Mississippi State University

Scholars Junction
Theses and Dissertations Theses and Dissertations

12-9-2016

Technical Debt Decision-Making Framework

Zadia Codabux

Follow this and additional works at: https://scholarsjunction.msstate.edu/td

Recommended Citation
Codabux, Zadia, "Technical Debt Decision-Making Framework" (2016). Theses and Dissertations. 4226.
https://scholarsjunction.msstate.edu/td/4226

This Dissertation - Open Access is brought to you for free and open access by the Theses and Dissertations at
Scholars Junction. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of
Scholars Junction. For more information, please contact scholcomm@messtate.libanswers.com.

https://scholarsjunction.msstate.edu/
https://scholarsjunction.msstate.edu/td
https://scholarsjunction.msstate.edu/theses-dissertations
https://scholarsjunction.msstate.edu/td?utm_source=scholarsjunction.msstate.edu%2Ftd%2F4226&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsjunction.msstate.edu/td/4226?utm_source=scholarsjunction.msstate.edu%2Ftd%2F4226&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholcomm@msstate.libanswers.com

Technical debt decision-making framework

By

Zadia Codabux

A Dissertation
Submitted to the Faculty of
Mississippi State University
in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy
in Computer Science
in the Department of Computer Science and Engineering

Mississippi State, Mississippi

December 2016

Copyright by
Zadia Codabux

2016

Technical debt decision-making framework

By

Zadia Codabux

Approved:

Byron J. Williams
(Major Professor)

Gary L. Bradshaw
(Committee Member)

J. Edward Swan II
(Committee Member)

Murray Cantor
(Committee Member)

T. J. Jankun-Kelly
(Graduate Coordinator)

Jason M. Keith
Dean
Bagley College of Engineering

Name: Zadia Codabux

Date of Degree: December 9, 2016

Institution: Mississippi State University

Major Field: Computer Science

Major Professor: Dr. Byron J. Williams

Title of Study: Technical debt decision-making framework
Pages of Study: 155

Candidate for Degree of Doctor of Philosophy

Software development companies strive to produce high-quality software. In commer-
cial software development environments, due to resource and time constraints, software
is often developed hastily which gives rise to technical debt. Technical debt refers to the
consequences of taking shortcuts when developing software. These consequences include
making the system difficult to maintain and defect prone. Technical debt can have fi-
nancial consequences and impede feature enhancements. Identifying technical debt and
deciding which debt to address is challenging given resource constraints. Project man-
agers must decide which debt has the highest priority and is most critical to the project.
This decision-making process is not standardized and sometimes differs from project to
project. My research goal is to develop a framework that project managers can use in
their decision-making process to prioritize technical debt based on its potential impact. To

achieve this goal, we survey software practitioners, conduct literature reviews, and mine

software repositories for historical data to build a framework to model the technical debt

decision-making process and inform practitioners of the most critical debt items.

Key words: technical debt, decision making, prioritization, predictive analytics, bayesian
networks, interviews, questionnaires

DEDICATION

To Mum and Dad.

i

ACKNOWLEDGEMENTS

First and foremost, I thank God who made me who I am today.

This dissertation could not have been accomplished without the support and encour-
agement of many people. I would like to acknowledge those people who have helped me
during this magnificent journey.

I would especially like to thank my advisor, Byron Williams, for his continuous sup-
port, encouragement, tremendous patience, and valuable suggestions that enabled me to
accomplish this endeavor. I am grateful for having an exceptional doctoral committee. I
would like to thank Dr. Bradshaw for his generous time and unfailing assistance. I greatly
appreciate that Dr. Cantor, my IBM mentor and committee member who believed that
I could accomplish great things at a time when I had no idea what I was doing. As you
recently mentioned, I have come a long way since we first talked. You have always encour-
aged me to strive, pricked my curiosity and viewed my work from an industrial perspective.
I thank Dr. Swan for tickling my imagination and making me think outside the box. I am
the researcher I am today because of you all.

I am grateful to Dr. Reese who was there for me every step of the way. I wholeheartedly
appreciate everything she has done for me during my doctoral program. I would like to

express my heartfelt thanks to Dr. Ed Allen for giving me this opportunity. Since the day

il

I stepped foot in the CSE department, Dr. Allen has always been patient and his door has
been opened for any advice.

This dissertation would not have been possible without the generous funding of the
Fulbright Foreign Student Program Fellowship and the IBM Ph.D. Fellowship. The CSE
department at MSU and the Bridge funding from the Bagley College of Engineering were
kind enough to support me financially during my last year at MSU. I am grateful to CRA-
W, the Anita Borg Institute, and NSF for the numerous travel awards during my doctoral
program.

This dissertation benefitted from the strong collaboration with industry practitioners
and volunteer participants in my studies. Therefore, I would like to extend my sincere
thanks to all my collaborators and the technical debt research community. My appreciation
goes to the ESE research group for their suggestions and comments during our weekly
research meetings. My appreciation goes to my lab mates as the days in the lab would have
seemed longer without you guys. Thank you for your support and the fruitful discussions
throughout the years. In addition, I am much obliged to the Bagley College of Engineering
writing tutors for their patience in reviewing this dissertation and many of my publications
throughout the years.

I am deeply indebted to my family members who never stopped believing in me, even
at times when I had no faith in myself. I am eternally grateful to my father who allowed
me to pursue my dream. I would like to express my heartfelt thanks to my mother, my
role model and one of the smartest and most sensible people that I know, for her unfailing

good advice and not for a single day making me feel that we were on opposite sides of

v

the world. Words are powerless to express my gratitude to my husband without whom 1
could not have completed this dissertation. I thank him for his endless encouragement,
confidence, motivation, support and for always being there for me.

All my love and thanks to my sister and brother who have always given me the psycho-
logical strength and moral support from afar. My nieces and nephews have been a bright
light during my doctoral program. Their innocent smiles and admiration have often been a
source of motivation for me to work harder and make them proud of me.

The hardest part of studying abroad was being away from my family, but thanks to all
the wonderful people of Starkville, I felt home.

Last but not least, I would like to thank my well-wishers. I know that you have always

been praying hard for my success.

TABLE OF CONTENTS

DEDICATION e e e ii

ACKNOWLEDGEMENTS e il

LISTOFTABLES e X

LISTOFFIGURES e e Xiii
CHAPTER

1. INTRODUCTION. e 1

2. BACKGROUND e 6

2.1 Agile Practices and Technical Debt 6

2.2 Software Metrics 9

2.2.1 Traditional Metrics 10

222 Object Oriented Metrics 11

3. LITERATUREREVIEW 13

3.1 Taxonomies 13

3.2 Measuremento 15

3.3 DecisionMaking 21

34 Impact of Technical Debt 23

34.1 Technical Liability 27

3.5 Practitioner Studies 28

4. METHODOLOGY e e 31

4.1 Research Questions, 33

4.1.1 RQ1: What are the prevalent notions of technical debt? . . 33

4.1.2 RQ2: What are the different types of technical debt indicators? 33

vi

4.1.3

RQ3: How do we build a framework to determine the most
critical technical debt items?

414 RQ4: How effective is the framework?
4.2 ResearchOverview
4.2.1 Literature Review
422 Empirical Case Studies

4.3 Historical Data

43.1 Corpora
43.1.1 ApacheHive
43.1.2 Apache Mahout

4.3.2 Tools
43.2.1 Change Count Extraction Tool
4322 Defect Count Extraction Tool
4323 Scitool Understand
4324 IntooitusinCode
4325 AgenaRisk oo oo

4.3.3 Data Extraction
4.3.3.1 Extract Sourcecode
4.3.3.2 Collect Understand Metrics
4333 Collect Change Count Metric
4334 Create Initial Dataset
4.3.3.5 Collect Defect Count Metric
4.3.3.6 Create Intermediate dataset
4.3.3.7 Collect Technical Debt Count Metric
43.3.8 Create Final Dataset

4.4 Decision-Making Framework Construction

44.1 PredictionModel,

4.4.2 Classification Scheme

443 DecisionModel

RESULTS e

5.1 RQ1: What are the prevalent notions of technical debt?

5.1.1
5.1.2
5.13
5.14
5.1.5
5.1.6
5.1.7

Impact of Technical Debt
Technical Debt Communication.
Technical Debt Quantification
Technical Debt Management
Technical Debt Decision-Making
Technical Debt Risk Management

5.2 RQ2: What are the different types of technical debt indicators? . .

5.2.1
522

Modularity Violations
Design Pattern Grime

vii

5.2.3 CodeSmells 68

524 Antipatterns 70
5.2.5 Metrics 72

5.3 RQ3: How do we build a framework to determine the most critical
technical debtitems? L. 76
5.3.1 ApacheHive 76
5.3.1.1 Bayesian Network 80
5.3.1.2 Classification Scheme 85
5.3.1.3 AHP 86
5.3.2 Apache Mahout oL, 95
5.3.2.1 Bayesian Network 99
5.3.2.2 Classification Scheme 103
5.3.2.3 AHP o 103
5.4 RQ4: How effective is the framework? 111
6. DISCUSSION e 115
6.1 Empirical Studies o oL 115
6.2 Framework o 122
6.3 Threats to Validity 123
6.3.1 Construct Validity 124
6.3.2 External Validity 124
6.3.3 Internal Validity 125
7. CONCLUSIONS e 126
7.1 Contributions 126
7.1.1 Decision-Making Framework 126
7.1.2 Prediction Model 127
7.1.3 Technical Debt Taxonomy 127
7.2 Publications 127
7.2.1 Refereed Journal Articles 127
7.2.2 Refereed Conference Papers 128
7.2.3 Technical Reports 129
7.3 Future Work Lo 129
7.3.1 Framework Evaluation 129
7.3.2 Usability Studies oL, 130
7.3.3 Prediction Model Accuracy 130
REFERENCES 131

APPENDIX

viii

A.

B.

INDUSTRIAL CASE STUDY 140

SURVEY e 143
B.1 Interviews (Pre-Survey), 144
B.2 Hypotheses 145
B.3 Survey ... 145

X

2.1

22

3.1

4.1

4.2

4.3

4.4

5.1

5.2

53

54

5.5

5.6

5.7

5.8

59

5.10

5.11

LIST OF TABLES

Traditional Metrics 10
Chidamber and Kemerer OO Metrics Suite 12
Types of Technical Debt 16
Apache Hive - Versions 43
Apache Mahout - Versions, 44
Overview of Analyzed Systems 45
Variables’ Threshold, 53
Studies Investigating Metrics and Defect-Proneness 74
Univariate Descriptive Statistics: Apache Hive 77
NPT: Apache Hive (CBO) 78
NPT: Apache Hive (LOC) 78
NPT: Apache Hive (LCOM) 78
NPT: Apache Hive (WMC) 79
NPT: Apache Hive (DefectCount) 79
NPT: Apache Hive (Change Count) 79
Apache Hive - Bayesian Network Nodes’ Values 81
Classification Scheme for Apache Hive 85
AHP Dataset - Apache Hive 87

5.12

5.13

5.14

5.15

5.16

5.17

5.18

5.19

5.20

5.21

5.22

5.23

5.24

5.25

5.26

5.27

5.28

5.29

5.30

5.31

5.32

Scale of Relative Importances 89
Random Consistency Index 91
Apache Hive Pairwise Comparison Based on Criteria: Impact 92
Apache Hive Pairwise Comparison Based on Criteria: Change Count . . . 92
Apache Hive Pairwise Comparison Based on Criteria: Defect Count 93

Apache Hive Pairwise Comparison Based on Criteria: Technical Debt In-

stances Count L 93
Apache Hive Pairwise Comparison for Criteria 94
Apache Hive Overall Priorities 94
Univariate Descriptive Statistics: Apache Mahout 96
NPT: Apache Mahout (NOC) 96
NPT: Apache Mahout (LOC) 97
NPT: Apache Mahout (LCOM) 97
NPT: Apache Mahout (WMC) 97
NPT: Apache Mahout (Defect Count) 98
NPT: Apache Mahout (Change Count) 98
Apache Mahout - Bayesian Network Nodes” Values 100
Classification Scheme for Apache Hive 103
AHP Dataset - Apache Mahout 104
Apache Mahout Pairwise Comparison Based on Criteria: Size 108
Apache Mahout Pairwise Comparison Based on Criteria: Change Count . . 108
Apache Mahout Pairwise Comparison Based on Criteria: Defect Count . . 109

xi

5.33

5.34

5.35

5.36

5.37

6.1

6.2

Apache Mahout Pairwise Comparison Based on Criteria: Probability 109

Apache Mahout Pairwise Comparison for Criteria 110
Apache Mahout Overall Priorities 110
Findbugs Categories 112
Findbugs Classes withRank 14 113
Technical Debt Taxonomy - Descriptions 120
Technical Debt Management - Descriptions 121

Xii

2.1

4.1

4.2

4.3

4.4

5.1

5.2

53

54

5.5

5.6

6.1

6.2

LIST OF FIGURES

Agile Adoptionover Time 8
Research Overview 36
Case Study Design 39
ResearchOverview 49
Prediction Model Generation Process 56
Bayesian Network - ApacheHive 83
Bayesian Network - Apache Hive (Sample Scienario) 84
Problem Hierarchy - Apache Hive 88
Bayesian Network - Apache Mahout 101
Bayesian Network - Apache Mahout (Sample Scenario) 102
Problem Hierarchy - Apache Mahout 105
Technical Debt Taxonomy 118
Technical Debt Management 119

xiil

CHAPTER 1

INTRODUCTION

Software is pervasive and has a critical role in many industries ranging from aerospace,
military, medical, transportation, financial and others. Therefore, it is of the utmost impor-
tance that software that is developed is of high quality. In reality, software development
is prone to failure. Over time, software suffers from a steady degradation of quality, and
it becomes increasingly difficult and costly to maintain the software. In fact, a study by
Cambridge University reported that software bugs cost the economy $312 billion annu-
ally.! These bugs cost the US economy about $59.5 billion annually, representing about
0.6% of the gross domestic product (GDP)?.

Fixing severe problems after delivery can be 100 times more expensive than fixing
pre-delivery while non-severe defects can be twice as expensive [77]. Furthermore, most
software development costs occur after the product is released. In addition to being costly,
corrective maintenance work can be a blow to the reputation of the organization. If the
defects are trivial, the customer might think the software development company has been

negligent and not tested the software thoroughly. If the defects are serious and they affect

1 Cambridge University ~ Study States Software = Bugs Cost Economy $312 Billion Per Year,
http://markets.financialcontent.com/stocks/news/read/23147130/Cambridge_University_Study_States_Software_Bugs_Cost_
Economy$312_Billion_Per_Year (accessed April 16, 2013)

2The Economic Impacts of Inadequate Infrastructure for Software Testing, https://www.nist.gov/sites/default/files/documents
/director/planning/report02-3.pdf (accessed April 16, 2013)

critical functions, the customer might go as far as pursuing legal action against the software
development company, causing serious damage to its reputation.

One of the root causes of this failure is the use of sequential design processes for build-
ing complex software-intensive systems. Sequential processes work when the requirements
are defined upfront and when the remaining software development activities are instituted
based on the initial requirements (e.g. design, implementation, testing). Traditional soft-
ware development processes, such as the waterfall model, are not the most appropriate
when business needs and technology change rapidly. Many development groups often de-
viate from this normative waterfall process. Their focus shifts to the product and the cus-
tomer needs rather than the plan. This shift gives rise to agile software development [75].

One of the primary benefits of agile software development is the quick release of soft-
ware functionality. However, the focus on functionality often lessens the focus on design,
good programming practice, test coverage, etc. By focusing on functionality, the developer
is then obliged to go back and complete these items neglected for the sake of functionality.
This phenomenon is known as technical debt.

While the concept of technical debt has been existent for some time, it has been the
adoption of agile development methods that has given the term its visibility. Agile meth-
ods started to grow in popularity in 2001 following the signing of the Agile Manifesto.
Since then, technical debt has become an increasingly important concept in the software
engineering research community.

The technical debt concept was coined in the 1992 OOPSLA report by Ward Cunning-

ham and is one of the most widely accepted descriptions of technical debt [20]:

2

"Shipping first-time code is like going into debt. A little debt speeds development so
long as it is paid back promptly with a rewrite. Objects make the cost of this transaction
tolerable. The danger occurs when the debt is not repaid. Every minute spent on not-quite-
right code counts as interest on that debt."

However, technical debt is no longer restricted to comparisons with source code. In
fact, technical debt is used to describe situations when developers accept sacrifices in one
dimension of development (e.g. software quality) in order to optimize another dimension
(e.g. implementing necessary features before a deadline) [91]. Its application has evolved
and has been extended to other artifacts (e.g. design, testing, and documentation) of the
software development lifecycle.?

The definition provided by Steve McConnell at the Managing Technical Debt work-
shop is more in line with the evolution of technical debt since its conception. We used
McConnell’s definition as the baseline definition of technical debt in this study.

"[Technical Debt is] a design or construction approach that’s expedient in the short
term but that creates a technical context in which the same work will cost more to do later
than it would cost to do now (including increased cost over time)." *

As participants of the 16162 Dagstuhl Seminar on Managing Technical Debt’, we

helped refine the definition of technical debt to restrict the scope of the metaphor to in-

ternal system qualities such as maintainability and evolvability.

3[EEE/Lockheed Martin Webinar on Identifying and Managing Technical Debt, http://www.nicozazworka.com/research/technical-
debt/ (accessed Jun. 28, 2013)

4s. McConnell, "Managing technical debt," Fourth International Workshop on Managing Technical Debt, 2013,
http://www.sei.cmu.edu/community/td2013/program/upload/TechnicalDebt-ICSE.pdf (accessed Jun. 28, 2013)

SManaging Technical Debt in Software Engineering, http://www.dagstuhl.de/no_cache/en/program/calendar/partlist/?semnr=16162
&SUOG= (accessed Jul. 20, 2016)

"In software-intensive systems, technical debt is a design or implementation construct
that is expedient in the short term but sets up a technical context that can make a future
change more costly or impossible. Technical debt is a contingent liability whose impact is
limited to internal system qualities, primarily maintainability, and evolvability."®

Similar to financial debt, technical debt needs to be "paid back" because otherwise, the
interest (software maintenance) will increase and hinder new development. Technical debt
is often the result of developers taking shortcuts (e.g. copy-paste code) to meet a deadline
or ignorance (e.g. choosing the wrong design pattern). The impact of accumulated techni-
cal debt can be decreased productivity, increased cost, and, eventually, system degradation
as elaborated in Section 3.4.

The bottom line is that technical debt needs to be addressed. This is often a long-term
investment that is broken down into small chunks where a certain amount of technical debt
items are tackled with an allocated time-frame (e.g. two days are dedicated to technical
debt management per every two weeks). Therefore, it is important that managers optimize
this allocated time to handle the most critical debt items.

The research goal of this dissertation is to develop a framework that project managers
can use in their decision-making process to prioritize technical debt items.

To achieve that goal, we have devised the following research questions:

RQ1: What are the prevalent notions of technical debt?

RQ2: What are the different types of technical debt indicators?

RQ3: How do we build a framework to determine the most critical technical debt items?

The 16162 definition, https://mtd2016dagstuhl.org/ (accessed Jul. 20, 2016)

RQA4: How effective is the framework?

This dissertation is two-fold. First, we conducted a literature review and empirical
studies with software practitioners to understand the state of the art of technical debt in
industry. Second, we use the knowledge acquired during our case studies coupled with
machine learning and decision models in order to build a decision-making framework for
technical debt.

The contributions of this dissertation can be summarized as follows:

A comprehensive and customizable framework to manage technical debt items based

on business objectives while assessing risk

A prediction model that can be used independently of the entire framework (e.g.

focus quality assurance effort)

A technical debt taxonomy tree which classifies the types of technical debt

A technical debt management tree which proposes criteria that project managers can

use in their decision models when reasoning about technical debt

The rest of this dissertation is organized as follows. Chapter 2 highlights background
and related work. Chapter 3 focuses on the literature review on technical debt organized
in different categories. Chapter 4 presents the methodology including research goal, ques-
tions, and study design. Chapter 5 provides insights on the results. Chapter 6 elaborates
on the results and lists the threats to validity. Finally, Chapter 7 concludes this dissertation

and discusses future work.

CHAPTER 2

BACKGROUND

In this chapter, we describe some important concepts related to this research. First, we
elaborate on agile development methodology, which gives technical debt more visibility.
Second, we describe some important metrics (traditional and object-oriented) defined in

the literature that are relevant for this work.

2.1 Agile Practices and Technical Debt

In February 2001, seventeen practitioners met in Utah to discuss their work habits, the
lightweight methodologies. This gave rise to agile software development, a reaction to
traditional, plan-based software development. The practitioners wrote the "Manifesto for

nl

Agile Software Development"' which describes the four comparative values underlying

the agile position:

Individuals and interactions over processes and tools

Working software over comprehensive documentation

* Customer collaboration over contract negotiation

* Responding to change over following a plan

"'Manifesto for Agile Software Development, http://www.agilemanifesto.org/(accessed March 5, 2012)

6

That is, while there is value in the items on the right, we value the items on the left
more.

Agile development involves a set of practices that promotes an incremental delivery of
software. Agile teams are small, self-organizing and cross-functional. Agile encourages
rapid development and delivery while being flexible to changes. Williams and Cockburn
state that agile development is about feedback and change and are developed to embrace,
rather than reject, higher rates of change [87].

Agile software development has a huge impact on the way software is developed world-
wide. Recently, agile processes have gained increasing adoption levels as shown in Fig-
ure 2.12 and have rapidly joined the mainstream of development approach. Companies
that adopted agile reported that the main benefits obtained from implementing agile in-
clude the ability to manage change priorities, improved project visibility, and increased
productivity [75].

