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A computationally efficient multilevel decomposition and optimization 

framework is developed for application to automotive structures. A full scale finite 

element (FE) model of a passenger car along with a dummy and occupant restraint 

system (ORS) is used to analyze crashworthiness and occupant safety criteria in two 

crash scenarios. The vehicle and ORS models are incorporated into a decomposed 

multilevel framework and optimized with mass and occupant injury criteria as objectives. 

A surrogate modeling technique is used to approximate the computationally expensive 

nonlinear FE responses. A multilevel target matching optimization problem is formulated 

to obtain a design satisfying system level performance targets. A balance is sought 

between crashworthiness and structural rigidity while minimizing overall mass of the 

vehicle. Two separate design problems involving crash and crash+vibration are 

considered. A major finding of this study is that, it is possible to achieve greater weight 

savings by including dummy-based responses in optimization problem.
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CHAPTER I 

INTRODUCTION 

The growing demand for increased fuel efficiency of cars and light trucks has led 

to increased research on innovative applications of lightweight materials and advanced 

design methods toward vehicle weight reduction (light weighting) without compromising 

crashworthiness, occupant safety, and other vehicle design requirements. These efforts 

are also directed partly at accommodating various regulations set by the U.S. government 

in terms of higher fuel economy standards and lower CO2 gas emissions. 

This study considers a design approach based on structural optimization 

techniques and finite element (FE) simulations. Improvements in crashworthiness 

behavior, occupant safety and reduced structural mass are sought by considering 

structural and vibration design criteria governing the overall design of a car.  The general 

design process is captured by the flowchart shown in Figure 1.1. 
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Figure 1.1 Design process considered in study. 

 

1.1 Crashworthiness and Occupant Safety 

Crashworthiness is the study of mechanical behavior of automotive structures in 

the advent of a crash. To have better crashworthiness performance, all the major 

structural components are required to participate efficiently and effectively in absorbing 

the crash-induced energy. The structural energy absorption directly affects the safety of 

vehicle occupants by substantially reducing the acceleration felt by the occupants as well 

as the possibility of the deformed structure coming in contact with the occupants, both of 
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which could cause significant injury. For example in the case of a full frontal impact, the 

vehicle inner and outer frontal rail components serve as the major energy absorbing parts 

of the car. During car crashes, the crush behavior of these components should be in axial 

mode to have better energy absorbing capabilities [1].  

The increasing trends in both the number of car crashes and occupant fatalities led 

to the creation of National Highway Traffic and Safety Administration (NHTSA) by the 

U.S. Department of Transportation in 1970. NHTSA has proposed and formulated 

various regulations pertaining to occupant safety under Federal Motor Vehicle Safety 

Standards (FMVSS) [2]. These standards provide the metrics that must be fulfilled by the 

automotive industry for vehicles manufactured by and imported to the U.S.  As part of 

satisfying these standards, the vehicles manufactured are subjected to physical crash tests; 

corresponding rating such as good, acceptable or poor are provided depending on the 

performance of vehicle in full frontal impact, side impact, offset frontal impact, rear 

impact and rollover tests. The FMVSS includes certain limits pertaining to various 

occupant responses that are critical in car crashes. The crash tests are conducted to check 

if the responses generated in each crash scenario are within the specified FMVSS limits. 

For example, the head injury criterion, head acceleration, chest acceleration and femur 

loads are the most critical responses affecting the occupant injury in advent of a frontal 

crash, whereas accelerations at pelvis, spine, and rib locations are important in side 

impacts.  

To meet the recent stricter regulations in safety [2] along with fuel efficiency and 

environmental protection, structural weight reduction of automotives through design 

optimization is considered to be an effective approach. 



 

4 

1.2 Finite Element Analysis of Crashworthiness 

Advanced finite element analysis (FEA) tools such as LS-DYNA [3] and 

ABAQUS [4] make it possible for automotive engineers to carryout virtual crash tests 

using computer simulations and to apply the findings to improve a vehicle design in 

terms of crashworthiness and other design criteria.  The development of high fidelity 

crash simulations has allowed engineers to predict crash behavior of a vehicle and also 

occupant injury using FE models of vehicle and occupants. The National Crash Analysis 

Center (NCAC) at George Washington University has developed several FE models of 

cars and light trucks that have been used for both crashworthiness analysis and design.   

A highly detailed FE model of a car consists of thousands of elements. For 

example, the FE model of 1996 Dodge Neon developed by NCAC (without interiors) 

consists of 270,768 elements [5]. Analyzing this model for 150-ms full frontal crash 

using an IBM cluster with 16 Pentium III processors would take 10 hours [6], but recent 

advances in computer capabilities have reduced the computation time of the same vehicle 

crash simulation to 3 hours with four 6-core Intel Processors with 48 GB of RAM. The 

computation cost associated with analyzing these large models can be further reduced by 

using fine meshes only at locations of large deformations and relatively coarse meshes 

elsewhere.  

Many FEA codes such as LS-DYNA, PAMCRASH, and RADIOSS have been 

developed to perform highly nonlinear transient dynamic crash simulations. Toyama et 

al. [7] studied the frontal crash phenomenon and deformation modes of a vehicle model 

with 5,300 elements using PAM-CRASH.  Solanki et al. [8] compared the characteristics 

of LS-DYNA and PAM-CRASH codes for crash analysis and concluded that both codes 
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show good correlation with actual crash test results. In this study, the LS-DYNA [3] FEA 

code is used to conduct crash simulations.  

Apart from vehicle models, the use of FE modeling techniques has also helped in 

developing full-scale occupant dummy models and Occupant Restraint System (ORS) 

models such as airbags and seatbelts. Noureddine et al. [9] developed and validated an FE 

model of hybrid III crash test dummy with major parts such as head, neck and chest using 

13,000 elements. Later, a more detailed FE model of the 50th percentile hybrid III called 

Anthropomorphic Crash Test Dummy (ATD) was developed by Ennis et al. [10]. This 

model consists of 45,000 elements representing each part of the dummy in high detail.  

Using preprocessing software, the vehicle, occupant and restraint system models 

can be combined into one consolidated model to study important crashworthiness 

characteristics based on both vehicle and occupant responses. The occupant restraint 

system models can vary depending upon the type of crash scenario. For example, the type 

of airbag used in frontal impacts is different from the one used in side impact analysis. 

Potula et al. [11] used side curtain airbag deployment to study out-of-position occupant 

safety in a side impact scenario.  

Besides FE models, multibody dynamic models of vehicles and occupants are also 

used, which tend to be computationally cheap to analyze compared to large FE models. 

Teng et al. [12] used the concept of multibody dynamics to build an occupant model 

consisting of 15 segments connected through different types of joints for analysis of 

occupant safety characteristics in a frontal collision. MADYMO [13] software is an 

efficient and widely used tool for analysis of occupant models using multibody dynamics.  
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Sled tests of occupant models and restraint systems have also emerged as an 

efficient method for crash safety analysis. Viano and Arepally [14] used multiple sled 

tests for different combinations of occupant restraint systems such as unbelted occupant, 

belted occupant and the combination of belt and airbag. Different parameters pertaining 

to belt restraint systems were analyzed and a criterion assessing the injury risk in frontal 

crash was formulated. Crandall et al. [15] performed sled tests of the 1993 Ford Taurus 

model to analyze the frontal collision performance of force-limited belts and airbag. The 

study showed that a force-limited belt system along with side airbags offers better frontal 

restraint performance as compared to a side airbag with a standard three-point belt 

system. 

1.3 Design Optimization for Crashworthiness and Occupant Safety 

The crashworthiness characteristics of a car can be enhanced using optimization 

techniques that rely on different mathematical programming approaches for finding an 

improved design subject to the specified design constraints. The important responses 

obtained from a crash analysis can be treated as objectives or constraints, and different 

parameters pertaining to vehicle or occupant restraint system design can be treated as 

design variables to find an optimum design with better crash characteristics. For example, 

in recent years, the demands for improved fuel efficiency of automobiles have led to 

vehicle structure optimization with mass as objective function. Further, design 

optimization can be classified into three major divisions i.e., sizing optimization, shape 

optimization and topology optimization.  

The selection of design constraints in a vehicle structure optimization problem 

depends on the responses that are considered to be important in a crash analysis. For 
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crashworthiness study without occupants, depending on the type of crash scenario, 

structural responses such as intrusion distances, accelerations and internal energy 

absorption of vehicle components are considered as substitutes for occupant responses; 

these vehicle-based responses are also known as energy-based responses.  

Xu et al. [16] used topology optimization to improve crash behavior of the front 

rails of a car model using vehicle-based responses, whereas Rais-Rohani et al. [17] used a 

shape optimization technique to optimize the front rails considering frontal crash 

structural responses as design constraints.  

Since design optimization is a mathematical approach, the objectives and 

constraints are defined as functions of certain design variables, and optimization involves 

the evaluation of these functions at different points in the feasible design space bounded 

by design constraints. If FE simulations or sled tests were to be used to evaluate the crash 

responses at each design point, the computation costs associated with such a process 

would be enormous. Thus, approximation techniques are often used in vehicle design 

optimization.  

Surrogate modeling uses a collection of mathematical and statistical techniques to 

approximate the system response with an analytical function based on responses obtained 

through FE simulations or physical tests at a set of design (training) points. The gain in 

overall computation cost has led to the application of surrogate modeling techniques in 

crashworthiness and occupant restraint system design.  

Fang et al. [18] used energy-based responses such as internal energy absorption of 

selected components of a vehicle model as design constraints and solved a mass 

minimization problem with surrogate models of responses in multiple crash scenarios as 
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design constraints. Intrusion distances of toeboard, dashboard for full frontal and offset 

frontal impacts and intrusion distance of door for side impacts were considered as 

substitutes for the occupant-based responses [19]. A multi-objective optimization 

problem was also solved by considering mass of vehicle parts and intrusion distances as 

objectives with internal energy absorption as constraints for both offset frontal and side 

impact crash scenarios [20]. Horstemeyer et al. [21] used optimization techniques to 

improve the baseline design of 1996 Dodge Neon and formulated a comparison between 

energy-based designs without occupants versus injury-based design consisting of 

occupants in a side impact crash analysis. Parrish et al. [22] performed multi-objective 

optimization using 1996 Dodge Neon vehicle model by replacing 22 steel components in 

the baseline design with those made of AZ31 magnesium alloy by considering energy-

based responses for full frontal, offset frontal and side impact crash analysis. Liao et al. 

[23] suggested a two-stage approach in formulating a multi-objective crashworthiness 

optimization problem for frontal crash analysis. The vehicle structure was optimized first 

for reducing mass and intrusion distances and later, in the second stage, the occupant 

restraint system was optimized using MADYMO software. Hou et al. [24] performed 

design optimization of restraint systems including a driver-side airbag using occupant 

dynamic simulations to study the effect of ORS parameters on injury severity. The study 

involved a sensitivity analysis to determine the parameters that are most influential in 

occupant injury; it also indicated that the inclusion of a driver-side airbag for an 

optimized restraint system reduced the overall injury by 9% with further reduction in 

injury possible by optimizing the airbag itself.  
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The preceding studies involved the application of surrogate modeling and 

optimization techniques for improving crashworthiness behavior using FE models. 

Occupant safety and crashworthiness optimization can also be evaluated using sled tests, 

which are approximate models of occupant dummy model and vehicle interior involving 

mainly seat, occupant restraint system, floor panel, etc. 

1.4 Multidisciplinary design optimization 

Apart from structural crashworthiness and occupant safety, there are many other 

design requirements that have to be taken into consideration during the vehicle design 

process. For example, a vibration design criterion considers the potential impact of 

structural stiffness on handling characteristics of the vehicle. Prior studies focused on 

optimization of automotive structure for improving noise, vibration and harshness (NVH) 

characteristics have involved the consideration of both crash and vibration in the design 

problem.  Sobieszczanski-Sobieski et al. [25] optimized a car structure for mass 

minimization considering both crash and NVH responses as design constraints. Duddeck 

[26] solved a multidisciplinary optimization problem considering NVH and offset frontal 

impact analysis in the design problem. Wang et al. [27] used FE simulations, topology 

and shape optimization techniques to improve structural rigidity of a Porsche 928 model 

by considering fundamental frequencies as objectives. 

1.5 Thesis Overview 

The thesis is organized as follows. Chapter II consists of the FE models of 

vehicle, occupant and restraint systems used in this study and different crash scenarios 

and their validation. Chapter III includes design problems along with analytical target 
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cascading optimization framework. Surrogate modeling is discussed in chapter IV. 

Chapter V presents and compares the optimization results for different design cases, with 

the conclusions and future work presented at the end in Chapter VI. 
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CHAPTER II 

FE MODELS AND CRASH IMPACT SCENARIOS 

2.1 FE Models for Crash Analysis 

2.1.1 1996 Dodge Neon Vehicle Model 

A publicly available 1996 Dodge Neon FE model, developed by NCAC [1], is 

used for crash analysis using the LS-DYNA simulation software.  The Neon FE model 

consists of 337 parts with 270,768 elements, the majority of which are shell elements [2]. 

The NCAC Neon model does not include any interior components (e.g., seats, instrument 

panels) nor does it include an occupant model or restraint system. Most of the structure is 

made of steel, defined using a piecewise linear plasticity material model (MAT24) [3]. 

The glass in the front and rear windshield and side windows are not designed to crack or 

break during crash. The total mass of the crash model is 1,336 kg, which is the same as 

that of an actual vehicle with several mass elements distributed throughout the FE model. 

Figure 2.1 shows the Dodge Neon crash model obtained from NCAC. 
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Figure 2.1 (a) 1996 Dodge Neon Model by NCAC with (b) roof, windshields and side 
windows removed to reveal the lack of any interior component. 

 

The original NCAC Neon model was further improved as part of different 

research projects conducted at Center for Advanced Vehicular Systems (CAVS) at 

Mississippi State University. The driver seat, instrument panel and other parts of the 

dashboard as well as the steering wheel and column, airbag, and seatbelt were integrated 

into the vehicle model to accommodate a more detailed crash analysis involving dummy 

model responses. A total of 60 parts were added to the existing 337 parts of the NCAC 

model in such a way that the total mass of the FE model was kept the same as that of the 

actual vehicle. The added mass of new parts was countered by removing the mass 

elements added previously at the driver side of the FE model. With the added interiors, 

the total number of elements in the FE model increased to 302,132. The added parts are 

important for crash simulations with a dummy model, as these parts have good 

interaction with simulated occupant in event of a crash.  The modified 1996 Dodge Neon 

model with interiors included is shown in Figure 2.2. 
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Figure 2.2 Modified Dodge Neon model with added interiors darkened for ease of 
viewing. 

 

Since this study involved two crash scenarios, i.e., FFI and SI, the initial FE 

vehicle model without occupant was first validated by comparing the acceleration plots 

obtained in two different crash scenarios with the acceleration plots obtained from the 

actual crash tests [4, 5]. The FFI analysis involved longitudinal impact of FE vehicle 

model against a rigid wall at a speed of 56 km/h and SI involved a Moving Deformable 

Barrier (MDB) impacting the driver side of a stationary Dodge Neon FE model at a speed 

of 52.5 km/h at an angle of 27°. The crash test scenarios considered for model validation 

are shown in Figure 2.3.  
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Figure 2.3 Crash scenarios without occupant and restraint system  

(a) FFI against rigid wall and (b) SI by MBD. 

The X-directional acceleration at left rear seat cross member for FFI and Y-

directional acceleration at middle of B-pillar for SI are compared to validate the model. 

The locations of these points are shown in Figure 2.4. Figure 2.5 shows the comparison 

of acceleration data obtained from simulation with test data for both FFI and SI crash 

scenario. 
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Figure 2.4 Location of left seat cross member and mid B-pillar in Dodge Neon model. 

