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Malicious software, or malware, is often employed as a tool to maintain access to

previously compromised systems. It enables the intruders to utilize system resources, har-

vest legitimate credentials, and maintain a level of stealth throughout the process. During

incident response, identifying systems infected with malware is necessary for effective re-

mediation of an attack. When analysts lack sufficient indicators of compromise they are

forced to conduct a comprehensive examination to identify anomalous behavior on a sys-

tem, a time consuming and challenging task. Malware authors use several techniques to

conceal malware on a system, with a common method being DLL injection.

In this dissertation we present a system for automatically generating Windows 7 x86

memory images infected with malware, identifying the malicious DLLs injected into a

process, and extracting the features associated with those DLLs. A set of 3,240 infected

memory images was produced and analyzed to identify common characteristics of mali-

cious DLLs in memory. From this analysis a feature set was constructed and two datasets



were used to evaluate five classification algorithms. The ZeroR method was used as a base-

line for comparison with accuracy and false positive rate (misclassifying malicious DLLs

as legitimate) being the two metrics of interest. The results of the experiments showed that

learning using the feature set is viable and that the performance of the classifiers can be

further improved through the use of feature selection. Each of the classification methods

outperformed the ZeroR method with the J48 Decision Tree obtaining the, overall, best

results.
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CHAPTER 1

INTRODUCTION

Malicious software, or malware, is a growing threat seen across multiple domains rang-

ing from the home user to the nation state level. When threat actors target a network for

intrusion, malware is often used as a method for maintaining access to a previously com-

promised network [31, 32, 33, 34, 35]. During and after an attack, it falls to the incident

response team to determine which systems have been compromised and purge the intruders

and their tools from the network.

The incident response team performs forensic analysis of the environment at the host

and network level to determine which systems have been affected by the intrusion. The size

and skill of the team will determine the roles each member assumes. Signs of the intrusion

are sought in network traffic, on disk, and in the memory of host systems. Being able to

identify and analyze resident malware across multiple systems is necessary for effective

remediation of an attack [43]. Time is a critical factor in this as intruders may be stealing

or destroying data while the incident response team is assessing the situation.

1.1 Memory Forensics

Forensic analysis of captured memory is relatively new [45] with dedicated tools only

becoming widely available since 2008 [37, 63, 49, 50]. With the realization of the sheer
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volume and usefulness of information contained within memory has come significant re-

search and software developed for extracting and processing this data. Any type of forensic

information can potentially be extracted from memory, but malware has been a focal point

for research in this area with many tools offering dedicated features for extracting mali-

cious artifacts.

Some pieces of malware are built to remain concealed for as long as possible while per-

forming their tasks, but for the malicious code to be executed it must exist in memory. This

is known as the rootkit paradox [28] and memory analysis leverages this to find malware

in captured memory. Many of the defenses malware employs to evade detection on a live

system, such as hooking or direct kernel object manipulation [30], are rendered inoperable

during an offline analysis of memory. Any software executing at the time that memory is

captured can eventually be found; it is simply a function of the time and skill of the analyst.

Despite the tools currently available, the process for initially finding malware in a mem-

ory capture is a manual process requiring significant knowledge of operating system inter-

nals by the analyst. Depending on what is known a priori, this search can be tightly focused

on an area of memory. If, however, there is no specific knowledge related to the infection

(i.e. specific port, ip address, process, etc...) then the analyst will have to examine all as-

pects of memory looking for anomalous or suspicious behavior. Process listings, handles

to resources, threads, active and recently closed network connections, file system artifacts

in memory, and registry values are just some examples of areas of interest.

2



1.2 Goal

The goal of this dissertation is to determine if malicious DLLs in Windows memory

images can be reliably identified using machine learning.

1.3 Malware in Memory

Malware can exist in several forms in memory. The chosen form will depend on the

malware author’s skill and the requirements of the malware itself. Not all malware authors

are concerned with stealth or evading detection mechanisms, but those that are have several

options for concealing malicious software. Malware may run as a standalone process, as

code injected into another process, as a hollowed process, as a service, or as a driver. Each

form of malware on a system has its own characteristics that distinguish it from others and

each generates a different set of artifacts that may be used for detection based on that form.

The different forms are briefly described here.

Standalone processes are processes that are executed normally such as when a user

opens or clicks an application. The executable will be loaded into memory and added to

the linked list of processes. The name of the process will match that of the file on disk.

If a binary named test.exe is ran, either by another application or the user initiating the

program, then it will appear as test.exe in the process listing.

Hollowed processes are legitimate processes that have been started, suspended, and

had the legitimate code replaced with malicious code. Malicious launchers are a type of

malware responsible for launching the primary malicious code on an infected system. With

this technique, they open a benign binary, most often a system binary, with the primary

3



thread in the suspended state. The malware launcher then frees the memory containing

the sections of the legitimate process, hollowing out the process data structure in memory.

It then reallocates memory and writes its own PE sections into the body of the process.

Figure 1.1 shows the Local Security Authority Subsystem Service being hollowed and

replaced with the contents of malware.exe.

Figure 1.1

Process Hollowing (Image Taken from [29])

Injected code is executable code loaded directly into a portion of allocated memory in

a remote process. This lacks the overhead of a DLL as well as the overall structure. The

code injected into the remote process is normally shellcode; shellcode is self-contained

executable code [22]. Injected code aids malware in avoiding anomaly-based network

intrusion detection systems [22, 31].

4



Windows services run in the background and are managed by the operating system.

There are normally several services running at one time in Windows. Services are encap-

sulated by the system process svchost.exe, a container for multiple services implemented

as DLLs.

Windows drivers are binaries that execute in kernel space. They naturally have more

privileges than code executing in user space. Malicious drivers are more difficult to im-

plement and dangerous to the system. Arbitrarily modifying kernel memory can result a

system crash.

1.4 Dynamic Link Library Injection

A dynamic link library (DLL) is a shared library of code that may be mapped into

multiple processes simultaneously. The intended purpose of a DLL is for code reuse and

reducing the footprint in memory of shared functions. DLL injection is a technique that

forces a running process to load an arbitrary DLL. Malware authors use DLL injection to

conceal their code, evade host-based firewalls and process-specific security measures, and

leverage the execution context of the containing process [22].

As shown in Figure 1.2, when Launcher Malware tries to initiate an outbound connec-

tion it is blocked by a host-based firewall. Launcher Malware loads Malicious DLL into

iexplore.exe (Internet Explorer). This enables Malicious DLL to reach the internet because

any traffic originating from it appears to come from iexplore.exe which is a trusted process.

DLLs can be loaded into a process by dynamic linking or run-time dynamic linking.

Dynamic linking occurs during process initialization. DLLs listed in the import address

5



Figure 1.2

DLL Injection (Image taken from [22])

table (IAT) of the executable will be loaded at this stage. Those DLLs that are loaded also

contain an IAT and will subsequently load any required DLLs. This process continues until

all necessary DLLs are loaded into the process [51].

Run-time dynamic linking is when a DLL is loaded into a process after the process has

been initalized and is running. Windows 7 natively supports this functionality and most

Windows system processes perform this action repeatedly during their lifetime. When the

functionality of a DLL is required by the executable in a process or by another DLL in that

process, it will load the desired library and execute the appropriate code. If it no longer

needs the DLL it may unload the DLL from the process.

DLL injection can be accomplished through multiple methods, but each method sim-

ulates legitimate DLL loading mechanisms within the system. The loading itself does not

create any distinctly malicious artifacts. The runtime loading of a DLL into a process is a

common event on a running system and in itself is not malicious nor even suspicious.
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1.5 DLL Data Structures in Memory

A process is represented by an EPROCESS structure in memory. Each EPROCESS

structure contains a Process Environment Block (PEB). The PEB contains three doubly

linked lists that store the DLLs loaded by the process as a LDR DATA TABLE ENTRY.

The three linked lists are the LoadOrderList, MemoryOrderList, and InitOrderList.

Each list contains the same DLLs for that process, but the order is different per list.

The LoadOrderList places the DLLs in order they were loaded into process. The Memo-

ryOrderList is ordered based on the virtual memory address where a DLL is loaded. The

InitOrderList is based on the order in which the main function of each DLL was executed.

Each LDR DATA TABLE ENTRY contains members describing the DLL in memory.

• DllBase - Virtual address in the process where the DLL is loaded

• SizeOfImage - Size of the loaded DLL

• BaseDllName - The DLL’s name

• FullDllName - Path to the DLL on disk including the DLL’s name

• LoadCount - Number of times LoadLibrary was called for the module

1.6 Identifying Malware in Memory Samples

Antivirus software (AVS) is standard in many corporate environments. Utilizing signa-

ture-based detection, AVS is capable of detecting numerous known malware samples as

well as variants of some samples. However, AVS is not sufficient on its own and it does

not handle new malware well [6]. The signatures used by AVS require reverse engineering

the malware; a time-consuming, difficult process that does not scale to the millions of new

malware samples discovered each month [2].
7



Figure 1.3

Doubly Linked Lists in the Process Environment Block
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Typically, there is no clear distinction between malicious and legitimate software.

Rather, it is based on usage and context. For example, there are many pieces of legiti-

mate software that enable a remote connection to a server across the Internet. Some soft-

ware may even routinely transmit information to a remote system. This functionality is

not inherently considered malicious. If the software is reading personal files on the system

unrelated to its stated purpose and then transmitting their contents to a remote location

then it would likely be considered malicious. Because of this lack of definitive distinction,

machine learning is a viable approach for classifying code in memory.

Machine learning has previously been used to classify malicious Windows Portable

Executable (PE) files with high success. However, the attributes used to train the classifier

were more generic as they were extracted from all types of PE files. Additionally, DLLs

loaded into memory have features specific to memory that do not exist in the binary. These

attributes have not been applied to the malware classification problem.

1.7 Hypothesis

The hypothesis for this dissertation is:

A machine learning model can be learned from features extracted from
Windows 7 memory images and applied to successfully classify malicious
injected DLLs in Windows 7 memory images.

There are two metrics this research is primarily concerned with regarding the model:

accuracy and false negatives. Accuracy is the number of correctly classified data points of

either class, legitimate or malicious. False negatives are malicious DLLs that have been

classified as legitimate.
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Successfully is defined as a classifier that produces a model having a greater accuracy

and lower false negative rate than that of the ZeroR classifier applied to the same dataset.

Witten et al. [66] propose using the ZeroR method for establishing a baseline. The ZeroR

classifier counts the number of instances of each class value, in this case malicious or

benign, determines the most frequent class value, and classifies all other data points as that

value. A successful classifier should be able to outperform the ZeroR method, thereby

indicating a target function, or target distribution, exists in the hypothesis space.

1.8 Research Questions

A set of research questions related to the hypothesis have been identified and prioritized

as follows:

Research Question 1: Do malicious DLLs have distinct patterns of behav-
ior in memory?

In order for a classifier to learn from data, there must be some underlying pattern be-

tween the data features and the classification values. The features are the memory artifacts

that relate to DLLs in a Windows 7 memory image and the class values are either malicious

or benign. Several features will be extracted from DLLs in memory. These will be ana-

lyzed to identify distinct patterns between malicious and legitimate DLLs. These patterns

will be used to construct an initial feature set that can classify malicious DLLs in Windows

7 memory images.

Research Question 2: How do different classifiers perform against the
dataset?
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Machine learning algorithms are not perfect and as such they do not obtain 100% ac-

curacy and 0% false positive or false negative rates on real data [66]. There is no previous

research that has explored the classification of malicious software within a memory image.

A significant portion of this research will explore the performance of several classifiers

against the dataset. Several classifiers have been chosen based on their popularity and

success for classifying malware.

Research Question 3: Do correlation-based feature selection and gain ra-
tio evaluation improve classifier performance for this dataset?

Feature selection algorithms provide a way to filter the features before a machine learn-

ing classifier learns from the data. Depending on the feature selection algorithm used, this

may improve the performance of the model by eliminating redundant or irrelevant features.

The success of feature selection algorithms depends on the algorithm itself, the data being

used to learn the model, and the classifier being used.

Research Question 4: Can the ensemble learning technique Bagging im-
prove performance over an individual classifier?

For a given dataset, different classification algorithms will perform at varying levels.

Ensemble learning, applying multiple classifiers to a new instance of data, is an effective

technique for improving performance. This helps alleviate the biases of certain classifiers

on a given dataset and can provide a more robust prediction model. Combinations of

classification techniques will be applied to determine which areas of performance can be

improved using an ensemble approach.
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CHAPTER 2

RELATED WORK

This chapter is an overview of related works in the areas of malware classification using

static and dynamic features and malware detection in memory. It also provides details of

the classification, attribute selection, and ensemble learning algorithms used in this work.

2.1 Malware Classification Using Static Features

Static features of a PE file are those that can be extracted without executing the pro-

gram. They may originate from the file header or the disassembled code itself. Significant

research has been done in the area of identifying static features that produce a high classi-

fication accuracy.

Byte n-grams are sequences of bytes of length n that are extracted from an executable

[55, 3, 41, 54]. Methods using this type of feature tend to generate several thousand or

greater attributes to use for the classifier. Some form of feature selection is usually neces-

sary to identify the most useful set of n-grams in order to make the features manageable.

This method does not provide meaningful information, but it can classify malware with a

high accuracy [56].

PE features pertain to information stored in the header of a PE file [55, 15]. This can

include [56]:
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• Physical structure information such as file size, MAC times, or machine type

• Logical structure information such as linker version and section details

• Imported DLLs and API calls

• Exported functions (when the PE file is a DLL)

• Resources

• Version information

String features are any plain-text strings stored in the PE file. Schultz et al. [55] used

string features to classify unknown malware and achieved greater accuracy than either byte

n-grams or PE features.

Opcode n-grams are similar to byte n-grams, but they consist of the opcodes after a PE

file has been disassembled [14, 25, 57, 8, 40]. An opcode can be a variable number of bytes

depending on the instruction it represents. Karim et al. [karim2005] used opcode permu-

tations to track malware evolution. Siddiqui [57] applied multiple data mining methods to

opcde sequences to classify PE files. Opcodes have some of the highest reported accuracies

when used to classify files as malicious or benign, but they do suffer from anti-disassembly

techniques and packing obfuscations [22].

Function-based characteristics also require disassembly of a PE file as well as analysis

to determine function boundaries. Menahem et al. [38, 39] used function characteristics

such as the number of functions, size of the shortest and longest function, average function

size, and standard deviation of function size as features to train classifiers.

API sequences are groupings of related API calls and have been examined by several

researchers [5, 4, 52, 67, 68]. API call sequences can be thought of as API n-grams. Again
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the PE file is disassembled and a control flow graph is generally constructed to identify

the order of API calls and these are grouped as n-grams. Due to the large number of

combinations a feature selection method is often employed to determine the API n-grams

with the most value for classification.

Shabtai et al. [56] conducted a survey of research that classified files as malicious or

benign using static features. Their research indicates that

• Previously unseen malicious code can be classified with high accuracy and a low
false positive rate

• Multiple classifiers should be used

• OpCode and PE file representation patterns yield the best accuracy

• Classifier training should consider the imbalance problem of benign files to mali-
cious files in real-life situations

• An active learning mechanism is recommended to ensure high detection accuracy
against new threats

Portable executable files are composed of multiple sections. These sections are mapped

to addresses when a file is loaded into memory and the values at these addresses may

change during execution. This may render dynamic analysis infeasible for a PE file that

has been extracted from memory. However, static analysis, and subsequently static feature

extraction, are still viable [48]. Currently, no research explicitly addresses the extraction

of static features from memory captures nor the application of a model derived from the

aforementioned methods for detecting malware in memory.