There are many agile development methods (e.g. Scrum, Extreme Programming, Lean
and Dynamic System Development Method amongst others). Most methods promote
teamwork, customer involvement, and process adaptability throughout the life-cycle of
the project. Methods for agile consist of a set of practices for software development that
have been created by experienced practitioners.

In order to better understand agile in an industry context, we conducted a case study
with an industrial partner during their implementation of agile development practices for a

large software development division within the company [16].

2HP, "Agile is the new normal," https://www.hpe.com/h20195/v2/getpdf.aspx/4AAS5-7619ENW.pdf?ver=1.0 (accessed September
10, 2016)

Most current Agile 100%

orgs have adopted in
Just the past 5 years

\ 67%

Major uptick in Agile
adoption began to
occur in 2009-2010

4%

2;'3;;’ 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

Figure 2.1

Agile Adoption over Time

Despite their recent agile adoption, the company is conscious of the impact of technical
debts in the software development process, and therefore, some teams are dedicated to the
reduction of debt.

This study increased our awareness of the importance of managing technical debt. Sub-
sequently, we devised a method for addressing technical debt using a Quality Assurance
(QA) classification scheme and focus on prevention, reduction, and containment activi-
ties [18].

Technical debt prevention activities aim to proactively reduce the chance of technical
debts being injected in the software. Different strategies are proposed to handle the dif-
ferent sources of debt injections including pair programming, refactoring, and test-driven

development.

One of the most common technical debt prevention techniques is refactoring. Refac-
toring is also commonly used as a technical debt reduction technique. Refactoring is a
technique for restructuring code by improving its internal structure without affecting its
external behavior. Refactoring improves not only aspects of code quality, but also produc-
tivity [62]. Pros of refactoring include improved code readability and reduced complexity.
Refactoring thus makes the maintainability and extensibility of code easier. Examples of
refactoring involve deleting unused code and duplicated code.

The aim of technical debt reduction activities is to remove as much of the injected debt
as possible. There are numerous good practices in agile software development that can
benefit technical debt reduction. Such agile practices include code reviews, static analysis
tools, test automation, and frequent customer feedback.

Technical debts that bypass the debt prevention and reduction activities intentionally or
unintentionally remain present in the software. It is a common practice to have working
software deployed at a customer’s site with known technical debt present. For these situa-
tions, technical debt containment is the quality assurance approach that must be taken. It
is imperative to isolate the impact of known debts so that other parts of the software are
not impacted. While there is a lack of techniques proposed in existing literature to contain

technical debt, N-version programming (NVP) is one applicable approach.

2.2 Software Metrics

Metrics have traditionally been used as an indicator of software quality in the industry.

In addition, metrics are widely used as a proxy for technical debt or tools measuring techni-

cal debt uses metrics in the calculation of their technical debt indicator [64, 58, 22, 7, 54].
In this section, we will present a brief overview of the different common metrics in the

literature that have been used in the context of software quality over the years.

2.2.1 Traditional Metrics

Traditional software metrics that have been widely used among practitioners are lines
of code, Halstead metrics (Software Science), and cyclomatic complexity. We defined

these common traditional metrics as in Table 2.1.

Table 2.1

Traditional Metrics

Metric Description

Line of Code (LOC) Measure the size of a computer program by
counting the number of lines in the source
code

McCabe Cyclomatic Complexity Indicate the complexity of a program based
on graph theory [59]

Halstead Metrics Measure a program module’s complexity di-
rectly from source code, with emphasis on
computational complexity [35]

10

2.2.2 Object Oriented Metrics

Object-Oriented metrics are increasingly being used to evaluate the quality of soft-
ware. When code is analyzed for object-oriented metrics, the Chidamber-Kemerer (CK)
suite [14] is a very common choice. We present the CK Metrics suite in Table 2.2.

Some of the metrics defined in this section will be used in the building and evaluation

of the technical debt decision-making framework.

11

Table 2.2

Chidamber and Kemerer OO Metrics Suite

Metric

Description

Weighted Methods Per Class
(WMCO)

Depth of Inheritance Tree
(DIT)

Number of Children (NOC)
Coupling between object
classes (CBO)

Response For a Class (RFC)

Lack of Cohesion in Methods
(LCOM)

Measures the complexity of an indi-
vidual class

Indicates the maximum depth of the
inheritance graph of each class

Measures the number of direct de-
scendants for each class

Measures the number of classes to
which a given class is coupled

Measures the number of methods that
can potentially be executed in re-
sponse to a message received by an
object of that class

Measures the number of pairs of
member functions without shared in-
stance variables, minus the number
of pairs of member functions with
shared instance variables

12

CHAPTER 3

LITERATURE REVIEW

Since the first Managing Technical Debt workshop in 2010, research on technical debt
has become more widespread. There has been a substantial increase in the number of
studies conducted on the topic. Unlike traditional systematic literature reviews [50] [49],
due to the lack of academic research in this area, we studied all the publications that were
available on technical debt from 2010 to 2014. This chapter groups and summarizes some
of the studies carried out in the field of technical debt. We start by describing technical
debt taxonomies, followed by technical debt measurement and decision-making. Then we
enumerate the impact of technical debt and describe empirical studies carried out with

software practitioners.

3.1 Taxonomies
Several notable taxonomies have been developed for classifying technical debt.
McConnell classified technical debt as intentional and unintentional debt.! He defines
unintentional debt as debt acquired unintentionally due to low quality work (e.g. an inex-
perienced programmer writing bad code). He describes intentional debt as debt acquired

knowingly (e.g. a conscious decision to achieve some short-term objectives). Intentional

1S. McConnell, "Technical Debt," http://www.construx.com/10x_Software_Development/Technical_Debt/ (accessed Apr. 14,
2013)

13

debt is further broken down as short-term debt and long-term debt. Short-term debt is debt
taken on tactically and reactively (e.g. as a last resort to get a release out of the door).
Long-term debt is taken on strategically and proactively, especially in cases where the cost
as at today is seen as expensive as the cost in the future.

Fowler? defines technical debt as either reckless or prudent and deliberate or inadver-

tent. The four quadrant’s categorization of technical debt are as follows:

* Reckless and deliberate - debt created due to poor management where shortcuts are

taken by the team instead of the right solution because they have to meet a deadline

* Prudent and deliberate - debt taken on after carefully analyzing the costs and conse-

quences of shipping now

* Reckless and inadvertent - debt accumulated by developers who are incompetent and

ignorant of coding practices

* Prudent and inadvertent - debt that refers to improvements that the team can make

with experience and relevant knowledge

Rothman’s classification® is analogous to life cycle phases: design, development and
testing debt. Design debt refers to design which is not robust in certain areas. Development
debt is described as missing code, and testing debt refers to tests not developed or run

against the code.

M. Fowler, "TechnicalDebtQuadrant," http://martinfowler.com/bliki/TechnicalDebtQuadrant.html (accessed Jan. 14, 2014)

31 Rothman, "An Incremental Technique to Pay Off Testing Technical Debt,"
http://www.stickyminds.com/sitewide.asp?Function=edetail&ObjectType=COL&Objectld=11011 (accessed Apr. 14, 2013)

14

Alves et al. [2] proposed an ontology regrouping thirteen technical debt types, namely
architecture debt, build debt, code debt, defect debt, design debt, documentation debt, in-
frastructure debt, people debt, process debt, requirement debt, service debt, test automation
debt and test debt. We define these types of technical debt in Table 3.1.

To further advance research in technical debt, it is important to understand and dis-
tinguish between the different types of debt in software development. This distinction of
the types of technical debt will contribute towards refining a definition for technical debt.
However, technical debt taxonomy is an area of research in technical debt which is among
the least studied. Many of the taxonomies presented were reported in well-respected soft-
ware practitioner blogs. Therefore, we need more studies on the taxonomy of technical
debt to help the community recognize the various types of debt and to pave the way toward

a cohesive definition for technical debt.

3.2 Measurement

The baseline for measuring technical debt is the concept of principal and interest. Prin-
cipal refers to the cost of completing the task at the present time. Interest is the extra cost
added to the principal that will be needed to complete the task at a later time [76]. Cun-
ningham introduced the concept of interest probability as the probability that the debt will
make other tasks more expensive over time if it is not paid [20]. However, many more
elaborate methods have been developed to quantify technical debt as discussed below.

Nugroho et al. [65] defined technical debt and interest as the cost to improve quality to

an ideal level and additional cost of software maintenance for not achieving ideal quality,

15

ans
159} oY) Ul SSUTWIOJ}IOYS UMOUY JYJO 1O uni jou nq pauue[d a1e jeyy s1s9) I S1qap 1],
Areuonouny padoaaap A1snoraaid Jo $3s93 9y Sunewioine 03 LRI S1IP UOHBWOINE S,
1qap 2onp

-onut A[renuajod ued Yorym ‘uonnirnsqns AJIAIS qom JOJ Pau) 0} JOJAI S}qAP AIIAIS
paruawodur

9q 01 paau sjuawaimbar yorym 03 30adsar yiim opewl s}jospes) aIe s1qop judwarinboy
$9559001d JUAIOYJAUL 0} J9JI S1QAP SSAV0I]

san1Anoe Juawdoraasp Aejap ued jey) sansst ofdoad are s3qop opdood

SOnIANOR

yuowdoraAap 1opury Afeniuaiod ued jey) sanssI INONISLIJUT SOPN[OUL 1GP 2INJONISeIJuf
9IeM1JOS I0J UONBIUAWNIOP djenbapeur 1o jo[dwodur ‘SuUISSIW I8 $)qap UOHIBIUAWNIO]
sordrourid ugrs

-9p PAIUALIO-102[q0 poo3 JO SUONEB[OIA Y} O} NP PIJL[NWNIIL)P O} SIAJAI 1P u3Isoq
I91e] paxy 2q 03 pauodisod uaaq ALY 1BY) $109JOp UMOUY ATk $1Gap 199

soonoeld Surpod peq 01 PIL[aI PO ADINOS Y} Ul swa[qoid 01 19Ja1 $1qop 9po)D)

ssa001d pring oy 9eo1[duwiod jey) sanssI paje[al p[ing 0} I9JaI s1qap pling

SUOIIB[OTA

Ajremnpowr 39 91md)IydIe 192(oxd oY) 03 paje[ar swo[qoid 03 SI9JAI 1P AINIOANIYIIY

199p 153
1gop uonewoline 1597,

1Qap AIIAIRS

1qop JuawaIboy
1Qap $s9001d
1q9p 9rdoog

1QOp IMONNSBIJU]
1Qop UOTBIUWNIO]

199p u31se(q
199p 199J2d
199p 9poH
199p pring

1P 2INONIYIIY

uonuyaq

1A
[eduydd], Jo sadAj,

199 [eo1uyd, Jo sadAy,

['¢ 2198l

16

respectively. Technical debt was quantified as Repair Effort (RE) in terms of Rework
Fraction (RF), Rebuild Value (RV), and Refactoring Adjustment (RA). RF refers to the
number of lines of code that needs to be modified to improve software quality. RV refers to
the effort estimation required to rebuild a system using a particular technology. RA refers
to the percentage discount that is made to the repair effort due to context-specific aspects

of a project.

RE = RF x RV x RA 3.

Interest was quantified as Maintenance Effort (ME) in terms of Maintenance Fraction
(MF), Quality Factor (QF), and RV. MF refers to the annual maintenance effort in terms
of percentage of lines of code added, changed or deleted, on a yearly basis. QF is a factor

used to account for the level of quality.

B MF x RV
— OF

The cost of technical debt is broken down into principal, recurring interest (RI) and

ME (3.2)

compounding interest (CI) by Chin et al. [15]. The principal is the cost of servicing the
debt; RI is the cost to the organization for not surviving the debt, and CI is the additional
technical debt that grows with time.

Curtis et al. [21] focused on the principal calculation as a measure of technical debt,
using a function of the number of should-fix violations in the software, the hours to fix
each violation, and the cost of labor as illustrated below. Should-fix violations are defined

as violations of good coding practices and architectural practices.
17

Principal = ((Z high — severity violations) x (percentage to be fixed)
X (average hours needed to fix) x (US $ per hour)) +
((Z medium — severity violations) X (percentage to be fixed)
X (average hours needed to fix) x (US $ per hour)) +
((Z low — severity violations) X (percentage to be fired)

X (average hours needed to fix) x (US $ per hour)) (3.3)

SonarQube* is a common tool for quantifying technical debt (in terms of person days

to pay the debt), and the underlying formula is based on the following cost:

Debt = cost to fix duplications +cost to fix violations +cost to comment public
API + cost to fix uncovered complexity + cost to bring

complexity below threshold + cost to cut cycles at package level (3.4)
where

Cost to fix duplications = cost to fixz 1 block x duplicated blocks (3.5)

Cost to comment public API = cost to comment 1 API x

public undocumented API (3.6)

“http://www.sonarqube.org/

18

Cost to fix uncovered complexity = cost to cover 1 complexity X

uncovered complexity by tests (3.7)

Cost to bring complexity below threshold =
cost to split 1 method x function complexity distribution > 8 +

cost to split a class x class complexity distribution > 60 (3.8)

Cost to cut cycles at package level =

cost to cut an edge between 2 files X package edges weight (3.9)

There are default values for each cost that can be easily customizable in SonarQube.

Marinescu computed design technical debt as the Flaw Impact Score (FIS) for design
flaw instances using three criteria, namely influence (Iflaw type), granularity (Gflaw type),
and severity (Sflaw instance). This method measures the impact of design flaws based on
how they affect good design in terms of coupling, cohesion, complexity and encapsulation,
the level of granularity at which they affect design entities (e.g. class and method) and the

severity of the design flaw [58].

FISflaw Instance — Iflaw type X Gflaw type X Sflaw Instance (3 10)
19

Consequently, the design debt in a system was computed as an overall score - the Debt

Symptoms Index (DSI) as follows:

Y- all flaw instances X F1Sfiqy instances

A= KLOC

(3.11)

where KLOC is the number of thousands of lines of code of the system.
Ho et al. [37] proposed a method for estimating technical debt (TD), assuming project

size is known, based on the COCOMO II model. The effort to pay off technical debt (ETD)

is

ETP = KLOCTPAY x EAF (3.12)

where TDAF (TD adjustment factor) is the ordered weighted average (OWA) of the 4
dimensions of technical debt: process rules compliance, quality testing, maintainability
and complexity, and EAF (effort adjustment factor) are the project and product drivers that

will influence how efficiently the debt will be addressed.

4 d;
TDAF = OWAY > wjue, (3.13)
i=1 j=1
17
EAF =[] EM; (3.14)

=1

(using the 17 cost drivers from COCOMO 1I)
Singh et al. [78] came up with some preliminary ideas for a framework to estimate
technical debt interest based on code and developer comprehension metrics. Code com-

20

prehension metrics include count class coupled, count class base, count class derived, count
line code and count declared method, while developer comprehension metrics include the
number of sessions, class visits and other class accesses, and time spent in class and other
classes. Therefore, interest is defined as the difference in time spent by the developer to
understand the class under the current code structure versus under ideal code structure.
Regarding technical debt measurement, none of the methods described above have been
widely adopted by the industry. Many companies are either using internal tools to quantify
their debt or not measuring their debts at all. This shows that there are some aspects of
technical debt quantification that these methods are lacking, and the lack of standard mea-
surement tools is preventing their extensive implementation. Therefore, further research is
needed to curb the gap towards quantification models and techniques that would be a better

fit to help companies to measure their debt.

3.3 Decision Making

Seaman et al. [76] borrowed techniques from other disciplines such as finance and
psychology to prioritize technical debt items. Such techniques include Cost-Benefit anal-
ysis, Analytic Hierarchy Process (AHP), the Portfolio method and the Options approach.
The Cost-Benefit Analysis Approach uses the principal and interest approach and is better
suited in cases where there is limited or no historical data available. A mix of expert opin-
ion and historical data can be used to build the cost-benefit model. AHP assigns weights
and scales to criteria that are used to measure technical debt and subsequently perform

pair-wise comparisons between alternatives to get a prioritized ranking of the technical

21

debt items. While some of the decisive criteria for technical debt would be principal and
interest, human intervention is acceptable in cases where the relevant information cannot
be obtained. The Portfolio Approach relies on the return on maximization of investment
value and investment risk minimization to make informed decisions in technical debt man-
agement. However, this approach is specific to the financial domain. For technical debt
management, the approach cannot be used as is and needs to be customized. The Options
Approach is analogous to investing in refactoring the debt item with the long-term objec-
tive of facilitating future maintenance and thereby saving money. However, this technique
requires the estimation of the key parameters that are difficult to estimate in practice.

Snipes et al. [81] suggested technical debt decision-making factors as severity, exis-
tence of a workaround, urgency of the fix required by a customer, effort to implement the
fix, risk of the proposed fix, and scope of testing required. They evaluated the factors us-
ing semi-structured interviews with 7 ABB control system team members to understand
the technical debt management strategy. They found that the decision-making factors are
listed in decreasing order of importance with severity being the most influential.

Schmid [74] proposed a formal technique to aid technical debt decision-making. The
study distinguished between potential and effective technical debt. Potential technical debt
(PTD) is any type of sub-optimal software system (or part of it) while effective technical
debt (ETD) are issues in the software system that makes further development of that system
more difficult. The approach considers the evolution cost, refactoring cost and probability

that the predicted evolution path will be realized in the decision-making process.

22

Due to limited resources to handle debt, prioritizing debt decisions is critical. A good
approach would be to take into consideration a combination of factors that will enable
teams to determine how critical the debt item is to the future releases of the software.
Such an approach is still nonexistent and current decision-making strategies rely solely
on one factor such as customer request or severity of the debt. Therefore, it is important
to research this aspect of technical debt further by combining multiple approaches that

consider various facets of the problem.

3.4 Impact of Technical Debt

At the start of a new project, it is common to intentionally incur technical debt in order
to achieve some goals. When technical debt is incurred for strategic reasons, it is due to
the opportunity cost of releasing software now compared to some point in the future. For
instance, McConnell points out that when time to market is critical, incurring technical
debt might be a good business decision. Other instances where debt can be incurred may
be due to time and resource constraints where the software or feature needs to get out of the
door and the software will be "fixed" after the release. In addition to time-to-market factor,
he also explained how preservation of startup capital contributes towards technical debt. In
a startup company, expenses that can be delayed should be as opposed to expending startup
funds on technical debt now. Another case where it might be justifiable to incur technical
debt would be near the end of a system’s lifecycle because when a system retires, all the

debts retire with it.>

5S. McConnell, "Technical Debt," http://www.construx.com/10x_Software_Development/Technical_Debt/ (accessed Apr. 14,
2013)

23

As explained earlier, technical debt is not always bad if it allows a business to achieve
a competitive edge and market share. In such cases, it makes sense to delay the moment
when the software is brought in line with standards and best practices. Good technical debt

has one or more of the following characteristics [15]:

* It has a low-interest rate - technical debt with low-interest rate can be supported for a
longer time frame as the development costs won’t increase over time. Repaying the

debt at a later time might cost significantly more than it will cost to repay it now.

* It is being regularly serviced - when technical debt is regularly serviced, the amount

of debt will decrease over time, thereby increasing the quality of the software.

* The work that preceded it had a very high opportunity cost - if there is a high oppor-
tunity cost related to the debt, it is preferable to release the software and incur some

debt, rather than not releasing and losing money.

The decision to assume the debt must be made explicit and should be the result of a
collective decision based on the key stakeholders concerned. Such a decision will normally
be taken after assessment of the risks and benefits identified. In addition, the stakeholders
must ensure that a process exists to manage the debt and that it is paid back within a set
period of time.

However, non-strategic debt can be detrimental to the quality of the software. Such
situations might include when the debt is taken on without stakeholders’ approval and

the impact of the debt is not properly assessed. It is harder to manage technical debt

24

accumulated due to shortcuts taken because of poor quality assurances processes.’ This
type of debt is comparable to credit card debt as it can be easily incurred and adds up very
fast due to compounding interest.

Nonetheless, a process to pay back technical debt is needed. The longer the debt repay-
ment is deferred, the harder and more costly it will be to pay it back as the interest charges
keep compounding. Technical debt is often quantified as principal and interest. These are
the basic factors for calculating the Return on Investment (ROI) on resolving the debt if
the costs can be determined.

Over time, technical debt can lead to degeneration of the system's architecture. The
lack of prompt debt payment can result in technical bankruptcy where an organization's
resources are spent dealing with the inefficiencies created by the debt that has accumulated
over time and can no longer keep up. In the worst case, the software might need a com-
plete redesign or need to be rewritten; entire departments are outsourced; customers and
market shares lost; and customer confidence is lost as the company will be spending more
resources on debt servicing rather than focusing on new features [38].

A famous example is Netscape Navigator which experienced architecture decay over a
short time period. Netscape developers wanted to release a newer version of the software
but could not because the code was harder to change than expected and the system became
unmaintainable. The architecture was difficult to understand and it became almost im-
possible to add new components [33]. Another example is Visual Query Interface (VQI), a

software package that degenerated as the programmers made changes to the system without

6S. McConnell, "Technical Debt," http://www.construx.com/10x_Software_Development/Technical_Debt/ (accessed Apr. 14,
2013)

25

following the architectural guidelines provided. The programmers introduced design pat-
tern violations which cause unnecessary couplings, misplaced classes (i.e. classes placed in
the wrong package), and imported classes not used in the package [85]. This degeneration
is referred to as code decay [38].

Code decay can have several root causes. One cause is violating architectural design
principles. For example, in a strictly layered system where a layer can only use the services
provided by the layer below. If a developer does not follow the constraint, this change is
considered a violation of the architecture.

Other causes for code decay include:

* Time pressure that causes programmers to knowingly postpone refactoring

Writing code without following proper programming conventions

Debugging code improperly

Taking shortcuts to get a working solution as fast as possible

The above examples illustrate that technical debt gives rise to code decay, which makes
code changes harder than they should be.