 

 

Figure 2.5 Comparison of (a) X direction acceleration of left seat cross member in FFI 
and (b) Y direction acceleration of B-Pillar in SI with test data [4, 5].  
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The overall trend and peak value of simulation data in Figure 2.5(a) matches well 

with the test data [5]. Although the peak values of simulation data and test data in Figure 

2.5(b) are different, the overall trend of the plots is same as the experimental results [4]. 

The simulation model consists of a total of seven accelerometers at different locations of 

the vehicle model. The actual crash test had multiple virtual accelerometers defined at 

various locations depending on crash scenario. In the actual crash tests, the B-pillar 

acceleration was measured using an accelerometer placed at mid region of B-pillar. Since 

there was no accelerometer defined at that location in the simulation model, the average 

acceleration of 20 nodes was used to compare the data. The impact direction of MBD in 

simulation and test report are also different. In test report, the impact direction was on 

right end of Dodge Neon whereas in simulation it was on left end, apart from impact 

direction and accelerometer location the overall simulation setup matched crash test 

setup. The difference in peak value of the curves in Figure 2.5(b) can be due to the 

differences in location of accelerometers in the simulation model and the actual crash test 

vehicle and the impact direction. The simulation data in Figure 2.5 was filtered using a 60 

Hz Butterworth filter to remove noise. A comparison of filtered and unfiltered responses 

appears later in this chapter as part of FFI model validation.  

Once the vehicle model was validated, occupant models and occupant restraint 

systems were added to analyze the crash behavior and occupant safety criteria with 

inclusion of occupant restraint systems (i.e., seatbelt and steering wheel mounted airbag). 

2.1.2 Occupant Model 

To study the behavior of occupant and restraint systems during a car crash, 

occupant models, also known as crash test dummies or Anthropomorphic Test Devices 
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(ATD), are often used in laboratory crash tests. The dummy models are used to measure 

the approximate forces and accelerations that would be experienced by the occupants 

during a car crash. The dummy models for male and female occupants can vary in weight 

and height. The Hybrid III family of dummies includes a male, a female and three child 

models.  The Hybrid III 50th percentile dummy model is the most commonly used model, 

representing a male occupant with height of 175 cm and weight of 77 kg. There are 

different types of dummy models available depending upon their application. For 

example, Hybrid III class of dummies are used for FFI analysis, whereas Side Impact 

Dummies (USSID) models are used for analysis involving side crash.  

Livermore Software Technology Corporation (LSTC) has developed and 

modified various occupant models obtained from NHTSA depending on the application. 

These models are available free of charge to the users of LS-DYNA crash analysis 

software. The LSTC FE models of crash dummies are built using rigid body elements 

connected to each other using various types of joints.  
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Figure 2.6 Hybrid III 50th percentile FE dummy models before placing and positioning 
inside a vehicle model. 

(a) with mesh and (b) without mesh 

The occupant (driver) used in this study is represented by a Hybrid III 50th 

percentile dummy model developed by LSTC [6]. The model consists of 128 parts, 4,327 

elements and different types of joint mechanisms to attach various parts of the dummy 

model. Figure 2.6 shows the FE model of Hybrid III 50th percentile dummy model prior 

to its positioning in the vehicle model. 

The FE dummy model includes a total of six virtual accelerometers defined at 

various locations to calculate important crash responses such as head acceleration, chest 

acceleration, pelvis acceleration, etc. These accelerometers are defined using the 

ELEMENT_SEATBELT_ACCELEROMETER keyword of LS-DYNA.  

The dummy model was positioned into the Dodge Neon vehicle model using 

dummy positioning module of LS-Prepost [6]. The steps involved in positioning include 

the translation of dummy towards the vehicle seat, rotation of arms, legs, lumbar and 

other parts in such a way that the overall positioning of the dummy into the FE model of 
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Dodge Neon matched the actual crash test setup performed by NHTSA [5].  The 

positioned occupant model is shown in Figure 2.7. 

 

Figure 2.7 Side view of positioned dummy model. 

 

After performing the required dummy positioning operations, the model was 

translated into Dodge Neon vehicle model and a number of contacts were defined 

between the dummy model, seat, steering wheel and instrument panel. For most of the 

contacts, the contact keyword AUTOMATIC_SURFACE_TO_SURFACE of LS-DYNA 

was used, as this contact definition is effective for crash simulations where the relative 

positions of the parts in contact cannot be anticipated as they undergo large deformations. 

The dummy model positioned into the Dodge Neon vehicle model is shown in Figure 2.8. 
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Figure 2.8 Dummy model positioned in Dodge Neon FE model with interiors  

(driver side door removed to ease view). 

2.1.3 Seatbelt 

In this study, an FE model of a seatbelt developed by LSTC was used. Instead of a 

more commonly used one-dimensional (1D) three-point seatbelt, a more accurate two-

dimensional (2D) seatbelt was used. Even though, the modeling of a 2D seatbelt requires 

more effort, it offers a more realistic representation of the actual seatbelt in crash 

analysis.  

A three-point seatbelt system consists of a shoulder belt and a lap belt attached to 

the vehicle at three locations. The shoulder belt runs across the chest and over the 

shoulder of the dummy reaching an anchor point on the B-pillar, whereas the lap belt runs 

over the pelvis region of the dummy. The seatbelt model consists of 1,223 elements with 

327 ‘seatbelt’ elements and 896 shell elements defining the fabric part of the belt model. 

The ‘seatbelt’ elements are 1D elements connecting the 2D shell elements defined as 

fabric part of the seatbelt. 
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Figure 2.9 Element types in the seatbelt model 

 

The seatbelt model used in this study consists of two slip rings located at two ends 

of the shoulder belt, a pyro-retractor, load limiting pretensioner, and one sensor each for 

retractor and pretensioner. 

 

Figure 2.10 Two-dimensional seatbelt model used in this study. 
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A slip ring is defined as a ‘ring’ where the shoulder belt slips through as the belt 

is released or retracted. The ring is defined in the simulation software by a node in space 

called the slip ring node, which is static and fixed to the vehicle. This node is not part of 

the seatbelt elements but has the same coordinates as a node connecting the shoulder belt 

elements with belt elements connected to the retractor, as shown in Figure 2.11. During 

crash, as the belt is pulled back or released from the retractor, the belt elements pass 

through this slip ring node. The passing of belt elements through this node depends on 

whether the retractor is locked or not and also on the lengths of elements on either side of 

slip ring. For example, assuming the length of each element shown in Figure 2.11 to be 

10mm, when element (L9067053) of shoulder belt gets pulled during crash, its length 

increases and the same amount of decrease in length is observed for element at other side 

of slipring (L9067033) in such a way that the total length of two elements is maintained 

same. Once the element length decreases to a specified value in slipring keyword 

definition, this element is passed on to other end of the slipring. 

 

Figure 2.11 Slip-ring node and seat belt elements at slip-ring. 
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The function of a retractor is to control the amount of seatbelt pull-out or pull-in 

during crash. Similar to the slip ring, the retractor is also defined as a node in space 

coinciding with a node at the end of seatbelt.   

A simulated sensor has been defined to trigger the locking of retractor. The 

sensors can be of different types, which trigger depending on different criteria such as 

time, acceleration or amount of belt release. The sensor used in this seatbelt model is a 

time-based sensor where time is specified for retractor locking. Retractor locking does 

not mean there is no release of belt from retractor once it has locked; rather the amount of 

belt release from the retractor after locking depends on the loading and unloading curves 

which are essentially force versus pull-out curves defined in the retractor keyword 

definition. The retractor also consists of some extra belt elements called ‘zero-length’ 

elements connected to each other in such a way that, once the belt is released out of the 

retractor, these elements exit retractor one by one depending on the amount of pull-out 

force.  

A force limiting pretensioner was added to the belt model used in this study. A 

pretensioner works similar to a retractor, but it is mainly used for removing the slack 

present in the belt during initial stages of a crash. A force versus pull-in curve is defined 

in the pretensioner keyword definition and the belt pull-in is followed exactly as specified 

by this curve. The pretensioner also consists of a force limiting value defined in the 

pretensioner definition. This force is the maximum force that can be exerted on seatbelt 

to allow the functioning of pretensioner. During crash, whenever the belt forces exceed 

this limit force, the pretensioner is deactivated and retractor takes over and functions 

normally depending on its loading and unloading curves.  
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The material properties such as mass per unit length of seatbelt, force versus 

strain curves of the seatbelt model used in this study are consistent with data provided by 

LSTC, as there was no test data for seatbelt model in the actual crash test report.  

The seatbelt model consists of both 2D fabric part and 1D seatbelt elements 

throughout the model. The 2D fabric part of the seatbelt was used at the surfaces (i.e., 

from shoulder over chest and lap where the belt comes in contact with the dummy 

model). The connections between the 2D fabric parts and the 1D seatbelt elements are 

made using nodal rigid body constraints. The seatbelt model was routed onto the 

occupant model using the seatbelt fitting application of LS-PrePost as shown in Figure 

2.12. The belt model was placed with a gap of 2 mm from the surface of the dummy with 

the belt model consisting of four elements along the width of the belt. Various contacts 

between seatbelt parts and parts of the occupant model are defined after routing the 

seatbelt. 

 

Figure 2.12 (a) Dummy model before and (b) after seat belt routing. 
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After routing the belt on the dummy model and defining contacts, the seatbelt 

model is connected to the vehicle with the help of rigid beams. Rigid beams are added to 

the end points of belt model and are merged with the vehicle model. This is done by 

defining a specific node set of the vehicle model and constraining the rigid beam parts to 

these node sets. Figure 2.13 shows the rigid beam defined at slipring node of seatbelt. 

 

Figure 2.13 Belt elements with rigid beam defined to merge with the vehicle model. 

 

A total of four connections are made between the seatbelt and the vehicle model. 

Two rigid beams located at both ends of the lap belt are connected to the vehicle floor 

panel whereas the other two rigid beams located at retractor and slipring are constrained 

to the B-Pillar. 
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2.1.4 Airbag Model 

An FE model of the steering wheel airbag obtained from CAVS is employed as 

part of the occupant restraint system. The airbag is modeled using Wang-Nefske airbag 

definition of LS-DYNA [7]. Given the lack of experimental test data of airbag properties, 

data obtained from LSTC is used instead. Some of the crucial airbag properties include, 

for example, input mass flow rate and input gas temperature. Some of these parameters 

are used as design variables in the optimization problem as discussed in later sections of 

this thesis. Airbag venting is another important airbag property because the amount and 

rate of gas released from airbag affects the cushioning provided to an occupant during 

crash. The gas release is achieved in two ways, one is using vents/orifice and the other 

way is venting through porous fabric material of the airbag. The Wang-Nefske airbag 

formulation relies on venting through an orifice with the help of a load curve defining the 

vent orifice area as a function of absolute pressure [7]. The airbag model consists of two 

fabric parts with a total of 2,860 shell elements as shown in Figure 2.14. The airbag 

model was inserted into the steering wheel cavity of the Dodge Neon FE model by 

constraining a set of nodes at the airbag base to the middle part of steering wheel 

assembly as shown in Figure 2.15.  

 

Figure 2.14 Airbag FE model  

(a) before and (b) after inflation. 
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Figure 2.15 FE model of Airbag FE positioned in steering wheel assembly. 

 

After positioning the airbag, contacts between airbag and parts of the steering 

wheel were defined. Apart from this, contacts between airbag and seatbelt and parts of 

the occupant model were also defined using automatic surface-to-surface contact 

definition.  

The FE models of occupant, seatbelt, and airbag were positioned in Dodge Neon 

FE model to use as the baseline design of the overall vehicle before performing crash 

analysis in different impact scenarios. Multiple crash analyses were performed and 

various dummy response attributes such as acceleration data calculated at head, chest, 

spine and pelvis region were checked to ensure the accuracy of the vehicle-occupant-

restraint system model. Figure 2.16 shows the Dodge Neon FE model with occupant, seat 

and airbag incorporated. 
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Figure 2.16 Dodge Neon FE model with occupant and occupant restraint system. 

 

2.2 FE Model for Vibration Analysis 

The FE model used for performing vibration analysis was developed as part of an 

earlier research effort at CAVS [8]. The vibration FE model for analysis using MSC 

Nastran was developed by modifying the LS-DYNA crash FE model and excluding all 

the moving parts such as doors, hood, etc. All the sheet metal components constituting 

the body-in-white were included in the model plus the windshield and the rear window 

glass.  

 

Figure 2.17 FE model of vibration analysis [8]. 
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Several additional spot welds with a nominal diameter of 5 mm were added to the 

existing design using CWELD elements with elastic properties similar to welded steel 

parts. The constrained nodal rigid body (CNRB) elements of LS-DYNA were converted 

to rigid elements (RBE2) of NASTRAN. Figure 2.17 shows the vibration FE model, 

which consists of 701 RBE2 and 3,215 CWELD elements with 262,560 CQUAD4 and 

CTRIA3 shell elements. 

An initial modal analysis was performed using MSC NASTRAN FE software 

under free-free boundary conditions. The six rigid-body modes were identified. The 

subsequent three flexible vibration modes, representing the responses of interest, are the 

first torsion mode, the first bending mode and a mixed torsion-bending mode. 

2.3 Crash Scenarios 

To understand and analyze the crashworthiness capabilities of vehicles and 

potential injury to occupants from crash, NHTSA has conducted crash tests on different 

vehicle models. These tests are done for different crash scenarios, and an overall safety 

performance rating is provided for the vehicle tested. The typical types of crash scenarios 

are FFI, offset frontal impact (OFI), SI, rear impact and roll over impact. Each has a 

defined impact setup, and NHTSA employs different dummy models to test the effect of 

crash on occupants by measuring certain responses at different points of the dummy 

model. To limit the scope of this study, only FFI and SI scenarios are considered.  
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2.3.1 Full Frontal Impact 

2.3.1.1 FFI Simulation Setup 

The FE simulation setup for FFI involves the head on collision of the vehicle 

model (with occupant and restraint system) traveling at a speed of 56.3 km/h (35 mph) 

with a rigid barrier, which consists of 36 simulated load cells. The rigid barrier model and 

the overall test setup are in accordance with the guidelines of New Car Assessment 

Program (NCAP) of FMVSS [5].  The FFI simulation is carried out for 150 ms since 

most occupant injuries occur within this time period. Figure 2.18 shows the FFI 

simulation at three different time intervals.  

For FFI simulations, the FE model of the 1996 Dodge Neon vehicle including the 

occupant, seatbelt and airbag models presented earlier in this chapter is used. The vehicle 

model in FFI consists of a total of seven virtual accelerometers defined at different 

locations of the car.  To calculate occupant related responses, the dummy model included 

a total of six virtual accelerometers defined at head, chest and pelvis regions of model.   
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Figure 2.18 Full frontal impact simulations with dummy and restraint system models 

(a) t = 0 ms (b) t = 50 ms and (c) t = 80 ms (driver side door removed to ease view). 

2.3.1.2 FFI Model Validation 

Once the FFI simulation was performed, the overall simulation setup and 

interaction of various FE models used were validated by comparing acceleration plots 

with those obtained from actual crash test results. The resultant head and chest 

accelerations data measured at center location of accelerometers were used to compare 

the overall trends of the acceleration plots with the actual test data. 
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Figure 2.19 Comparisons of (a) resultant head acceleration and (b) resultant chest 
acceleration obtained from FE simulation with test data [5]. 

