investigation of twin nucleation at grain boundaries 

Inverse pole figure maps obtained by in sequential EBSD showing {10-12} twins (red 
regions) in AM30 magnesium deformed at two same compressive plastic strain levels 
(2.3% and 4.7%) but within two regions [12]. In (a-b), a region of a grain having only 
highly misoriented grain boundaries (>15), and in (c-d) a region of a grain containing a 
central boundary with a misorientation angle less than 15. The grain boundaries outlined 
in green correspond to misorientation angles less than 15 while those outlined in black 
correspond to misorientation angles greater than 15. Growth in the first region is 
dominated by edgewise propagation of a few nuclei, while in the second region, growth is 
dominated by greater nucleation rate due to the low misoriented tilt boundary. 

Using density-functional theory, Wang et al. [45] showed that a {101̅2} stable 

nucleus triggered by a {101̅2} stacking fault requires at least six twinning disconnections 

(TDs) to strike simultaneously. Conversely, these authors suggested a pragmatic process 

whereby a twin embryo can nucleate at a symmetric tilt wall provided a pile-up of lattice 

dislocations is applied to the boundary [46]. 

This process was not described as dissociation of lattice dislocations into twinning 

dislocations. Rather, the lattice dislocations acted as stress concentrators, motivating 

nucleation through a “pure shuffle” mechanism. In contrast, Barrett et al. [47] have 

demonstrated that a twin facet can readily nucleate at a high-angle {101̅0} ||(0001) basal-
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prismatic (BP) boundary through a mechanism which only implicated intrinsic interfacial 

dislocations and actually transformed one of the pre-existing grains into a twin. The twin 

boundary (TB) was shown to nucleate from a pile-up of b2/2 type disconnections as a 

relaxation process of the attendant distortion field. 

This literature review suggests that twin nucleation is driven by complex 

interactions between lattice dislocations and interfacial intrinsic defect of GBs. 

1.2.2 Twin propagation 

There are two stages of twin propagation that stem from different mechanisms, i) 

the drastic lengthwise thickening parallel to the composition plane, and ii) the progressive 

edgewise thickening normal to the habit plane, known as normal growth or twin 

propagation [23], which depends on various mechanisms such as twin-twin interactions 

(Figures 1.5 & 1.6). 

The lengthwise thickening has strong ties with nucleation and was believed for a 

long time to involve complex mechanisms related to formation of emissary dislocations 

and to elasto-plastic compatibility at the tip of the tapering twin [48,49]. Recently, these 

concepts have been proven invalid following the researches [45,48,49,50, 51], which 

demonstrated the primary role of the basal-prismatic asymmetric tilt boundary (Figures 

1.3 and 1.4). These complexities transcend the scope of this literature review. However, 

the development of the characteristic lamellar morphology of twins resides in the 

mechanisms taking place at this early stage of propagation. Therefore, for a full field 

model (the full field term means both long-range and short-range grain interactions are 

considered) to capture the microstructure induced by deformation twinning, a 

micromechanical framework for the lengthwise thickening needs to be implemented. 
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Figure 1.3 Atomic scale simulation of lengthwise thickening 

Molecular dynamics simulations by Barrett et al. [50] illustrating the role of basal 
prismatic (BP) boundary, various variants of {101̅2} twinning, twinning disconnections 
in the drastic lengthwise thickening of a {101̅2} twins in Mg. 

Twin propagation is a widely discussed topic in the literature, but the 

fundamentals were primarily provided between the nineteen fifties and the nineteen 

seventies. Starting from the nineteen eighties, most efforts concentrated on numerical 

investigations of the previous theories through atomistic simulations [54,55,15]. 

A crucial topic concerned the origin and dynamics of twinning disconnections 

that accommodate normal growth. Theoretical efforts led to two distinct schools of 

thought. The first school assumed spontaneous nucleation of twinning disconnections, 

whereupon stress and thermal agitation act in tandem to create little islands of twin on 

each successive lattice composition plane. Confounding the elastic properties of the 

matrix and the interface, the theory implied that a nucleation would be improbable if the 

Burgers vector magnitude of the twin disconnection exceeds approximately one half of 
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the interatomic spacing in the composition plane. This ramification was consistent with 

twin propagation in double-lattice structures such as face-centered tetragonal, 

orthorhombic and {101̅2} twinning in HCP, but inconsistent with twin propagation in 

cubic metals.  

Figure 1.4 Atomic scale simulation illustrating the role of basal prismatic boundaries 

(a) Molecular dynamics simulations by Ostapovets et al. [52] illustrating the role of basal 
prismatic (BP) boundary and disconnections in the drastic lengthwise thickening of a 
{101̅2} twins in Mg. (a) Initial relaxed configuration with one disconnection in the 
{101̅2} upper boundary and one disconnection in two BP boundaries. (b, c and d) 
Different stages of twin growth under applied shear strain. Arrows point to 
disconnections. 

Based on the wider core of twinning disconnections compared to bulk 

dislocations [56,57], Yamaguchi and Vitek [57] provided calculations that corroborated 

the normal growth by spontaneous nucleation, and actually supported the fact that the 

twinning stress for growth is a fraction of that for nucleation. In sum, there is so far no 

theory put forward that would negate the theory of spontaneous nucleation for twin 

propagation. 

9 



 

 

  

 

 

 

   

   
 

  
 

 

  

 

 

   

   
 

  
 

 

 

However, the most widely accepted theory for twin propagation is the pole 

mechanism for normal growth put forward independently by Cottrell et al. [58] and 

Thompson et al. [59], which constitute the second school of thoughts. This theory rests 

on the creation of generating nodes and twinning disconnections by matrix slip 

dislocations when they intersect the twin boundary. This theory has been recently 

confirmed by MD simulations by Barrett et al. [47]. The dislocation segment within the 

matrix, resp. within the twin, and connected to the node, forces the gliding twinning 

disconnections to proceed forward toward the matrix, resp. or backward toward the twin, 

accommodating normal twinning propagation, resp. normal detwinning shrinkage 

depending on the stress sign. The theory showed a remarkable consistency with the fact 

that twinning stress for growth is a fraction of that for nucleation [58]. 

Figure 1.5 In situ EBSD investigation of mechanical twinning 

Inverse pole figure maps obtained by sequential EBSD on a grain deformed at three 
compressive plastic strain levels: (a) 2.3%, (b) 3.8%, (c) 6.0%, which experienced a 
single variant of {101̅2} twinning growing under 0.315 initial value of the Schmid factor 
[43]. The twins, in red, grew in the parent matrix, in blue, having mainly the ED||〈101̅0〉 
orientation. 
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Figure 1.6 In situ EBSD investigation of lengthwise and edgewise thickening 

Inverse pole figure maps obtained by sequential EBSD on a grain deformed at three 
compressive plastic strain levels: (a) 2.3%, (b) 3.8%, (c) 6.4%, which experienced two 
variants of {101̅2} twinning growing both under 0.49 initial value of the Schmid factor 
[43]. The twins, in red, grew in the parent matrix, in blue, having mainly the ED||〈101̅0〉 
orientation. 

Here again, our literature review on twin propagation suggests that this 

phenomenon results from complex interactions between lattice dislocations and twin 

boundaries leading to the creations of MB disconnections that thread the twin boundary 

and accommodate its advance in the parent grain. 

1.2.3 Twin- GB interactions 

When a deformation twin is nucleated at a GB, propagates across a grain, and 

reaches the opposite GB, the strain brought about by twinning can be accommodated 

either by kinking, slip or twinning at the GBs. This process is known as accommodation 

effects. 

Accommodation effects by slip and kinking are of considerable importance for 

the reversibility of the twin whether by stress removal or stress reversal. The twinning 
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shear is either accommodated by elasticity in the matrix or by slip or kinking, usually in 

the matrix [55]. The idea that a twin accommodates plastic deformation without kinking 

or slip in the matrix is erroneous, although it had dangerously spread in recent literatures. 

The ability of matrix slip under twinning has a fundamental effect on detwinning, and, as 

it will be shown in this paper, on pseudo-elasticity. 

While kinking may be predominant in single crystals, accommodation effects in 

polycrystals are mainly provided by slip or another twin (interaction twins). If the GB has 

a low misorientation, twinning can be readily activated in the adjacent grain. However, if 

the GB has a sufficiently high misorientation, which happen typically in sharply rod-

textures and more randomized textures, slip is necessary or otherwise a crack may 

nucleate (Figures 1.7 and 1.8) and drive damage [62–64]. 

However, for largely unconstrained single crystals (SC), the shape change of 

twinning may be partly accommodated by kinking and/or slip [65–67]. Holden [65] 

observed that non-basal slip could readily relax any strain incompatibility in HCP single 

crystals. Unfortunately, such non-basal slip systems tend to be much harder to activate 

than the basal slip counterparts. These local stress effects correlated to twin deformation 

are considerably more pronounced in HCP structures than in more commonly used 

structural materials with FCC or BCC structures. Although the role of twin-

accommodation slip in plasticity was cited and emphasized during the nineteen fifties and 

sixties, current crystal plasticity (CP), and thus, continuum mechanics (CM) models still 

largely ignore it. 
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Figure 1.7 SEM obervation of crack nucleation at a grain boundary 

SEM micrograph surface relief due to twinning on the right and crack nucleation at the 
GB, on the left, of an AM30 Mg alloy deformed to 12% plastic strain. 

Accounting for GB effects within crystal plasticity-based crystal plasticity models 

is an active research field [65], and it will be considered in this thesis. Twin-

accommodation effects at GBs bear critical implications for damage initiation in HCP 

structures [5,7]. Zhang et al. [5] recently showed via MD simulations the opening of 

cracks in BCC molybdenum at a GB into which a deformation twin impinges (Figure 

1.8). Here, the effect of low GB misorientation (LGBM) is of considerable importance 

since it does not only affect the critical resolved shear stress (CRSS) for twinning, it also 

seems to affect the ease with which slip can accommodate twinning [42,69,70]. 
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Figure 1.8 Atomic scale simulation of Twin-GB interaction 

Twin-GB interaction-induced regions of high stress (dark blue regions) leading to GB 
crack initiation in Mo according to MD simulations [5] 

The difficulty of activating slip might be exacerbated by intergranular particles 

and solutes, so cracks may readily open as suggested by Remy et al. [71,72]. As 

described more fully below, twinning has typically been treated within crystal plasticity 

models as a pseudo-slip type mechanism, where the strain produced is homogenized over 

the parent crystal [73–75]. The results shown in Figures 1.7 & 1.8 underline the benefits 

of full-field crystal plasticity modeling. The twinning event is itself a strain localization 

event, and this must be captured in some way. Further, local interactions with GBs drive 

the development of “hot stress spot” (highlighted by the dark blue regions in Figure 1.8), 

accommodation slip, and even fracture initiation. 

Finally, all these events are compounded with classical effects of slip on strain 

incompatibility and thus localization. GBs are lattice orientation discontinuities over 

which strain incompatibility arises. Local phenomena are more pronounced in triple 
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junctions and quadruple points where deformation is more than two grains influence the 

effective lattice rotation. The Taylor model is the most widely used to capture strain 

compatibility in the grain boundaries [76]. According to the Taylor model, strain-rate is 

similar over all grains in the polycrystal aggregate, and strain incompatibility at the grain 

boundaries causes violation of stress equilibrium. The difference in stress state across 

neighboring grains causes stress gradient in the grain boundaries. Crystallographic slip 

during plastic deformation of polycrystals or single crystals causes gradual lattice 

rotation, and thus local changes in grain orientation. However, the lattice rotation is 

usually not uniform, it causes orientation gradients inside the grain. Literature shows 

several studies on orientation gradients or local misorientation within grains as result of 

plastic deformation, these studies include approaches using lattice curvature [77], 

deformation banding [78] or grain subdivision [79] based on various experimental 

techniques, most notably misorientation changes across line segments collected by EBSD 

measurements [80]. 

1.3 Three-dimensional microstructure measurement 

In order to have a correct understanding the role of microstructure on a particular 

property, measuring a true 3-dimensional polycrystalline microstructure is an essential 

factor. For instance, 3-dimensional microstructure gives useful information about grain 

boundaries such as full crystallographic characterization, which is not obtained with 2D 

measurements. In the following, three main measurement techniques are described. 
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1.3.1 High-energy X-ray diffraction 

High energy X-ray diffraction is a non-destructive method that is able to probe 

bulk samples and make material space, and time resolved microstructural measurements 

[81–83]. 3DXRD measurements provide grain orientation and strain information, and 

track individual grains information during plastic deformation [84]. Moreover, because of 

fast measurements, X-ray diffraction is a very useful technique to capture dynamic 

microstructure evolution [85]. Diffraction contrast tomography (DCT) is another type of 

non-destructive grain mapping, which gives both orientation and shape of each grain 

[82]. 

Near-field high energy x-ray diffraction microscopy (nf-HEDM) is another non-

destructive technique shown in Figure 1.9b. It has been developed to measure orientation 

of deformed materials [83,86]. In the same way, far field (ff) HEDM only provide the 

center mass position of individual grains, and because of its high resolution, it can be 

utilized to study the evolution of dislocation structures during deformation [87,88]. 

Combination of Nf-HEDM and ff-HEDM enables us to obtain information from both 

sub-grain structures as well as stress and strain state of individual grains [89]. 

1.3.2 Neutron diffraction 

Neutron diffraction is another technique, which is used to measure bulk texture 

and lattice strain during plastic deformation. Moreover, its applications are not limited 

with the sample size. In the recent publications, this technique has been used to provide 

bulk texture development and grain scale internal strain in plastic deformation [90]. 

These grain scale information can be used as input for simulation models [91]. 
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1.3.3 Electron diffraction 

Transmission electron microscopy (TEM) and electron backscatter diffraction 

(EBSD) are electron diffraction methods that can measure spatially resolved orientation 

and strain information [92,93]. Conventional EBSD or 2D EBSD is a very convenient 

and effective technique, which provide characterization information such as grain 

boundaries and grain orientation from the surface of materials. To obtain more detailed 

information, combination of EBSD and focused ion beam (FIB) provide three-

dimensional information from material microstructures (Figure 1.9a) [94]. Three-

dimensional EBSD is a surface based technique and destructive to sample, which is its 

major shortcoming. Therefore, it is not a proper technique to measure three-dimensional 

microstructure information during plastic deformation. 

Figure 1.9 Schematics of three dimensional microstructure measurements 

Schematics illustrating (a) geometrical set-ups of the EBSD-FIB [94], and (b) mapping 
measurement techniques with 3D-XRD [95]. 
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1.4 Crystal plasticity modeling 

Various crystal plasticity formulations have been developed to numerically 

predict the macroscopic response such as strain field, stress field and texture evolution 

after or during plastic deformation. 

1.4.1 Statistical Models 

Sachs model [96] considers activation of a single slip system, where all individual 

grains in polycrystalline experiences same stress tensor. According to this model, stress 

equilibrium is satisfied in grain boundaries, while strain compatibilities are violated in 

grain boundaries, then, this model gives a lower bound in crystal plasticity prediction of 

macroscopic behaviors. 

An upper bound in crystal plasticity modeling of polycrystalline has been 

proposed with Taylor and Bishop-Hill [97,98]. Based on their model, all individual grains 

are subjected to same strain tensor, and activations of multiple slip systems occur to 

satisfy strain compatibility at grain boundaries. To minimize the work expanded on each 

slip system, at least five-slip systems must be active to satisfy strain compatibility. This 

model is a Full constraint (FC) model, and stress equilibrium is violated at grain 

boundaries. FC model is very successful in prediction of deformation texture [99]. 

Viscoplastic self consistant (VPSC) is the most popular statistical method, which 

has been used to predict texture evolution and macroscopic field during plastic 

deformations [100]. This model is most commonly used in cubic and non-cubic materials. 

It considers each grain as a single crystal inclusion embedded in an effective viscoplastic 

medium with anisotropic properties. Ultimately, to compute macroscopic behavior of 
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polycrystalline, an incompressible viscoplastic constitutive equation is used to define 

local material response. 

1.4.2 Microstructure based Models 

Crystal plasticity finite element method (CPFEM) is the first and most commonly 

used method based on material microstructure as input, which considers grain interaction 

and provide full field solution to compute texture and stress/strain field during 

deformation [101,102]. CPFEM computes full field solution in elasto-plastic 

deformation, and slip systems are considered as main mechanism involved in the plastic 

deformation process [103]. In CPFEM, input microstructure is meshed with significant 

number of element to give a more accurate solution. Generating meshes that conform to 

grain boundaries is time consuming. Moreover, FE method generally runs in order of N2, 

so a problem with many degrees of freedom such crystal plasticity problem takes a long 

time to be solved. 

In contrast to FEM, fast Fourier transform (FFT) is a very good alternative that 

does not suffer from mesh complexity and slow running time. This method provides a 

full-field solution by considering the interaction of one point with other point in the 

image of initial microstructure [104,105]. Furthermore, absence of meshing requirement 

enables us to use large input images for the deformation simulation. The method will be 

described in more detail in the following. 

Gibbs’ phenomenon corresponds to the large oscillation that Fourier series of a 

piecewise continuously differentiable periodic function exhibits at a discontinuity. It 

leads to an over prediction of the values at the discontinuity compared with those given 

with the analytical solution by approximately 9% [106]. In particular, for full-field FFT 
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crystal plasticity simulations, this artifact tends to shield and perturb the effects of grain 

boundaries on stress localization [107]. Therefore, Gibbs’ phenomenon is a characteristic 

disadvantage of FFT crystal plasticity compared to CPFEM. [108]. In the literature, 

several solutions were suggested from utilizing a filter [106], to increasing Fourier point 

numbers in excess to 128 points [109], and performing calculation on odd grid numbers 

[109]. 