Hochstein et al. [38] reported that in order to find areas of code decay, they used a tool
to detect code smells, which helped to identify code areas where good design principles
were breaking down. A code smell is a surface indication that usually corresponds to a
deeper problem in the system [30]. As a result, code smells are useful to identify areas

accumulating technical debt.

26

In the next subsection, we discuss technical liability, one of the consequences of tech-

nical debt that is often overseen in the industry.

3.4.1 Technical Liability

Technical liability” is the result of technical debt. This term addresses the cost of
business outcomes that arise due to issues with the software product. It is defined as the
financial risk exposure and other liabilities over the life of the code. These liabilities have
financial implications.®

Examples include:

Future service costs (handling service desk calls for support of hastily released new

features to address bugs and customer complaints)

* Fines resulting from privacy violations

Loss of business from failing a compliance audit

* Loss of intellectual capital due to security flaws

* Loss of customers resulting from a negative reputation for quality

However, technical liability is context dependent (e.g. an automobile software release
assumes more liability than the next release of Pokémon Go).
This technical liability concept includes the realization that costs associated with han-

dling technical debt exceed the cost in person-hours to fix. Technical debt does not cover

7Self Insurance and Technical Liability, https://www.ibm.com/developerworks/community/blogs/RationalBAO/entry/self_insur
ance_and_technical_liability?lang=en (accessed Jan. 16, 2014)

8 Technical Liability: Extending the Technical Debt Metaphor, https://www.ibm.com/developerworks/community/blogs/Rational
BAO/entry/technical_liability_extending_the_technical_debt_metaphor?lang=en (accessed Jan. 16, 2014)

27

the full economic impact of shipping code. A full view of the economic decision to ship
must include not only the technical debt, but also the associated technical liability. Techni-
cal liability is much more than the typical development and maintenance costs as illustrated
in the examples above. Technical liability includes estimates of the possible future costs
resulting from the decision to ship. Therefore, before debt ridden code is released, there is
a need to think beyond the cost associated with fixing the debt.® The software engineering
research community often overlooks this broader perspective on technical debt. This work

will include technical liability when reasoning about the cost of technical debt.

3.5 Practitioner Studies

Finally, we identified the following empirical studies that reported on software practi-
tioners’ involvement with technical debt using empirical methods including interviews and
questionnaires. We summarize the studies and their findings.

Klinger et al. [51] report on a case study carried out with four technical architects at
IBM to understand the decision-making process used to incur technical debt and determine
whether the analogy between technical debt and financial leverage holds. They pointed out
that unintentional debt is more problematic than intentional debt. In addition, technical
debt decisions were made by non-technical stakeholders and not the technical architects.

Lim et al. [55] describe a study where they interviewed 35 software practitioners to
evaluate how the practitioners characterize, perceive and understand the context in which
technical debt occurs. Holvitie et al. [39] conducted a survey of 54 practitioners in a

Finnish company to understand their perception of technical debt, the effect of agile prac-

9Self—insuring your software, https://www.cutter.com/article/self-insuring-your-software-425106 (accessed Aug. 6, 2016)

28

tices and processes on technical debt and how technical debt manifested itself in projects.
They reported that frequent occurrences of technical debt were due to architecture issues,
legacy components and increased component size. Yli-Huumo et al. [89] investigated the
causes, management and effects of technical debt in a Finnish company by interviewing
12 practitioners. Lim et al. [55] and Holvitie et al. [39] found that most of the participants
were unfamiliar with the term technical debt. After being introduced to the concept, most
of the practitioners in the study by Lim et al. [55] recognized its existence. The participants
pointed out that most of the debts were incurred intentionally, mostly because of customers’
inability to provide concise requirements, confirming the findings of Yli-Huumo et al. [89].
Codabux et al. [17] describe a case study with a mid-sized company where they in-
terviewed 27 software practitioners. The aim of the interviews was to understand how
practitioners define, characterize, and prioritize technical debt. They reported that devel-
opers have their own technical debt taxonomy. In addition, they also pointed out that,
despite the company being unaware of the long-term consequences of technical debt, one
best practice to manage the debt is to allocate an iteration per potentially shippable incre-
ment (PSI) towards reducing the debt. On the other hand, Yli-Huumo et al. [89] pointed
out that the participants recognized that technical debt has financial consequences in the
long-term but nevertheless, the company does not having any process to handle the debt.
Spinola et al. [82] described a study where 37 software practitioners were asked via an
online and paper survey to rank 14 statements on technical debt using a 5-point Likert scale,
according to what they mostly agree with. They reported that the participants recognized

that technical debt is an important concept in software project management and not just

29

"bad code". Al Mamun et al. [57] investigated the existence of code smell and root causes
of technical debt by carrying out a case study and developers’ interviews using self-driving
miniature car projects. They pointed out that the root causes of technical debt were debt
arising due to time pressure, incomplete refactoring and reuse of legacy, third party, or
open source code.

Since the term technical debt was coined about 20 years ago, research has been mostly
confined to the basic aspects of the concept. Most studies to date collect and analyze data
using static analysis tools and report their findings. Very few studies have been carried
out where software practitioners were involved and shared their experiences concerning
day-to-day activities dealing with technical debt.

We are aware that empirical studies are a way to curb the gap between theory and
practice as it enables researchers to gain knowledge of how software engineers are actu-
ally working. Therefore, we need an increasing number of empirical studies to understand
practitioner management of technical debt. Our case studies described in Section 4.2.1
adds to the existing literature by carrying out empirical studies with software practition-
ers to further evaluate practitioner understanding of technical debt and focuses on other

important aspects such as risk management and technical liability.

30

CHAPTER 4

METHODOLOGY

This chapter elaborates on the goal of the dissertation and the research questions as
well as gives an overview of the research design and analysis.

Software companies have limited resources in terms of manpower, money, and time. It
is common for one person at a company to assume multiple roles. In addition, companies
face budget cuts and are expected to achieve more work in the same amount of time. There
is also pressure to deliver software quickly due to various strategic reasons, for example, to
acquire market share before competitors. Therefore, there is extreme pressure on managers
to maximize use of development time to deliver quality software. There is a constant
struggle in companies to handle the technical debts that are most risky for the future of the
software before the software is released.

Our aim is to address these issues with the following research goal:

To develop a framework that project managers can use in their decision-making process

to prioritize technical debt items.

Developers and managers are often faced with the question: which technical debt items
are the most critical for the project? Prioritizing technical debt items the wrong way might

not be beneficial for the project and might be a misuse of valuable resources (e.g. time and
31

manpower). This decision-making process is contextual and requires the input of the team
members and managers directly involved with the project as they understand the software
better than anyone else. For instance, not all technical debt needs to be repaired. A feature
or part of the system that is nearing the end of its life can be excluded from the list of
technical debt items to be prioritized.

It is crucial to manage technical debt in software projects to avoid disastrous conse-
quences as we explained in Section 3.4. If technical debt is given too little importance,
the project will collapse and become unmaintainable. Consequences can include major
refactoring or rebuilding. On the other hand, if given too much importance, new features
get delayed and the software company’s offerings may not be as appealing to potential
customers.

Managers tackle the most critical debt items in the time allocated for technical debt
management. The decision-making framework outputs a prioritized list of technical debt
items from the most critical to the least critical that needs to be addressed. With a pri-
oritized list, managers can decide which debt item is most critical for the software and
address them, thus making optimized use of their technical debt management time. In or-
der to build a framework to decide which technical debt item is most critical and needs
to be addressed first, we first need to understand how technical debt is perceived among
software practitioners.

The overall goal will be addressed using the research questions presented in the next

section.

32

4.1 Research Questions

This section elaborates the research questions.

4.1.1 RQI1: What are the prevalent notions of technical debt?

The rationale behind this question is to understand how the technical debt concept
varies among practitioners. We want to investigate whether their definition and technical
debt management are influenced by the nature of their work, project, organization or any
other factor. In addition to the technical debt taxonomy, we are interested in quantifying
technical debt and how technical debt is managed including its impact on the project and
how practitioners prioritize risk. We will gather the opinions of practitioners with varying
experience and roles in the software development industry on the multiple facets of tech-
nical debt. The insights from practitioners will allow us to understand common practices
for technical debt management in industry and identify different management factors that

we will use in our framework to prioritize technical debt items.

4.1.2 RQ2: What are the different types of technical debt indicators?

Prior to building our framework, we need to identify the different ways that can be
used to identify technical debt items. Some companies may already have a list of technical
debt items in their backlog that they need to tackle. Therefore, they can use the framework
directly on these technical debt items. However, there are other companies who need to
identify these debt items prior to using our framework. Our aim is to identify what the po-
tential indicators of debt in the source code are so that we can extract the debt items. In this

section, we also elaborate on the relationship between the indicators and problems in the

33

source code. It is equally crucial to understand which debt indicator can be obtained fairly
effortlessly as using the framework to identify the most critical items can be something
that some companies do on a regular basis.

4.1.3 RQ3: How do we build a framework to determine the most critical technical
debt items?

Our proposed decision-making framework consists of four phases. The first phase is to
use the indicators reported in RQ2 to extract the technical debt items. The second phase
is to use a prediction model to determine how problematic (i.e. cause additional problems
later and is defect prone and risky from a technical liability standpoint) the extracted tech-
nical debt items are. Next, we derive a classification scheme from the data to group the
technical debt items according to low, medium, and high severity [22]. The last step is to
rank the technical debt items using a decision model. We use the debt management factors

from our empirical case studies as criteria for ranking the debt items.

4.1.4 RQ4: How effective is the framework?

Once we have developed our framework, we want to determine how effective it is in
identifying the critical technical debt items. We use Findbugs', a static analysis tool used
to determine problems in Java programs by finding instances of bug patterns, to compare
our outputs. Findbugs assign their bugs a ranking from 1-20. The categories are scariest

(rank 1-4), scary (rank 5-9), troubling (rank 10-14), and of concern (rank 15-20).

"http://findbugs.sourceforge.net/

34

4.2 Research Overview

We conducted three types of studies as shown in Figure 4.1 to uncover answers to the

research questions.

* literature reviews which aggregate knowledge about different aspects of technical

debt (Section 4.2.1)

* case studies where we interviewed and surveyed software practitioners about techni-

cal debt (Section 4.2.2)

* historical data extraction of real software systems to better quantify technical debt

(Section 4.3)

35

Technical Debt Empirical Historical Data
Literature Case Studies Analysis

| |
'

‘ Prediction Model ‘

'

| Decision Model |

v

Technical Debt Decision Making Framework

Figure 4.1

Research Overview

36

4.2.1 Literature Review

First, we conducted a literature review on technical debt to better understand the state of
the art. There has been increased awareness of technical debt research since the first Man-
aging Technical Debt workshop in 2010. Most of the studies conducted are on technical
debt definitions and taxonomies, quantification, decision-making, impact, and empirical
studies involving practitioners. These studies have been reported in Chapter 3.

Next, to understand the different technical debt indicators, we surveyed the literature
to extract the different types of indicators reported in the academic literature, and we also

investigated whether these indicators indicate problems in the source code.

4.2.2 Empirical Case Studies

In 2012 when we started studying the technical debt metaphor, there was very little aca-
demic research on technical debt. Mostly, practitioners were talking about technical debt
on their blogs. Therefore, we also conducted a case study with an industrial partner [17],
a leading global provider of networking, and communications equipment to examine some
aspects of technical debt that were pertinent to this research. We used semi-structured
interviews, and a questionnaire to gather data for this study. We conducted 30-minutes
semi-structured interviews with 27 practitioners to assess their viewpoints of technical
debt (both management and technical) and to understand the terminologies used. The inter-
views were of both individual developers and Scrum teams (6-9 team members). We used
a questionnaire to obtain background information (e.g. work experience) on each inter-

view participant. Participation in the interviews was voluntary. The potential participants

37

included all engineers within the division. Our industrial partner’s management requested
volunteers to give their feedback and many obliged. The interviews were conducted over
a two-day period from 9-5 P.M.

The second case study [19] was conducted in 2014 and was carried out in two phases
as illustrated in Figure 4.2. The aim of this study is to understand the state of technical
debt (taxonomy, management, communication, impact, etc) and to understand debt risk
assessment from a practitioner’s point of view. The first phase consisted of semi-structured
interviews with software practitioners. We interviewed 17 practitioners from different ge-
ographical locations worldwide. The interviews were conducted over the phone over a
three month period. Each interview was roughly 30 minutes with some interviews lasting
longer. While we had a comprehensive list of questions, most of the time, we did not feel
the need to ask all of them as the participants provided answers while addressing other
questions. Thus, most interviews were concluded within the 30-minute timeframe. The
participants were recruited using a convenience sample of professional contacts. Some
interviewees also provided contact information for other potential participants at different
companies. The sample included practitioners with varying years of experience working
with a range of different software products. Four of the participants were software develop-
ers. The remaining participants consisted of 2 consultants, 3 technical leads, 3 architects,
and 4 in management positions. The remaining participant had a research position. The
interview questions comprised both open-ended and closed-ended questions. In addition,

demographic questions were sent in advance to be completed prior to the interview.

38

Study Goal Interview Questions Design

Conduct Interview

Grounded Theory Interview Analysis
Hypotheses Survey Instrument Design

Survey Validation

Deploy Survey

Collect Survey Results

Survey Analysis

Figure 4.2

Case Study Design

39

To analyze the interview data, we used a Grounded-Theory approach [32]. Following
the interviews, we coded the data (i.e. we generated some technical debt themes from the
data) based on our goal. Next, we generated our hypotheses on technical debt from these
themes. Lastly, we translated these hypotheses into survey questions.

For the second phase, as described above, we used the insights gathered from the in-
terviews to design a survey instrument which we deployed to the software engineering
community. Participation in the survey was on a voluntary basis, and participants were
recruited by asking the following Software and Systems Process Improvement Network

(SPIN) chapters’ administrators to send the survey to their mailing lists:

* SPIN chapters in the US (http://www.sei.cmu.edu/spin/find/us/index.cfm)

* International SPIN chapters (http://www.sei.cmu.edu/spin/find/international/index

.cfm)

In addition, the survey was advertised on:

* Ontechnical debt blog (http://www.ontechnicaldebt.com/blog/technical-debt-study/)

* LinkedIn groups related to technical debt and agile (Tech Debt, Technical Debt,
Agile, Agile and Lean Software Development, Disciplined Agile Delivery, Agile
Application Lifecycle Management, Certified Software Development Professional

((CSDP)) groups).

The survey invitation was also sent through email to the authors’ professional contacts.

40

4.3 Historical Data
This section describes the details of the historical data extraction. We describe the
systems studied, the tools used for the data extraction and the data extraction process as

well as the process for building the framework.

4.3.1 Corpora
We selected two open-source software projects namely Apache Hive and Apache Ma-
hout from the Apache Software Foundation using the following criteria:
1. Projects are written in Java
2. Source code is publicly accessible
3. Project issues are publicly accessible
4. Source code is managed using SVN
5. Project issues are managed using JIRA
6. Project should have multiple release versions

7. Project should have at least 1000 issues

4.3.1.1 Apache Hive

Apache Hive? is a large-sized open source project with more than 900K source lines
of code (SLOC) and is part of the Apache Software Foundation projects®. It is a data
warehouse infrastructure built on top of Hadoop that facilitates querying and managing
large datasets residing in distributed storage. Hive provides a mechanism to project the

structure onto this data and query the data using an SQL-like language called HiveQL.

2Apache Hive, https://hive.apache.org/ (accessed May 1, 2015)
3Projects Directory, https://projects.apache.org/ (accessed May 1, 2015)

41

It should be noted that we ignored early versions of the system when it was incorpo-
rated in another system. For example, Apache Hive was part of Apache Hadoop prior to
version 0.6.0. Therefore, the initial version of Apache Hive that we used was version 0.6.0.
Table 4.1 lists the different versions of Apache Hive that we considered in this dissertation

and their respective release dates.

42

Table 4.1

Apache Hive - Versions

Version Release Date

0.6.0 Nov 3, 2010

0.7.0 Mar 29, 2011
0.7.1 Jun 22,2011
0.8.0 Dec 19, 2011
0.8.1 Feb 6, 2012

0.9.0 Apr 30, 2012
0.10.0 Jan 11, 2013
0.11.0 May 15, 2013
0.12.0 Oct 15,2013
0.13.0 Apr 21,2014
0.13.1 Jun 6, 2014

0.14.0 Nov 12,2014
1.0.0 Feb 4, 2015

1.0.1 May 21, 2015
1.1.0 Mar 8, 2015

1.1.1 May 21, 2015
1.2.0 May 18, 2015
1.2.1 Jun 27, 2015

2.0.0 Feb 15, 2016

43

4.3.1.2 Apache Mahout

Apache Mahout* is a medium-sized open source project with about 100K SLOC and
is also part of the Apache Software Foundation projects. It is a Java-based framework
consisting of many machine learning algorithm implementations. The project currently
has map-reduce enabled (via Apache Hadoop) implementations of several clustering algo-
rithms (k-Means, Mean-Shift, Fuzzy k-Means, Dirichlet, Canopy, Naive Bayes and Com-
plementary Naive Bayes classifiers), and collaborative filtering, as well as support for dis-
tributed evolutionary computing.

For Apache Mahout, we consider the major versions including the first and last ver-
sions. Table 4.2 enumerates the different versions of Apache Mahout that we considered

in this dissertation.

Table 4.2

Apache Mahout - Versions

Version Release Date

0.1 Apr 7, 2009
0.5 Jun 2, 2011
0.10 Apr 11, 2015

0.12.2 Jun 13, 2016

4Apache Mabhout, http://mahout.apache.org/ (accessed May 1, 2015)

44

The characteristics of both systems are summarized in Table 4.3.

Table 4.3

Overview of Analyzed Systems

Apache Hive Apache Mahout

Revisions 3419 1413
Classes (last version) 11234 1801
SLOC (last version) 904425 109079

4.3.2 Tools
In this section, we describe the tools that we will use for the data extraction and for

collecting the metrics.

4.3.2.1 Change Count Extraction Tool

Change count was extracted using the Change Calculator tool, an internally developed
software. The Change Calculator is a Java-based tool written to count the number of times
a class was changed. The count was based on the number of times a change for a class was
reflected in the revision numbers of an SVN repository branch. We extracted change count

for each unique class from the first to the last versions identified in Table 4.1 and Table 4.2.

45

4.3.2.2 Defect Count Extraction Tool

Defect count was extracted using an extension of the JIRA Extractor tool [26], an
internally developed software. The JIRA Extractor is a Java-based tool initially written to
extract software project issues from the JIRA issue tracking system as well as to extract
SVN repository data for revisions associated with JIRA issues. The tool extracts issues
from JIRA and gets a list of all the classes from SVN that were changed to address the
issue. This tool was extended to include functionality to enable the extraction of defect
count for each unique class from the first to the last versions identified in Table 4.1 and

Table 4.2.

4.3.2.3 Scitool Understand

Scitool Understand® is a commercial static analysis tool for maintaining, measuring,
and analyzing source code. We are using Understand solely for the purpose of extracting
standard metrics and exporting them to spreadsheets. We are mostly interested in the met-
rics extracted at the class level. Scitool Understand extracts about 50 metrics. Most of the

metrics can be grouped as complexity, volume, or object-oriented metrics.

4.3.2.4 Intooitus inCode

Intooitus inCode® is a commercial tool that extracts code smells and architecture viola-
tions (referred to as design flaws) in the source code. inCode detects code smells and design
flaws by evaluating different metrics. This tool by Marinescu [58] has been elaborated in

Chapter 3. inCode detects more than 10 code smells that are most commonly encountered

3Understand Static Code Analysis Tool, https://scitools.com/ (accessed May 5, 2015)
6inCode, https://www.intooitus.com , its evolution at http://www.aireviewer.com (accessed May 5, 2015)

46

in software projects such as god class, data class, code duplication, schizophrenic class,

and so on. We briefly describe these code smells below:

* Code Duplication refers to groups of operations which contain identical or slightly
adapted code fragments. By breaking the essential Don’t Repeat Yourself (DRY)
rule, duplicated code multiplies the maintenance effort, including the management of
changes and bug-fixes. Moreover, the code base gets bloated. inCode identifies three
types of code duplication: (i) internal duplication involving methods that belong to
the same scope (class or module); (i1) sibling duplication of methods from the same

class hierarchy; and (iii) external duplication that refers to unrelated operations.

* God Class is an excessively complex class which gathers too much and non-cohesive
functionality and heavily manipulates data members from other classes. This means
that the data members and the methods that manipulate them are separated. Such a

class is harmful because it indicates that the functionality is improperly partitioned.

* Data Class refers to a class with an interface that exposes data members instead
of providing any substantial functionality. This non-encapsulated data is usually
manipulated by other classes in the system. This means that related data and behavior
are not in the same scope, which indicates a poor data-functionality proximity. By
allowing other classes to access its internal data, Data Classes contribute to a design

that is fragile and hard to maintain.

* Schizophrenic Class describes a class with a large and non-cohesive interface. The

lack of cohesion is revealed by the several disjoint sets of public methods that are
47

used by disjoint sets of client classes. Such classes represent more than a single
key abstraction and this affects the ability to understand and change in isolation the

various abstractions embedded in the class.

From now onwards, a class with code smells will be referred to as a technical debt item

(TDI).

4.3.2.5 AgenaRisk

AgenaRisk is a powerful tool for modeling, analyzing and predicting risk. AgenaRisk
supports predictive reasoning using risk maps (most commonly known as Bayesian Net-
works) and also allow to visualize risks and their relationships. We used AgenaRisk to

generate our Bayesian Network(BN).

4.3.3 Data Extraction
In this section, we will describe the process to extract metrics to build our decision-

making framework. This process is illustrated in Figure 4.3.

4.3.3.1 Extract Source code

For the identified versions of the software, we downloaded their source code from
https://archive.apache.org/dist/ and also collected release date information for the different

versions from their respective official mailing lists.