 

Figure 2.19 shows plots of resultant head and chest acceleration data obtained 

from FE simulations and actual crash tests. It can be seen from the plots that the general 

trends as well as the peak values of accelerations for simulation data matches well with 

the test data.  The simulation data shown in the plots are resultant of X, Y, Z directional 

accelerations, obtained from nodes defined at center of virtual accelerometers defined in 
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the dummy model’s head and chest regions, respectively. Since acceleration data in crash 

analysis are highly nonlinear and noisy, a Butterworth filter of 60 Hz was used to filter 

out the noise. Figure 2.20 compares the unfiltered noisy head acceleration data with 

filtered X, Y, and Z directional accelerations. 

 

Figure 2.20 (a) Unfiltered and (b) filtered head acceleration data. 
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From Figure 2.20 it can be seen that the noise associated with acceleration has to 

be filtered so that the most critical peaks can be easily identified. These acceleration data 

were obtained with an output time interval of 0.01 ms. To have effective filtering, the 

output time interval of nodal data should be 0.01 ms or less [6]. 

2.3.2 Side Impact 

2.3.2.1 SI Simulation Setup 

The SI FE simulation consists of an MBD impacting the stationary vehicle model 

at an angle of 27° relative to the vehicle as shown in Figure 2.21 and at a speed of 52.5 

km/h (32.6 mph). The MBD is modeled according to the guidelines of SI with a layer of 

honeycomb placed in front of it to simulate the impact caused by another vehicle [4]. The 

MDB is placed at 90° relative to the longitudinal axis of the vehicle model, but its wheels 

are aligned at 27° with respect to the vehicle centerline as shown in Figure 2.21.  

 

Figure 2.21 Side impact of BMD with the Dodge Neon model. 
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USSID models are commonly used in SI analysis whereas hybrid III dummy 

models are used in FFI. The seatbelt model used in FFI was used in SI as well but no 

airbags were used in SI analysis. The use of USSID in SI requires fresh routing of 

seatbelt model as the occupant models used for FFI and SI differ in geometry. However, 

to keep all the seatbelt properties consistent for both FFI and SI analyses, the hybrid III 

occupant model was used for SI analysis instead of a USSID model. The SI crash 

simulation is also carried out for 150 ms with Figure 2.22 showing interaction of MDB 

and occupant model with stationary Dodge Neon model at different time intervals. 

 

Figure 2.22 Side impact simulations with dummy and restraint system model 

(a) t= 0 ms, (b) t= 50 ms and (c) t= 80 ms. (windshield removed to ease view). 

2.3.2.2 SI Model Validation 

Earlier, the SI analysis of Dodge Neon vehicle model was validated using 

acceleration data obtained from the vehicle model. After incorporating dummy and 
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seatbelt models into the vehicle, the interaction of dummy with vehicle was validated 

using acceleration plots of dummy responses calculated at various locations in the 

dummy model.  The dummy model consists of a total of six virtual accelerometers with 

three being at the pelvis region. To validate the overall SI simulation setup with dummy, 

the acceleration data calculated at pelvis and spine region towards the direction of impact 

were compared with the crash test data.  

Pelvis acceleration was calculated at a single node located at center of the 

accelerometer at the center of pelvis region, but for spine acceleration, several nodes of 

the part defined as spine were plotted and nodal averaging was used to plot the 

acceleration data. Figure 2.23 shows the location of pelvis and spine regions of dummy 

model where acceleration data are calculated. 

 

Figure 2.23 Acceleration response locations for SI model validation. 

 

The comparison of Y-directional acceleration plots of simulation data with test 

data is shown in Figure 2.24. It can be seen that the overall trend of the simulation data 
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matches well with the test data. In obtaining the acceleration plots, Butterworth filter with 

60 Hz frequency was used to filter out noise generated in acceleration data compared to 

the Channel Filter Class (CFC) filters used in crash test. The test data used in these plots 

are of SI test data for a 2000 Dodge Neon model compared to simulation data of a 1996 

Dodge Neon model. The SI test data of 1996 Dodge Neon model was available but was 

not considered as the impact direction and positions of dummy models were different in 

this crash test. 

 

Figure 2.24 Comparison of FE simulation data  

(a) Y-directional pelvis acceleration, (b) Y-directional spine acceleration with crash test 
data [9]. 
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For example, in 1996 Dodge Neon SI test, the impact direction is from the right 

side (passenger end) of the vehicle and the vehicle consisted of dummy models in the 

front passenger seat and right rear seat. In SI test of 2000 Dodge Neon model, the impact 

of MDB is from the left side (driver end) with a dummy in the driver seat and another in 

the left rear seat. Therefore, this test data was used to compare with simulation data, as 

the overall test setup matched with the only exception being in impact velocities. The 

simulation impact velocity is 52.5 km/h (32.6 mph), whereas the crash test impact 

velocity is 61.2 km/h (38 mph). The difference in peak values of test and simulation data 

in Figure 2.24 can be partly due to the differences in impact velocities in simulation and 

crash test and also the filtering method employed. 
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CHAPTER III 

DESIGN PROBLEM STATEMENT 

3.1 Multilevel Decomposition and Optimization 

Many complex engineering systems (e.g., automobile, airplane) consist of 

multiple interlinked subsystems that have to be designed in such a way that various 

requirements are satisfied. Such a design problem can also involve a large number of 

design variables, constraints and objectives. Therefore, instead of designing a complex 

system all at once, it may be better to decompose it into various sublevels with each 

consisting of a number of elements that can be optimized to meet the system or 

subsystem level goals. Since each element of the decomposed problem will have design 

variables specific to it, the dimensionality associated with analyzing and optimizing each 

element problem can be significantly reduced.  

Hierarchical decomposition is a technique where element specific design 

constraints and objectives are satisfied based on the inputs from lower or child elements 

depending on targets each element receives from its parent element. Figure 3.1 shows the 

basic architecture of a hierarchical decomposition. The element number ‘ij’ in the 

hierarchy is defined in such a way that ‘i’ represents the number of level in the 

decomposition and ‘j’ represents the element number in the decomposition. 

To accommodate transfer of information from parent to child elements and vise-

versa, a coordination strategy is required in the iterative solution process such that each 
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system-level objectives and constraints are each met and an optimum design is obtained. 

The Analytical target cascading (ATC) technique is a suitable optimization framework to 

accomplish this goal. 

 

Figure 3.1 A generic hierarchically decomposed multilevel system. 

 

3.1.1 Analytical Target Cascading 

ATC is a multilevel optimization approach that is used to solve design problems, 

which can be decomposed into a number of elements as shown in Figure 3.1. In ATC, 

specific targets from upper-level elements (parents) of decomposition are cascaded down 

to the connecting lower-level elements (children) and, likewise, the responses from 

lower-level elements are sent up to higher level elements as inputs [1]. Each element of 

the hierarchy consists of an optimization subproblem with element-specific design 

variables, constraints and objectives.  
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A coordination strategy is implemented such that the element optimization 

problems satisfy the overall system-level optimality criteria. This coordination strategy 

allows the values of target and response variables and also the linking variables to have 

the same final values as the solution converges to an optimum design. The linking 

variables are design variables shared between elements of each level. In ATC 

formulation, the goal of optimization process is to reduce the difference between targets 

and responses apart from meeting element specific objectives and constraints.  

In earlier ATC formulations, the goal of having consistent target-response and 

linking variables was accomplished by minimizing certain deviation tolerances subject to 

element specific design constraints. Kim et al. [2] used this formulation in designing 

chassis of a sport utility vehicle. The consistency of targets and responses is maintained 

by using a combination of equality and inequality constraints called consistency 

constraints. In recent years, quadratic penalty function formulations minimizing 

consistency constraints with help of suitable weight factors have been implemented.  

3.1.2 Basic Approach in ATC 

For a decomposed problem with N levels and M elements, the element number j 

in level i is denoted by subscripts ij. Different vectors of targets, responses and design 

variables specific to an element called as local variables are defined. The vector of target 

variables in each element is denoted by tij, response vector by rij and the vector of local 

design variables by xij. The decomposition based on this notation [3] is shown in Figure 

3.2.  
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Figure 3.2 ATC notations for elemental targets, responses and local design variables. 

 

For a decomposed problem such as that in Figure 3.2, an all-in-one (AIO) 

problem formulation can be written as [4] 

𝑚𝑖𝑛
�̅�11,…..,   �̅�𝑁 𝑀

                ∑ ∑ 𝑓𝑖𝑗  (�̅�𝑖𝑗 

𝑗∈𝐸𝑖

𝑁

𝑖=1

) 

 𝑠. 𝑡.                       𝑔𝑖𝑗  (�̅�𝑖𝑗) ≤ 0 (3.1) 

                                                                ℎ𝑖𝑗  (�̅�𝑖𝑗) = 0                

                                                           ∀ j ∈  Ei, i = 1, … , N 

where  �̅�𝑖𝑗 = [𝒙𝑖𝑗, 𝒕(𝑖+1)𝑘1
, … , 𝒕(𝑖+1)𝑘𝑛𝑖𝑗

] is a vector of decision variables and fij, gij and 

hij refer to the sets of objective, inequality constraints and equality constraints, 

respectively. Ei is the set of elements at level i. This AIO problem becomes separable by 

considering additional consistency constraints given as 
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 𝒄𝑖𝑗 = 𝒕𝑖𝑗 − 𝒓𝑖𝑗 = 0 (3.2) 

where tij and rij are vectors of targets and responses.  

These consistency constraints are added to the existing objective function to form 

a relaxed AIO problem given as [4] 

𝑚𝑖𝑛
𝒙11,…..,   𝒙𝑁 𝑀

                ∑ ∑ 𝑓𝑖𝑗  (�̅�𝑖𝑗 

𝑗∈𝐸𝑖

𝑁

𝑖=1

) +  𝜋(𝒄𝑖𝑗) 

 𝑠. 𝑡.                       𝑔𝑖𝑗  (𝒙𝑖𝑗) ≤ 0 (3.3) 

                                                              ℎ𝑖𝑗  (𝒙𝑖𝑗) = 0                

                                                           ∀ j ∈  Ei, i = 1, … , N 

where     �̅�𝑖𝑗 = [𝒙𝑖𝑗, 𝒓𝑖𝑗 , 𝒕(𝑖+1)𝑘1
, … , 𝒕(𝑖+1)𝑘𝑛𝑖𝑗

],  𝒄𝑖𝑗 = [𝒄𝑖𝑗 , … … … 𝒄𝑁𝑀] is a vector of 

inconsistencies and 𝜋(𝒄𝑖𝑗) represents the general relaxing function.  

Equation (3.3) can be decomposed into a hierarchical system with the 

optimization problem in element ij given as 

𝑚𝑖𝑛
𝒙𝑖𝑗

                𝑓𝑖𝑗(𝒙𝑖𝑗) +  𝜋(𝑐𝑖𝑗) 

 𝑠. 𝑡                       𝑔𝑖𝑗 (𝒙𝑖𝑗) ≤ 0  (3.4) 

                                                                ℎ𝑖𝑗  (𝒙𝑖𝑗) = 0                

where     �̅�𝑖𝑗 = [𝒙𝑖𝑗, 𝒓𝑖𝑗 , 𝒕(𝑖+1)𝑘1
, … , 𝒕(𝑖+1)𝑘𝑛𝑖𝑗

] is the vector of local decision variables.  

The ATC formulation differs in the way the relaxing function 𝜋(𝒄𝑖𝑗)is defined. 

Currently, ATC-based formulations can be classified into three types, i.e., Quadratic 

Penalty (QP), Ordinary Lagrangian (OL), and Augmented Lagrangian Penalty (ALP).  
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In this study, ALP based on exponential penalty function (EPF) is used. This 

approach relies on the unconstrained optimization problem formulation using method of 

multipliers suggested by Kort and Bertsekas [5]. The penalty function formulation is 

given as 

            𝑚𝑖𝑛
𝑥𝑘

                𝑓(𝑥) +  ∑ (𝜇𝑗
𝑘/𝑎𝑗

𝑘) 𝜓 (𝑟
𝑗=1 𝑎𝑗

𝑘𝑔𝑗(𝑥))   (3.5) 

where 𝜇𝑗
𝑘 and 𝑎𝑗

𝑘 are multiplier and penalty parameters.  

To apply this formulation in an ATC framework, DorMohammadi and Rais-

Rohani [4, 6] used EPF and inequality-based consistency constraints. The penalty term is 

given as 

 𝜓(𝑡) = 𝑒𝑡 − 1 = 0  (3.6) 

And the consistency constraint 𝒄𝑖𝑗 = 𝒕𝑖𝑗 − 𝒓𝑖𝑗 = 0 is modified to two inequality 

constraints given as 

𝒄𝑖𝑗 = 𝒕𝑖𝑗 − 𝒓𝑖𝑗 ≥ 0 

 𝒄𝑖𝑗 = 𝒕𝑖𝑗 − 𝒓𝑖𝑗 ≤ 0 (3.7)  

Using the EPF formulation, the decomposed problem in element ij is expressed as 
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𝑚𝑖𝑛𝒙𝑖𝑗
𝑓𝑖𝑗(𝒙𝑖𝑗) + [

𝜇𝑖𝑗

𝑎𝑖𝑗
(𝑒𝑎𝑖𝑗(𝒕𝑖𝑗−𝒓𝑖𝑗) − 1) +

𝛾𝑖𝑗

𝑏𝑖𝑗
(𝑒𝑏𝑖𝑗(𝒓𝑖𝑗−𝒕𝑖𝑗) − 1]      

+ ∑ [
𝜇(𝑖+1)𝑘

𝑎(𝑖+1)𝑘
(𝑒𝑎(𝑖+1)𝑘(𝒕(𝑖+1)𝑘−𝒓(𝑖+1)𝑘) − 1)

𝑘𝜖𝐷𝑖𝑗

+
𝛾(𝑖+1)𝑘

𝑏(𝑖+1)𝑘
(𝑒𝑏(𝑖+1)𝑘(𝒓(𝑖+1)𝑘−𝒕(𝑖+1)𝑘) − 1] 

                         𝑠. 𝑡.                       𝑔𝑖𝑗 (𝑥𝑖𝑗) ≤ 0  (3.8)  

                                                                         ℎ𝑖𝑗  (𝑥𝑖𝑗) = 0      

The multipliers in Eq. (3.8) are updated using 

𝜇𝑖𝑗
𝑘+1 = 𝜇𝑖𝑗

𝑘 𝑒𝑎𝑖𝑗
𝑘 (𝒕𝑖𝑗

𝑘 −𝒓𝑖𝑗
𝑘 ) 

 𝛾𝑖𝑗
𝑘+1 = 𝛾𝑖𝑗

𝑘 𝑒𝑏𝑖𝑗
𝑘 (𝒓𝑖𝑗

𝑘 −𝒕𝑖𝑗
𝑘 ) (3.9) 

Although the penalty parameters a and b can be updated with dependence on or 

independent of the multipliers, in this study, they are kept fixed in the iteration process.  

In solving the EPF-based ATC problem, two coordination strategies to satisfy the 

consistency constraints and updating the multipliers have been proposed [6]. In the 

double loop (EPF I) approach, the ATC problem is solved in hierarchical order within an 

inner loop, and once the inner loop convergence criterion is met, the multipliers are 

updated in the outer loop. In the single loop EPF formulation (EPF II), the ATC problem 

is solved in hierarchical order and convergence criterion is checked and multipliers are 

updated at the end of the loop. In this study, EPF II formulation is used to solve the 

decomposed problems as the computation cost of EPF II is less [6]. A tolerance value for 
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consistency constraints (i.e., the difference in target and responses of each element) is 

selected and used as the loop convergence criterion. 