1.5 Crystal plasticity based on Fast Fourier transforms (FFT). 

The first application of FFT has been proposed by Moulanic and Suquet [105]. 

First, they used FFT to calculate micro-mechanical problem of linear elastic composite, 

and later extended to non-linear two-phase isotropic materials. Finally, Lebensohn 

combined crystal plasticity (CP) with FFT to calculate full field solution in viscoplastic 

polycrystalline materials [104]. 

The CPFEM, which uses the microstructure as an input, is undoubtedly the most 

popular based crystal plasticity formulation, commercially implemented to solve 

plasticity problems. However, it suffers from degrees of freedom in the problems with 

large complex microstructure. Furthermore, CPFEM shows difficulties in generating 

mesh, which conform to the interface in the microstructure with complex morphology, 

while meshless methods such as CPFFT can easily overcome these complexities. The 

accuracy of the solution in both CPFFT and CPFEM is a function of input microstructural 

image, but this dependency is stronger in CPFEM. In addition, crystal plasticity based on 

FFT formulation is solved in each voxel independently, thus, the CPFTT can be easily 

parallelized, and adapted on supercomputers with multiple processors, which is an 

effective way to decrease computational running time. 
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To apply FFT, the input must be discretized to N1 × N2 × N3 Fourier points and 

a periodic boundary condition is applied, which is a requirement of FFT calculation. A 

regular space grid is laid on the microstructure in three or two dimension; a center-wieght 

voxel, in three dimensions, or a center weight pixel, in two dimensions, is created at each 

grid point. Figure 1.10 shows an illustration of a pixelized microstructure. 

Figure 1.10 An artificially-constructed microstructure overlaid with regular Fourier 
grid. 

In CPFFT method, the relation between local stress and strain/strain-rate is given 

with a constitutive equation. This method uses Green’s function to compute local 

response of the heterogeneous medium, and strain compatibility is satisfied at each point 

with solving stress equilibrium at each point. 
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CPFFT formulation is based on augmented Lagrangian (AL) [110] iterative 

scheme, which compute local stress and strain/strain-rate when the unit cell is subjected 

to external loading boundary conditions. After reaching convergence, an equilibrated 

stress is obtained from a non-linear constitutive equation, and consequently, stress 

equilibrium and strain compatibility are satisfied at the same time. FFT based 

formulations have been developed for elastic, viscoplastic, and elasto-viscoplastic [111] 

constitutive behaviors to compute full field solution in polycrystalline deformation. In the 

following, we describe elastic formulation based on FFT, which is extended to 

viscoplastic and elasto-viscoplastic constitutive formulations. 

1.5.1 Elastic case 

An elastic constitutive relation between stress and strain field at a single crystal 

material point X is given by 

𝜎𝑖𝑗(𝑥) = 𝐶𝑖𝑗𝑘𝑙(𝑥)𝜖𝑘𝑙(𝑥) ( 1.1 ) 

where 𝐶𝑖𝑗𝑘𝑙(𝑥) is the anisotropic stiffness tensor at each point X of the representative 

volume element (RVE). To compute local-micromechanical field, a full-field solution 

method is used to solve the above equation for inhomogeneous elastic medium. With 

considering a homogenization approach, elastic constant of medium 𝐶0 is calculated as 

the average of 𝐶𝑖𝑗𝑘𝑙(𝑥). The local strain can be split as following: 

𝜖𝑖𝑗(𝑥) = 𝐸𝑖𝑗 + 𝜖𝑖𝑗̃ (𝑥) ( 1.2 ) 
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where �̇�𝑖𝑗 and 𝜖𝑖𝑗̃ (𝑥) are applied macroscopic strain and a periodic fluctuation strain at 

point X, respectively. The fluctuation strain can be expressed in terms of fluctuation 

displacement: 

𝜖𝑖𝑗̃ (𝑥) = (�̃�𝑖𝑗(𝑥) + �̃�𝑖𝑗 (𝑥)) ( 1.3 ) 

Then, with adding and subtracting the average stress, local stress at each Fourier 

point is given by the following equations: 

𝜎𝑖𝑗(𝑥) = 𝜎𝑖𝑗(𝑥) + 𝐶0
𝑖𝑗𝑘𝑙 𝜖𝑘𝑙(𝑥) − 𝐶0

𝑖𝑗𝑘𝑙𝜖𝑘𝑙(𝑥) ( 1.4 ) 

𝜎𝑖𝑗(𝑥) = (𝜎𝑖𝑗(𝑥) − 𝐶0
𝑖𝑗𝑘𝑙 𝜖𝑘𝑙(𝑥)) + 𝐶0

𝑖𝑗𝑘𝑙𝜖𝑘𝑙(𝑥) = 𝐶0
𝑖𝑗𝑘𝑙𝑢𝑘𝑙(𝑥) + 𝜙𝑖𝑗(𝑥) ( 1.5 ) 

where 𝜙𝑖𝑗(𝑥) is the polarization field, which means the deviation of local stress field 

from the average one. After applying stress equilibrium condition 𝜎𝑖𝑗,𝑗(𝑥) = 0 on 

equation (1.5), we will have: 

𝐶0
𝑖𝑗𝑘𝑙�̃�𝑘,𝑙𝑗(𝑥) + 𝜙𝑖𝑗,𝑗(𝑥) = 0 ( 1.6 ) 

Equation (1.6) is a homogeneous differential equation, which can be solved with 

Green’s function for a periodic unit cell under an average strain 𝐸𝑖𝑗 =< 𝜖𝑖𝑗(𝑥) >, and it 

can be written in terms of Green’s function as: 

𝐶0
𝑖𝑗𝑘𝑙𝐺𝑘𝑚,𝑙𝑗(𝑥 − 𝑥 ′) + 𝛿𝑖𝑚𝛿(𝑥 − 𝑥 ′) = 0 ( 1.7 ) 

where 𝐺𝑘𝑚 is Green’s function associated with fluctuation displacement field �̃�𝑘(𝑥), and 

𝛿 is dirac delta function associated with polarization field 𝜙𝑖𝑗. Then, the local 

displacement at each Fourier point is given by, 

�̃�𝑘(𝑥) = − ∫ 𝐺𝑘𝑖 (𝑥 − 𝑥 ′)𝜙𝑖𝑗,𝑗(𝑥′)𝑑𝑥 ′ ( 1.8 ) 
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Solving equation (1.8) in real space is difficult and time consuming, the equation 

is transformed into Fourier space, where the convolution integral can be solved with 

multiplication of polarization field and Green function in Fourier space, equation (1.8) in 

Fourier space becomes 

0 
�̂�(𝐾) = Γ̂𝑖𝑗𝑘𝑙 (𝐾)𝜙𝑘𝑙(𝐾) ( 1.9 ) 

0where K is the point in the Fourier space, and Γ̂ is Green’s function in Fourier space 𝑖𝑗𝑘𝑙 

as well, Green’s Function in Fourier space is given by: 

0 
Γ̂𝑖𝑗𝑘𝑙 (𝐾) = −𝐾𝑗 𝐾𝑙�̂�𝑖𝑘(𝐾) ( 1.10 ) 

�̂�𝑖𝑘(𝐾) = [𝐶0
𝑘𝑗𝑖𝑙𝑘𝑙𝑘𝑗]−1 ( 1.11 ) 

Furthermore, due to requirement of FFT algorithm to a periodic boundary 

condition, a periodic boundary is assumed across RVE. Local fluctuation strain is given 

in Fourier space by 

̂0𝑠𝑦𝑚 𝜖𝑖𝑗̂ (𝐾) = Γ 𝑖𝑗𝑘𝑙(𝑘)�̂�𝑘𝑙(𝑘) ( 1.12 ) 

After back transform to real space, the compatible strain field is written as, 

𝜖𝑖𝑗 = 𝐸𝑖𝑗 + 𝐹𝑇−1(𝜖𝑖𝑗̂ (𝐾)) ( 1.13 ) 

If a known perturbation field is available, the local strain field can be easily 

calculated from the above equations. However, due to the initial unknown fluctuation 

term at each point X, an iterative scheme is implemented to calculate local strain at each 

point X. In the iterative scheme, with (i)th guess for 𝜖𝑖
𝑖𝑗(𝑥) used in equation (1.1)-(1.3) 

and (1.5)-(1.6), 𝜖𝑖+1 
𝑖𝑗(𝑥) is obtained at (i+1)th iteration. Finally, with a proper 
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convergence criterion, the algorithm terminates when both stress equilibrium and strain 

compatibility are satisfied at the same time. 

1.5.2 Viscoplastic case 

In the Viscoplastic based on FFT (vpFFT), the elastic strain is considered very 

small compared to plastic one, and the relation between local deviatoric stress �́�(𝑥) and 

strain-rate ℇ̇ 
𝑖𝑗 (𝑥) at each point X is given by the following well known crystal plasticity 

equation. 

𝑠 (𝑥):�́� (𝑥) 
𝑛 

𝑁 𝑠 𝑚𝑖𝑗 𝑠 ℇ̇𝑖𝑗 (𝑥) = �̇�0 ∑𝑠=1 𝑚𝑖𝑗 (𝑥) ( 
𝜏𝑠(𝑥) )  sgn (𝑚𝑖𝑗 (𝑥): �́�(𝑥)) ( 1.14 ) 

According to this equation, activation of slip and twinning mechanisms produces 

𝑠 strain-rate during plastic deformation. 𝑚𝑖𝑗 (𝑥) is schmid tensor on slip or twin system, �̇�0 

and 𝜏𝑠(𝑥) are the reference shear rate and critical resolved shear stress on each slip or 

twin system, respectively. N is summation of active twin and slip system in plastic 

deformation. 

The macroscopic velocity 𝑉𝑖𝑗 is applied on the periodic unit cell, and can be 

decomposed into symmetric �̇�𝑖𝑗 and antisymmetric Ω̇ 
𝑖𝑗 tensor. 

𝑉𝑖𝑗 = �̇�𝑖𝑗 + Ω̇ 
𝑖𝑗 ( 1.15 ) 

where �̇�𝑖𝑗 and Ω̇ 
𝑖𝑗 are strain rate and rotation rate tensor, respectively. The local strain 

rate and rotation rate is given by, 

1
𝜖𝑖𝑗 = 

2
(𝑣𝑖,𝑗 + 𝑣𝑗,𝑖) ( 1.16 ) 

𝑁 𝛼𝑘 𝑠 �̇� 𝑖𝑗(𝑥) = ∑𝑠 𝑖𝑗 (𝑥)�̇� ( 1.17 ) 
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where 𝛼𝑘
𝑖𝑗 is anti-symmetric Schmid tensor. The local strain–rate is decomposed to 

average strain-rate and local strain fluctuation at each point X as, 

𝜖𝑖𝑗̇ (𝑣𝑘(𝑥)) = �̇� + 𝜖𝑖𝑗̃ (�̃�𝑘(𝑥)) ( 1.18 ) 

𝑣𝑘(𝑥) = �̇�𝑥𝑘 + �̃�𝑘(𝑥) ( 1.19 ) 

The velocity field is assumed periodic across boundary, and to assure stress 

equilibrium condition in the boundaries of unit cells, traction vector is anti-periodic 

across the boundaries. The Cauchy stress for incompressible material is given by, 

𝜎𝑖𝑗(𝑥) = 𝐿0
𝑖𝑗𝑘𝑙(𝑥)𝜖𝑘𝑙̇ (𝑥) + 𝜙𝑖𝑗(𝑥) − 𝑝(𝑥)𝛿𝑖𝑗 ( 1.20 ) 

where 𝑝(𝑥) and 𝐿0
𝑖𝑗𝑘𝑙 are the hydrostatic pressure and stiffness of reference medium, 

respectively. With applying stress equilibrium, and considering strain compatibility, 

equation (1.20) becomes  

𝐿0
𝑖𝑗k𝑙(𝑥)𝑣𝑘,𝑙𝑗(𝑥) + 𝜙𝑖𝑗,𝑗(𝑥) − 𝑝(𝑥) = 0 ( 1.21 ) 

𝑣𝑘,𝑘 = 0 ( 1.22 ) 

Likewise for the elastic case, equation (1.21) is solved by using Green’s function 

method, and the convolution integral associated with Green’s function and polarization 

function is written as: 

�̃�𝑘(𝑥) = ∫ 𝐺𝑖𝑘,𝑗𝑙 (𝑥 − 𝑥 ′)𝜙𝑘𝑙(𝑥′)𝑑𝑥 ′ ( 1.23 ) 

Forward transforming of the above integral to Fourier space and solving the 

convolution integral gives local strain field in Fourier space as, 

̂0 𝑠𝑦𝑚 𝜖𝑖𝑗̂̇ (𝑘) = Γ 𝑖𝑗𝑘𝑙(𝑘)�̂�𝑘𝑙(𝑘) ( 1.24 ) 
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̂0 𝑠𝑦𝑚 Similar to the elastic case, Γ = sym(𝐺𝑖𝑘,𝑗𝑙), the polarization field can be 𝑖𝑗𝑘𝑙 

calculated using the FFT based formulation. More robust and involved iteration based on 

the augmanted lagrangian method (AL), adapted from Michel et al. [110], which 

converge faster, is implemented in VPFFT formulation [112]. The diviatoric local stress 

field, �́�(𝑥), associated with compatibility constraint, is considered as initial guess for 

Lagrange multiplier field in the iteration. If the polarization field is known from the (i)th 

iteration, The new guess for the fluctuation at (i+1)th iteration is given by: 

(𝑖+1)(𝑘) = −Γ̂0 𝑠𝑦𝑚(𝑘): �̂�(𝑖)(𝑘)�̂� ( 1.25 ) 

(𝑖+1)(0) = 0∀𝐾 ≠ 0, 𝑎𝑛𝑑 �̂� ( 1.26 ) 

Local strain rate in real space is written as, 

(𝑖+1) (𝑖+1)(𝑘))�̃� = 𝐹𝑇−1 (�̂� ( 1.27 ) 

The new guess for local stress at (i+1)th iteration is computed from 

𝜎′(𝑖+1)(𝑥) + 𝐿0: 𝜖̇(𝑖+1)(𝑥) = 𝜆𝑖(𝑥) + 𝐿0: �̇�(𝑥) ( 1.28 ) 

where 𝜆𝑖(𝑥) is Lagrange multiplier field at iteration (i)th, and the new guess for Lagrange 

multiplier at next iteration is given by: 

𝜆(𝑖+1)(𝑥) = 𝜆(𝑖) (𝑥) + 𝐿0(𝜖 (𝑖+1)(𝑥))̇(𝑖+1)(𝑥) − �̇� ( 1.29 ) 

Strain-rate field 𝜖̇ is related to stress field constitutively, and convergence happens 

when both strain-rate field 𝜖̇ and kinematically admissible auxiliarly strain-rate field �̇� 

meet the same value to fulfill strain compatibility. Then, the Lagrange multipler 𝜆 field 

converges to the stress field 𝜎 to satisfy equilibrium condition [110,113]. Both equation 
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(1.28) and (1.29) guarantee that stress equilibrium and strain compatibility occurs at the 

same time. 

1.5.3 Elastic viscoplastic case 

Elastic viscoplastic (EVP) formulation considers both elastic and plastic strain 

evolution during deformation. The relation between local stress and elastic strain at each 

point X is given by, 

𝜎𝑖𝑗(𝑥) = 𝐶𝑖𝑗𝑘𝑙(𝑥)𝜖𝑒
𝑘𝑙(𝑥) ( 1.30 ) 

where 𝐶𝑖𝑗𝑘𝑙(𝑥) and 𝜖𝑒
𝑘𝑙(𝑥) is local elastic stiffness and elastic strain at each point X, 

with the following formulation, we can express local stress in terms of total strain and 

plastic strain, 

𝜖𝑒
𝑖𝑗 = 𝜖𝑖𝑗 − 𝜖𝑝

𝑖𝑗 ( 1.31 ) 

𝜎𝑖𝑗(𝑥) = 𝐶𝑖𝑗𝑘𝑙(𝑥)𝜖𝑒
𝑘𝑙(𝑥) = 𝐶𝑖𝑗𝑘𝑙(𝑥)(𝜖𝑖𝑗 − 𝜖𝑝

𝑖𝑗) ( 1.32 ) 

𝜎𝑡+Δ𝑡(𝑥) = 𝐶(𝑥)𝜖𝑒,𝑡+Δ𝑡 𝑝,𝑡+Δ𝑡(𝑥, 𝜎𝑡+Δ𝑡)Δ𝑡 ( 1.33 ) = 𝐶(𝑥)(𝜖𝑡+Δ𝑡(𝑥) − 𝜖𝑝,𝑡 − 𝜖̇ 

where 𝜎(𝑥) is the Cauchy stress at point x, 𝐶(𝑥) is elastic stiffness tensor, 𝜖𝑖𝑗 , 𝜖𝑒
𝑖𝑗, 𝜖𝑝 

𝑖𝑗 

, 𝜖̇𝑝 are total, elastic, plastic strain, and plastic strain-rate at each point X, respectively. 

