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Filtering or estimation is of great importance to virtually all disciplines of 

engineering and science that need inference, learning, information fusion, and knowledge 

discovery of dynamical systems. The filtering problem is to recursively determine the 

states and/or parameters of a dynamical system from a sequence of noisy measurements 

made on the system. The theory and practice of optimal estimation of linear Gaussian 

dynamical systems have been well established and successful, but optimal estimation of 

nonlinear and non-Gaussian dynamical systems is much more challenging and in general 

requires solving partial differential equations and intractable high-dimensional 

integrations. Hence, Gaussian approximation filters are widely used. 

In this dissertation, three innovative point-based Gaussian approximation filters 

including sparse Gauss-Hermite quadrature filter, sparse-grid quadrature filter, and the 

anisotropic sparse-grid quadrature filter are proposed. The relationship between the 

proposed filters and conventional Gaussian approximation filters is analyzed. In 

particular, it is proven that the popular unscented Kalman filter and the cubature Kalman 

filter are subset of the proposed sparse-grid filters. The sparse-grid filters are employed in 
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three aerospace applications including spacecraft attitude estimation, orbit determination, 

and relative navigation. The results show that the proposed filters can achieve better 

estimation accuracy than the conventional Gaussian approximation filters, such as the 

extended Kalman filter, the cubature Kalman filter, the unscented Kalman filter, and is 

computationally more efficient than the Gauss-Hermite quadrature filter. 
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CHAPTER I 

INTRODUCTION 

1.1 Overview 

Nonlinear estimation/filtering has attracted a great deal of attention in the past few 

decades because it has a broad range of applications in science and engineering [1-18], 

such as communication[1] ,target detection and tracking [2-6, 7 , 8], ocean acoustics[10], 

location[9], SAR motion compensation [15], and fault detection and correction [16-18]. 

The general filtering problem can be addressed using Bayesian estimation theory [19]. In 

the Bayesian framework, the probability density function (pdf) of states between 

measurements for continuous dynamic systems can be propagated by solving the Fokker-

Planck-Kolmogorov equation (FPKE) [20-24] and the pdf of the states can be updated by 

the Bayesian rule. For discrete dynamic systems, the FPKE will be replaced by the 

Chapman-Kolmogorov equation [25]. Because the Chapman-Kolmogorov equation 

requires integration with respect to the pdf, which has no closed-form solution for general 

nonlinear and non-Gaussian systems, numerous approximation methods have been 

proposed, such as the sequential Monte-Carlo method [26], the point-mass method [27, 

28], and the Gaussian mixture method [3, 5, 29-31]. For general nonlinear, non-Gaussian 

filters, although the sequential Monte Carlo method (particle filters) can successfully 

solve the integration problem, the update of the particle weights often leads to the 

degeneracy problem[32]. In addition, the number of particles of the particle filters 

increases rapidly with the increase of the system dimension. The point-mass method also 
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suffers the same problem of computational complexity as the sequential Monte Carlo 

method. For the Gaussian mixture method, the number of Gaussian components is 

difficult to control and the computational burden is large. For nonlinear and Gaussian 

systems, the Gaussian approximation filters can be derived. They are more 

computationally efficient than the non-Gaussian filters. In addition, Gaussian 

approximation filters can be used in Gaussian mixture filter [33] and sequential Monte-

Carlo method [34]. Hence, in this dissertation, we mainly focus on the Gaussian 

approximation filters. 

There are many Gaussian approximation filters that use different numerical 

methods to calculate the integrals in the Bayesian filtering. The typical integral methods 

include unscented transformation [35, 36], cubature rules [37-40], and Gauss-Hermite 

quadrature rule [29]. Among the Gaussian approximation filtering techniques, Gauss-

Hermite quadrature filter (GHQF) has been proven to be the most accurate in solving 

estimation problems when the state and noise distributions are Gaussian. The 

conventional GHQF uses tensor product rule to extend one dimensional Gauss-Hermite 

quadrature rule to the multi-dimensional problem. The drawback of this method is that 

the number of points increases exponentially with the increase of dimension. Hence, it is 

difficult to use it in high dimensional problems. To alleviate the curse of dimensionality 

problem generated by the product rule, the sparse-grid method has been proposed and 

widely used. The original idea of the sparse-grid method can be traced back to Russian 

mathematician Smolyak [41], who used a special method to choose points (sparse-grid) 

and made the number of necessary points significantly less than that of using the direct 

product rule. As a result, the computational cost does not increase exponentially by using 

the sparse-grid method. Although the sparse-grid has been used in the numerical 
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integration context, the application to nonlinear filtering is new. In this dissertation, three 

sparse-grid based filters are proposed. It will be shown that they can achieve more 

accurate results than other Gaussian approximation filters with moderate computation 

complexity. 

The proposed sparse-grid based filters are applied to three important space 

applications: spacecraft attitude estimation, orbit determination, and the relative 

navigation between two spacecraft. Many nonlinear filtering methods, such as the 

extended Kalman filter (EKF) [19, 42], the unscented Kalman filter (UKF) [35, 36], and 

the particle filter (PF) [32, 43-46] have been employed for spacecraft attitude estimation, 

since it is a nonlinear filtering problem. EKF is the most widely used nonlinear filtering 

method for spacecraft attitude estimation [47]. A simplified Kalman filter and smoother 

for spacecraft attitude estimation based on the QUEST algorithm was proposed in [48]. A 

more robust approach named extended quaternion-estimator based on the EKF and 

quadratic constrained programming was proposed in [49]. The UKF [50] has 

demonstrated more accurate and robust performance than the EKF in attitude estimation 

when the initial attitude estimation error is large. The PF has been shown to achieve 

better accuracy than the UKF and the EKF at the expense of high computational 

complexity [43, 44, 46]. Similarly, EKF has been widely used in orbit determination as 

well [51]. Many other nonlinear filtering algorithms such as UKF [52] and PF [53] have 

also been investigated to improve the orbit determination performance. In this 

dissertation, it can be shown that the proposed sparse-grid based filters can achieve 

higher order accuracy than UKF, and UKF is shown to be a subset of the sparse-grid 

based filter. The spacecraft attitude estimation and orbit determination problems will be 

used to demonstrate the effectiveness of the sparse-grid filters and compare the 
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performance of other Gaussian approximation filters. To show the performance of the 

sparse-grid filters for high-dimensional problems, they are applied to the relative 

navigation problem. Relative navigation is one of the key technologies for the satellite 

formation flying [54, 55]. Many GPS-like missions that need spacecraft formation require 

information of relative attitude and position between spacecraft. It is a high dimensional 

problem that is more challenging than attitude estimation and orbit determination. Thus, 

it is a good test bed to evaluate the estimation performance and the computational 

efficiency of the sparse-grid filters. 

1.2 Contributions of The Dissertation 

1.2.1 Three New Filters Based On The Sparse-grid Method 

Three new filters based on the sparse-grid theory are proposed. The first filter is 

the Gauss-Hermite quadrature filter (GHQF) that uses the Gauss-Hermite quadrature rule 

to generate the univariate Gauss-Hermite quadrature (GHQ) points and weights, and then 

uses the sparse-grid method to extend them to the multi-dimensional GHQ point set and 

weights. The second filter is the general sparse-grid quadrature filter (SGQF) that utilizes 

the moment matching method to generate the univariate quadrature points and weights 

and then uses the sparse-grid method to extend them to the multi-dimensional quadrature 

point set and weights. To further improve computation efficiency, the third filter, named 

the anisotropic sparse-grid filter, is proposed to reduce the number of sparse-grid points 

based on system dynamics and uncertainty information such that fewer points can be 

placed along less important dimensions. 
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1.2.2 Relationship Between The Sparse-grid Based Filters and Other Gaussian 
Approximation Filters 

The relationship between the sparse-grid based filters, sigma-point based filters 

(UKF and CKF), and the Gauss-Hermite quadrature filter are rigorously analyzed. It can 

be revealed that the UKF and CKF are a subset of the sparse-grid filters at the accuracy 

level-2 and thus the sparse-grid filters can achieve higher accuracy level than the sigma-

point filters. In addition, the accuracy and computational complexity are quantitatively 

analyzed for all sparse-grid based filters. 

1.2.3 Space Applications 

The proposed sparse-grid filters are applied to three important space applications, 

including orbit determination, attitude estimation, and relative navigation. The 

performance of the new proposed filters are shown to be better than the conventional 

Gaussian approximation filters, such as EKF, UKF, CKF in terms of estimation accuracy, 

and GHQF in terms of computation efficiency. 

1.3 Organization of The Dissertation 

The dissertation is organized as follows: Chapter 2 briefly reviews the literature of 

nonlinear filtering methods. The theory of Bayesian filtering and popular Gaussian 

approximation filters such as the extended Kalman filter, the unscented Kalman filter, the 

cubature Kalman filter, the Gauss-Hermite quadrature filter, and the central difference 

Kalman filter, are reviewed. 

In Chapter 3, three sparse-grid based filters are proposed. Both conventional and 

anisotropic sparse-grid theories are introduced. Theoretical analysis of the relationship 

between the conventional sparse-grid quadrature, anisotropic sparse-grid quadrature, 

unscented transformation, cubature rule, and Gauss-Hermite quadrature filters is given. 
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In Chapter 4, the three proposed filters are applied in solving three space 

estimation problems: orbit determination, attitude estimation, and relative navigation. The 

simulation results show the proposed filters are better than EKF, UKF and CKF, they are 

computationally more efficient than GHQF. 

Chapter 5 reviews the main contributions of this dissertation and gives some 

future research directions. 
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CHAPTER II 

BACKGROUND AND LITERATURE REVIEW 

In this chapter, the Bayesian filtering framework as well as its variants is 

reviewed. 

2.1 Optimal Bayesian Filtering 

The mission of the nonlinear filtering is to estimate hidden variables or states of a 

system from noise corrupted observations. Roughly speaking, there are two categories of 

nonlinear filtering methods in terms of the method of data processing. One method is 

batch processing and the other is recursive processing. Here, we mainly focus on 

recursive nonlinear filtering. 

2.1.1 Continuous-discrete system 

In many systems, the measurements are obtained discretely from continuous-time 

processes. The dynamics of the system is governed by a stochastic differential equation 

      ,d t t t dt d t x x Qf  (2.1) 

where  tx is the state of the system at the time t ; f is the nonlinear drift function; Q is 

the spectral density matrix; and  is the standard Brownian motion. 

The noisy observations are obtained discretely at time instant k 

 k k k y x nh (2.2) 

where ky are the noisy observations, h is the measurement equation, and kn is the 

measurement noise. 
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By Bayesian filtering theory [19, 42], there are two steps to obtain the estimated 

states. 

1. Prediction step: predict the pdf between the measurement intervals. 

2. Update step: update the pdf using the corrupted measurements. 

The prediction of the pdf from time 1k  to time k can be obtained by solving the 

well-known Fokker-Planck-Kolmogorov equation. 
2

2
1tr tr
2

T

t t

p p pp
t t

      
      

     
Q

x x
ff (2.3) 

where  1 1: 1|k kp p   x y with 1: 1ky denoting the measurement sequences up to time k-1; 

„tr‟ denotes the trace operator. 

When the measurement ky is available, a posterior pdf is updated by the 

Bayesian rule. 

 
   

   
1: 1

1:
1: 1

| |
|

| |
k k k k

k k
k k k k k

p p
p

p p d








x y y x
x y

x y y x x
(2.4) 

where the predicted  1: 1|k kp x y can be obtained from Eq. (2.3). 

2.1.2 Discrete System 

Assume the state-space description of a discrete dynamical system is 

 1 1k k k  x x vf

 k k k y x nh

(2.5) 

(2.6) 

where f and h are nonlinear functions. Eq. (2.5) is called dynamic equation, while Eq. 

(2.6) is called the measurement equation. 1kv and kn are white Gaussian process noise 

and measurement noise, respectively, with  1 1,k kN v 0 Q and  ,k kNn 0 R . The 

filtering problem is estimating the system state kx from the noisy measurement ky . 
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The optimal estimated state ˆ kx can be obtained by the recursive Bayesian filtering 

algorithm. The Bayesian filter is a general probabilistic approach to estimate the pdf 

recursively from noisy or corrupted observations. Given the pdf  1 1: 1|k kp  x y at time 

1k  , the predicted conditional pdf  1: 1|k kp x y satisfies the Chapman-Kolmogoroff 

equation 

     1: 1 1 1 1: 1 1| | |k k k k k k kp p p d     x y x x x y x (2.7) 

When the measurement at time k is available, a posterior conditional pdf can be 

obtained by the Bayesian rule 

 
   

   
1: 1

1:
1: 1

| |
|

| |
k k k k

k k
k k k k k

p p
p

p p d








x y y x
x y

x y y x x
(2.8) 

Equation (2.7) is the prediction formula, while Eq. (2.8) is the update formula. The 

prediction step is to obtain the pdf evolution from time 1k  to k and the update step 

gives a posterior pdf at time k . The moments can be computed from this a posterior pdf. 

A nonlinear filtering algorithm described above can be represented in the block 

diagram as shown in Figure 2.1. 

 k 1:kp x | y k -1 1:k -1p x | y

System Dynamics Measurement

 k k -1p x | x

 k 1:k -1p x | y

 k kp y | x

      
Chapman - Kolmogoroff

Equation Solver          
Bayesian Equation

Solver

Figure 2.1 Bayesian filtering framework 

9 



 

 

  

    

   

      

                                          

 

 

    

 

 

  

 

  

 

 

  

 

  

 

 

Initially,  1 1: 1|k kp  x y is assumed to be known at time 1k  , and then 

 1: 1|k kp x y can be computed by Eq. (2.7). When the measurement arrives at time k , a 

posterior pdf  1:|k kp x y at time k is calculated by the Bayesian rule. Then the estimated 

states ˆ kx at time k can be calculated from the corresponding pdf. 

 1:ˆ |k k k k kp d x x x y x (2.9) 

State estimation can be recursively calculated following this procedure. 

Although the Bayesian filter has a simple form, it is difficult to realize. The 

recursive propagation of a posterior density given by (2.7) and (2.8) is only a conceptual 

solution in the sense that it cannot be determined analytically in general. Thus, one has to 

use approximations or suboptimal Bayesian algorithms. 

2.2 Approximate Nonlinear Filters 

The celebrated Kalman filter is the optimal solution to Bayesian filtering problem 

when the system model is linear and the noise distribution is Gaussian. When the system 

model is nonlinear or the noise distributions are not Gaussian, various numerical methods 

have been proposed to calculate the integrals in Eq. (2.7) and Eq. (2.8). We briefly 

summarize them into the following two categories: Gaussian approximation filters and 

non-Gaussian approximation filters. 

2.2.1 Gaussian Approximation Filters 

This kind of filters assumes that all the models and related pdfs are Gaussian. 

These methods include the extended Kalman filter (EKF) [42], the unscented Kalman 

filter (UKF) [35, 36], the central difference filter (CDF), the divided difference filter 

(DDF), and the Gauss-Hermite quadrature filter (GHQF). Among all Gaussian 

approximation filters, the EKF is the most widely used. The EKF linearizes the nonlinear 
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model of Eqs. (2.5) and (2.6) using the first-order truncated Taylor series expansion 

around the current estimate in order to use the Kalman filter framework for the Gaussian 

nonlinear system. The central difference filter [56] adopts an alternative linearization 

method called the central difference approximation to approximate the derivative. UKF 

and GHQF are quadrature point based methods (unscented transformation and Gauss-

Hermite quadrature, respectively) to approximate the optimal Bayesian integrals in Eq. 