3.2 Design Problem Overview 

The goal of this study is to optimize the design of a vehicle structure model along 

with ORS such that the optimized design has less weight and improved safety. To 

accomplish this goal, a multilevel, multi-objective problem using ATC technique is 

formulated with one system-level objective being a combination of injury criteria 

associated with FFI and SI and the other being the mass of selected parts of vehicle 

model in FFI and SI. Two design cases, one with crash occupant safety constraints and 

another with crash+vibration design constraints are solved. The design objectives and 

design variables considered in both cases are the same. 

A few vehicle-based and ORS-based design variables are selected depending 

upon their influence on critical responses measured. The crush or intrusion distance of 

vehicle after a crash depends on the energy absorbing capacities of the vehicle parts. To 

absorb the energy generated in a crash, each structural part should participate efficiently 

in the energy absorption process. Here, a few parts are selected based on their 

contribution to the overall energy absorption. As these parts influence energy absorption, 

they have influence on overall crush of the vehicle and, hence, influence the occupant 

injury responses. The parts contributing to energy absorption in FFI are different from SI 

with few parts influencing both crash scenarios; hence, wall thicknesses of parts specific 

to each crash scenario are selected as design variables.  

The wall thicknesses of selected vehicle parts represent the vehicle-based design 

variables and parameters of seatbelt and airbag constitute ORS-based design variables. 
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Various occupant-related responses specific to each crash scenario are selected as design 

constraints in the optimization problem. A relation between part mass and wall thickness 

is used to determine the mass of each part at different wall thickness values. This relation 

is given as 

 𝑀𝑛𝑒𝑤 = 𝑡𝑛𝑒𝑤(
𝑀𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

𝑡𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
) (3.10) 

where Mnew is new mass of the part, tnew is new wall thickness, Mbaseline is baseline mass 

and tbaseline is baseline wall thickness. 

3.2.1 Design Variables for FFI Analysis 

The selected vehicle-based design variables (defined using shell element 

definition of LS-DYNA) are the wall thicknesses of the parts shown in Figure 3.3. A total 

of 17 parts are selected, but due to symmetry in the vehicle model, the design variables 

are reduced to 11.  

Table 3.1 shows a list of parts selected as vehicle-based design variables for FFI, 

baseline wall thickness values along with the corresponding upper and lower bounds. In 

the optimization problem, the design variables are allowed to vary in the range of 50% to 

150% (as the lower and upper bounds) relative to their respective baseline values. Figure 

3.3 shows the selected parts for FFI with the symmetric parts shown in dark color.  
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Table 3.1 Vehicle-based design variables and associated values for FFI analysis. 

 

 

 

Figure 3.3 Vehicle-based design variables for FFI analysis. 
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Figure 3.4 shows the contribution of each part towards the internal energy 

absorption in an FFI analysis and Figure 3.5 shows the difference in overall energy 

absorption of the selected parts compared to the full vehicle. The selected parts contribute 

to approximately 40% of the total energy absorption of the vehicle in an FFI. The largest 

contribution comes from the front bumper’s steel beam (x2) whereas the smallest 

contribution is associated with the lower suspension frame (x10).  

 

Figure 3.4 Part specific internal energy absorption of FFI analysis. 
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Figure 3.5 Internal energy absorption of full vehicle and selected parts in FFI analysis 
(FFI_DV). 

 

Apart from vehicle-based design variables, a few variables pertaining to ORS are 

also used as design variables in FFI. These are pretensioner limit force of seatbelt (x12), 

as well as the scale factor of load curve defining mass flow rate (x13) versus time, the 

scale factor of vent orifice area (x14), and temperature of input gas (x15) pertaining to 

airbag. 

In determining the ORS design variables and their respective upper and lower 

bounds, a design sensitivity analysis was performed initially by varying the selected 

parameters individually and determining their influence on the critical occupant 

responses. The lower and upper bounds are defined such that there are no instabilities in 

the crash simulations at those values of design variables. For example, a very low mass 

flow rate or input gas temperature would hinder the airbag inflation and could cause more 
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injury to the occupant as there would be insufficient volume of gas inside the airbag. On 

the other hand, a very high mass flow rate would make the airbag stiff and hard causing 

the occupant head to bounce back after impact, thus, increasing the head acceleration.  

Table 3.2 ORS-based design variables and associated values for FFI analysis. 

 

 

3.2.2 Design Variables for SI Analysis 

Similar to the design variables selected for the FFI analysis, major parts 

contributing towards internal energy absorption in a SI analysis are selected and the 

corresponding wall thickness values are treated as design variables. A total of 12 parts are 

selected and due to symmetry in a few parts, the design variables are reduced to 9. Within 

these design variables, three design variables also belong to FFI design as a few parts are 

important in both crash scenarios. These parts are the A-pillar, outer cabin and front floor 

panel. The list of vehicle-based design variables considered in SI analysis along with 

their respective upper bound, lower bound and baseline thickness values is shown in 

Table 3.3. In order to have a consistent sequence of design variables in the optimization 



 

56 

problem, and since FFI design variables are identified by x1-x15, the design variables 

specific to SI analysis are denoted as x16- x21, with x1, x4 and x5 being common in both 

FFI and SI analyses. Figure 3.6 shows all the parts selected as vehicle-based design 

variables for SI analysis. 

Table 3.3 Vehicle-based design variables in SI analysis. 

 

 

 

Figure 3.6 Vehicle-based design variables for SI analysis. 
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The contribution to internal energy absorption by each part selected in SI analysis 

is shown in Figure 3.7. The greatest energy absorption is associated with the outer cabin 

(x5) with the least contribution coming from the roof (x21). 

 

Figure 3.7 Part specific internal energy absorption in SI analysis. 

 

Figure 3.8 shows energy absorption of the whole vehicle compared to the energy 

absorbed by the selected parts in SI. The overall internal energy contribution of the 

selected parts is approximately 38% of that for the whole vehicle.  
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Figure 3.8 Internal energy absorption of whole vehicle and selected parts in SI 
analysis (SI_DV). 

 

In SI analysis, since the same dummy model as that in FFI is used, the seatbelt 

design variable (x12) of FFI is also considered in SI with the same upper and lower 

bounds. No airbags are present in SI analysis; therefore, the seatbelt limit force is the 

only design variable considered in ORS of SI analysis. Therefore the total numbers of 

design variables considered for SI are 10 with 9 being vehicle-based and one ORS-based. 

3.2.3 Design Responses 

In both FFI and SI analyses, a number of occupant related design responses at 

various locations of the occupant model are evaluated. The internal energy absorption of 

parts obtained in both FFI and SI analysis is the only vehicle-based response in the design 

problem. There are a total of seven occupant-based responses in FFI and four in SI 

analyses. 
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The occupant-based responses in FFI analysis are Head Injury Criterion (HIC), 

C3ms thorax criterion (C3ms), Head Acceleration (HA), Chest Acceleration (CA), Chest 

Deflection (CD), and both Left Femur (FL) and Right Femur (FR) forces. A 60-Hz 

Butterworth filter is used for acceleration responses and femur forces to filter out noise.  

HIC is a very important FFI response as it is a measure of occupant’s head injury 

and the calculation of HIC is based on the time interval of crash during which the risk of 

injury is high. HIC is calculated using a time interval ranging from 15 ms to 36 ms after 

impact. In this study, the 36 ms time interval is used as per actual crash test [7]. The 

equation representing HIC calculation is given as 

 𝐻𝐼𝐶 = 𝑚𝑎𝑥 [
1

(𝑡2−𝑡1)
∫ 𝑎(𝑡)𝑑𝑡

𝑡2

𝑡1
]

2.5
(𝑡2 − 𝑡1) (3.11) 

where a(t) is the filtered resultant head acceleration varying from time t1 = 0 ms to t2 = 36 

ms. HIC is measured directly in post processing tool of LS-DYNA (LS-PrePost) using a 

node at center of an virtual accelerometer defined at center of dummy model’s head.  

Head acceleration response is calculated at the same node as HIC and the 

resultant of directional accelerations is used as response. C3ms thorax criterion is the 

maximum of average chest acceleration calculated within 3-ms time interval of FFI 

analysis. Chest acceleration is calculated at a node at the center of virtual accelerometer 

defined at the center of the chest region. Similar to head acceleration, the resultant of 

chest directional accelerations is used as a response. Chest deflection is evaluated by 

measuring the overall deflection of spring running from sternum to spine of the dummy 

model.  Femur forces are calculated using joints defined between the lower leg and femur 

bone. The compressive forces obtained in longitudinal direction of both left and right 
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femur bones are selected as responses. Figure 3.9 shows the locations where occupant 

responses are calculated. The selected FFI analysis responses are crucial for determining 

the overall injury to the occupant. 

 

Figure 3.9 Location of FFI occupant responses. 

 

The Weighted Injury Criterion (WIC) [8] is a good measure of occupant injury in 

frontal impacts. This criterion employs certain weights given to each response depending 

on its significance to overall occupant injury and is based on the limits provided by 

FMVSS 208 frontal impact injury standards. To have better occupant safety, this criterion 

is required to be as low as possible. The WIC is given as 

 𝑊𝐼𝐶 = 0.6 (
𝐻𝐼𝐶

1000
) + 0.35 (

𝐶3𝑚𝑠

60
) + 0.025 (

𝐹𝐿

1000
) + 0.025 (

𝐹𝑅

1000
) (3.12) 
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where HIC, C3ms, FL, FR responses are normalized with the corresponding FMVSS limits 

and the coefficient of each term represents the weight given [8] to that response in 

determining the overall occupant injury. This equation is used later as part of the 

objective function in the vehicle optimization problem. Table 3.4 shows the occupant 

responses obtained for the FFI simulation of the baseline vehicle + dummy model along 

with the associated FMVSS limits. FFI_IE in table 3.4 corresponds to internal energy 

absorption of parts selected as vehicle based design variables in FFI analysis.  

The Weighted Injury Criterion (WIC) [8] is a good measure of occupant injury in 

frontal impacts. This criterion employs certain weights given to each response depending 

on its significance to overall occupant injury and is based on the limits provided by 

FMVSS 208 frontal impact injury standards. To have better occupant safety, this criterion 

is required to be as low as possible. The WIC is given as 

 𝑊𝐼𝐶 = 0.6 (
𝐻𝐼𝐶

1000
) + 0.35 (

𝐶3𝑚𝑠

60
) + 0.025 (

𝐹𝐿

1000
) + 0.025 (

𝐹𝑅

1000
) (3.12) 

where HIC, C3ms, FL, FR responses are normalized with the corresponding FMVSS limits 

and the coefficient of each term represents the weight given [8] to that response in 

determining the overall occupant injury. This equation is used later as part of the 

objective function in the vehicle optimization problem. Table 3.4 shows the occupant 

responses obtained for the FFI simulation of the baseline vehicle + dummy model along 

with the associated FMVSS limits. FFI_IE in table 3.4 corresponds to internal energy 

absorption of parts selected as vehicle based design variables in FFI analysis.  
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Table 3.4 FFI Baseline responses and FMVSS limits. 

 

 

Similar to FFI analysis, a few occupant responses and one vehicle-based response 

are selected for SI analysis. The four occupant-based responses are: Upper Rib (UR) and 

Lower Rib (LR) Accelerations, Spine Acceleration, and Pelvis Acceleration. Internal 

energy absorption is the only vehicle-based response. The upper and lower rib 

accelerations are calculated at 12 nodes and nodal averaging is used to find the 

corresponding peak values. In this study, the average peak value of upper and lower rib 

accelerations is used as a single rib acceleration response. Spine acceleration is calculated 

at a total of 35 nodes of the part defined as spine in the occupant model and nodal 

averaging is used to determine the response value. Similar to rib accelerations, the peak 

value of average acceleration of 35 nodes is selected as a response. Since a virtual 

accelerometer is present in the pelvis region, pelvis acceleration is calculated at center 

node of the accelerometer. The acceleration responses calculated at different locations of 

occupant in SI are Y-directional accelerations measured in the direction of side impact. 
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Similar to FFI analysis responses, a 60-Hz Butterworth filter is used to filter out noise 

from acceleration responses. 

 

Figure 3.10 SI analysis response locations. 

 

The Thoracic Trauma Index (TTI) is the injury criterion defined under FMVSS 

214 of side impact protection [9], and it is used as part of the objective function with a 

goal of injury reduction. The TTI is given as 

 𝑇𝑇𝐼 = 0.5(𝑅𝑖𝑏𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 + 𝑆𝑝𝑖𝑛𝑒𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑖𝑜𝑛 ) (3.13) 

Similar to FFI injury criterion, FMVSS 214 safety standard of SI has defined the 

maximum allowable limit for TTI to be 85 g’s. Table 3.5 shows the baseline responses of 

SI analysis where SI_DV corresponds to internal energy absorption of vehicle based 

design variables of SI analysis. 
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Table 3.5 SI baseline responses. 

 

 

In the design problem with the vibration criteria included, the frequencies of first 

three flexible modes (Freq1-Freq3) are considered as design responses. These modes 

represent the first torsion, first bending and a mixed torsion-bending mode. The baseline 

values of these three responses are given in Table 3.6. 

Table 3.6 Baseline response of vibration design. 
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3.3 Vehicle Design Optimization Problems 

3.3.1 Crash-Based Design 

The objective of this design problem is to reduce the overall occupant injury in 

both FFI and SI and also to obtain a lighter vehicle design without compromising 

occupant safety and vehicle crashworthiness. A combination of FFI and SI injury criteria 

are used to form a composite objective function and the variables associated with this 

function are treated as design targets. Since the objective function depends on both FFI 

and SI occupant safety requirements, a multilevel decomposition approach is used to 

optimize the vehicle model for occupant safety and crashworthiness in both FFI and SI.  

The general optimization framework of this multilevel decomposition is shown in 

Figure 3.11. The element notation of decomposition shown in Figure 3.11 is in 

accordance with the hierarchical decomposition shown in Figure 3.1. The element 11 of 

the decomposition minimizes the overall injury criterion in both FFI and SI. In the second 

level, vehicle and occupant restraint design variables are adjusted to match the injury 

criteria set in level 1 and also to minimize weight of the parts specific to FFI in element 

22 and SI in element 23. The total number of design variables in this case is 21 with 15 

design variables in element 22 and 10 in element 23. Three design variables are common 

in element 22 and 23; hence, they are treated as linking variables. Table 3.7 shows all the 

design variables considered in the crash-based design case. 
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Figure 3.11 Overview of crash-based design problem. 
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Table 3.7 Design variables of crash-based design case. 

 

 

A total of eight design constraints for FFI and five for SI are considered as shown 

in Table 3.8. The design constraints g1(x) through g7(x) pertain to FFI occupant response, 

which should not exceed the corresponding baseline values and g8 is internal energy of 

parts in FFI required to be no less than the baseline value. Constraints g9(x) through g12(x) 

are occupant responses from the SI analysis, which cannot exceed the respective baseline 

values and g13(x) corresponds to internal energy absorption of parts specific to SI crash 

analysis. 



 

68 

Table 3.8 Design constraints of crash-based design case. 

 

 

The objective function used in element 11 is a combination of injury criteria in 

FFI and SI analyses. The Weighted Injury Criterion (WIC) is used for FFI analysis and 

TTI for SI analysis.  The WIC and TTI consist of important crash responses that 

contribute to the overall occupant injury and are normalized by the corresponding 

FMVSS limits for FFI and SI. As the baseline occupant responses in both FFI and SI 

analyses are within the FMVSS limits, the WIC and TTI equations are modified by 

normalizing the occupant responses by the baseline response values instead of the 

FMVSS limits. The coefficients of occupant responses in WIC and TTI are the weights 

given to each response depending on its effect on the overall occupant injury criterion. 

Since a combination of WIC and TTI is used as the objective function, equal weights are 

given to WIC and TTI, and the coefficients of the injury criteria are changed accordingly. 