48

Source Code

Issue Tracking

SWVN Trunk :

A J l

[F

o . o @& ; X - Chm Count Catect Count

Intooitus scitool J JI
T J L Understand L Extractor L T
l e Defect Count
Classes Change Count
Technical Debt

Items

Dataset

Understand

=

Ccsv

Unique Classes

=

Yy

-

Understand Metrics

[I\

csv

Initial Dataset

B

L J

csv

Intermediate
Dataset

=

csv

Final Dataset

Figure 4.3

Research Overview

49

4.3.3.2 Collect Understand Metrics

Next, we ran Understand on the "/src" folders of the downloaded source code to get
the understand dataset including different metrics. Understand generates about 50 met-
rics from the source code. We eliminated redundant metrics from the same family (e.g.
Sum Cyclomatic complexity, Sum Modified Cyclomatic complexity, Sum Strict Cyclo-
matic complexity, etc). Then, we extracted a unique set of classes for the identified versions

of the software from the Understand dataset using a Java program.

4.3.3.3 Collect Change Count Metric

After having completed these pre-requisite steps, we ran the change calculator. The
change calculator extracts the change count information for each class unique set of classes

using the SVN trunk.

4.3.3.4 Create Initial Dataset

We combine the unique classes, the Understand metrics and the change count informa-

tion to get an initial dataset.

4.3.3.5 Collect Defect Count Metric

Next, we ran Jira Extractor to get the list of defect classes in the identified software

versions along with the defect count.

4.3.3.6 Create Intermediate dataset

We used a Java program to aggregate the initial dataset with the defect count informa-

tion, resulting in the intermediate dataset.
50

4.3.3.7 Collect Technical Debt Count Metric

Next, we ran inCode on the source code to extract the technical debt instances at class
level.

Based on previous empirical studies, we extracted technical debt at the class level using
a combination of code smells, defect count, and code churn (change count). Code smells
indicate problems in the source code. However, not all code smells are relevant to every
system. In addition, using static code metrics alone may ignore some causes of technical
debt such as poor requirements or design, unexperienced developers, bad documentation,
or managerial issues. All of these factors can impact how problematic a system can be, but
the code metrics generated by Understand do not consider them effective. Therefore, as a
further indication of a problem in the source code, we also extract defect and change count
information to help us further narrow down the items that may contain technical debt.

Classes are the building blocks of object-oriented systems and are self-contained ele-
ments from the point of view of design and implementation. Defining TDIs depends on
the company’s business objectives and information that is available to extract them.

We extracted metrics and TDIs from the latest version of the software. Over the lifetime
of the class, the most recurring and difficult to remove technical debt are the ones remaining
in the project. The trivial and less time-consuming ones are removed more easily than the
hardcore debt items which usually require the most effort and resources. As the aim of
this framework is to rank the riskiest technical debt items mimicking a setting as close as
possible to real-life technical debt management, we use the metrics and identified technical

debt items associated with the latest version of each system. When the class is first created,

51

it may not contain technical debt. If the class was created using shortcuts, it will contain
some technical debt, or it might have accumulated debt during its lifetime that will not be
visible in the version the class was created. In industry, technical debt is normally tackled
when the source code has become too problematic and is becoming harder to maintain;
thereby justifying our decision to use the latest version for the technical debt items and

associated metrics.

4.3.3.8 Create Final Dataset

The technical debt information from Step 7 was combined with the intermediate dataset,
resulting in the final dataset. Prior to finalizing the dataset, we cleaned it to remove any
anomalies. For instance, defect data could not be extracted when information such as re-
vision number was missing in Jira for different issues and therefore, was eliminated. In
addition, we also performed a stepwise regression [69] on the final dataset to identify the
Understand metrics that were significant to be included in our prediction model.

Lastly, for each variable in the final dataset, we identify recommended and non-recom-
mended thresholds based on previous studies in the literature [29, 9, 12] as shown in Ta-
ble 4.4. For example, a class with a WMC value less or equal to 15 would be categorized
as recommended and a class with WMC value greater than 15 would be categorized as
non-recommended. For defect count, change count and TDI count, any class with value
2 and above were flagged as not recommended. We add one additional column for each
variable in the final dataset where a / would indicate the metric is within the recommended

threshold and a 0 would indicate that the metric is not within the recommended threshold.

52

Table 4.4

Variables’ Threshold

Variables Threshold

LOC 200
WMC 15
CBO 15
LCOM 20
NOC 2

4.4 Decision-Making Framework Construction

After the data extraction phase, we put together our decision-making framework. First,
for the identified software version, we extract the code smells that we selected as technical
indicators, defect count, and change count as well as other traditional and object-oriented
metrics. Next, we use predictive analytics to determine how problematic each of the tech-
nical debt items are. Using the probability of the technical debt items being problematic
from the prediction model, we categorize the TD items using a classification scheme. After
the debt items have been classified, a subjective decision is taken by the project manager
or developers to determine which items to consider. This decision is based on the team’s
knowledge of the software and customer expectations. For example, the technical debt
items classified as low and medium, signifying low and medium risk items respectively,

can turn out to be part of features which is of high value in the next release of the software.

53

Similarly, the debt items that fall in the high category can turn out to be in features not
so important for the next release and can be addressed later. In the last phase, we build a
decision model that will be used to rank the debt items. Typical inputs to the model will be
the output from the prediction model, the impact of TD item (i.e. developers’ assessment
of the debt item based on perceived cost, effort, or business objectives of the system), the
location in source code, dependencies between the TD item and other important system
functions and code churn (how often the code changes over time). As described in Section
3.3, Seaman et al. [76] propose 4 cost-benefit models for technical debt decision making. In
our case, we will rank our debt items using Analytic Hierarchy Process (AHP). The inputs
will be the criteria that the team will agree on. The next subsections describe the process
of building the prediction model, defining the classification scheme, and constructing the

decision model.

4.4.1 Prediction Model

To build the prediction model for technical debt, we use a Bayesian Network (BN) [36,
24, 63, 13]. A BN is a graphical model that shows the probabilistic causal or influen-
tial relationships among a set of variables. It is represented as a directed acyclic graph
(DAG) with nodes for variables and edges for directed relationships between the variables.
For each variable, there is a corresponding node probability table (NPT) which is usually
derived from the observed data. NPTs define the relationships and uncertainty of the vari-
ables. NPTs specify how the probability of each state of the variable depends on the states

of its parents. The variables are usually discrete with a fixed number of states (e.g. recom-

54

mended and non-recommended) in our case. For each state, the probability that the variable
is in that state is given. The BN represents the complete joint probability distribution, that
1s, assigning a probability to each combination of states of all the variables.

Formally, the relation between the two nodes is based on Bayes” Theorem [83]:

P(X|Y)P(Y)

PYIX) = =5

(4.1)

where [P(X|Y)] is the conditional probability of the event X given the event Y, and P(X)
and P(Y) are the probabilities of events X and Y respectively. Each discrete variable node
has an N x M node probability table (NPT) where N is the number of node states and M
is the product of its cause-nodes states. In this table, each column represents a conditional
probability distribution, and, consequently, its values sum up to 1.

BNs are usually built using a mixture of data and expert judgments. Understanding
cause and effect is a basic form of human knowledge underlying our decisions. The ex-
pert’s understanding of cause and effect is used to connect the variables of the net with
arcs drawn from cause to effect. To ensure that our model is consistent with these em-
pirical findings, the probability tables in the BN are constructed using data whenever it is
available.

One of the greatest strengths of BNs is allowing probabilistic beliefs about the connec-
tions between variables to be updated automatically as new information becomes available,
leading to more accurate predictions compared to traditional statistical approaches like re-
gression models. BNs do not only reflect relationships between variables like regression

models, but they also direct cause and effect relationships. BNs can also handle incom-

55

plete datasets and prevent data overfitting [27]. One particularly interesting feature of BNs
is the ability to perform a what-if analysis to explore the impact of changes in some nodes
to other nodes.

In the field of software engineering, BNs are commonly used for modeling uncertainties
in software testing, in defect density prediction, and in other areas [70, 71, 3, 28, 66].

The process of building a BN contains the identification of interesting variables that
shall be modeled, representing them as nodes, constructing the topology and constructing
the NPTs. We used stepwise regression to clean up the initial variable set and generate the
relevant variables. We then define the causal relationships among the variables and gener-

ate the probability distribution of each variable. This process is illustrated in Figure 4.4.

Metric 2

Figure 4.4

Prediction Model Generation Process

56

We used AgenaRisk to input the conditional probability distribution for each node (in-
dependent variable) and generate the Bayesian Network (BN). After building the BN, we
simulate different scenarios based on our dataset and observe the respective resulting values
for "Technical Debt" (the root node of the BN) being true. Basically, a scenario involves
additional information to the model, more specifically, adding an observation to a node.
Scenarios can be formulated as what if questions. For example, a typical scenario can be
"what if CBO, LOC, WMC, LCOM, Change count and Defect count were all within the
recommended threshold." As a result, the probability to fulfill our goal (i.e. the techni-
cal debt of a class being true) will be generated. To check the validity of our model, we
performed a sensitivity analysis using AgenaRisk. A sensitivity analysis allows us to see

which nodes have the greatest impact on the (target) node.

4.4.2 Classification Scheme

Based on the resulting probability of technical debt being true from the BN, a classifi-
cation scheme is generated from the dataset. For example, a sample classification scheme

can be as follows:

* Low risk: Probability lying between 0.0 (inclusive) and 0.4 (exclusive)

* Medium risk: Probability lying between 0.4 (inclusive) and 0.7 (exclusive)

* High risk: Probability lying between 0.7 and 1.0 (inclusive)

57

At this stage, a subjective decision is made by the project manager or developers to
determine which TDIs to consider. For example, a sample selection might consist of 10%
low-risk debt items, 25% medium risk debt items and 65% high-risk items.

After the classification scheme has been applied, we further reduce the dataset to about

5 or 10 TDI. There are multiple ways to narrow down the dataset. For instance,

* Selecting the top 5 or 10 TDI with the highest probability (obtained from the BN)

» Selecting the TDI using the highest defect count

* Selecting the TDI based on impact of the debt (highest coupling)

4.4.3 Decision Model

The last step of the framework is the ranking of the TDIs using a decision model. The
selected technique is Analytic Hierarchy Process (AHP). AHP is a widely used decision-
making approach which uses pairwise comparisons and weightage, resulting in numerical
priorities [73].

The rationale for choosing AHP over more traditional decision-making techniques such
as cost-benefit analysis is the ability of AHP to adopt a multi-criteria approach which al-
lows us to take into consideration many different factors when ranking the TDIs. Simi-
larly, when project managers or team leaders in the industry need to consider which TDI
to tackle, they have to consider various factors related to that particular debt item. There-
fore, a multi-criteria approach as part of our framework is most closely related to industry
setting for technical debt management.

AHP can be summarized as follows:
58

91

. The problem is modeled as a hierarchy containing the decision goal, the alternatives

for reaching it, and the criteria of evaluation.

. The elements of each level of the hierarchy are rated using pairwise comparisons.

. Priorities among the elements are established subsequently.

Next, we calculate the priorities of the alternatives with respect to the goal.

Lastly, we make the final decision based on the results.

In our case, the goal is to find the most critical (problematic) debt item. The criteria are

context-dependent and the final selection of criteria is a collective decision of the software

team,

based on the business objectives.

Potential criteria for AHP are:

Debt probability (output of the prediction model)

Impact of the debt (coupling)

Location of the debt (how critical is that class to the software? is that class part of

an important functionality?)

Age of the debt (the longer the debt stays in the system, the more interest it accrues)

Code churn (how frequently does this class change?)

Defect count (is the class problematic?)

TDI count (a class with hundreds of TDI versus a class having a couple of TDI is

definitely a red flag)
59

* Type of debt (god class or formatting issue or module with no test coverage have

different consequences)

* Likelihood that users will interact with the debt items (how heavily is the class where
the debt is used? - does everyone interact with it or only a few users interact with the

module containing the debt)

60

CHAPTER 5

RESULTS

This chapter presents the results for the research questions. We elaborate on the notions
and identification of technical debt as well as customize and evaluate the framework for

both systems.

5.1 RQ1: What are the prevalent notions of technical debt?

We will provide insights for this research question based on our case studies described
in Chapter 4. The interview questions, hypotheses, and survey that form the basis of these
findings are reported in Appendix A and Appendix B. We have summarized the findings

grouped according to different categories.

5.1.1 Definition of Technical Debt

According to the different taxonomies of technical debt presented in Section 3.1, the
participants in the industrial case study described both intentional and unintentional debts.
In addition, management and developers’ definitions of technical debt were different. In
the survey, the participants did not limit the definition or description of technical debt.
They explained the rationale behind incurring debt, the ways debt was incurred uninten-

tionally, and the advantages of incurring technical debt. This discrepancy indicates that

61

there is no single definition that characterizes technical debt. The definition and descrip-
tion are conceptualized according to the practitioner’s situation and past experiences. This
difference in definitions confirms the findings of a case study carried out in one software
development division reported by Codabux et al. [17] where the definition of technical debt

varied according to the role of the participant.

5.1.2 Impact of Technical Debt

According to the participants in the industrial case study, technical debt was incurred
to complete objectives and satisfy the customer. Developers feared to acquire more work if
resolving some technical debts meant having to touch other related areas as a consequence
of addressing the debt. Addressing the debt could thereby break other features and require
more work from the developers. There was only minimal insight obtained regarding the
longer-term impact of technical debt. Some practitioners feared that technical debt over
the long-term has the potential to seriously hinder a project. Despite the potentially seri-
ous consequences of long-term technical debt, practitioners are willing to take on debt to
satisfy their short-term requirements. Some impacts of technical debt, according to partic-
ipants of the survey, were increased time and effort handling code where debt is present.
Trivial development tasks become more complicated in areas of the system where techni-
cal debt is encountered. Consequently, this affects the velocity of the entire team. When
the performance of the software is negatively affected, customer satisfaction decreases.
Team members take more time handling debt-ridden tasks. The company is also impacted

as technical debt causes an increase in maintenance cost, and low-quality software can

62

cause potential damage to the reputation of the company. In short, technical debt has a
ripple effect - when incurred by a developer, it affects every stakeholder, either directly or

indirectly.

5.1.3 Technical Debt Communication

Most participants of the survey mentioned that while technical debt is mostly commu-
nicated amongst development team members and management, it is very rarely discussed
with clients. Sometimes, management will receive automatic visibility via tools such as
SonarQube. In cases where the technical debt was communicated with the clients, the
latter were involved with internal technical debt decisions. Communicating debt to the
customers assists the development team in prioritizing debt and allows them to focus on
features important to the customer. Doing so also helps to mitigate future problems that

might arise if the customer discovered the debt during normal operations of the software.

5.1.4 Technical Debt Quantification

Several participants from the survey mentioned that commercial tools such as Sonar-
Qube! and SQALE [52] were used in their company to quantify debt. Others pointed out
that they use custom built tools for debt measurement. Several participants mentioned
that technical debt was not quantified at all in their companies. In addition, some of the
metrics to quantify debt that the participants mentioned are story points (an indicator of
effort necessary to address the debt) and time. This denotes that, despite technical debt

being quantified using different techniques, tools, and metrics, money is the "universal

lSonarQube http://www.sonarqube.org/ (accessed April 8, 2012)

63

language" to which it is eventually translated for easier understanding by all stakehold-
ers involved. Regarding technical liability, 60% of the practitioners explicitly agreed that
the cost of technical debt is more than the cost of addressing code deficiencies revealed
by tools. Some practitioners even mentioned after listening to the interview question that
the concept of technical liability is new to them and that after-delivery cost offers a new

perspective that they had not considered.

5.1.5 Technical Debt Management

The participants from the industrial case study mentioned three techniques to address
architecture / design debt, namely refactoring, repackaging and reengineering. While
refactoring is a common technique mentioned in literature [30], reengineering and repack-
aging are less common. Despite the primary focus of companies being to produce new
features, dedicated teams are assigned to reduce technical debt, and a majority of teams

spend roughly 20% time in each PSI towards debt reduction.

5.1.6 Technical Debt Decision-Making

Severity and customer impact were considered important when deciding development
priorities. Participants, however, did not mention any assessments based on expected effort

to address the debt or any risks associated with a fix or the scope of testing.

64

5.1.7 Technical Debt Risk Management

For about half the participants in the survey, risk related to incurring technical debt is
not taken into consideration. A few mentioned that risk is discussed informally. The risks
of technical debt are primarily unknown for most practitioners.

In addition to the above insights, the survey revealed distinct company profiles with

respect to their approach to technical debt management:

* Companies that use technical debt as a way to manage the iron triangle. The iron
triangle? is a model of constraints in project management. These constraints typically
include scope (features and quality), time, and cost. Such companies manage and
quantify their technical debt and understand that the cost of technical debt is more

than the effort to fix the code.

* Companies that think of technical debt as a way to manage the iron triangle but do not
manage and quantify their debt and view technical debt cost as the effort associated

with handling the debt.

» Companies that use technical debt to reason about the cost of fixing deficiencies left
in the code after it has shipped out but do not manage and quantify their debt and

view technical debt cost as the effort associated with handling the debt.

5.2 RQ2: What are the different types of technical debt indicators?

The way technical debt is identified can be very informal (e.g. developers noting down

"pain points" that slow their velocity on a sticky note) and a difficult task, often depen-

2Project Management Triangle, https://en.wikipedia.org/wiki/Project_management_triangle (accessed October 11, 2015)

65

dent on the resources are currently available (e.g. companies often prefer to use existing
tools to identify technical debt rather than investing in new ones). More formally, the main
technical debt indicators reported in the literature are modularity violations, design pattern
grime, code smells, and antipatterns [90]. We give an overview of each on the next sub-
sections and also report empirical studies which have been conducted to determine how

these different indicators can be used to identify problems in software.

5.2.1 Modularity Violations

Modular software supports the separation of the functionality of the software into in-
dependent distinct modules. However, due to quick and dirty implementations or inability
of architecture to adapt to changing requirements, modules may change together instead
of being independent. This results in modularity decays and, consequently, necessitates
expensive reworks [88]. However, modularity violations are hard to detect using existing
tools as they do not influence the functionality of the software directly.

The study by Wong et al. [88] describes CLIO, an approach that detects and locates
modularity violations. The workings of CLIO are based on comparing how components
should change together based on the modular structure and how they actually change to-
gether based on revision history. CLIO was evaluated using 15 versions of Apache Hadoop
and 10 versions of Eclipse JDT. CLIO identified 231 violations, and 66% of these viola-
tions were confirmed based on the fact that these violations were indeed addressed in later
versions or were flagged as potential problems by programmers in source code comments.

Similarly, CLIO identified 399 violations out of which 40% were confirmed.

66

5.2.2 Design Pattern Grime

Design patterns are popular, reusable best practices for successful software design and
architecture in the form of templates and descriptions. They promote software maintenance
and improve documentation [86]. Grime is the buildup of unrelated artifacts (non-pattern
code) in classes that play roles in a design pattern realization. These artifacts do not con-
tribute to the intended role of a design pattern. Grime is observed in the environment
surrounding the realization of a pattern [40]. Grime is a component of design disharmony
and an indicator of technical debt [90].

Dale et al. [23] investigated the effect of grime on technical debt. They designed a
grime-injector that modifies bytecode with couplings in students’ Java projects to model
six types of design pattern growths. Then, they used SonarQube to calculate the techni-
cal debt scores for these projects. They reported that projects with temporary grime have
statistically higher significant technical debt scores than projects with persistent grime.
However, the experiments were conducted on programs from an introductory software en-
gineering class and not on real industry projects. Second, the grime-injector is far from
being a "grime-detector," which would have been more appropriate for identifying techni-
cal debt.

Izurieta et al. [40] reported the effects of grime on code decay. A case study was con-
ducted with the JRefactory Open Source System to determine how design patterns decay
as the system evolves. In addition to finding out that some design patterns have more grime
than others, one of the findings of the study was that as patterns evolve, grime buildup in-

creases. These results were confirmed by an exploratory multiple case study by the same

67

authors [42]. Grime is one of the indicators of technical debt, and technical debt causes
code to decay as we pointed out in Chapter 3.

Izurieta et al. [41] reported the effects of grime on testability. Based on a case study
conducted with the JRefactory Open Source System, they reported that as the systems age
and grime builds up, the software requires more testing. This clearly indicates that as
technical debt increases in a system, the systems becomes more problematic and require to

be tested more to maintain its quality.

5.2.3 Code Smells

A code smell is a surface indication that usually corresponds to a deeper problem in the
system [31]. As a result, code smells are useful to identify areas accumulating technical
debt and need refactoring. Fowler et al. [31] introduce 22 bad code smells. Commonly
studied code smells are duplicated code, feature envy, refused bequest, data class, long
method and large (god) class [93].

Compared to the other technical debt indicators, code smells are the most studied.
Next, we provide an overview of a few studies on code smells and their effect on code
maintainability.

Regarding the code duplication code smell, Monden et al. [61] investigated the effect
of code duplication on software maintainability using 20-year old industrial legacy system
data. They concluded that code duplication reduces software maintainability, supporting
Fowler’s claim regarding the code duplication [30]. Zhang [92] studied the relationship

between duplicated code, data clumps, switch statements, speculative generality, message

68

chains, and middle man code smells and defects in 5 versions of Eclipse and 6 versions
of Apache Commons. They reported that code duplication is more likely to be associated
with defects than the other types of code smells and should be considered highest priority
when refactoring the code. To determine to what extent code duplication affects change-
proneness, Lozano et al. [56] studied four open source systems. They concluded that
change effort increases when methods are subject to code duplication. Kapser et al. [46]
studied the impact of 11 types of code duplication on the medium open source systems
Apache httpd and Gnumeric. They concluded that not all types of code duplication were
harmful to the systems. A study by Juergens et al. [45] on five projects, including one open
source system, reported that for Java and C++ code, the inconsistently changed duplicated
code contained more defects than average code. For COBOL, the inconsistently changed
duplicated code did not have much effect on the code.