2.2 Malware Classification Using Dynamic Features

Dynamic, or runtime, features are those extracted during the execution of malware.

Examples of these include created files, network connections, and acquired handles to
14



system resources. The challenge in using these features is similar to using features from

captured memory: ensuring the malware exhibits as much functionality as possible during

execution. A memory capture represents the Windows operating system at a single point in

time; in a sense, it is purely static. However, it contains data only generated at runtime for

some programs. This allows some types of dynamic, or behavioral, features to be extracted.

Wilhelm and Chiueh [65] constructed a system called Limbo that extracted runtime

features from kernel-mode rootkits and used them to build a Naive Bayes classifier. This

system was designed to identify rootkits in real-time by extracting features and classifying

the driver before it was loaded for execution. The authors identify 18 features that distin-

guish malicious kernel drivers from legitimate drivers. Each feature is of the form kernel

driver rootkits have property x or perform action y in greater or lesser quantity than le-

gitimate drivers. These types of features are meaningful and show that a classifier can be

trained to identify malicious software effectively with a small number of distinctive fea-

tures, as opposed to the use of n-grams which tend to generate thousands of features that

hold no meaning to a human analyst. The authors reported a classification accuracy 96.2%

with a false positive rate (malware classified as benign)of 1.4%.

Firdausi et al. [17] evaluated five different classifiers against a dataset of 220 malicious

files and an unspecified amount of benign Windows XP system files. The classifiers were

evaluated with and without feature selection. Of the five classifiers, J48 without feature

selection performed the best in terms of accuracy (96.8%), precision (97.3%), and recall

(95.9%). The authors did not discuss why J48 performed the best or why the other classi-

fiers had worse performance.
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2.3 Malware Detection in Memory

Scanning memory samples with antivirus software, particularly virustotal [62], has

been advocated by practitioners [16, 23, 64] to help identify malware. Creating a sig-

nature for a given malware sample is a time-consuming process that often requires-reverse

engineering the malware to identify key functionality. Even once the signature is created,

polymorphic and metamorphic malware can alter itself sufficiently to evade detection by

the signature [46].

Blacksheep [7] is a tool designed to detect kernel-level rootkits in groups of similar

hosts. They capture memory from several machines at approximately the same the time

and then look for features that appear in a small subset of the hosts. This enables the

detection of kernel-level rootkits. The technique does not apply to user-level malware and

requires memory captures from several similarly configured machines.

Maggi et al. [36] applied machine learning to detecting in-memory injections by an-

alyzing system call sequences and arguments to the system calls on a live system. Their

research focused on the FreeBSD operating system and shellcode injected into processes.

It did not utilize memory captures, but instead relied on audit data obtained from the oper-

ating system.

2.4 Classification Algorithms

This section explains the selected classifiers used in this dissertation.
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2.4.1 ZeroR

The ZeroR learner is one of the simplest classification algorithms. The model it con-

structs relies solely on the class variable, ignoring all input attributes. The ZeroR classifier

simply predicts the majority class. It has previously been used as a baseline for comparison

against other classifiers [59, 26]

2.4.2 Naive Bayes

Naive Bayes is a probabilistic classifier based on Bayes’ rule. Naive Bayes considers

each feature to contribute independently to the probability that an instance belongs to a

specific class, regardless of any possible correlations between other features. Naive Bayes

has previously been applied in malware-related classification research with good results

[58, 10].

2.4.3 J48

The J48 algorithm is a Java implementation of the C4.5 release 8 algorithm [66]. The

C4.5 algorithm is used to generate a decision tree, which can be used as a classifier. The

C4.5 algorithm is based on information entropy. At each node of the tree, the C4.5 algo-

rithm chooses the attribute of the data with the highest normalized information gain (gain

ratio). The C4.5 algorithm repeats the same process on the sublists until one of the base

cases is satisfied [47].
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2.4.4 Support Vector Machine

Support Vector Machine (SVM) is a supervised learning method for two-group classi-

fication problems. It can be used for classification or regression. The SVM uses non-linear

transformations to map an input space to a high-dimension feature space where it can con-

struct a decision surface to separate the data points. The method employed to construct

these decision surfaces ensures a high generalization ability [11].

2.4.5 Nearest Neighbor

The K-Nearest Neighbor (k-NN) method was selected as one of our experimental meth-

ods to represent instance-based learning algorithms. The k-NN method, the distance be-

tween the unknown data point and every known data point is computed. We used Normal-

ized Euclidian distance for distance calculation.

2.4.6 Voted Perceptron

Voted perceptron stores all of the weight vectors created during the learning process.

Each weight vector is allotted a number of votes based on its performance; in this case

that is the number of instances that weight vector correctly classified before it had to be

changed [18].

2.5 Correlation-Based Feature Selection

Correlation-Based Feature Selection method evaluates two major aspects of a feature,

namely, the predictive ability and the degree of redundancy between features. In other
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words, a feature is considered ”good” if it is highly correlated to the class variable and not

highly correlated to any other feature [21].

2.5.1 Best-First Search

Best-first search was selected to use in conjunction with the Correlation-Based Feature

Selection method. Best-first search is a simple heuristic search algorithm. It uses an eval-

uation function to calculate a score to each candidate node. The algorithm starts exploring

the node with the best score first. Two lists are maintained by Best-first search algorithm,

namely, a list of nodes to explore and a list of visited nodes. The algorithm will continue

searching other nodes if it reaches a dead-end node.

2.5.1.1 Forward Selection

Forward selection starts with the empty set of features and searches forward by adding

one feature at a time.

2.5.1.2 Backward Elimination

Backward elimination starts with the full set of attributes and searches backwards by

eliminating one feature at a time.

2.6 Gain Ratio Attribute Selection

Gain Ratio Attribute Selection is based on information theory. It evaluates features by

measuring their gain ratio with respect to the class. This method supports nominal class,

binary class, and missing values.
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2.6.1 Ranker Search

Ranker search sorts attributes or features by their individual evaluations. It can be

applied to several attribute selection techniques that evaluate individual attributes. It was

used in conjunction with Gain Ratio Attribute Selection in our experiment.

2.7 Bagging

Bagging or Bootstrap Aggregating is an ensemble learning method [9]. It creates sep-

arate instances of the fit dataset and creates a classifier for each instance. Bagging method

then combines the results of all multiple classifiers by majority voting or averaging. The

idea behind this method is that each instance of the fit dataset is different, therefore, each

trained classifier perceives different focus and perspective on the problem.
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CHAPTER 3

METHODOLOGY

This chapter describes the research methodology. It includes the configuration of the

system used for generating data, how the dataset was produced, and how it was initially

labeled.

3.1 Data Generation

Supervised machine learning requires sufficient data to learn a hypothesis that approx-

imates a target function. In this research, the data consists of features extracted from

memory images. Given the lack of publicly available Windows 7 x86 memory images, it

was necessary to generate the samples used in this research.

3.1.1 Virtual Machines

Windows 7 Service Pack 1 x86 was used to create a virtual machine within VMWare.

The OS was installed without any additional software. This virtual machine (VM) was

copied twenty times. Each VM was saved, or snapshotted, in a clean state. The runtime

state of each VM was slightly different in memory due to restarting between copying, but

each VM contained the same OS and installed software.
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3.1.2 Cuckoo Sandbox Architecture

Cuckoo Sandbox [12] is an open source automated malware analysis system written in

Python. It is comprised of two components. The first component is the management sys-

tem, or Cuckoo host, that is responsible for queuing, submitting, and reporting the results

of processed malware samples. The second component is the guest agent that monitors the

malware during execution. Figure 3.1 is the architecture of the dynamic analysis environ-

ment used in this research to generate the memory images.

Figure 3.1

Data Generation Process

The Cuckoo host in this setup is a VM running Ubuntu 13.04. When a piece of malware

is ready to be analyzed, the host boots a guest VM from its clean snapshot and transfers

the file to it. The guest agent executes the file within the VM and records its behavior. The

amount of time the malware runs can be configured; for this research the time was set to

two minutes. During execution the guest agent can potentially capture the following:

• Windows API calls and native functions
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• Files either created or deleted from the filesystem

• Memory dump of the guest VM

• Screenshots of the desktop

• Network traffic

Cuckoo Sandbox relies on API call hooking to capture information about the malware.

In version 1.2.1 Cuckoo Sandbox hooks 170 different API calls and native functions. If

the malware uses a call not in this list, then that data will not be recorded. An advantage

of studying the memory dumps of these samples is that, provided the malware executed

properly, there will always be data available for analysis. Any data generated by the guest

agent will sent back to the Cuckoo host where it is encapsulated in a .tar.gz file. This file

is referred to as a Cuckoo Sample.

3.1.3 INetSim

All network traffic is directed to a VM running Ubuntu 13.04 and InetSim [24]. IN-

etSim simulates several network services such as http, https, ftp, dns, and smtp. Network

traffic will not be able to reach any nodes beyond the system running INetSim. As such,

some malware will not execute fully or may terminate itself before any meaningful mali-

cious code is executed. For instance, any malware part of a botnet that needs to connect to a

command and control server to acquire updates or instructions will not be able to do so and

will likely self-terminate. The reason that INetSim is used instead of disabling networking

altogether is that some malware will exhibit additional behavior if it can detect there is a

network connection available or that a specific network service exists.
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3.1.4 Malware Samples

The malware samples used by Cuckoo Sandbox to generate the Cuckoo Samples were

obtained from VirusShare [61] in 2012. The samples downloaded were the most recent

uploads at the time and do not include any specific filtering (i.e. file type, size, etc...). The

file types contained within the samples include executables, shared libraries, drivers, pdfs,

html, vb scripts, and various other types.

Any samples that did not simply run and quit are considered valid for the purpose of this

research. Determining which samples did more than just start and quit can be determined

by analyzing the saved results from Cuckoo Sandbox. Those that quit early will have fewer

API calls and minimal system interaction.

3.2 Extracting DLLs from Memory

Volatility [63] was used to extract DLLs and their associated artifacts from each mem-

ory image generated by Cuckoo Sandbox. Each process contains three doubly linked lists

that contain the DLLs loaded by the process. However, some malware will use a technique

known as direct kernel object manipulation (DKOM) where it removes itself from the dou-

bly linked lists of LDR DATA TABLE ENTRY structures. In order to identify all of the

loaded DLLs within a process, the virtual address descriptor (VAD) tree is examined. The

VAD tree consists of VAD nodes. Each node describes the allocated virtual memory ranges

for a given process. If a memory range also maps a file, such as when a DLL is loaded into

the memory space of a process, the DLL’s file name and path will also be included.
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Volatility is used to traverse the VAD tree identifying any nodes with a memory mapped

file. Once a node is identified, its corresponding entries in the three doubly linked lists are

also extracted if they are present. This provides information from both the MMVAD and

LDR DATA TABLE ENTRY data structures. The possibility does exist that malware

can unlink a node in the VAD tree, rendering it invisible to identification in this manner.

However, this action cannot be performed without the possibility of leaving the operating

system in an unstable state, potentially resulting in a system crash [13]. The features

extracted for each DLL are detailed in chapter 5.

3.3 Data Cleaning

The VAD tree defines all of the memory ranges allocated by a process including heaps,

thread stacks, DLLs, and other mapped files. Identifying DLLs using the method in the

previous section also captures files that are not actually DLLs. These include .exe and .mui

files. The executable file of an EPROCESS is in the list of modules loaded by a process

and therefore also defined in the VAD tree. The executable will appear in two of the doubly

linked lists, InLoadOrderModuleList and InMemoryOrderModuleList, but not in the third

list, InInitializtionOrderModuleList. Any files in the dataset that end with ’.exe’ and appear

in the load order and memory order lists, but not the initialization order list is considered a

process executable and removed from the dataset.

The .mui files are language-specific files associated with a language-neutral (LN) file,

typically a DLL. These files do not appear in any of the doubly linked lists associated with

the EPROCESS structure. Any files with an extension of ’.mui’ and that do not appear
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in all three of the doubly linked lists are considered .mui files and are removed from the

dataset.

3.4 Data Labeling

The learning method in this research is Supervised Learning. This requires the data to

be accurately labeled. This section details how each individual data point is classified.

Each DLL and its associated features are written out as comma separated value files.

This results in a large set of data containing malicious and legitimate DLLs with the asso-

ciated information listed above. Each data point falls into one of four categories.

Legitimate processes containing legitimate DLLs (LL) - The majority of the processes

and DLLs running on the system will be of this type. These were running before the

malware executed and continue to run after. Each memory image produced will contain,

mostly, the same set of processes and DLLs.

Legitimate processes containing malicious DLLs (Injected) - These are the processes

that have been subject to DLL injection.

Malicious processes containing legitimate DLLs (ML) - Many malware samples will

be executed directly by cuckoo resulting in a malicious process. Malicious processes, like

legitimate processes, require legitimate DLLs to perform basic tasks on the system. There

is a small subset of legitimate DLLs that are required for any process to initialize and run.

This set presents the greatest potential variety of legitimate DLLs on the system.

26



Malicious processes containing malicious DLLs (MM) - Malware authors create DLLs

for the same reasons that legitimate DLLs are created: code reuse. Some malware will

contain its own DLLs for this purpose. These are not an example of DLL injection.

Only the second category, legitimate processes containing malicious DLLs, were used

in the datasets. The ML and LL sets did not contain enough variation to be considered

representative of what might be found on an arbitrary Windows 7 system. This is partially

due to the lack of third party programs and their associated DLLs, but also to the number of

system DLLs that were not present in memory. The legitimate DLLs extracted during this

process were mostly duplicates. A set of textitML DLLs extracted from 4,230 memory

images had 162,567 legitimate DLLs. The number of unique DLLs within this set was

only 465. The base install of Windows 7 SP1 x86 that was used for analysis by Cuckoo

contained 6,121 .dll files; only 7.6% of the system DLLs were represented across these

memory images.

3.5 Dataset Creation

This section details the process used to create the datasets used for experimentation.

The initial dataset was created from 3,240 cuckoo samples. These cuckoo samples

yielded 299 instances of malicious injected DLLs. This set of malicious DLLs was ana-

lyzed to construct the feature set defined in chapter 5. After the features were specified,

this dataset was discarded.

A set of 33,160 cuckoo samples were generated and the previously determined features

were extracted from the memory images. This yielded 2,385 instances of malicious in-
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jected DLLs. These were analyzed in conjunction with legitimate DLLs from the analysis

system and the characteristics reported in [20].

Twelve memory images were created from three different installations of Windows 7

SP1 x86. For each memory image, several legitimate pieces of software were downloaded,

installed, and executed. Memory was captured while these applications were running.

The software used to construct these memory images was all freely available software

downloaded from the Internet.

The 2,385 injected DLLs were combined with a random sampling from nine of the

manually created memory images. This formed the cross-validation dataset.

To further test the generality of each learning model, another set of 8,371 cuckoo sam-

ples were processed. 424 malicious injected DLLs were obtained from these samples. The

remaining three manually created memory images were randomly sampled to obtain the

legitimate DLLs. These were combined to form the test set.

Table 3.1 details the class distribution for the cross-validation and test datasets.

Table 3.1

Class Distribution for the Cross-Validation and Test Datasets

Cross-Validation Test

Total Instances
Total Malicious DLLs
Total Legitimate DLLs
Unique Malicious DLLs
Unique Legitimate DLLs
Malicious DLL (%)
Legitimate DLL (%)

12,066
2,385
9,681

812
1,076

19.77%
80.23%

2,694
424

2,270
188
900

15.74%
84.26%
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CHAPTER 4

PRELIMINARY RESULTS

This chapter presents preliminary results that address the first research question for this

dissertation:

Do malicious DLLs have distinct patterns of behavior in memory?