(2.7) and Eq. (2.8). Compared with the EKF, the UKF and GHQF are more accurate, 

since they consider higher-order terms in the nonlinear system model. 

2.2.1.1 Extended Kalman Filter 

The extended Kalman filtering algorithm can be also described by the prediction 

and update steps. 

The predicted state and covariance can be approximated by [42] 

 | 1 1| 1ˆ ˆk k k k  x xf

| 1 1 1 1 1
T

k k k k k k     P F P F Q

(2.10) 

(2.11) 

where 1| 1ˆ k k x is the estimated state and 1kF is the Jacobian matrix of the function f

evaluated at 1| 1ˆ k k x . 

The updated state and covariance are given by [42] 

 | | 1ˆ ˆ ˆk k k k k k k  x x L y y

| | 1 | 1
T

k k k k k yy k k  P P L P P

(2.12) 

(2.13) 

where the predicted observation ˆ ky is given by 

 ˆ ˆk ky xh (2.14) 

and 

| 1
T

yy k k k k k P H P H R (2.15) 
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Note, kH is the Jacobian matrix of the function h evaluated at | 1ˆ k kx . The Kalman gain 

kL is given by [42] 

 
1

| 1 | 1
T T

k k k k k k k k k



  L P H H P H R (2.16) 

2.2.1.2 Point-based Gaussian approximation filters 

Point-based Gaussian approximation filters use some points and weights 

according to certain numerical rules such as Gauss-Hermite quadrature (GHQ) rule, 

unscented transformation (UT), and cubature rule, to approximate the integrals in the 

Bayesian filtering algorithm. Under the assumption of Gaussian distributions, Eq. (2.7) 

and (2.8) can be rewritten as 

 
 

     

 

1
1: 1 1 1 1/2 1/2

1

1 1: 1 1

1 1| exp
22 (det )

|

n

T
k k k k k k kn

k

k k k

p f f

p d





   



  

 
    

 



x y x x Q x x
Q

x y x
(2.17) 

       1
1: 1: 1

1| exp ( ) ( ) |
2

T
k k k k k k k k kp c h h p



 
    

 
x y y x R y x x y (2.18) 

where c is a normalization constant. Assume that the pdf of the state is also Gaussian and 

thus only the mean and covariance need to be calculated. 

After some derivation, one can arrive at the following Gaussian approximation 

filtering algorithm [29, 35, 36, 57]: 

   | 1 1 1 1 1| 1 1ˆ ˆ; ,
nk k k k k k k kN d       x x x x P xf (2.19) 

     | 1 1 1 1 1 1| 1 1 | 1 | 1 1ˆ ˆ ˆ; ,
n

T T
k k k k k k k k k k k k k kf N d            P x x x x P x x x Qf (2.20) 

where  1 1 1| 1ˆ; ,k k k kN    x x P denotes the multivariate normal distribution with mean 

and covariance 1| 1k k P . 

1ˆ kx

(2.21) 

(2.22) 

 | | 1ˆ ˆ ˆk k k k k k k  x x L y y

| | 1
T

k k k k k xy P P L P

where  
1

k xy k yy



 L P R P (2.23) 
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   | 1 | 1ˆ ˆ; ,
nk k k k k k k kN d  y x x x P xh (2.24) 

      | 1 | 1 | 1ˆ ˆ ˆ; ,
n

T
xy k k k k k k k k k k kN d    P x x x y x x P xh (2.25) 

       | 1 | 1ˆ ˆ ˆ; ,
n

T
yy k k k k k k k k k kN d   P x y x y x x P xh h (2.26) 

The integrals in Eqs. (2.19)-(2.20) and Eqs. (2.24)-(2.26) can be approximated by 

the GHQ, UT, or cubature rule. They can be approximated by the sparse Gauss-Hermite 

quadrature (SGHQ) rule as well, which will be presented in the next chapter. 

The following Gaussian-type integral can be approximated by the quadrature. 

     
1

; ,
p

n

N

i i
i

N d W


 x x 0 I x γg g (2.27) 

where pN is the total number of points; iW and iγ are quadrature weights and 

quadrature points, respectively. 

A more general Gaussian-type integral    ˆ; ,
n

N d x x x P xg can be approximated 

by Eq. (2.27) using covariance transformation [56]: 

         
1

ˆ ˆ ˆ; , ; ,
p

n n

N

i i
i

N d N d W


    x x x P x Sx x x 0 I x Sγ xg g g (2.28) 

where TP SS . 

Substituting Eq. (2.28) into Eqs. (2.19)-(2.20) and (2.24)-(2.26), the generic point-

based Gaussian approximation filter can be obtained as follows. 

 | 1
1

ˆ
pN

k k i i
i

W f



x ξ (2.29) 

     | 1 | 1 | 1 1
1

ˆ ˆ
pN

T

k k i i k k i k k k
i

W   



   P ξ x ξ x Qf f (2.30) 

where pN is the total number of points and iξ is the transformed point obtained from the 

covariance decomposition, i.e. 

1| 1
T

k k  P SS ; 1| 1ˆi i k k  ξ Sγ x (2.31) 
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Note, iγ is the point corresponding to  ; , nN x 0 I and n is the dimension of the state; iW is 

the point weight. 

Equations (2.21) and (2.23) can still be used and Eqs. (2.24)-(2.26) can be 

approximated by 

 
1

ˆ
pN

k i i
i

W


y ξh

    | 1
1

ˆ ˆ
pN T

xy i i k k i k
i

W 



  P ξ x ξ yh

     
1

ˆ ˆ
pN T

yy i i k i k
i

W


  P ξ y ξ yh h

(2.32) 

(2.33) 

(2.34) 

where iξ is the transformed point obtained from the predicted covariance decomposition, 

i.e. 

| 1
T

k k P SS ; | 1ˆi i k k ξ Sγ x (2.35) 

Note that in this framework the points are generated twice within a filter cycle: at the 

beginning of the filter cycle and immediately after prediction. The points are re-generated 

after prediction in order to account for the effect of the process noise. An alternative is to 

generate a larger set of augmented points, each consisting of the state and process noise, 

only at the beginning of every filter cycle, by applying a point selection algorithm to the 

augmented covariance matrix consisting of both the state covariance and the process 

noise covariance [36]. 

The augmented point-based Gaussian approximation filter can be obtained as 

follows. 

We define the augmented state as 
Ta T T T   x x v n (2.36) 

and the augmented covariance as 
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(2.37) =
v n

v v n

n n v

x n n n n

a
n n n n

n n n n

 

 

 

 
 
 
 
  

P 0 0

P 0 Q 0

0 0 R

where n , vn , and nn are the dimension of the state, the dimension of the process noise, 

and the dimension of the measurement noise, respectively. 

Then the prediction step and update step can be rewritten as: 
 

 
2 1

| 1
1

ˆ
v nn n n

a a a
k k i i

i
W

  





 x ξf (2.38) 

     
 2 1

| 1 | 1 | 1
1

ˆ ˆ
v nn n n Ta a a a a a

k k i i k k i k k
i

W
  

  



  P ξ x ξ xf f (2.39) 

where a
iξ is given by 

(2.40) 

(2.41) 

Similarly, Eqs. (2.21) and Eq.(2.22) can still be used, and Eqs. (2.23)-(2.26) can be 

rewritten by 

 1| 1 1| 1ˆa a a a
i k k i k k    ξ S γ x

with 

 1| 1 1| 1 1| 1

Ta a a
k k k k k k     P S S

Note, a
iγ and a

iW can be obtained by Eq. (2.27). 

 
1

k xy yy



L P P

    
 2 1

| 1
1

ˆ ˆ
v nn n n Ta a a a a a

xy i i k k i k
i

W
  





  P ξ x ξ yh

     
 2 1

1

ˆ ˆ
v nn n n Ta a a a a a

yy i i k i k
i

W
  



  P ξ y ξ yh h

 
 2 1

1

ˆ
v nn n n

a a a
k i i

i
W

  



 y ξh

(2.42) 

(2.43) 

(2.44) 

(2.45) 

There are many numerical rules that can be used to approximate the integral in 

Eq. (2.27). They are summarized in References [38-40, 58, 59]. In the following, many 

typical numerical integral techniques are introduced. 
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2.2.1.3 Unscented Transformation 

The unscented transformation (UT) is an approach to choose points that can 

approximate the mean and covariance more accurately. By the unscented transformation, 

the points iγ and weights iW in Eq. (2.27) are given by 

 

    

    

1 1

1

1

1

1 2 2, , 1

1 2 2, ,2 1

i i i

i i n i

W n i

n W n i n

n W n i n n

 

 

 



 

    



     


       

γ 0

γ e

γ e

(2.46) 

where  is a parameter to tune the value of iγ and iW are the weights corresponding to 

iγ . 

Take a nonlinear function  y xf for an example, where my ; nx . To 

calculate the mean and covariance of y , by Eq.(2.28), 2 1n points with different 

weights are chosen as follows: 

 

     

     

1 1ˆ ˆ 1

ˆ ˆ 1 2 2, , 1

ˆ ˆ 1 2 2, ,2 1

i xx i
i

i xx i
i

W n i

n W n i n

n W n i n n

 

 

 


   


      


        


γ x

γ x P

γ x P

(2.47) 

where xxP is the covariance of x ;   xx
i

n  P is the ith row or column of the matrix 

  xxn  P and       
T

xx xx xxn n n     P P P . Then the mean and 

covariance of y can be approximated by the following equations 

 
2 1

1

ˆˆ
n

i i
i

W




y γf

     
2 1

1

ˆ ˆˆ ˆ
n T

yy i i i
i

W




  P γ y γ yf f

(2.48) 

(2.49) 

It has been proven that the unscented transformation can capture the third order 

information of the system for a Gaussian system [36]. 

Different point selection strategies related with the unscented transformation 

include the symmetric point [35], minimal-skew simplex points [60], spherical simplex 
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points [61, 62], the Schmidt orthogonalization-based simplex set [63], and those with 

more than 2n+1 sigma points for accuracy enhancement [64-66], where n is the 

dimension. Various sampling methods of the UKF were compared in [67, 68]. For n-

dimensional systems (n>1), the original UKF using 2 1n symmetric points is accurate 

for the 3rd degree polynomials. With reduced computational cost, the simplex UKF and 

the spherical simplex UKF can be partly accurate for 3rd degree polynomials using 2n

nonsymmetrical points. 

2.2.1.4 Central Difference 

Let us define , which can be approximated by [56]    1| 1ˆT
k k  x S x xf f

   
1

1
2

n
T

i i
i

a x


  x 0 x Hxf f (2.50) 

where ix is the ith entry of x ; ia , the element ,i iH and ,i jH of the symmetric matrix H

are given by [56] 
   

2
i i

i

h h
a

h
 


e ef f 1 i n  (2.51) 

     
, 2

2 0i i
i i

h h
h

 


e e
H

f f + f 1 i n  (2.52) 

       
, 2

0i j i j
i j

h h h h
h

     


e e e e
H

f f f f
1 i j n   (2.53) 

where h is a tunable parameter and je is the unit vector in n with the jth element being 1. 

Then, 

 
 

   2
,2

1

1 1exp 2
22n

n

c i in
i

I d
 

    x x x 0 Hf f (2.54) 

   
 

 2
1 2 2

1 2 1 2 1 2 1 2
, , , ,

1

1 exp 2
2

1
2

n n

n

c c i i i i i i i i j j
i i j

d

I I a a



 



 
    

 



 

x x x x

H H H H

f f

(2.55) 

17 



 

 

     

 

   

                                     

                                     

    

      

  

 

                                       

                                      

                                       

 

  

  

   

  

   

   

      

where   ,
1

1
2

n
j j

c j i i
i

I


 0 Hf ( 1,2j  ); j
ia and ,

j
i iH related with  j sf can be obtained 

by Eqs. (2.51) and (2.52). 

Using Eqs. (2.54) and (2.55), the prediction step can be rewritten as 

 | 1 ,
1ˆ 0
2

n

k k i i
i i





 x Hf (2.56) 

| 1 , ,
1
2

n n
T T

k k i i i i i i
i i i i

a a

 

   P H H Q (2.57) 

Similarly, we define    | 1ˆT
k k x S x xh h . Then, it can be approximated by 

 
1

1
2

n
T

i i
i

b x


 0 x Gxh . Note, ib and G are similar to ia and H in Eq. (2.50). 

The following equations can be obtained in a similar fashion as the Eqs. (2.56) and (2.57) 

[56]. 

 1, , TT
xy nb bP S

, ,
1 1

1
2

n n
T T

yy i i i i i i
i i

bb
 

  P G G

  ,
1

1ˆ 0
2

n

k i i
i

 y Gh

(2.58) 

(2.59) 

(2.60) 

More details can be found in [56]. 

2.2.1.5 Gauss-Hermite Quadrature 

For the univariate Gauss-Hermite quadrature (GHQ) rule that represents the 

univariate standard Gaussian distribution N(x;0,1) with m quadrature points, i and iw

can be calculated as follows [29, 56]. If 1m  , then 1 0  and 1 1w  . If 1m  , first 

construct a symmetric tri-diagonal matrix J with zero diagonal elements and 

, 1 1, / 2i i i iJ J i   , 1 1i m   . Then the quadrature point i is calculated by 

2i i  , where i is the ith eigenvalue of J . The corresponding iw is calculated by 
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2

1i iw  v where  1iv is the first element of the ith normalized eigenvector of J . The 

univariate GHQ rule with m points is exact up to ( 2 1m )th order polynomials [56]. 

To represent  ; , nN x 0 I , the multivariate GHQ rule extends the univariate m-

point set to the n-dimensional point set by the tensor product rule [29, 56]. It is exact for 

all polynomials of the form [29, 56]. However, the total 1 2
1 2

n
n
ii ix x x with 1 2 1ji m  

number of points n
pN m increases exponentially with the dimension n . 

For example, the two dimensional GHQ points iγ and weights iW constructed 

from 3 univariate GHQ points 1 2 3, ,   with corresponding weights 1 2 3, ,w w w by the 

tensor product rule contains 32=9 points 

and 9 corresponding weights 

     

     

     

1 1 1 2 1 3

2 1 2 2 2 3

3 1 3 2 3 3

, , , , ,

, , , , ,

, , , , ,

     

     

     

 
 
 
 
 

1 1 1 2 1 3

2 1 2 2 2 3

3 1 3 2 3 3

, ,
, ,
, ,

w w w w w w
w w w w w w
w w w w w w

 
 
 
 
 

where 1= 3  , 2 =0 , and 3 = 3 ; 1=1 6w , 2 = 2 3w , and 3=1 6w . 

2.2.1.6 Cubature Rules 

Cubature rules, also called spherical-radial rules, have been used in multiple 

integrals [37, 69, 70]. Cubature Kalman filters with different accuracies can be obtained 

by using cubature rules with different degrees of accuracy in the framework of point-

based Gaussian approximation filters. Recently, the third-degree cubature rule was used 

to solve the nonlinear estimation problem in [37]. 
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Before introducing the cubature rules, we consider the following integral. 