A study carried out by Olbrich et al. [67] on god class and classes with shotgun surgery
code smell analyzing the historical data of Apache Lucene and Apache Xerces 2 J showed
that the classes with code smells were more change prone and required more maintenance
effort than the classes with no code smells. Deligiannis et al. [25] investigated the god
class code smells on the design of object-oriented systems by 12 students in a classroom
setting. They reported that good design without code smell helped to make the design more
understandable and maintainable. Khomh et al. [47] used DECOR [60] to detect 29 types
of code smells and investigate their relationships with change-proneness. The study was

conducted on the change history of two open source systems Azureus and Eclipse. They

69

concluded that, in general, classes with smells are more prone to changes than classes
without smells on the 9 versions of Azureus and 13 versions of Eclipse.

Li et al. [53] studied Eclipse to determine the relationship between code smells and
different severity levels of defects. Their results indicate that the large class, large method,
and shotgun surgery code smell show significant association with all severity levels of
software defects and that data class, refused bequest, and feature envy code smells are
not associated significantly with software defects or particular severity levels of software
defects. Therefore, not all types of code smell lead to defects. Olbrich et al. [68] reported
that god classes and brain classes code smells of open source systems Lucene, Xerces,
and Log4j were less prone to changes and have lesser defects than other classes when
normalized with respect to size. Therefore, for reasonably-sized god and brain classes, the
code smells should not be problematic. Similarly, Sjgberg [80] did not find any significant
increase in maintenance effort with files having code smells after controlling file size and

number of changes. In fact, refused bequest experienced decreased maintenance effort.

5.2.4 Antipatterns

A design pattern becomes an antipattern when it causes more problems than it solves.
Essentially, antipatterns indicate design weaknesses that could potentially increase the risk
of faults in the software later and make systems harder to maintain. Antipatterns identify
poor design solutions at a higher level of abstraction than code smells. Some antipatterns

are the blob, spaghetti code, lava flow, dead end, cut-and-paste programming, and mush-

70

room management [8]. DECOR (Detection and CORrection) is a method proposed by
Moha et al. [60] to detect antipatterns.

We provide an overview of a few studies on antipatterns and their effect on code main-
tainability. Romano et al. [72] studied 16 Java open source systems to determine if classes
with antipatterns are more change prone than classes with no antipattern. They reported
that classes with antipatterns do in fact change more frequently. They also found that
certain type of antipatterns such as ComplexClass, SpaghettiCode, and SwissArmyKnife
are more change prone than other types of antipatterns. Abbes et al. [1] investigated the
effect of the Blob and SpaghettiCode antipatterns on program comprehension based on
different Java systems. Each antipattern on its own was not very harmful to program com-
prehension, but the combination of both had a negative impact on program comprehension
and, subsequently, can result in the introduction of defects. Khomh et al. [48] studied the
relationship between 13 antipatterns and change- and defect-proneness in 54 releases of
ArgoUML, Eclipse, Mylyn, and Rhino. They found that classes with antipatterns are more
change- and defect prone than other classes. They also reported that the Blob, Complex-
Class, and LargeClass are correlated with one another. A similar study by Jaafar et al. [43]
was conducted to evaluate whether classes with antipatterns are more defect-prone using
open source systems ArgoUML, JFreeChart, and XercesJ. They concluded that antipat-
terns resulted in more defect prone classes. Taba et al. [84] studied how antipatterns can
be used for defect prediction using Eclipse and ArgoUML systems. They confirmed that
antipattern classes are more defect prone than other classes and proposed 4 metrics that

can be used to extract antipatterns from source code. They concluded that the antipattern

71

metrics provide additional information about defect proneness of a system in addition to

traditional metrics.

5.2.5 Metrics

All of these four indicators discussed here are metrics (both traditional and Object Ori-
ented) expressed at a certain threshold. Several studies used metrics, both traditional and
Object Oriented metrics, as quality indicators, especially to indicate change- and defect-
proneness. Defect and fault proneness are used interchangeably in this dissertation. Next,
we survey the literature to understand how metrics are used to indicate problems in the
source code.

Basili et al. [5] assessed whether the CK metrics could predict fault-proneness using 8
medium-sized systems. They used logistic regression, a standard classification technique
based on maximum likelihood estimation to assess the relationship between defects and
fault-proneness. They concluded that 5 out of the CK metrics, namely WMC, DIT, RFC,
NOC, and CBO, were correlated with defect-proneness. Lack of Cohesion of Methods
(LCOM) was insignificant. Briand et al. [6] investigated the relationship between cou-
pling, cohesion, and inheritance metrics and fault-proneness in an industrial system using
univariate logistic regression. They determined that the metrics measures, coupling, inher-
itance, and size were associated with fault-proneness, but not cohesion. Catal et al. [11] ex-
amined the impact of CK metrics and some method-level metrics on fault-proneness using
the Artificial Immune Recognition System (AIRS). They concluded that the combination

of CK and the lines of code metrics provide the best prediction results for fault-proneness.

72

Pai et al. [70] uses the CK metrics and class level size metric to determine fault-proneness
using a Bayesian Network model. They reported that CBO, RFC, WMC, and SLOC were
indicators of fault-proneness in the system. Singh et al. [79] performed a similar study
but used decision trees as their evaluation model instead. They reported that CBO, RFC,
LCOM, WMC, and SLOC were correlated to fault proneness while NOC and DIT were
not significant. Cartwright et al. [10] investigated the relationship between classes in in-
heritance relationships and defect proneness in a C++ system. They found out that classes
with inheritance structures are three times more prone to defect than classes with no inher-
itance structures. They build their prediction models relating size and defects using linear
regression. Gyimothy et al. [34] used the CK metrics to predict the defect-proneness of
Mozilla using logistic regression and machine learning techniques such as artificial neural
networks and decision trees. They found that CBO and LOC were important variables for
predicting defects. Zimmermann et al. [94] conducted experiments on Eclipse to determine
the relationship between complexity metrics and defect proneness using linear regression
models. They concluded that complexity can be used to predict defects and that the more
complex the code is, the more defects it has.

Table 5.1 summarizes these studies in terms of the independent variable and predictive
models used.

There are many other studies with similar results as reported in the literature review by
Jabangwe et al. [44]. They pointed out that 80% of the studies used CK metrics to evaluate

fault-proneness in software systems. The most commonly used prediction model was some

73

UOISSAIZY Jeaur] SOLNRIAl A1rxardwo))

Surureo
QUIYOBJA| PUB UOISSAIZY OnsISo| DOIS pue SOLRIN 3D
UOISSAIZIY Jeaur| doue)LIdYU]
SQAI1], UOISIOR(J DOIS pue SO 3D
[OPOIA JIOMIQN URISaAey DO'IS pue SOIIIA 3D
(S¥1V) W)
-SAS UONIUZ009y QuNWW] [BIOYNIY DO Pue SORIN D

SOLI)QIA OUB)LIQY
UOISSAIZY ONSISOT AJRLIBAIU -UJ PUB UOISAyo)) pue surdno)

UOISSIZAY ONSISO] SOIN_N D

[¥6] Te 10 uuewWLIOWWITY,

[¥€] 'Te 30 Ayrowrin
[01] e 30 WySumie)
[6L] 'Te 3o y3urs

[0L] 'Te 10 red

[11] ‘230 Tee)

[9] 'Te 10 pueng

[] Te 10 1Iseg

[PPOTAl 2AIIPAI] dIqerie judpuadapuy

Apmgs

SSQUAUO0IJ-}99Jo(J PUE SOLNIJA SuneSnsoAu] SAIpmS

['G 2198l

74

form of regression analysis (multivariate logistic or binomial logistics). Very few studies
used machine learning models such as decision trees, random forests, or Bayes networks.

Regarding technical debt indicators, modularity violations, and grime are the two most
under-studied problems. To our knowledge, there are a few empirical studies on grime
but no tool to measure it. Similarly, there is only one study on modularity violations that
proposes a tool (CLIO) to pinpoint such problems. For antipatterns, there are a few studies
that report strong correlation with defects, and DECOR is the only tool available to extract
anti-patterns.

The technical debt indicator that we use is a combination of metrics: measure of code
smells, defect count, change count, and object-oriented metrics. Code smells are the most
widely studied technical debt indicator and is very useful in indicating deeper problems
in the source code. A quick search on IEEExplore came up with 104 research papers on
code smells since 2012. Despite the diverging opinions on code smell not being the most
accurate representation of technical debt at the code level, it is the one most extensively
used in industry due to the fact that it is easily obtained. There exist multiple tools that are
readily available to easily extract code smells from the source code.

We want this framework to be as simple and easy to use as possible. Therefore, with
code smells extraction tools readily available, there is no additional effort required from
the project managers for building custom tools, and no expertise is required to extract the
code smell data unlike analyzing architecture blueprints to identify technical problems and

potential sources of technical debt.

75

However, not all code smells are representative of problems in source code as some

of the studies report. Therefore, we use change count, defect count, and object-oriented

metrics, which have been extensively used to indicate problems in source code as a further

refinement to get a closer indicator of technical debt.

5.3 RQ3: How do we build a framework to determine the most critical technical
debt items?

We will provide insights for this research question based on our historical data extrac-
tion described in Chapter 4. We will describe how we put together the framework for both

Apache Hive and Apache Mahout.

5.3.1 Apache Hive

For Apache Hive, the data extraction step resulted in 12402 unique classes with their
associated variables including change count, defect count, and technical debt items count.
Table 5.2 display the overall descriptive statistics of Apache Hive.

After cleaning out the final dataset for anomalies (e.g. classes with no defect data due
to missing revision number in the issue tracking system), 9852 classes were left. Out of
these 9852 classes, 817 (about 8.3%) had one or more instances of technical debt (TDIs).

Based on the information from the final dataset, we computed the node probability
table (NPTs) for the Bayesian Network. Table 5.3 to Table 5.8 presents the NPTs for the
different variables. For example, for the CBO variable, there is a 5.8% probability that the

class has no technical debt if the CBO value is within the recommended threshold. If the

76

CBO value is not within the recommended thresholds, there is an 82.1% chance that the

class has technical debt .

Table 5.2

Univariate Descriptive Statistics: Apache Hive

Variable Mean Std. Deviation Minimum Maximum
CBO 5.05 10.15 0 344
LOC 112.21 1354.97 0 130551
LCOM 28.67 36.49 0 100
WMC 15.95 38.59 0 1634
Change Count 1.32 8.04 0 402
Defect Count 1.27 7.81 0 390
TDI Count 0.16 1.22 0 79

N =9852

7

Table 5.3

NPT: Apache Hive (CBO)

No Technical Debt Technical Debt

Recommended 0.058 0.179
Not Recommended 0.942 0.821
Table 5.4

NPT: Apache Hive (LOC)

No Technical Debt Technical Debt

Recommended 0.095 0.461
Not Recommended 0.905 0.539
Table 5.5

NPT: Apache Hive (LCOM)

No Technical Debt Technical Debt

Recommended 0.387 0.741

Not Recommended 0.613 0.259

78

Table 5.6

NPT: Apache Hive (WMC)

No Technical Debt Technical Debt

Recommended 0.194 0.684
Not Recommended 0.806 0.316
Table 5.7

NPT: Apache Hive (Defect Count)

No Technical Debt Technical Debt

Recommended 0.132 0.282
Not Recommended 0.868 0.718
Table 5.8

NPT: Apache Hive (Change Count)

No Technical Debt Technical Debt

Recommended 0.133 0.282

Not Recommended 0.867 0.718

79

5.3.1.1 Bayesian Network

Prior to building the BN, we had identified our variables of interest using stepwise re-
gression. For Apache Hive, the relevant metrics were CBO, LOC, LCOM, WMC, Change
Count, Defect Count and TDI Count metrics (see Table 2.2 for object-oriented metrics def-
initions). After building the BN, we confirmed this set of relevant variables by performing
a sensitivity analysis. Therefore, for the identified versions, the final dataset contains the

following variables:

List of unique classes

LOC

* WMC

« CBO

LCOM

Change count

Defect count

TD instances count

Next, we determined what values they can take as illustrated in Table 5.9.
The next step is to determine the structure of the network to capture qualitative relation-
ships between the variables. In particular, two nodes should be connected directly if one

affects or causes the other, with the arc indicating the direction of the effect. So, in the BN

80

Table 5.9

Apache Hive - Bayesian Network Nodes’ Values

Node Name Type Values

LOC Binary {recommended, non-recommended}
WMC Binary = {recommended, non-recommended }
CBO Binary {recommended, non-recommended}
LCOM Binary = {recommended, non-recommended }

Change Count Binary {recommended, non-recommended }
Defect Count Binary {recommended, non-recommended }

Technical Debt Boolean {T, F}

for Apache Hive (Figure 5.1), we might ask what factors affects a class’s chance of hav-
ing technical debt? The answer would be LOC, WMC, CBO, LCOM, Change Count and
Defect Count. Therefore, we have arcs from LOC, WMC, CBO, LCOM, Change Count
and Defect Count to Technical Debt. Once we have specified the topology of the BN, we
need to quantify the relationships between the different nodes. Thus, we specify the NPT
for each node. The root node (technical debt) also has an associated NPT, representing
its prior probability. After building the BN, we simulate different scenarios to observe the
probability of technical debt being true for the 817 different classes. With 6 variables, we
generated a total of 64 different scenarios and their respective probability of fulfilling the

goal.

81

An example scenario as depicted in Figure 5.2 shows CBO, LOC, and WMC being
within the recommended thresholds and LCOM, defect count and change count not be-
ing within the recommended thresholds. The probability that technical debt being true is

12.7%.

82

Technical Debt

False 91.707%

True -] 8.283%

LCOM

CBO

Recommended - 41.636%

Mot Recommended -

58.364% Mot Recommended -

Recommended 4 6.803%

93.197%

WMC

LOC

Recommended :I 23.463%

Not Recommended A

Recommended 4 896.818%

76.537% NotRecommended-JﬁJBZ%

Defect Count Change Count

]14.444%]14,535%
85.556% B85.464%

Figure 5.1

Bayesian Network - Apache Hive

83

Technical Debt

False 87.331%

True :I 12.669%

LCOM / CBO

Recommended Recommended 4 100%
Not Recommended 4 100% Not Recommended A
L IScenariol: Not Recommended | L |Scenariol:Recommended |

WMC Loc
Recommended 4 100% Recommended 100%
Not Recommended 1 Mot Recommended
Scenariol : Recommended L [Scenariol : Recommended
Defect Count Change Count

100% 100%

[IScenariol : Not Recommended —Scenariol : Not Recommended |

Figure 5.2

Bayesian Network - Apache Hive (Sample Scienario)

84

5.3.1.2 Classification Scheme
Once we obtained 817 TDIs and their respective probability of technical debt being
true, we devised our classification scheme. The range of probability is 0.01 to 0.98. As a

result, we devised the classification scheme based on this information:

* Low risk: Probability between 0.0 (inclusive) and 0.4 (exclusive)

* Medium risk: Probability between 0.4 (inclusive) and 0.8 (exclusive)

* High risk: Probability between 0.8 and 1.0 (inclusive)
Table 5.10 depicts the number of TDI according to the different categories of the clas-
sification scheme.

Table 5.10

Classification Scheme for Apache Hive

Classification TDI Count

Low risk 512
Medium risk 176
High risk 129

85

5.3.1.3 AHP

Prior to applying AHP, we further reduce the dataset to about 5 TDI. In this case, we
reduced the debt items based on the interdependence of the debt item with respect to other
classes. The resulting dataset is shown in Table 5.11.

To start with, we finalized the following prioritization criteria for the AHP algorithm.

We ignored the debt probability as it is the same for all 5 TDIs.

Impact of the debt (CBO)

Code churn (Change Count)

Defect count

Technical Debt Instances Count

Next, we structure the problem as a hierarchy. In the first (top) level is the goal of most
critical TDI. In the second level are the four prioritization criteria which contribute to the
goal, and the third (bottom) level are the five candidates which are to be evaluated in terms
of the criteria in the second level. The hierarchy is shown in Figure 5.3.

The next step is to perform a pairwise comparison to determine the relative importance
of each candidate in terms of each criterion. For instance, the decision maker must ask
questions to decide if TD13 is more important than TD52 in terms of impact. Then we will
compare the criteria with respect to their importance in reaching the goal.

Pairwise comparisons are quantified using a scale of numbers that indicates how many

times more important one element is over another element with respect to the criterion to

86

IQZATeUY O UBWRS

18°0 €1 ey €€¢ (oTord -asxed b aary-doopey-oyoede 310 ¢9
9ATH

18°0 9 L11 CI1 98 -ejepelowraAly-doopey-oyoede3io zg

18°0 I 84| v €01 Joauqb-aary-doopeyayoede3io ¢
2101§199[q0O

18°0 16 CIl 111 LOT -a1oseowraaly-doopey-oyoede'3io /]
JUSI[DIIOISBIINQAIH

18°0 9 €8 78 111 -eroiserowraary-doopey-ayoede 3o ¢

Aiqeqord juno) L Iuno) dguey) uno) 19RqA 09D JweN (dI

9ATH ayoedy - 10sereq JHV

I1°6 3lqeL

87

Goal

Most Critical TDI

Criteria

Candidates

Figure 5.3

Problem Hierarchy - Apache Hive

which they are compared. For instance, if TD13 is moderately more important than TD52

1
’3’

in terms of impact, a value of 3 is entered in its appropriate position and the reciprocal
is entered in the transpose position. Table 5.12 depicts the scale proposed by Saaty [73].

Table 5.14 to Table 5.17 depicts the pairwise comparison matrices of the five candi-
dates: TD13, TD17, TD23, TD52, and TD65, in terms of the four criteria: impact, code
churn, defect count and technical debt instances count, along with the priority vector.

The weights of importance of the four criteria with respect to the overall goal are also
determined by using pairwise comparisons. The pairwise comparison matrix for the four
criteria along with the priority vector is presented in Table 5.18.

The vector of priorities is the principal eigenvector of the matrix. It gives the relative
priority of the criteria measured on a ratio scale. In addition, AHP checks for the consis-

tency of the pairwise comparisons using the consistency ratio (CR). If CR is less than 0.1

88

Table 5.12

Scale of Relative Importances

Intensity of importance Definition
1 Equal importance
3 Moderate importance
5 Strong importance
7 Very strong importance
9 Extreme importance
2,4,6,8 Intermediate values

(10%), then the pairwise comparisons are considered to be adequately consistent. The CR
calculation is based on the consistency index (CI). CI is calculated as follows: adding the
columns in the judgment matrix, multiply the resulting vector by the vector of priorities,

resulting in \,,,. CI is then calculated using the formula [73]:

o = Amar —n 5.1)
n—1

Next, CR is obtained by dividing CI by the Random Consistency Index given in Ta-
ble 5.13.

Now that we know the priorities of the criteria with respect to the goal, and the pri-
orities of the candidates with respect to the criteria, we can calculate the priorities of the

candidates with respect to the goal. We achieve that for each candidate by adding

&9

* the candidate’s priority with respect to impact multiplied by impact’s priority with

respect to the goal

* the candidate’s priority with respect to change count multiplied by change count’s

priority with respect to the goal

* the candidate’s priority with respect to defect count multiplied by defect count’s

priority with respect to the goal

* the candidate’s priority with respect to technical debt instances count multiplied by

technical debt instances count’s priority with respect to the goal

The overall priorities for all the candidates are depicted in Table 5.19.
Based on the overall priorities table, TD65 has the highest probability of being critical,
followed by TD17, TD23, TD13, and TDS52. Therefore, this is the order in which these

technical debt items for Apache Hive should be tackled.

90

Table 5.13

Random Consistency Index

‘n RCI

1 0

2 0

3 0.58
4 0.90
5 112
6 1.24
7 132
8 141

9 145

91

Table 5.14

Apache Hive Pairwise Comparison Based on Criteria: Impact

TD13 TD17 TD23 TD52 TD65 Priority Vector
TD13 | 1.00 1.00 1.00 3.00 0.14 0.10
TD17 | 1.00 1.00 1.00 3.00 0.11 0.10
TD23 | 1.00 1.00 1.00 3.00 O0.11 0.10
TD52 | 033 033 033 1.00 0.11 0.04
TD65 | 7.00 9.00 9.00 9.00 1.00 0.66
CR =0.030
Table 5.15

Apache Hive Pairwise Comparison Based on Criteria: Change Count

TD13 TD17 TD23 TDS2 TD6S Priority Vector
TD13 | 1.00 033 020 033 0.11 0.04
TD17 | 3.00 1.00 033 1.00 O0.11 0.08
TD23 | 500 3.00 1.00 3.00 0.11 0.17
TD52 | 3.00 1.00 033 1.00 0.11 0.08
TD65 | 9.00 9.00 9.00 9.00 1.00 0.64
CR =0.077

92

Table 5.16

Apache Hive Pairwise Comparison Based on Criteria: Defect Count

TD13 TD17 TD23 TD52 TD65 Priority Vector
TD13 | 1.00 033 020 033 0.11 0.04
TD17 | 3.00 1.00 033 1.00 0.11 0.08
TD23 | 5.00 3.00 1.00 3.00 0.11 0.17
TD52 | 3.00 1.00 033 1.00 0.11 0.08
TD65 | 9.00 9.00 9.00 9.00 1.00 0.64
CR =0.077
Table 5.17

Apache Hive Pairwise Comparison Based on Criteria: Technical Debt Instances Count

TD13 TD17 TD23 TDS2 TD6S Priority Vector
TD13 | 1.00 0.11 3.00 1.00 0.33 0.08
TD17 | 9.00 1.00 9.00 9.00 7.00 0.64
TD23 | 033 0.11 1.00 033 0.20 0.04
TD52 | 1.00 0.11 1.00 1.00 0.33 0.06
TD65 | 3.00 0.14 5.00 3.00 1.00 0.18
CR =0.016

93

Table 5.18

Apache Hive Pairwise Comparison for Criteria

Impact Change Defect Technical Priority
Count Count Debt Intances Vector
Count
Impact 1.00 5.00 5.00 3.00 0.55
Code Churn 0.20 1.00 1.00 0.33 0.10
Defect Count 0.20 1.00 1.00 0.33 0.10
Technical Debt | 0.33 3.00 3.00 1.00 0.25
Instances Count
CR =0.016
Table 5.19
Apache Hive Overall Priorities
Impact Change Defect Technical Goal
Count Count Debt Intances
Count
TD13 0.057 0.004 0.004 0.021 0.085
TD17 0.055 0.008 0.008 0.161 0.231
TD23 0.055 0.016 0.016 0.010 0.096
TD52 0.024 0.008 0.008 0.015 0.054
TD65 0.365 0.062 0.062 0.045 0.534

94

5.3.2 Apache Mahout

For Apache Mahout, the data extraction step resulted in 2794 unique classes with their
associated variables, including change count, defect count, and technical debt items count.
Table 5.20 display the overall descriptive statistics of Apache Mahout.