This work was published in Advances in Digital Forensics XI [20].

4.1 Injected DLL Characteristics

This section discusses various characteristics of the injected DLLs we identified. These

characteristics are drawn from the set of injected DLLs and contrasted with those of legit-

imate DLLs where deemed appropriate.

We generated 33,160 cuckoo samples for this research. Of those, 955 exhibited DLL

injection behavior. It is plausible that more than the 955 identified perform DLL injection,

but did not in this instance due to a lack of some required resource e.g. configuration files,

Internet connection, installed software. The analyzed data was split into two subsets. The

first set was all of the injected DLLs and all of the legitimate DLLs. These contained

2,385 and 162,567 DLLs respectively. The second set consisted of the unique injected and

legitimate DLLs for a given memory image. These contained 1,168 and 152,883 DLLs

respectively.
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Figure 4.1

Processes Commonly Targeted for DLL Injection

4.1.1 Target Processes

Malware that injects DLLs must specify a target process to host the malicious code.

In the dataset, some processes were more common than others. Explorer.exe, svchost.exe,

and taskhost.exe were the most common processes targeted for injection, accounting for

over 52% of all injections. Each of these processes should always be running on a Win-

dows system. Also, each of them presents a large and/or varied set of DLLs at runtime.

Explorer.exe had, on average, 210 legitimate DLLs loaded at one time and there are often

several instances of svchost.exe and taskhost.exe running on a system. Figure 4.1 shows

the numbers of injections.
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Figure 4.2

Distribution of DLL Injections per Malware

4.1.2 Number of Injections per Malware

Malware can choose to inject a DLL into any running process. Injecting into multiple

processes can provide the malware with greater survivability and versatility, but may also

increase chances of being detected. 955 malware samples injected a DLL into a process.

Of the 955, 60% of them (573) targeted a single process with the remaining 40% injecting

into two or more processes. Figure 4.2 shows the distribution of the number of injections

performed by malware.

4.1.3 Simultaneous Loads

When malware injects a DLL into several processes, it will often iterate through the

active processes and inject the DLL as it finds its target(s). For the malware that loaded into
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multiple processes we examined the load time extracted from the associated LDR DATA-

TABLE ENTRY to see how many DLLs had the same approximate load time. For a given

DLL within a memory image, the load time of that DLL is compared against its load time

in all the other processes containing that DLL. For every load time within one second,

that DLL’s simultaneous load value is incremented by one. If the DLL appears in multiple

processes but does not share a load time, then it has the value 0. If a DLL exists only once

within an entire memory image, it has a value of -1. Of the DLLs that exist in more than

one process (those with a value of 0 or greater) the number of DLLs we detected that has

at least one simultaneous load for injected DLLs was 73.3%. For legitimate DLLs, it was

45.4%. This shows that malicious processes tend to be injected into multiple processes at

the same approximate time whereas the load times of legitimate DLLs are more varied.

4.1.4 Load Position

The InLoadOrderModuleList is a doubly linked list of LDR DATA TABLE ENTRY

structures. The ordering of the list is based on the order in which a DLL was loaded into

a process with the executable occupying the first position. The beginning entries will be

occupied with dynamically linked DLLs named in the Import Address Table. DLLs loaded

at runtime will naturally appear at the end of the list. Some loaded DLLs are volatile in the

sense that they are loaded and unloaded repeatedly during the lifetime of a process while

others are more stable, remaining loaded for longer periods of time. The load position was

calculated for each DLL that existed in the InLoadOrderModuleList. The average load

position was calculated for both injected and legitimate DLLs. The average load position
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for all of the injected DLLs was 83.7. The average load position for the legitimate DLLs

was 52.6. We note that our system ran for a short period of time and this may affect the

reliability of this result. Depending on the number of DLLs unloaded by a process, an

injected DLL may appear closer to the beginning of the list.

4.1.5 Init Position

Similar to the InLoadOrderModuleList, the InInitializationOrderModuleList represents

the order in which a DLL’s DLLMain function was executed. The average init position for

all of the injected DLLs was 87.4. The average init position for legitimate DLLs was 51.3.

This result may also be affected by the short run time of the analysis system.

4.1.6 Base Address

The base address is the virtual address in a process where a DLL is loaded. The default

base address for DLLs is 0x10000000. Since a process will normally contain multiple

DLLs and only one DLL can occupy a given virtual address within a process, many DLLs

will contain a .reloc section in the PE header that specifies how to translate its offsets.

48% of the unique injected DLLs were loaded at the virtual address 0x10000000. This is

contrasted sharply against the legitimate system DLLs of which 99.99% were loaded at an

address other than 0x10000000.

4.1.7 Exported Function Count

The number of functions exported by each DLL were extracted and used to calculate

the mean and mode for injected and legitimate DLLs. The injected DLLs exported consid-
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erably fewer functions on average with a mode of 2 and a mean of 13. Legitimate DLLs

had a mode of 11 and a mean of 368.

4.1.8 Imported Function Count

The number of functions imported by each DLL were extracted and used to calculate

the mean and mode for injected and legitimate DLLs. The mode of each type of DLL

was similar with injected having 213 and legitimate 198. The mean was 115 and 257 for

injected and legitimate DLLs respectively.

4.1.9 Loaded from Temp

A common heuristic when looking for malware is searching for binaries loaded from

a temporary directory such as %TEMP% (C:\Users\UserName\ AppData\Local\Temp).

20% of the unique injected DLLs were loaded from a directory with ’temp’ in the path.

Nearly all of these were from %TEMP% but a small number were from directories named

C:\temp or C:\Windows\temp.

4.1.10 Load Paths

Figure 4.3 shows the most common load paths for injected legitimate DLLs. For legiti-

mate DLLs, 97% are loaded from C:\Windows\System32 or C:\Windows\ System32\en-

us.

4.1.11 COM Server

The Component Object Model (COM) is an interface standard used in the Windows

operating system. It enables software to call code hosted by other software components
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Figure 4.3

Distribution of Load Paths per Malware

without in-depth knowledge of its implementation. The calling component is referred to

as the client and the hosting component is referred to as the server. Malware authors

sometimes leverage the COM infrastructure to implement malicious code [22]. A COM

server is required to export at least two Windows API functions: DllGetClassObject [1]

and DllCanUnloadNow [1]. If these two API calls are seen in the exports of a DLL then it

is considered to be a COM server. 5.2% of the unique injected DLLs were implemented as

COM servers.

4.1.12 COM Client

Windows binaries can call COM objects as clients. In order to use COM objects, the

binary must call OleInitialize [1] or CoInitializeEx [1] functions. Any DLLs importing
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either of these functions were considered to be COM clients. Only 2.1% of the unique

injected DLLs in our dataset were capable of calling COM objects.
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CHAPTER 5

FEATURE SET

This chapter details the features used to construct the dataset. There are two types

of features described here. The first are raw features extracted directly from memory. The

other type of features are transformed features. They are derived from one or more existing

features. Features are organized by the data structures in memory where they originate.

The feature set used consists of 32 features; 20 of the features are nominal and 12 are

numeric. A descriptive name of each feature is provided and the feature as it appears in the

actual dataset is in parenthesis next to it.

5.1 EPROCESS Features

Process name is a string representing the name of the process that contains the DLL.

The values for this feature are nominal values: explorer.exe, svchost.exe, taskhost.exe, and

other.

Num processes with dll is an integer of the number of processes where a specific DLL

was found.
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5.2 LDR DATA TABLE ENTRY Features

These features are either extracted from the LDR DATA TABLE ENTRY, or use in-

formation related to it to determine the value for the feature.

Dll base is the address in memory where the DLL was loaded. Indicates if the DLL

was found at the default base address (0x10000000) in the process address space. The

value is ’True’ if it was, ’False’ if it was not.

Load count is an integer that indicates the number of times LoadLibrary or LdrLoadDll

was called for the DLL. The value is incremented each time one of these functions is called

and decremented when the DLL is unloaded from a process. If a DLL was loaded from an

import address table in a module, the value will be 0xFFFF (-1). The values are a base 10

integer representation of the hex value.

Dll in load is a binary value that specifies if the DLL was found in the InLoadOrder-

ModuleList. Value is ’True’ if the DLL was found in the list, ’False’ if it was not.

Dll in mem is a binary value that specifies if the DLL was found in the InMemoryOr-

derModuleList. Value is ’True’ if the DLL was found in the list, ’False’ if it was not.

Dll in init is a binary value that specifies if the DLL was found in the InInitializtionOr-

derModuleList. Value is ’True’ if the DLL was found in the list, ’False’ if it was not.

Load path is temp is the location on disk from where the DLL was loaded. Due to the

variety of values this attribute could describe, it was transformed into a binary attribute.

A common heuristic used for identifying malware is if it was launched or loaded from a

temporary directory. The value for this feature is ’True’ if the path contains temp, ’False’

if it does not.
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Load position is a floating point value describing the position of a DLL in the In-

LoadOrderModuleList. DLLs are added to this list based on the order in which they are

loaded by the process. The value is calculated as:

DLL position 
load pos = (5.1)

total DLLs in list 

Init position is a floating point value describing the position of a DLL in the InIni-

tializationOrderModuleList. DLLs are add to this list based on the order in which their

DLLMain function is called. The value is calculated as:

DLL position 
init pos = (5.2)

total DLLs in list 

Is dkom present is a binary value determined by the absence of a DLL from one of the

three doubly linked lists. Value is ’True’ if the DLL is not in all three lists, ’False’ if it is

in all three lists.

File extension is dll is a binary value. The value is ’True’ if the extension is .dll, ’False’

if it is anything else.

Size of image is an integer specifying the number of bytes of the DLL.

Sim loads is an integer. The LDR DATA- TABLE ENTRY contains a load time for

each DLL. This feature is an integer that expresses the number of times a DLL was si-

multaneously loaded into different processes. For this feature, simultaneously is defined

as having a load time within one second of another load time. For a given DLL, its load

time is compared to the other instances of it across all processes to calculate the number of

times it was simultaneously loaded.
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5.3 MMVAD * Features

Vad allocated pages is a positive integer that specifies the number of pages allocated

for the DLL.

Vad cf accessed is a binary value that describes if the control flag ’Accessed’ is en-

abled. The value is ’True’ if the flag is enabled, ’False’ if it is not.

Vad cf image is a binary value that describes if the control flag ’Image’ is enabled. The

value is ’True’ if the flag is enabled, ’False’ if it is not.

Vad protection is a nominal feature that lists the protection level applied to the allo-

cated memory region associated with the DLL when it was first initialized. If subranges of

the allocated region are later changed, it will not be reflected through this value. The val-

ues in these datasets are ’PAGE EXECUTE WRITECOPY’, ’PAGE READONLY’, and

’PAGE WRITECOPY’.

Vad type is the type of the VAD node. The values in these datasets are ’VadImageMap’

and ’VadNone’.

Vad num mapped views is a positive integer specifying the number of times a view of

a file has been mapped. A view of a mapped file is a virtual address range that represents

a segment of the mapped file.

Vad num section refs is an integer for the references to the section object of the VAD

node.

Vad commit charge is an integer of the number of memory pages that were committed

in the memory range.
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Vad path ldr path differ is a binary feature. If the mapped path listed in the VAD node

differs from the path listed in the LDR DATA TABLE ENTRY in the InLoadOrderMod-

uleList, this value is ’True’, otherwise it is ’False’.

5.4 PE HEADER Features

The features in this section are all extracted from the PE header of a DLL in memory.

PE features have previously been used to classify software as malicious or benign.

The PE header begins at the base address where a DLL is loaded. It has the same

structure in memory as on disk. However, in some instances the value for a given feature

is not obtainable due to the underlying physical memory being paged to disk.

Num exports is a positive integer representing the number of functions exported by a

DLL.

Is com server is a binary feature. A COM server is required to export at least two

Windows API functions: DllGetClassObject and DllCanUnloadNow. If these two API

calls exported by the DLL, then the value is ’True’, otherwise the value is ’False’.

Num imports is a positive integer representing the number of functions imported by a

DLL.

Is com client is similar to COM server. A COM client is required to import specific

Windows API functions. The imported functions of a DLL are parsed and if it contains

either OleInitialize or CoInitializeEx then the value of this feature is ’True’, otherwise the

value is ’False’.
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Dll flag set is a binary feature. The PE header contains a field that specifies if the file

is actually a DLL. The value is ’True’ if the flag is set, ’False’ if it is not set.

Is entrypoint section name text is a binary feature. The entrypoint of a PE file is the

address where the code begins execution. Often the name will be .text, though any name

is valid. The value for this feature is ’True’ if the name of the section containing the

entrypoint is .text, ’False’ if it is anything else.

Has reloc section is a binary feature that specifies if a .reloc section exists in the PE

header. The value is ’True’ if the DLL has a .reloc section, ’False’ if it does not.

Is PE image base default is a binary feature specifying if the base address where the

DLL should be loaded is the default. The value is ’True’ if the image base is 0x10000000,

’False if it is not.

Raw virt size diff is a nominal feature. Each section in a PE file has a raw size (size

on disk) and a virtual size (size in memory). Large differences between these two sizes

sometimes indicate that a PE file is packed. For the section containing the address of the

entrypoint, this feature is the raw size subtracted from the virtual size. The values of this

feature are ’Neg’ if the difference between the two is less than zero, ’None’ if the sizes are

equal, ’Low’ if they are within one page (4096 bytes) of each other, or ’High’ if the size

difference is greater than one page.
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CHAPTER 6

EXPERIMENTAL RESULTS

This chapter presents the results of the experiments for each research question. All

experiments were conducted using Weka 3.6.11. Unless otherwise specified, the default

settings for each algorithm in Weka were used. Each experiment was run against two

sets of data: the cross-validation set and the test set. The two metrics of interest in these

experiments are accuracy and false positive rate. Accuracy is the set of correctly classified

instances out of the total instances available. False positive rate refers to malicious DLLs

that have been classified as legitimate.

Evaluation against the cross-validation set used ten iterations of stratified 10-fold cross-

validation. An average accuracy and false positive rate is produced for each iteration; these

averages are then averaged together to produce the final results. The standard deviation

column represents the deviation among iterations. Evaluation for the test set constructed a

model from the entire training set and then applied it to the test set. Statistical significance

between metrics was determined using a two-tailed paired t-test [44]. The comparison is

explained in each section where appropriate.

6.1 Research Question 2

How do different classifiers perform against the dataset?

43



The experiment for this research question was designed to evaluate different categories

of classifiers against the dataset. ZeroR was used to establish a baseline for comparison

between the classifiers; the specific metrics of interest are accuracy and false positive rate.

The following classifiers were evaluated using the cross-validation set and the test set:

• ZeroR

• Naive Bayes Classifier

• Support Vector Machine

• Voted Perceptron Learning Algorithm

• Nearest Neighbor with Euclidian Distance

• J48 Decision Tree

6.1.1 Base Classifier Evaluation - Cross-Validation Set

Table 6.1 shows the accuracy and false positive rate of each classifier against the cross-

validation dataset. Figure 6.1 and Figure 6.2 depict the accuracy and false positive rate

respectively.

ZeroR and the Voted Perceptron Learning Algorithm (VPLA) performed the worst of

all six classifiers with respect to both accuracy and false positive rate. The results from

VPLA were identical to that of ZeroR. The best model it could produce classified every

instance as legitimate. The other four classifiers performed significantly better than ZeroR

with J48 obtaining the highest accuracy and lowest false positive rate.