           1 2

0
exp exp

n
n

T n

U
I d r r r d dr


     x x x x s sg g g (2.61) 

where  1 2, , , T
ns s ss ,  2 2 2

1 2: 1n
n nU s s s     s , and    is the spherical 

measure on nU [37]. 

Equation (2.61) contains two different types of integrals. The first type of integral 

   1 2

0
expng r r r dr


 

   
nU

d s sg is the spherical integral [37, 69, 70]. The cubature rule is based on the 

is the radial integral [37, 69, 70] and the second type of integral 

combination of these two types of integrals and the following fact [37, 69, 70]: If the 

radial integral can be approximated by the rN -point radial rule 

     1 2
,0

1
exp

rN
n

r i i
i

g r r r dr w g r






  (2.62) 

and the spherical integral can be approximated by -point spherical rule, sN

     ,
1

s

n

N

s j jU
j

d w


 s s sg g (2.63) 

where ir and ,r iw are points and weights for calculating the radial integral, js and ,s jw

are points and weights for calculating the spherical integral, then Eq. (2.61) can be 

computed by 

           

 

1 2 1 2
,0 0

1

, ,
1 1

exp exp
s

n

sr

N
n n

s j jU
j

NN

r i s j i j
i j

I r r r d dr r r w r dr

w w r


 

 



 

   



  



s s s

s

g g g

g
(2.64) 

The third-degree spherical rule is given by [37] 

      ,3
12n

n
n

U j j
j

AI
n 

   e eg g g (2.65) 
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where      2 1 2 2 2 2n n
nA n n     is the surface area of the unit sphere; 

 n is the gamma function defined by the integral     1

0
exp nn d  


   ; je is the 

unit vector in n with the jth element being 1. 

The third-degree radial rules can be obtained by the moment matching method. 

The general moment matching method can be described by 

     1 2
,0

1
exp

rN
n

r i i
i

g r r r dr w g r






 

where  g r is a polynomial. 

(2.66) 

For the third-degree radial rule, the following equations can be obtained. 

0
,1 1

2
,1 1

1 1                       
2 2
1 1 11
2 2 4 2

r

r

w r n

nw r n n

  
  

  


               

(2.67) 

Note, the terms on the right-hand side of Eq. (2.67) are the exact moments in Eq. (2.66). 

Solving Eq. (2.67), the point and weight for the third-degree radial rule can be 

obtained. 

1 2
nr 

 
,1

2
2r

n
w




(2.68) 

(2.69) 

Hence, the third-degree cubature rule is given by 

       

     

 

 

    

2

1 2
2 0

, ,2
1 1

2
1

1

1; 2 exp

1 2 exp

1 2

21 2 2
2 2 2 2

1
2

n n

n

sr

T
n

n
n U

NN

r i s j i jn
i j

n
n

j jn
j

n

j j
j

N d d

r r r d dr

w w r

n A n n
n

n n
n
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(2.70) 



 

 

 

  

   

  

    

  

                          

   

       

 

 

       

       

       

      

  

The higher-degree cubature rules can be obtained by combining the higher-degree 

spherical rules and the higher-degree radial rules. 

2.2.1.7 Divided Difference Filters 

The divided difference filters are based on Stirling‟s interpolation. In this section, 

the first order and the second order Stirling‟s interpolation are introduced. 

2.2.1.7.1 The First Order Stirling’s Interpolation 

The first order Stirling‟s interpolation can be described by [57] 

     
   

1

ˆ ˆ
ˆ

2

n i i
i

i

h h

h




  
    

δ e δ e
y x δ δ

f f
f f f (2.71) 

where 1δ S x ; S is calculated from covariance factorization of covraince P , i. e. 

TP SS ; i is the ith element of vector ˆδ δ ( ̂δ is a reference value), and h is the 

interpolation interval. 

The mean and covariance can be calculated by the first order Stirling‟s 

interpolation [57, 71] 

 1ˆ ˆDD y xf (2.72) 

         1
2

1

1 ˆ ˆ ˆ ˆ
4

n TDD
yy i i i i

i
h h h h

h 

      P x S x S x S x Sf f f f (2.73) 

    1

1

1 ˆ ˆ
2

n TDD
xy i i i

i
h h

h 

   P S x S x Sf f (2.74) 

where iS is the ith column of the matrix S . 
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2.2.1.7.2 The Second Order Stirling’s Interpolation 

The second order Stirling‟s interpolation can be described by 

     
   

 
     

1

2

2
1

ˆ ˆ
ˆ

2
ˆ ˆ ˆ2

              
2

n i i
i

i

n i i
i

i

h h

h

h h

h









  
    

   
 





δ e δ e
y x δ δ

δ e δ e δ

f f
f f f

f f f
(2.75) 

The mean and covariance can be calculated by the second order Stirling‟s 

interpolation [57, 71] 

      
2

2
2 2

1

1ˆ ˆ ˆ ˆ
2

n
DD x

i i
i

h n h h
h h 


    y x x S x Sf f f

      

      

2
2 1

4
1

1 ˆ ˆ ˆ2
4

ˆ ˆ ˆ                                     2

n
DD DD
yy yy i i

i
T

i i

h h h
h

h h



     

    

P P x S x S x

x S x S x

f f f

f f f

    2

1

1 ˆ ˆ
2

n TDD
xy i i i

i
h h

h 

   P S x S x Sf f

(2.76) 

(2.77) 

(2.78) 

For the Gaussian distribution, the optimal choice of the interval is 2 3h  . 

Note that the mean computation of the unscented transformation and the second 

order Stirling‟s interpolation are the same [57, 71]. In addition, the cross covariance 

matrices calculated by the unscented transformation and the Stirling‟s interpolation are 

the same when 2n h  [57]. 

2.2.1.8 Discussions 

Compared with the multivariate GHQ rule, the unscented transformation (UT) 

and the cubature rule are much more efficient computationally because the number of 

points used or the computational cost is linear with respect to the dimension of the state. 

However, the accuracy that can be achieved by the UT and the cubature rule is much 

lower than the GHQ rule. Take the UT with 2n+1 sigma points as an example. Without 
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loss of generality, assume the covariance of the state is an n×n identity matrix and the UT 

uses three distinct sigma points for each dimension. The UT can calculate the expectation 

of , 1, , ,0 5k
ix i n k   exactly. But the high accuracy of the UT for univariate 

polynomials does not imply that the UT is exact for multivariate polynomials up to the 5th 

order. It is a known fact that the standard UT fails to calculate the expectation of 

2 2 , ( , 1, , and )i jx x i j n i j  exactly [36].  The sparse Gauss-Hermite quadrature, which 

will be introduced in the next chapter, may be considered as a more accurate UT. It can 

achieve guaranteed levels of accuracy for multivariate problems when calculating 

moments (expectations of polynomials of state variables). 

2.2.2 Non-Gaussian Approximation Filters 

There are mainly three types of nonlinear filtering methods in this category: the 

sequential Monte-Carlo filter [3, 6, 7, 32, 43, 44, 46, 72-75], the point-mass filter [27, 28, 

76], and the Gaussian sum filter [3, 33, 45, 77-80]. The sequential Monte-Carlo method is 

based on simulations using a set of weighted particles drawn from a proposal distribution 

to simulate the dynamic process and measurement process [32, 81]. The pdf can be 

approximated by those particles. This method is easy to implement. However, it is 

computationally intensive and the direct implementation leads to degeneration problem 

[32, 81]. The computational problem is alleviated with the advancement of computation 

capabilities in recent years. The degeneration problem is that, in practice, after a few 

iterations of the algorithm, all but one of the normalized weights are very close to zero 

and large computational effort is devoted to updating particles whose contribution to the 

final estimate is almost zero. To solve this problem, many new improvements have been 

proposed [6, 32, 81]. Resampling is the most frequently used method. A suitable metric 
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of degeneracy of the algorithm was introduced. When this value is greater than the 

expected value, a resampling strategy is used. Because the sampling step is difficult to 

implement for non-Gaussian distributions, proposal sampling distribution is used to 

provide sampling particles [6, 32, 81]. The EKF, UKF and GHQF have been used to 

obtain a good proposal distribution [34, 82, 83]. Although the computational efficiency 

has been improved in recent decades, the large computational burden for high 

dimensional problems still exists, since a huge number of particles is needed [43]. 

Different from the point-selection strategy of the sequential Monte-Carlo method, the 

point-mass filter uses a set of deterministic points associated with specific masses to 

represent the pdf. Although it works well for lower dimensional problems, the point-mass 

filter is difficult to use for high dimensional problems, since the computational burden is 

large. The Gaussian sum filter is based on the theorem that any probability density 

function can be approximated by the sum of finite Gaussian distributions. The non-

Gaussian distribution is first described by finite Gaussian distributions. Then, each 

Gaussian component uses the procedure of the Gaussian approximation filter, such as 

EKF, UKF, or GHQF. 

2.2.2.1 Sequential Monte Carlo Method 

The integrals in the Chapman-Kolmogorov equation and the Bayesian equation 

can be calculated by the Monte Carlo method. Assume we are able to simulate sN

independent and identically distributed random particles   1: ; 1, ,i
k si Nx according to 

the pdf  1: 1:|k kp x y . An approximation of this distribution is given by 

    1: 1: 1: 1:
1

1|
s

s

N
i

N k k k k
is

p
N




 x y x x (2.79) 

where    denotes the Dirac delta function. 
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Hence, the integral      1: 1: 1: 1:|k k k kI p d  x x y xf f can be approximated by 

        1: 1: 1: 1: 1:
1

1|
s

s s

N
i

N k N k k k k
is

I p d
N 

   x x y x xf f f (2.80) 

From the set of random particles   1: ; 1, ,i
k si Nx , we can easily estimate the 

value of  I f . When the number of particles sN goes to infinity,  
sNI f will be equal 

to the true  I f . 

The merit of the sequential Monte Carlo method is that the central limit theorem 

guarantees that this type of method has a convergence rate independent of the dimension 

of the integrand. In contrast, any deterministic numerical integration method has a rate of 

convergence that decreases with increasing dimension [32]. 

For a general non-Gaussian, multivariate or multi-modal pdf  1:|k kp x y , it may 

be difficult to generate samples from  1:|k kp x y . To overcome this difficulty, we assume 

that  1:|k kq x y is another pdf from which samples can be easily drawn. Then we can 

write    1: 1:| |k k k kp qx y x y , which means  1:|k kp x y is proportional to  1:|k kq x y at 

every kx . The scaling factor can be written as 

 
 

 
1:

1:

|
|

k k
k

k k

p
q

 
x y

x
x y

Hence, 

 
 

     

   1:

1:

|
1:

|

|k k

k k k k k
k p

k k k k

q d
E

q d




  



x y

x x x y x
x

x x y x

f
f

(2.81) 

(2.82) 

where  p
E  denotes the expected value with pdf p . 

If sN particles   , 1, ,i
k si Nx are generated from  1:|k kq x y , Eq. (2.82) can 

be rewritten as 

 
 

     

  

     
1:

1
|

1

1

1

1

s

s

sk k

N
i i

k k N
i iis

k k kNp
i i

k
is

NE

N













   





x y

x x
x x x

x

f
f f
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where 

  
  

  
1

1 s

i
ki

k N
i

k
isN











x
x

x
(2.84) 

for times up to 1kt  . Then a posterior pdf can be approximated by 

      1 1: 1 1 1 1| 1
1

|
sN

i i
k k k k k k

i
p       



 x y x x

Suppose we have a set of particles and weights that characterizes a posterior pdf 

(2.85) 

and 

 

  
  

1| 1
1

1| 1

i
k ki

k i
k k

p

q


 



 


x

x
(2.86) 

The importance sampling method can be modified to calculate an approximation 

of the current pdf without modifying past simulated trajectories. 

     1: 1: 1: 1 1: 1 1: 1 1:| | | ,k k k k k k kq q q  x y x y x x y (2.87) 

Eq. (2.87) can be rewritten as follows: 

     1: 1: 1 1: 1 1:
1

| | ,
sN

k k k k k
k

q q q 



 x y x x x y

We want to approximate  1:|k kp x y with the new set of samples and weights. The 

(2.88) 

weight update equation for each particle becomes 

   

       
    

| 1 | 1 1| 1
1

| 1 1| 1

| |

|

i i i
k k k k k k ki i

k k i i
k k k k

p p

q
 

   



  


y x x x

x x

where  
| 1
i

k kx are given by 

      | 1 1| 1 1,i i i
k k k k k   x x vf

with  
1

i
kv being the random sample from the pdf of the process noise. 

Finally, the posterior filtered pdf  1:|k kp x y can be approximated by 

      1: | 1
1

|
sN

i i
k k k k k k

i
p   



 x y x x

(2.89) 

(2.90) 

(2.91) 
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Unfortunately, the unconditional variance of the importance weights increases 

over time [32], In practice, after a few iterations of the algorithm, all but one of the 

normalized importance weights are very close to zero and large computational effort is 

devoted to updating trajectories whose contribution to the final estimate is almost zero. 

The resampling method eliminates trajectories or samples with small normalized 

importance weights and concentrates upon trajectories or samples with large weights. A 

suitable measure of degeneracy of the algorithm is the effective sample size effN which is 

defined as 

  
2

1

1
seff N

i
k

i

N







(2.92) 

If the effective sample size is less than a given threshold thrN , then resampling is 

performed. There are also other resampling strategies [32]. 

We use the bootstrap filter as an example to illustrate the procedure of the particle 

filter. The bootstrap filter uses the state transition density f as the importance sampling 

distribution. The corresponding importance weights then are simplified to 

      1 | 1|i i i
k k k k kp    y x . 

The procedure is given as follows: 

Initialization 

For , sample 1, , si N    0 0
i px x

Importance Sampling Step 

1. For 1, , si N , sample  i
kx from   1: 1| i

k kp x x , i. e.     1: 1|i i
k k kx x xf . 

2. For 1, , si N , evaluate the importance weights       1 |i i i
k k k kp   y x . 

3. Normalize the importance weights,      

1

sN
i i i

k k k
j

  


  . 
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Resampling step 

1. Obtain sN replacement particles   0: ; 1, ,i
k snew

i N  
 
x from the old set 

according to the normalized importance weights  i
k ; let   0: ; 1, ,i

k sold
i N  

 
x

  1i
k sN  . 

2. Use the sN replacement particles   0: ; 1, ,i
k snew

i N  
 
x and  i

k in the importance 

sampling step to propagate particles. 

2.2.2.2 Point-Mass Filter 

Assume the pdf can be represented by a set of deterministic points 

  ; 1, ,i
si Nx with a set of volume masses   ; 1, ,i

si N  of each point. The 

probability values of points are   ; 1, ,i
sp i Nx . Then the prediction step and update 

step of the Bayesian filtering can be rewritten as 

Prediction: 

             , | 1 1 , 1| 1 , 1 | 1 1| 1
1

sN
i i i i i i
k k k k k k k k k k

i
p p p       



 x x v x xf (2.93) 

where  
| 1
i

k kx are predicted points determined by a specific algorithm [27, 28].    , 1
i
kp  v is 

the probability associated with the process noise pdf at a specific point. 