Thus, the modified objective function of element 11 is given as 
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 𝑚𝑖𝑛 𝑓1(𝑥) = 0.3 (
𝐻𝐼𝐶

711.1
) + 0.175 (

𝐶3𝑚𝑠

53.01
) + 0.0125 (

𝐿𝐹

4692.4
) + 0.0125 (

𝑅𝐹

4317
)  +

                                      
 0.25

2
(

𝑈𝑅

69.74
+

𝐿𝑅

58.82
) + 0.25 (

𝑆𝑝𝑖𝑛𝑒𝐴𝑐𝑐𝑒𝑙

64.89
)  (3.14) 

The occupant responses in Equation (3.14) are treated as targets cascaded down to 

elements 22 and 23, where the element objective function includes mass calculation of 

the parts specific to each element. The targets cascaded from the top level are met by 

performing optimization in each element using the EPF II formulation. A more detailed 

decomposition of the design problem based on ATC is shown in Figure 3.12. Since 

exponential formulation (EPF II) is used, all the constraints are normalized by their 

baseline values and the design variables are normalized by their upper bounds. The 

element specific constraints are denoted by symbol gi and the normalized constraints are 

denoted by gi’. Since in the current decomposition, the decision variables related to the 

injury index are part of the dummy responses evaluated as constraints in the lower level, 

the normalized dummy responses in the upper level are denoted by G’i instead. Each 

elemental subproblem has been defined as ‘Pij’ were ‘ij’ follows the element notation 

used for decomposed problems. 
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Figure 3.12 Decomposed crash-based design problem. 
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In the decomposition shown in Figure 3.12, the occupant responses 

𝐺′1, 𝐺′2, 𝐺′6, 𝐺′7 of FFI and 𝐺′9, 𝐺′10, 𝐺′11 of SI along with design variables x1, x4, x5, 

and x12 are treated as the decision variables of element 11 and denoted by vector 𝒙11. In 

element 11, t22 and t23 are vectors of target variables cascaded down to elements 22 and 

23, respectively. The objective function of element 11 is optimized initially and the 

corresponding optimum values of variables are sent to the lower level as targets. 

𝐺′1, 𝐺′2, 𝐺′6, 𝐺′7 are sent to element 22 and 𝐺′9, 𝐺′10, 𝐺′11 are sent to element 23. 

tL22 and tL23 are target vectors consisting of linking variables (x1, x4, x5, and 

x12) shared by elements 22 and 23. In elements 22 and 23, the functions f(x1-11) and 

f(x1,4,5,16-21) involve mass calculation, hence, they are dependent on part thicknesses. 

The vectors r22 and r23 are element specific response values of the target variables, 

whereas rL22 and rL23 are response values of the linking variables. 𝒙22 and 𝒙23 are local 

decision variables vectors of element 22 and 23, respectively. The local decision variable 

vector consists of all the variables that are used in evaluation of element specific 

objectives and constraints. x22 and x23 are vectors of local design variables which are 

specific to elements 22 and 23, respectively. The relaxation function π in each element 

consists of consistency constraints denoted by vector c, representing the differences 

between targets and responses as well as the linking variables; therefore, the solution 

converging to an optimum design would satisfy all the element specific objectives and 

design constraints. 

The AIO problem formulation of the decomposition shown in Figure 3.12 is given 

as  
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𝑚𝑖𝑛 𝑓 =   0.3 (𝐺′
1) + 0.175(𝐺′

2) + 0.0125(𝐺′
6) + 0.0125(𝐺′

7)  

     +0.125(𝐺′
9) + 0.125(𝐺′

10) + 0.25(𝐺′
11) 

    +𝑓 (𝑥1𝑠2, 𝑥4𝑠2, 𝑥5𝑠2, 𝑥12𝑠2, 𝑥6−11) + 𝑓(𝑥1𝑠3, 𝑥4𝑠3, 𝑥5𝑠3, 𝑥16−21) 

    +𝜋{(𝐺1
′ − 𝑔1

′ ), (𝐺2
′ − 𝑔2

′ ), (𝐺6
′ − 𝑔6

′ ), (𝐺7
′ − 𝑔7

′ ), (𝐺9
′ − 𝑔9

′ ), (𝐺10
′ − 𝑔10

′ ), 

     (𝐺11
′ − 𝑔11

′ ), (𝑥1𝑒1 − 𝑥1𝑒2), (𝑥1𝑒1 − 𝑥1𝑒3), (𝑥4𝑒1 − 𝑥4𝑒2), (𝑥4𝑒1 − 𝑥4𝑒3), 

     (𝑥5𝑒1 − 𝑥5𝑒2), (𝑥5𝑒1 − 𝑥5𝑒3), (𝑥12𝑒1 − 𝑥12𝑒2), (𝑥12𝑒1 − 𝑥12𝑒3) 

𝑠. 𝑡.           𝑔1,2,6,7
′ (𝑥1𝑒2, 𝑥2, 𝑥3, 𝑥4𝑒2−5𝑒2, 𝑥6−11, 𝑥12𝑒2, 𝑥13−15) − 1 ≤ 0 

 𝑔3,4,5
′ (𝑥1𝑒2, 𝑥2, 𝑥3, 𝑥4𝑒2−5𝑒2, 𝑥6−11, 𝑥12𝑒2, 𝑥13−15) − 1 ≤ 0 

 𝑔8
′ (𝑥1𝑒2, 𝑥2, 𝑥3, 𝑥4𝑒2−5𝑒2, 𝑥6−11, 𝑥12𝑒2, 𝑥13−15) − 1 ≥ 0 

  𝑔9,10,11
′ (𝑥1𝑒3, 𝑥4𝑒3−5𝑒3, 𝑥12𝑒3, 𝑥16−15) − 1 ≤ 0 

 𝑔12
′ (𝑥1𝑒3, 𝑥4𝑒3−5𝑒3, 𝑥12𝑒3, 𝑥16−15) − 1 ≤ 0 

  𝑔13
′ (𝑥1𝑒3, 𝑥4𝑒3−5𝑒3, 𝑥12𝑒3, 𝑥16−15) − 1 ≥ 0 

                                                 with           xL  ≤  x ≤  xU             (3.15) 

3.3.2 Crash+Vibration-Based Design 

For a more realistic design, vibration requirements are also included in the design 

problem by considering frequency responses of the vibration model as design constraints. 

The general optimization framework is shown in Figure 3.13. In Figure 3.13, design 

constraints g14-16(x) are frequencies of the first three flexible modes obtained from 

vibration analysis of the model shown in Figure 2.17 in Chapter 2. The part wall 

thicknesses selected in FFI and SI analyses are considered as design variables except the 

front bumper, along with upper and lower suspension frames are not included in the 

vibration model. 
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Figure 3.13 Design problem with crash and vibration design criteria. 

 

These vibration constraints are added in the first level of the multilevel 

decomposition such that vehicle model is first designed for vibration characteristics and 

then the resulting design is cascaded down as target to fulfill the FFI and SI crash 

analyses requirements.   

Similar to the crash-based design problem, responses associated with FFI and SI 

are considered as constraints in elements 22 and 23, injury criterion defined by Equation 

3.14 is selected as objective function of element 11, whereas the mass of parts specific to 

FFI analysis and SI analysis are selected as objective functions of elements 22 and 23, 

respectively.  Table 3.9 shows all the responses considered in this design problem 

together with the corresponding baseline values. All crash responses except internal 

energy absorption are required to be less than their respective baseline values. 
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Table 3.9 Design constraints of crash-vibration-based design case. 

 

 

The constraints associated with the vibration characteristics (i.e., g14-16 (x)) are 

required to be no less than their baseline values, as greater frequency indicates increased 

structural rigidity of the vehicle. A more detailed decomposition based on ATC is shown 

in Figure 3.14. It should be noted that the design constraints and design variables in all 

elements are normalized similar to the crash-based design problem. 

As noted in Figure 3.14, since the vibration responses in element 11 depend on 

variables 𝐺′1, 𝐺′2, 𝐺′6, 𝐺′7, 𝐺′9, 𝐺′10, 𝐺′11, and x1,3-9,16-21, these design variables are 

optimized in this element, and then cascaded down to elements 22 and 23 as targets. This 

is evident from target and response vectors t22, t23, r22, and r23. 
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Figure 3.14 Decomposition of crash+vibration-based design case. 

 



 

76 

In the crash-based design problem, a total of seven targets (four to element 22 and 

three to element 23) were cascaded down, but in this case, a total of 18 targets (nine to 

each element of the lower level) are cascaded down. Element 22 and 23 design 

constraints are occupant responses in FFI and SI analyses, similar to the cash-based 

design case. The design variables x1,4,5,12 are linking variables shared between elements 

22 and 23. The design variables x13-15 pertaining to airbag and x2, x10, x11 associated with 

the front bumper and suspension frames are local design variables of element 22 given as 

local design vector x. Element 23 does not have any local variables as all the design 

variables of SI are either part of the target vector or linking variables.  

The AAO formulation for the decomposed problem shown in Figure 3.14 is given 

as 

𝑚𝑖𝑛 𝑓 =   0.3 (𝐺′
1) + 0.175(𝐺′

2) + 0.0125(𝐺′
6) + 0.0125(𝐺′

7)  

                +0.125(𝐺′
9) + 0.125(𝐺′

10) + 0.25(𝐺′
11) 

                +𝑓 (𝑥1𝑠2, 𝑥4𝑠2, 𝑥5𝑠2, 𝑥12𝑠2, 𝑥6𝑠2−11𝑠2) + 𝑓(𝑥1𝑠3, 𝑥4𝑠3, 𝑥5𝑠3, 𝑥16𝑠3−21𝑠3) 

                +𝜋{(𝐺1
′ − 𝑔1

′ ), (𝐺2
′ − 𝑔2

′ ), (𝐺6
′ − 𝑔6

′ ), (𝐺7
′ − 𝑔7

′ ), (𝐺9
′ − 𝑔9

′ ), (𝐺10
′ − 𝑔10

′ ), 

                (𝐺11
′ − 𝑔11

′ ), (𝑥1𝑒1 − 𝑥1𝑒2), (𝑥1𝑒1 − 𝑥1𝑒3), (𝑥3𝑒1 − 𝑥3𝑒2), (𝑥4𝑒1 − 𝑥4𝑒2), 

                (𝑥4𝑒1 − 𝑥4𝑒3), (𝑥5𝑒1 − 𝑥5𝑒2), (𝑥5𝑒1 − 𝑥5𝑒3), (𝑥6𝑒1 − 𝑥6𝑒2), (𝑥7𝑒1 − 𝑥7𝑒2), 

                (𝑥8𝑒1 − 𝑥8𝑒2), (𝑥9𝑒1 − 𝑥9𝑒2), (𝑥12𝑒1 − 𝑥12𝑒2), (𝑥12𝑒1 − 𝑥12𝑒3), (𝑥16𝑒1 − 𝑥16𝑒3) 

                (𝑥17𝑒1 − 𝑥17𝑒3), (𝑥18𝑒1 − 𝑥18𝑒3), (𝑥19𝑒1 − 𝑥19𝑒3), (𝑥20𝑒1 − 𝑥20𝑒3), 

                (𝑥21𝑒1 − 𝑥21𝑒3)}  

𝑠. 𝑡.           𝑔1,2,6,7
′ (𝑥1𝑒2, 𝑥2, 𝑥3𝑒2−9𝑒2, 𝑥10, 𝑥11, 𝑥12𝑒2, 𝑥13−15) − 1 ≤ 0 

                  𝑔3,4,5
′ (𝑥1𝑒2, 𝑥2, 𝑥3𝑒2−9𝑒2, 𝑥10, 𝑥11, 𝑥12𝑒2, 𝑥13−15) − 1 ≤ 0 

                      𝑔8
′ (𝑥1𝑒2, 𝑥2, 𝑥3𝑒2−9𝑒2, 𝑥10, 𝑥11, 𝑥12𝑒2, 𝑥13−15) − 1 ≥ 0 
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          𝑔9,10,11
′ (𝑥1𝑒3, 𝑥4𝑒3−5𝑒3, 𝑥12𝑒3, 𝑥16𝑒3−15𝑒3) − 1 ≤ 0 

                𝑔12
′ (𝑥1𝑒3, 𝑥4𝑒3−5𝑒3, 𝑥12𝑒3, 𝑥16𝑒3−15𝑒3) − 1 ≤ 0 

                𝑔13
′ (𝑥1𝑒3, 𝑥4𝑒3−5𝑒3, 𝑥12𝑒3, 𝑥16𝑒3−15𝑒3) − 1 ≥ 0 

                     𝑔14−16
′ (𝑥1𝑒1, 𝑥3𝑒1−9𝑒1, 𝑥16𝑒1−21𝑒1) − 1 ≥ 0 

            with        𝐱L  ≤  𝐱 ≤  𝐱U         (3.16) 

The solution process involving ATC for two different design problems i.e. crash-

based and crash+vibration-based discussed in this chapter is shown in subsequent 

chapters of this thesis. 
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CHAPTER IV 

RESPONSE SURFACE APPROXIMATION 

A single nonlinear transient dynamic FEA for FFI or SI simulation of the full 

vehicle model, with interiors and occupant as described in Chapter 2, would take 3-6 

hours of CPU time using IBM cluster with four 6-core Intel X5660 processors and 48 GB 

of RAM. In the numerical solution of an optimization problem, the objective functions 

and constraints are evaluated at different design points governed by the bounds of design 

variables and the optimization technique used. Direct integration of crash simulations 

with numerical optimization is often impractical as the cost associated with running crash 

simulations at each design point is very high.  To reduce the high computation costs of 

vehicle optimization problems, the desired objective and constraint functions are 

approximated using analytical functions called metamodel or surrogate model. These 

surrogate models would then be used in lieu of FEA in evaluating the candidate designs 

during the optimization process. 

The surrogate models are built using simulation or experimental results at a 

specific number of design (training) points identified using a Design of Experiments 

(DOE) technique. The resulting DOE table consists of the design variable values and the 

corresponding response values at different design points. These design points are 

distributed over the design space defined by bounds of design variables using a sampling 

technique. Depending on the response of interest and its variation over the feasible design 
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space, a uniform or non-uniform sampling technique may be used. Taguchi orthogonal 

array and Latin Hypercube Sampling (LHS) are two of the commonly used sampling 

techniques in automotive design [1-7].  

Once the training points are generated and the DOE table is built, the next step is 

to pick the appropriate form of the surrogate model. The selection of the surrogate model 

depends on the nonlinearity of the response and the number of sample points in the DOE 

table. There are different types of surrogate models based on the function form; for 

example, Polynomial Response Surface (PRS), Radial Basis Function (RBF), Gaussian 

Process (GP), Kriging (KR), and Optimized Ensemble of metamodels (ENS) have been 

used for surrogate modeling in the literature [1-7, 8, 9]. Each metamodel can be tuned to 

enhance its prediction accuracy by adjusting the tuning parameters, model fidelity (e.g., 

increasing the degree of polynomial in PRS) and/or the number of training points. 

4.1 Radial Basis Function 

Fang et al. [8] and others [6, 10] have shown that RBF is accurate in 

approximating a nonlinear crash response such as acceleration. In this study, RBF 

surrogate models are used to predict all crash and vibration responses.  

RBF uses the Euclidian distance of a design point from all the sampling points to 

formulate a relation between design variables and responses in the DOE table. The RBF 

surrogate model is expressed as [8, 9] 

 𝑓′(𝑥) =  ∑ 𝜆𝑘
𝑁
𝑖=1  𝜙 (∥ 𝑥 − 𝑥𝑘 ∥) (4.1) 

where 𝑓′(𝑥) is the predicted response, N represents the number of training points, λk 

represents the coefficient associated with kth term of RBF, 𝜙 is the type of RBF used and  
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∥ 𝑥 − 𝑥𝑘 ∥ represents the Euclidean distance between design point x and kth training point 

xk. The summation in equation (4.1) denotes that the cost associated with RBF depends 

on the number of training points used.  