As shown in equation (I-33), Local plastic strain is computed from plastic strain rate in 

equation (I-14) with Euler time discretization, and total strain is given by, 

𝜖(𝑥) = 𝐶−1(𝑥)𝜎(𝑥) + 𝜖𝑝 + 𝜖̇𝑝Δ𝑡 ( 1.34 ) 

Similar to elastic and viscoplastic case, average stiffness 𝐶0 is computed by 

averaging over local striffness at each point X. Constitutive law between local stress and 

displacement is given by, 

28 



 

 

    

   

 

   

 

    

   

 

  

    

 

 

 

     

        

      

 

   

 

      

   

 

  

               

 

 

 

              

 

𝜎𝑖𝑗(𝑥) = 𝐶0
𝑖𝑗𝑘𝑙𝑢𝑘,𝑙(𝑥) + 𝜎𝑖𝑗(𝑥) − 𝐶0

𝑖𝑗𝑘𝑙𝑢𝑘,𝑙(𝑥) ( 1.35 ) 

𝜎𝑖𝑗(𝑥) = 𝐶0
𝑖𝑗𝑘𝑙𝑢𝑘,𝑙(𝑥) + 𝜙𝑖𝑗(𝑥) ( 1.36 ) 

where 𝜙𝑖𝑗 is polarization factor, which means deviation of local field from average 

medium field. Likewise elastic and viscoplastic case, the compatible strain field is given 

by solving convolution integral of Green’s function and polarization field in Fourier 

space. 

𝜖𝑖𝑗(𝑥) = 𝐸𝑖𝑗 + 𝐹𝑇−1(𝑆𝑦𝑚(Γ̂0
𝑖𝑗𝑘𝑙(𝐾)�̂�𝑘𝑙(𝐾) ( 1.37 ) 

where Γ̂0
𝑖𝑗𝑘𝑙 and �̂�𝑘𝑙 are Green operator and polarization function in Fourier space, K is a 

frequency in Fourier space. An iteration scheme based on augmented lagrangian (AL) 

like VPFFT case is used on EVP formulation. Local stress 𝜎 (𝑥) and elastic strain is 

considered as initial guess for auxiliary stress and strain. Provided the polarization field is 

known at iteration (i)th, local strain at iteration (i+1)th is given by; 

𝑒(𝑖+1) (𝑖) ̂0 ̂(𝑖) 
𝑖𝑗(𝑥) = 𝐸𝑖𝑗 + 𝐹𝑇−1(�̂� 𝑖𝑗 + 𝑠𝑦𝑚(Γ 𝑖𝑗𝑘𝑙(𝐾)𝜆 𝑘𝑙(𝐾)) ( 1.38 ) 

In contrast to VPFFT case, an alternative fix point approach has been used, which 

compute compatible strain as result of multiplication between stress field and Green 

operator in Fourier space (equation 1.38). To compute new guess for stress field, 

Lebensohn et al. [111] used following modification on augmented Lagrangian (AL) to be 

more robust and to converge faster. 

𝑅𝑘(𝜎(𝑖+1)) = 𝜎(𝑖+1)
𝑘 + 𝐶0

𝑘𝑙𝜖(𝑖+1)
𝑙(𝜎(𝑖+1)) − 𝜆(𝑖)

𝑘 − 𝐶0
𝑘𝑙𝑒(𝑖+1) = 0 ( 1.39 ) 𝑙 
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This scheme needs nullification of a residual R at each point X, and this residual 

is a function of stress field 𝜎(𝑖+1), constitutively related with strain tensor 𝜖(𝑖+1) at each 

iteration, and finally, new guess for lagrangian multiplier is given by 

𝜆(𝑖+1)(𝑥) = 𝜆(𝑖)(𝑥) + 𝐶0: (𝑒(𝑖+1)(𝑥) − 𝜖(𝑖+1)(𝑥)) ( 1.40 ) 

When (𝑒(𝑖+1)(𝑥) − 𝜖(𝑖+1)(𝑥)) is smaller than a predefined threshold, 

convergence happens and EVPFFT algorithm goes to next deformation step. Similar to 

VPFTT, up on the convergence, both stress equilibrium and strain compatibility is 

satisfied at the same time. 
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CHAPTER II 

EFFECT OF DIFFERENT DEFORMATION MODES ON LOCAL 

HETEROGENEITIES IN A THREE DIMENSIONAL FERRITIC 

STEEL MICROSTRUCTURE 

2.1 Abstract 

We investigated the effect of macroscopic deformation modes (i.e. tension, 

compression, plane strain and torsion) on a real three-dimensional ferritic steel 

microstructure obtained by three-dimensional (3D) serial sectioning EBSD. To compute 

local lattice reorientation, strain rate and stress, a 3D full-field viscoplastic formulation 

based on fast Fourier transformation (VPFFT) was used. Kernel average misorientation 

(KAM) and local Taylor factor were calculated based on the orientation at each Fourier 

point. The calculated local stress, strain rate, Taylor factor, and KAM values were 

categorized according to (Euclidean) distance maps for three different microstructural 

features: grain boundaries, triple junctions and quadruple points. The results show that 

low and high values of local stress, strain rate, Taylor factor, and mainly high values of 

KAM all lie close to the microstructural features in all deformation modes. The width of 

high strain rate regions adjacent to grain boundaries depends on stress state in tension, 

compression, and plane strain, whereas the torsion mode results in hot spots distributed 

throughout the grains. Taylor factor and KAM exhibit a strong correlation with local 
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stress and local stress gradient, respectively, which varies to some degree with 

deformation mode. 

2.2 Introduction 

Plastic deformation of polycrystalline metals is heterogeneous in grain scale, and 

several researches have been performed to realize deformation gradient inside of grains. 

New characterization tools such as electron backscatter diffraction (EBSD) and 3D 

synchrotron X-ray diffraction have been used to investigate grain scale heterogeneities 

[114,115]. Strain heterogeneity is known to occur near grain boundaries, triple lines and 

quadruple points, which are all discontinuities in orientation. The jumps in orientation 

from one grain to the next across these boundaries can cause jumps in stress and strain 

incompatibility near the boundaries. For general inclusions (could be a grain) with a 

“perfect” interface, displacements and interface tractions across the interface must be 

continuous. However, there may be a jump in the displacement gradient normal to the 

interface, while that along the interface remains continuous. The Taylor model is widely 

used to approximate the anisotropic response of polycrystals and assumes uniform strain 

(rate), thus compatibility is automatically satisfied and at grain boundaries in particular 

[116]. By assuming uniform strain rate for all grains in the polycrystalline aggregate, 

which is a strong assumption about local boundary conditions, much success has been 

obtained in texture prediction [117]. However, grains have different neighborhoods, and 

thus different stress vertices, to be reached by the local stress in order to satisfy 

compatibility that is aggravated by grain-grain interactions. A grain is forced to deform in 

a polyslip condition, as it is unable to deform independently from its neighbors. The 

change in stress direction from the single crystal deformation condition (early strain) to 
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the interacting grain condition, upon increasing plastic strain, is usually tracked by the 

change in elastic strain direction. The inevitable changes in stress state from a grain to 

another one means that stress gradients will be the largest across grain boundaries and 

stress equilibrium is clearly violated there. 

The local Taylor factor is essentially used to measure the amount of plastic work 

required to deform the polycrystal at a given location. A few studies have shown that the 

variation of local Taylor factor from one grain to another one correlates with damage 

susceptibility and thus failure. For instance, Wright and Field [118] showed that grains 

with low Taylor factors adjacent to those with high Taylor factor are more susceptible to 

develop stress concentrations. Furthermore, Taylor factor value is an effective criterion to 

explain the sources of void nucleation, for example, voids nucleate more frequently in the 

regions with both hard and soft orientations than in the regions with a high Taylor factor 

[119]. On the other hand, void development mostly happens at grain boundaries between soft 

orientation where incompatible shape changes are in results of differential strains from 

predominant slip systems [120,121]. 

To measure experimentally the relation between local strain and orientation, some 

techniques such as digital image correlation (DIC) and electron backscatter diffraction 

(EBSD) can be used. DIC that provides full-field strain measurements in the 

microstructure [122,123] was coupled with EBSD to determine strain in grain interiors 

and close to grain boundaries. The results showed strain concentration near grain 

boundaries. The magnitude of plastic strain variation across boundaries was related to the 

residual Burger vectors. Two types of regions near grain boundaries were identified, viz. 
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regions with low and high strain associated with GB shielding, versus regions with slip 

transmission across the boundary and therefore minimal strain concentrations [124,125]. 

Crystallographic slip during plastic deformation of polycrystals or single crystals 

causes gradual lattice rotation, and thus local changes of grain orientation. However, the 

lattice rotation is usually not uniform, it causes orientation gradients inside the grain. 

Studies of orientation gradients or local misorientation within grains as result of plastic 

deformation have shown orientation gradients as lattice curvature [77], deformation 

banding [126] or grain subdivision [78] where the material has not been deformed 

severely (e.g. bulk torsion). EBSD measurements have also confirmed the existence of 

orientation gradients between the grain center and boundaries from uniaxial tension [80]. 

Three-dimensional (3D) crystal plasticity finite element method (CPFEM) was 

used to model heterogeneity of stress, strain and orientation gradient at the grain scale 

[127,128]. For instance, Lewis et al. [129–131] performed 3D CPFEM simulations based 

on a measured 3D microstructure, grain morphology, grain boundary and connectivity 

under different loading conditions. Their results confirmed that the local von Mises stress 

is the highest near grain boundaries (GBs) and triple junctions (TJs). 

To decrease computational time and avoid meshing complexities associated with 

CPFEM such as generating a good quality mesh that conforms to the grain boundary 

network, the viscoplastic full-field solution based on the fast Fourier transform (VPFFT) 

was proposed by Lebensohn [132–134], which in turn was based on work by Moulinec 

and Suquet [135] for composite materials. Using VPFFT, Rollett et al. [136] identified 

stress localization near GBs, TJs and quadruple points (QPs) for different 3D 

microstructures. 
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In this work, we are concerned with deciphering the effect of imposed 

macroscopic deformation modes on local stress, strain and average misorientation, with 

the motivation to infer how the microstructure responds to the loading condition in terms 

of damage susceptibility. We instantiate the VPFFT simulations with a measured 3D 

microstructure of BCC steel obtained by 3D electron backscatter diffraction (EBSD) 

serial sectioning. Four different deformation paths (i.e. tension, compression, plane strain 

compression, and torsion) were applied to the real 3D ferrite microstructure. Appropriate 

algorithms were developed to statistically analyze the localization behavior with respect 

to microstructural features including GBs, TJs, and QPs for each loading condition. Next, 

the effect of loading boundary conditions was investigated on correlation between Taylor 

factor and local stress and strain rate. Finally, we investigated the correlation between 

kernel average misorientation (KAM) and stress gradient in different deformation modes. 

2.3 Experimental procedure 

2.3.1 Sample preparation and mechanical testing 

A fully ferritic steel with composition 0.04 C-1.52 Mn-0.2 Si -0.22 Mo-0.08 Ti-

0.33 Al (wt%) was used in the current study. The material was received in a rolled slab 

condition having 40 mm in thickness. Hot rolling was performed to reduce the thickness 

to 12 mm. A plane-strain compression specimen with a dimension of 300×300×10 mm 

was machined out of the hot rolled plate with its long length perpendicular to the rolling 

direction. The specimen was reheated at 5 °C/s to 1200-°C and held for 300-s. It was then 

cooled down to 890°C, held for 20 s, and then deformed to a strain of 1 at a strain rate of 

1 s-1. Afterwards, the deformed specimen was cooled to 650 °C at 10 °C/s and held for 

600 s followed by water quenching. This thermomechanical procedure was employed to 
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refine the ferrite grain size and consequently achieve a high population of grains within 

the volume that can be analyzed by three-dimensional EBSD mapping. The final 

microstructure consisted of fully polygonal ferrite grains having an average grain size of 

~6 m. 

The compression device was a servo hydraulic thermomechanical treatment 

simulator apparatus (Servotest, 500 kN) equipped with an automated testing machine 

including an induction furnace, a muffle furnace and a computer data-acquisition system. 

Temperature was monitored throughout the testing using a thermocouple embedded into 

the specimen. A boron nitride lubricant was used to coat the specimen and minimize the 

friction between the contact surfaces of the specimen and anvils during deformation. 

To quantify the mechanical property of the material, sub-size tensile specimens 

with a gauge of 20 mm×2 mm×2 mm were machined by wire-cutting out of 

thermomechanically processed sample. The tensile axis was perpendicular to the 

deformation direction. Tensile testing was performed using an Instron tensile testing 

machine with a crosshead displacement rate of 7.2 mm/min (i.e. corresponding to a 

nominal strain rate of 10-3 s-1 . 

2.3.2 Three dimensional EBSD Measurement 

To construct a 3D orientation map of the microstructure, 3-D EBSD measurement 

with automatic serial sectioning was performed on a rectangular specimen. The specimen 

was extracted from the center of the deformed sample compressed normal to the loading 

axis. The thickness of the sample was reduced to approximately 150 m through 

mechanical grinding and polishing. EBSD mapping was carried out using under a voltage 
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of 20 kV and a current of 8 nA. EBSD scans were performed with a step size of 150 nm. 

In each sectioning step, 200 nm was removed using a 30 kV, 5 nA Ga+ ion beam. The 

average confidence index generally changed between 0.60 and 0.70. More details on 3D-

EBSD characterization routine can be found in [137]. 

Figure 2.1 Three dimensional reconstructed microstructure of a Ferritic steel 

Three dimensional reconstructed microstructure of a Ferritic steel obtained by 64 serial 
sections with electron backscatter diffraction.  The orientations are colored according to 
an inverse pole figure for the X direction, see inset bottom right. 

To create 3D reconstructed microstructure, the serial sectioned data was placed in 

a 3D framework using the software package Dream.3D [138]. During reconstruction 

process the following cleaning step was applied. First, to remove ambiguous data, a grain 

dilation was applied in each layer, then a single average orientation was assigned to each 

grain in three dimensional, finally grains smaller than 30 voxels were merged with the 

neighboring grains having the highest number of voxels. The 3D Ferritic microstructure 
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containing 1276 grains was constructed with dimensions 234 × 267 × 68 voxels (Figure 

2.1). 

2.4 FFT Method and hardening rules 

The FFT viscoplastic formulation computes a local compatible strain-rate field in 

each point when the unit cell undergoes a macroscopic strain rate �̇�𝑖𝑗 [20,21]. Due to a 

priori unknown value for strain-rate field, an iteration scheme based on augmented 

Lagrangian [140] was adopted to compute local strain rate field at each strain increment. 

Up on convergence, local strain rate field, related constitutively to stress, becomes equal 

to the kinematically admissible strain rate field to satisfy compatibility condition. As a 

consequence, the Lagrange multiplier field converges toward stress field to fulfill stress 

equilibrium. The readers are referred to references [134,139] for further detailed 

information. 

The local constitutive relation between strain-rate ℇ̇ 
𝑖𝑗(𝑥) and the deviatoric stress 

�́�(𝑥) is given with a commonly used crystal plasticity equation: 

𝑠 𝑛 
(𝑥):�́� (𝑥) 

∑𝑁 𝑠 𝑚𝑖𝑗 𝑠 ℇ̇𝑖𝑗 (𝑥) = �̇�0 𝑠=1 𝑚𝑖𝑗 (𝑥) ( ) 𝑠𝑔𝑛 (𝑚𝑖𝑗 (𝑥): �́�(𝑥)) ( 2.1 ) 
𝜏𝑠(𝑥) 

Summation 𝑁 runs over all slip 𝑁𝑠 systems, 𝜏𝑠 and 𝑚𝑠 are the threshold shear 

stress and Schmid tensor associated with each slip system, respectively. �̇�0 is a 

normalization factor and n is the rate sensitivity exponent. 

The critical resolved shear stress (CRSS) increases with accumulated shear strain 

Γ in each point (each grain). For VPFFT, the evolution of CRSS with shear strain is 

described with the extended Voce law-hardening model: 
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−𝛩0𝛤 
𝜏𝑠(𝛤) = 𝜏0 + (𝜏1 + 𝛩1𝛤) [1 − 𝑒𝑥𝑝 ( 

𝜏1 
)] ( 2.2 ) 

𝑡 
Γ = ∫ ∑ |�̇�|𝑑𝑡 ( 2.3 ) 𝑠 0 

τ0 and θ0 are the initial shear stress and hardening rate, while τ1 and θ1 are the 

saturation stress and hardening rate, respectively. The solution to Eq. (II-1) provides the 

slip rates used in Eq. (II-2). 

Activation and interaction of slip systems causes hardening, so an expression is 

needed to capture how hardening increases the CRSS of each slip system: 

𝑑𝜏𝑠 
𝑠 ∑ ℎ𝑠�́� �́��̇� = �̇� ( 2.4 ) �́�𝑑Γ 

́Here 𝑑𝜏𝑠 
and ℎ𝑠𝑠 are self and latent hardening parameters between different slip 

𝑑Γ 

systems, respectively. 

To use the MPI-parallel FFT algorithm, the dimensions of the simulation volume 

should be power-of-two. 22 buffer layers were added in the x direction to make a 

simulation volume with dimension of 256× 256 × 64. Figure 2.2 shows inverse pole 

figures (IF) of simulation volume. There is a strong <111> fiber parallel to X direction. 
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Figure 2.2 Inverse pole figures (IPF) of the input microstructure 

Showing a mild <111> fiber texture parallel to the X direction of the 3D ferritic steel 
microstructure. 

VPFFT simulations were performed to simulate four different strain paths by 

imposing macroscopic strain-rate of four deformation modes in step of 0.01 von Mises 

strain to a maximum strain of 0.3, as described in Table 2.1. 