6.1.2 Base Classifier Evaluation - Test Set

Table 6.2 shows the accuracy and false positive rate of each classifier against the test

dataset. Performance of the classifiers using the test set was similar to that of the cross-
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Table 6.1

Base Classifier Accuracy and False Positive Rate - Cross-Validation Set

Classifier Accuracy Significant Std Dev FP Rate Significant Std Dev

ZeroR
NaiveBayes
SVM

80.23
91.82
98.38

N/A
Yes
Yes

0.04
2.59
0.33

100.00
6.11
3.91

N/A
Yes
Yes

0.00
0.02
0.01

Voted Per- 80.23 No 0.04 100.00 No 0.00
ceptron
Nearest 98.74 Yes 0.29 3.75 Yes 0.01
Neighbor
J48 Decision 99.24 Yes 0.26 2.45 Yes 0.01
Tree

Figure 6.1

Classifier Accuracy - Cross-Validation Set
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Figure 6.2

Classifier False Positive Rate - Cross-Validation Set

validation set. ZeroR and VPLA again performed identically. The remaining classifiers

each achieved better accuracy and false positive rates than the baseline with J48 obtaining

the highest accuracy and lowest false positive rate. The increased performance of the four

classifiers was statistically significant.

6.2 Research Question 3

Do correlation-based feature selection and gain ratio evaluation improve
classifier performance for this dataset?

The experiments associated with this research question are designed to identify which

features are considered more valuable and how they affect the chosen set of classifiers. The

ZeroR classifier was not used during these experiments as feature selection has no impact

on the learning model it constructs.
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Table 6.2

Base Classifier Accuracy and False Positive Rate - Test Set

Classifier Accuracy Significant FP Rate Significant

ZeroR
NaiveBayes

SVM

84.26
91.80
97.59

N/A
Yes
Yes

100.00
9.90
5.70

N/A
Yes
Yes

Voted Perceptron
Nearest Neighbor
J48 Decision Tree

84.26
98.00
98.74

No
Yes
Yes

100.00
7.80
3.50

No
Yes
Yes

Figure 6.3

Classifier Accuracy - Test Set
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Figure 6.4

Classifier False Positive Rate - Test Set

6.2.1 Correlation-based Feature Selection

Correlation-based Feature Selection (CFS) using Best-First search with forward selec-

tion and backward elimination was applied to the training set. Table 6.3 lists the subset of

features selected for each search technique. The subsets are identical. These features are

each highly correlated with the class and not highly correlated with each other.

Weka provides a meta-classifier that incorporates a feature selection algorithm into the

learning process. This meta-classifier was used to evaluate how the CFS algorithm affected

the specified classifiers. This ensures cheating does not occur during the learning process.
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Table 6.3

CFS using Best First Search Attribute Subsets

Forward Selection Backward Elimination

dll base dll base
entrypoint section name entrypoint section name

init position init position
load count load count

load path is temp load path is temp
PE image base PE image base

vad allocated pages vad allocated pages

6.2.1.1 Classifier with CFS - Cross-Validation Set

Table 6.4 lists the results of the five classifiers augmented with CFS on the Cross-

Validation data set. The ’Significant’ column is the significance of the metric using CFS

compared to that of just the classifier.

Figure 6.5 and Figure 6.6 represent the performance difference for accuracy and false

positive rate respectively.

Naive bayes showed the only improvement in accuracy. Because Naive Bayes assumes

independence across all attributes in the input space, its performance suffers from redun-

dant attributes in the dataset. The CFS algorithm is designed to select subsets of features

that are not highly correlated with each other (i.e. not redundant). Naive bayes also had

a lower false positive rate. Using CFS, Naive Bayes misclassified 5.57% of the malicious

DLLs as legitimate in the cross-validation set.

Nearest neighbor exhibited better performance for both accuracy and FP rate. Euclidian

distance was used as the distance measure. Noisy attributes have a strong affect on this as

49



Table 6.4

Classifiers using CFS Attribute Selection - CV Set

Classifier Accuracy Significant Std Dev FP Rate Significant Std Dev

NaiveBayes 95.57 Yes 0.51 5.57 No 0.02
SVM 97.15 Yes 0.50 7.33 Yes 0.02
Voted Per- 72.78 Yes 1.11 74.16 Yes 0.04
ceptron
Nearest 98.58 No 0.39 2.77 Yes 0.01
Neighbor
J48 Decision 98.91 Yes 0.29 3.51 Yes 0.01
Tree

Figure 6.5

Classifier Accuracy Change using CFS - Cross-Validation Set
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Figure 6.6

Classifier FP Rate Change using CFS - Cross-Validation Set

it weights each attribute equally. The subset chosen by CFS should contain only relevant

features.

6.2.1.2 Classifier with CFS - Test Set

Table 6.5 lists the results of the five classifiers augmented with CFS on the test data set.

The ’Significant’ column is the significance of the metric using CFS compared to that of

just the classifier.

Figure 6.7 and Figure 6.8 represent the performance difference for accuracy and false

positive rate respectively. For the test set, Naive Bayes was the only classifier with an

increased accuracy. Its false positive rate was worse than without CFS, but this was not

considered statistically significant.
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Table 6.5

Classifiers using CFS Attribute Selection - Test Set

Classifier Accuracy Acc Significant FP Rate FP Significant

NaiveBayes 94.32 Yes 7.3 No
SVM 96.66 Yes 7.3 No

Voted Perceptron 82.70 Yes 70 Yes
Nearest Neighbor 97.34 No 4.5 Yes
J48 Decision Tree 98.22 Yes 5 Yes

Figure 6.7

Classifier Accuracy Change using CFS - Test Set
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Figure 6.8

Classifier FP Rate Change using CFS - Test Set

6.2.2 GainRatio Attribute Evaluation using Ranker

Gain Ratio is a variation of the Information Gain algorithm often employed in con-

structing decision trees. The J48 decision tree used in Weka uses Gain Ratio to determine

the structure of the tree. The top seven ranked attributes were used for classification and

are listed in Table 6.6. The attributes listed are those that represent the greatest gain ratio

relative to the class attribute.

6.2.2.1 Classifier with GainRatio Selection - Cross-Validation Set

Table 6.7 contains the results of each classifier using GainRatio on the cross-validation

dataset. The ’Significant’ column states if the change of the associated metric was statisti-

cally significant.
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Table 6.6

Gain Ratio Attribute Selection using Ranker Search

Rank Feature

1 dll base
2 PE image base
3 raw virt size diff
4 load path is temp
5 entrypoint section name
6 file extension is dll
7 has reloc section

Table 6.7

Classifiers with Gain Ratio - Cross-Validation Set

Classifier Accuracy Significant Std Dev FP Rate Significant Std Dev

NaiveBayes 93.88 No 1.29 11.59 Yes 0.02
SVM 96.42 Yes 0.71 6.11 Yes 0.02
Voted Per- 92.96 Yes 6.07 24.97 Yes 0.36
ceptron
Nearest 96.98 Yes 0.98 3.89 No 0.01
Neighbor
J48 Decision 95.87 Yes 0.70 7.48 Yes 0.03
Tree

54



Figure 6.9 and Figure 6.10 represent the performance difference for accuracy and false

positive rate respectively. VPLA was the most enhanced in terms of accuracy and false

positive rate using the smaller feature space acquired through the GainRatio attribute se-

lection algorithm. However, the false positive rate for VPLA is still higher than the other

four classifiers. Also, the standard deviation of its accuracy was high relative to the other

classifiers.

Figure 6.9

Classifier Accuracy Change using GR Evaluation - Cross-Validation Set
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Figure 6.10

Classifier FP Rate Change using GR Evaluation - Cross-Validation Set

6.2.2.2 Classifier with GainRatio Selection - Test Set

Table 6.8 contains the results of each classifier using GainRatio on the test dataset.

The ’Significant’ column states if the change of the associated metric was statistically

significant.

Figure 6.11 and Figure 6.12 represent the performance difference for accuracy and false

positive rate respectively. VPLA was again the most affected by the use of the GainRatio

algorithm. Unlike the results from the cross-validation set, it surpassed both Naive Bayes

and support vector machine for accuracy and false positive rate.

6.3 Research Question 4

Can the ensemble learning technique Bagging improve performance over
an individual classifier?
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Table 6.8

Classifiers with Gain Ratio - Test Set

Classifier Accuracy Significant FP Rate Signficant

NaiveBayes
SVM

91.80
94.36

No
Yes

14.4
9.2

Yes
Yes

Voted Perceptron
Nearest Neighbor
J48 Decision Tree

94.43
95.10
95.03

Yes
Yes
Yes

8.7
6.8
4.5

Yes
No
Yes

Figure 6.11

Classifier Accuracy Change using GR Evaluation - Test Set
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Figure 6.12

Classifier FP Rate Change using GR Evaluation - Test Set

This experiment compared the base classification methods to the bagging method using

the same classifier. Ensemble learning in general has been shown to increase performance

of the associated classifier, particularly when the classifier is unstable [9].

6.3.1 Classifiers with Bagging - Cross-Validation Set

Table 6.9 contains the results of each classifier using the bagging technique on the

cross-validation dataset. The ’Significant’ column states if the change of the associated

metric using bagging was statistically significant versus that of the base classifier.

Figure 6.13 and Figure 6.14 represent the performance difference for accuracy and

false positive rate respectively. The only significant change was to Naive Bayes which

had a lower accuracy using bagging (90.18%) and a lower false positive rate (5.0%). The
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Table 6.9

Classifiers with Bagging - Cross-Validation Set

Classifier Accuracy Significant Std Dev FP Rate Significant Std Dev

NaiveBayes 90.18 Yes 2.71 5 Yes 0.02
SVM 98.35 No 0.36 4.01 No 0.01
Voted Per- 80.23 No 0.04 100 No 0.00
ceptron
Nearest 98.82 No 0.30 3.46 No 0.01
Neighbor
J48 Decision 99.30 No 0.25 2.18 No 0.01
Tree

bagging method did not have any effect on VPLA. Bagging had a negligible effect on

support vector machine, nearest neighbor, and J48.

6.3.2 Classifiers with Bagging - Test Set

Table 6.10 contains the results of each classifier using the bagging technique on the

test dataset. The ’Significant’ column states if the change of the associated metric using

bagging was statistically significant versus that of the base classifier.

Figure 6.15 and Figure 6.16 represent the performance difference for accuracy and

false positive rate respectively. The changes in accuracy were similar to those of the cross-

validation dataset. Naive bayes had the only statistically significant change in accuracy

and false positive rate though the changes to false positive rate were more substantial than

when evaluated using the cross-validation dataset.
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Figure 6.13

Classifier Accuracy Change using Bagging - Cross-Validation Set

Figure 6.14

Classifier FP Rate Change using Bagging - Cross-Validation Set
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Table 6.10

Classifiers with Bagging - Test Set

Classifier Accuracy Significant FP Rate Std Dev

NaiveBayes 87.6 Yes 5.4 Yes
SVM 97.55 No 5.7 No

Voted Perceptron 84.26 No 100 No
Nearest Neighbor 98.11 No 7.8 No
J48 Decision Tree 98.4 No 3.5 No

Figure 6.15

Classifier Accuracy Change using Bagging - Test Set
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Figure 6.16

Classifier FP Rate Change using Bagging - Test Set

6.4 Memory Features versus PE Header Features

PE header features have been used in several previous works (see chapter 2) as a method

for classifying malware. Though the PE header features defined in this work are obtained

from memory, they are the same as if extracted from the file on disk. For this experiment,

the datasets were split based on the types of features into four separate datasets:

• Cross-Validation Memory

• Cross-Validation PE

• Test Memory

• Test PE
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Any feature related to the file itself was considered a PE feature for this experiment,

even if it is not extracted from the PE header. The features used to create the PE datasets,

and consequently removed from the Memory datasets, are:

• dll flag set

• entrypoint section name

• file extension is dll

• has reloc section

• is com client

• is com server

• num exports

• num imports

• PE image base

• raw virt size diff

• size of image

These were used to compare the performance of several classifiers using only memory

or PE features. As with the previous experiments, the classifiers were run against the cross-

validation datasets using ten iterations of stratified 10-fold cross-validation. For the test

sets, the classifiers used a model learned from training on the appropriate cross-validation

set.

6.4.1 Feature Comparison - Cross-Validation Set

Table 6.11 lists the accuracy and false positive rate of each classifier using the cross-

validation datasets. The ’Significant’ column refers to the statistical significance between
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Table 6.11

Memory and PE Feature Metrics - Cross-Validation Set

Classifier Mem Acc PE Acc Significant Mem FP PE FP Significant

Naive Bayes
SVM

92.40
94.54

92.29
95.89

No
Yes

18.80
22.65

8.67
6.55

Yes
Yes

Voted Per- 84.32 80.97 Yes 42.16 100.00 Yes
ceptron
IBK 98.01 94.07 Yes 4.91 24.65 Yes
J48 99.00 97.90 Yes 3.41 5.56 Yes

Figure 6.17

Memory and PE Features Accuracy - Cross-Validation Set

64



Figure 6.18

Memory and PE Features FP Rate - Cross-Validation Set

a given metric for the memory features and PE features. Figure 6.17 and Figure 6.18 show

the accuracy and false positive rate respectively.

Regarding accuracy, the only statistically significant result that favored PE features was

from the SVM algorithm that had a 95.89%. The IBK and J48 algorithms using memory

features performed the best in terms of false positive rate.

6.4.2 Feature Comparison - Test Set

Table 6.12 lists the accuracy and false positive rate of each classifier using the test

datasets. The ’Significant’ column refers to the statistical significance between a given

metric for the memory features and PE features. Figures Figure 6.19 and Figure 6.20 show

the accuracy and false positive rate respectively.
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Table 6.12

Memory and PE Feature Metrics - Test Set

Classifier Mem Acc PE Acc Significant Mem FP PE FP Significant

Naive Bayes
SVM

92.76
96.18

91.72
94.58

No
Yes

18.40
19.10

10.10
9.20

Yes
Yes

Voted Per- 89.12 84.26 Yes 46.50 100.00 Yes
ceptron
IBK 97.55 95.73 Yes 3.10 7.30 Yes
J48 98.40 96.44 Yes 2.80 7.50 Yes

Figure 6.19

Memory and PE Features Accuracy - Test Set
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Figure 6.20

Memory and PE Features FP Rate - Test Set

Using just the memory features achieved higher accuracy than any of the classifiers that

used the PE features. The results were more varied for false positive rate, but again the IBK

and J48 algorithms applied to the memory feature datasets showed the best performance.
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CHAPTER 7

ANALYSIS

This chapter presents an analysis of the experimental results to answer the research

questions.

7.1 Do malicious DLLs have distinct patterns of behavior in memory?

The results of the study presented in chapter 4 indicate that malicious DLLs do have

distinct patterns of behavior in memory. These patterns, represented as features in the

dataset, serve to distinguish between legitimate and malicious DLLs. Some of the features

identified are trivial for a malware author to adjust requiring little more than setting a flag in

the compiler. Examples of trivial features include the base address where a DLL is loaded

or the file extension used for the DLL. Other features capture more fundamental aspects of

the malware such as the names and numbers of the processes it targets and the timing of

injections.