Update: 
           1
, | , | 1 , | | 1
i i i i i
k k k k k k k k k kp c p p

  x x n x xh

where            , | 1 , | | 1
1

sN
i i i i i

k k k k k k k k k
i

c p p  



  x n x xh ;    , 1
i
kp  n

(2.94) 

is the probability associated with 

the measurement noise pdf at a specific point. More details about the point design of 
 

| 1
i

k kx and  
|
i

k kx can be found in [27, 28]. 
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The main disadvantages of the point-mass filter are: 1) it is computationally 

intensive and hard to use for high-dimensional problems because of the large number of 

points that is required; 2) the point design for  
| 1
i

k kx and  
|
i

k kx is complicated. 

2.2.2.3 Gauss Sum Filter 

Non-Gaussian noise distribution can be approximated by a finite sum of Gaussian 

distributions. Any probability density function px

 
1

; ,
N

i i i
i

p a N



x

x x x P

can be approximated by [29] 

(2.95) 

where Nx is the number of Gaussian distributions; ia is the coefficient for the ith 

Gaussian distribution  ; ,i iN x x P and 
1

1
N

i
i

a



x

. 

Based on Eq. (2.95), we assume that the initial pdf ,0px , the pdf of the process 

noise, and the pdf of the measurement noise at time k can be approximated as 

   
,0 ,0

,0 ,0, ,0, 0 ,0, 0 0, 0,
1 1

ˆ; ,
N N

i i i i i
i i

p p N 
 

  
x x

x x x xx x x P (2.96) 

 , , , , ,
1

ˆ; ,
N

k k i k k i k i
i

p N



v

v v v v Q (2.97) 

 , , , , ,
1

ˆ; ,
N

k k i k k i k i
i

p N



n

n n n n R (2.98) 

where coefficients satisfy 
,0

,0,
1

1
N

i
i





x

x , ,
1

1
N

k i
i





v

v , ,
1

1
N

k i
i





n

n

Because the pdf at time 1k  can be approximated by a finite number of Gaussian 

distributions, each Gaussian distribution component can be predicted separately. 

   
, 1

1 1: 1 , 1, 1 1, 1,
1

ˆ| ; ,
kN

k k k i k k i k i
i

p N


     



 
x

xx y x x P (2.99) 

The transition pdf at time k can be approximated by Nv Gaussian distributions as 
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    1 , , 1 , ,
1

ˆ| ; ,
N

k k k j k k k j k j
j

p N 



 
v

vx x x x v Qf (2.100) 

The predicted pdf at time k can be described by 

   

  

, 1 ,

1: 1 , 1, , , | 1, | 1,
1 1

, ,

ˆ| ; ,

ˆ; ,

k k

n

N N

k k k i k j k k i k k i
i j

k k j k j

p N

N d

 


   

 



 

  
x v

x vx y x x P

x x v Q xf
(2.101) 

It can be rewritten as 

   
, 1 ,

1: 1 , 1, , , | 1, , | 1, ,
1 1

ˆ| ; ,
k kN N

k k k i k j k k k i j k k i j
i j

p N 


   

 

  
x v

x vx y x x P (2.102) 

where | 1, ,ˆ k k i jx and | 1, ,k k i jP are calculated by Gaussian approximation filters, such as, 

EKF and UKF. 

Reordering the Gaussian components of  1: 1|k kp x y

   
,

1: 1 , , | 1, | 1,
1

ˆ| ; ,
kN

k k k r k k k r k k r
r

p N  




x

xx y x x P

, we have 

(2.103) 

where , , 1 ,k k kN N N  x x v , , , , 1, , ,k r k i k j   x x v , | 1, | 1, ,ˆ ˆk k r k k i j x x , and | 1, | 1, ,k k r k k i j P P . 

Assume the likelihood function  |k kp y x at time k can be approximated by[29] 

    , , , ,
1

ˆ| ; ,
N

k k k j k k k j k j
j

p N


 
n

ny x y x n Rh (2.104) 

The updated pdf can be calculated by 

   
, ,

1: | , | , | ,
1

ˆ| ,
k kN N

k k k k r k k r k k r
r

p N




 
x n

x y x P

where 
 

 
, ,

, | 1, , , | 1, ,
| ,

, | 1, , , | 1, ,
1 1

ˆ; ,

ˆ; ,
k k

k k i k j k k k r yy r
k k r N N

k k i k j k k k r yy r
j i

N

N

 


 

 

 

 




n x

x n

x n

y y P

y y P
. 

(2.105) 

The mean | ,ˆ k k rx , covariance | ,k k rP as well as | 1,ˆ k k ry and ,yy rP can be obtained by 

Gaussian approximation filters, such as EKF or UKF. 
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CHAPTER III 

SPARSE-GRID BASED NONLINEAR FILTERS 

In this chapter, three sparse-grid based filters, including the sparse Gauss-Hermite 

quadrature (GHQ) filter, sparse-grid quadrature filter, and anisotropic sparse-grid 

quadrature filter, are introduced. 

Before introducing this new filter, it is worth discussing the motivation of using 

the sparse-grid method. 

Take one dimensional Gaussian type integral as an example. Two different types 

of integrals    ;0,1f x N x dx and    
2 ;0,1f x N x dx are needed to be calculated in 

the filtering algorithm. 

By the Taylor series expansion,  f x can be represented by 

      
 

 
 

 
2 30 0

0 0 0 0 0
2! 3!

f f
f x f f x x x

 
        (3.1) 

Hence, the following two equations can be obtained. 

       
   2 30 0

0 0
2! 3!

f f
E f x f f E x E x E x

 
               (3.2) 

         
   

2 2
2 2 2 4 60 0

0 0
2! 3!

f f
E f x f x f f E x E x E x

    
                      

   

(3.3) 

It can be seen from the above equations that more accurate expectation can be obtained 

by using more terms in the Taylor series expansion. In addition, the problem is converted 
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to how to calculate the high-order moments of x with a standard normal distribution. 

The conclusion is also true for the multidimensional Gaussian type integrals. 

Recall that the UT and the cubature rule can capture up to third-order information 

of  f x when they are used to calculate the integrals. However, the higher-order 

information is discarded. To improve the accuracy, the GHQ rule is proposed and can 

capture higher-order information. Unfortunately, the GHQ rule has the curse of 

dimensionality problem. To alleviate the curse of dimensionality while maintaining close 

performance to GHQ, the sparse-grid quadrature rules and nonlinear filters are proposed 

as follows. 

3.1 Sparse Gauss-Hermite Quadrature Filter 

3.1.1 Sparse Gauss-Hermite Quadrature 

In this section, the sparse Gauss-Hermite Quadrature (SGHQ) is introduced. The 

SGHQ is based on the Smolyak‟s rule for multivariate extension of the univariate GHQ 

rule and integration operators. The Smolyak rule is given by [41, 84, 85] 

        1

,

,; , n
n

n L

ii
n n LN d I



    x x 0 I xf f f


(3.4) 

where 1, , , ,
T

j nx x x   x ;  1, , ni i is the accuracy level sequence;  ,n LI f is 

the multidimensional integral of the function f with respect to a Gaussian distribution 

with the accuracy level L , L ; is the set of natural numbers, and n is the 

dimension. By L  ,n LI f

1 2
1 2

nii i
nx x x

1
2 1

n

j
j

i L


 

1
j

j j

i
i iI I    , ( 1 )ji j = , ,n 

accuracy level , it means that is exact for 



0 0I 
jiI

all polynomials of 

the form with [56]. The operator “ ” denotes the tensor 

product and , , where and is the univariate 

ji  .GHQ rule with the accuracy level-
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jiX
jiI

jsw

     ;0,1 ( )
j j j

s ij j

i s s jI f w f x N x dx s





  
X

(3.5) 

where 
jiX is the univariate GHQ point set with the accuracy level- ji ; 

js and 
jsw are the 

univariate GHQ point and weight, respectively. By the accuracy level- ji for the univariate 

GHQ rule, it means that 
jiI is exact to at least the ( 2 1ji  )th order of all univariate 

polynomials. The minimum number of quadrature points for 
jiI is ji [25]. 

The accuracy level set ,n L in Eq. (3.4) is defined by [84] 

   ,
1

; 1, 1 1
n

n
n L j j

j
i i L



 
      
 

 (3.6) 

where n denotes an n-element sequence of natural numbers. 

In order to use the univariate quadrature rule, Eq. (3.4) can be rewritten as [84, 

86] 

      
1

,

1
,

1
1

1 n
n L

L n
n L i i

n
I I I

L n
  



 
   

    


Y
f f (3.7) 

where  denotes the summation of the elements in  ; 

   ,
1

: 1, 1 1
n

n
n L j j

j
i L n i L



 
        
 

Y (3.8) 

and 

    1 1 1

1 1

, ,
n n n

s i s in n

i i s s s s
X X

I I w w
 

 
 

  f f (3.9) 

where is the univariate point set of and is the corresponding weight of the 

point 
j js iX 

Equation (3.7) is equivalent to the following equation that was used in Refs. [84, 

. 

86] 

      
1

1
1

,

1
1

1 n
n
q

L
L q

n L i i
q L n

n
I I I

L q


 

  

 
   

  
 

N

f f (3.10) 
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where q is an auxiliary parameter to prescribe the range of the univariate accuracy level-

ji . 

n
qN in Eq. (3.10) is defined as [84] 

1
:  for 0 

                               for 0

n
n

jn
jq

i n q q

q


 
     

 


 

N (3.11) 

The corresponding sparse-grid point set defined by ,n LX

 1
,

, n
n L

n L i iX X


  
Y

X

is given by 

(3.12) 

The weight iW for each multivariate GHQ point iγ in ,n LX is the sum of the 

weights on the point over all combinations of 
1 ni iX X  containing that point [25]. 

Moreover, for one specific combination  , the weight on the point iγ is calculated by 

   1

1 1
1

1 j n

L n
i s s s

n
W w w w

L n
    

      
    

[25]. 

To better illustrate the SGHQ, we show how to use the Smolyak‟s rule to 

construct 2,3( 2,  3)X n L  from the univariate GHQ point sets 1X , 2X and 3X

containing 1, 3, and 7 points, respectively, as shown in Figure 3.1. The single point in 1X

is represented by a circle „o‟; the points in 2X other than the origin are represented by 

asterisk „*‟, and the points in 3X other than the origin are represented by point „  ‟. Note 

that we use 2 1L  points for the univariate point set with the accuracy level-L as an 

example. Other choices of point sets can be adopted as well and will be discussed in 

detail afterwards. From Eq. (3.10), q can be 1 or 2 and then we have     2
1 1,2 , 2,1N

and       2
2 1,3 , 2,2 , 3,1N . The first combination in 2

1N is  1,2 , i.e. 1 1i  and 2 2i  . 

This determines the tensor product 1 2X X and leads to the 3 points along the horizontal 

axis. Similarly, the second combination in 2
1N is  2,1 , i.e. 1 2i  and 2 1i  , which 

generates the tensor product 2 1X X and 3 points along the vertical axis. Note that in the 
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1 2X X and 2 1X Xtensor products of , there are two new points added to the point sets 

along the two axes and one repeated point at the origin contributed from 1X , which is 

considered as an old point. Other tensor products in 2
2N can be generated in the same way. 

The final sparse-grid point set 2,3X leads to 21 points as shown on the bottom right of 

Figure 3.1. In comparison, the point set of the conventional GHQ rule is only determined 

by 3 3X X generated from the 7-point 3X , which results in 49 points as shown on the 

upper right of Figure 3.1. As can be seen, the SGHQ uses significantly fewer points than 

the conventional GHQ. 

SGHQ  

 

GHQ

2X 3X

1 2X X 1 3X X

2 1X X 2 2X X

3 1X X

3 3X X

2,3X

     

    














 

 




    














 



    
    

    
    
    
    
    

1X

Figure 3.1 Multivariate GHQ and SGHQ with the accuracy level-3 for 2-dimensional 
problems 

The following theorem reveals the relationship between the univariate GHQ and 

the multivariate SGHQ in terms of the accuracy. 
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Theorem 3.1([85]): Assume that the sequence of univariate quadrature rules 

 : NiI I i  is defined such that iI is exact for all univariate polynomials of order up 

to 2 1i  . Then, the Smolyak rule ,n LI using I as the univariate basis sequence is exact for 

n-variate polynomials of total order up to 2 1L . 

Proof: Refer to [85]. 

Remark 3.1: In Figure 3.1, 2 1L  points are used for the level-L univariate GHQ. 

The number of points other than 2 1L  can be used as well, for example, L (minimum 

number of points) or 2 1L . Different univariate point-selection strategies generate 

different locations of the univariate GHQ points, which is similar to the effect of the 

tunable parameter  for the UKF. Increasing the number of univariate GHQ points can 

increase the accuracy level for that particular dimension. It is important to note that 

increasing the accuracy level of the univariate GHQ may or may not increase the 

accuracy level of the multivariate SGHQ. 

The generation of SGHQ points and weights is given by Algorithm I. Note that 

some of the weights may be negative, which is the case for the UT as well. 
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Algorithm 3.1 Generate SGHQ Points and Weights 

   , SGHQ ,W n L 

(  : SGHQ point set; W: weight set with the element of sw ) 

FOR : 1q L n L  

Determine n
qN

FOR each element  1= , , ni i in n
qN , form 

1 2 ni i iX X X 

FOR each point in 
1 2 ni i iX X X 

IF the point is new, add it to  , assign a new index s to the point and 

calculate its weight as 

(3.13) 

where 1
1

L q
n
 

C is the binomial operator. 

ELSE (the point is already existing) update the old weight by 

 
1 1

1
1

1
p

n
L q L q

s n i
p

w w   





  C

(3.14) 

( 
pi

w is the GHQ weight for the univariate 

 
1 1

1
1

1
p

n
L q L q

s s n i
p

w w w   





   C

px , one of the state variables; 

can be calculated by the univariate GHQ rule in Section 2.2.1.5) 

pi
w

END IF 

END FOR 

END FOR 

END FOR 

The following theorem reveals the relationship between the SGHQ and the UT, 

and shows that the UKF with certain parameters is a subset of the SGHQF. 
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Theorem 3.2: If one point and three points are used for the univariate level-1 and 

level-2 GHQ respectively, the UT with the suggested optimal parameter 3 n   is 

identical to the SGHQ with the accuracy level-2; if one point and two points are used for 

the univariate level-1 and level-2 GHQ respectively, the UT with 1 n   is identical to 

the SGHQ with the accuracy level-2. 

Proof: If one point and three points are used for the univariate level-1 and level-2 

GHQ respectively, using the univariate GHQ rule discussed in Section 2.2.1.5, the point 

set at level-1 is chosen as  1 0X  with the weight of 1. At level-2, the univariate 3-

point set is  2 0, 3, 3X   with the corresponding weight sequence of 2 1 1, ,
3 6 6

 
 
 

. For 

the accuracy level-2 (L=2), the value of q in n
qN can be 0 or 1. 0

nN contains only one set 

 , of which all

 
 elements

2 1 0 2 1 0
11 1 1 1 ( 1)

n

n n   

        C

 elements are 1. The only point corresponding to 0
nN

1
nN

is 

weighted by (Eq. (3.13)). consists of n 

 0,0, 0,0 T

sequences, i.e. 