Because of existence of experimental data for tensile sample, first, the Voce law 

hardening parameters were determined based on the best fit between experimental and 

simulation result (see Table 2.2). Then, with the fitted parameters stress- strain curves of 

the three other deformation modes (compression, plane strain and torsion) were 

simulated. 
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Table 2.1 Four different deformation path imposed on the unit cell 

Tension Compression Plane Strain Torsion 
-0.5 0 0 
0 1.0 0 
0 0 -0.5 

0.5 0 0 
0 -1.0 0 
0 0 0.5 

0 0 0 
0 0.866 0 
0 0 -0.866 

0 
0 
0 

0 0 
0 0.866 
0.866 0 

VPFFT simulations were performed to simulate four stress states by imposing 

macroscopic strain-rate of four deformation modes in step of 0.01 von mises strain to a 

maximum strain of 0.3 described in Table 2.1. 

Because of existence of experimental data for tensile sample, first, the voce law 

hardening parameters were found based on the best fit between experimental and 

simulation result (Table 2.2). Then, with the fitted parameters stress- strain curves of the 

three other deformation modes (compression, plane strain and Torsion) were simulated. 

Table 2.2 Voce law hardening parameters of the three slip modes resulting from the 
best fit between predicted and experimental tensile test along X (RD) 

𝜏0 𝜏1 𝜃0 𝜃1 
{110}<111> 266 54 878 103 
{112}<111> 256 54 878 103 
{123}<111> 266 54 878 103 

2.5 Results and Discussion 

2.5.1 Simulated Macroscopic stress-strain curves 

For simplicity, slip in a body center cubic (BCC) structure is assumed to occur 

along different planes all with a <111> slip direction. The three slip modes, namely 

{110} <111>, {112} <111>, and {123} <111>, contain 48 slip systems in total. To 

predict the macroscopic stress-strain curve, all three-slip modes are considered. In 

previous endeavors [141], the value of initial critical shear stress on {112} plane was 
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considered less than those associated with the two other slip modes. Table 2.2 

summarizes our Voce hardening law parameters, which we identified for each slip system 

by fitting the tension stress-strain curve in Figure 2.3. 

Figure 2.3 Experiment and simulated stress-strain curves of the Ferrite steel. 

Experimental tensile test curve (solid line), and VPFFT simulated stress-strain curves of 
four different macroscopic strain paths listed in Table 2.1. 

According to Figure 2.3, the tension and compression stress-strain curves are 

close, denoting dismal asymmetry. However, the torsion and plane strain compression 

curves lie distinctly below the tension result. Tomé et al. [142] also showed similar 

behavior for a copper material with random texture. These authors argued that the 

material leaves off isotropy at large deformation, while the Voce law hardening equation 

is not truly equivalent for all strain paths. 
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2.5.2 Local strain and stress distribution 

Figure 2.4 shows the strain rate on the exterior surface of the simulation domain 

for all four-deformation paths. It is obvious that the local response varies within grains. 

Each deformation path gives rise to different patterns of local maxima and minima in the 

microstructure. Figure 2.4 also reveals that under torsion the regions with the highest 

values of strain rate correspond to the grain center, while in the other deformation paths 

most of the hot spots lie near grain boundaries. We return to this point later. 

Local strain rate peaks are known to occur near grain boundaries because of 

deformation incompatibilities between neighboring grains with different orientations, 

which experience different resolved shear stresses. Furthermore, rotation of crystal lattice 

depends on deformation paths, For example, when a single crystal is subjected to uniaxial 

tension or compression, loading axis rotates toward plane normal or slip direction, 

respectively [143]. Under torsion, however, the corresponding simple shear does not 

substantially affect the contacted area along the slip plan so less incompatibility 

phenomena are expected. 
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Figure 2.4 Distribution of local strain rate on surface of simulation box 

Strain (von Mises equivalent) field on the surface of the simulation volume for ferritic 
steel after applying a) Tension, b) Compression, c) Plane strain, and d) Torsion boundary 
conditions. 
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Figure 2.5a shows a histogram of strain rate distribution for all four-deformation 

paths in the entire microstructure. The deformation modes do not appear to have a 

significant effect on the mean and peak fraction of histograms. However, all four 

histograms have long tails, indicating occurrence of shear localization [144]. 

Figure 2.5 Stress and strain rate histogram 

a) histogram of von Mises strain and b) histogram of von Mises stress, normalized by 
their respective mean values, in the simulation volume for 4 deformation modes 
(Tension, Compression, Plane strain, and Torsion). 

Figure 2.6 shows the simulated stress distribution on the exterior surface of the 

simulated volume. Torsion and tension cause the highest local stress values among the 

four deformation modes. However, again in tension, stresses concentrate most adjacent to 

grain boundaries (red color) and spread toward grain interiors, while torsion shows the 

opposite effect. The dependence of stress distribution (both high and low stress values) to 

grain orientation changes with the nature of loading, and it is clear that hot spot regions 

are sensitive to the strain path. 
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Figure 2.6 Distribution of local stress on the surface of simulation box 

Stress (von Mises equivalent) field on the surface of the simulation volume for ferritic 
steel after applying a) Tension, b) Compression, c) Plane strain, and d) Torsion boundary 
conditions 

The effect of microstructural inhomogeneities on stress localization was reported 

earlier by Barbe et al. [145]. The regions with high stress correlate with regions with high 
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dislocation densities. In general, localization amplitude scales with the degree of 

incompatibility, so peaks are expected near triple junctions and quadruple points. 

Figure 2.5b compares stress distribution in all Fourier points between all strain 

path conditions. The strain path clearly affects the shape of local stress distribution. 

Except for tension, the stress histograms exhibit two peaks at the same stress value for all 

strain paths. The peak amplitudes reflect the quantity of grid-points with low or high 

local stresses, which are near GBs or grain centers, respectively. 

2.5.3 Grain Scale behavior 

As stated earlier, microstructural features such as grain boundaries (GB), triple 

junctions (TJ) and quadruple points (QP), are known to be an important source of strain 

localization. To investigate the relation between local strain rate, stress, and 

misorientation versus distance to these singularities, a Euclidean distance map [146] was 

computed where each point was binned according to its characteristic distance (See 

Figure 2.7). For more detail on the procedure, the reader is referred to Rollett et al. [136]. 
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Figure 2.7 Distance map of each points to microstructural features 

Distance map (units of voxels) for the input ferritic microstructure for a) the distance to 
the nearest grain boundaries, b) the distance to the nearest triple junction and c) the 
distance to the nearest quadruple point. 
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2.5.3.1 Grain scale Stress and strain-rate localization 

Figure 2.8 exhibits variation of distance vs. local strain-rate of the points to GB, 

TJ, and QP. The general tendency in all three curves for each strain path is rather similar, 

and points near TJ and QP experience greater local strain rate. Both high and low values 

of strain-rate are found near microstructural features, and the maximum values of strain-

rate close to the microstructural features depend on the strain path. Two-dimensional DIC 

experimental results also confirm existence of high and low strain regions close to grain 

boundaries [124].  Figure 2.8 shows that the maximum distances are found for local 

strain-rates close to 1, i.e. most likely in the grain center. In high strain-rate regions near 

grain boundaries, there is an inflection for all deformation modes except torsion, and the 

strain-rate of inflection point depends on the deformation path. 

According to experimental observation, a grain can be divided into two regions, 

mantle referring to regions near grain boundaries, and the center of grain called core, and 

Each grain has several mantle zones according to neighboring grain numbers [147]. 

Therefore, the inflection point in the curves in Figure 2.8 can be considered as a 

boundary between mantle and core regions. Tension has the biggest inflection strain-rate 

(i.e. ~2) and compression has the smallest one (i.e. ~1.5). The points with local strain-rate 

larger than inflection strain-rate belong to mantle zone; otherwise the points belong to 

core. 
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Figure 2.8 Plot of average distances binned by local strain rate 

Plot of average distance to microstructural features in each strain-rate   class after applying 
a) tension, b) compression, c) plane strain and d) torsion deformation, as described in 
Table   2.1.   

To estimate the distance of the boundary between mantle and core zone from 

GBs, the local strain-rate was binned based on the closest distance from GBs in three-

dimensions. Figure 2.9 shows variation of average strain-rate vs. the closest distance to 

grain boundary after applying four deformation paths. We observe that the local average 

strain-rate decreases with increasing distance from nearest GBs. There is an inflection 

point in the tension and plane strain curves, which is in agreement with results of two-

dimensional DIC strain measurement [124]. In addition, the distance of the inflection 

point from GBs depends on the deformation path. Tension and plane strain cause the 
50 



 

 

 

  

  

  

 

  

  

 

 

 

 

 

 

 

 

 

  

  

  

 

  

  

 

 

shortest and longest mantle zone, respectively, while torsion produces a very smooth 

transition to the core zone. Surprisingly, under compression, local average strain-rate and 

distance to grain boundary does not show any meaningful correlations. In the other 

words, the existence of inflection point in tension, compression and plane strain reveals 

localized strain regions mostly concentrated near microstructural features, while in 

torsion they are more diffuse. 

Figure 2.10 shows the relation between local stress and distance to GB, TJ, and 

QP in grain scale for all the four deformation modes. The general trend of curves is alike 

for all strain paths. In particular, the maximum stress values localize preferentially near 

microstructural inhomogeneities, and the points with low stress values lie close to GB, TJ 

and QP. Other experiments [148] and simulations [147] results are in agreement with our 

finding, which stresses localize more substantially in the vicinity of grain boundaries than 

in grain interiors. 
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Figure 2.9 Plot of local strain binned by distance to microstructural features 

Plot of average strain vs. distance to grain boundaries after applying a) Tension, b) 
Compression, c) Plane strain and d) Torsion boundary condition as described in Table 
2.1. 

The maximum values of local stress near grain boundaries depend on the 

deformation mode; that is, tension and compression cause the largest and smallest 

maximum local stress near grain boundaries, respectively. Moreover, the value of local 

stress in the grain center regions where have the maximum distance to grain boundaries 
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strongly is a function of the strain path. For instance, tension and plane strain induces the 

maximum and minimum local stress in the grain center regions, respectively 

Figure 2.10 Plot of distance based on local stress in each point 

plot of average distance to microstructural features in each stress class after applying a) 
Tension, b) Compression, c) Plane strain and d) Torsion boundary conditions as 
described in Table 2.1.  Of the four strain paths, the plane strain case shows the most 
obvious anti-correlation between stress and distance, i.e. low stresses are found close to 
microstructural features. 
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2.5.4 Micromechanical Taylor Factor Analysis 

To investigate the local relation between orientation and stress/strain-rate, we 

computed local Taylor factor in each Fourier point, which was referred to by 

micromechanical Taylor factor in other studies [149]. To calculate the local Taylor 

Factor, the summation of plastic strain over all active slip system was divided by local 

von Mises strain (equation 3-a). 

𝛼 |∑𝛼 |�̇� 
𝑀 = ( 2.5 ) 

𝜀𝑒𝑓𝑓 

2 2휀𝑒𝑓𝑓 = √3 𝜀𝑖𝑗휀𝑖𝑗 ( 2.6 ) 

Figure 2.11 shows local Taylor factor was binned by the distance of the points to 

the microstructural Features (GB, TJ, and QP). The curves reveal an effect of the loading 

condition on the distribution of Taylor factor. Furthermore, regions with low and high 

Taylor factor values lie in the vicinity of microstructural features. The curves reveal that 

local Taylor factor values of the voxels near TJ and QP are greater than those for voxels 

near GB. This entails voxels near TJ and QP require stresses closer to stress vertices, and 

thus probably higher local stresses because of more pronounced hardening. Similarly, 

Harren and Asaro [150] showed that strain localization is more severe nearby TJs than 

elsewhere along GBs. 
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Figure 2.11 Plot of distance binned by local Taylor factor 

Plot of average distance to microstructural features in each Taylor Factor class after 
applying a) Tension, b) Compression, c) Plane strain and d) Torsion boundary conditions 
as described in Table 2.1.  The variations are similar to those observed for stress. 

To quantify the relation between orientation and stress/strain-rate in each Fourier 

point, the variations of Taylor factor with local strain-rate/stress were calculated. Figure 

2.12b shows that the local Taylor factor is anti-correlated with the local strain-rate. The 

Taylor factor was binned by local strain-rate in each boundary condition. In all 
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deformation modes, there is a negative correlation between Taylor factor and local strain-

rate, decreasing strain-rate with increasing Taylor factor. Moreover, the deformation 

mode does not have significant effect on the correlation between local strain rate and 

local Taylor factor. The anti-correlation of Taylor factor with local strain rate polycrystal 

model was also reported for a FCC metal subjected to tension [76,151]. This behavior is 

consistent with the view of Taylor factor as determining the tendency of a local 

orientation to be favorable for plastic deformation. It means the points with low Taylor 

factor will experience more strain compared to points with high Taylor factor values, in 

the average.  

Figure 2.12a shows the correlation plots between the local Taylor factor and local 

stress. The Taylor factor was binned by local stress in each deformation mode.  For all 

deformation modes, there are strong positive correlations showing increasing Taylor 

factor with increasing stress. The correlation plots can be divided into two regions. In the 

first region, local stresses are less than 1000 MPa, for which all correlation plots have 

essentially the same values. In the second region, where stresses are higher than 1000 

MPa , some divergence is evident with respect to deformation path. For the same stress 

value in the second region, tension and plane strain bring about the smallest and highest 

Taylor factor values, respectively. This entails that with changing stress state from 

uniaxial to multiaxial in a same equivalent von Mises stress, strain incompatibility 

increases in high local stress regions, which are near the microstructural features. 

Local strain variations caused by Taylor factor mismatch across grain boundaries 

can be the source of intergranular crack formation [152,153]. In reality, strain gradients 

could be mitigated by transmission of slip across the grain boundary [42], but this 
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interfacial reaction phenomenon is not captured in our crystal plasticity framework. High 

Taylor factor points near grain boundaries in figure 2.11 are referred to regions with low 

local strain or low amount of slip shear, and can be damage or crack nucleation sites. 

Figure 2.12 Correlation between local Taylor factor and local stress/strain-rate 

Correlation plot between Taylor factor and a) local strain rate, b) local stress for Tension, 
Compression, Plane strain, and Torsion boundary conditions as described in Table 2.1. 
The Taylor factor is positively correlated with stress and anti-correlated with local strain 
rate. 

2.5.5 Orientation and Stress gradient 

Kernel average misorientation (KAM) is a reliable criterion for calculating the 

local orientation changes and the deformation degree in each point. Several studies have 

been performed to measure the localized misorientation with the help of kernel average 

misorientation in 2D with Electron Backscatter Diffraction (EBSD).  A review of the 

technique was reported in a review paper by Wright et al. [154]. 
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In this work, KAM was determined in 3D for each grid-point within a given grain 

as an average over all 26 nearest neighbors in the simple cubic grid. However, neighbors 

with misorientation exceeding 10 in lattice misorientation were excluded from the 

averaging procedure in order to avoid including neighbor points from a different grain. 

Figure 2.13 shows local average misorientation map on the surface of simulation 

volume. The map key goes from blue to red for low to high local average misorientation 

values. From a qualitative point of view, it is clear that the orientation change does not 

happen uniformly at grain scale on the surface of unit cell, and there is an orientation 

gradient inside of the grain. To obtain a quantitative analysis of orientation gradient in the 

grain scale, the values of local KAM binned according to the distance of the points to the 

microstructural Features (GB, TJ, QP) are given in Figure 2.14. 
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Figure 2.13 Distribution of local average misorientation on simulation box 

Kernel Average misorientation on the surface of simulation volume after applying a) 
Tension, b) Compression, c) Plane strain and d) Torsion boundary conditions as 
described in Table 2.1. 
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Figure 2.14 Plot of distance binned by local average misorientation in each point 

plot of average distance to microstructural features in each kernel average misorientation 
class after applying a) Tension, b) Compression, c) Plane strain and d) Torsion boundary 
conditions as described in Table 2.1. 

The general trend is that KAM varies with distance to grain inhomogeneities in a 

similar fashion for four types of the investigated deformation paths, and high KAM 

points lie near the microstructural features. Moreover, The corresponding curves for QP 

and TJ are over that of GBs, which means that for the same KAM, the width of localized 
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misorientation regions near TJs and QPs is higher than that of regions near GBs. In the 

other words, triple junctions and quadruple points are more preferential sites for localized 

misorientation. This is consistent with the observation made in the other studies on 

dislocation densities, which were found to concentrate in the vicinity of TJ sand QPs 

[155]. In 2D measurements, micro-hardness and Hough based EBSD line scans revealed 

that triple junctions can act as preferential sites for GND accumulation which caused an 

increase in KAM [157,158]. 

To find the relation between orientation gradients and stress gradients, the first 

spatial derivative for each stress component was calculated. Figure  2.15 shows the 

(scalar) von Mises equivalent stress gradient in each Fourier point. Comparing local 

average misorientation and stress gradient map (Figure 2.13 and 2.15) reveals similarities 

in the features; high and low values lie close to microstructural features and in center of 

grains, respectively. Rollett et al. [159] reported alike stress gradient map for tension. 

They suggested that stress gradient near grain boundaries ties with changes of Taylor 

factor and stress state form one grain to another. 
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Figure 2.15 Distribution of local stress gradient on the surface of simulation box 

Stress gradient (von Mises equivalent) on the surface of the simulation volume after 
applying a) Tension, b) Compression, c) Plane strain and d) Torsion boundary conditions 
as described in Table 1. 