7.2 How do different classifiers perform against the dataset?

Six classifiers were evaluated against the two datasets described in chapter 3. The Ze-

roR classifier was used as a baseline to evaluate the performance of the other five classifiers

using the feature set defined in chapter 5.
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On both datasets, cross-validation and the test set, four of the five classifiers (Naive

Bayes, Support Vector machine, Nearest Neighbor, and J48) outperformed ZeroR in terms

of both accuracy and false positive rate. The Voted Perceptron Learning Algorithm (VPLA)

produced the same results as the ZeroR method for both accuracy and false positive rate.

The J48 Decision Tree had the highest accuracy and lowest false positive rate of the tested

classifiers.

With four of the five classifiers achieving high accuracy and low false positive rates as

well as surpassing the baseline ZeroR classifier, it appears the feature set captures distin-

guishing behavior between malicious and leigitmate DLLs extracted from Windows 7 x86

memory images. If the feature set only represented noise, the results were likely to have

been more erratic.

7.3 Do correlation-based feature selection and gain ratio evaluation improve classi-
fier performance for this dataset?

Two different feature selection algorithms were applied to each of the five classifiers:

Correlation-based Feature Selection and Gain Ratio Attribute Evaluation. The ZeroR clas-

sifier was not evaluated due to the fact that the hypothesis space it searches is not affected

by a reduction in the dimensionality of the attribute space.

7.3.1 Correlation-Based Feature Selection using Best-First Search

CFS using best-first search was applied to the cross-validation dataset. It produced

a subset of seven features it considered highly correlated with the class but not highly

correlated with each other.
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Using this subset of features, the Naive Bayes classifier achieved better accuracy on

both datasets, although it still performed worse than the SVM, Nearest Neighbor, and J48

classifiers. The Naive Bayes classifier in particular suffers from redundant features in the

dataset which the CFS algorithm helps alleviate.

The VPLA had lower accuracy using CFS on both datasets, but was able to classify

instances of both classes correctly as opposed to using the entire feature set when it had a

100% false positive rate.

7.3.2 Gain Ratio Attribute Evaluation using Ranker

The Gain Ratio algorithm was used to rank the attributes in order of the gain ratio they

provided relative to the class. The top seven were chosen and the five classifiers were

evaluated using these features. Four of the seven features matched those produced by CFS.

The most significant improvement to accuracy using Gain Ratio was for the VPLA.

It achieved a 92.96% and 94.43% accuracy on the cross-validation and test sets respec-

tively. On the test set it also had a lower false positive rate than Naive Bayes and the SVM

classifiers.

7.3.3 Evaluation

For some classifiers, attribute selection offered direct improvements in performance.

With the high accuracy and low false positive rates obtained by some of the base classifiers

(SVM, Nearest Neighbor, and J48), improvements were unlikely. However, neither did

these classifiers suffer any significant losses in performance. This indicates that the feature
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space contains at least some noise and a more reliable model could be produced through

the application of proper feature selection algorithms.

The model produced by the base J48 decision tree that was evaluated on the test had

a size of 93 with 49 leaves. The model for J48 with CFS had a size of 93 with 47 leaves.

The model for J48 with the Gain Ratio feature selection method had a size 25 with 13

leaves. While it did lose nearly 4% in accuracy, its false positive rate only increased by

1%. Additionally, given the reduced complexity of a decision tree of size 25, as opposed

to 93, the model should generalize better.

7.4 Can the ensemble learning technique Bagging improve performance over an
individual classifier?

For the cross-validation dataset the Bagging technique had a small impact on both

accuracy and false positive rate. The only statistically significant change was on Naive

Bayes.

The results on the test dataset were similar for accuracy (compared to the cross-valida-

tion dataset) but more varied in regards to false positive rate. However, Naive Bayes was

again the only statistically significant change for either metric.

Bagging did not offer any significant improvement beyond the false positive rate of

Naive Bayes. However, aside from Naive Bayes, it did not significantly reduce the perfor-

mance of any of the classifiers.
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7.5 Memory and PE Feature Comparison

The datasets were divided by feature type, memory and PE, and the classifiers com-

pared against each other using the same base datasets. For the cross-validation dataset,

the SVM and Voted Perceptron classifiers performed better using PE features than mem-

ory features while IBK and J48 performed better using memory features. The accuracy of

Naive Bayes was similar but the false positive rate was significantly worse using memory

features (18.8% vs 8.67%).

For the test set, all the classifiers trained using memory features performed better than

those using PE features. The results for false positive rates were mixed with Naive Bayes

and SVM performing worse using memory features and Voted Perceptron, IBK, and J48

performing better using only memory features.

Though the ZeroR classifier was not used in these tests, its accuracy and false positive

rate would be the same as those from the base classifier accuracy as the ratio of class

values (malicious vs legitimate) did not change. None of the classifiers in this experiment

performed worse than the ZeroR classifier.

These results indicate that memory features on their own are viable for distinguishing

malicious DLLs from legitimate. However, appropriately chosen PE features can enhance

the reliability of the learned model. Contrasting the results from these experiments against

the base classifiers using the full feature set shows a marked improvement for several of

the classifiers, particularly in regards to false positive rate.
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7.6 J48 Decision Tree

In several of the experiments the J48 decision tree performed the best for both accuracy

and misclassification rate of malicious DLLs. Using the base algorithm without any modi-

fications, J48 correctly classified 2,660 of the 2,694 instances in the test dataset. Part of this

is likely due to the variety of features in the dataset. It consists of binary and multivalued

nominal attributes as well as both discrete and continuous numeric data. There are also,

as with most real datasets, missing values. J48 is capable of handling all of these types of

features, though it may benefit from discretizing the continuous attributes (load position

and init position) [27]

The J48 classifier had 15 false positives (malicious DLLs classified as legitimate) and

19 false negatives (legitimate DLLs classified as malicious) when evaluated against the test

set.

7.6.1 J48 False Positives

Table 7.1 lists the instance number, malicious DLL name, and the reasons it was

misclassified using the model generated by the base J48 algorithm trained on the cross-

validation set and evaluated against the test set. Altering any one of the values listed in the

’Reason for Misclassification’ column would result in that instance being correctly clas-

sified. Many of these instances evaded correct classification because the malware author

followed common practices for creating Windows DLLs. Most of the instances had the

standard section name that contained the entrypoint (.text), used .dll as a file extension,

and contained a .reloc section.
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Table 7.1

False Positives from Base J48 Decision Tree

Instance Malicious DLL Reason for Misclassification

147 utilman.dll entry = .text; extension is .dll
168 bvfdgqpksdmtpt.dll entry = .text; has .reloc section; extension is .dll
169 bvfdgqpksdmtpt.dll entry = .text; has .reloc section; extension is .dll
171 00000b30.tmp entry = .text; has .reloc section
207 newdotnet6 38.dll entry = .text; has .reloc section; extension is .dll
208 newdotnet6 38.dll entry = .text; has .reloc section; extension is .dll
209 newdotnet6 38.dll entry = .text; has .reloc section; extension is .dll
210 newdotnet6 38.dll entry = .text; has .reloc section; extension is .dll
211 newdotnet6 38.dll entry = .text; has .reloc section; extension is .dll
212 newdotnet6 38.dll entry = .text; has .reloc section; extension is .dll
251 IEShims.dll entry = .text; has .reloc section; extension is .dll
267 svcdlzi.dat entry = .text; has .reloc section; high CC; high AP
278 sfc my.dll entry = .text; has .reloc section; extension is .dll
311 318C.tmp mapped views ≤1
381 bootext.dll entry = .text
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7.6.2 J48 False Negatives

Table 7.2 lists the instance number, legitimate DLL name, and the associated program

of the DLL. As with many systems that seek to identify malware, anti-virus software tends

to be misclassified. 15 of the 19 (79%) false negatives were associated with an anti-virus

application. The reason these were misclassified was duedue to a variety of features so

these were not listed in the table.

Table 7.2

False Negatives from Base J48 Decision Tree

Instance Legitimate DLL Program

652 Tools.dll Spybot
674,675 snlFileFormats150.bpl Spybot
721,722 snlThirdParty150.bpl Spybot

747 7z.dll Malwarebytes
831 SDLicense.dll Spybot

851,852 SDLists.dll Spybot
1061 snlBase150.bpl Spybot

1094,1095 SDAdvancedCheckLibrary.dll Spybot
1126 DEC150.bpl Spybot
1251 SDfileScanLibrary.dll Spybot
2473 focuskiller.dll PyCharm

2484,2485 NppExport.dll Notepad++
2588 sacore.dll McAfee AV
2637 bass.dll MyRealGames.com\Space Bubbles
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CHAPTER 8

CONCLUSIONS

The goal of this dissertation was to design and evaluate a feature set created from

DLLs in Windows 7 x86 memory images. To accomplish this, malicious DLLs in memory

images were studied to identify behavioral patterns. These patterns, or characteristics,

were used to develop a feature set that could be extracted from the DLLs in a memory

image. Features were extracted directly from several data structures in memory or created

by applying different transformations to features.

Cuckoo Sandbox was used to automatically create memory images from malware sam-

ples obtained from VirusShare. Volatility was used to build a feature extractor which was

then applied to the created memory images. Ground truth for each set of features asso-

ciated with a given DLL was determined using a whitelist of legitimate files built from a

clean image of the analysis virtual machine.

Two datasets were created using this technique. The legitimate data was generated

manually from different systems run Windows 7 x86. Several third-party applications

existed in memory at the time of capture. The first dataset was the cross-validation dataset.

Each classifier evaluated using 10 iterations of stratified 10-fold cross-validation on this

dataset. The cross-validation dataset consisted of 12,066 data points with 2,385 (19.77%)
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being malicious and the remaining 9,681 (80.23%) legitimate. The second dataset was an

independent test set. The model was learned from the cross-validation dataset and then

evaluated against the test set. The test set consisted of 2,694 data points with 424 (15.74%)

malicious and 2,270 (84.26%) being legitimate.

The feature set was empirically evaluated using six machine learning classification

algorithms. Each classifier was applied to both datasets in several experiments to determine

if the features captured meaningful behaviors of the DLLs and could be used to learn a

model capable of acceptable performance on new data. The ZeroR method was used as the

performance baseline for comparison against five classifiers with regards to accuracy and

false positive rate. Performance on each dataset was similar in each experiment.

The hypothesis for this dissertation is

A machine learning model can be learned from features extracted from
Windows 7 memory images and applied to successfully classify malicious
injected DLLs in Windows 7 memory images.

The empirical evidence obtained from the experiments in this dissertation support the

hypothesis. We have shown that the base classification algorithms, without applying any al-

gorithm optimizations or feature engineering, significantly outperform the ZeroR method.

The most useful features were identified using feature selection. These included the

base address of the DLL in memory, the name of its entrypoint section, the file extension

used, the path where it was loaded, and the presence of a .reloc section in the PE header.

Across several of the experiments, the J48 classifier consistenly had the best perfor-

mance in terms of accuracy and false positive rate. We believe this is due to its ability

to handle various types of data as well as its built in feature selection, Gain Ratio. The
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base J48 classifier in Weka, without the addition of parameter tuning, feature selection, or

ensemble learning achieved a 99.25% accuracy (2.45% FP rate) on the cross-validation set

and 98.74% accuracy (3.5% FP rate) on the test set.

A machine learning classifier can be trained using features extracted from a Windows

7 x86 memory image to classify DLLs as legitimate or malicious.

8.1 Publication Plan

The analysis in chapter 4, preliminary results, is published in

• D. Glendowne, C. Miller, W. McGrew, and D. Dampier, Characteristics of Mali-
cious DLLs in Windows Memory, Advances in Digital Forensics XI. Springer Berlin
Heidelberg, 2015.

The experimental results and analysis of the machine learning algorithms on the feature

set will be submitted to the Journal of Digital Forensics, Security, and Law (JDFSL).

8.2 Contributions

This dissertation makes the following contributions.

• Infected memory images

• Datasets

• DLL characteristics

• Experimental results

• The machine learning model

8.2.1 New Infected Memory Images

The number of available Windows memory images publicly available is limited. The

largest collection is hosted or linked to by the Volatility Foundation [53], and it contains
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less than one hundred images. Many of the images do not contain malware and the majority

of the samples are created from Windows XP. With the end of Windows XP support from

Microsoft, it is expected that the majority of the remaining Windows XP machines will

steadily phase out. There is a strong need for memory images to enable tool development,

testing, education, and research in memory forensics.

In 2011, Vidas [60] created a corpus of Windows memory images for these same rea-

sons. Vidas originally hosted the corpus with NIST agreeing to take over the hosting in

the future. Neither the website supplied by the author nor the NIST Computer Forensics

Reference Data Sets (CFReDS) [42] contain any mention of the corpus.

So far, as a result of this research, over 40,000 Windows 7 memory images have been

generated. Additionally, there is some limited analysis of the memory images indicating

the type or form of the malware within the image.

8.2.2 Datasets

As with memory images, there is a need for datasets created from malware for re-

searchers to experiment on. There are no datasets currently available that were constructed

from memory images. The two datasets created during the course of this research will be

made available for evaluation by the research community.

8.2.3 DLL Characteristics

The preliminary results of this research have identified several common characteristics

of malicious DLLs. These characteristics establish that a pattern exist among malicious

DLLs and form the basis of the feature set being constructed in this research. They may
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also be used as heuristics for forensics examiners to leverage during an investigation or

incorporated into a behavioral detection system.

8.2.4 Experimental Results

This research evaluated several classification algorithms against two datasets using fea-

tures extracted from Windows memory images. The results of these experiments provide a

baseline for comparison against in future works.

8.3 Volatility Plugins

The software used for extracting features from memory images will be incorporated

into a Volatility plugin. This will enable easy use for practitioners through a widely avail-

able and well supported memory forensics platform. A separate Volatility plugin will im-

plement the classification algorithm and a model derived from a large set of training data.

We foresee two uses of these plugins:

• Aiding forensic examiners during an investigation

• Automating detection of malware in memory on live systems

8.3.1 Aiding Forensic Examiners

Indicators of compromise (IOCs) are artifacts used by forensic examiners and inci-

dent responders to identify systems that have been infected or compromised. These may

originate from an intrusion detection system (IDS), an antivirus alert, or from forensic ex-

amination of a separate system. IOCs may be unique strings, IP addresses, domain names,

or any other system artifact uncovered during a forensic examination. These provide the
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examiner leads when a system is being investigated allowing them to reduce noise and

focus their search.

When an examiner lacks IOCs, the analysis is less focused and transitions to a search

for anomalies within the system. The classification model produced by this research offers

the potential to identify leads for the examiner automatically. The necessary features can

be extracted from a memory image and processed by the classifier prior to the examiner

beginning the analysis. This is the reason that minimizing false negatives is a priority for

this model. If the model determines DLLs within the memory image are malicious, it is

preferable for the analyst to further investigate these DLLs and prove the model wrong

than to miss them altogether because the model classified them as legitimate.

8.3.2 Automated Detection

The classification model could be applied as an additional line of defense for a net-

work as a host based monitoring system. Applying the model to a given system simply

requires extracting the features from memory. The features could also be extracted from

live memory in real time. Gionta et. al [19] designed an architecture that enables the ef-

ficient acquisition and scanning of memory in massive virtual environments. During the

course of this scanning, the appropriate features could be extracted and supplied to the

classifier to determine the presence of malicious DLLs.

8.4 Future Work

These are areas we see as logical next steps in this research.
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8.4.1 Feature Set

A direct step from this work is improving the feature set described in this work. We

believe there are additional features in memory that can be extracted that help distinguish

between malicious and legitimate DLLs. We did not use any of the libraries imported by

a DLL or specific API calls. Additionally, there are ways of determining, for some DLLs,

if the DLL belong in that process. These include examining the import address table of

the all the loaded modules and scanning for Call/JMP instructions that point to the virtual

address range occupied by a given DLL. This will not account for all the DLLs loaded in a

given process, but will affect some of them.