After cleaning out the final dataset for anomalies, 1920 classes were left. Out of these
1920 classes, 186 (about 9.7%) had one or more instances of technical debt (TDIs).

Based on the information from the final dataset, we computed the NPTs for the Bayesian
Network. Table 5.21 to Table 5.26 present the NPTs for the different variables. For exam-
ple, for the LOC variable, there is a 4.3% probability that the class has no technical debt if
the LOC value is within the recommended threshold, and 78% that the class has technical

debt if the LOC value is not within the recommended thresholds.

95

Table 5.20

Univariate Descriptive Statistics: Apache Mahout

Variable Mean Std. Deviation Minimum Maximum
NOC 0.52 4.14 0 125
LOC 60.44 92.71 0 1698
LCOM 23.92 30.96 0 100
WMC 9.83 16.32 0 385
Change Count 2.19 5.00 0 62
Defect Count 1.33 2.94 0 30
TDI Count 0.23 1.13 0 18
N=1920

Table 5.21

NPT: Apache Mahout (NOC)

No Technical Debt Technical Debt

Recommended 0.045 0.027

Not Recommended 0.955 0.973

96

Table 5.22

NPT: Apache Mahout (LOC)

No Technical Debt Technical Debt

Recommended 0.043 0.220
Not Recommended 0.957 0.780
Table 5.23

NPT: Apache Mahout (LCOM)

No Technical Debt Technical Debt

Recommended 0.377 0.683
Not Recommended 0.623 0.317
Table 5.24

NPT: Apache Mahout (WMC)

No Technical Debt Technical Debt

Recommended 0.140 0.409

Not Recommended 0.860 0.591

97

Table 5.25

NPT: Apache Mahout (Defect Count)

No Technical Debt Technical Debt

Recommended 0.288 0.565
Not Recommended 0.712 0.435
Table 5.26

NPT: Apache Mahout (Change Count)

No Technical Debt Technical Debt

Recommended 0.223 0.462

Not Recommended 0.777 0.538

98

5.3.2.1 Bayesian Network

Prior to building the BN, we had identified our variables of interest using stepwise
regression. For Apache Mahout, the relevant metrics were NOC, LOC, LCOM, WMC,
Change Count, Defect Count and TDI Count metrics. After building the BN, we con-
firmed this set of relevant variables by performing a sensitivity analysis. Therefore, for the

identified versions, the final dataset contains the following variables:

List of unique classes

LOC

« WMC

* NOC

LCOM

Change count

Defect count

TD instances count

We then determined what values they can take as illustrated in Table 5.27.
The next step is to determine the structure of the network to capture qualitative relation-
ships between the variables. In particular, two nodes should be connected directly if one

affects or causes the other, with the arc indicating the direction of the effect. So, in the BN

99

Table 5.27

Apache Mahout - Bayesian Network Nodes’ Values

Node Name Type Values

LOC Binary {recommended, non-recommended}
WMC Binary = {recommended, non-recommended }
NOC Binary {recommended, non-recommended}
LCOM Binary = {recommended, non-recommended }

Change Count Binary {recommended, non-recommended }
Defect Count Binary {recommended, non-recommended }

Technical Debt Boolean {T, F}

for Apache Mahout (Figure 5.4), we might ask what factors affects a class’s chance of hav-
ing technical debt? The answer would be LOC, WMC, NOC, LCOM, Change Count and
Defect Count. Therefore, we have arcs from LOC, WMC, NOC, LCOM, Change Count
and Defect Count to Technical Debt. Once we have specified the topology of the BN, we
need to quantify the relationships between the different nodes. Thus, we specify the NPT
for each node. The root node (technical debt) also has an associated NPT, representing
its prior probability. After building the BN, we simulate different scenarios to observe the
probability of technical debt being true for the 186 different classes. With 6 variables, we
generated a total of 64 different scenarios and their respective probability of fulfilling the

goal.

100

Technical Debt

False 90.312%

True :IQ.SBT%

LCOM

Recommended 4 40.664%

Mot Recommended - ‘59.335%

NOC

Recommended{ 4.326%

Mot Recommended A 95.674%

WMC

LOC

Recommended } 16.606%

Not Recommended A 83.394%

Recommended 6.015%

Not Recommended - 93.985%

Defect Count Change Count

31.483% 24.615%

68.517% 75.385%

Figure 5.4

Bayesian Network - Apache Mahout

101

An example scenario as depicted in Figure 5.5 shows change count and WMC being

within the recommended thresholds and LCOM, LOC, defect count and NOC not being

within the recommended thresholds. The probability that of technical debt being true is

14.4%.

Technical Debt

False

True A

85.646%

DH.EISA!%

LCOM

/

Recommended 4

Mot Recommended 4 100%

L [Scenari

o Not Recommended |

WmMC

Not Recommended o

Recommended 4 100%

—JSE

enario - Recommended |

NOC

Recommended -

Not Recommended - 100%

IScenario : Not Recommended |

LoC

Recommended 4

Not Recommended 4 100%

L Scenario: NotRecommended |

Defect Count

Change Count

100%

100%

L Scenario: Mot Recommended }—lﬁcanario -Recommended

Figure 5.5

Bayesian Network - Apache Mahout (Sample Scenario)

102

5.3.2.2 Classification Scheme
Once we obtained 186 TDIs and their respective probability of technical debt being
true, we devised our classification scheme. The range of probability is 0.01 to 0.92. As a

result, we devised the classification scheme based on this information:

* Low risk: Probability between 0.0 (inclusive) and 0.4 (exclusive)

* Medium risk: Probability between 0.4 (inclusive) and 0.7 (exclusive)

* High risk: Probability between 0.7 and 1.0 (inclusive)

Table 5.28 depicts the number of TDI according to the different categories of the clas-

sification scheme.

Table 5.28

Classification Scheme for Apache Hive

Classification TDI Count

Low risk 135
Medium risk 27
High risk 25

5.3.23 AHP
Prior to applying AHP, we chose the top 5 debt items with the highest defect count.

The resulting dataset is shown in Table 5.29.
103

SuLIISN[DSUBIW YIS,

6 6¢ (A 5 4 ‘sueouy| Sur)sndInoyewraydede 30 (0]
IOALI(JSUBIAY

1L°69 79 0¢ Gl ‘sugouwy SuLIdISn[oInoyew-ayoede310 9q
IOALI(JSUBIANAZZNg

1L°69 6S 67 TL1 ‘sueaunyAzzny 3uud)snjorinoyewr-ayoede 310 76
IaugAdoue)

[L°S9 IS 7w 6L1 ‘Adoued Sunrdsnioinoyew-ayoede 310 ¢g

€9°LS (4% LT 0cg qo[1oensqy uowwodnoyew -aydede 310 0¢

Ayqeqoaqd juno) ddueyy uno) 1¥PRA D01 JweN dI

mnoyeN yoedy - 19sereq JHV

6C S FI9EL

104

To start with, we finalized the following prioritization criteria for the AHP algorithm.

* Size of class (LOC)

* Code churn (Change Count)

* Defect count

* Probability (of technical debt being true)

Next, we structure the problem as a hierarchy. In the first (top) level is the goal of most
critical TDI. In the second level are the four prioritization criteria which contribute to the
goal, and the third (bottom) level are the five candidates which are to be evaluated in terms

of the criteria in the second level. The hierarchy is shown in Figure 5.6.

Goal

Most Critical TDI

Criteria

Candidates

Figure 5.6

Problem Hierarchy - Apache Mahout

105

The next step is to perform a pairwise comparison to determine the relative importance
of each candidate in terms of each criterion. For instance, the decision maker may ask
questions decide if TD83 is more problematic than TD96 in terms of size. Then, we will
compare the criteria with respect to their importance in reaching the goal.

Pairwise comparisons are quantified using a scale of numbers that indicates how many
times more important one element is over another element with respect to the criterion to

which they are compared. For instance, if TD83 is more problematic than TD96 in terms

1
93’

of size, a value of 3 is entered in its appropriate position and the reciprocal, 3, is entered in
the transpose position. We use Table 5.12 from the previous section for the scale proposed
by Saaty [73].

Table 5.30 to Table 5.33 depicts the pairwise comparison matrices of the five candi-
dates: TD20, TD83, TD92, TD96, and TD100, in terms of the four criteria: size, code
churn, defect count and probability, along with the priority vector.

The weights of importance of the four criteria with respect to the overall goal are also
determined by using pairwise comparisons. So, the pairwise comparison matrix for the
four criteria along with the priority vector is presented in Table 5.34. Similar to Apache
Hive, we calculated the CR for Apache Mahout. We used the Random Consistency Index
given in Table 5.13.

Now that we know the priorities of the criteria with respect to the goal, and the pri-

orities of the candidates with respect to the criteria, we can calculate the priorities of the

candidates with respect to the goal. We achieve that for each candidate by adding

106

* the candidate’s priority with respect to size multiplied by size’s priority with respect

to the goal

* the candidate’s priority with respect to change count multiplied by change count’s

priority with respect to the goal

* the candidate’s priority with respect to defect count multiplied by defect count’s

priority with respect to the goal

* the candidate’s priority with respect to probability multiplied by probability’s prior-

ity with respect to the goal

The overall priorities for all the candidates are depicted in Table 5.35.

Based on the overall priorities table, TD20 has the highest probability of being critical,
followed by TD92, TD96, TD100, and TD83. Therefore, this is the order in which these
technical debt items for Apache Mahout should be tackled.

The framework depicts the process to be followed from identification to prioritization
of the technical debt items. The process is similar irrespective of the software system but
the way the framework is applied results in different variables being relevant for different

systems.

107

Table 5.30

Apache Mahout Pairwise Comparison Based on Criteria: Size

TD20 TD83 TD92 TD96 TD100 Priority Vector
TD20 | 1.00 5.00 5.00 7.00 3.00 0.48
TD83 | 0.20 1.00 1.00 3.00 0.33 0.10
TD92 | 020 1.00 1.00 3.00 0.20 0.10
TD96 | 0.14 033 033 1.00 0.20 0.05
TD100 | 0.33 3.00 5.00 5.00 1.00 0.27
CR =0.047
Table 5.31

Apache Mahout Pairwise Comparison Based on Criteria: Change Count

TD20 TD83 TD92 TD96 TD100 Priority Vector
TD20 | 1.00 033 020 0.20 1.00 0.06
TD83 | 3.00 1.00 0.33 0.33 5.00 0.17
TD92 | 500 3.00 1.00 1.00 5.00 0.35
TD9 | 5.00 3.00 1.00 1.00 5.00 0.35
TD100 | 1.00 020 0.20 0.20 1.00 0.06
CR =0.031

108

Table 5.32

Apache Mahout Pairwise Comparison Based on Criteria: Defect Count

TD20 TD83 TD92 TD96 TD100 Priority Vector

TD20 | 1.00 3.00 1.00 1.00 3.00 0.27
TD83 | 033 1.00 0.33 0.33 1.00 0.09
TD92 | 1.00 3.00 1.00 1.00 3.00 0.27
TD96 | 1.00 3.00 1.00 1.00 3.00 0.27
TD100 | 0.33 1.00 033 0.33 1.00 0.09
CR=0.0

Table 5.33

Apache Mahout Pairwise Comparison Based on Criteria: Probability

TD20 TD83 TD92 TD96 TD100 Priority Vector
TD20 | 1.00 3.00 3.00 3.00 1.00 0.33
TD83 | 033 1.00 1.00 1.00 0.33 0.11
TD92 | 033 1.00 1.00 1.00 0.33 0.11
TD96 | 033 1.00 1.00 1.00 0.33 0.11
TD100 | 1.00 3.00 3.00 3.00 1.00 0.33
CR =0.016

109

Table 5.34

Apache Mahout Pairwise Comparison for Criteria

Size Change Defect Probability Priority
Count Count Vector
Size 1.00 3.00 0.20 0.33 0.12
Change Count 0.33 1.00 0.14 0.20 0.06
Defect Count 5.00 7.00 1.00 3.00 0.56
Probability 3.00 5.00 0.33 1.00 0.26
CR =0.044
Table 5.35
Apache Mahout Overall Priorities
Size Change Defect Probability Goal
Count Count
TD20 0.059 0.004 0.152 0.088 0.303
TD83 0.012 0.010 0.051 0.029 0.102
TD92 0.012 0.020 0.152 0.029 0.213
TD96 0.006 0.020 0.152 0.029 0.207
TD100 0.033 0.033 0.051 0.029 0.175

110

5.4 RQ4: How effective is the framework?

Our framework was validated using the static analysis tool, Findbugs. Findbugs is a
widely used tool in the industry. For instance, following the Google fixit event in 2009 [4]
using Findbugs to flag potential bugs, Findbugs is now part of Google’s review process.
Findbugs flags over 400 violations in the source code based on different categories. The
categories we selected when running Findbugs were bad practice (code that violates good
coding practices), malicious code vulnerability (code that can be maliciously altered by
other code), correctness (coding mistake that was not what the developer intended), per-
formance (code that could be written better to increase performance), security (code that
can cause security problems) and dodgy code (code that leads to errors). In addition, Find-
bugs assign their bugs a ranking from 1-20, broken down into categories as illustrated in
Table 5.36.

We ran Findbugs on the source code of version 2.0.0 of Apache Hive and version 0.12.2
of Apache Mahout respectively. These versions were chosen because they correspond to
the versions that the five most critical technical debt items of each system belong to.

When we ran Findbugs on Apache Hive, three of the five technical debt items that our
framework flagged as most critical were detected by Findbugs. Findbugs ranked all the
classes of Apache Hive as 14 and above.

Similarly, when we ran Findbugs on Apache Mahout, all of the five technical debt
items that our framework flagged as most critical were assigned rank 18. In general, all the
classes of Apache Mahout were ranked 14 and above. None of the classes was in category

scariest or scary for bothe Apache Hive and Mahout.

111

Table 5.36

Findbugs Categories

Category Rank

Scariest 1-4
Scary 5-9
Troubling 10-14

Of Concern 15-20

Findbugs flagged 6 classes with rank 14 for Apache Mahout, and we investigated these
classes. We extracted their metrics as shown in Table 5.37.

We found that the classes flagged by Findbugs are not problematic based on the metrics.
2 out of 3 classes were below the recommended threshold for LOC. The values for LCOM
were relatively high but we have classes with LCOM of 100 that were not flagged by
Findbugs. The highest value for WMC of Mahout classes were 385, and the values of the
3 classes flagged by Findbugs were below 65. When compared to other classes, these 3
classes were not among the ones with the highest values for the different metrics.

Out of the 10 most critical technical debt items flagged by our framework, Findbugs
extracted 8 as problematic. Our framework and Findbugs, however, examine different
indicators. For instance, one line of code can have a security vulnerability such as use

of SHA-1, which is a weak hash function as mandated by NIST?. This statement will be

3NIST’s Policy on Hash Functions, http://csrc.nist.gov/groups/ST/hash/policy.html (accessed Sep. 20, 2016)

112

d[qeII M IredIu]
4 14 L 1L 9 61 0 [uowwodInoyew -aydede 310
deyysequad(-dew
! 0 0 €9 9L ¥9¢ 0 1% ‘yrew noyew-ayoede 3o
1SI7TARIIY100[q(OIST]
0 0 0 1% 9 G8I 0 ¢ ‘pewrnoyew-ayoede 310

uno) uno) uno)
sueysuy (L P9pp@ dBuey) DINM WOIDT DOT DON 09D dWweN

1 uey Wim sasse]) s3nqpurg

LE G 3IqBL

113

an immediate red flag in Findbugs* but for our framework, if the code is written using
good practices (e.g. no shortcuts taken and no code smell present), then it will not be
flagged as problematic by our framework. Our framework and tools such as Findbugs are
complementary. While our framework can be used to narrow down the most critical items
in a software, Findbugs can be used to figure out what the specific problems are and to
which category of problems they belong.

In this chapter, we addressed each research question based on our empirical studies,
literature reviews and application of our framework on Apache Hive and Apache Mahout.
We used the framework to generate the most critical technical debt items and use Findbugs
to evaluate our framework. We concluded that our framework and Findbugs are comple-

mentary. In the next chapter, we further elaborate on these results.

4Bug Patterns, http://find-sec-bugs.github.io/bugs.htm (accessed Sep. 20, 2016)

114

CHAPTER 6

DISCUSSION

This chapter will discuss the findings from our empirical studies in aggregate as well
as discuss the implications of our framework for the software industry. Lastly, we present

the limitations of this work.

6.1 Empirical Studies

We provided insights from our empirical studies on multiple facets on technical debt
presented in Chapter 5.

With regards to the prevailing confusion in the technical debt community as to the def-
inition and taxonomy of technical debt, our study shows that technical debt encompasses
much more than code and design debt (e.g. we found that most respondents see defects
as a type of technical debt). Technical debt goes beyond the boundaries of the definitions
we listed in Chapter 1. We illustrate our findings for the technical debt taxonomy using
Figure 6.1. This could be used as a baseline towards refining a universal definition of the
metaphor.

Most practitioners agree that technical debt costs involve more than just the effort to
fix the debt item. Additional cost factors like interest amount, liability costs, and poten-

tial litigation costs where service level agreements are violated because of unmanageable

115

debts should also be included. These factors relating to the financial risks of poor quality
software should be considered as part of the decision process to manage technical debt.
Furthermore, respondents believe that technical debt is an important issue to discuss and
evaluating technical debt should be part of the companies’ risk assessment process. The
majority of companies, however, do not carry out these practices. Risk assessment is an
understudied but important issue in the context of technical debt. Risk is another poten-
tial factor that needs to be incorporated in the decision process to manage technical debt.
Determining the value of technical debt items in future releases can help companies make
timely decisions about which debt items to fix first. Another aspect that was uncovered in
our case study is that technical debt management is viewed differently in different types of
companies. Therefore, we distinguish between the following type of companies. Mature
and established companies would be more concerned about technical debt rather than a

new company (startup) which is more concerned with getting the product out of the door.

* New Companies (Startup)

* Mature Companies (Beyond startup stage with consistent revenue)

» Large Companies (Well established with ongoing concerns)

Similarly, there are other criteria that our empirical study [19] helped uncover. We
provide a range of criteria that project managers can use as part of the decision-making
process when managing technical debt in Figure 6.2. The terminologies used in Figure 6.1

and Figure 6.2 are explained in Table 6.1 and Table 6.2 respectively.

116

When dealing with technical debt, software practitioners can use the technical debt
taxonomy tree to distinguish between different types of debt. In so doing, they will help
them manage the debt better when they are aware of the type of debt they are dealing with.
Similarly, with our proposed management criteria tree, when practitioners make decisions
about which technical debt items need to be tackled, they can choose from the set of criteria
according to their business objectives. While we tried to incorporate as many criteria as
possible based on existing research and our empirical studies, we understand that our list
might not be comprehensive (e.g. some criteria might be domain specific or some criteria

can be imposed by the customer).

117

T._ npns m.c-:_

ﬁ 550204d g

Awouoxe], 1g9([ed1uyd9],

['9 231

uoneUAW N0

sjuawalinbay

T_m_mwoxw.:._uuwu_-_u._da ﬁ apod

»ajeq

=

[Cawa) [wepnia) ((swowoen)

F

b

Aupqesn

Jeuonuaju L

|euonuIu 0N

uonedyIsse|)

ﬁ Awouoxe] yqaq _nu_-:_uw._.w ~

118

JuWASRURIA 1q(J [BITUYI],

79 23y

ﬁ n:__.“_.EUQ — —_e_mm-_ou_ T-.:au t&mn__ T::ou mn:m-_u_ ﬁa_xm_nc_cu_ ﬁ oZIs Q

Axeban Tw-_ ﬁ isalsjuy _ jedipuldd
‘ L
T_o_uﬁ.._n_mz: anpayds : ._w_.__n_um.._L 1507

ESIREENRES i i hi

A
t ! ! [ko || 2men || owemuos || J55, || Mag™) || Amnpess
ssaupsng 0 aby :
1q=24 jo 3D ﬁ EaTDETH] _ — adoos _ ﬁ uoneso] _ Tu:m_.:._ctmL Auedwo) jo adAy Aynqen Ayjeanud ¥ jo adAy

wRwabeuew 1q20 [ed1uyRa L

119

Table 6.1

Technical Debt Taxonomy - Descriptions

Types of Tech- Definition

nical Debt

Software Categories of technical debt related to software

Organizational ~ Categories of technical debt related to the organization

Classification Categories of technical debt as intentional or non-
intentional

Requirements Tradeoffs made with respect to what requirements the de-
velopment team need to implement. This category can also
include delayed or wrong features.