In RBF, all the design points should be normalized to the range of 0 to 1. This can 

be done by dividing each design variable by the corresponding maximum value in the 

DOE table.  

There are different types of RBFs; some of the commonly used functions are as 

follows: 

1) Thin-Plate spline: 𝜙 (𝑟) =  𝑟2ln (𝑐𝑟) 

2)  Gaussian: 𝜙 (𝑟) =  exp (−𝑐 𝑟2) 

3) Multiquadric: 𝜙 (𝑟) =  √𝑟2 + 𝑐2 

4) Inverse Multiquadric: 𝜙 (𝑟) =  1/√𝑟2 + 𝑐2   

where ‘c’ is the tuning parameter with a range of 0 ≤ c ≤ 1. The choice of basis function 

and tuning parameter are very important in formulating an accurate RBF model as the 

response of interest can be very sensitive to these choices, and the best combination of 𝜙 

and c would maximize the accuracy of the resulting response metamodel.  

The coefficients (λi, i = 1, N) in equation (4.1) are obtained by minimizing the 

sum of squares of the deviations given as  

 𝑅 = ∑ [𝑓(𝑥𝑗) − ∑ 𝜆𝑖𝜙(∥ 𝑥𝑗 − 𝑥𝑖 ∥)𝑁
𝑖=1 ]

2𝑁
𝑗=1  (4.2) 

or in matrix form expressed as 

 [A] {λ} = [F] (4.3) 

where [A] = 𝜙(∥ 𝑥𝑗 − 𝑥𝑖 ∥), and λi is determined by solving equation (4.3). 
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In RBF, the approximate function passes through all the training points used to 

formulate the surrogate model. Hence, any error statistic used to assess the accuracy of an 

RBF surrogate model must consider this characteristic. 

4.2 Surrogate Models of Design Responses 

Since crash responses are highly nonlinear, their respective surrogate models are 

based on a total of 100 training points defined using LHS technique, whereas the 

vibration response surrogate models are based on 40 LHS-based training points.  

Once the surrogate models are built, the accuracy of each model is tested using 

ten randomly selected design points together with the baseline design. These 11 design 

points are referred to as the test points. The error in each surrogate model is determined 

by calculating the percentage difference in surrogate prediction compared to the true 

response obtained from FE simulations. In RBF, since the approximate function passes 

through each training point, the error at each test point depends on its location relative to 

the neighboring training point. The test points that are far away from any of the training 

points will have more error than points that are nearby. Therefore, the average error of all 

the test points is used as an overall error metric in fitting each surrogate model.  

The value of the tuning parameter c is varied from 0 to 1 with a step size of 0.01, 

and the RBF metamodels are tuned by calculating average error for different 

combinations of basis functions and the tuning parameter. The best combination with 

least average error is used as the final response metamodel in the subsequent design 

optimization analysis. The expression for average error is given as 

 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝐸𝑟𝑟𝑜𝑟 = ∑ |100 
𝑦𝑖,𝑡𝑟𝑢𝑒−𝑦𝑖,𝑅𝐵𝐹

𝑦𝑖,𝑡𝑟𝑢𝑒
| /𝑁  𝑁

𝑖=1   (4.4) 
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where 𝑦𝑖,𝑡𝑟𝑢𝑒 is the actual response value obtained from the FE simulation at the ith test 

point and 𝑦𝑖,𝑅𝐵𝐹 is the approximate response value predicted by the RBF metamodel at 

the same point. N is the number of test points used. 

Table 4.1 shows the type of RBF, tuning parameter value and the average percent 

error for each response surrogate model considered in this study. The surrogate model of 

right femur has the maximum average error of 16.7% whereas the third natural frequency 

response (i.e., frequency of torsion-bending mode) has the least error at 1.01%. 

Table 4.1 Type of RBF, tuning parameter value and average percent error for each 
response surrogate model. 
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The average error among all the surrogate models is 6.3%. It is evident from 

Table 4.1 that the surrogate models of crash responses have more error than the 

frequency responses, even though the number of training points used for the crash 

responses is 150% greater (i.e., 100 compared to 40). This difference can be due to the 

high nonlinearity observed in the crash responses and that each crash response represents 

a locally defined metric, whereas vibration frequency is a more global measure. The 

accuracy of crash surrogate models can be improved further by increasing the number of 

training points, but to limit the computation effort, the number of training points is 

limited to 100.   

Table 4.2 shows the surrogate model percent error at the baseline design point. 

The average error in the baseline responses is 5% as compared to the average error of 

6.3% over the entire 11 test points. It can also be noted that the surrogate error for most 

of the baseline responses is less than 6.3%, indicating that the baseline design point is 

closer to one of the training points and that a few test points are farther away, hence, 

increasing the overall average error. 
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Table 4.2 Surrogate model prediction error at the baseline design point. 
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CHAPTER V 

DESIGN OPTIMIZATION RESULTS AND DISCUSSION 

The decomposed multilevel optimization framework and the two vehicle design 

problems presented in Chapter 4 are setup in VisualDOC [1] optimization tool with data 

transfer and exchange of values between different element optimization problems 

coordinated using the data-linking interface of VisualDOC.  An equation component can 

be added into the VisualDOC optimizer to read constraints and objective functions, but 

due to the limit on the number of characters allowed in each equation, a built-in 

MATLAB [2] component was used to solve the large response equations obtained from 

surrogate modeling. Therefore, the constraint and objective functions are calculated in 

MATLAB component and the corresponding results are fed to the optimization 

component.  

Sequential Quadratic Programming (SQP) [3] is used to solve each constrained 

optimization problem. As a gradient-based optimizer, SQP consists of a direction-finding 

step and a one-dimensional search step. The first step focuses on finding the best search 

direction at a selected design point, whereas the second part determines the optimum step 

size along the calculated search direction. This two-step process is repeated until a local 

optimum point is found. 

For the search direction calculation, the original nonlinear optimization problem 

is transformed into a quadratic-programming subproblem with the objective function 
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approximated by a quadratic function and the constraints approximated by linearized 

functions. The resulting convex-programming problem formulation for finding the 

components of the search direction vector 𝒅 is expressed as  

                                               min    𝑄(𝒅, 𝑿) = ∇𝑓(𝑿𝑘)𝑇𝒅𝑘 + 0.5𝒅𝑘𝑇
𝐵𝑘𝒅𝑘 

 s.t.     𝛽𝑗𝑔𝑗(𝑿𝑘) + ∇𝑔𝑗(𝑿𝑘)𝑇𝒅𝑘  ≤ 0;        𝑗 = 1 … 𝑁𝑔 (5.1) 

                             �̅�ℎ𝑗(𝑿𝑘) + ∇ℎ𝑗(𝑿𝑘)𝑇𝒅𝑘  = 0;        𝑗 = 𝑁𝑔 + 1 … 𝑁𝑔 + 𝑁ℎ 

where 𝑿𝑘 represents the coordinates of the design point at kth iteration step, f is the 

original objective function with gj inequality constraints, hj equality constraints, Ng and 

Nh are number of inequality and equality constraints, B as a positive definite 

approximation of the Hessian matrix of the Lagrange function, 0 ≤ 𝛽𝑗 ≤ 1 and �̅� = 0.9 . 

The gradient vectors are denoted by the symbol ∇( ), with ( ) representing the function 

being differentiated. Equation (5.1) may be solved by considering only the active and 

violated design constraints using the Lagrange multiplier method, with the Lagrange 

function expressed as  

 �̅�(𝒅, 𝜆) = 𝑄 + ∑ 𝜆𝑗(𝛽𝑗𝑔𝑗 + ∇𝑔𝑗
𝑇𝒅 + 𝑠𝑗

2) + ∑ 𝜆𝑁𝑔+𝑚
(�̅�ℎ𝑚 + ∇ℎ𝑚

𝑇 𝒅
𝑁ℎ
𝑚=1 )

𝑁𝑔

𝑗=1
 (5.2) 

The step size, α is calculated by minimizing the penalty function given as 

 𝜙(𝑋(𝑘+1)) = 𝜙(𝛼𝑘) = 𝑓(𝛼𝑘) + ∑ 𝜇𝑗
(𝑘)

{𝑚𝑎𝑥[0, 𝑔𝑗(𝛼𝑘)]} + ∑ 𝜇𝑁𝑔+𝑚

(𝑘)𝑁ℎ
𝑚=1

𝑁𝑔

𝑗=1
|ℎ𝑚(𝛼𝑘)|  (5.3) 

 Once α is found, the design point X(k) is updated as 

 X(k+1) = X(k) + αk d(k (5.4)  
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If the original nonlinear optimization problem is non-convex, the solution 

obtained from SQP depends on the choice of initial design point. Thus, it is common to 

use multiple randomly selected initial design points to increase the chances of finding a 

superior local optimum or possibly the global optimum design point. 

5.1 Crash-Based Design Problem 

The decomposition shown in chapter 3 consisted of an optimization problem at 

each element of the decomposition. Since the design case had three elements, three 

optimization problems are defined individually at each element with local objectives, 

design variables and constraints. The exchange of information between all the elements 

such as targets and responses between elements are coordinated using ATC approach by 

denoting the variables shared in different elements by an element number ‘ei’.  The 

element specific sub problems are given below by equation 5.6. 

P11      
           𝑀𝑖𝑛       𝑓11 = 0.3 (𝐺′

1) + 0.175(𝐺′
2) + 0.0125(𝐺′

6) + 0.0125(𝐺′
7) 

 
                                     +0.125(𝐺′

9) + 0.125(𝐺′
10) + 0.25(𝐺′

11) 

                                      +𝜋 {(𝒕22 − 𝒓22), (𝒕𝐿22 − 𝒓𝐿22), (𝒕23 − 𝒓23), (𝒕𝐿23 − 𝒓𝐿23)}   
          
             𝑠. 𝑡.         0 ≤ 𝐺′

𝑖 ≤ 1; 𝑖 = 1, 2, 6, 7, 9, 10, 11 

             𝒙𝐿 ≤ 𝒙 ≤ 𝒙𝑈   where 𝒙 = [𝑥1,4,5,12] 

   𝑤𝑖𝑡ℎ      𝒕22 = [ 𝐺′
1, 𝐺′

2, 𝐺′
6, 𝐺′

7]  

            𝒕23 = [ 𝐺′
9, 𝐺′

10, 𝐺′
11] 

           𝒕𝐿22 = 𝒕𝐿23 = [𝑥1𝑒1, 𝑥4𝑒1, 𝑥5𝑒1, 𝑥12𝑒1] 

                        𝒙11 = [𝒕22, 𝒕23, 𝒕𝐿22,𝒕𝐿23,]             
         
P22 
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                min       𝑓22 = 𝑓( 𝑥1𝑒2, 𝑥2−3, 𝑥4𝑒2−5𝑒2, 𝑥6−11 
) + 𝜋{(𝒕22 − 𝒓22), (𝒕𝐿22 − 𝒓𝐿22)} 

 
  𝑠. 𝑡.        𝑔1,2,6,7

′ (𝒓𝐿22, 𝒙𝟐𝟐) − 1 ≤ 0 
 
                𝑔3,4,57

′ (𝒓𝐿22, 𝒙𝟐𝟐) − 1 ≤ 0 
 
                      𝑔8

′ (𝒓𝐿22, 𝒙𝟐𝟐) − 1 ≥ 0 
                        
                 𝒙𝐿 ≤ 𝒙 ≤ 𝒙𝑈  where 𝒙 = [𝑥1−15] 
 
                                𝑤𝑖𝑡ℎ      𝒓22 = [𝑔1

′ , 𝑔2
′ , 𝑔6

′ , 𝑔7
′ ] 

 
                                            𝒓𝐿22 = [𝑥1𝑒2,𝑥4𝑒2,𝑥5𝑒2,𝑥12𝑒2] 
 
                                             𝒙𝟐𝟐 = [𝑥2−3, 𝑥6−11, 𝑥13−15]  

                                             𝒙𝟐𝟐 = [𝒓22, 𝒓𝐿22, 𝒙𝟐𝟐] 

P23 
                min       𝑓23 = 𝑓( 𝑥1𝑒3,  𝑥4𝑒3, 𝑥5𝑒3, 𝑥16−21) + 𝜋{(𝒕23 − 𝒓23), (𝒕𝐿23 − 𝒓𝐿23)} 

 𝑠. 𝑡.        𝑔9,10,11
′ (𝒓𝐿23, 𝒙𝟐𝟑) − 1 ≤ 0 

                    𝑔12
′ (𝒓𝐿23, 𝒙𝟐𝟑) − 1 ≤ 0 

 
                    𝑔13

′ (𝒓𝐿23, 𝒙𝟐𝟑) − 1 ≥ 0 
 
             𝒙𝐿 ≤ 𝒙 ≤ 𝒙𝑈   where   𝒙 = [𝑥1,4,5,12, 𝑥16−21] 
 
                               𝑤𝑖𝑡ℎ      𝒓23 = [𝑔9

′ , 𝑔10
′ , 𝑔11

′ , 𝑥16𝑒3−21𝑒3] 
           
                                           𝒓𝐿23 = [𝑥1𝑒3,𝑥4𝑒3,𝑥5𝑒3,𝑥12𝑒3]                         
         
                                            𝒙𝟐𝟑 = [𝑥16−21]                                                   

 𝒙𝟐𝟑 = [𝒓23, 𝒓𝐿23, 𝒙𝟐𝟑] (5.6) 

By using the above notation for design variables specific to each element, local 

variables and variables that are part of target and response vectors can be identified 

easily. Each element of the above decomposition was solved using SQP optimization 
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method. Table 5.1 shows the optimum values of all the design variables obtained after 

solving the decomposition problem. 

Table 5.1 Optimum design point of crash-based design case. 

 

 

Since SQP is a local optimizer, the initial guess provided to all the target and 

design variables are crucial as the computation time in obtaining a converged solution 

depends on the initial guess. The Crash-based decomposition problem was solved using 

multiple starting points. A total of 12 random starting points were used and the best 

results obtained are shown in Table 5.1. The optimization process took a total of 37 loops 

for the EPF II ATC formulation to converge, i.e., the multipliers were updated 37 times. 
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The optimization process took 2.07 minutes to complete using a Dell Optiplex 960 

computer with Intel core 2 duo processor having 4GB of RAM. 

The optimum design shown in Table 5.1 is used to perform LS-DYNA crash 

simulation to determine responses at that design point. In optimization problems of this 

study, surrogate based FFI analysis responses and SI analysis responses had different 

design variables in terms of part thickness with only three part thicknesses treated as 

shared variables (x1, x4 and x5). But in determining the simulation based responses at 

optimum point, the optimum thickness of all the 24 parts are substituted to get one final 

vehicle design satisfying FFI and SI analyses crash responses. Table 5.2 shows the 

responses obtained at optimum design point; the prediction of optimum responses by 

surrogate models, the corresponding simulation result obtained from LS-DYNA and the 

error associated with RBF at optimum design point are tabulated. In this study, the 

responses obtained through FE simulations are treated as true responses, therefore the 

difference in responses predicted through RBF and FE simulations is denoted as error.   

In Table 5.2, a negative sign in error percentage indicate that the surrogate model 

has under estimated the response, whereas a positive sign indicates that the surrogate 

model has overestimated the response. The average error in surrogate models of all the 

responses is 7.18%. Chest acceleration (CA) had the least error of 1.85% whereas the left 

femur (LF) had the highest error of 27.8%. This difference is due to average error of 

15.1% during surrogate model building stage and also since the surrogate model of LF 

was build using design variables specific to FFI analysis but in the above results, the 

optimum design variables specific to SI analysis are also used. 
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Table 5.2 Response of Crash-based design case at optimum point. 