In order to quantify the similarities between orientation and stress gradient maps, 

correlation between local average misorientation and stress gradient was plotted in 

Figure 2.16. These plots are KAM binned by stress gradient in each strain path. Tension 

and compression show a strong positive correlation with stress gradients for the extreme 

range explored, while the strong positive correlation is more limited for plane strain 

compression and torsion. Similar observations were reported by Raabe et al. [160], who 

analyzed a deformed BCC bicrystal under plane strain. Having obtained a homogenous 
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deformation with no orientation gradients, these authors suggested both grains have small 

Taylor factor under plane strain condition, as one grain delivers external constraint and 

shearing into its neighbor. Moreover, both grains experienced nearly similar reduction or 

plastic strain, and had the same kinetic hardening. 

Figure 2.16 Correlation between Average misorientation and Stress derivation 

Correlation plot between Kernel Average misorientation (KAM) and  Stress gradient 
after applying a) Tension, b) Compression, c) Plane strain and d) Torsion boundary 
conditions as described in Table 1. 
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2.6 Conclusions 

Using the viscoplastic fast Fourier transformation (VPFFT) model, we studied the 

effect of stress state on the three-dimensional distribution of local stress, strain, KAM, 

and Taylor factor in a ferritic steel microstructure obtained by focused ion beam-electron 

backscattered diffraction. The results of the simulations of deformation under tension, 

plane strain, and torsion suggest the following conclusions: 

1. The presence of microstructural features affects the stress and strain 

localization with high and low values of stress and strain localizing near 

TJ and QP rather than near GBs. 

2. The local strain-rate values at the grain scale show a distinction between 

core and mantle regions in grains. The width of the mantle region (next to 

grain boundaries) varies with stress state boundary conditions. 

3. For all deformation modes, KAM values tend to peak close to grain 

boundaries. 

4. For all deformation modes, the average KAM value increases nearly 

linearly with strain at a rate that varies as tension > compression > plane 

strain > torsion. 

5. Local Taylor factor correlates strongly with local stress and inversely with 

strain-rate. These correlations are relatively insensitive to the deformation 

mode. 

6. KAM correlates strongly with stress gradient for tension and compression, 

whereas this correlation is slightly weaker for plane strain and torsion 
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CHAPTER III 

THE EFFECT OF DEFORMATION TWINNING ON STRESS LOCALIZATION IN A 

THREE DIMENSIONAL TWIP STEEL MICROSTRUCTURE 

Previously published in Modelling Simul. Mater. Sci. Eng. 23 045010) 

doi:10.1088/0965-0393/23/4/045010 

3.1 Abstract 

We present an investigation of the effect of deformation twinning on the visco-

plastic response and stress localization in a low stacking fault energy twinning-induced 

plasticity (TWIP) steel under uniaxial tension loading. The three-dimensional full field 

response was simulated using the fast Fourier transform method. The initial 

microstructure was obtained from a three-dimensional serial section using electron 

backscatter diffraction. Twin volume fraction evolution upon strain was measured so the 

hardening parameters of the simple Voce model could be identified to fit both the stress-

strain behavior and twinning activity. General trends of texture evolution were acceptably 

predicted including the typical sharpening and balance between the <111> fiber and the 

<100> fiber. Twinning was found to nucleate preferentially at grain boundaries although 

the predominant twin reorientation scheme did not allow spatial propagation to be 

captured. Hot spots in stress correlated with the boundaries of twinned voxel domains, 
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which either impeded or enhanced twinning based on which deformation modes were 

active locally. 

3.2 Introduction 

Twinning-induced plasticity (TWIP) steels have high strength and ductility, and 

are finding use in demanding applications in the automotive industry. The high 

manganese (Mn) content in TWIP steel (typically ~ 20\%) reduces stacking fault energy 

and increases the formation of mechanical twins [161]. Several investigations have been 

performed to study the effect of various factors such as grain size [162], chemical 

composition [163] and grain orientation [164] on the formation of mechanical twinning. 

During plastic deformation, the orientation of material deformed by dislocation 

slip changes modestly, whereas material undergoing deformation by twinning causes a 

large discrete change in orientation, such as the ~ 60 degree for the {111}<11-2} twin 

[165]. These orientation changes cause homogeneous and localized deformation regions, 

respectively. Several computational twinning models have been developed for efficient 

capture of the crystallographic reorientation caused by deformation twinning in 

polycrystals [166,167]. 

The predominant twin reorientation (PTR) scheme [167] was implemented in the 

visco-plastic self-consistent (VPSC) polycrystal simulation code to predict twin volume 

fraction and grain reorientation due to deformation twinning. In previous research efforts, 

the VPSC code was used to predict texture evolution in HCP [168] and FCC [169] metals 

undergoing deformation twinning during plastic deformation. The VPSC method is a 

``mean-field'' approach, which is based on an Eshelby-like interaction of each grain with 

a homogenized medium. The mean-field approach allows the strain (increment) in each 
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grain to deviate from the average while determining the response of each grain. The grain 

based approach means that there is no information on the local stress and strain in 

specific regions such as the interior of a grain or near boundaries. 

Because of this limitation, and to gain better insight into the spatial distribution of 

mechanical twinning, full-field calculations such as the crystal plasticity finite element 

method (CPFEM) have been used. CPFEM, based on a non-homogenization scheme, is a 

full-field solution of crystal plasticity [170]. Some researchers implemented a constitutive 

model to compute both texture and twin volume fraction [171]. Kalidindi [172,173] also 

proposed a model based on the total Lagrangian approach to predict twin volume faction 

and texture evolution. Several examples are available of the use of the PTR model in 

CPFEM to calculate the deformation twin volume fraction and stress distribution in 

hexagonal metals [174–176]. Use of the FE method requires a mesh; it is easy to generate 

a pixelated mesh, which leads to large numbers of degrees of freedom in the calculation. 

Less dense meshes that conform to the grain boundary network can also be generated but 

the process is complicated and time-consuming. 

A full field solution based on visco-plastic fast Fourier transforms (vpFFT) was 

applied to find the local stress and strain rate inside of a grain or near to grain boundaries. 

The simulation domain for vpFFT is a three-dimensional image of the microstructure of 

interest. Originally, the full field solution for stress and strain rate using Fast Fourier 

transform (FFT) was developed to compute the elastic and inelastic, effective and local 

response of composites [177]. In further developments, Lebensohn [178] and his 

collaborators [179,180] used FFT to compute the full field solution of a visco-plastic 

polycrystalline aggregate. The vpFFT simulations on both synthetic and measured 
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microstructures showed that highly stressed regions (``hot~spots'' [181]) tend to occur 

near microstructural features such as grain boundaries. 

In this paper we propose an approach for the incorporation of twinning in an 

actual three dimensional TWIP steel microstructure with vpFFT. The actual three 

dimensional TWIP steel microstructure was obtained by three dimensional serial 

sectioning electron backscatter diffraction (EBSD). An approach that we introduce as 

``three dimensional PTR'' is used in this work, and is based on the predominant twin 

reorientation (PTR) scheme. This approach does not capture the shape or growth of a 

twinned region after nucleation, so the typical lamellar, or plate like, morphology of 

twins is not accounted for. However, the twin volume fraction is controlled based upon 

considering an admissible accumulated shear of the predominant twin system (PTS). 

Thus, the approach should perform better for the case of random textures where 

deviations from the average strain rates play an important role in twin nucleation. We 

benchmark the results of twinning contribution to strain localization with the behavior of 

a three-dimensional (3D) microstructure of a classical high Mn-containing TWIP steel. 

3.3 Method 

3.3.1 3D Microstructure 

A hot rolled Fe-0.6C-18Mn-1.5Al (wt \%) TWIP steel [164] was loaded under 

uniaxial tension along the transverse direction (TD) until about 0.4 total strain. Electron 

backscatter diffraction (EBSD) was performed on the pre-deformed state and after 0.4 

strain in an effort to instantiate the numerical simulations by the final deformation texture 

and twin volume fraction. The sample preparation procedure and EBSD characterization 

were described by [164], and the reader is referred to this work for more details. 
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To generate a realistic 3D grain orientation microstructure for use by the FFT 

model, a rectangular specimen was extracted from the middle of the hot rolled plate 

perpendicular to TD. Then, two sides of the sample were mechanically ground to make 

parallel sides normal to TD, which were then subjected to the 3D EBSD serial sectioning 

technique explained in detail by [182]. The experimental data was then processed using 

the Dream.3D (Digital Representation Environment for Analyzing Microstructure) 

software package [183] to generate the 3D orientation map shown in Figure 3.1. 

Figure 3.1 Three dimensional reconstructed microstructure of TWIP steel 

Three-dimensional inverse pole figure (IPF) grain orientation map reconstructed by 
electron backscatter diffraction (EBSD). The colors in the IPF map correspond to the 
orientations in the transverse direction 

Because of poor reconstruction at the edges, 50 voxels were removed at the edges 

in the x and y directions, and a subset with dimensions 128 × 128 × 100 was extracted 

from the original 3D image, which had dimensions of 343 × 267 × 100 in the x, y, and z 
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directions, respectively. Buffer layers (28) were added in the z dimension to make a cell 

with power-of-two dimensions. By inserting a buffer layer, a free surface is obtained on 

the top and bottom of the structure. In the Dream.3D clean-up procedure, any grains 

larger than 50 voxels were considered as a grain, and smaller regions were absorbed into 

their majority neighbor. This resulted in a total of 713 grains in the FFT input 

microstructure. The FFT input texture (Figure 3.2b) was close to the experimental one 

(Figure 3.2a) despite the small number of grains in the domain. 

Since the simulation is periodic, but the actual microstructure is not, there is a 

concern about artifacts near the edges. However, in work by [181] this was shown to not 

be a concern. 

3.3.2 FFT Method and hardening rule 

The description of the FFT method for simulating the visco-plastic behavior of 3D 

polycrystalline materials has already been described in detail [178–180,184]. The key 

feature of the method is the use of a Green's function in the solution, which leads to a 

convolution integral that is replaced via the FFT with a local tensor product. We 

emphasize, however, that because the perturbation (polarization) field of the local strain 

at each grid-point is not a priori known, an iterative convergence criterion must be 

employed to compute a compatible strain rate field that fulfills the equilibrium condition. 

Since the latter is sensitive to the contrast in local properties [178,181], the augmented 

Lagrangian algorithm [180] was used wherein the compatible local strain rate field and 

the equilibrated stress field are simultaneously updated. 
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Figure 3.2 Inverse pole figure of 2D and 3D EBSD measurement 

Inverse pole figure diagram of (a) measured texture with EBSD at strain 0%, and (b) FFT 
input microstructure via 3D serial sectioning EBSD technique with dimension 128 * 128 
* 100. 

The compatible strain-rate field still satisfies the following classical constitutive 

equation at every grid-point: 

𝑠 𝑛 
(𝑥):�́� (𝑥)

ℇ�̇� 𝑁 𝑠 𝑚𝑖𝑗 𝑠 
𝑖𝑗 (𝑥) = ∑𝑠=1 𝑚𝑖𝑗 (𝑥) ( 

𝜏𝑠(𝑥) ) 𝑠𝑔𝑛 (𝑚𝑖𝑗 (𝑥): �́�(𝑥)) ( 3.1 ) 

Here summation of 𝑁 = 𝑁𝑠 + 𝑁𝑡 terms includes all 𝑁𝑠 slip and 𝑁𝑡 twin systems, 

𝜏𝑠 , 𝑚𝑠, and �̇� 𝑠 are the current critical resolved shear stress, Schmid tensor, and local 

shear rate associated with each deformation system, respectively; 휀̇(𝑥𝑑) and �́�(𝑥𝑑) are 

the strain-rate and deviatoric stress tensors at grid-point x; �̇�0 is a normalization factor 

which, in practice, is a constant value in relation to the normalized imposed macroscopic 

strain rate, and n is the rate-sensitivity exponent, which was set equal to 12. 
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The hardening rule used in the simulations is the extended phenomenological 

Voce model, as defined for the VPSC model [185]. The stress-strain data used was a 

single quasi-static test and therefore the Voce equation was a sufficient description. In 

this model, hardening is described by: 

−𝛩0𝛤 
𝜏𝑠(𝛤) = 𝜏0 + (𝜏1 + 𝛩1𝛤) [1 − 𝑒𝑥𝑝 ( 

𝜏1 
)] ( 3.2 ) 

Where the evolution of the slip resistance for each slip system, s, is represented by 

phenomenological parameters reflecting a purely curve fitting approach: 𝜏0, 𝜏1, 𝜃0, and 

𝜃1. The Γ term is the accumulated shear strain in each grid-point.  Latent hardening can 

be included in this scheme but was not used here because of the lack of multi-axial test 

data. 

3.4 Three dimensional PTR scheme 

The three dimensional PTR scheme consists in following the accumulated shear 

strain of the most active twin system upon strain in each grid-point, 𝑥𝑑 until it reaches a 

threshold twin volume fraction 𝐹𝑡ℎ,𝑚𝑜𝑑𝑒 for reorientation. The most active twin system is 

detected by following the accumulation of the shear strain 𝛾𝑡,𝑛 at each twin system t for a 

given increment n. Thus, a virtual volume fraction F at each grid-point can be calculated 

as: 

𝛾𝑡,𝑛 
𝐹𝑚𝑜𝑑𝑒(𝑡, 𝑥𝑑) = ∑𝑛 ∆𝐹𝑚𝑜𝑑𝑒(𝑡, 𝑥𝑑) = ∑𝑛 

𝑆0 
( 3.3 ) 1 1 

Where 𝑆0 represents the characteristic shear of the twin mode. Whenever a grid-

point satisfies 𝐹𝑚𝑜𝑑𝑒(𝑝) = 𝐹𝑡ℎ,𝑚𝑜𝑑𝑒 for a predominant twin system p, the subroutine 
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allows it to reorient that grid-point and updates the effective twin volume fraction, 𝐹𝑒𝑓𝑓 , 

which becomes: 

𝐹𝑒𝑓𝑓 𝑁𝑟 = ( 3.4 ) 
𝑁 

Where 𝑁𝑟 and 𝑁 are the total reoriented grid-points by twinning and total grid-

points in the unit cell, respectively. 

Naturally, the threshold will be a function of both 𝐹𝑒𝑓𝑓 and the sum of 

accumulated 𝐹𝑚𝑜𝑑𝑒 of all twin systems averaged over all grid-points: 

𝐹𝑒𝑓𝑓 
𝐹𝑡ℎ = 𝑐1 + 𝑐2 ( 3.5 ) 

𝐹𝑎𝑐𝑐 

𝐹𝑎𝑐𝑐 ∑ 𝐹𝑚𝑜𝑑𝑒 = ∑𝑥𝑑 (𝑡, 𝑥𝑑) ( 3.6 ) 𝑡 

where 𝑐1 defines the incubation strain for the onset of twinning, and 𝑐2 is a 

constant that will be tuned to the observed resistance to twin propagation. 

Following [186], the reorientation of the grid-points is monitored in such a way 

that 𝐹𝑒𝑓𝑓 never exceeds𝐹𝑎𝑐𝑐. However, as mentioned already, this purely local approach 

does not capture the lamellar, or thin plate, growth often observed in mechanical 

twinning [165].This limitation is discussed in the interpretation of the simulation results. 

3.5 Results and discussions 

3.5.1 Overall behavior 

Figure 3.3a compares the experimental and modeling results of the stress-strain 

behavior. The rate sensitive constitutive formulation of Equation (III-1) assumed all the 

24 bi-directional close-packed {111}<-110> slip systems in addition to all 12 uni-

directional {111}<11-2> twinning systems to accommodate the imposed strain. 
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Figure 3.3 Simulation and experimental stress-strain curve 

Plot of the (a) measured stress-strain response of the TWIP steel showing strong strain 
hardening, overlaid with the simulated curve based on the Voce model, and (b) the plot of 
experimental and simulation strain hardening vs. strain. 
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The polarity of twinning was captured by setting the negative values of 𝜏0 as ∞. 

Following transmission electron microscopy (TEM) observations [164], nearly 4 % strain 

of pure slip is needed before twinning triggers within favorably oriented grains. 

Generally, authors argue that multiple slip systems must be actively reacting to produce 

stable twins in an FCC lattice [187,188]. Following these common hypotheses about twin 

nucleation, we set 𝑐1 = 0.15 in our simulations 

The best fit of the TD tensile behavior in Figure 3.3a corresponded to the Voce 

hardening model parameters for slip and twinning that are listed in Table 3.1. A good fit 

did not require self-latent hardening between the slip systems nor between the twin 

variants. In general, assigning parameters for latent hardening requires multiaxial tests, 

which were not available. Similar values of self and latent hardening parameters were 

used by [169] in their simulations of twinning effects on the behavior of silver-copper 

cast eutectic nanocomposites. Table 3.1 shows that the critical resolved shear stress for 

twinning is more than that for slip. The 𝜏0 parameters reported for slip and twinning in 

other literature on TWIP steel [188] are, however, consistent with our results. 
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Table 3.1 Simulation parameters identified for the best fit of the stress-strain behavior 

Parameter Slip Twinning 

𝜏0(MPa) 215 260 

𝜏1(Mpa) 330 460 

𝜃0 410 510 

𝜃1 225 275 

ℎ𝑠�́� 1 1 

ℎ𝑠�́� 1 1 

𝑐1 - 0.15 

𝑐2 - 0.15 

n 12 12 

3.5.2 Relative activities 

The simulated stress-strain behavior includes both slip and twinning, and Figure 

3.4a shows the variation in relative activity as a function of strain. The results show that 

twinning decreases during the course of deformation, which agrees with the relative 

activities reported in other work on the simulation of TWIP steels [189,190]. Slip is 

significantly more active than twinning, which is directly related to the notably higher 

hardening rate parameters assigned to the twinning modes, compared to those for slip. 