       1

 element set

2,1, 1,1 , 1,2, 1,1 , 1, 1,2,1, 1 , 1,1, 1,2
n n n n

n

n

  
  
  

N . 

In each sequence, only one element equals 2 and all the others equal 1. Each 

element set in 1
nN determines a tensor product sequence of 

jiX where 1
n

ji N . Take 

the combination  2,1, 1,1 as an example. The sequence  2,1, 1,1 implies the tensor 

product 2 1 1 1X X X X   . Because 2X contains three one-dimensional points, the 

point set of 2 1 1 1X X X X   contains three n-dimensional points  0,0, 0,0 T , 

and 3,0, 0,0
T

 
 

as well, with the respective weights (Eq. (3.10)), 3,0, 0,0
T
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1 elements

2 1 1 2 1 1
1

product of weights

2 21 1 1 1
3 3

n

n


   



 
        

 
 

C ,  
1 elements

2 1 1 2 1 1
1

product of weights

1 11 1 1 1
6 6

n

n


   



 
        

 
 

C , and 

 
1 elements

2 1 1 2 1 1
1

product of weights

1 11 1 1 1
6 6

n

n


   



 
        

 
 

C . 

Since the point  0,0, 0,0 T appears n+1 times (n times from 1
nN and one time 

from 0
nN ) while the other points appear only once, the final weight of  0,0, 0,0 T is 

calculated as a sum (Eq. (3.14)): 

   
1 elements

2 1 0 2 1 12 1 0 2 1 1
1 1

product of weights

1 elements 2 ele

product of weights

1 1 1 1 1 1

2 21 1 1 1 1 1 1
3 3

n

n n

n n


      

 

 

 
           

 
 

 
          

 
 

C C

 elements

ments 1 elements

product of weights product of weights

21 1 1
3

n

n

    

            
   




 


 
  

Simplifying it, we get  
2 31
3 3
n nn 

    . 

To summarize, the points iγ and the weights iW of the SGHQ with the accuracy 

level-2 are 

 

 

1 1

1

1

30,0, 0,0 ,
33 ,       2 1 1  2 2 13 ,  2 2 1 6

T

i i

i
i i n

nW
i n

W i nn i n


 

    
    

    
       

γ

γ e

γ e

(3.15) 

They are exactly the same as the UT if 3 n   (comparing Eq. (3.15) with Eq. (2.46)). 

If one point and two points are used for the univariate level-1 and level-2 GHQ 

respectively, the corresponding point sets become  1 0X  with the weight of 1 and 

with the weight sequence of 1 1
2 2

 
 
 

， . For the accuracy level-2, the value of  2 1, 1X   q

in n
qN can be 0 or 1. 0

nN contains only one sequence, of which all elements are 1. The 
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only point corresponding to 0
nN is  0,0, 0,0 T weighted by 

   
 elements

2 1 0 2 1 0
11 1 1 1 1 1

n

n n n   

          C . 1
nN consists of n sequences. In each 

sequence, only one element equals 2 and all the others equal 1. Consider the combination 

 2,1, 1,1 as an example. Because 2X contains two one-dimensional points, the point set 

2 1 1X X X  corresponding to  2,1, 1,1 contains two n-dimensional points 

 1,0, 0,0 T and  1,0, 0,0 T
 as well, with the respective weights (Eq. (3.13)) 

 
1 elements

2 1 1 2 1 1
1

1 11 1 1 1
2 2

n

n


   

       C and  
1 elements

2 1 1 2 1 1
1

1 11 1 1 1
2 2

n

n


   

       C . To summarize, the 

points iγ and the weights iW of the SGHQ for this case are 

 

 

1 1

1

1

0,0, 0,0               1                      
,       2 1 1  2 2 1

2,  2 2 1

T

i i
i

i i n

W n
i n

W i n
n i n



 

   
 

    
   

     

γ
γ e
γ e

(3.16) 

They are exactly the same as the UT if 1 n   (comparing Eq. (3.16) with Eq. (2.46)). 

Note that in this case, there is no repeated/old point. Therefore, Eq. (3.14) is not used. ■ 

Proposition 3.1 Given the accuracy level- L and 1L n  , the number of points 

for the SGHQ increases polynomially with the dimension n and the highest order of this 

polynomial is 1L . 

Proof: When L n , q can be 0,1, , 1L . Thus, n
qN can be 0 1, ,n n

LN N . When 

1L n  , q can be 1, , 1L . For n
qN , each element sequence in it contains at most q

elements that are greater than 1. If it contains 1q  elements greater than 1, then we have 

, which contradicts the definition of n
qN . The largest q 

1 element=1 element =2

1 2 1
n

d
d

i n q q n q


       

for n
qN to be a nonempty set is L-1. 

When 1q L  , each element sequence in 1
n
LN contains at most 1L elements 

greater than 1. If there are 1L elements greater than 1, there are 1L
n
C combinations of 
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p (1 1p L  accuracy level sequences. If there are ) elements greater than 1, there are 

p
nC combinations of such accuracy level sequences. 

When 0 1q L   , each element sequence in n
qN contains at most q elements 

greater than 1. If there are q elements greater than 1, there are q
nC combinations of such 

accuracy level sequences. If there are p ( 1 p q  ) elements greater than 1, there are p
nC

combinations of such accuracy level sequences. 

For each accuracy level sequence, the number of new points is bounded and is not 

equal to 0 since there is at most one point shared by different univariate GHQ rules. The 

total number of points is a linear combination of the product of the number of new points 

generated from each accuracy level sequence and the associated combinatorial t
nC (t=p or 

q), which is a polynomial in terms of the dimension n . Hence, when the accuracy level 

is given, the total number of points is a polynomial in terms of n and the highest order of 

L

this polynomial is 1L , which is determined by 1L
n
C .■ 

Remark 3.2: In general, the accuracy level L is significantly smaller than the 

dimension n. High accuracy level SGHQ needs more points and increases the 

computation load unnecessarily when a low accuracy level can provide acceptable 

performance. 

For convenience, we give the general formula for calculating the number of 

SGHQ points with the accuracy level-2 and level-3. Assume the univariate GHQ with the 

level-L contains Lm points.   0 1, ,1n N generates one point (origin point). 

    1 2,1, ,1 1,1, ,2n N generates * 1
2 nm C new points (excluding the origin point), 

where 2 2*
2

2 2

1;    is odd
;      is even

m m
m

m m


 


. That is because univariate GHQs with an odd number of 

points share the midpoint. 
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For 

            2 3,1, ,1 , , 1,1, ,3 , 2,2,1, ,1 , , 1, ,2, ,2, 1 , 1, 1,2,2n N , the 

first part of 2
nN generates * 1

3 nm C new points (excluding the origin point), where 

3 3*
3

3 3

1;    is odd
;      is even

m m
m

m m


 


. The second part of 2
nN generates * 2

nm C new points (excluding 

the origin point). 
 

 

2
2 2*

2
2 2

1 ;           is odd 

;                is even

m m
m

m m

 
 


. 

For the level-2, when 1n  , the SGHQ is not necessary. When 2n  , 0,1q  . 

When 0q  ,   0 1, ,1n N generates one point (origin point). When 1q  , 

    1 2,1, ,1 1,1, ,2n N generates * 1
2 nm C points (excluding the origin point). 

Hence, for the level-2, the total number of points is * 1 *
2 21 1nm m n   C . 

For the level-3, when 1n  , the SGHQ is not necessary. When 2n  , 1 or 2q  . 

When 1q  , 1
nN generates * 1

2 nm C new points (excluding the origin point). When 2q  , 

2
nN generates * 2 * 1

3n nm m  C C new points (excluding the origin point). Whether the 

origin point exists in the final point set depends on the value of 2m and 3m , which can be 

summarized as 

   

   

* 2 * * 1 * * *
3 2 3 2 2 3

* 2 * * 1 * * *
3 2 3 2 2 3

( 1)1 1       if  or  is odd number
2

( 1)           if  and  are even number
2

n n

n n

n nm m m m m m n m m

n nm m m m m m n m m


        


       



C C

C C
. 

When 3n  , 0,  1,  2q  . When 0q  , 0
nN generates the origin point. When 1q  , 

1
nN generates * 1

2 nm C new points. When 2q  , 2
nN generates the same new points as 

2n  , i.e. * 2 * 1
3n nm m  C C . 

Hence, for the level-3( 3n  ), the total number of points is 

   * 2 * * 1 * * *
3 2 3 2

( 1)1 1
2n n

n nm m m m m m n
        C C
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 2n  3n 

Based on the above discussions, for different univariate GHQ point-selection strategies, 

the number of multivariate SGHQ points with accuracy level-2 and level-3 is summarized 

in Table 3.1. 

Remark 3.3: The points for the univariate GHQ rule are symmetric. Thus, the 

points corresponding to each accuracy level sequence in n
qN are symmetric as well 

because they are generated by the tensor product of different level univariate GHQ rules. 

Hence, the points generated by the SGHQ rule are symmetric. 

Table 3.1 Number of SGHQ points for different univariate GHQ point-selection 
strategies with the accuracy level-2 and level-3 

SGHQ level-2 (L=2, ) level-3 (L=3, ) 

L 2 1n 22 2 1n n 

2 1L 2 1n 22 4 1n n 

2 1L  2 1n 22 6 1n n 

For better illustration, the point sets with the accuracy level-2 (using 3-point 

univariate GHQ) and level-3 (using 7-point univariate GHQ) for 2-dimensional and 3-

dimensional problems are shown in Figure 3.2 and Figure 3.3 respectively. 
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SGHQ (Level3) point

Figure 3.2 Point set illustration for 2-dimensional SGHQ (level-2 and level-3) 
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SGHQ (Level2) point
SGHQ (Level3) point

Figure 3.3 Point set illustration for 3-dimensional SGHQ (level-2 and level-3) 

It has been shown that SGHQ (level-2) when using l points for univariate GHQ 

rule lI is identical with the UT with 1 n   and SGHQ (level-2) when using 2l-1 

points for univariate GHQ rule lI is identical with the UT with 3 n   . For 

convenience, the formula of the SGHQ (level-3),  ,3nI f , using different point-selection 

strategies, is derived as follows. Two different cases are considered. 
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In the first case, l points are used for univariate GHQ rule lI . The points and 

weights for different lI are listed in Table 3.2. 

Table 3.2 Univariate GHQ points and weights of the first case 

Points weights 

1I 0 1 

2I , , 

3I

 

 

   

   

  

   

   

   

   

 

   

   

   

 

                           

                             

   

  

  

  

                           

                             

1 1 1 2 1 2

3 3 1 6 2 3 1 6, 0, , , 

By Eq. (3.10), q can be 0, 1, or 2. When 0q  ,  0 1, ,1 Tn N . This leads to one 

point  0, ,0 T with weight .     
2 2

11 1 2 2n n n   C

When 1q  , one element in 1
nN is 2 and others are 1. This leads to 2n points  

1
iP

with weight 1A

 
1

1, ,
1, ,2

i i

i n

i n
P

i n n


 

  

e
e

 
1 elements

1 1
1 1

1 11 1 1
2 2

n

n
nA





  
      

 
 

C

(3.17) 

(3.18) 

When 2q  , elements of  in 2
nN have two kinds of combinations. For the first 

kind, one element in 2
nN is 3 and others are 1. For the second kind, two elements in 2

nN

are 2 and others are 1. The first kind leads to points  
2

iP with weight 2A and  0, ,0 T

with weight 2 3 1 2 3n n   , i.e. 

 
2

3 1, ,

3 1, ,2
i i

i n

i n
P

i n n

 
 

  

e

e
(3.19) 

 
1 elements

0 0
2 1

1 11 1 1
6 6

n

nA




 
     

 
 

C (3.20) 
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Similarly, the second kind leads to  
3

iP with weight 3A

 
3

, 1, ;
, 1, ;
, 1, ;
, 1, ;

j k

j ki

j k

j k

j k n j k
j k n j k

P
j k n j k
j k n j k

  


  
 

   
   

e e
e e
e e
e e

 
2 elements

0 0
3 1

1 1 11 1 1
2 2 4

n

nA




 
      

 
 

C

. 

(3.21) 

(3.22) 

By Eq. (3.14), the weight 0A corresponding to the point  0, ,0 T can be 

calculated by 
   2

0

1 2 2 3 5 6
2 3 6

n n n n nA
   

     (3.23) 

Based on Eq. (3.10), the following equation can be obtained. 

            
242 2

,3 0 1 1 2 2 3 3
1 1 1

nn n
i i i

n
i i i

I A A P A P A P
  

     
C

0f f f f f (3.24) 

Note, the number of points used in Eq. (3.24) is 22 2 1n n  . In addition, it can be 

verified that the summation of all weights in Eq. (3.24) is 1. 

In the second case, 2 1l  points are used for the univariate GHQ rule lI . The 

points and weights for different accuracy univariate GHQ rules are listed in Table 3.3. 

Table 3.3 Univariate GHQ points and weights of the second case 

points weights weight values 

1I 0 0w 1 

2I

0 1w 2 3

3 2w 1 6

3I

0 3w 0.53333 

5 10  4w 0.22208 

5+ 10 5w

 

 

   

        

          

      

 

          

 

  

 

 

      

 

  

    

    

 

 

   

   

 

 

   

   

   0.01126 
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For the accuracy level L=3, by Eq. (3.10), q can be 0, 1, or 2. When 0q  , by 

Eq. (3.11),  0 1, ,1 Tn N . This leads to one point  0, ,0 T with the weight 

    
2 2

11 1 2 2n n n   C calculated by Eq. (3.13). 

When 1q  , one element of  in 1
nN is 2 and others are 1. This leads to points 

with weight    
1 1

1 21 1n w C calculated by Eq. (3.13). and n duplicated points  
1

iP

 0, ,0 T with weight calculated by Eq. (3.13).    
1 1

1 11 1n w C

 
1

3
1, 2

3
i i

i n

P i n



 



e

e
(3.25) 

When 2q  , the elements of  in 2
nN have two possible combinations. For the 

first combination, one element of  is 3 and others are 1. For the second combination, 

two elements of  are 2 and others are 1. The first combination leads to points  
2

iP with 

weight 2A , points  
3

iP with weight 3A , and n duplicated points  0, ,0 T with weight 

3 31w w  where 

 
2

5 10
1, 2

5 10

i i

i n

P i n


 
 
 

e

e
(3.26) 

2 4A w

 
3

5 10
1, 2

5 10

i i

i n

P i n


 
 
 

e

e

(3.27) 

(3.28) 

3 5A w (3.29) 

Similarly, the second combination leads to points  
4

iP with weight 4A , 1n duplicated 

 
1

iP with weight 1 2w w , and  1 2n n duplicated  0, ,0 T with weight 2
1w . 

 

 

 

 

 

4

3 , 1, ;

3 , 1, ;

3 , 1, ;

3 , 1, ;

j k

j ki

j k

j k

j k n j k

j k n j k
P

j k n j k

j k n j k

   

   

 
   


   

e e

e e

e e

e e

(3.30) 
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2
4 2A w (3.31) 

Since the point  0, ,0 T is duplicated in all cases, by Eq. (3.14), the final weight of point 

 0, ,0 T , denoted by 0A , can be calculated by 

    2
0 1 1 30.5 1 2 1A n n nw n n w nw       (3.32) 

Similarly, the final weight of point  
1

iP , denoted by 1A , can be calculated by 

 1 2 1 21 ( 1)A n w n w w     (3.33) 

Hence,  ,3nI f can be obtained. 