8.4.2 Other Types of Malware in Memory

In addition to DLLs, malware may be implemented as shellcode, a process, or a kernel

driver in Windows. Each of these areas presents different structures, and subsequently

different features, that can be used for classifying malware in Windows memory. For

instance, there any many objects that map directly back to a process (i.e. they are associated

with a PID) that may be suitable as features in classification.
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Table A.1

Legitimate Third-Party Software

Software Version

7-Zip 9.2
Adobe PDF Reader XI 11.0.10

Audacity 2.0.6
Dropbox 3.2.6

GIMP 2.8.14
Google Chrome 40.0.2214.115

Google Drive 1.19.8406.6504
HandBrake 0.10.0

Itunes 12.1.1.4
Malware Bytes 2.0.4.1028

Microsoft Access 2003
Microsoft Excel 2003

Microsoft Powerpoint 2003
Microsoft Word 2003
Mozilla Firefox 35.0.1

Notepad++ 6.7.4
PhotoScape N/A

PyCharm 4
Skype 7.1.105

Spybot 2.4.40
Tortoise SVN (32-bit) 1.7.24257

Virtual Clone Drive 5.4.7.0
VLC Media Player 2.1.5

89



APPENDIX B

FEATURE EXTRACTION SOURCE CODE

90



B.1 Classes for Extracting DLL Features from Windows 7 x86 Memory Images

# W r i t t e n and t e s t e d u s i n g Python 2 . 7 and V o l a t i l i t y 2 . 4

i m p o r t v o l a t i l i t y . r e g i s t r y as r e g i s t r y

i m p o r t v o l a t i l i t y . con f a s con f

i m p o r t v o l a t i l i t y . commands as commands

i m p o r t v o l a t i l i t y . a d d r s p a c e as a d d r s p a c e

i m p o r t v o l a t i l i t y . p l u g i n s . kdbgscan as kdbgscan

i m p o r t v o l a t i l i t y . p l u g i n s . t askmods as taskmods

i m p o r t v o l a t i l i t y . u t i l s a s u t i l s

from v o l a t i l i t y . p l u g i n s . malware . m a l f i n d i m p o r t LdrModules

as LdrModules

i m p o r t v o l a t i l i t y . p l u g i n s . v a d i n f o as v a d i n f o

i m p o r t v o l a t i l i t y . o b j a s o b j

i m p o r t csv

c l a s s DLL:

””” O b j e c t r e p r e s e n t i n g DLL f e a t u r e s e x t r a c t e d from

a memory image ”””

d e f i n i t ( s e l f ) : # , p r o c e s s , b a s e a d d r e s s ,

modu les tup , p o s i t i o n s t u p , vad node ) :

s e l f . f e a t u r e s = {} 
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d e f columns ( s e l f ) :

r e t u r n s o r t e d ( s e l f . f e a t u r e s . keys ( ) , key=lambda

k : k . lower ( ) )

c l a s s DLLList :

””” C l a s s f o r s t o r i n g l i s t o f DLL o b j e c t s .

Can w r i t e l i s t o u t t o f i l e a s csv .

E n s u r e s a l l s t o r e d DLLs have same f e a t u r e s ”””

d e f i n i t ( s e l f ) :

s e l f . d l i s t = [ ]

s e l f . column names = None

#Append t o i n t e r n a l l i s t

# Assure added DLL has t h e same column names as t h e

o t h e r d l l s

d e f append ( s e l f , d l l ) :

i f n o t s e l f . column names :

s e l f . column names = d l l . columns ( )

f o r c o l i n s e l f . column names :
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i f c o l n o t i n d l l . columns ( ) :

p r i n t ” Could n o t add DLL t o l i s t . Mis s ing

column name : { 0} ” . f o r m a t ( c o l )

r e t u r n

s e l f . d l i s t . append ( d l l )

d e f w r i t e t o c s v ( s e l f , f i l e n a m e ) :

w i th open ( f i l e n a m e , ’wb ’ ) a s c s v f i l e :

c s v w r i t e r = csv . D i c t W r i t e r ( c s v f i l e , d i a l e c t = ’

e x c e l ’ , q u o t i n g = csv .QUOTE NONNUMERIC,

f i e l d n a m e s = s e l f . column names )

c s v w r i t e r . w r i t e h e a d e r ( )

f o r d l l i n s e l f . d l i s t :

c s v w r i t e r . w r i t e r o w ( d l l . f e a t u r e s )

c l a s s vae :

””” E x t r a c t s s p e c i f i e d f e a t u r e s ”””

93



d e f i n i t ( s e l f , imagepa th , p r o f i l e , kdbg=None ) :

s e l f . imagename = imagepa th . s p l i t ( ’\\ ’ ) [�1]

r e g i s t r y . P l u g i n I m p o r t e r ( )

s e l f . c o n f i g = con f . ConfObjec t ( )

s e l f . c o n f i g . PROFILE = p r o f i l e

s e l f . c o n f i g . LOCATION = ” f i l e : / / ” + imagepa th

s e l f . cmds = r e g i s t r y . g e t p l u g i n c l a s s e s ( commands .

Command , lower =True )

r e g i s t r y . r e g i s t e r g l o b a l o p t i o n s ( s e l f . c o n f i g ,

commands . Command )

r e g i s t r y . r e g i s t e r g l o b a l o p t i o n s ( s e l f . c o n f i g ,

a d d r s p a c e . BaseAddressSpace )

d e f b u i l d d l l d i c t s ( s e l f , p r o c e s s ) :

””” C o n s t r u c t d i c t i o n a r i e s o f LDR DATA TABLE ENTRYs

from t h e t h r e e doub ly l i n k e d l i s t s .

Key : DLL base a d d r e s s

Value : ( module , module ’ s p o s i t i o n i n l i s t ) ”””
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l o a d p o s = [ mod f o r mod i n p r o c e s s . g e t l o a d m o d u l e s

( ) ]

i n i t p o s = [ mod f o r mod i n p r o c e s s . g e t i n i t m o d u l e s

( ) ]

mempos = [ mod f o r mod i n p r o c e s s . get mem modules ( ) ]

c n t = 1 . 0

i n l o a d o r d e r = {} 

f o r mod i n l o a d p o s :

i n l o a d o r d e r [ mod . Dl lBase . v ( ) ] = ( mod , ( c n t / l e n

( l o a d p o s ) ) ∗ 100)

c n t += 1

c n t = 1 . 0

i n i n i t o r d e r = {} 

f o r mod i n i n i t p o s :

i n i n i t o r d e r [ mod . Dl lBase . v ( ) ] = ( mod , ( c n t / l e n

( i n i t p o s ) ) ∗ 100)

c n t += 1

c n t = 1 . 0
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inmemorder = {} 

f o r mod i n mempos :

inmemorder [ mod . Dl lBase . v ( ) ] = ( mod , ( c n t / l e n (

mempos ) ) ∗ 100)

c n t += 1

r e t u r n i n l o a d o r d e r , i n i n i t o r d e r , inmemorder

d e f e x t r a c t d l l f e a t u r e s ( s e l f ) :

””” E x t r a c t s f e a t u r e s from each DLL”””

#Code t a k e n and m o d i f i e d from V o l a t i l i t y ’ s m a l f i n d .

LdrModules

f o r p r o c e s s i n LdrModules ( s e l f . c o n f i g ) . c a l c u l a t e ( ) :

i n l o a d o r d e r , i n i n i t o r d e r , inmemorder = s e l f .

b u i l d d l l d i c t s ( p r o c e s s )

m a p p e d f i l e s = {} 

f o r vad , a d d r e s s s p a c e i n p r o c e s s . g e t v a d s (

v a d f i l t e r = p r o c e s s . m a p p e d f i l e f i l t e r ) :

# Note t h i s i s a l o t f a s t e r t h a n a c q u i r i n g

t h e f u l l
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# vad r e g i o n and t h e n c h e c k i n g t h e f i r s t two

b y t e s .

# I f malware o v e r w r i t e s t h e PE h e a d e r ( e . g .

C o r e f l o o d ) i t w i l l be s k i p p e d

i f o b j . O b j e c t ( ” IMAGE DOS HEADER” , o f f s e t =

vad . S t a r t , vm= a d d r e s s s p a c e ) . e mag ic != 0

x5A4D :

c o n t i n u e

# S t o r i n g VAD node f o r f e a t u r e e x t r a c t i o n

m a p p e d f i l e s [ i n t ( vad . S t a r t ) ] = vad

f o r b a s e a d d r e s s i n m a p p e d f i l e s . keys ( ) :

# Does t h e base a d d r e s s e x i s t i n t h e PEB

DLL l i s t s ?

load mod , l o a d p o s = i n l o a d o r d e r . g e t (

b a s e a d d r e s s , None ) o r ( None , None )

i n i t m o d , i n i t p o s = i n i n i t o r d e r . g e t (

b a s e a d d r e s s , None ) o r ( None , None )
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mem mod , mem pos = inmemorder . g e t (

b a s e a d d r e s s , None ) o r ( None , None )

d l l = DLL ( )

d l l . f e a t u r e s [ ’ malware name ’ ] = s e l f .

imagename

d l l . f e a t u r e s [ ’ p rocess name ’ ] = s t r ( p r o c e s s .

ImageFileName ) i f p r o c e s s e l s e ’? ’

d l l . f e a t u r e s [ ’ p r o c e s s i d ’ ] = s t r ( i n t (

p r o c e s s . U n i q u e P r o c e s s I d ) ) i f p r o c e s s e l s e

’? ’

d l l . f e a t u r e s [ ’ d l l b a s e ’ ] = ”{ 0 : # x } ” . f o r m a t (

b a s e a d d r e s s ) i f b a s e a d d r e s s e l s e ’? ’

d l l . f e a t u r e s [ ’ l o a d c o u n t ’ ] = s t r ( hex (

load mod . LoadCount ) ) . r s t r i p ( ’ L ’ ) i f

load mod e l s e ’? ’

d l l . f e a t u r e s [ ’ l o a d p o s i t i o n ’ ] = l o a d p o s i f

l o a d p o s e l s e ’? ’

d l l . f e a t u r e s [ ’ i n i t p o s i t i o n ’ ] = i n i t p o s i f

i n i t p o s e l s e ’? ’
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d l l . f e a t u r e s [ ’ mem pos i t ion ’ ] = mem pos i f

mem pos e l s e ’? ’

# These f e a t u r e s can be e x t r a c t e d from any

LDR DATA TABLE ENTRY

i f load mod :

l o a d t i m e = i n t ( load mod . LoadTime )

i m a g e s i z e = s t r ( load mod . SizeOfImage )

e l i f i n i t m o d :

l o a d t i m e = i n t ( i n i t m o d . LoadTime )

i m a g e s i z e = s t r ( load mod . SizeOfImage )

e l i f mem mod :

l o a d t i m e = i n t ( mem mod . LoadTime )

i m a g e s i z e = s t r ( load mod . SizeOfImage )

e l s e :

l o a d t i m e = None

i m a g e s i z e = None

d l l . f e a t u r e s [ ’ l o a d t i m e ’ ] = s t r ( l o a d t i m e )

i f l o a d t i m e e l s e ’? ’
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d l l . f e a t u r e s [ ’ s i z e o f i m a g e ’ ] = i m a g e s i z e

i f i m a g e s i z e e l s e ’? ’

d l l . f e a t u r e s [ ’ d l l i n l o a d ’ ] = s t r ( n o t

load mod i s None )

d l l . f e a t u r e s [ ’ d l l i n i n i t ’ ] = s t r ( n o t

i n i t m o d i s None )

d l l . f e a t u r e s [ ’ d l l i n mem ’ ] = s t r ( n o t

mem mod i s None )

d l l . f e a t u r e s [ ’ d l l m a p p e d p a t h ’ ] = s t r (

m a p p e d f i l e s [ b a s e a d d r e s s ] . F i l e O b j e c t .

Fi leName ) i f m a p p e d f i l e s e l s e ’? ’

d l l . f e a t u r e s [ ’ l o a d f u l l d l l n a m e ’ ] = s t r (

load mod . Ful lDl lName ) i f load mod e l s e

’? ’

d l l . f e a t u r e s [ ’ i n i t f u l l d l l n a m e ’ ] = s t r (

i n i t m o d . Ful lDl lName ) i f i n i t m o d e l s e

’? ’

d l l . f e a t u r e s [ ’ m e m f u l l d l l n a m e ’ ] = s t r (

mem mod . Ful lDl lName ) i f mem mod e l s e ’? ’
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# e x p o r t s = s e l f . g e t e x p o r t s ( load mod ,

i n i t m o d , mem mod )

# d l l . f e a t u r e s [ ’ num expor t s ’ ] = s t r ( l e n (

e x p o r t s ) ) i f e x p o r t s e l s e ’? ’

# i m p o r t s = s e l f . g e t i m p o r t s ( load mod ,

i n i t m o d , mem mod )

# d l l . f e a t u r e s [ ’ num impor ts ’ ] = s t r ( l e n (

i m p o r t s ) ) i f i m p o r t s e l s e ’? ’

# i sComServer = s t r ( ’ d l l g e t c l a s s o b j e c t ’ i n

e x p o r t s and ’ d l l canun loadnow ’ i n e x p o r t s )

i f e x p o r t s e l s e None

# d l l . f e a t u r e s [ ’ i s c o m s e r v e r ’ ] =

i sComServer i f i sComServer e l s e ’? ’

# i s C o m C l i e n t = s t r ( ’ o l e i n i t i a l i z e ’ i n

i m p o r t s o r ’ c o i n i t i a l i z e e x ’ i n i m p o r t s )

i f i m p o r t s e l s e None

# d l l . f e a t u r e s [ ’ i s c o m c l i e n t ’ ] =

i s C o m C l i e n t i f i s C o m C l i e n t e l s e ’? ’
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vad = m a p p e d f i l e s [ b a s e a d d r e s s ]

d l l . f e a t u r e s [ ’ v a d n u m s e c t i o n r e f s ’ ] = s t r (

vad . C o n t r o l A r e a . NumberOfSec t i onRefe r ences

) i f vad e l s e ’? ’

d l l . f e a t u r e s [ ’ v a d t y p e ’ ] = s t r ( v a d i n f o .

MI VAD TYPE . g e t ( vad . VadFlags . VadType . v ( ) ,

hex ( vad . VadFlags . VadType ) ) ) i f vad e l s e

’? ’

d l l . f e a t u r e s [ ’ vad num mapped views ’ ] = s t r (

vad . C o n t r o l A r e a . NumberOfMappedViews ) i f

vad e l s e ’? ’

d l l . f e a t u r e s [ ’ v a d p r o t e c t i o n ’ ] = s t r (

v a d i n f o . PROTECT FLAGS . g e t ( vad . VadFlags .

P r o t e c t i o n . v ( ) , hex ( vad . VadFlags .