Architecture/ Refers to software design no longer fits its intended purpose

Design

Code Refers to violations of design principles in production code

Test Refers test plan is not completely carried out

Defect Refers to known defects that are not yet fixed

Build Refers to flaws in the build system or build process of a
software

Usability Refers to technical debt associated with difficult to user in-
terfaces resulting in inconsistent or poor user experience

Documentation Refers to missing or inadequate documentation

Data Refers to technical debt associated with poor quality data

Infrastructure Refers to delaying an upgrade or infrastructure fix

People Refers to lack of skills, experience in technology, tools and
techniques to build better quality software. Also known as
knowledge debt.

Process Refers to inefficient processes related to the code develop-
ment and test environment

Social Refers to the results of sub-optimal socio-technical deci-
sions

Intentional Refers to technical debt taken on voluntarily

Unintentional Refers to technical debt taken on involuntarily

Reckless Refers to debt taken on that has an overall negative impact
with time (e.g. increased interest payments)

Prudent Refers to conscious debt taken on for short term benefits

based on a decision that is not sustainable in the long term

120

Table 6.2

Technical Debt Management - Descriptions

Technical Debt Definition

Management

Criteria

Liability Assessing how much impact the technical debt item can po-

Business value

Performance
Location

Scope

Metrics

Age of debt

Age of company
Developer’s pro-
ductivity

Type of debt

Visibility of debt

Age of software

Criticality of the
debt

tentially have

Assessing how important the technical debt item (e.g. in
terms of the functionality where it is located) is to the busi-
ness

Assessing how the debt item affect performance of software
(e.g. will the impact happen once, or will it recur?)
Assessing the location of the debt item (e.g. is it located in
some critical functionality that is heavily used?)

Assessing how the technical debt item is relevant to the ob-
jective/scope and context of the project

Assessing the technical debt item in terms of size, complex-
ity, and dependencies on other classes

Assessing the age of the debt (e.g. is it "legacy TD," or did
the team add it during the version?)

Assessing the importance of technical debt for the company
(e.g. for a mature company, managing technical debt is usu-
ally important)

Assessing how the debt item affect performance of devel-
opers or slow them down

Assessing the type of debt to better manage it (see technical
debt taxonomy tree)

Assessing how visible the debt item is (e.g. is it located in
a feature that is heavily used? will the impact be perceived
very soon, or after delivery?)

Assessing the age of the software where the debt is located
(e.g. teams will not manage technical debt in legacy soft-
ware which will retire soon)

Assessing how problematic the technical debt item can be
for the project

121

6.2 Framework

The technical debt decision-making framework proposed was created to assist project
managers to manage and prioritize technical debt. The framework consists of different
phases. In the first phase, the technical debt items are identified. We propose a unique
combination of metrics that can be used for this purpose. Once the technical debt items
have been identified, the next step is to build the Bayesian Network to determine how
problematic each item is. Following that, a classification scheme is born out of the data
to categorize the items into low, medium and high severity. These categories are based
on the probability of the items being problematic and this information is obtained from
the previous phase. The last phase consists of narrowing down the technical debt items
to a manageable amount and using AHP to prioritize these items based on criteria from
Figure 6.2 that the team deems most suitable for the project.

One of the benefits of our framework is that it can be customized to fit any project.
While the company might already have a manual list of technical debt items, our unique
combination of metrics extract code smells as an initial set of technical debt items and
further narrow down the items to the most defect and change prone ones. In addition, the
bayesian network helps to predict the criticality of each of these debt items. Over time
with more data, the accuracy of such prediction models increases. It is often the case
in companies that technical debt items are addressed based on what the project manager
deems right without any analysis as to which item is really problematic. As a result, the
lowest severity items keep on accumulating and can cause software decay in the long term.

As a remedy, we propose a classification scheme that further divides the technical debt

122

items into categories. The project manager can choose to address a subset of each category
instead of always focusing on the high severity items. Lastly, the decision model allows the
team to decide on the most important criteria to prioritize their technical debt items. These
criteria will change for different projects as they will depend on the business objectives.
This flexibility implies that with different criteria, different technical debt items can be the
most critical.

In addition, our aim was to keep the framework simple so that it can be used regularly
during a project’s life cycle to prioritize technical debt items. For instance, in a project
using agile practices, the framework can be used during the hardening sprint (an addi-
tional specialized sprint prior to release focused on defect repair, testing and paying back
technical debt) to enable better usage of resources (e.g. time).

Compared to static analysis tools with severity indexes such as inCode and Findbugs,
our framework is different because it does not extract problematic items only based on cer-
tain rules but using a wide range of criteria. These criteria are customized for the projects
based on their business objectives and static analysis tool does not distinguish between
different projects. At most, the thresholds of the rules can be changed based on different

projects in static analyzers.

6.3 Threats to Validity

This section discusses the limitations and threats to validity in this study.

123

6.3.1 Construct Validity

Construct validity threats concern the relation between theory and observation. In this
dissertation, they are mainly due to errors introduced in the data collection and the em-
pirical studies. To cater for threats to construct validity in our survey, we provided clear
definitions of the various terms related to technical debt. In addition, we carefully worded
the questions in an unbiased manner, but we acknowledge that there are different ways
of describing similar concepts (e.g. participants could have been mistaken with questions
referring to measuring technical debt versus tracking technical debt). Regarding the his-
torical data extraction, the actual number of defects might be higher than reported, but
as defect data could not be extracted when information such as the revision number was
missing in the issue tracking system. Regarding the thresholds we used for the metrics to
build the bayesian network, we understand that they are based on studies in the literature,
and they may vary according to the programming language. Similarly, for the code smell
detection tool, we are aware that the thresholds and metrics used are based on the subjec-
tive understanding on the researcher who developed the tool, but we cater for this threat by
further refining our technical debt indicator by incorporating other metrics such as change

count and defect count.

6.3.2 External Validity

External Validity refers to the ability to generalize results. For the survey, we made
sure that more than 50% of the respondents were not from the same company by asking

for company names. For building the framework, both Apache Hive and Apache Mahout

124

are from the Apache Foundation projects and written in Java. Thus, generalization will
require further empirical studies. However, we limited such a threat by choosing two
systems belonging to different domains of different sizes. Regarding the evaluation of
the framework, we recognize the need to further evaluate our framework in an industrial

setting.

6.3.3 Internal Validity

This threat refers to the possibility of having unwanted or unanticipated relationships.
Two threats to internal validity are present in the survey. The first is selection bias due to the
fact that about 25% of the participants were from the same company. This could introduce
a confounding factor due to the organization culture and similar workplace practices. The
second is researcher bias as the coding process depends on the researcher’s interpretation
of the interview responses, and this can be influenced by the researcher’s experience. To
mitigate this bias, the researcher’s academic advisor reviewed the results of the coding

process prior to the development of the final themes.

125

CHAPTER 7

CONCLUSIONS

We proposed a decision-making framework that can be used to prioritize technical debt
items. We build our framework using empirical data from case studies conducted with a
total of 110 software practitioners in industrial settings, literature reviews, and historical
data from real open-source systems. The framework outputs the most critical debt items
using criteria finalized by the team according to business objectives. The framework can be

used in complement to static analysis tools for technical debt management in companies.

7.1 Contributions

This research has the following contributions:

7.1.1 Decision-Making Framework

The framework is one of the major contributions of this dissertation. It is comprehen-
sive, including processes from technical debt identification to technical debt prioritization.
It is flexible and customizable based on business objectives. In addition, it allows for teams

to reason about risks and technical liability (future impact of the debt).

126

7.1.2 Prediction Model

The prediction model can be used independently to focus quality assurance effort or

assess the criticality of the technical debt item.

7.1.3 Technical Debt Taxonomy

The technical debt taxonomy tree generated based on the findings of our empirical stud-
ies proposes the classification of the different types of technical debt based on two broad
categories: software and organizational technical debt. Practitioners can use this taxonomy
to differentiate between different types of technical debt in their software. Management of
technical debt becomes easier when the type of technical debt has been identified.

The technical debt management criteria tree based on the findings of our empirical stud-
ies proposes a range of criteria that project managers can use as part of the decision-making
process when managing technical debt. These criteria are project and context dependent,

and this type of flexibility allows the framework to be applied to different software projects.

7.2 Publications

In this section, we list all the publications related to this dissertation. Some of the

works have already been published and are referenced.

7.2.1 Refereed Journal Articles

"Technical Debt Indicators - A Systematic Literature Review" - To be submitted to the

Information and Software Technology Journal in Dec 2016

127

"Technical Debt Decision-Making Framework" - To be submitted to the Empirical Soft-
ware Engineering Journal in Dec 2016

Zadia Codabux, Byron J. Williams, Murray Cantor, Gary Bradshaw, "An Empirical
Assessment of Technical Debt Practices in Industry,” Journal of Software: Evolution and
Process, 2016 (Under review)

Ajay K. Deo, Zadia Codabux, Kazizakia Sultana, Byron J. Williams, "Assessing Soft-
ware Defects Using Nano-Patterns Detection,” International Journal of Computers and
Their Applications (Special Issue on Software Engineering using Data Engineering Ap-

proaches), 2016

7.2.2 Refereed Conference Papers

"Technical Debt Decision-Making Framework - An Industrial Evaluation” - To be sub-
mitted to ESEM 2017

Zadia Codabux, Byron J. Williams, "Technical Debt Prioritization using Predictive
Analytics,” 38th International Conference on Software Engineering (ICSE), Companion
Volume, Austin, Texas, USA, May 2016

Zadia Codabux, Byron J. Williams, Nan Niu, "A Quality Assurance Approach to Tech-
nical Debt," Proceedings of the International Conference on Software Engineering Re-
search and Practice, Las Vegas, Nevada, USA, 2014

Isaac Griffith, Derek Reimanis, Clemente Izurieta, Zadia Codabux, Ajay Deo, Byron

Williams, "The Correspondence between Software Quality Models and Technical Debt

128

Estimation Approaches,” Proceedings of the 6th Workshop on Managing Technical Debt,
Victoria, Canada, 2014

Zadia Codabux, "Technical Debt Decision-Making Framework,” IEEE ACM IDoESE,
12th International Doctoral Symposium on Empirical Software Engineering, Torino, Italy,
2014

Zadia Codabux, Byron J. Williams, "Managing technical debt: An Industrial Case
Study,” Proceedings of the 4th Workshop on Managing Technical Debt, San Francisco,

USA, 2013, pp. 8-15

7.2.3 Technical Reports

Zadia Codabux, Byron J. Williams, "Agile Adoption - An Industrial Case Study," Tech-
nical Report MSU-TR 120731, Department of Computer Science and Engineering, Missis-

sippi State University, 2012

7.3 Future Work

This section summarizes how we plan to extend the work presented in this dissertation.

7.3.1 Framework Evaluation

Tools such as inCode and SonarQube provide severity indexes. We plan to use tools
other than Findbugs to further compare the results of our framework. This will help us

better understand our results and improve the accuracy of our framework.

129

7.3.2 Usability Studies

In addition, we plan to evaluate our framework in industry settings on commercial

projects and use these results to further refine the framework.

7.3.3 Prediction Model Accuracy

To improve the accuracy of our bayesian network, we plan to conduct more empirical
studies using different systems including commercial systems such that we have a larger

dataset to build our prediction model.

130

[1]

(2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

REFERENCES

M. Abbes, F. Khomh, Y.-G. Gueheneuc, and G. Antoniol, “An empirical study of
the impact of two antipatterns, blob and spaghetti code, on program comprehension,”

Software maintenance and reengineering (CSMR), 2011 15th European conference
on. IEEE, 2011, pp. 181-190.

N. S.R. Alves, L. F. Ribeiro, V. Caires, T. S. Mendes, and R. O. Spinola, “Towards an
Ontology of Terms on Technical Debt,” Proceedings of the 2014 Sixth International
Workshop on Managing Technical Debt, Washington, DC, USA, 2014, MTD ’14, pp.
1-7, IEEE Computer Society.

S. Amasaki, Y. Takagi, O. Mizuno, and T. Kikuno, “A bayesian belief network for
assessing the likelihood of fault content,” Software Reliability Engineering, 2003.
ISSRE 2003. 14th International Symposium on. IEEE, 2003, pp. 215-226.

N. Ayewah and W. Pugh, “The google findbugs fixit,” Proceedings of the 19th
international symposium on Software testing and analysis. ACM, 2010, pp. 241-252.

V. R. Basili, L. C. Briand, and W. L. Melo, “A validation of object-oriented design
metrics as quality indicators,” IEEE Transactions on Software Engineering, vol. 22,
no. 10, Oct 1996, pp. 751-761.

L. C. Briand, J. Wiist, S. V. Ikonomovski, and H. Lounis, “Investigating Quality
Factors in Object-oriented Designs: An Industrial Case Study,” Proceedings of the
21st International Conference on Software Engineering, New York, NY, USA, 1999,
ICSE ’99, pp. 345-354, ACM.

N. Brown, Y. Cai, Y. Guo, R. Kazman, M. Kim, P. Kruchten, E. Lim, A. Mac-
Cormack, R. Nord, 1. Ozkaya, R. Sangwan, C. Seaman, K. Sullivan, and N. Zaz-
worka, “Managing Technical Debt in Software-reliant Systems,” Proceedings of the
FSE/SDP Workshop on Future of Software Engineering Research, New York, NY,
USA, 2010, FoSER ’10, pp. 47-52, ACM.

W. H. Brown, R. C. Malveau, H. W. S. McCormick, and T. J. Mowbray, AntiPatterns:
Refactoring Software, Architectures, and Projects in Crisis, 1st edition, John Wiley
& Sons, Inc., New York, NY, USA, 1998.

S. Cais and P. Picha, “Identifying Software Metrics Thresholds for Safety Critical
System,” SDIWC, 2014.

131

[10] M. Cartwright and M. Shepperd, “An Empirical Investigation of an Object-Oriented
Software System,” IEEE Trans. Softw. Eng., vol. 26, no. 8, Aug. 2000, pp. 786—796.

[11] C. Catal, B. Diri, and B. Ozumut, “An Artificial Immune System Approach for Fault
Prediction in Object-Oriented Software,” Dependability of Computer Systems, 2007.
DepCoS-RELCOMEX °07. 2nd International Conference on, June 2007, pp. 238-
245.

[12] E. Chandra and P. E. Linda, “Class break point determination using CK metrics
thresholds,” Global journal of computer science and technology, vol. 10, no. 14,
2010.

[13] E. Charniak, “Bayesian networks without tears.,” Al magazine, vol. 12, no. 4, 1991,
p. 50.

[14] S. R. Chidamber and C. F. Kemerer, “A metrics suite for object oriented design,”
IEEE Transactions on Software Engineering, vol. 20, no. 6, Jun 1994, pp. 476-493.

[15] S. Chin, E. Huddleston, W. Bodwell, and I. Gat, “The economics of technical debt,”
Cutter IT Journal, vol. 23, no. 10, 2010, pp. 11-15.

[16] Z.Codabux and B. Williams, “Agile Adoption - An Industrial Case Study,” Technical
Report, 2012, number 120731.

[17] Z. Codabux and B. Williams, “Managing Technical Debt: An Industrial Case Study,”
Proceedings of the 4th International Workshop on Managing Technical Debt, Piscat-
away, NJ, USA, 2013, MTD ’13, pp. 8-15, IEEE Press.

[18] Z. Codabux, B. Williams, and N. Niu, “A Quality Assurance Approach to Tech-
nical Debt,” Proceedings of the International Conference on Software Engineering
Research and Practice, 2014, SERP * 14, pp. 172-178.

[19] Z. Codabux, B. J. Williams, G. L. Bradshaw, and C. Murray, “An Empirical Assess-
ment of Technical Debt Practices in Industry,” Journal of software: Evolution and
Process, 2016 (Under Review).

[20] W. Cunningham, “The WyCash Portfolio Management System,” Addendum to the

Proceedings on Object-oriented Programming Systems, Languages, and Applications
(Addendum), New York, NY, USA, 1992, OOPSLA 92, pp. 29-30, ACM.

[21] B.Curtis, J. Sappidi, and A. Szynkarski, “Estimating the Principal of an Application’s
Technical Debt,” IEEE Software, vol. 29, no. 6, Nov 2012, pp. 34-42.

[22] B. Curtis, J. Sappidi, and A. Szynkarski, “Estimating the size, cost, and types of
Technical Debt,” Proceedings of the Third International Workshop on Managing
Technical Debt. IEEE Press, 2012, pp. 49-53.

132

[23] M. R. Dale and C. Izurieta, “Impacts of design pattern decay on system quality,”
Proceedings of the 8th ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement. ACM, 2014, p. 37.

[24] A. Darwiche, Modeling and reasoning with Bayesian networks, Cambridge Univer-
sity Press, 2009.

[25] I. Deligiannis, I. Stamelos, L. Angelis, M. Roumeliotis, and M. Shepperd, “A con-
trolled experiment investigation of an object-oriented design heuristic for maintain-
ability,” Journal of Systems and Software, vol. 72, no. 2, 2004, pp. 129-143.

[26] A.K. Deo, Assessing software defects using nano-patterns detection, master’s thesis,
Mississippi State University, 2015.

[27] N. Fenton and M. Neil, Risk assessment and decision analysis with Bayesian net-
works, CRC Press, 2012.

[28] N. Fenton, M. Neil, W. Marsh, P. Hearty, L. Radlinski, and P. Krause, “On the
effectiveness of early life cycle defect prediction with Bayesian Nets,” Empirical
Software Engineering, vol. 13, no. 5, 2008, pp. 499-537.

[29] K. A. Ferreira, M. A. Bigonha, R. S. Bigonha, L. F. Mendes, and H. C. Almeida,
“Identifying thresholds for object-oriented software metrics,” Journal of Systems and
Software, vol. 85, no. 2, 2012, pp. 244-257.

[30] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts, Refactoring: Improving
the Design of Existing Code, Addison-Wesley Object Technology Series. Pearson
Education, 2012.

[31] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts, Refactoring: Improving
the Design of Existing Code, Addison-Wesley Object Technology Series. Pearson
Education, 2012.

[32] B. G. Glaser and A. L. Strauss, The discovery of grounded theory: Strategies for
qualitative research, Transaction publishers, 2009.

[33] M. W. Godfrey and E. H. S. Lee, “Secrets from the Monster: Extracting Mozilla’s
Software Architecture,” Proceedings of International Symposium on Constructing
software engineering tools, 2000, pp. 15-23.

[34] T. Gyimothy, R. Ferenc, and 1. Siket, “Empirical validation of object-oriented met-
rics on open source software for fault prediction,” IEEE Transactions on Software
engineering, vol. 31, no. 10, 2005, pp. 897-910.

[35] M. H. Halstead, Elements of Software Science (Operating and Programming Systems
Series), Elsevier Science Inc., New York, NY, USA, 1977.

133

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

D. Heckerman, D. Geiger, and D. M. Chickering, “Learning Bayesian networks: The
combination of knowledge and statistical data,” Machine learning, vol. 20, no. 3,
1995, pp. 197-243.

T. T. Ho and G. Ruhe, “When-to-Release Decisions in Consideration of Technical
Debt,” Managing Technical Debt (MTD), 2014 Sixth International Workshop on, Sept
2014, pp. 31-34.

L. Hochstein and M. Lindvall, “Diagnosing architectural degeneration,” Software
Engineering Workshop, 2003. Proceedings. 28th Annual NASA Goddard, Dec 2003,
pp. 137-142.

J. Holvitie, V. Leppénen, and S. Hyrynsalmi, “Technical Debt and the Effect of Agile
Software Development Practices on It - An Industry Practitioner Survey,” Proceed-
ings of the 2014 Sixth International Workshop on Managing Technical Debt, Wash-
ington, DC, USA, 2014, MTD 14, pp. 35-42, IEEE Computer Society.

C. Izurieta and J. M. Bieman, “How Software Designs Decay: A Pilot Study of Pat-
tern Evolution,” First International Symposium on Empirical Software Engineering
and Measurement (ESEM 2007), Sept 2007, pp. 449-451.

C. Izurieta and J. M. Bieman, “Testing Consequences of Grime Buildup in Object
Oriented Design Patterns,” 2008 Ist International Conference on Software Testing,
Verification, and Validation, April 2008, pp. 171-179.

C. Izurieta and J. M. Bieman, “A multiple case study of design pattern decay, grime,
and rot in evolving software systems,” Software Quality Journal, vol. 21, no. 2, 2013,
pp- 289-323.

F. Jaafar, Y.-G. Guéhéneuc, S. Hamel, and F. Khomh, “Mining the relationship be-
tween anti-patterns dependencies and fault-proneness.,” WCRE, 2013, pp. 351-360.

R. Jabangwe, J. Borstler, D. Smite, and C. Wohlin, “Empirical Evidence on the Link
Between Object-oriented Measures and External Quality Attributes: A Systematic
Literature Review,” Empirical Softw. Engg., vol. 20, no. 3, June 2015, pp. 640—693.

E. Juergens, F. Deissenboeck, B. Hummel, and S. Wagner, “Do Code Clones Mat-
ter?,” Proceedings of the 31st International Conference on Software Engineering,
Washington, DC, USA, 2009, ICSE ’09, pp. 485-495, IEEE Computer Society.

C. J. Kapser and M. W. Godfrey, “4AIJCloning considered harmfulaAi considered
harmful: patterns of cloning in software,” Empirical Software Engineering, vol. 13,
no. 6, 2008, pp. 645-692.

134

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

F. Khomh, M. Di Penta, and Y.-G. Gueheneuc, “An Exploratory Study of the Im-
pact of Code Smells on Software Change-proneness,” Proceedings of the 2009 16th
Working Conference on Reverse Engineering, Washington, DC, USA, 2009, WCRE
’09, pp. 75-84, IEEE Computer Society.