The underlying pseudo-slip approach for twinning may not be adequate to describe the 

fast progress of twin lamellae expected in grains undergoing a fairly homogeneous and 

favorable stress state distribution. 
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Figure 3.4 Relative activity and twin volume fraction curves 

Results of FFT simulations showing (a) the relative activity of slip and twinning during 
deformation, and (b) the simulated evolution of the twin volume fractions in the unit cell 
as compared to that measured experimentally. 
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However, twin propagation may be obstructed by twin-twin interactions, as the 12 

twin variants allow for multiple nucleation events in any given grain. Thus, the effect of 

twin-twin hardening on the overall plastic behavior can be considered to be implicitly 

included in the relatively higher values of 𝜃0 and 𝜏1 (for twinning). 

Figure 3.4b shows measured and calculated twin volume fraction. The volume 

fraction of twins was obtained from [164] using EBSD technique. It is worth mentioning 

that the spatial resolution of EBSD measurement (i.e. step size) is lower than twin size 

(i.e. ~20 nm), which makes it difficult to resolve each individual twin. Therefore, the 

EBSD measurement only shows the twinned area, which consists of twin and grain 

matrix. In addition, most grains do not display uniform twinning. Considering these 

limitations arising from the EBSD technique and microstructure complexity, the volume 

fraction of twinned area measured by EBSD was divided by a factor of 3 [164] to 

estimate the volume fraction of twins at different true strains. 

Overall, the vpFFT simulations, as shown in Figure 3.5a, satisfactorily predicted 

the evolution of twin volume fractions. The stress hot spot analysis aggregates points 

with high twin activity, which avoids assigning significance to individual points. As the 

twin distribution on the exterior surfaces of the simulation volume reveals, Figure 3.5, 

only a few agglomerations of highly twinned material are larger than the typical grain 

size in the volume. 
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Figure 3.5 FFT simulation twin distribution on simulation box 

Results of FFT simulations showing (a) twin distribution (in red) on the exterior surface 
of the simulation volume, and (b) twin distribution on a middle plane. To ensure that the 
twinned regions (red) are apparent in the figure, the grain ID-based color scale was 
adjusted such that non-twinned points were in the blue-white range 

3.5.3 Orientation change 

Figure 3.6 shows change of misorientation of each voxel deformed by slip or 

twinning with respect to initial condition during deformation. The orientation of voxels 

deformed by twinning undergoes a jump to the new twinned orientation, while other 

voxels deformed by slip gradually reorient in each step. Note that slip-induced lattice 

rotation is more pronounced around twins, indicating the important contribution of twins 

to localization. 
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Figure 3.6 Orientation changes in each voxel during plastic deformation 

Misorientation angle of each voxel with respect to initial condition ( strain 0 %) in three-
dimensional (a) 10 %, (b) 20 %, (c) 30 %, and (d) 40 % total tensile strain along the 
transverse direction. Blue regions are slip dominated, whereas red ones are twin 
dominated. 

Field et al. [191] reported the existence of orientation gradients near twins which 

disappeared, caused by twin boundary migration, after performing channel die 

deformation in copper. Their results show that twins disappear at high misorientation 
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regions (e.g 10 degree) in the parent grains. Recently, using orientation microscopy by 

TEM confirms the presence of high geometrically necessary dislocation densities in the 

regions with high local misorientation [192]. 

3.5.4 Twin initiation at high stress regions 

Twin nucleation events in low SFE FCC metals were demonstrated to follow a 

pseudo-slip mechanism, i.e. they trigger in regions where the resolved shear stress is 

greater than the critical resolve shear stress for twinning. Figure 3.10 clearly shows that 

most of the highly stressed voxels are located in the vicinity of grain boundaries, and the 

associated resolved shear stress on twinning systems is also high. Correlated with this, 

both Figures 3.5a and Figure 3.5b indicate that the twins primarily nucleated at regions 

with high local stress values (e.g. grain boundaries) and then grew inside the grains. 

Although the typical lamellar shape of the twins was not captured for obvious reasons 

inherent to the three-dimensional PTR twinning model, prediction of preferential 

nucleation at GBs is an encouraging feature of the FFT simulations. Twins were observed 

to mainly nucleate at low-angle boundaries [12,193]. Interface defects are known to 

mediate twin propagation in both FCC and HCP metals in some cases [193,194], the 

stress surrounding the twin is mainly relaxed by the motion of such defects thus 

accommodating twin edgewise thickening. In the following, more detailed analysis shows 

that twinned points tend to be also high stress points. 

3.5.5 Predictions of deformation texture 

The evolution of texture after 40% strain is mainly characterized by the 

stabilization and strengthening of the <111> || TD and <001> || TD components. A 
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comparison between the initial state in Figure 3.7a and Figure 3.7b suggests that the 

<111> TD fiber strengthened at the expense of the orientation around it. It is clear that 

there is over-prediction of <001> || TD in the FFT simulation compared to the 

experimental results. De Cooman et al [195] showed the similar over- and under-

prediction of the <001> and <111> fibers in Al-added TWIP steel by VPSC. They 

mention that the Brass-type texture in Al-added high SFE TWIP steel is stronger than that 

in Al-free low SFE TWIP steel. This property increases the intensity of Goss orientation 

relative to Brass orientation in Al-added TWIP steel, in which the Goss component is the 

preferred orientation for slip and micro shear banding [190]. Both the Cu-texture 

{112}<111> and Goss-texture {110}<001> in the 𝜏 fiber gradually increase with 

increasing strain in Al-added TWIP steel [195]. Therefore, the <001> || TD in Figure 3.7d 

mostly contains twin free grains with <001> texture. Moreover, the higher fraction of 

<001> texture in the FFT input (Figure 3.2b) causes a stronger <001> FFT prediction 

compared to experimental one. 
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    Figure 3.7 Predicted and measured final texture after tensile deformation 

 
 

 
 

 

Comparison of TD-mapped inverse pole figures of (a) measured and (b) FFT simulated 
after 40\% total tensile strain along the transverse direction. (c) IPF map measured by 
EBSD after 40\% total strain along TD. Note that the tensile axis was aligned with the 
original TD. 
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3.5.6 Effect of linearization scheme on texture prediction 

Different methods are available to linearize the stress and strain relation in a grain 

scale, and the selected linearization method influences the accuracy of the predicted 

texture. Tangent, secant, affine, and 𝑛𝑒𝑓𝑓 are linearization methods implemented in the 

VPSC code [180]. To investigate the effect of these linearization methods on the output 

texture and grains rotation, VPSC simulations were performed under uniaxial tension to a 

strain of 0.4. Figure 3.8 shows the resulting VPSC simulations taking FCC random 

texture as an input. The results reveal that grains rotate toward <111> or <001> direction, 

and their rotation angles are a function of the linearization scheme. The general trend of 

each grain rotation is consistent with 3DXRD texture measurement in copper under 

tension [196]. Interestingly, the fraction of grains, which tend to align in a direction 

<111> or <001>, strongly depends on the linearization approach. Moreover, Figure 3.8 

reveals that the intensity of <001> and <111> in predicted textures changes with the 

linearization methods. According to the full constraint (FC) Taylor model (compatibility) 

[197], tension on FCC metals develops texture with stronger <111> fiber and weaker 

<001> fiber aligning along the tensile axis . Therefore, the secant linearization scheme 

calculates a more realistic texture, while the other linearization schemes (tangent, affine, 

and 𝑛𝑒𝑓𝑓) predict stronger <001> and <001>-<111> fibers compared to experimental 

ones. Lebensohn et al [180] reported that when n (rate-sensitivity exponent) gets higher 

values, the tangent approximation predicts a uniform stress-state like Sachs equilibrium 

based approximation (lower bound). On the other hand, the secant estimation is stiffer 

and predicts a uniform strain-rate similar to Taylor based compatibility approximation 

(upper bound). 
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Figure 3.8 Effect of linearization scheme on texture prediction 

Inverse pole figures of output texture and rotation maps of 500 grains along Tensile 
direction, after applying 40% tensile elongation in VPSC with linearization scheme, with 
arrows pointing from the location prior to deformation to that at 40% strain. 
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However, the vpFFT formulation uses the tangent method to linearize local stress 

and strain relation in each Fourier point (in equation III-1), which causes stronger 

predicted <001> fiber compared to experimental one. 

3.5.7 Grain scale deformation texture 

Development of dislocation pile-ups, which cause a local stress concentration, and 

activation of multiple slip systems [198] are thought to be necessary for initiation of 

mechanical twinning. TEM investigation in a single grain of Hadfield steel shows that 

mechanical twinning does not occur in the orientation <-123> || TD, even though this 

orientation has a high Schmid factor for twinning. The <-123> || TD orientation is less 

favorable for multiple slip compared with more symmetric orientations, which is essential 

to mechanical twinning nucleation. TEM observations show mechanical twinning is 

activated in grains with low Schmid factor while twinning can fail to appear in grains 

with high Schmid factor [199,200]. 

In the literature, several authors performed a Schmid factor analysis to explain the 

frequency of mechanical twinning as a function of orientation [201,202]. However, 

Schmid's law is only reasonable for single crystals with an isostress condition leading to 

single slip, and it is not able to capture grain interaction and strain compatibility in the 

grain boundaries with neighboring grains [203]. Other simulation work shows better 

prediction of the active twinning mode with the Taylor model compared to the Sachs 

model. The multiple slip approach results in a different stress state in each grain and can 

identify mechanical twinning formation at small strains [204]. 

To identify the role of twinning on texture, Figure 3.9 shows the simulated IPFs 

for voxels in twins, voxels near twins, and voxels in twin-free grains, all of which can be 
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compared with the experimental result, Figure 3.7a. Figure 3.9a and Figure 3.9c indicate 

that most of the strengthening of the <001> || TD is due to deformation twinning which 

has primarily subtracted from the <111> || TD component. Twinning of this component is 

substantiated by the EBSD inverse pole figure map, Figure 3.7c after 40% strain 

deformation. In this figure, blue grains, showing <111> || TD, contain twins whereas the 

red grains, <100> || TD, may be fully twinned or twin-free. 

To understand the origin of texture component, the Taylor factor of an FCC metal 

subjected to uniaxial tension with {111}<110> was calculated for different orientations in 

the inverse pole figure triangle (Figure 3.9d) [203]. The comparison of the IPF for voxels 

near twins and voxels in twin-free grains reveals that they have high (M < 2.6) and low 

Taylor factors (M > 3.4), respectively. These results are consistent with experimental 

work performed on the same material [164]. However, the IPF of voxels near twins 

reveals additional, but weak texture components between <001> || TD and <111> || TD 

fibers, which are not present in the experimental IPF. Similar results were reported in 

other simulations on TWIP steel with no clear explanation [195]. Since these components 

do not appear in twinned voxels, it is likely that they originate from regions undergoing 

localization, such that the active slip systems vary considerably. This explanation 

correlates well with the high Taylor factors associated with the <111> || TD fiber. In 

general, grains with a high Taylor factor require higher stresses for plastic deformation. 

The active slip systems vary to satisfy strain compatibility and stress equilibrium in the 

near-grain boundaries regions. 
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  Figure 3.9 Grain scale texture prediction 

 

 
 

 

 

 
 

 

Results of FFT simulations showing inverse pole figures (IPFs) corresponding to (a) 
twinned voxels, (b) voxels near twins, and (c) twin-free grain voxels after 40% total 
tensile strain along the transverse direction. (d) Inverse pole figure along tensile axis 
direction showing Taylor factor values, the dotted line correspond to the Taylor factor 
value for each specific orientation in triangle, the values were calculated for slip system 
{111}<110> in FCC randomly textured deformed under uniaxial tension. 
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Therefore, the voxels near twins with a high Taylor factor, e.g. <111> || TD, are 

well oriented for multiple slip as well as mechanical twinning. In contrast, the voxels in 

twin free grains with low Taylor factor can deform at lower stresses. In other 

experimental work, Miura et al [205] reported that the <001> || TD orientation promotes 

cross-slip, causing relief of stress concentration that might otherwise promote twinning. 

3.5.8 Prediction of stress localization 

Figures 3.10a-3.10b show the stress and strain rate distribution on the exterior 

surface of simulation volume after 40 % strain deformation. The local variations in stress 

(Figure 3.10c) and strain rate (Figure 3.10d) exhibit different features in the two fields; 

mainly, the stress histogram has two peaks and the strain histogram exhibits a long upper 

tail. The latter indicates that a small fraction of grid-points experienced substantially high 

strain rates. This may be visible in the 3D strain rate plot of Figure 3.10. Figure 3.10 

shows the distribution of local strain and stress on the surface of the simulation volume, 

which is changing with grain structure. The variations of local stress by grain structure 

are more visible than that of local strain rate. Similar features were reported by other 

researchers [181,206,207]. 
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Figure 3.10 Distribution of local stress and strain rate on the surface of simulation box 

von Mises (a) stress and (b) strain rate fields on the surface of the simulation volume and 
(c-d) their corresponding histograms, respectively 

To find a relation between local stress and orientations of twinned voxels, IPFs 

generated by orientations of twinned voxels, which experienced a stress higher than, 

versus less than 90% of the peak stress are shown in Figure 3.11, respectively. These 

IPFs clearly indicate that the most highly stressed points (relative to the peak stress) 

correspond to an increasingly sharp <001> || TD texture. This suggests that most of the 
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twinning happens in the voxels with high local stress, even though the criterion for 

twinning is strain-based. Correlation of hot spots in stress to twinning was previously 

reported with measurements of backstress effects in a low stacking fault energy steel 

[195]. 

Figure 3.11 Relation between orientation of twinned voxel and local stress 

Inverse pole figures revealing textures of twinned voxels in the regions with stresses less 
than (a) 0.9 of the peak stress, and (b) greater than 0.9. 

In order to quantify the relationship between twin voxels and local stress, the 

Euclidean distance map for twinned voxels was computed. In the grains containing 

twinned voxels, the minimum distance between untwinned voxels and twinned voxels 

was computed. This distance was binned based on the stress value and the distance values 

averaged over the points in each bin. Figure 3.12 shows the calculated plot of average 

distance to twinned voxels. In this graph, each point depicts the average distance to the 
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closest twinned voxel, and the vertical and horizontal axes were normalized by the global 

average distance and average stress, respectively. Figure 3.12 indicates that higher local 

stresses are found adjacent to twinned voxels, which suggests that twins induce hot spots 

close to their boundaries. 
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Figure 3.12 Plot of the average stress vs. distance to the twinned voxels 

3.6 Conclusion 

A PTR method was used to incorporate deformation twinning in a full-field, 

three-dimensional framework that uses the fast-Fourier transform modeling technique to 

compute the visco-plastic response of a face-centered cubic (FCC) steel with a Mn-

induced low stacking fault energy (SFE). Hardening was described through the Voce 

model, which treats twinning as a pseudo-slip mechanism. The occurrence of twinning at 

any given grid point is controlled by a criterion based on a threshold in accumulated slip 
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that controls when a jump in lattice orientation is applied. The scheme does not contain 

rules for lengthwise versus edgewise growth of twin lamellae so the final microstructural 

morphologies and grain boundary texture likely contain artifacts from the sequence of 

grid-point interrogation. However, the successful reproduction of the observed evolution 

of the twin volume fractions and texture upon strain provide some confidence in the 

approach. The main results are as follows. 

1. The strengthening and stabilization of sharp and homogeneous 

<111> ||TD and <001> || TD and fibers typical of low SFE FCC metals 

was satisfactorily reproduced. The strengthening of the <111> ||TD was 

mainly because of slip and marginally as a consequence of twinning of the 

<001>|| TD oriented grains. The development of the <011> || TD was 

largely caused by twinning of the developed <111> || TD fiber. 

2. Both twinning and slip evolve the texture to balance between the 

two major fibers, so one may expect that twin re-orientation and 

segmentation cause a radical change and evolution in orientation boundary 

distribution, which greatly influences localization. 

3. A plot of local stress value versus distance to twin boundaries 

reveals that local stress increases with decreasing distance to twin 

boundaries, and the value of the local stress in the voxels close to the 

twinned voxels is highest. 
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CHAPTER IV 

A BRIEF REVIEW OF THE CURRENT STATE AND CHALLENGES TO 

CAPTURING THE EVOLUTION OF THE LAMELLAR 

MORPHOLOGY OF TWIN NUCLEATION AND 

PROPAGATION IN FULL-FIELD CRYSTAL 

PLASTICITY IN HCP METALS 

4.1 Introduction 

As we previously mentioned, deformation twinning in HCP materials proceeds in 

three-stage growth (As in fatigue and fracture mechanics, we mean by growth a process 

which includes nucleation, propagation, and coalescence) process as illustrated in the 

two-dimensional schematic of Figure 4.1. These three stages are 1) nucleation of a small 

embryo, which is usually achieved at the sample free surface or a grain boundary, 2) 

drastic lengthwise thickening across one or multiple grains, and 3) edgewise propagation 

or thickening. Most of the shape change is accomplished during the last stage. Shear 

stress at the twin-parent interface drives the shear strain, which is brought about by glide 

of disconnections having a step character responsible of the volume increase of the twin. 

Deformation twinning is generally much easier in hexagonal closed packed (hcp) 

crystal structure than in their cubic counterparts. In Mg, {101̅2} twinning can completely 

get a favorably oriented grain even at the quasi-static regime and ambient temperature. 