         

     
 

2 2

,3 0 1 1 2 2
1 1

1 22

3 3 4 4
1 1

n n
i i

n
i i

n nn
i i

i i

I A A P A P

A P A P

 



 

  

 

 

 

0f f f f

f f
(3.34) 

The sparse Gauss-Hermite quadrature filter can be obtained by using the SGHQ points 

and weights in the framework of the point-based Gaussian approximation filters (Section 

2.2.1.2). 

3.2 Sparse-grid Quadrature Filter 

In this section, a more general sparse-grid quadrature (SGQ) filter is proposed 

based on the moment matching method that can include GHQ and UT as a special case 

and is more flexible than SGHQ. 

To generate an n-dimensional sparse-grid quadrature (SGQ) with accuracy level-

L, the following two steps are needed: 

Step 1: choose the univariate quadrature point sets and weights with accuracy 

levels from 1 to L using the moment matching method. 

Step 2: extend the univariate quadrature point sets and weights to the n-

dimensional SGQ points and weights using the sparse-grid method, i.e. Eq. (3.4). 
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3.2.1 Univariate Quadrature Points and Weights 

For the n-dimensional sparse-grid quadrature (SGQ) with the accuracy level-L to 

be exact for all multivariate polynomials with the total degree of 2L-1, the univariate 

quadrature rule 
jiI ( ji  and 1 ji L  ) needs to be exact for all univariate polynomials 

of the degree up to 2 ji -1, which can be satisfied using the following moment matching 

method. 

The general moment matching formula used here (one-dimensional Gaussian type 

integral) is 

   
1

;0,1
uN

jj
j i i

i
M x N x dx w p






  (3.35) 

where jM is the jth order moment; uN is the number of univariate quadrature points; ip

and iw are the univariate quadrature points and weights, respectively. We require that the 

quadrature rule be exact for all univariate polynomials of order up to 1uN  . Hence, ip

and iw should satisfy the following equation: 

1 0

1 2 2 1

1 1 1
11 2

1 1 1

u

u u u
u uu

N

N N N
N NN

w M
p p p w M

w Mp p p  


     
     
     
     
     

         

(3.36) 

Note that a normalization constraint

ip iw  1 ui N

 exists since 0
1

1
uN

i
i

w M


  . 

The values of and can be obtained by solving the nonlinear 

equations (3.36). But the solution is not unique in general. Note that when we choose 

distinct points  1i up i N , the coefficient matrix is the Vandermonde‟s matrix whose 

determinant is nonzero and the weights  1i uw i N can be uniquely determined. The 

univariate GHQ rule is obtained when ip are chosen to be the roots of Hermite 

polynomials [29]. Because the -pointuN univariate GHQ is exact for polynomials of 
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order up to  2 1uN  as mentioned in Section 2.2.1.5, the GHQ points can match up to 

the  2 1 th
uN  moments. 

In this section, we use 2 1uN l  symmetric points about the origin for the 

univariate quadrature point set with the accuracy level-l. The locations of the points are 

treated as free parameters and the weights are uniquely determined from the point 

locations. Other point selection methods are also possible, which will be discussed 

afterwards. Because symmetric points are used, we use different notations from those in 

Eq. (3.36) to represent the points ( ip ) and weights ( iw ). We also assume that the weights 

for ip and ip are both iw . Using this point-selection strategy, Eqs. (3.19) and (3.20) can 

be rewritten as Eqs. (3.37) and (3.38), respectively. 

  

  

1 2 1

1
2

1 2 1

1
2

2 =0

0  is odd

0 2  is even

u

u

N

i
i

j

N
j j

i i
i

w w j

M j

w w p j

 



 









 

 






(3.37) 

Because 2 1uN l  , we have 

1 0
2 2 2

2 2 2

2 2 2 2 2 2
2 2 2

1 1 1
0 2

0 2

l

l l l
l l l

w M
p p w M

p p w M  



     
     
     
     
     
     

(3.38) 

In Eq. (3.38), only the even moments are considered because the symmetry of the 

points implies that the odd moments are matched automatically. If we choose 2l-1 

symmetric and distinct points, the coefficient matrix of Eq (3.38) is a Vandermonde‟s 

matrix. The weights iw  1, ,i l can be uniquely determined since the inverse of the 

Vandermonde‟s matrix has an analytical form [87]. 
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In the following, we use the SGQ with L=3 as an example to illustrate the 

moment matching method. According to the Smolyak‟s rule Eq. (3.4), or Eq. (3.10), we 

need the univariate quadrature rules at level-1 ( 1I ), level-2 ( 2I ), and level-3 ( 3I ). For the 

univariate quadrature rule 1I , the point set is chosen to be  0 with the corresponding 

weight of 1. For the univariate quadrature rule 2I , we choose the symmetric univariate 

quadrature point set as  1 1ˆ ˆ,0,p p with the corresponding weight sequence  2 1 2ˆ ˆ ˆ, ,w w w . 

For the univariate quadrature rule 3I , we choose the symmetric univariate quadrature 

point set as  3 2 2 3ˆ ˆ ˆ ˆ, ,0, ,p p p p  with the corresponding weight sequence 

 5 4 3 4 5ˆ ˆ ˆ ˆ ˆ, , , ,w w w w w . To satisfy the condition of Theorem 3.1, these univariate point sets 

rd thfor level-2 and level-3 should match univariate polynomials up to the 3 order and the 5 

order, respectively. 

Note that the above set of notations for the univariate quadrature points and 

weights is different from the notations used in the general univariate moment matching 

Eqs. (3.35)-(3.36), because the SGQ involves different levels of univariate quadradure 

points and weights and is difficult to adopt a uniform set of notations for all levels. From 

Eq. (3.38), for level-2, 2 1ˆp p , 1 1ˆw w , and 2 2ˆw w , the following equations should be 

satisfied. 

1 2 0
2

2 1 2

ˆ ˆ2 1
ˆ ˆ   2 1

w w M
w p M
  


 

(3.39) 

Solving these two equations for 1ŵ and 2ŵ leads to 

2
1 1

2
2 1

ˆ ˆ1 1/
ˆ ˆ1/ (2 )
w p
w p
  



(3.40) 

If the point set  1 1ˆ ˆ,0,p p is the set of univariate GHQ points, 1ˆ 3p  , 1
2ˆ
3

w  , 2
1ˆ
6

w 

(see Section 2.2.1.5). 
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Similarly, for level-3, 2 2ˆp p , 3 3ˆp p , 1 3ˆw w , 2 4ˆw w and 3 5ˆw w , the 

following equations should be satisfied 

3 4 5 0
2 2

4 2 5 3 2
4 4

4 2 5 3 4

ˆ ˆ ˆ2 2 1
ˆ ˆ ˆ ˆ2 2 1
ˆ ˆ ˆ ˆ2 2 3

w w w M
w p w p M
w p w p M

   


  
   

3 2ˆ ˆp p ) for 3ˆ ,w 4ˆ ,w 5ŵ

(3.41) 

Solving these equations (if yields 

3 4 5
2 2 2 2

4 3 2 2 3
2 2 2 2

5 2 3 3 2

ˆ ˆ ˆ1 2 2
ˆ ˆ ˆ ˆ ˆ(3 ) / [2 ( )]
ˆ ˆ ˆ ˆ ˆ(3 ) / [2 ( )]

w w w

w p p p p

w p p p p

  


  


  

(3.42) 

If 3 2ˆ ˆ ,p p for Eq. (3.41) to remain valid, we must have 3 2ˆ ˆ 3.p p  Then, 3
2ˆ ,
3

w 

4 5
1ˆ ˆ .
6

w w 

Note that the points 1p̂ , 2p̂ and 3p̂ are tunable parameters. When the locations of these 

points are given, the weights can be determined from Eqs. (3.39) and (3.41). 

Remark 3.4: The moment matching method has been used to analyze [36] or 

extend the UT [88]. The main difference of this section‟s method from the methods used 

in those references is that only univariate moment matching is needed in this section and 

then the resultant univariate point sets and weights are extended to the n-dimensional 

point set and weights using the sparse-grid method. Thus, the computations of the points 

and weights are greatly simplified. 

Remark 3.5: Other univariate point-selection methods can be used if the condition 

of Theorem 3.1 is satisfied. For example, we can use 4l-1 symmetric points for the 

univariate quadrature point set with the accuracy level-l, which can match the (4l-2)th 

order moments. Increasing the number of univariate quadrature points increases the 

accuracy level of the univariate integral approximation. But it may not be sufficient to 
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increase the accuracy level of the n-dimensional SGQ. It is worth noting that the 

univariate lI with accuracy level-l requires the minimum number of l univariate 

quadrature points. In fact, one can choose l symmetric univariate GHQ points and 

weights as the univariate quadrature points and weights to satisfy the level-l requirement. 

Therefore, the univariate GHQ is a subset of the univariate quadrature proposed in this 

section. The sparse Gauss-Hermite Quadrature [25] for multi-dimensional problems is a 

subset of the SGQ, since they are based on the same sparse-grid method. 

3.2.2 Multi-dimensional Quadrature Points and Weights 

The n-dimensional SGQ points and weights can be obtained by the sparse-grid 

method, i.e. Eq. (3.10). More details can be found in Section 3.1.1. 

In the following, three typical cases of SGQ are deduced: 

Case 1: 1 2 3ˆ ˆ ˆp p p 

In this case, the point set  1 1ˆ ˆ,0,p p with the weights  2 1 2ˆ ˆ ˆ, ,w w w is used for both 

level-2 and level-3 SGQ, and there are three variables, 1p̂ , 1ŵ and 2ŵ . By Eqs. (3.39) and 

(3.41), we find that 1ˆ 3p  , 1
2ˆ
3

w  , and 2
1ˆ
6

w  . Note that this set of univariate 

quadrature points and weights are the same as the set of univariate GHQ points and 

weights ( 3)Lm  . 

Since L=3, by Equation (3.10), q can be 0, 1, or 2. When 0q  , by Eq. (3.11), 

 0 1, ,1 Tn N . This leads to one point  0, ,0 T with the weight 

    
2 2

11 1 2 2n n n   C calculated by Eq. (3.13). 

When 1q  , one element of  in 1
nN is 2 and others are 1. This leads to points 

 
1

iP with the weight  
1 1

1
11 1
6n

 
  

 
C calculated by Eq. (3.13), and n duplicated points 

with weight  
1 1

1
21 1
3n

 
  

 
C calculated by Eq. (3.13).  0, ,0 T
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1

3
1, 2

3
i i

i n

P i n



 



e

e
(3.43) 

When 2q  , the elements of  in 2
nN have two possible combinations. For the 

first combination, one element of  is 3 and the others are 1. For the second 

combination, two elements of  are 2 and the others are 1. The first combination leads to 

points  
1

iP with weight 1 6 , and n duplicated points  0, ,0 T with weight 2 3 . 

Similarly, the second combination leads to points  
2

iP with weight 

   2 1 6 1 6 1 36A    , 1n duplicated points  
1

iP with weight    2 3 1 6 2 18  , 

and  1 2n n duplicated points  0, ,0 T with weight    2 3 2 3 4 9  . 

 

 

 

 

 

2

3 , 1, ;

3 , 1, ;

3 , 1, ;

3 , 1, ;

j k

j ki

j k

j k

j k n j k

j k n j k
P

j k n j k

j k n j k

   

   

 
   


   

e e

e e

e e

e e

(3.44) 

Since the point  0, ,0 T is duplicated in all cases, by Eq. (3.14), the final weight 

of point  0, ,0 T , denoted by 0A , can be calculated by Eq. (3.4) as 

      0

2

1 2 2 2 1 3 2 3 4 1 18

     = 18 7 18 1

A n n n n n n n

n n

       

 
(3.45) 

Similarly, the final weight of point  
1

iP denoted by 1A can be calculated by 

   1 1 6 1 6 2 1 18
   18 2 9
A n n

n
     

  
(3.46) 

Hence,  ,3nI f can be obtained. 

         
 1 22

,3 0 1 1 2 2
1 1

n nn
i i

n
i i

I A A P A P


 

   0f f f f (3.47) 
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Case 2: 1 2 3ˆ ˆ ˆp p p 

In this case, the point set  1 1ˆ ˆ,0,p p with the weights  2 1 2ˆ ˆ ˆ, ,w w w is used for 

level-2 and the point set  3 1 1 3ˆ ˆ ˆ ˆ, ,0, ,p p p p  with the weights  5 4 3 4 5ˆ ˆ ˆ ˆ ˆ, , , ,w w w w w is used 

for level-3. There are seven variables, 1p̂ , 3p̂ , 1ŵ , 2ŵ , 3ŵ , 4ŵ , and 5ŵ , where 1p̂ and 3p̂

are two tunable parameters. The weights ˆ ( 1, 5)iw i  are calculated from Eqs. (3.39) and 

(3.41). 

When 0q  , a similar conclusion as for Case 1 can be obtained. 

When 1q  , one element of  in 1
nN is 2 and others are 1. This leads to points 

 
1

iP with the weight    
1 1

1 2ˆ1 1n w C calculated by Eq. (3.10), and n duplicated points 

 0, ,0 T with the weight    
1 1

1 1ˆ1 1n w C calculated by Eq. (3.10). 

  1
1

1

ˆ
1, 2

ˆ
i i

i n

p
P i n

p 


 



e
e

(3.48) 

When 2q  , the elements of  in 2
nN have two possible combinations. For the 

first combination, one element of  is 3 and the others are 1. For the second 

combination, two elements of  are 2, and the others are 1. The first combination leads 

to points  
1

iP with weight 4ŵ ,  
2

iP with weight 2 5ˆA w , and n duplicated points 

 0, ,0 T with weight 3ŵ . Similarly, the second combination leads to points  
3

iP with 

weight 2
3 2ˆA w , 1n duplicated  

1
iP with weight 1 2ˆ ˆw w , and  1 2n n duplicated 

 0, ,0 T with weight 2
1ŵ . 

 

 

 

 

 

1

1
3

1

1

ˆ , 1, ;

ˆ , 1, ;

ˆ , 1, ;

ˆ , 1, ;

j k

j ki

j k

j k

p j k n j k

p j k n j k
P

p j k n j k

p j k n j k

   

   

 
   


   

e e

e e

e e

e e

(3.49) 
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Since the point  0, ,0 T is duplicated in all cases, by Eq. (3.14), the final weight 

of point  0, ,0 T , denoted by 0A , can be calculated by Eq. (3.14) as: 

       2
0 1 3 1ˆ ˆ1 2 2 1 1 2A n n n n w nw n n w        (3.50) 

Similarly, the final weight of point  
1

iP , denoted by 1A , can be calculated by 

   1 2 1 2 4ˆ ˆ ˆ ˆ1 1A n w n w w w      (3.51) 

Hence, can be obtained.  ,3nI f

            
 1 22 2

,3 0 1 1 2 2 3 3
1 1 1

n nn n
i i i

n
i i i

I A A P A P A P


  

     0f f f f f (3.52) 

Case 1 is a special case of Case 2. If 1 2 3ˆ ˆ ˆ 3,p p p   one can get 1 3
2ˆ ˆ
3

w w  , 

2 4 5
1ˆ ˆ ˆ2 2
6

w w w   . Additionally  1ˆ0, , , ,0 Tp and  3ˆ0, , , ,0 Tp become 

identical and the weights become     
2

2
1 1 3

7ˆ ˆ ˆ0.5 1 2 1 1
18 18
n nn n nw n n w nw        

, , and 2
2

1ˆ
36

w  , which are the same weights as    2 1 4 5
2ˆ ˆ ˆ ˆ1 1 +

18 9
nn w w w w     

those in Case 1. 