P r o t e c t i o n ) ) ) i f vad e l s e ’? ’

d l l . f e a t u r e s [ ’ i s m e m o r y p r i v a t e ’ ] = s t r ( ’

Pr ivateMemory ’ i n s t r ( vad . VadFlags ) ) i f

vad e l s e ’? ’
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c o n t r o l f l a g s = s t r ( vad . C o n t r o l A r e a . u . F l a g s

) i f vad e l s e None

d l l . f e a t u r e s [ ’ v a d c f a c c e s s e d ’ ] = s t r ( ’

Accessed ’ i n c o n t r o l f l a g s ) i f vad e l s e

’? ’

d l l . f e a t u r e s [ ’ v a d c f f i l e ’ ] = s t r ( ’ F i l e ’ i n

c o n t r o l f l a g s ) i f vad e l s e ’? ’

d l l . f e a t u r e s [ ’ v a d c f i m a g e ’ ] = s t r ( ’ Image ’

i n c o n t r o l f l a g s ) i f vad e l s e ’? ’

d l l . f e a t u r e s [ ’ vad commi t cha rge ’ ] = i n t ( vad

. VadFlags . CommitCharge ) i f vad e l s e ’? ’

d l l . f e a t u r e s [ ’ v a d a l l o c a t e d p a g e s ’ ] = ( ( vad

. End � vad . S t a r t + 1 ) / 4096) i f vad e l s e

’? ’

d l l . f e a t u r e s [ ’ v i r t u a l a d d r e s s ’ ] = s t r ( hex (

vad . S t a r t ) ) . r s t r i p ( ’ L ’ ) i f vad e l s e ’? ’

d l l . f e a t u r e s [ ’ a l l c o n t r o l f l a g s ’ ] = s t r (

c o n t r o l f l a g s ) i f vad e l s e ’? ’

# s e l f . g e t p e f e a t u r e s ( b a s e a d d r e s s , p r o c e s s

. g e t p r o c e s s a d d r e s s s p a c e ( ) , d l l )
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y i e l d d l l

#Check f o r t h e f i r s t t h r e e doub ly l i n k e d l i s t s o f

LDR DATA TABLE ENTRY s t r u c t u r e s

# R e t u r n t h e l i s t o f e x p o r t e d f u n c t i o n s

d e f g e t e x p o r t s ( s e l f , load , i n i t , mem) :

e x p o r t e d f u n c t i o n s = [ ]

i f l o a d :

f o r o r d i n a l , f u n c t i o n , name i n l o a d . e x p o r t s ( ) :

e x p o r t e d f u n c t i o n s . append ( s t r ( name i f name

e l s e o r d i n a l ) . l ower ( ) )

r e t u r n e x p o r t e d f u n c t i o n s

i f i n i t :

f o r o r d i n a l , f u n c t i o n , name i n i n i t . e x p o r t s ( ) :
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e x p o r t e d f u n c t i o n s . append ( s t r ( name i f name

e l s e o r d i n a l ) . l ower ( ) )

r e t u r n e x p o r t e d f u n c t i o n s

i f mem:

f o r o r d i n a l , f u n c t i o n , name i n mem. e x p o r t s ( ) :

e x p o r t e d f u n c t i o n s . append ( s t r ( name i f name

e l s e o r d i n a l ) . l ower ( ) )

r e t u r n e x p o r t e d f u n c t i o n s

r e t u r n None

d e f g e t p e f e a t u r e s ( s e l f , ba seadd r , a d d r s p a c e , d l l ) :

t r y :

p e o b j = o b j . O b j e c t ( ” IMAGE DOS HEADER” , o f f s e t =

baseadd r , vm= a d d r s p a c e )

n t h e a d e r = p e o b j . g e t n t h e a d e r ( )

e x c e p t E x c e p t i o n as ex :

d l l . f e a t u r e s [ ’ h a s r e l o c s e c t i o n ’ ] = ’? ’

d l l . f e a t u r e s [ ’ e n t r y p o i n t s e c t i o n n a m e ’ ] = ’? ’

d l l . f e a t u r e s [ ’ e n t r y p o i n t v i r t u a l s i z e ’ ] = ’? ’

d l l . f e a t u r e s [ ’ e n t r y p o i n t r a w s i z e ’ ] = ’? ’
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d l l . f e a t u r e s [ ’ d l l f l a g s e t ’ ] = ’? ’

d l l . f e a t u r e s [ ’ PE image base ’ ] = ’? ’

r e t u r n

i f p e o b j and n t h e a d e r :

t r y :

d l l . f e a t u r e s [ ’ h a s r e l o c s e c t i o n ’ ] = s t r (

s e l f . c h e c k r e l o c s e c t i o n ( n t h e a d e r ) )

e x c e p t E x c e p t i o n as ex :

p r i n t ” E x c e p t i o n c h e c k i n g f o r . r e l o c : { 0} ” .

f o r m a t ( ex . message )

d l l . f e a t u r e s [ ’ h a s r e l o c s e c t i o n ’ ] = ’? ’

t r y :

e n t r y p o i n t , v i r t s i z e , r a w s i z e = s e l f .

g e t e n t r y p o i n t s e c t i o n ( n t h e a d e r )

d l l . f e a t u r e s [ ’ e n t r y p o i n t s e c t i o n n a m e ’ ] =

s t r ( e n t r y p o i n t )

d l l . f e a t u r e s [ ’ e n t r y p o i n t v i r t u a l s i z e ’ ] =

s t r ( v i r t s i z e )
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d l l . f e a t u r e s [ ’ e n t r y p o i n t r a w s i z e ’ ] = s t r (

r a w s i z e )

e x c e p t E x c e p t i o n as ex :

” E x c e p t i o n g e t t i n g e n t r y p o i n t s e c t i o n :

{ 0} ” . f o r m a t ( ex . message )

d l l . f e a t u r e s [ ’ e n t r y p o i n t s e c t i o n n a m e ’ ] =

’? ’

d l l . f e a t u r e s s [ ’ e n t r y p o i n t v i r t u a l s i z e ’ ] =

’? ’

d l l . f e a t u r e s [ ’ e n t r y p o i n t r a w s i z e ’ ] = ’? ’

t r y :

d l l . f e a t u r e s [ ’ d l l f l a g s e t ’ ] = s t r ( s e l f .

c h e c k d l l f l a g ( n t h e a d e r ) )

e x c e p t E x c e p t i o n as ex :

p r i n t ” E x c e p t i o n c h e c k i n g d l l f l a g : { 0} ” .

f o r m a t ( ex . message )

d l l . f e a t u r e s [ ’ d l l f l a g s e t ’ ] = ’? ’

t r y :
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d l l . f e a t u r e s [ ’ PE image base ’ ] = s e l f .

g e t i m a g e b a s e ( n t h e a d e r )

e x c e p t E x c e p t i o n as ex :

p r i n t ” E x c e p t i o n g e t t i n g image base : { 0} ” .

f o r m a t ( ex . message )

d l l . f e a t u r e s [ ’ PE image base ’ ] = ’? ’

e l s e :

d l l . f e a t u r e s [ ’ h a s r e l o c s e c t i o n ’ ] = ’? ’

d l l . f e a t u r e s [ ’ e n t r y p o i n t s e c t i o n n a m e ’ ] = ’? ’

d l l . f e a t u r e s [ ’ e n t r y p o i n t v i r t u a l s i z e ’ ] = ’? ’

d l l . f e a t u r e s [ ’ e n t r y p o i n t r a w s i z e ’ ] = ’? ’

d l l . f e a t u r e s [ ’ d l l f l a g s e t ’ ] = ’? ’

d l l . f e a t u r e s [ ’ PE image base ’ ] = ’? ’

#Check i f t h e module c o n t a i n s a . r e l o c s e c t i o n . True i f

i t does , F a l s e i f n o t

d e f c h e c k r e l o c s e c t i o n ( s e l f , n t h e a d e r ) :

f o r s e c i n n t h e a d e r . g e t s e c t i o n s ( ) :
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i f s e c . Name . lower ( ) == ’ . r e l o c ’ :

r e t u r n True

r e t u r n F a l s e

# Find t h e e n t r y p o i n t f o r t h e module and r e t u r n t h e

s e c t i o n c o n t a i n i n g i t

d e f g e t e n t r y p o i n t s e c t i o n ( s e l f , n t h e a d e r ) :

e n t r y p o i n t = i n t ( n t h e a d e r . O p t i o n a l H e a d e r .

A d d r e s s O f E n t r y P o i n t ) i f n t h e a d e r . O p t i o n a l H e a d e r

e l s e None

i f e n t r y p o i n t :

f o r s e c i n n t h e a d e r . g e t s e c t i o n s ( ) :

i f e n t r y p o i n t >= i n t ( s e c . V i r t u a l A d d r e s s )

and e n t r y p o i n t <= ( i n t ( s e c . V i r t u a l A d d r e s s

) + i n t ( s e c . Misc . V i r t u a l S i z e ) ) :

r e t u r n s e c . Name , s e c . Misc . V i r t u a l S i z e ,

s e c . SizeOfRawData

r e t u r n ’ ? ’ , ’ ? ’ , ’ ? ’
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#Check i f t h e module i s has t h e DLL f l a g s e t i n t h e pe

h e a d e r . True i f i t does , F a l s e i f n o t

d e f c h e c k d l l f l a g ( s e l f , n t h e a d e r ) :

i f n t h e a d e r . F i l e H e a d e r :

i f n t h e a d e r . F i l e H e a d e r . C h a r a c t e r i s t i c s & 0 x2000

== 0 :

r e t u r n F a l s e

e l s e :

r e t u r n True

#A f a s t e r way t o g e t t h e number o f e x p o r t s t h e a c t u a l

e x p o r t e d f u n c t i o n s a r e n o t n e c e s s a r y

d e f g e t n u m e x p o r t s ( s e l f , n t h e a d e r , d l l b a s e , a d d r s p a c e

) :

i f n t h e a d e r :

d a t a d i r = n t h e a d e r . O p t i o n a l H e a d e r .

D a t a D i r e c t o r y [ 0 ]

# i n v a l i d d a t a d i r e c t o r y ; e f f e c t i v e l y no e x p o r t

d i r e c t o r y e x i s t s

i f d a t a d i r . V i r t u a l A d d r e s s == 0 or d a t a d i r .

S i z e == 0 :
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r e t u r n ’? ’

# v a l u e s do n o t make s e n s e ; e f f e c t i v e l y no

e x p o r t d i r e c t o r y e x i s t s

i f d a t a d i r . V i r t u a l A d d r e s s + d a t a d i r . S i z e > 

n t h e a d e r . O p t i o n a l H e a d e r . S izeOfImage :

r e t u r n ’? ’

e x p d i r = o b j . O b j e c t ( ’ IMAGE EXPORT DIRECTORY ’ ,

o f f s e t = d l l b a s e + d a t a d i r

. V i r t u a l A d d r e s s ,

vm = a d d r s p a c e )

i f e x p d i r . v a l i d ( n t h e a d e r ) :

r e t u r n i n t ( e x p d i r . NumberOfFunct ions )

r e t u r n ’? ’

d e f g e t i m p o r t s ( s e l f , load , i n i t , mem) :

i m p o r t e d f u n c t i o n s = [ ]

i f l o a d :
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f o r , o r d i n a l , f u n c t i o n , name i n l o a d . i m p o r t s

( ) :

i m p o r t e d f u n c t i o n s . append ( s t r ( name i f name

r e t u r n

i f i n i t :

e l s e o r d i n a l ) . l ower ( ) )

i m p o r t e d f u n c t i o n s

f o r

( )

,

:

o r d i n a l , f u n c t i o n , name i n i n i t . i m p o r t s

i m p o r t e d f u n c t i o n s . append ( s t r ( name i f name

e l s e o r d i n a l ) . l ower ( ) )

r e t u r n i m p o r t e d f u n c t i o n s

i f mem:

f o r , o r d i n a l , f u n c t i o n , name i n mem. i m p o r t s ( )

:

i m p o r t e d f u n c t i o n s . append ( s t r ( name i f name

e l s e o r d i n a l ) . l ower ( ) )

r e t u r n i m p o r t e d f u n c t i o n s

r e t u r n None

d e f g e t i m a g e b a s e ( s e l f , n t h e a d e r ) :

i f n t h e a d e r . O p t i o n a l H e a d e r :
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r e t u r n s t r ( hex ( n t h e a d e r . O p t i o n a l H e a d e r .

ImageBase ) ) . r s t r i p ( ’ L ’ )

i f n a m e == ” m a i n ” :

e x t r a c t o r = vae ( ’ Z :\\ Malware Samples \\Memory Samples \\ 

i n j e c t e d w i n 7 . vmem’ , ’ Win7SP1x86 ’ )

d l = DLLList ( )

f o r d l l i n e x t r a c t o r . e x t r a c t d l l f e a t u r e s ( ) :

d l . append ( d l l )

d l . w r i t e t o c s v ( ’ Z :\\ P r o j e c t s \\ D i s s e r t a t i o n \\ S o f t w a r e

f o r Append ices \\ csv . csv ’ )
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C.1 Python Code for Preprocessing Dataset

i m p o r t csv

i m p o r t os

i m p o r t c o l l e c t i o n s

i m p o r t s y s

c l a s s P r e P r o c e s s e r ( ) :

d e f i n i t ( s e l f , i n p u t f i l e n a m e , o u t p u t f i l e n a m e ,

columns ) :

s e l f . i n p u t c s v f i l e n a m e = i n p u t f i l e n a m e

s e l f . o u t p u t c s v f i l e n a m e = o u t p u t f i l e n a m e

s e l f . c s v h e a d e r s = None

s e l f . c s v r o w s = None

s e l f . c o l u m n s t o r e m o v e = columns

d e f p r o c e s s ( s e l f ) :

w i th open ( s e l f . i n p u t c s v f i l e n a m e , ” rb ” ) a s

c s v f i l e :
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c s v r e a d e r = csv . D i c t R e a d e r ( c s v f i l e , d i a l e c t = ’

e x c e l ’ , q u o t i n g = csv .QUOTE NONNUMERIC)

s e l f . c s v h e a d e r s = c s v r e a d e r . f i e l d n a m e s

i f n o t s e l f . c s v h e a d e r s o r s e l f . c s v h e a d e r s ==

[ ] :

r e t u r n F a l s e

s e l f . c s v r o w s = [ row f o r row i n c s v r e a d e r ]

i f n o t s e l f . c s v r o w s or l e n ( s e l f . c s v r o w s ) ==

0 :

r e t u r n F a l s e

s e l f . t o t a l e n t r i e s = l e n ( s e l f . c s v r o w s )

f o r row i n s e l f . c s v r o w s :

s e l f . a d d r a w v i r t s i z e d i f f ( row )

s e l f . a d d l o a d p a t h i s t e m p ( row )

s e l f . a d d f i l e e x t e n s i o n i s d l l ( row )
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s e l f . a d d i s d k o m p r e s e n t ( row )

s e l f . a d d v a d p a t h l d r p a t h d i f f e r ( row )

s e l f . c h a n g e d l l b a s e t o T F ( row )

s e l f . c h a n g e e n t r y p o i n t t o T F ( row )

s e l f . c h a n g e l o a d c o u n t t o i n t ( row )

s e l f . c h a n g e P E i m a g e b a s e t o T F ( row )

s e l f . c h a n g e p r o c e s s n a m e ( row )

h e a d e r s t o a d d = [ ’ l o a d p a t h i s t e m p ’ , ’

f i l e e x t e n s i o n i s d l l ’ , ’ i s d k o m p r e s e n t ’ , ’

v a d p a t h l d r p a t h d i f f e r ’ , ’

r a w v i r t s i z e d i f f ’ ]

f o r h e a d e r i n h e a d e r s t o a d d :

i f h e a d e r n o t i n s e l f . c s v h e a d e r s :

s e l f . c s v h e a d e r s . i n s e r t ( 0 , h e a d e r )

s e l f . c s v h e a d e r s = s o r t e d ( s e l f . c s v h e a d e r s , key