 

 

Table 5.3 shows the simulation results of optimum design responses with respect 

to the baseline and the corresponding percent improvement in responses due to 

optimization. The baseline and optimum internal energy in both FFI and SI correspond to 

the energy absorption of all the 24 parts of the vehicle model considered in this design. 

All the responses shown in Table 5.3 have improved from their baseline values except for 

pelvis acceleration, with 10% increase from its baseline value. The baseline mass of all 

the 24 parts is 107.76 kg and the mass at optimum design point is 92.47 (i.e., a reduction 

of 14.19%). The surrogate-based design optimization technique has resulted in a total 

mass reduction of 15.29 kg. The injury index in Table 5.3 corresponds to Equation (3.14), 

which is the combination of FFI and SI injury criteria, this index has reduced from a 
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baseline value of 1.0 to 0.89 at the optimum design, indicating a total reduction 

(improvement) of 11% in overall occupant injury. 

Table 5.3 Comparison of optimum design responses with those of the baseline design. 

 

 

5.2 Crash+Vibration-Based Design Problem 

The crash+vibration design problem shown in Figure 3.14 in Chapter 3 was 

solved in a similar way to the crash-based design problem by defining the optimization 

problem in each element. Since the vibration design constraints are placed in element 11, 

the number of target variables from element 11 to 22 and 23 are increased. The element 

specific subproblems of crash+vibration design case are shown below. Similar to crash-
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based design, the design variables in each element are defined by subscript ei, where i 

denotes the element number.  

P11      
           𝑚𝑖𝑛      𝑓11 = 0.3 (𝐺′

1) + 0.175(𝐺′
2) + 0.0125(𝐺′

6) + 0.0125(𝐺′
7) 

 
                     +0.125(𝐺′

9) + 0.125(𝐺′
10) + 0.25(𝐺′

11) 

                                    +𝜋 {(𝒕22 − 𝒓22), (𝒕𝐿22 − 𝒓𝐿22), (𝒕23 − 𝒓23), (𝒕𝐿23 − 𝒓𝐿23)}   
          

 𝑠. 𝑡.          𝑔′
14−16

= 𝑓(𝑥1𝑒1, 𝑥3𝑒1−9𝑒1, 𝑥16𝑒1−21𝑒1) − 1 ≥ 0       

     0 ≤ 𝐺′
𝑖 ≤ 1; 𝑖 = 1, 2, 6, 7, 9, 10, 11  

    𝒙𝐿 ≤ 𝒙 ≤ 𝒙𝑈  where 𝒙 = [𝑥1𝑒1,, 𝑥3𝑒1−9𝑒1, 𝑥12𝑒1, 𝑥16𝑒1−21𝑒1] 
 

         𝑤𝑖𝑡ℎ      𝒕22 = [ 𝐺′
1, 𝐺′

2, 𝐺′
6, 𝐺′

7, 𝑥3𝑒1, 𝑥6𝑒1−9𝑒1]  

                       𝒕23 = [ 𝐺′
9, 𝐺′

10, 𝐺′
11, 𝑥16𝑒1−21𝑒1] 

                     𝒕𝐿22 = 𝒕𝐿23 = [𝑥1𝑒1, 𝑥4𝑒1, 𝑥5𝑒1, 𝑥12𝑒1] 

                                   𝒙11 = [𝒕22, 𝒕23, 𝒕𝐿22, 𝒕𝐿23 ]             
         
P22 
         min       𝑓22 = 𝑓( 𝑥1𝑒2, 𝑥2, 𝑥3𝑒2−9𝑒2, 𝑥10, 𝑥11) + 𝜋{(𝒕22 − 𝒓22), (𝒕𝐿22 − 𝒓𝐿22)} 
 
         𝑠. 𝑡.        𝑔1,2,6,7

′ (𝒓𝐿22, 𝒙𝟐𝟐, 𝑥3𝑒2, 𝑥6𝑒2−9𝑒2) − 1 ≤ 0 
 
                        𝑔3,4,5

′ (𝒓𝐿22, 𝒙𝟐𝟐, 𝑥3𝑒2, 𝑥6𝑒2−9𝑒2) − 1 ≤ 0 
 
                            𝑔8

′ (𝒓𝐿22, 𝒙𝟐𝟐, 𝑥3𝑒2, 𝑥6𝑒2−9𝑒2) − 1 ≥ 0 
                        
                                               𝒙𝐿 ≤ 𝒙 ≤ 𝒙𝑈 where 𝒙 = [𝑥1𝑒2−15𝑒2] 
 
                                                              𝑤𝑖𝑡ℎ      𝒓22 = [𝑔1

′ , 𝑔2
′ , 𝑔6

′ , 𝑔7
′ , 𝑥3𝑒2, 𝑥6𝑒2−9𝑒2] 

 
                                                                          𝒓𝐿22 = [𝑥1𝑒2,𝑥4𝑒2,𝑥5𝑒2,𝑥12𝑒2] 
 
                                                                           𝒙𝟐𝟐 = [𝑥2,  𝑥10, 𝑥11, 𝑥13−15]  

                                                                           𝒙𝟐𝟐 = [ 𝒓22, 𝒓𝐿22, 𝒙𝟐𝟐]  
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P23 
           min       𝑓23 = 𝑓( 𝑥1𝑒3,  𝑥4𝑒3, 𝑥5𝑒3, 𝑥16𝑒3−21𝑒3) + 𝜋{(𝒕23 − 𝒓23), (𝒕𝐿23 − 𝒓𝐿23)} 
 
           𝑠. 𝑡.        𝑔9,10,11

′ (𝒓𝐿23, 𝑥16𝑒3−21𝑒3) − 1 ≤ 0 
 
                              𝑔12

′ (𝒓𝐿23, 𝑥16𝑒3−21𝑒3) − 1 ≤ 0 
 
                              𝑔13

′ (𝒓𝐿23, 𝑥16𝑒3−21𝑒3) − 1 ≥ 0 
 
                                     𝒙𝐿 ≤ 𝒙 ≤ 𝒙𝑈   where 𝒙 = [𝑥1𝑒3,4𝑒3,5𝑒3,12𝑒3, 𝑥16𝑒3−21𝑒3] 
 
                                                     𝑤𝑖𝑡ℎ      𝒓23 = [𝑔9

′ , 𝑔10
′ , 𝑔11

′ , 𝑥16𝑒3−21𝑒3] 
           
                                                                 𝒓𝐿23 = [𝑥1𝑒3,𝑥4𝑒3,𝑥5𝑒3,𝑥12𝑒3]                         
         

                  𝒙𝟐𝟑 = [ 𝒓23, 𝒓𝐿23] (5.7) 

The subproblems of elements 22 and 23 were solved using SQP optimization 

technique but due to difficulties in solving element 11 through SQP, Modified Method of 

Feasible Direction (MMFD) [4] was used. Similar to SQP, MMFD is a gradient-based 

optimization method but with a stricter search in the feasible design space.  

The optimum values of design variables obtained after solving the crash+vibration 

decomposed optimization problem are shown in Table 5.4. Similar to the crash-based 

design case, multiple starting points were used in solving the optimization problem. A 

total of six random initial points were used for all the design variables within their 

respective lower and upper bounds, and the results for the best solution are shown. The 

optimization process in coordination with EPF II formulation of ATC took 25 loops to 

obtain a converged solution. The optimization took approximately 2.5 minutes to 

complete. Using the optimum values of design variables, separate simulations for FFI, SI 
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and vibration analysis were performed to obtain occupant and vibration responses at the 

optimum design point. 

Table 5.4 Optimum design point for the crash+vibration-based design problem. 

 

 

Table 5.5 shows the responses obtained at the optimum design point based on 

surrogate model predictions and the FE simulation results; the error associated with RBF 

at optimum design point is also tabulated. The average error of all the responses is 6.35% 

with the maximum error of 20.46% in right femur force (RF) and the minimum error of 

0.01% in chest acceleration (CA) and frequency of second mode shape (Freq2). Even in 

this design case, similar to crash-based design, the surrogate models of FFI and SI 
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occupant responses are build using different vehicle part thicknesses as design variables, 

but in finding simulation based optimum responses, the part thicknesses of all the parts 

were selected so that the final vehicle model satisfies both FFI, SI and vibration design 

requirements. 

Table 5.5 Optimum responses of crash+vibration-based design problem. 

 

 

Table 5.6 shows the comparison of baseline responses and responses at optimum 

design point. The overall mass of the selected parts has reduced from 107.76 kg to 99.05 

kg indicating a reduction of 8.1% (i.e., 8.71 kg mass has been reduced through 
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optimization). The injury index has reduced from 1.0 to 0.92 (i.e., the overall occupant 

injury in FFI and SI has reduced by 8%). All the crash and vibration responses have 

improved from their corresponding baseline values except three responses. Right femur 

force (RF) has a violation of 3.22%, internal energy in FFI with 0.12% and pelvis 

acceleration with 0.48%. 

Table 5.6 Comparison of optimum design responses with those of the baseline design. 

 

 

The percentage of mass and injury reduction in the crash+vibration-based design 

problem is less than that in the crash-based design case. This indicates that by 
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considering vibration requirements in the design problem, there is a tradeoff between 

vehicle stiffness with vehicle mass and occupant safety, but still using surrogate-based 

optimization techniques, a lighter vehicle design with improved occupant safety can be 

obtained without compromising structural rigidity of the vehicle. Table 5.7 compares the 

frequencies responses obtained at optimum design of both crash-based and 

crash+vibration-based design problems.  

Table 5.7 Comparison of vibration response of crash-based and crash+vibration-based 
optimum designs. 

 

 

It is evident from table 5.7 that the frequency responses have decreased from their 

baseline values in crash-based design problem indicating reduction in structural rigidity 

of optimum design found based on only crashworthiness design requirements. Therefore, 

to maintain or improve the structural rigidity of the vehicle, vibration requirements 

should also be considered in the optimization process. 

Figure 5.1 shows the normalized optimum values of part thicknesses considered 

for vibration responses (i.e. x1, x3-9, x16-21) with the corresponding optimum 

thicknesses obtained from crash-based design case. The optimum thickness of each part 

was normalized by their corresponding baseline value. 
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Figure 5.1 Normalized part thicknesses of baseline, optimum crash-based and 
optimum crash+vibration-based design case. 

 

In Figure 5.1, it can be seen that only few part thicknesses in the two design cases 

are the same and most of the thicknesses of crash-based design case are less than those in 

the crash+vibration case. The optimizer had to adjust part thicknesses so that both crash 

and vibration requirements are satisfied, and hence there is a conflict in terms of mass 

reduction and structural rigidity.  

5.3 Comparison of Vehicle-Based and Occupant-Based Responses in 
Crash+Vibration Optimum Design 

Recent crashworthiness studies have involved mass reduction of vehicle 

components with vehicle-based crash responses treated as design constraints and vehicle 

part thicknesses as design variables [5, 6, 7]. These studies have considered crash 

responses such as acceleration at the upper B-pillar, intrusion distances of Toeboard and 

dashboard in FFI along with B-pillar acceleration and the intrusion distance of the door in 
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SI in lieu of actual occupant responses. Kiani et al. [7] considered vibration design 

requirements along with crash responses in FFI, SI and OFI by treating frequencies of the 

first three flexible modes as design constraints. The following discussion involves a 

comparison of crash+vibration design problem optimized using vehicle-based crash 

responses versus the design problem based on occupant-based responses as discussed in 

section 5.2 of this thesis. 

Kiani et al. [7] considered a 1996 Dodge Neon model without interiors similar to 

the one shown in Figure 2.1 in Chapter 2. The thicknesses of 22 parts were selected as 

design variables with the number eventually reduced to 15 due to vehicle symmetry. 

These 15 design variables are similar to most of the vehicle-based design variables (i.e., 

x1-9, x11, x17-21) considered in this study with the exception of two parts, i.e., mid B-pillar 

(x16) and lower suspension frame (x10). In crash analysis, the inclusion of interiors, 

occupant models and ORS is the only difference in the baseline design models of the two 

studies, whereas the baseline design models for vibration analysis are the same. Since in 

the two baseline vehicle models, 15 out of 17 vehicle-based design variables and their 

design bounds are similar, a comparison between optimum values of part thickness in 

both studies is possible.  

Table 5.8 shows the optimum values of part thickness obtained in crash+vibration 

design using vehicle-based and occupant-based responses. Figure 5.2 shows the 

normalized optimum values of part thicknesses considered in both design cases. The 

optimum part thicknesses were normalized by their corresponding baseline values. Five 

of the design variables are close to each other with inner side rail (x7) and outer side rail 

(x8) being equal in both designs. 
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Table 5.8 Optimum part thicknesses of two designs. 

 

 

 

Figure 5.2 Normalized optimum part thicknesses. 
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From Figure 5.2 it is evident that in current results, eight design variables have 

decreased from their baseline values compared to six in Ref. [7], which implies that there 

is greater mass reduction in the current results.  

Table 5.9 and Table 5.10 shows the responses considered in design involving 

vehicle-based responses and occupant-based responses along with baseline, optimum 

values and their corresponding improvements obtained from optimization. In Table 5.9, 

the responses are vehicle-based i.e. Toeboard and Dashboard intrusion distances 

calculated for FFI and OFI analysis (FFI Toe int, FFI Dash int, OFI Toe int, OFI Dash 

int) and intrusion of door (SI Door int) calculated for SI analysis. The B-Pillar 

accelerations which are calculated as substitutes for head acceleration is denoted based on 

impact scenario (FFI Accel, SI Accel and OFI Accel). Figure 5.3 shows the location of 

vehicle-based responses considered in Ref. [7]. 

 

Figure 5.3 Locations of vehicle-based responses [7]. 
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Table 5.9 Optimum values of crash and vibration responses using vehicle-based 
response optimization [7]. 

 

 

In Table 5.9, the positive sign for percent improvement indicates the responses 

have improved relative to the corresponding baseline value. In design optimization using 

vehicle-based crash responses, the average improvement in crash responses is 5.3% 

relative to the baseline design with only 2% improvement in FFI and SI responses. The 

vibration responses have remained the same as the baseline with the total mass reduction 
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of 3.6%. Table 5.10 shows FFI and SI occupant-based crash responses along with 

vibration responses and their corresponding improvement from the baseline design.  

Table 5.10 Optimum crash and vibration responses obtained from section 5.2. 

 

 

In the design optimization based on occupant responses, there is 6.2% 

improvement in crash (FFI and SI) responses, 1.3% improvement in responses associated 

with vibration along with 8.1% reduction in mass.  
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The FFI acceleration in Table 5.9 corresponds to the resultant acceleration 

calculated at the upper B-pillar. This is an approximate location where the occupant head 

would be in an actual crash (i.e., response HA of Table 5.10).  The baseline values of 

these two responses are approximately close to each other (only 1g difference) indicating 

that in FFI analysis, estimating the head acceleration response by the acceleration 

calculated at the upper B-pillar (in absence of a dummy model) is a good approximation. 

The amount of intrusion in Toeboard and Dashboard affects the occupant legs and chest. 

Therefore, the vehicle-based response Toeboard intrusion is considered as substitute for 

femur forces (LF, RF) and Dashboard intrusion as a substitute for chest deflection (CD).  

Comparing tables 5.9 and 5.10, after optimization, the FFI Toeboard intrusion in Table 

5.9 worsened by 2% where as the femur forces of Table 5.10 improved by 8%. Similarly, 

FFI dashboard intrusion given in Table 5.9 improved by 3% and the corresponding chest 

deflection given in Table 5.10 , also improved by 3%. Therefore, in terms of percentage 

reduction obtained from optimization, most of the approximate vehicle-based responses 

are close to occupant-based responses.  