Case 3: 1 2 3ˆ ˆ ˆp p p 

In this case, the point set  1 1ˆ ˆ,0,p p with the weights  2 1 2ˆ ˆ ˆ, ,w w w is used for level-

2 and the point set  3 2 2 3ˆ ˆ ˆ ˆ, ,0, ,p p p p  with the weights  5 4 3 4 5ˆ ˆ ˆ ˆ ˆ, , , ,w w w w w is used for 

level-3. There are eight variables, 1p̂ , 2ˆ ,p 3p̂ , 1ŵ , 2ŵ , 3ŵ , 4ŵ , and 5ŵ , where 1p̂ , 2ˆ ,p 3p̂

are three tunable parameters. The weights ˆ ( 1, 5)iw i  are calculated from Eqs. (3.40) 

and (3.42). 

When 0q  and 1q  , similar conclusions as for Case 1 and Case 2 can be 

obtained. 

When 2q  , the elements of  in 2
nN have two possible combinations. For the 

first combination, one element of  is 3 and others are 1. For the second combination, 
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two elements of  are 2 and others are 1. The first combination leads to points  
2

iP with 

weight 2 4ˆA w ,  
3

iP with weight 3 5ˆA w , and n duplicated points  0, ,0 T with weight 

3ŵ . Similarly, the second combination leads to points  
4

iP with weight 2
4 2ˆA w , 1n

duplicated  
1

iP with weight 1 2ˆ ˆw w , and  1 2n n duplicated  0, ,0 T with weight 2
1ŵ . 

 

 

 

 

 

1

1
4

1

1

ˆ , 1, ;

ˆ , 1, ;

ˆ , 1, ;

ˆ , 1, ;

j k

j ki

j k

j k

p j k n j k

p j k n j k
P

p j k n j k

p j k n j k

   

   

 
   


   

e e

e e

e e

e e

(3.53) 

Since the point  0, ,0 T is duplicated in all cases, the final weight of point 

 0, ,0 T , denoted by 0A , can be calculated by Eq. (3.10) or Eq. (3.14) as: 

       2
0 1 3 1ˆ ˆ ˆ1 2 2 1 1 2A n n n n w nw n n w        (3.54) 

Similarly, the final weight of point  
1

iP , denoted by 1A , can be calculated by 

   1 2 1 2ˆ ˆ ˆ1 1A n w n w w     (3.55) 

Hence,  ,3nI f can be obtained. 

               
 1 22 2 2

,3 0 1 1 2 2 3 3 4 4
1 1 1 1

n nn n n
i i i i

n
i i i i

I A A P A P A P A P


   

       0f f f f f f (3.56) 

Note that Case 2 is a special case of Case 3. If 1 2ˆ ˆ ,p p then  1ˆ0, , , ,0 Tp and 

 2ˆ0, , , ,0 Tp become identical, and the weights for these redundant points should be 

re-calculated as    2 1 4ˆ ˆ ˆ1 1 +n w w w  , which is the same as the corresponding weights in 

Case 2. 

3.2.3 Comparison of the sparse-grid quadrature rules, the unscented 
transformation, and the Gauss-Hermite quadrature rule 

The following theorem shows that the sigma-points and weights generated by the 

UT is a subset of the SGQ. 
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Theorem 3.3: The points and weights generated by the UT are identical to the 

points and weights generated by the SGQ rule with level-2 accuracy if one point and 

three symmetric points are used for the level-1 and level-2 univariate quadrature point 

set, respectively. 

Proof: For the level-1 univariate quadrature rule 1I , the point set is  0 with the 

corresponding weight of 1. For the level-2 univariate quadrature 2I , the univariate 

quadrature point set is  1 1ˆ ˆ,0,p p with the corresponding weight sequence  2 1 2ˆ ˆ ˆ, ,w w w . 

Since the accuracy level of the SGQ is L=2, the value of q in n
qN can be 0 or 1. 

When 0q  ,  0

 elements

1,1, ,1,1n

n

 
 

  
  

N , the n-dimensional SGQ point corresponding to 0
nN will 

be  0,0, 0,0 T with the corresponding weight of 

(using Eq. (3.13)). When 1q  , the set of    
1 elements

2 1 0 2 1 0
1

product of weights

1 1 1 1 1 1
n

n n


   



 
          
 
 

C

accuracy level sequences becomes 

       1

 elements

2,1, 1,1 , 1,2, 1,1 , 1, 1,2,1, 1 , 1,1, 1,2
n n n n

n

n

 
 

  
  

N . Corresponding to the 

sequence  2,1, 1,1 , there are three n-dimensional SGQ points  1ˆ ,0, 0,0 Tp , 

 0,0, 0,0 T , and  1ˆ ,0, 0,0 Tp . The weights corresponding to  1ˆ ,0, 0,0 Tp and 

 1ˆ ,0, 0,0 Tp are the same, i.e.  
1 elements

2 1 1 2 1 1
2 1 2 2

product of weights

ˆ ˆ1 1 1 1
n

nW w w


   



 
         
 
 

C (using Eq. 

(3.13)). Moreover, for this sequence, the SGQ can match the polynomials of the form 

  1 23 2
1 1 1 2 3

nkk k
nax bx cx d x x x   , where a , b , c , and d are real numbers, and 1, , nk k can 

be 0 or 1, because 2I is exact for all univariate polynomials of the order up to 
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2 2 1 3   and 1I is exact for all univariate polynomials of the order up to 2 1 1 1   , 

according to Theorem 3.1. Similarly, for other sequences in 1
nN such as  1, ,1,2,1, 1 , 

there are three n-dimensional SGQ points  1ˆ0, ,0, ,0, 0 Tp ,  0, ,0,0,0, 0 T , and 

 1ˆ0, ,0, ,0, 0 Tp

 1ˆ0, ,0, ,0, 0 Tp

. The weights corresponding to  1ˆ0, ,0, ,0, 0 Tp and 

are the same, i.e. 2 2ˆW w (using Eq. (3.13)). There are n such 

combinations of accuracy level sequences in 1
nN with the similar calculation of n-

dimensional SGQ points and weights. Note that since the point  0, ,0,0,0, 0 T is a 

repeated point appearing once in 0
nN and n times in 1

nN , Eq. (3.14) is used to calculate its 

weight as 

   
 elements

2 1 0 2 1 12 1 0 2 1 1
1 1 1

product of weights

1 elements 2 elements

1 1

product of weights p

1 1 1 1 1 1

ˆ ˆ1 1 1 1 1 1 1

n

n n

n n

W

w w

      

 

 

 
           
 
 

   
             
   
   

C C

 

 elements

1 elements

1

roduct of weights product of weights

1

ˆ1 1 1

ˆ1

n

n

w

n n w



 
   

       
   

 
 

    

. 

To summarize, the points and weights of the SGQ with level-2 accuracy are 

 

1 1

1 1

0,0, 0,0 ; 1
ˆ ; 2 1
ˆ ; 2 2 1

T

i i

i n

i
p i n
p n i n



 

 


   
     


γ e
e

(3.57) 

and 

  1

2

ˆ1 1
ˆ   2 2 1i

n n w i
W

w i n
    

 
 

(3.58) 

respectively. If we choose 1p̂ n   , by Eq. (3.40), we obtain 
 1

1ˆ 1w
n 

 


and 

. Hence, 
 2

1ˆ
2

w
n 
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11 1 1

1 2 2 1
2

i

n n i
n n

W
i n

n



 



  
             


 
 

(3.59) 

Comparing Eqs. (3.57) and (3.59) with the sigma points and weights of the UT in Eq. 

(2.46), they are identical. ■ 

Theorem 3.3 implies that the UKF is a subset of the SGQF at the accuracy level-2. 

The SGQF can achieve higher accuracy than the UKF by increasing L. 

Proposition 3.2: If , the SGQ points corresponding to accuracy 1 2X X , 1 q n 

level set 1
n
qN

1
: 1 1

n
n
q j

j
i n q



 
      
 

N

 1 2, , , 1,j ni i i i

are contained in the SGQ point set corresponding

1
1

: 1
n

n
q j

j
i n q



 
     
 

N

 1 2, , , , ,j ni i i i

n
qN n

qN

 to n
qN . 

Proof: By the definition, and 

. If the sequence belongs to 1
n
qN , then the 

sequence belongs to . For , each element sequence in it 

contains at most q elements that are greater than 1, which has been discussed in the proof 

of Proposition 3.1. Because 1 q n  , and there are at most q elements greater than 1 in 

the accuracy level sequence, we can always find at least one 1,  1ji j n   such that the 

points corresponding to  1 2, , , , ,j ni i i i are generated by the tensor product rule 

1 2 1 ni i iX X X X   , whereas the points corresponding to  1 2, , , 1, ,j ni i i i are 

generated by the tensor product rule 
1 2 2 ni i iX X X X   . Because 1 2X X , any 

point generated by 1
n
qN will be contained in n

qN . ■ 

There are several important advantages of the SGQ over other point-based 

methods. 

(1) SGQ with different accuracy levels can be implemented using the same 

sparse-grid framework. When univariate quadrature points and weights of different 

accuracy levels are given, the multidimensional SGQ point set and weights for a given 
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accuracy level can be uniquely determined. Theoretically, if the nonlinear function f can 

   ; , d


 x N x 0 I xfbe approximated sufficiently well by polynomials, then the integral 

can be calculated with sufficient accuracy by increasing the level of SGQ. Other point-

based methods are difficult to extend to achieve higher level accuracy. For example, the 

integral    21 ; ,
n

ix d



 N x 0 I x ( ix is the ith element of the vector x ) can be 

calculated exactly by the SGQ with accuracy level-4 and level-5 when n equals 3 or 4, 

whereas with UT or cubature rule, it is difficult to achieve this accuracy. 

(2) The number of SGQ points for a fixed accuracy level increases polynomially 

with dimension. The classical method to extend the one-dimensional integral 

approximation rule to the multi-dimensional problem is the direct tensor product rule. 

The multi-dimensional GHQ rule uses this method and the number of the multi-

dimensional GHQ points increases exponentially with dimension, which severely limits 

the applicability of this rule. Using the SGQ points based on the sparse-grid method, 

however, the SGQF algorithm needs far fewer points. Thus, it alleviates the 

computational load problem, and is very efficient for high dimensional estimation 

problems. 

(3) The tunable parameters 1 2 3ˆ ˆ ˆ, , ,p p p make the SGQF more flexible than the 

GHQF or the SGHQF. Since the point-based methods evaluate the value of the nonlinear 

function at those points, it is understandable that the location of those points may affect 

the accuracy of the integral result. For different nonlinear functions, different point-sets 

with the same accuracy level may have very different performance. These tunable 

parameters can capture non-Gaussian pdfs to some extent. It is similar to the UKF, which 

has an adjustable parameter  to tune the performance depending on applications. In 

comparison with the GHQ rule, the locations of the GHQ points are fixed, which is not 
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flexible for non-Gaussian problems. Instead of using fixed points, the SGQ can adjust the 

locations of the points. When the univariate GHQ rule is used as the univariate 

quadrature rule for the SGQ, SGQ will have the same points and weights as the Sparse 

Gauss Hermite Quadrature (SGHQ) rule. In contrast to the SGHQ, the SGQ has tunable 

parameters.  When selecting univariate quadrature points, the univariate GHQ points can 

be used for the SGQ as the reference values of the tunable parameters. Moreover, it is 

worth noting that the SGQ can use nested sequences of quadrature rules, which means 

that the univariate quadrature point set with the lower accuracy level is a subset of the 

univariate quadrature point set with the higher accuracy level, i.e.  if i jX X i j  . For 

example, in Case 2 of the level-3 SGQ, the univariate quadrature point set  1 1ˆ ˆ,0,p p at 

level-2 is nested in the univariate quadrature point set  3 2 2 3ˆ ˆ ˆ ˆ, ,0, ,p p p p  at level-3 

because 1 2ˆ ˆp p .The nested structure can reduce the total number of the SGQ points 

when extended to the multi-dimensional point set using the sparse-grid method, 

compared with other non-nested SGQs like SGHQ. 

3.2.4 The relationship between the sparse-grid quadrautre filters and the 
cubature Kalman filters 

By Eq. (2.61), when   1
1 1,n

n nx x       x xg ,  r r  
s sg , 

   

         

   

   

1 2

1 2

1 2 1 2

1 2

1 2
1 20

1 2
1 20

1 2

0

exp

  exp

  exp

  exp

n
n

n

n

n n

n

n

T
n

n
nU

n
nU

n

U

I x x x d

rs rs rs r r d dr

r r r dr s s s d

r r dr d

  

  

    

 











   

  

 

 

 

 



 

 

 

x x x x

s

s

s s

(3.60) 

Equation (3.60) can be rewritten as 

     1 2

0
exp

n

n

U
d I r r dr  


  
  s s x (3.61) 
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Definition 3.1: The integral (  1 2
T n

nx x x x ,      n g i i
i

w d W x x x γg g

and  gw x is a given weight function) is a dth-degree rule if it is exact for a  xg that 

has the form of a linear combination of monomials 1 2
1 2

n
nx x x  with the total order up to 

d ( 1 2, , , n   are nonnegative integers and 1 20 n d       ) and there is at 

least one monomial of degree d+1 for which this rule is not exact [58].■ 

Note that if    
1

pN

j j
j

I W


 γg g

rules    
nU

d s sg has dth-degree accuracy. The sparse-grid quadrature rule with 

is a dth-degree quadrature rule, then the spherical 

accuracy level-L is a (2L-1)th-degree rule. 

The sparse-grid method can be used to obtain the spherical rule with different 

accuracies by Eq. (3.61). Because the points js of the spherical rules all satisfy the 

constraint 
2

1j s , the points of the spherical rule can be obtained by projecting the 

sparse-grid quadrature points jγ in Euclidean space onto the hyper-sphere, i.e. 

2

j
j

j


γ

s
γ

(3.62) 

where 
2
 is the norm operation. Note that the origin point is omitted when it is projected 

onto the hyper-sphere because the origin point does not have influence on the accuracy 

analysis. 

The equation (3.61) can be rewritten by 

     

   

   

   

1 2

0

1 2

0
1

1 2
2 0

1

1 2
2 0

1

exp

exp

exp

exp

n

p

p

p

n

U

N
n

j j
j

N
n

j j j
j

N
n

j j j
j

d I r r dr

W r r dr

W r r dr

W r r dr

  

 




  


  

  



  



  



 

 

  

 

 

 

 

 

s s x

γ

s γ

s γ

64 
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where pN is the number of sparse-grid quadrature points. 