This relatively ease of twinning is widely attributed to the great difficulty of achieving 
94 



 

 

 

   

  

 

 

 

  

 

  

  

  

 

   

  

 

   

  

 

 

 

  

   

  

    

  

 

   

  

 

slip along <c+a> pyramidal planes, which is necessary to provide 〈𝑐〉-axis deformation 

when needed. In fact, the {112̅2} planes on which the 〈112̅3̅〉 dislocation was observed 

to glide [17] exhibit atomic zigzags along the slip direction [208]. These zigzags prohibit 

a “Shockley” type dissociation to occur. Thus, a zonal core of the dislocation, spreading 

on multiple planes, may be required on multiple planes instead, so to ease the high shear 

associated with the pyramidal slip. In fact, if such a fault occurs to accommodate the 

glide of an extended Frank-Nicholas dislocation [209], an energy almost equal to that of 

crack formation would be required [208]. This paradigm for explaining the ubiquitous 

formation of twinning in hcp metals is clearly supported by the vanishing twinning 

activity when temperature increases, which causes a dramatic decrease of the critical 

stresses, associated with non-basal slip, and particularly the second order pyramidal 

〈𝑐 + 𝑎〉 slip. 

However, this widely held paradigm for the ease of twinning in hcp metals does 

not explain why {101̅1} compression/contraction twinning, for example, is much more 

difficult in Mg than the second order pyramidal 〈𝑐 + 𝑎〉 slip. Only the {101̅2} twinning 

which accommodates tension/extension of the 〈𝑐〉-axis has a critical resolved shear stress 

comparable to that of basal slip. Hence, the formation of twins in hcp is more to do with 

the ease of this particular twin mode than the high critical resolved shear stress of non-

basal dislocations with Burgers vector having a 〈𝑐〉 component. This view is substantiated 

by the continuing predominance of {101̅2} twins in Zn and Cd despite that, as dictated by 

the sign reversal of its characteristic shear; they turn to accommodate compression of the 

〈𝑐〉 axis.. Furthermore, {101̅2} twinning exhibits several growth peculiarities, which set 

them clearly aside from all other twinning modes. For instance, detwinning and twin 
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transmission across twins and grain boundaries were not observed to occur in other twins 

modes, while they have important effects on the macroscopic behavior and anisotropy. 

Figure 4.1 Three stages of mechanical twinning 

(a) Inverse pole figure map of high-purity Mg loaded to 3% strain to induce {101̅2} 
twinning [41], Two-dimensional simplification of the three stages  characteristic of a 
lamellar, deformation twin growth. (a) Nucleation of a twin embryo at grain boundaries, 
(b) twin propagation inside the grain by drastic lengthwise thickening, and (c) edgewise 
twin propagation by, increase of twin thickness. 

This lack of understanding of the nucleation and growth of twins in hcp metals 

explains the sluggish progress made in capturing twins in crystal plasticity as localized 
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grain lamella. At present, both nucleation and propagation of twins, despite their highly 

localization character, are modeled by a pseudo-slip approach, where the volume fraction 

is simply controlled through the classical crystallographic relationship between shear on 

the twin plane and the characteristic shear constant of the twin mode (eg. 0.13 for {101̅2} 

in Mg).  Thus, similarly to slip, twinning is viewed as a diffuse deformation mechanism 

in the matrix, which limits a reliable prediction of its effect on stress hot spots and 

damage initiation. 

This thesis section briefly reviews recent attempts to capture twinning as local 

event in full field crystal plasticity and discusses some of the challenges associated with 

the incorporation of the main micromechanical characteristics of twinning in the 

framework of EVPFFT. We benchmark these discussions by simulating the behavior of a 

couple Mg bicrystals, hoping to shed light on some of the main barriers to be overcome 

in future work. 

4.2 Modeling of Twin nucleation 

EBSD measurements of mechanical twinning in Zr and Mg alloys suggest that the 

most of twins nucleate at the sample free surface in single crystals or at grain boundaries 

of metals with sharp textures, and start nucleating as texture gets weak [210,211]. The 

reason for the high propensity to nucleate at the free surface resides in the ease of 

accommodation effect by kinking, while in the bulk nucleation of a twin will require 

plastic accommodation by slip or nucleation of another twin (typical for sharp textures). 

In all other cases, twins were observed to start at grain boundaries for the following 

mechanisms [212] : 
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1. Grain boundaries provide large partial dislocations and multiple twinning 

dislocations. 

2. Multi-layered stable twin needs rearrangement and restructuring of atoms 

that are supported by grain boundaries. 

3. High stress concentration at grain boundaries could provide the energy to 

overcome twin nucleation barriers. 

As mentioned in Section 1.2.1, one of the main reasons relevant to crystal 

plasticity and for which twins tend to nucleate at surface defects such as grain boundaries 

is the stress concentration that builds up in these regions. These stresses arise because of 

the difficulty associated with cross slip of early basal slip onto planes and directions 

kinematically compatible with providing shape change along the 〈𝑐〉-axis. In a similar 

view, Beyerlein and Tomé [212] suggested that randomness correlated with grain 

boundary type and character  are probably the source of the observed fluctuations in 

spacing and morphology of deformation twins in hcp materials. These random 

characteristics are divided into material components and mechanical components. The 

material components refer to the critical stress or energy, which is required to convert 

grain boundaries defects into twin-related disconnections and random mechanical 

components are determined by distribution of the local stresses at grain boundaries. 

Twin nucleation is sensitive to both the microstructure (e.g. grain size, 

orientation, and dislocation density) and loading conditions (e.g. strain rate, temperature, 

and stress level) at the mesoscale [212]. Beyerlin et al. [69] reported that the propensity, 

frequency, and morphology of deformation twins are different among grains with the 

same orientations and applied boundary conditions. Therefore, based on these variances, 
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they suggested that twin nucleation at grain boundaries is a largely stochastic or random 

process in the grain scale. 

Statistical analyses carried on EBSD measurements on deformed Zr and Mg 

revealed effects of additional microstructural features such as grain boundary 

misorientation on nucleation and growth of {10-12} twins [43]. The results supported the 

random nature of twin nucleation and indicated that twin nucleation and grain area do not 

show a meaningful one-to-one correlation. Moreover, grain misorientation larger than 5 

degrees does not have significant effects on twin nucleation at grain boundaries. The twin 

variants with the highest Schmid factor have the highest probability of activation (50-

60%), while the probability of twin variants with the second highest Schmid factor values 

is around 23% [211]. As stated in the introduction, these results substantiate a CRSS for 

twinning, while nucleation of secondary twins occurs in regions where lattice rotations 

favored a high Schmid factor.  

In a similar statistical study performed on Mg, Beyerlein et al [212] showed a 

correlation between high Schmid’s factors and twin thickness. This positive correlation 

was attributed to the fact that well oriented twin variants can more easily overcome the 

backstresses developed during growth (Figure 4.2b). 

99 



 

 

 

  

 
 

 

 

   

 

  

 

 
 

 

 

   

 

 

 

Figure 4.2 Effect of twin Schmid factor on probability and thickness of twin 

(a) Distribution of the Schmid factor with respect to observed twins [211], and (b) 
measured twin thickness as a function of the Schmid factor [41] 

Aydiner et al. [213] used a three dimensional X-ray technique to measure the 

average resolved shear stress on twin systems during twin nucleation and growth in AZ31 

alloy subjected to compression. When a twin nucleates, the average value of resolved 

shear stress on twin plane along the twin direction is not equal to that in the parent 

(Figure 4.3a). Furthermore, the sign of the resolved shear stress (RSS) on the composition 

plane inside the twin is opposite to that inside the parent. The opposite sign of the shear 

stress on twin variants can be due to the local backstress. The local backstress is a result 

of internal constraints, which are imposed by the surrounding grains in response to the 

localized shear transformation during nucleation. Similar results in were reported by 

Bieler et al. [214] in Ti subjected to tension (see Figure 4.3b). 
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Figure 4.3 3DXRD measurement of resolved shear stress on twin system 

Measured resolved shear stress by 3DXRD on twin system along twin direction in the 
twin and the parent, (a) in AZ31 under compression [213], and (b) in pure Ti subjected to 
tension [214]. 

Based on the hypothesis that twin nucleation is a random event, Beyerlein et 

al. [212] presented a probabilistic mesoscale model for twin nucleation. This model relied 

on three major assumptions: 

1. Twins mainly nucleate at grain boundaries, 

2. Under a local stress state, transformation of grain boundary defects into 

partials required for creating a twin nucleus 

3. Formation of a stable twin nucleus happens at the appropriate stress , 

which is generated in the vicinity of the defect. 

Following these three hypotheses, these authors reported that a number of N of 

dissociation events can be a function of both the grain boundary surface area and local 

stress. N is a random variable, which depends on the statistical distribution of grain 
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boundary defects. The probability for N = m in a grain boundary with surface area a, can 

be expressed as: 

(𝜆𝑎)𝑚 
𝑃(𝑁 = 𝑚, 𝑎) = exp(−𝜆𝑎) ( 4.1 ) 

𝑚! 

where 𝜆 is the dissociation rate per unit area being a function of local stress: 

1 𝜏 
)𝛼 𝜆(𝜏) = ( ( 4.2 ) 

𝑎0 𝜏0 

where 𝛼 and 𝜏0 are characteristic values of grain boundary defects in the grain boundary 

area. 𝛼 represents the ordered or disordered structure of grain boundaries. For example, 

higher 𝛼 value is considered for ordered grain boundary structure (e.g. 10), while the 

lower values act for disordered grain boundary structure. To implement the discrete 

probability Equation IV-1 in a crystal plasticity continuum model, a continuous 

probability function (F) for twinning was introduced as follows, 

𝐹(𝑆 < 𝜏) = 𝑃(𝑁 ≥ 𝑚∗ ,𝑎𝑐) = 1 − ∑ P(N = m, ac) ( 4.3 ) m=0 

where 𝑎𝑐 is a characteristics area, and 𝑚∗ is the minimum number of N number of events, 

which must take place in 𝑎𝑐 for twin nucleation. S is a random variable representing the 

critical stress for twin nucleation anywhere within the characteristics region 𝑎𝑐, 

𝛼 𝜏 
𝐹(𝑆 < 𝜏) = 1 − exp(1 − ( ) ) ( 4.4 ) 

𝜏𝑛𝑢𝑐𝑙 

Equation (IV-4) is a Weibull distribution such that if 𝑚∗ = 1, at least one 

conversion event will occur in 𝑎𝑐 for a single twin nucleation. 

These formulations were implemented in the Viscoplastic Self-Consistant (VPSC) 

model to calculate RSS in the direction of twin dislocation [41]. The VPSC approach is a 
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mean field approach for computing the global stiffness tensor, which approximates the 

strain around a given grain by the average strain of the entire aggregates, and calculate 

thereupon via an iterative procedure the average stress 𝜎𝑔
𝑖𝑗 in each grain. This yields the 

RSS 𝜏𝑔 for a grain having 𝑚𝑔
𝑖𝑗 as the Schmid tensor: 

𝜏𝑔 = 𝑚𝑔
𝑖𝑗𝜎𝑔

𝑖𝑗 ( 4.5 ) 

It is clear that the local stress near the grain boundary is different from the 

average strain of the polycrystalline material. This could be however corrected by a 

perturbation stress ∆𝜎 such as: 

𝜎𝑔𝑏 = 𝜎𝑔 + ∆𝜎 ( 4.6 ) 

where 𝜎𝑔𝑏 is local stress near grain boundary that is larger than average stress in each 

grain. The RSS on twin system near grain boundary is computed as following: 

𝜏𝑣 = 𝑚𝑣
𝑖𝑗𝜎𝑔𝑏 ( 4.7 ) 𝑖𝑗 

where 𝜏𝑣 is RSS for a given twin system. A twin system with the maximum RSS is 

selected as the active variant. 

4.3 Modeling of twin growth 

Twin lengthwise thickening takes place immediately after twin nucleation at grain 

boundaries. The lengthwise thickening process of mechanical twinning bears a lot of 

similarities with crack propagation [215]. The stress for propagation is substantially 

smaller than that for forming a stable twin embryo. Consequently, twin nuclei propagate 

to a favorable size to lower the high elastic energy that builds up around the embryo. 
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To investigate stress evolution around twin lamellae during propagation, Aydiner 

et al. [213] performed in situ three dimensional XRD to investigate the evolution of stress 

state in the twins and their AZ31 parent being was subjected to tension. 

Figure 4.4 Projection of measured stress tensor in parent and twin 

Projection of stress tensor in parent and twin (color legend describes the curve associated 
with twin and parent) as a function of applied loading: (a) 𝜎33, crystal stress tensor along 
loading axis, (b) 𝜎𝑐𝑝, component of the stress tensor along c-axis of parent, (c) 𝜏𝑟𝑠, 
resolved shear stress in twin plane along twin direction from average measurements of 
stress in the parent and twin, (d) 𝜎𝑛, the stress tensor component along twin plane normal 
for each variant [213]. 

Due to the drastic lengthwise propagation, a kink would need to form. To prevent 

the parent grain from localized shear deformation, the area surrounding the twin 
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undergoes a backstress, which depends on the overall plastic resistance of the parent. Up 

on twin nucleation, 𝜏𝑟𝑠 on twin plane has reached CRSS at approximately -40 MPa of 

applied stress, and the sign of the average shear stress on twin variants in twinned regions 

is opposite to that in the parent, and increases rapidly with the applied stress to become 

positive at approximately -50 MPa of applied stress depending on the twin variant. 

However, the average resolved shear stress on the twin plane inside the twin remains 

always substantially lower than that inside the parent for the entire applied stress range. 

This “seemingly” violation of the traction-continuity condition indicates strong stress 

gradient across the twin interface. 

Crystal plasticity based on finite element (CPFEM) gives a full field solution, and 

is able to compute an approximation of the local stress at twin-parent interface, which can 

be used for twin growth simulation [216,217]. 

Recently, Kumar et al. [218] used elasto-vicoplatic version of FFT to compute 

evolution of local stress in the vicinity of an embedded twin in HCP grain at microscale. 

They modified the EVPFFT model to consider the strain associated with twin 

transformation, by rewriting the constitutive relation as follows: 

𝜎(𝑥) = 𝐶(𝑥): 휀𝑒𝑙(𝑥) = 𝐶(𝑥): (휀(𝑥) − 휀𝑝𝑙(𝑥) − 휀𝑡𝑟(𝑥)) ( 4.8 ) 

where 𝜎(𝑥) is the Cauchy stress, 𝐶(𝑥) is the elastic stiffness tensor and 휀𝑒𝑙(𝑥) is elastic 

strain at each point x. The elastic strain can be written in terms of the total strain 휀(𝑥), 

plastic strain 휀𝑝𝑙(𝑥) due to slip dislocations, and transformation strain 휀𝑡𝑟(𝑥) associated 

with twin transformation. They proposed the following expressions for 휀𝑝𝑙(𝑥) and 

휀𝑡𝑟(𝑥): 

105 



 

 

  
      

     

  

 

  

   

  
  

 

 

  
     

            
 

    

 
 

 

 

   

  
  

 

 

 

𝑠 𝑛 
(𝑥):σ(𝑥)

휀𝑝𝑙 𝑁 𝑠 𝑚𝑖𝑗 𝑠 
𝑖𝑗 (𝑥) = ∑𝑠=1 𝑚𝑖𝑗 (𝑥) ( )  sgn (𝑚𝑖𝑗 (𝑥): σ(𝑥)) ( 4.9 ) 

𝜏𝑠(𝑥) 

Δ휀𝑡𝑟 = 𝑚𝑡𝑟(𝑥): Δ𝛾𝑡𝑤(𝑥) ( 4.10 ) 

𝑠 where 𝑚𝑖𝑗 and 𝑚𝑡𝑟 are Schmid’s tensor on slip and twin systems, respectively. Δ휀𝑡𝑟exists 

during the build up process of twinning transformation; otherwise it is zero. 

Figure 4.5 Schematic illustration of the simulation unit cell containing three grains 

Schematic illustration of the simulation unit cell containing three grains, (a) a twin inside 
of a single crystal, (b) a twin embedded in crystal surrounded by two crystals with 
different orientations [218]. 

They used this formulation to study the effect of twin transformation and neighbor 

grain orientation on the local stress distribution in the parent grain. To consider effect of 

neighboring grains, they inserted a twinned region in several tricrystals (Figure 4.5). At a 
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first step, the effect of twin transformation was isolated by considering three grains of a 

same crystallographic orientation (Figure 4.5a). 

As schematized in Figure 4.5, the twin domain corresponded to (011̅2) [01̅11] 

variant. Two different twin thicknesses of 13 and 7 voxels were considered, and they 

were associated with 1% and 0.5% twin volume fraction, respectively. The angle between 

the twin and compression axis was 43.1, causing the Schmid’s factor to be maximum. 

Figure 4.6 shows the distribution of shear stress on the twin plane along the twin 

direction (T-RSS), embedded in one single crystal. T-RSS inside of the twin is 

homogeneous and negative, while it is positive in the surrounding medium. The 

heterogeneity of T-RSS at the twin tip is attributed to the reaction of the surrounding 

neighborhood and to the plastic compliance of neighboring grains to accommodate the 

twinning shear. Figure 4.7 shows the profile of T-RSS along the upper twin-parent 

interface in the parent grain from point A to B (see Figure 4.6). The profile is plotted at 

(i) before twin transformation, (ii) end of twin transformation, and (iii) further increase in 

stress. Kumar et al. [218] noted two important changes: 

1. The profile changes from homogenous to heterogeneous in both the parent 

and twin, 

2. The positive T-RSS in the parent reverses sign  while the T-RSS in the 

neighboring regions increases. 