=lambda k : k . lower ( ) )

w i th open ( s e l f . o u t p u t c s v f i l e n a m e , ’wb ’ ) a s

c s v o u t p u t :
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c s v w r i t e r = csv . D i c t W r i t e r ( c s v o u t p u t , d i a l e c t

= ’ e x c e l ’ , q u o t i n g = csv .QUOTE NONNUMERIC,

f i e l d n a m e s = s e l f . c s v h e a d e r s )

c s v w r i t e r . w r i t e h e a d e r ( )

f o r row i n s e l f . c s v r o w s :

c s v w r i t e r . w r i t e r o w ( row )

# Changes t h e a t t r i b u t e d l l b a s e from a memory a d d r e s s

t o a v a l u e o f TRUE or FALSE

# TRUE � The a d d r e s s i s t h e d e f a u l t ba se a d d r e s s f o r

DLLs (0 x10000000 )

# FALSE � The a d d r e s s i s some th ing o t h e r t h a n 0

x10000000

d e f c h a n g e d l l b a s e t o T F ( row ) :

i f row [ ’ d l l b a s e ’ ] . l ower ( ) == ’TRUE’ or row [ ’

d l l b a s e ’ ] . l ower ( ) == ’FALSE ’ :

r e t u r n

i f row [ ’ d l l b a s e ’ ] . l ower ( ) == ’0 x10000000 ’ :
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row [ ’ d l l b a s e ’ ] = ’ True ’

e l s e :

row [ ’ d l l b a s e ’ ] = ’ F a l s e ’

# Changes t h e a t t r i b u t e e n t r y p o i n t s e c t i o n n a m e from t h e

name t o TRUE or FALSE

# TRUE � The e n t r y p o i n t s e c t i o n name i s s e t t o . t e x t

# FALSE � The e n t r y p o i n t s e c t i o n name i s s e t t o

some th ing o t h e r t h a n . t e x t

d e f c h a n g e e n t r y p o i n t t o T F ( row ) :

i f row [ ’ e n t r y p o i n t s e c t i o n n a m e ’ ] . l ower ( ) == ’TRUE’

or row [ ’ e n t r y p o i n t s e c t i o n n a m e ’ ] . l ower ( ) == ’

FALSE ’ :

r e t u r n

i f row [ ’ e n t r y p o i n t s e c t i o n n a m e ’ ] . l ower ( ) == ’ . t e x t

’ :

row [ ’ e n t r y p o i n t s e c t i o n n a m e ’ ] = ’ True ’

e l s e :

row [ ’ e n t r y p o i n t s e c t i o n n a m e ’ ] = ’ F a l s e ’
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# Changes t h e l o a d c o u n t a t t r i b u t e t o an i n t e g e r

r e p r e s e n t a t i o n

d e f c h a n g e l o a d c o u n t t o i n t ( row ) :

i f t y p e ( row [ ’ l o a d c o u n t ’ ] ) i s s t r :

i f row [ ’ l o a d c o u n t ’ ] . l ower ( ) != ’ ? ’ :

row [ ’ l o a d c o u n t ’ ] = i n t ( row [ ’ l o a d c o u n t ’ ] ,

16)

# Changes t h e PE image base a t t r i b u t e t o TRUE or FALSE

d e f c h a n g e P E i m a g e b a s e t o T F ( row ) :

i f row [ ’ PE image base ’ ] . l ower ( ) == ’TRUE’ or row [ ’

PE image base ’ ] . l ower ( ) == ’FALSE ’ :

r e t u r n

i f row [ ’ PE image base ’ ] . l ower ( ) == ’0 x10000000 ’ :

row [ ’ PE image base ’ ] = ’ True ’

e l s e :

row [ ’ PE image base ’ ] = ’ F a l s e ’

# Changes t h e p r o c e s s n a m e a t t r i b u t e t o o t h e r i f i t i s

n o t e x p l o r e r . exe , s v c h o s t . exe , o r t a s k h o s t . exe

d e f c h a n g e p r o c e s s n a m e ( row ) :
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i f row [ ’ p rocess name ’ ] . l ower ( ) != ’ e x p l o r e r . exe ’

and row [ ’ p rocess name ’ ] . l ower ( ) != ’ s v c h o s t . exe ’

and row [ ’ p rocess name ’ ] . l ower ( ) != ’ t a s k h o s t . exe

’ :

row [ ’ p rocess name ’ ] = ’ o t h e r ’

#Adds a new a t t r i b u t e l o a d p a t h i s t e m p

d e f a d d l o a d p a t h i s t e m p ( row ) :

l o a d p a t h = row [ ’ d l l m a p p e d p a t h ’ ] . s p l i t ( ’\\ ’ )

row [ ’ l o a d p a t h i s t e m p ’ ] = ’ F a l s e ’

f o r d i n l o a d p a t h :

i f ’ temp ’ == d . lower ( ) :

row [ ’ l o a d p a t h i s t e m p ’ ] = ’ True ’

#Adds a new a t t r i b u t e f i l e e x t e n s i o n i s d l l

d e f a d d f i l e e x t e n s i o n i s d l l ( row ) :

i f row [ ’ d l l m a p p e d p a t h ’ ] . e n d s w i t h ( ’ . d l l ’ ) :

row [ ’ f i l e e x t e n s i o n i s d l l ’ ] = ’ True ’

e l s e :

row [ ’ f i l e e x t e n s i o n i s d l l ’ ] = ’ F a l s e ’
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#Adds a new a t t r i b u t e i s d k o m p r e s e n t

d e f a d d i s d k o m p r e s e n t ( row ) :

i f row [ ’ d l l i n i n i t ’ ] . l ower ( ) == ’ f a l s e ’ o r row [ ’

d l l i n l o a d ’ ] . l ower ( ) == ’ f a l s e ’ o r row [ ’

d l l i n mem ’ ] . l ower ( ) == ’ f a l s e ’ :

row [ ’ i s d k o m p r e s e n t ’ ] = ’ True ’

e l s e :

row [ ’ i s d k o m p r e s e n t ’ ] = ’ F a l s e ’

#Adds a new a t t r i b u t e v a d p a t h l d r p a t h d i f f e r

d e f a d d v a d p a t h l d r p a t h d i f f e r ( row ) :

i f row [ ’ i n i t f u l l d l l n a m e ’ ] . l ower ( ) == row [ ’

l o a d f u l l d l l n a m e ’ ] . l ower ( ) and row [ ’

l o a d f u l l d l l n a m e ’ ] . l ower ( ) == row [ ’

m e m f u l l d l l n a m e ’ ] . l ower ( ) :

i f ’ c : ’ + row [ ’ d l l m a p p e d p a t h ’ ] . l ower ( ) == row

[ ’ l o a d f u l l d l l n a m e ’ ] . l ower ( ) :

row [ ’ v a d p a t h l d r p a t h d i f f e r ’ ] = ’ F a l s e ’

e l s e :

row [ ’ v a d p a t h l d r p a t h d i f f e r ’ ] = ’ True ’
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e l s e :

row [ ’ v a d p a t h l d r p a t h d i f f e r ’ ] = ’? ’

#Adds a new a t t r i b u t e t o measure s i z e o f d i f f e r e n c e

between e n t r y p o i n t r a w s i z e and

e n t r y p o i n t v i r t u a l s i z e

#Can be {Neg , None , Low , High} 

d e f a d d r a w v i r t s i z e d i f f ( row ) :

t r y :

d i f f = f l o a t ( row [ ’ e n t r y p o i n t v i r t u a l s i z e ’ ] ) � 

f l o a t ( row [ ’ e n t r y p o i n t r a w s i z e ’ ] )

e x c e p t V a l u e E r r o r :

row [ ’ r a w v i r t s i z e d i f f ’ ] = ’? ’

r e t u r n

i f d i f f < 0 :

row [ ’ r a w v i r t s i z e d i f f ’ ] = ’Neg ’

r e t u r n

i f d i f f == 0 :

row [ ’ r a w v i r t s i z e d i f f ’ ] = ’ None ’

r e t u r n

# I f s i z e i s l e s s t h a n t h e s i z e o f a page
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i f abs ( d i f f ) < 4096 :

row [ ’ r a w v i r t s i z e d i f f ’ ] = ’Low’

r e t u r n

# I f s i z e i s l e s s t h a n t h e s i z e o f a page

i f abs ( d i f f ) >= 4096 :

row [ ’ r a w v i r t s i z e d i f f ’ ] = ’ High ’

r e t u r n

d e f remove column ( s e l f ) :

p r i n t ” Removing ” , s e l f . co lumns to remove , ” from ” ,

s t r ( s e l f . i n p u t c s v f i l e n a m e ) , ” s a v i n g t o ” , s t r (

s e l f . o u t p u t c s v f i l e n a m e )

wi th open ( s e l f . i n p u t c s v f i l e n a m e , ” rb ” ) a s

i n p u t c s v f i l e :

c s v r e a d e r = csv . r e a d e r ( i n p u t c s v f i l e , d i a l e c t

= ’ e x c e l ’ , q u o t i n g = csv .QUOTE NONNUMERIC)

h e a d e r s = c s v r e a d e r . n e x t ( )

r o w s t o w r i t e = [ row f o r row i n c s v r e a d e r ]

f o r c o l i n s e l f . c o l u m n s t o r e m o v e :
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r emove co lumn index = �1

t r y :

r emove co lumn index = h e a d e r s . i n d e x ( c o l

)

h e a d e r s . remove ( c o l )

e x c e p t V a l u e E r r o r :

p r i n t ” Column ( ” + s t r ( c o l ) + ” ) does

n o t e x i s t i n t h e i n p u t f i l e : ” , s t r (

s e l f . i n p u t c s v f i l e n a m e )

c o n t i n u e

f o r row i n r o w s t o w r i t e :

row . pop ( r emove co lumn index )

wi th open ( s e l f . o u t p u t c s v f i l e n a m e , ”wb ” ) a s

o u t p u t c s v f i l e :

c s v w r i t e r = csv . w r i t e r ( o u t p u t c s v f i l e ,

d i a l e c t = ’ e x c e l ’ , q u o t i n g = csv .

QUOTE NONNUMERIC)

c s v w r i t e r . w r i t e r o w ( h e a d e r s )

f o r row i n r o w s t o w r i t e :

c s v w r i t e r . w r i t e r o w ( row )
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# B u i l d a d i c t i o n a r y mapping h e a d e r s t o t h e i r r e s p e c t i v e

t y p e s ( nominal , numer ic )

d e f g e t a t t r i b u t e t y p e s ( s e l f ) :

s e l f . t y p e s = {} 

f o r h e a d e r i n s e l f . c s v h e a d e r s :

t y p e s = s e t ( )

f o r row i n s e l f . c s v r o w s :

t r y :

f l o a t ( row [ h e a d e r ] )

s e l f . t y p e s [ h e a d e r ] = ’ numeric ’

b r e a k

e x c e p t :

i f t y p e ( row [ h e a d e r ] ) i s s t r and row [

h e a d e r ] != ’ ? ’ :

t y p e s . add ( row [ h e a d e r ] )

i f t y p e s :

s e l f . t y p e s [ h e a d e r ] = s o r t e d ( l i s t ( t y p e s ) )
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d e f c o n v e r t t o a r f f ( s e l f ) :

a r f f o u t p u t f i l e = s e l f . o u t p u t c s v f i l e n a m e . s t r i p

( ’ . csv ’ ) + ’ . a r f f ’

w i th open ( s e l f . i n p u t c s v f i l e n a m e , ” rb ” ) a s

c s v f i l e :

c s v r e a d e r = csv . D i c t R e a d e r ( c s v f i l e , d i a l e c t = ’

e x c e l ’ , q u o t i n g = csv .QUOTE NONNUMERIC)

s e l f . c s v h e a d e r s = c s v r e a d e r . f i e l d n a m e s

i f n o t s e l f . c s v h e a d e r s o r s e l f . c s v h e a d e r s ==

[ ] :

r e t u r n F a l s e

s e l f . c s v r o w s = [ row f o r row i n c s v r e a d e r ]

w i th open ( a r f f o u t p u t f i l e , ’w’ ) a s

o u t p u t a r f f f i l e :

o u t p u t a r f f f i l e . w r i t e ( ” @ r e l a t i o n {0}\ n\n ” .

f o r m a t ( a r f f o u t p u t f i l e . s p l i t ( ’\\ ’ ) [ �1] . s t r i p

( ’ . a r f f ’ ) ) )

s e l f . g e t a t t r i b u t e t y p e s ( )
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f o r h e a d e r i n s e l f . c s v h e a d e r s :

o u t p u t a r f f f i l e . w r i t e ( ” @ a t t r i b u t e {0} ” .

f o r m a t ( h e a d e r ) )

i f s e l f . t y p e s [ h e a d e r ] == ’ numeric ’ :

o u t p u t a r f f f i l e . w r i t e ( ” numer ic \n ” )

e l s e :

o u t p u t a r f f f i l e . w r i t e ( ”{ ” + ”{ 0} ” .

f o r m a t ( ” , ” . j o i n ( s e l f . t y p e s [ h e a d e r ] ) )

+ ”}\ n ” )

o u t p u t a r f f f i l e . w r i t e ( ”\ n@data\n ” )

f o r row i n s e l f . c s v r o w s :

o u t p u t a r f f f i l e . w r i t e ( ” { 0 } ” . f o r m a t ( ” , ” .

j o i n ( [ s t r ( row [ h e a d e r ] ) f o r h e a d e r i n s e l f

. c s v h e a d e r s ] ) ) )

o u t p u t a r f f f i l e . w r i t e ( ”\ n ” )

d e f g e t a r g u m e n t s ( ) :

i m p o r t a r g p a r s e

p a r s e r = a r g p a r s e . Argumen tPa r se r ( )
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p a r s e r . add a rgumen t ( ” i n p u t c s v ” , h e l p =” Pa th t o t h e

i n p u t csv ” )

p a r s e r . add a rgumen t ( ” o u t p u t c s v ” , h e l p =” F i l e t o s t o r e

p r o c e s s e d d a t a ” )

# p a r s e r . add a rgumen t (”� c ” , h e l p =”Column t o remove .

Comma�s e p a r a t e d i f more t h a n one ” , a c t i o n =” s t o r e t r u e

” )

a rgumen t s = p a r s e r . p a r s e a r g s ( )

r e t u r n a rgumen t s

i f n a m e == ’ m a i n ’ :

a r g s = g e t a r g u m e n t s ( )

columns = [ ’ v i r t u a l a d d r e s s ’ , ’ m e m f u l l d l l n a m e ’ , ’

malware name ’ , ’ a l l c o n t r o l f l a g s ’ , ’ d l l m a p p e d p a t h

’ , \ 

’ i n i t f u l l d l l n a m e ’ , ’ i s m e m o r y p r i v a t e ’ , ’

l o a d f u l l d l l n a m e ’ , ’ p h y s p a g e a d d r ’ , ’

p r o c e s s i d ’ , \ 
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’ v a d c f f i l e ’ , ’ l o a d t i m e ’ , ’ mem pos i t ion ’ ,

’ e n t r y p o i n t r a w s i z e ’ , ’

e n t r y p o i n t v i r t u a l s i z e ’ ]

m = P r e P r o c e s s e r ( a r g s . i n p u t c s v , a r g s . o u t p u t c s v ,

columns )

m. p r o c e s s ( )

m. i n p u t c s v f i l e n a m e = a r g s . o u t p u t c s v

t r y :

m. remove column ( )

e x c e p t :

p r i n t ” Could n o t remove columns ”

m. c o n v e r t t o a r f f ( )
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