The vehicle-based responses are good approximates of actual crash responses 

experienced by an occupant, but by using occupant models and ORS at an additional cost 

and design complexity in terms of simulation time and modeling, more accurate 

responses can be obtained, which helps in reducing more vehicle mass and improving 

structural rigidity. This is evident from the amount of mass reduced in both design cases 

(8.1% versus 3.6%), and also the vibration responses with occupant-based responses have 

increased indicating improvement in structural rigidity. 
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CHAPTER VI 

CONCLUSIONS AND FUTURE WORK 

This study involved the application of design optimization techniques to improve 

the baseline design of a 1996 Dodge Neon model in terms of mass reduction and 

occupant safety. The FE model of 1996 Dodge Neon with interiors was used as a baseline 

design and FE models of occupant and ORS were added to assess injury criteria and 

safety during crash. The ORS system included a seatbelt and an airbag model for FFI and 

only a seatbelt in SI analysis. Instead of using a one-dimensional seatbelt model, a more 

realistic two-dimensional seatbelt model with a pretensioner was used to remove initial 

slack in belt and provide better occupant safety. The baseline Dodge Neon model with 

ORS and occupant model was validated by comparing the resultant head and chest 

acceleration data of dummy obtained in FFI with the actual crash test results obtained 

under FMVSS 208. Pelvis and spine acceleration data were compared with the actual 

crash test results under FMVSS 214.  

A multi-objective design optimization problem was formulated with mass and 

occupant injury reduction as objective. The occupant-based and vehicle-based (i.e., 

internal energy) responses in FFI and SI were considered as design constraints. The 

thickness of 24 parts of the Dodge Neon model constituted the vehicle-based design 

variables and four design variables were selected from ORS in which one is seatbelt 

parameter and three are airbag parameters.  
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To demonstrate the application of a decomposed multilevel optimization 

framework, a multilevel target matching problem was formulated with injury criteria at 

the top level and vehicle design and mass reduction with respect to occupant responses in 

FFI and SI scenarios in the lower level. The combination of Weighted Injury Criterion 

(WIC) of FFI analysis and Thoracic Trauma Index (TTI) of SI was used as objective 

function of the top level and mass calculation based on part thickness was used as the 

other objective.  Analytical target cascading technique using EPF II formulation was used 

to solve the decomposed target matching problem. The decomposed problem consisted of 

a total of three objective functions and 13 design constraints. The responses of FFI and SI 

were treated as design constraints by formulating approximate analytical functions of 

responses using surrogate modeling technique. The vehicle mass and occupant injury 

were reduced without compromising the crashworthiness characteristics of the vehicle.  

Vibration design requirements were added to the existing crash-based design 

problem by considering frequencies of first three flexible modes as design constraints. 

This criterion was included in the first element of decomposition along with injury 

criteria so that vehicle design satisfies vibration requirements first and the corresponding 

design is cascaded down to fulfill FFI and SI crash requirements so that the final design 

has better occupant safety, reduced mass and improved structural rigidity. The 

crash+vibration-based optimum design showed that by considering vibration 

requirements, the amount of mass reduced is less than the optimum design with crash 

alone.  

Finally, a comparison of vehicle design optimization based on vehicle-based crash 

responses and occupant-based crash responses was shown. Optimizing the vehicle with 
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inclusion of occupant models and occupant restraint system, and considering both 

vehicle-based and ORS-based design variables, a more accurate and better design in 

terms of mass reduction and structural rigidity was obtained compared to the optimum 

design obtained from approximate vehicle-based crash responses.      

This work can be extended by considering other important crash scenarios not 

discussed in this study such as OFI, roll over crash and rear impact analyses. The 

multilevel decomposition can be extended by implementing crash and vibration design 

with other requirements governing the vehicle design process such as fatigue design 

criteria to consider the durability of vehicle components. The crash analysis can be 

improved by considering more detailed FE models of vehicle and dummy model in terms 

of material properties, can be developed to simulate occupant and vehicle interaction 

accurately. The overall occupant safety in SI can be further improved by considering side 

curtain and seat mounted airbags and optimizing the corresponding parameters. 
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APPENDIX A 

FILES USED FOR CRASH ANALYSIS 
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The LS-DYNA keyword below contains velocity definition and different files 

used in FFI crash analysis of Dodge Neon model with occupant and ORS. The translation 

defined for rigid wall is also given. Separate files have been used for defining FE models 

of vehicle, dummy, seatbelt, seatbelt properties, airbag properties, seatbelt contacts and 

connection with vehicle model.  

 
$# LS-DYNA Keyword file created by LS-PrePost 4.0 (Beta) - 22Jul2012(13:20) 
$# Created on Dec-06-2012 (01:47:57) 
*KEYWORD MEMORY=76385103  
*TITLE 
$# title 
FFI_neon_wdummy_0 
*DEFINE_TRANSFORMATION 
$------------------------------------------------------------------------------  
$#  tranid 
      1000 
$# option                   a1              a2          a3          a4          a5           a6          a7 
TRANSL    -64.000000 160.00000     0.000     0.000     0.000     0.000     0.000 
*INITIAL_VELOCITY_GENERATION 
$#nsid/pid      styp     omega        vx        vy        vz     ivatn      icid 
   2000011         3     0.000 15650.000     0.000     0.000         0         0 
$#      xc          yc           zc          nx             ny          nz     phase    iridid 
     0.000     0.000     0.000     0.000      1.0000     0.000         0         0 
   7000003         1     0.000 15650.0         0.000     0.000         1         0 
     0.000     0.000     0.000     0.000         1.000     0.000         0         1 
   2000002         1     0.000 15650.0         0.000     0.000         1         0 
     0.000     0.000     0.000     0.000         1.000     0.000         0         1 
   7000003         1     0.000 15650.0         0.000     0.000         1         0 
     0.000     0.000     0.000     0.000         1.000     0.000         1         1 
   2000002         1     0.000 15650.0         0.000     0.000         1         0 
        0.000    0.00     0.000     0.000         1.000     0.000         1         1 
   7001002         3     0.000 15650.0          0.000     0.000         0         0 
        0.000    0.00     0.000      0.000         1.000     0.000         0         0 
   9000001          1     0.000 15650.0         0.000     0.000         0         0 
         0.000    0.00     0.000     0.000          1.000     0.000         0         0 
    2000003         1   52.200 15650.0          0.00     0.000         0         0 
 3689.1899     0.0   300.963     0.000        1.000     0.000         0         0 
   2000004          1  52.2001 5650.00        0.000     0.000         0         0 
 1041.4900     0.0 304.7240     0.000        1.000     0.000         0         0 
*INCLUDE_TRANSFORM 
$# filename 
loadcellwall.key 
$#  idnoff    ideoff    idpoff    idmoff    idsoff    idfoff    iddoff 
         0         0         0         0         0         0         0 
$#  idroff 
         0 
$#  fctmas    fcttim    fctlen    fcttem   incout1    unused 
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     0.000     0.000     0.000     0.000         0        -1 
$#  tranid 
      1000 
$----------------------------------- 
*INCLUDE 
Dummy_H350.key 
*INCLUDE 
newbelt_lstc_2D_dodgeneonwithpret.key 
*INCLUDE 
best_retractor_LLCID.key 
*INCLUDE 
dodge_neon_seatbelt_connection.DriverSide.k 
*INCLUDE 
dodge_neon_SeatBeltContact.DriverSide.k 
*INCLUDE 
frontal_airbag_properties.key 
*INCLUDE 
Neon_Bint_st0.key 
*END 
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SAMPLE DODGE NEON VEHICLE MODEL KEYWORDS 
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The following keyword file shows various database cards defined for vehicle 

model. 

  
$# LS-DYNA Keyword file created by LS-PREPOST 3.0(Beta) - 19Jan2010(14:34)  
$# Created on Mar-29-2010 (13:37:33)  
*KEYWORD  
*TITLE  
$# title  
LS-DYNA keyword deck by LS-PrePost  
$------------------------------------------------------------------------------  
$- This model has been developed by the FHWA/NHTSA National Crash Analysis  
$- Center at The George Washington University. The FE model is based on a  
$- 1996 Dodge Neon. The model has been validated to a frontal NCAP test.  
$-  
$- The model is continuously updated to improve its capabilities in  
$- predicting responses in various impact scenarios. However, the user must  
$- verify his own results. Neither NCAC, GWU, FHWA or NHTSA assume any  
$- responsibility for the validity, accuracy, or applicability of any results  
$- obtained from this model. 
$- We ask that NCAC be acknowledged under references for any use of this  
$- FE model resulting in papers and publications.  
$-  
$- Please feel free to contact us with any suggestions, comments, or  
$- questions.  
$-  
$- Dhafer Marzougui <dmarzoug@ncac.gwu.edu> (703) 726-8532  
$- Pradeep Mohan <pradeep@ncac.gwu.edu> (703) 726-8538  
$- Vinay Nagabhushana <vinay@ncac.gwu.edu> (703) 726-8392  
$- Steve Kan <cdkan@ncac.gwu.edu> (703) 726-8511  
$-  
$------------------------------------------------------------------------------  
*DATABASE_ABSTAT 
$#      dt    binary      lcur     ioopt 
  0.001000         3         0         1 
*DATABASE_DEFORC 
$#      dt    binary      lcur     ioopt 
 1.0000E-4         3         0         1 
*DATABASE_GLSTAT 
$#      dt    binary      lcur     ioopt 
  0.001000         3         0         1 
*DATABASE_JNTFORC 
$#      dt    binary      lcur     ioopt 
  0.001000         3         0         1 
*DATABASE_MATSUM 
$#      dt    binary      lcur     ioopt 
  0.001000         3         0         1 
*DATABASE_NODOUT 
$#          dt    binary      lcur     ioopt       dthf     binhf 
 1.0000E-5           3           0           1     0.000           0 
*DATABASE_RCFORC 
$#      dt    binary      lcur     ioopt 
 2.0000E-4         3         0         1 
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*DATABASE_RWFORC 
$#          dt    binary      lcur     ioopt 
 1.0000E-4           3           0           1 
*DATABASE_BINARY_D3PLOT 
$#          dt      lcdt      beam     npltc    psetid 
  0.010000          0             0           0            0 
$#   ioopt 
             0 
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APPENDIX C 

SAMPLE SEATBELT KEYWORD DEFINITIONS 
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The sample keyword input files for seatbelt model is shown below. Important 

keyword definitions of the seatbelt model used in this study are shown along with contact 

definitions.     

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
$ SeatBeltModel  
$ The subject model ("Model") has been developed by Livermore Software  
$ Technology Corporation (LSTC).  
$  
$ The Model is distributed free of charge to licensees of LSTC's LS-DYNA  
$ software who are current with their annual license fees (Annual License) or  
$ maintenance fees (Paid-up License). LSTC and its distributors hereby grant  
$ Model users a non-exclusive and non-transferable license to use the Model  
$ for their own internal business purposes.  
$  
$ As a condition for the free use of the Model, user agrees that it will  
$ not employ the Model or parts thereof outside the LS-DYNA environment.  
$  
$ Even though the Model is continuously updated and improved, each user is  
$ solely responsible for its own results. LSTC assume no responsibility  
$ whatsoever for the validity, accuracy, or applicability of the Model or any  
$ results obtained with the Model.  
$  
$ LSTC endeavors to make the Model as complete, accurate, reliable, and easy  
$ to use as possible. Suggestions and comments should be e-mailed to  
$ support@lstc.com. Please report any errors encountered in either the  
$ documentation or results immediately to LSTC.  
$  
$ Copyright (C) 2007-2011 
$ by Livermore Software Technology Corp. (LSTC)  
$ All rights reserved  
$  
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$                         
*ELEMENT_SEATBELT_PRETENSIONER                                                                                                                                                             
$                                                                                
$ sbprid = Seat Belt Pretensioner ID                                             
$ sbprty = Seat Belt Pretensioner Type = 5 for pyro pretensioner with limiting load for the pretensioner       
$ sbsid  = Seat Belt Sensor ID                                                   
$                                                                                
$ sbrid  = Seat Belt Retractor ID (the one being Pulled by the pretensioner)     
$ time   = Time between Sensor Firing and Pretensioner acting                    
$ ptlcid = Load Curve for Pretensioner                                           
$ lmtfrc = Limiting Force for Retractor (beyond which it will not pull)          
$                                                                                
$#  sbprid    sbprty    sbsid1                                                   
$                               (sensor)                                                   
   9067000         5   9067001         0         0         0 
$                                                                                
$                                                                                
$#     sbrid              time            ptlcid           lmtfrc                                         
   9067111    0.000E+00      9067002    2500.0000 
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$                                                                                
*ELEMENT_SEATBELT_SENSOR 
$ The Following Sensor is used for Pretensioner Firing.                          
$                                                                                
$       sbsid    sbstyp                                                             
   9067001             3         0 
$                                                                                
$#    time                                                                       
 1.300E-02 
$ 
*ELEMENT_SEATBELT_RETRACTOR 
$ sbrid   = Seat_Belt Retractor ID 
$ sbrnid  = Seat_Belt Retractor Node (not on the Belt) 
$ sbid    = First Belt Element ID that is just outside the retractor 
$ sid1    = First Sensor ID  
$ tdel    = Time Delay After Sensor Triggers 
$ pull    = Amount of Pull-Out between time delay ending and retractor locking. 
$              (It is a Length value). 
$ llcid   = Load Curve for Loading (Force vs. Pull-Out) 
$ ulcid   = Load Curve for Unloading (Force vs. Pull-Out) 
$ lfed    = Fed Length 
$                                                      (sensor) 
$#     sbrid       sbrnid          sbid            sid1      sid2      sid3      sid4 
   9067111   9067117   9067000   9067000           0           0           0 
$#    tdel        pull         llcid          ulcid           lfed 
     0.000     0.000   9067000   9067007 10.000000 
*ELEMENT_SEATBELT_SENSOR 
$ See 14.37 in the LS971 Manual. 
$ sbsid   = Seat Belt Sensor ID 
$ sbstyp  = Seat Belt Sensor Type  -->  3=Time 
$ The Following Sensor is used for Retractor Lockup. 
$#   sbsid    sbstyp     sbsfl 
   9067000         3         0 
$#    time 
  0.001000 
*ELEMENT_SEATBELT_SLIPRING 
$#  sbsrid     sbid1     sbid2        fc    sbrnid     ltime       fcs      onid 
   9067112   9067053   9067033  0.230000   9067115     0.000     0.000         0 
   9067113   9066000   9066015  0.100000   9066017     0.000     0.000         0 
 
$$$$ Sample Keyword for seatbelt contact $$$$ 
 
*CONTACT_AUTOMATIC_NODES_TO_SURFACE 
$#     cid                                                                 title 
$#        ssid         msid     sstyp     mstyp    sboxid    mboxid       spr       mpr 
   9060000   7110002            2              2            0              0          0            0 
$#          fs              fd           dc         vc         vdc     penchk           bt           dt 
  0.800000  0.800000     0.000     0.000     0.000                0     0.000     0.000 
$#         sfs           sfm          sst        mst         sfst          sfmt         fsf          vsf 
  5.000000  5.000000     0.000     0.000  1.000000  1.00000    0.000       0.000 
 
$$$$ Sample keyword for seatbelt connection $$$$ 
 
*CONSTRAINED_EXTRA_NODES_SET 
$#        pid           nsid 
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   9066001   8000075 
*END 

 

 


	Multilevel Design Optimization of Automotive Structures Using Dummy- and Vehicle-Based Responses
	Recommended Citation

	Multilevel design optimization of automotive structures using dummy- and 
vehicle-based responses