These results seems to be in agreement with the measured shear stress by 3DXRD 

[213]. Twinning is unidirectional, and it starts to grow when the stress-state is positive at 

twin-parent interface. Due to higher T-RSS induced by the twinning transformation at the 
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twin tip, twin propagation takes place, while the negative induced T-RSS on the lateral 

interface of the twin obstructs further twin growth. 

In the second, more realistic case, the effects of grain-grain interaction on twin 

growth were investigated by bounding the parent grain with grains having different 

orientations (Figure 4.5b). Figure 4.7 exhibits the T-RSS profile in the parent grains at 

the end of the transformation process and after further stress increase. 

Figure 4.6 Distribution of  resolved shear stress on twin system along twin direction 

Distribution of the T-RSS the end of twinning transformation under an applied stress of -
40 MPa for (a) the whole single crystal, (b) twin domain, (c) neighbor grains, and  (d) the 
parent grain around twin, (e) T-RSS profile for single crystal from point A to point B in 
(a) [218]. 

108 



 

 

 

  

 

 

 

 

 

 

  

 

 

 

 

 

 

Figure 4.7 Effect of neighboring grains orientation on T-RSS profile 

T-RSS profiles at twin-matrix interface in parent grains for six different neighbor grains: 
(a) at the end of transformation process, and (b) after further stress increase beyond -60 
MPa [218]. 

All profiles have globally the same shape. Moreover, once the applied stress was 

increased, the sign of T-RSS at the twin-parent interface changes from negative to 

positive. Comparison of the profiles in Figure 4.6 and Figure 4.7 shows that the neighbor 

orientation has a significant effect on stress field at the twin tip. The external applied 

stress induced the resolve shear stress to overcome the backstress, which is induced by 

twin transformation in grains with high Schmid’s factor. Consequently, those twins start 

to grow and expand [218]. Similarly, for twins with low Schmid factor, they start to grow 

when the applied stress increased to a point where the resolved shear stress is larger than 

the internal backstress. The statistical EBSD measurements performed by Beyerlein et al. 

[219] support the above calculations as they have shown a strong correlation between 

thicker twins and higher Schmid factors. 
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The body of literature shows several attempts to capture mechanical twinning in 

plastic deformation. However, incorporation of twin nucleation still lags. This may be 

due to the view of twin nucleation as a random event, which depends on the stochastic 

nature of dislocation reactions at grain boundaries. The complexity of these interactions 

greatly depend on the atomic structure of the grain boundary, which is in turn extremely 

sensitive to each of the to the five macroscopic degrees of freedom. Furthermore, these 

reactions are local and take place only at a few segments of the grain boundary. 

4.4 Numerical difficulties in implementation of twinning in EVPFFT 

This section is a contribution to identify challenges of numerical nature, which 

would be encountered in capturing twin nucleation in EVPFFT. To this end, we 

attempted to simulate {101̅2} twinning in a bicrystal magnesium subjected to two 

different compression directions; one along the 〈𝑐〉-axis prohibiting twinning and the 

other one normal to the 〈𝑐〉-axis, which provides the maximum Schmid factor for this 

twin mode.  

We constructed the bicrystal with respect to an imaginary rolling plate providing 

the reference frame. The two orientations of the two crystals are schematically illustrated 

in Figure 4.8. Specifically, the ([12̅10], [101̅0], [0001]) crystal axes of the overlaying 

Grain 1 make (0,0,0) angles with the sample reference frame RD, TD, and ND, while 

those of the underlaying Grain 2 make (0,30,0) angles. {101̅2} twinning is activated in 

Grain 1 when the bicrystal is subjected to compression along TD, while it is prohibited 

under compression along ND. 
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Figure 4.8 Schematic illustration of the bicrystal used in the EVPFFT simulations 

Schematic illustration of the bicrystal used in the EVPFFT simulations illustrating (a) the 
orientations of the two grains with respect to an imaginary rolled plate, and (b) the two 
compression directions. 

4.4.1 Simulation details 

To perform EVPFFT simulations, the bicrystal input was discretized to 32 × 

32 × 32 Fourier points. Elastic constants of magnesium single crystal at room 

temperature are given in Figure 4.9 [117]. In a similar fashion to the hardening law used 

in VPFTT, the evolution of CRSS was captured by Voce law. Table 4.1 provides the 

initial value of CRSS and hardening parameters used in Voce equation to generate the 

stress-strain curve of the bicrystal. 
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Figure 4.9 The elastic stiffness matrix of magnesium expressed in the crystal reference 
frame in units of GPa 

Table 4.1 CRSS and hardening parameters used in EVPFFT 

Deformation Mode 𝜏0 𝜏1 𝜃0 𝜃1 

Basal <a> 10 30 100 0 

Prismatic 55 80 500 0 

Pyramidal <c+a> 60 90 1500 0 

Tensile twin 30 0 30 30 
Rate sensitivity parameter n is equal to 20 

The applied strain-rate tensor components were �̇� = −1, �̇� = �̇� = 0.281 for22 11 33 

TD, and �̇� = −1 , �̇� = �̇� = 0.281 for ND, with 300 steps of 0.05% each.  33 11 22 

4.4.2 Results 

Figure 4.10 shows the stress-strain response generated by the above simulations. 

Due to the high disparities of initial CRSS values between different slip and {101̅2} 

twinning, the yield stress of the bicrystal strongly depends on the loading direction, being 

much stronger along ND than along TD compression. . 

112 



 

 

 

  

 

 
 

 

 

 

 

The calculated relative activity of slip and twin modes are shown in Figure 4.11. 

Basal and Pyramidal slip systems mainly accommodate strain when the bicrystal is 

subjected to compression along ND. The reason for this is that the extension twin is 

unidirectional and does not operate under compression along the c-axis. In contrast 

compression along TD causes both basal and extension twin to trigger in order to 

accommodate extension along c-axis. 

Figure 4.10 Stress-strain curve for compression along (a) ND and (b) TD generated by 
EVPFFT based simulations. 
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    Figure 4.11 Simulated relative activity of deformation modes 

 
  

 
  

 

Simulated relative activity of deformation modes under simple compression along (a) 
Through thickness compression (TTC) and (b) In plane compression (IPC). 
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4.4.3 Capturing twining in EVPFFT 

As mentioned above, twin nucleation is currently understood as a random 

phenomenon taking place at surface defects such as grain boundaries, and there is not a 

widely accepted criterion for twin nucleation in crystal plasticity. The simplest and most 

commonly used criterion is that there is a CRSS for each twin system, and twinning may 

occur when the RSS on a twin system reaches the CRSS. Usually, twinning is viewed 

athermal, so the strain rate and temperature only upsets the CRSS for slip. The RSS on 

each twin system is given by 

𝜏𝑡𝑤 , = 𝑚𝑡𝑤: 𝜎 ( 4.11 ) 

where 𝜏𝑡𝑤 is the RSS on twin systems, while 𝑚𝑡𝑤 and 𝜎 are the corresponding Schmid 

and stress tensors, respectively. Due to the nature of the power law strain rate type 

sensitivity formulation implemented in EVPFFT (Equation IV-12), the RSS cannot attain 

the associated CRSS. 

𝑠 𝑛 
(𝑥):�́� (𝑥)

𝑁 𝑠 𝑚𝑖𝑗 𝑠 ℇ�̇� 
𝑖𝑗 (𝑥) = ∑𝑠=1 𝑚𝑖𝑗 (𝑥) ( ) 𝑠𝑔𝑛 (𝑚𝑖𝑗 (𝑥): �́�(𝑥)) ( 4.12 ) 

𝜏𝑠(𝑥) 

Equation (IV-12) is a power law equation, which was proposed to avoid 

singularities at the corner of yield surface of single crystal. Therefore, the RSS never 

reached the actual values of CRSS. More importantly, the value of maximum RSS is the 

same for all points near the grain boundary, so there would be no preferred point for twin 

nucleation at the grain boundary from the classical crystal plasticity standpoint, which is 

in contrast to local character known about twinning [41,212]. 
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4.5. Conclusions 

1. Twin nucleation is currently considered in crystal plasticity as a stochastic 

or random event taking place at surface defects such as a free surface or a 

the grain boundary. As long as this assumption is maintained, it would be 

difficult to capture the local character of twin nucleation in full field 

crystal plasticity. 

2. Local conditions at or near grain boundaries such as material components 

and mechanical components have a dramatic influence on twin nucleation. 

3. Numerical simulation of stress state around twins show that RSS inside of 

twin is homogenous but is heterogeneous near the twin-parent interface 

inside the parent. 

4. Modeling twin transformation reveals that twin transformation strain 

either facilitates twin growth, or obstruct it during deformation. 

5. The simplest and most commonly used criterion for twin nucleation in 

crystal plasticity is that twin can initiate when the resolved shear stress 

becomes equal or larger than its corresponding CRSS. However, because 

of the power law type rate sensitivity equation, RSS does not reach the 

assigned CRSS values, so in practice the activated systems that are 

selected are the ones that qualitatively have the highest resolved stress,  

More importantly, a major shortcoming is the current ability to capture the 

local nature of twinning. 
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CHAPTER V 

SUMMARY AND FUTURE WORK 

5.1 Highlights 

1. As expected, for both BCC and FCC steels, stress was predicted to 

preferentially localize near grain boundaries, named as a mantle zone, 

where multi-slip conditions are required (vertices). 

2. However, the extent of stress hot spot at the GBs is sensitive to the 

imposed deformation path. Plane strain compression showed the most 

pronounced mantle zone with sharp transition to the center of grains, 

named as core zone. 

3. Stress hot spot analysis in typical TWIP steel textures reveals that 

deformation twins form mostly in regions with high local stresses, notably 

microstructural features such grain boundaries, triple junctions and 

quadruple points. This result is consistent with observed tendencies for 

twin nucleation, but it could be only valid for random textures. 

4. Current numerical schemes adopted in crystal plasticity based on FFT, 

(probably not excluding CPFEM), to calculate strain and stress fields are 

not suited to capture the drastic lengthwise growing of the twin, which is 

an essential stage of twin nucleation. A transformative approach in crystal 
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plasticity may be needed to capture nucleation and propagation of twin 

lamellae. 

5.2 Summary 

In the present work, we used three-dimensional full field viscoplastic formulation 

based on FFT method (vpFFT) to predict local stress, local strain-rate, and local texture 

evolution in polycrystallines deforming by slip and twin. Three-dimensional data set of 

TWIP and Ferritic steel microstructure, obtained by serial sectioning using a FIB-EBSD 

technique, was employed as simulation inputs. The vpFFT simulation results such as 

predicted stress-strain curve and final texture were compared with the experimentally 

measured results under tension. 

The investigation of deformation paths on stress and strain localization in Ferritic 

steel was presented in chapter II. The voce equation parameters were fitted with the help 

of available tension strain-stress curve. Then, the stress-strain curve, local texture 

evolution, and local stress/strain values were predicted in each material point for all 

deformation modes. The results show that the distribution of local strain rate and stress 

on the surface of the simulation box depends on the deformation mode. 

To find the grain scale distribution of local heterogeneities, Euclidean distance 

from microstructural features such as grain boundaries, triple junction, and quadruple 

points were computed in each deformation mode. The strain rate values were binned by 

local distance to the grain boundaries. The correlation plots reveal that there are mantle 

zone regions near the grain boundaries, and that the width of mantle zone changes with 

deformation paths. For example, the width of the mantle zone region in tension and plane 

strain is the smallest and largest, respectively, while the local strain rate distributed 
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uniformly in grain scale without showing any mantle zone regions in torsion. 

Furthermore, the local strain rate values were binned, and the average distance within 

each bin to microstructural features was computed and plotted. High and low values of 

local stress and strain rate were found to lie near all microstructural features. The points 

near quadruple points and triple junction experience higher local strain rate and stress 

values compared to ones near grain boundaries. 

Local Taylor factor shows a positive correlation with the local stress, and 

correlates inversely with the local strain rate. Deformation paths do not have significant 

effects on the correlation between Taylor factor and strain rate, while the correlation 

between local Taylor factor and local stress is slightly sensitive to deformation paths. 

Distribution of local kernel average misorientation (KAM) and local stress 

gradient on the surface of simulation box are insensitive to deformation paths; moreover, 

the highest and smallest values of both local KAM and stress gradient lie near to grain 

boundaries and in the grain center, respectively. To investigate the correlation between 

KAM and stress gradient, the former values were binned by stress gradient values. The 

correlation plots indicate that KAM correlates strongly with stress gradient for tension 

and compression, whereas this correlation is slightly weaker for plane strain and torsion. 

In Chapter III, to incorporate mechanical twinning in TWIP steel, we 

implemented PTR scheme in vpFFT code. The first challenge we encountered in 

capturing twin nucleation originates actually from the well-known crystallographic 

dependence between the strain rate brought about by twinning and its volume fraction. 

Due to the instable nature of the drastic lengthwise thickening, which is, to some extent, 

independent of the macroscopic stress, it was not possible within the iterative calculation 
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scheme currently adopted in the model to compute the volume fraction of twins as a 

constitutive response of the material. Rather, the volume fraction had to be computed 

after evaluation of stress and strain tensors at the end of each strain step. This is a major 

impediment to capture the lamellar morphology of twinning within a continuum 

framework. This difficulty can be solved by the fact that twin nucleation is known to 

correlate with a stress drop similar to the yield point effect. A second major challenge 

corresponded to the lack of understanding of the mechanisms that drive the site-specific 

phenomenon that characterizes twin nucleation. 

However the volume fraction of twins was merely controlled with the 

predominant twin reorientation scheme previously proposed in mean-field crystal 

plasticity. The comparison between experimental and simulation results indicates that 

twin volume fraction, final texture, and stress-strain curve were satisfactorily predicted. 

Despite the that predominant twin reorientation scheme was not suitable to capture 

lamellar shape of twins in the microstructure, twin domains were predicted to form and 

grow at or close to grain boundary regions. 

In chapter IV, we surveyed current literature, which aimed at capturing the 

characteristic lamellar morphology of twins. These studies were proven largely 

unsuccessful for several reasons. In addition to the difficulties mentioned above, twin 

nucleation is known to arise from slip dislocation dissociations, which occur either at the 

free surface (especially for sharp textures) or at grain boundaries, and are highly sensitive 

to stress fluctuation at these surface defects at early strain regimes. Furthermore, once a 

nucleation event takes place, it immediately relieves stress in the neighboring segments 

of the surface defect. This is because of the sudden increase in the twin volume 
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associated with the lengthwise growth or propagation, which leads to a very high local 

strain rate. These high sensitivities caused several authors [41,212] to assume that twin 

nucleation is a random event, a view which augments the barriers to identify a continuum 

numerical scheme suitable for capturing the physics of twin nucleation within the 

essentially continuum framework of crystal plasticity. 

5.3 Future work 

5.3.1 Chapter II: effect of deformation path on stress/strain-rate localization 

Our study showed a noticeable effect of deformation path on the formation and 

width of this mantle zone (regions near grain boundaries), and the local strain rates values 

inside these mantle zones. To better understand these effects, numerical simulations of 

cyclic loadings where the deformation path is changed during mechanical testing of a 

given microstructure is warranted.  The evolution of mantle and core zones may shed 

lights on the reasons for this dependence. 

Moreover, most experimental studies for stress-strain localization were limited to 

two-dimensional characterization. It would be interesting to simulate deformation of 

previously experimentally studies microstructures and compare the results to infer the 

effect of three-dimensional state of deformation on hot spots. 

5.3.2 Chapter III: effect of mechanical twinning on stress localization 

The activation of mechanical twinning in TWIP steel strongly depends on 

temperature. It might be interesting to develop a strain-rate temperature dependent 

formulation to predict twin volume fraction at different temperatures and its effect on the 

stress localization. Twinning is known to be athermal, but the decrease in the CRSS of 
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slip, with temperature may decrease the activity of twinning. This could only be captured 

with the fitting parameter of the Voce model. However, a more physical consideration 

would require a model, which captures the onset of embryonic twin nucleation and its 

drastic shooting. 

5.3.3 Chapter IV: current state and changes in capturing lamellar morphology of 
mechanical twinning 

Many challenges must be overcome to capture the localized nature of twinning in 

crystal plasticity: 

1. Twin nucleation occurs at the free surface and grain boundaries, and it 

does not seem to obey the Schmid’s law. As such, crystal plasticity power 

Law [220] is not valid. A local stress-strain dependent criterion must be 

first devised at the atomistic level and then translated to the mesoscale 

level, 

2. The spacing between the twins depends on the way the lengthwise 

growing relieves stress in the neighboring region. Thus, the lengthwise 

growing must be taken into consideration in the nucleation criterion, 

which complexifies the issue. 

3. Another difficulty arises from the intermediate scale of dislocation 

interactions, in between atomistic and mesoscale, which pertains to stress 

concentration precursor to twin nucleation. Studies must be performed to 

understand how the stochastic nature of dislocation interaction and cross 

slip influences twin nucleation. 
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4. Edgewise twin propagation seems to obey the Schmid’s law, so the rate-

dependent stress-strain rate crystal plasticity power law [220] can be 

maintained to simulate this stage of twin growth. However, it may not be 

reliable to simulate competition between different variant during 

nucleation and growth, especially twin-twin interactions. In fact, it has 

been demonstrated that twin-twin interactions lead to a higher number 

fraction of twins, and thus impact the non-Schmid’s character of twin 

nucleation. Future studies should be able to link between edgewise twin 

propagation and twin nucleation as well. 
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