F. Khomh, M. Di Penta, Y.-G. Guéhéneuc, and G. Antoniol, “An exploratory study of
the impact of antipatterns on class change-and fault-proneness,” Empirical Software
Engineering, vol. 17, no. 3, 2012, pp. 243-275.

B. Kitchenham, “Procedures for performing systematic reviews,” Keele, UK, Keele
University, vol. 33, no. 2004, 2004, pp. 1-26.

B. Kitchenham, O. P. Brereton, D. Budgen, M. Turner, J. Bailey, and S. Linkman,
“Systematic literature reviews in software engineering—a systematic literature re-
view,” Information and software technology, vol. 51, no. 1, 2009, pp. 7-15.

T. Klinger, P. Tarr, P. Wagstrom, and C. Williams, “An Enterprise Perspective on
Technical Debt,” Proceedings of the 2Nd Workshop on Managing Technical Debt,
New York, NY, USA, 2011, MTD ’11, pp. 35-38, ACM.

J.-L. Letouzey, “The SQALE method for evaluating technical debt,” Proceedings of
the Third International Workshop on Managing Technical Debt. IEEE Press, 2012,
pp- 31-36.

W. Li and R. Shatnawi, “An Empirical Study of the Bad Smells and Class Error
Probability in the Post-release Object-oriented System Evolution,” J. Syst. Softw.,
vol. 80, no. 7, July 2007, pp. 1120-1128.

Z. Li, P. Liang, P. Avgeriou, N. Guelfi, and A. Ampatzoglou, “An Empirical Inves-
tigation of Modularity Metrics for Indicating Architectural Technical Debt,” Pro-
ceedings of the 10th International ACM Sigsoft Conference on Quality of Software
Architectures, New York, NY, USA, 2014, QoSA ’14, pp. 119-128, ACM.

E. Lim, N. Taksande, and C. Seaman, “A Balancing Act: What Software Practitioners
Have to Say about Technical Debt,” IEEE Software, vol. 29, no. 6, Nov 2012, pp. 22—
27.

A. Lozano and M. Wermelinger, “Assessing the effect of clones on changeability,”
Software Maintenance, 2008. ICSM 2008. IEEE International Conference on, Sept
2008, pp. 227-236.

M. A. A. Mamun, C. Berger, and J. Hansson, “Explicating, Understanding, and
Managing Technical Debt from Self-Driving Miniature Car Projects,” Managing
Technical Debt (MTD), 2014 Sixth International Workshop on, Sept 2014, pp. 11-18.

135

[58] R. Marinescu, “Assessing technical debt by identifying design flaws in software
systems,” IBM Journal of Research and Development, vol. 56, no. 5, Sept 2012, pp.
9:1-9:13.

[59] T.J. McCabe, “A Complexity Measure,” IEEE Transactions on Software Engineer-
ing, vol. SE-2, no. 4, Dec 1976, pp. 308-320.

[60] N. Moha, Y. G. Gueheneuc, L. Duchien, and A. F. L. Meur, “DECOR: A Method for
the Specification and Detection of Code and Design Smells,” IEEE Transactions on
Software Engineering, vol. 36, no. 1, Jan 2010, pp. 20-36.

[61] A. Monden, D. Nakae, T. Kamiya, S. Sato, and K. Matsumoto, “Software quality
analysis by code clones in industrial legacy software,” Software Metrics, 2002. Pro-
ceedings. Eighth IEEE Symposium on, 2002, pp. 87-94.

[62] R. Moser, P. Abrahamsson, W. Pedrycz, A. Sillitti, and G. Succi, “Balancing Agility
and Formalism in Software Engineering,” Springer-Verlag, Berlin, Heidelberg, 2008,
chapter A Case Study on the Impact of Refactoring on Quality and Productivity in an
Agile Team, pp. 252-266.

[63] R. E. Neapolitan et al., “Learning bayesian networks,” 2004.

[64] R. L. Nord, I. Ozkaya, P. Kruchten, and M. Gonzalez-Rojas, “In Search of a Metric
for Managing Architectural Technical Debt,” Proceedings of the 2012 Joint Working
IEEE/IFIP Conference on Software Architecture and European Conference on Soft-
ware Architecture, Washington, DC, USA, 2012, WICSA-ECSA 12, pp. 91-100,
IEEE Computer Society.

[65] A. Nugroho, J. Visser, and T. Kuipers, “An Empirical Model of Technical Debt and
Interest,” Proceedings of the 2Nd Workshop on Managing Technical Debt, New York,
NY, USA, 2011, MTD ’11, pp. 1-8, ACM.

[66] A. Okutan and O. T. Yildiz, “Software defect prediction using Bayesian networks,”
Empirical Software Engineering, vol. 19, no. 1, 2014, pp. 154—181.

[67] S. Olbrich, D. S. Cruzes, V. Basili, and N. Zazworka, “The Evolution and Impact of
Code Smells: A Case Study of Two Open Source Systems,” Proceedings of the 2009

3rd International Symposium on Empirical Software Engineering and Measurement,
Washington, DC, USA, 2009, ESEM 09, pp. 390-400, IEEE Computer Society.

[68] S. M. Olbrich, D. S. Cruzes, and D. I. K. Sjoberg, “Are All Code Smells Harmful? A
Study of God Classes and Brain Classes in the Evolution of Three Open Source Sys-
tems,” Proceedings of the 2010 IEEE International Conference on Software Mainte-
nance, Washington, DC, USA, 2010, ICSM ’10, pp. 1-10, IEEE Computer Society.

[69] R. L. Ott and M. T. Longnecker, An introduction to statistical methods and data
analysis, Cengage Learning, 2008.

136

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

G. J. Pai and J. B. Dugan, “Empirical Analysis of Software Fault Content and Fault
Proneness Using Bayesian Methods,” IEEE Transactions on Software Engineering,
vol. 33, no. 10, Oct 2007, pp. 675-686.

E. Pérez-Minana and J.-J. Gras, “Improving fault prediction using Bayesian networks
for the development of embedded software applications,” Software testing, verifica-
tion and reliability, vol. 16, no. 3, 2006, pp. 157-174.

D. Romano, P. Raila, M. Pinzger, and F. Khomh, “Analyzing the impact of an-
tipatterns on change-proneness using fine-grained source code changes,” 2012 19th
Working Conference on Reverse Engineering. IEEE, 2012, pp. 437-446.

T. L. Saaty, “The Analytic Hierarchy Process, New York: McGrew Hill,” Interna-
tional, Translated to Russian, Portuguesses and Chinese, Revised edition, Paperback
(1996, 2000), Pittsburgh: RWS Publications, 1980.

K. Schmid, “A Formal Approach to Technical Debt Decision Making,” Proceedings
of the 9th International ACM Sigsoft Conference on Quality of Software Architec-
tures, New York, NY, USA, 2013, QoSA ’13, pp. 153-162, ACM.

K. Schwaber and J. Sutherland, Software in 30 Days: How Agile Managers Beat the
Odds, Delight Their Customers, And Leave Competitors In the Dust, Soft-ware in
30 Days: How Agile Managers Beat the Odds, Delight Their Customers, and Leave
Competitors in the Dust. Wiley, 2012.

C. Seaman, Y. Guo, C. Izurieta, Y. Cai, N. Zazworka, F. Shull, and A. Vetro, “Using
Technical Debt Data in Decision Making: Potential Decision Approaches,” Proceed-

ings of the Third International Workshop on Managing Technical Debt, Piscataway,
NIJ, USA, 2012, MTD 12, pp. 45-48, IEEE Press.

F. Shull, V. Basili, B. Boehm, A. W. Brown, P. Costa, M. Lindvall, D. Port, I. Rus,
R. Tesoriero, and M. Zelkowitz, “What We Have Learned About Fighting Defects,”

Proceedings of the 8th International Symposium on Software Metrics, Washington,
DC, USA, 2002, METRICS ’02, pp. 249—, IEEE Computer Society.

V. Singh, W. Snipes, and N. A. Kraft, “A Framework for Estimating Interest on
Technical Debt by Monitoring Developer Activity Related to Code Comprehension,”
Proceedings of the 2014 Sixth International Workshop on Managing Technical Debt,
Washington, DC, USA, 2014, MTD ’ 14, pp. 27-30, IEEE Computer Society.

Y. Singh, A. Kaur, and R. Malhotra, “Empirical validation of object-oriented metrics
for predicting fault proneness models,” Software quality journal, vol. 18, no. 1, 2010,
pp. 3-35.

137

[80] D.I. K. Sjgberg, A. Yamashita, B. C. D. Anda, A. Mockus, and T. Dyb4, “Quantifying
the Effect of Code Smells on Maintenance Effort,” IEEE Transactions on Software
Engineering, vol. 39, no. 8, Aug 2013, pp. 1144-1156.

[81] W. Snipes, B. Robinson, Y. Guo, and C. Seaman, ‘“Defining the Decision Factors
for Managing Defects: A Technical Debt Perspective,” Proceedings of the Third
International Workshop on Managing Technical Debt, Piscataway, NJ, USA, 2012,
MTD 12, pp. 54-60, IEEE Press.

[82] R. O. Spinola, N. Zazworka, A. Vetro, C. Seaman, and F. Shull, “Investigating tech-
nical debt folklore: Shedding some light on technical debt opinion,” Managing Tech-
nical Debt (MTD), 2013 4th International Workshop on, May 2013, pp. 1-7.

[83] J. V. Stone, Bayes’ rule: a tutorial introduction to Bayesian analysis, Sebtel Press,
2013.

[84] S. E. S. Taba, F. Khomh, Y. Zou, A. E. Hassan, and M. Nagappan, “Predicting Bugs
Using Antipatterns.,” ICSM, 2013, vol. 13, pp. 270-279.

[85] R. T. Tvedt, P. Costa, and M. Lindvall, “Does the code match the design? A process
for architecture evaluation,” Software Maintenance, 2002. Proceedings. International
Conference on, 2002, pp. 393-401.

[86] J. Vlissides, R. Helm, R. Johnson, and E. Gamma, “Design patterns: Elements of
reusable object-oriented software,” Reading: Addison-Wesley, vol. 49, no. 120, 1995,
p. 11.

[871 L. Williams and A. Cockburn, “Agile software development: it’s about feedback and
change,” Computer, vol. 36, no. 6, June 2003, pp. 39-43.

[88] S. Wong, Y. Cai, M. Kim, and M. Dalton, “Detecting software modularity violations,”
2011 33rd International Conference on Software Engineering (ICSE), May 2011, pp.
411-420.

[89] J. Yli-Huumo, A. Maglyas, and K. Smolander, “Product-Focused Software Process
Improvement: 15th International Conference, PROFES 2014, Helsinki, Finland, De-
cember 10-12, 2014. Proceedings,” 2014, pp. 93—-107.

[90] N. Zazworka, C. Izurieta, S. Wong, Y. Cai, C. Seaman, F. Shull, et al., “Comparing
four approaches for technical debt identification,” Software Quality Journal, vol. 22,
no. 3, 2014, pp. 403-426.

[91] N. Zazworka, M. A. Shaw, F. Shull, and C. Seaman, “Investigating the Impact of

Design Debt on Software Quality,” Proceedings of the 2nd Workshop on Managing
Technical Debt, New York, NY, USA, 2011, MTD 11, pp. 17-23, ACM.

138

[92] M. Zhang, N. Baddoo, P. Wernick, and T. Hall, “Prioritising Refactoring Using Code
Bad Smells,” Software Testing, Verification and Validation Workshops (ICSTW), 2011
IEEE Fourth International Conference on, March 2011, pp. 458-464.

[93] M. Zhang, T. Hall, and N. Baddoo, “Code Bad Smells: A Review of Current Knowl-
edge,” J. Softw. Maint. Evol., vol. 23, no. 3, Apr. 2011, pp. 179-202.

[94] T. Zimmermann, R. Premraj, and A. Zeller, “Predicting defects for eclipse,” Pre-
dictor Models in Software Engineering, 2007. PROMISE’07: ICSE Workshops 2007.
International Workshop on. IEEE, 2007, pp. 9-9.

139

APPENDIX A

INDUSTRIAL CASE STUDY

140

Industrial Case Study - Interview Questions [17]

Section 1: Technical debt

1. How would you define/describe technical debt?

2. How important is lowering technical debt in the organization? Why? Do you think

your team does a good job addressing technical debt?

Section 2: Categories

1. Debts at the organization are typically classified as automation debt and infrastruc-

ture debt. How would you classify the debts that you address?

Section 3: Cost Estimation

1. Does your team incur debt intentionally? If yes, why? What are the benefits of doing

so?

2. Do you record how much time you spend reducing debt?

3. If yes, how much time do you spend reducing debt?

Section 4: Prioritize/decision making

1. What type of debt is most difficult to address?

2. What methodology do you use to track debt?

3. How do you prioritize technical debt?

141

4. What are the impacts of technical debt for (1) the team (2) the customers (3) future

modifications of the system?

5. How much time can a debt be on hold in the backlog?

Section 5: Demographic Questions

1. What system does your team work on?

2. What is your role in on the team?

3. What are your responsibilities?

4. How many people are on your team?

5. How many years of work experience do you have? (in and outside of the company)?

6. How many years of Agile work experience do you have?

7. What academic degree do you have?

8. Are team members geographically distributed?

9. How often do members of the development team interact with stakeholders?

10. Did you receive any formal Agile training? Duration of training?

142

APPENDIX B

SURVEY

143

Survey [19]

B.1 Interviews (Pre-Survey)

Section 1: Definition

1. How do you define technical debt (TD)?

2. Do you distinguish between quality debt (i.e., defects) and technical debt? Do you

consider both types of debt?

3. What are your thoughts on the statement: "Cost associated with TD goes beyond
effort to address the debt. There is a need to include cost associated with company
liability, reputation, market share, etc." (e.g., TD as the liability incurred for shipping

software)?

Section 2: Quantification

1. Do you measure TD? If so, what techniques and metrics are used in measuring TD?

2. How do you estimate the value (benefit, not cost) of incurring TD?

Section 3: Intentionality

1. Do you incur TD intentionally? If so, in what circumstances?

2. What are the benefits of doing so?

3. What are the negative impacts of incurring intentional TD?

4. How do you account for risk when incurring intentional TD?
144

5. Have you found that you incur debt unintentionally?

Section 4: Assessment

1. How do you know when TD is a problem?

Section 5: Communication

1. Do you communicate TD to stakeholders (customer, team members, management)?

How?

B.2 Hypotheses

The following hypotheses were generated from the interview results.
H1 Practitioners agree about what constitutes technical debt
H?2 There are established units of technical debt
H3 There are agreed methods to reduce technical debt
H4 Practitioners agree that technical debt is distinct from defects
H5 Most practitioners consider the additional costs involved in reducing technical debt
other than effort
HG6 Practitioners discuss the benefits of intentionally incurring technical debt

H'7 Practitioners assess the risks associated with intentional technical debt

B.3 Survey

Part I - Technical Debt

1. Which statement do you most agree with concerning technical debt? (First Choice)

(A) Technical debt is a tradeoff made due to schedule, scope, cost, quality constraints
145

(B) Technical debt is the additional cost to maintain and update the software to en-
sure a high level of quality and a reduced number of defects

(C) Technical debt is a shortcut taken during software development that makes sub-
sequent changes to the software harder

(D) Technical debt is a code deficiency that preserves the functionality of the soft-
ware but hinder its maintainability

(E) Other:

. Which statement do you most agree with concerning technical debt? (Second Choice)
(A) Technical debt is a tradeoff made due to schedule, scope, cost, quality constraints
(B) Technical debt is the additional cost to maintain and update the software to en-
sure a high level of quality and a reduced number of defects

(C) Technical debt is a shortcut taken during software development that makes sub-
sequent changes to the software harder

(D) Technical debt is a code deficiency that preserves the functionality of the soft-
ware but hinder its maintainability

(E) Other:

. Rate the difficulty of addressing each of the following types of technical debt (a-d):

(a) Architecture/Design Debt (when the software design no longer fits its intended

purpose)
Least Difficult Most Difficult
1 2 3 4 5

146

(b) Code Debt (violations of design principles in production code)

Least Difficult Most Difficult

(c) Test Debt (test plan is not completely carried out)

Least Difficult Most Difficult

(d) Test Debt (test plan is not completely carried out)

Least Difficult Most Difficult

. Please rate your agreement to the following statement:

The technical debt landscape should include requirements, documentation and in-

frastructure debts.

(Requirements debt refers to tradeoffs made with respect to what requirements the

development team need to implement. Documentation debt is missing or inadequate

documentation. Infrastructure debt is delaying an upgrade or infrastructure fix).

O Strongly disagree O Disagree O Neither agree nor disagree O Agree O Strongly

agree

. Do you consider process debts to be one type of technical debt or totally distinct from

technical Debt? (Process debt refers to inefficient processes, e.g. what the process

was designed to handle may be no longer appropriate)

147

O Strongly disagree O Disagree O Neither agree nor disagree O Agree O Strongly

agree

6. Do you consider defects to be one type of technical debt or totally distinct from
technical Debt?
One Type Totally Distinct

1 2 3 4 5

7. My department quantifies the amount of technical debt it owns
O Strongly disagree O Disagree O Neither agree nor disagree O Agree O Strongly

agree

8. My department measures technical debt using the following criteria

(] Story points

U] Person hours required to pay the debt

L] Cost in dollars or other currency

(] My department does not measure its technical debt

] Other:

9. My department has a systematic means of reducing technical debt

O Strongly disagree O Disagree O Neither agree nor disagree O Agree O Strongly

agree

10. My department measures technical debt using the following criteria

148

[Regularly refactors its source code

[Allocates time in each development cycle to address technical debt

L] Employs teams primarily focused on testing and test debt

L] Employs teams primarily focused on fixing defects

(] Hires / consults external development teams to address technical debt issues

[] Relegates technical debt as an individual developer responsibility

O Other:

11. My department quantifies the amount of technical debt it owns

O Strongly disagree O Disagree O Neither agree nor disagree O Agree O Strongly

agree

12. My department have a central mechanism to track technical debt

(] Issue tracking system

L1 Developer TODO lists

(] Sticky notes / developer note pads

O Other:

13. My department regularly prioritizes its technical debt using some defined criteria

O Strongly disagree O Disagree O Neither agree nor disagree O Agree O Strongly

agree

14. My department uses the following criteria to prioritize its technical debt
149

15.

16.

17.

18.

L] Cost to pay off

L] Urgency of customer request

[0 Amount of risk involved

(] Potential to significantly impact customer base

(] We do not have any established criteria for prioritizing technical debt

O Other:

Most companies are unaware of the amount of technical debt owned by a company
it is aquiring
O Strongly disagree O Disagree O Neither agree nor disagree O Agree O Strongly

agree

Most companies are unaware of the amount of technical debt contained in its legacy
systems
O Strongly disagree O Disagree O Neither agree nor disagree O Agree O Strongly

agree

Technical debt is viewed differently in startup / early-stage companies compared to
well-established larger companies
O Strongly disagree O Disagree O Neither agree nor disagree O Agree O Strongly

agree

Technical debt is viewed differently in shrink-wrapped software versus software as-

a-service offerings.

150

19.

20.

21.

22.

(Shrink-wrapped software are boxed versions of computer software purchased at a
store. Software-as-a-service (or SaaS) is a way of delivering applications by a vendor
or service provider over a network (typically the Internet) to customers.)

O Strongly disagree O Disagree O Neither agree nor disagree O Agree O Strongly

agree

The cost of technical debt is primarily the cost associated with the effort to reduce
the debt
O Strongly disagree O Disagree O Neither agree nor disagree O Agree O Strongly

agree

Technical debt cost considerations should factor in more than just the cost of effort
to pay the debt in person-hours
O Strongly disagree O Disagree O Neither agree nor disagree O Agree O Strongly

agree

Please describe any other considerations when assessing the cost of technical debt in

a system

My development team members discuss the benefits of intentionally incurring tech-
nical debt
O Strongly disagree O Disagree O Neither agree nor disagree O Agree O Strongly

agree
151

23.

24.

25.

26.

27.

Most of the development teams in my company discuss the tradeoffs of intentionally
incurring technical debt
O Strongly disagree O Disagree O Neither agree nor disagree O Agree O Strongly

agree

My development team members assess the risks of intentionally incurring technical
debt
O Strongly disagree O Disagree O Neither agree nor disagree O Agree O Strongly

agree

Most of the development teams in my company assess the risks of intentionally in-
curring technical debt
O Strongly disagree O Disagree O Neither agree nor disagree O Agree O Strongly

agree

Evaluating technical debt should be part of risk assessment in a company
O Strongly disagree O Disagree O Neither agree nor disagree O Agree O Strongly

agree

Please provide any additional comments, concerns, or issues regarding technical debt

152

Part Il - Demographic Information

1. What is the name of the company that you work for?
(Company information will not be reported in the study results. This information is

obtained to account for potential bias in the responses)

2. Country of Location

3. Number of Employees (Estimates are fine)
(A)1-99
(B) 100 - 999
(C) 1000 - 4999
(D) > 5000

(E) Don’t know

4. Size of your department
A)1-9
(B) 10-49
(C)50-99
(D) 100 - 499
(E) > 500

(F) Don’t know

153

5. How many years of experience do you have in software development?
(A)0-2
B)3-5
(©)6-10
D) 11-20

(E)>20

6. What is your role in the department?

L] Software Developer

L] Software Architect (Design)

[Requirements Analyst

0 Quality Analyst / Testing

(] Project Manager

(] User Interface Development

] Other:

7. How would you categorize the types of systems being developed by your team?

8. Age of the primary system under your responsibility
(A)0-2

B)3-5
154

(©)6-10

D)>10

155

	Technical Debt Decision-Making Framework
	Recommended Citation

	tmp.1625165283.pdf.Kdrkr