Remark 3.6 It is not necessary to use Eq. (3.63) when  is an odd number, 

because both the value of  I x and  
nU

d
 s s are 0. 

By Eq. (3.63), the weights ,s jw of the spherical rule are given by 

 
 1 2

, 2 20

2 2
exp =

2
n

s j j j j j

n
w W r r dr W

    
  

   
 
 

γ γ (3.64) 

If the spherical rule is obtained by the projection of the sparse-grid quadrature 

rule, a new cubature rule can be obtained by combining the new spherical rule and the 

radial rule in Eq. (2.66). This new cubature rule is referred to as the projected sparse-grid 

rule. The following theorem reveals the relationship between the projected sparse-grid 

rule and the third-degree cubature Kalman filter in [37]. 

Theorem 3.4: If the thd degree (d is even) fully symmetric quadrature rule is used 

in Eq. (3.61), the induced spherical rule in Eq. (3.63) with the points given by Eq. (3.62) 

and the weights given by Eq. (3.64) is also a thd degree rule. 

Proof: The spherical rule in Eq. (3.63), which is induced from the thd degree 

quadrature rule, is exact for  
n

d

U
d s s . To show that it is a thd degree spherical rule, we 

need to show that it is exact for any spherical rules  
nU

d  s s with degree 0 d  . 
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Let rx s with 1T s s and Tr  x x . The numerator in the last equality of Eq. 

(3.65) can be rewritten as 
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x is not a polynomial but still an odd function. 

(3.66) 

Because of the symmetry of the integration region and the property of the odd function, 

the integral in Eq. (3.66) vanishes, 
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1 exp 0
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d
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nx x d



 

    
 

 x x x x (3.67) 

So, for any odd d  , 
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  s s s (3.68) 

The second equality is true due to the fact that the spherical rule is fully 

symmetric. If  is even, then d  is even,  2 2
1

d

nx x



 

  
 

x is a polynomial 

with degree 
2 2 2

d d d d d 


  
    . Therefore, the integral in Eq. (3.66) can be 

exactly calculated by the dth degree quadrature rule as follows 
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(3.69) 

Combining Eqs. (3.65), (3.66), and (3.69) leads to 
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(3.70) 

where Eqs. (3.62) and (3.64) are used to arrive at the last equality. By Eqs. (3.68) and 

(3.70), it can be seen that any spherical rules with degree d  can be exactly calculated 

by Eq. (3.63). ■ 

Theorem 3.5: The third-degree cubature rule is a subset of the projected sparse-

grid rule at the accuracy level-2. 

Proof: It has been proven that the unscented transformation is a subset of the 

sparse-grid quadrature rules at the accuracy level-2 in Section 3.2. If we can prove that 

the third-degree cubature rule is identical to the projected unscented transformation, the 

theorem is equivalently proved. 

The quadrature rule using unscented transformation is given by 
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2n

n

j j
j
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 x x 0 I x 0 e eg g g g

(3.71) 

where  is the tunable parameter. 

Hence, 
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(3.72) 

The points jγ and weights jW are given by 
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and 
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Hence, the points js of the spherical rule are given by 
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(3.75) 

Note that the origin point is omitted. 

By Remark 3.6 and Theorem 3.4, for the third-degree rule,  is chosen to be 2. 

The weights ,s jw of the spherical rule can be obtained by 
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(3.76) 

Hence, by Eqs. (3.63), (3.75), and (3.76), the third-degree spherical rule can be obtained 

    ,3
12n

n
n

U i i
i

AI g g
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   e e (3.77) 

Equation (3.77) is identical to the third-degree spherical rule in Eq. (2.65). 
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Note that the third-degree radial rule can be obtained by the procedure shown in 

Section 2.2.1.6. Recall that the unscented transformation is a subset of the sparse-grid 

quadrature rules (level-2). Hence, the third-degree cubature rule [37] is a subset of the 

projected sparse-grid rule (level-2).■ 

Note that an arbitrarily accurate cubature rule can be obtained by combining the 

projection of the sparse-grid quadrature rule with the moment matching method. For 

example, a fifth-degree cubature rule can be obtained as follows. 

One of the fifth-degree (accuracy level-3) sparse-grid quadrature rules can be 

described as in Section 3.2, Eq. (3.47) 
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where 2
0 18 7 18 1A n n   , 1 18 2 9A n   , 2 1 36A 
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(3.80) 

We obtain the points  1
jγ ,  2

jγ and weights  1
jW and  2

jW by    1 1 2j jPγ , 

   2 2 2j jPγ ,    1 1 2n
j jW W   , and    2 2 2n

j jW W   , respectively. Note that the origin 

point and weight are omitted. 

The points  1
js projected from  1

jγ are given by 
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(3.81) 
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The point sets   2
js projected from  2

jγ are given by 
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For the fifth-degree rule,  is chosen to be 4 as discussed in Remark 3.6 and Theorem 

3.4. Hence, 
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The weights ,s jw are given by 
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By combining the fifth-degree spherical rule with the fifth-degree radial rule, the 

fifth-degree cubature rule can be obtained. 

For the fifth-degree radial rule, the following equations must be satisfied. 
0 0

,1 1 ,2 2

2 2
,1 1 ,2 2

4 4
,1 1 ,2 2

1 1   
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1 1 11  
2 2 4 2
1 1 1 1 1 12 1
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(3.86) 

There are three equations and four variables in Eq. (3.86). Hence, there is one free 

variable. We choose 1r as the free variable and set it to 0. Solving these three equations, 

the points and weights for the fifth-degree radial rule are given in Eq. (3.87) and (3.88), 

respectively. 
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(3.87) 

(3.88) 

Note that 1r may take on other values bedsides 0. However, the number of points for the 

final cubature rule when 1r is set to 0 is much less than the number of points when 1r is 

set to other values. 

Combining Eqs. (2.61), (3.85), (3.87), and (3.88), the 5th-degree cubature rule is 

given by 
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3.3 Anisotropic Sparse-grid Quadrature Nonlinear Filter 

The anisotropic sparse-grid quadrature (ASGQ) can be used to further improve 

the computation efficiency of the conventional SGQ. The conventional SGQ is isotropic 

in the sense that all dimensions are assumed to be equally important and it uses an 

isotropic sparse-grid, which may result in more points than necessary. There are many 

practical problems in which different dimensions are not equally important. Motivated by 

this observation, the ASGQ provides a mechanism for distributing more quadrature 

points or weights on more important dimensions and allows for better trade-offs between 

the computational efficiency and the estimation accuracy. The number of ASGQ points 

can be flexibly controlled by a tunable importance vector and is in general less than that 

of the SGQ.  

3.3.1 Anisotropic Sparse-grid Quadrature 

The anisotropic sparse-grid quadrature (ASGQ) is an extension of the 

conventional sparse-grid method, given by [89] 
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(3.90) 

with the accuracy level set 
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α α α ,  min α . (3.91) 

In Eq. (3.91),  1, , ni iα and the superscript „ α ‟ denotes the anisotropic sparse-grid 

associated with the importance vector  1, , , , 0j n j      α , in which each 

element of α represents the relative importance of the corresponding state variable and 

 min α denotes the minimum element in α . Without loss of generality,  is set to 1. 

The accuracy level of the ASGQ is denoted by L α . 

Equation (3.90) can be rewritten as [89] 
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Note that  0,1 n denotes the set of all n-dimensional sequences with each dimension‟s 

(3.92) 

(3.93) 

(3.94) 

value being 0 or 1.  and α denote the summation of the elements in  and α

respectively; „\‟ denotes the subtraction operation of two sets. Equations (3.92)-(3.93) are 

valid whether α is an integer vector or not, but for the convenience of formulation, α is 

assumed to be an integer vector such that 


α
and L


α α

are integers. 

By Eqs. (3.91) and (3.94), 
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From Eq. (3.92), the corresponding ASGQ point set defined by 
,n Lα

αX is 

 1
,

, n
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i in L
X X
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X (3.96) 
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The weight iW for each point iγ in ,n Lα
αX is the sum of the weights on the point over all 

combinations of 
1 ni iX X  containing the point. Moreover, for one specific 

combination, the weight on the point iγ is calculated by 

  1 j ni s s sW c w w w     α α . 

Remark 3.7: Given the accuracy level- Lα and dimension n, the final ASGQ point 

set is determined by ,n Lα
αY . When the importance vector α is also chosen, the upper 

bound of the inequality in Eq. (3.95) is fixed. This implies that for a larger j , the 

allowable range of ji is smaller. In other words, if i j  , by Eq. (3.95), it can be shown 

that    max maxi ji i , which indicates that the ASGQ can use a higher accuracy level 

univariate quadrature rule 
 max ii

I for dimension i than the univariate quadrature rule 

 max ji
I for dimension j. Note that the higher accuracy level univariate quadrature rule uses 

more points than the lower accuracy level quadrature rule. Hence, a smaller element in 

indicates that the corresponding dimension is more important and uses more quadrature 

points. 

α

Remark 3.8: By Eqs. (3.95) and (3.96), the effect of α on the ASGHQ point set is 

determined by the ratio of j  or j  rather than the absolute value of j . 

To better illustrate the ASGQ rule and compare it with the SGQ, 2n  , 3L α

are used as an example to show how to construct the ASGQ point set. Assume  2,1α . 

Then,       2 2
2,3 1 2 1 2: 1,2 1 1 2 : 1, 0.5 2.5j ji i i i i i             α α α , 

It can be rewritten as         2,3 1,1 , 1,2 , 2,1 , 1,3α . 

By Eq. (3.95), 2,3 2,3
2,3

\




α α α
αY  

and  2
2,0 1 2

2,3
; 1, 0.5 1ji i i




       α α α
α  . 

Thus,           2
2,3 1 2: 1,1 0.5 2.5 1,1 , 1,2 , 2,1 , 1,3ji i i       α αY . 
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By Eq. (3.93),   1,1 1c  α ,   1,2 0c α ,   2,1 1c α and   1,3 1c α . 

Then,      2,3 1 1 2 1 1 3I I I I I I I      α . 

The final ASGQ point set is shown in Figure 3.4. Note that Figure 3.4 verifies the 

conclusion of Remark 3.7. That is, the value „2‟ in  2,1α makes 1i take a smaller range 

of values than 2i , and thus generates fewer points in the vertical dimension than the 

value „1‟ in α generates in the horizontal dimension. 

Compared with the conventional SGQ, ASGQ does not contain the tensor product 

1 2X X

3 1X X

, owing to the fact that   1,2 0c α , and also does not contain 2 2X X and 

owing to the fact that .              2,32,2 , 3,1 1,1 , 1,2 , 2,1 , 1,3 αY

Note that the actual accuracy of the level- L ASGQ may be different from that of 

the level-L SGQ when L L . For example, when 3L L   and 2n  , by Theorem 3.1, 

SGQ can calculate the polynomial  2 2
1 2x x exactly, whereas the ASGQ cannot, as seen 

from the above expression of 2,3I α . 

ASGHQ

 

1X 2X 3X

1 3X X

2 1X X

   

  





 

  





2,3
αX

1 1X X

Figure 3.4 ASGQ with the accuracy level-3 and  2,1α for 2-dimensional problems 
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3.3.2 Analysis of the Accuracy of the Anisotropic Sparse-grid Quadrature 

The conventional SGQ can be viewed as a special case of the ASGQ. When all 

elements in α are the same, Eq. (3.92) and Eq. (3.96) reduce to Eq. (3.7) and Eq. (3.12), 

respectively, and the ASGQ reduces to the SGQ [89]. Note that in Eq. (3.95) and Eq. 

(3.8), when all elements in α are the same,  
1

1 1
n

j
j

L n i


    is the same as 

 
1

1
n

j
j

L n i


   . 

Remark 3.9: If 1j L




 
  

 

α , by Eq. (3.95), ji must be 1, which implies that 

there will be only one point in dimension j , a case of degenerated accuracy. To prevent 

this case from happening, a constraint should be satisfied for the ratio, i. e. 

1 1j L




 
   
 

α . Under this constraint, the level-2 ( 2L α ) ASGQ is the same as the 

level-2 ( 2L  ) SGQ since 1j


 , and every j is the same. Note that if L Lα and all 

elements in α are the same, by Eq. (3.95), the maximum value of ji is Lα in each 

dimension, which becomes SGQ. In most cases, 1j   , by Eq. (3.95), ji L α , which 

means ASGQ is less accurate than SGQ in dimension j in these cases. 

The relationship between the ASGQ and the SGQ can be revealed by the 

following proposition and theorem. 

Proposition 3.3: If , the ASGQ point set is a subset of the L L  and 0L n 

SGQ point set. 

Proof: By Eq. (3.95), ,n L
αY can be rewritten as 

     ,
1

; 1, 1 1 1
n

jn
j jn L

j
i L i L



 

 
          
 

α α α αα
Y . 
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Recall that for the SGQ. Since 
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Y

0L n 

and , . Comparing the above 

with ,n LY shows ,, n Ln L
αY Y and thus ,, n Ln L

αX X because 1j


 .■ ,n L

αY

Remark 3.10: The condition 0L n  is needed for Proposition 3.3. For example, 

if 6L L   , 2n  and  1,2α , which violates the condition, it can be verified that 

some points in ASGQ are not included in the SGQ point set. 

It is worth noting that for typical multidimensional problems, the accuracy level-L 

is usually less than the dimension n. So the condition in Proposition 3.3 is satisfied in 

most cases. 

The ASGQ accuracy depends on the accuracy level- Lα and the parameter α , 

whereas the SGQ accuracy only depends on the accuracy level-L. The accuracy of the 

ASGQ is guaranteed by the following theorem. 

Theorem 3.6: If 
1 2

1, ,1, , ,m m
n n

 
 
 
 
 

α , 1 2( )n n n  and 2 1m L   α , ASGQ 

is either more accurate than or as accurate as the level-2 SGQ. 

Proof: For this α , 
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, where „    ‟ denotes the floor operation, which returns an integer less 

than or equal to 
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There are three possible cases with this α : 
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By Eq. (3.6), the range of  1 1 21, ,ji j n n n   in 1s is identical to that of 

 
1 2

2

2 1
1, 1 1

1; 1, 1
m

n n
n

j jLn j n m

Li i






 
   

  

   
       
   

α

α

 (3.98) 

for the SGQ. 

Case (2): All  1 1 21, ,ji j n n n   are 1 and  
1
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of α as 
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1 2
1

2 ,
1 1

; 1, 0 1 1, 1 0
n n n

s j j jn n L
j j n

i i L i



  

  
          
  

 α
α α α  . (3.99) 

Similarly, by Eq. (3.6), the range of   11, ,ji j n in 2s is identical to that of 

 
1

1

1 ,
1

; 1, 1 1
n

n
j jn L

j
i i L



 
       
 

α
α (3.100) 

for the SGQ. 

Note that Case (1) and Case (2) contain a duplicate case when all 

 1 21, 1, ,ji j n n   , i.e. 

 
1 2

1 2
3 1 2 ,

1
; 1, 1 0

n n

s s s j jn n L
j

i i





 
      
 

α
α α    (3.101) 

Case (3):  
1

1
1 1

n

j
j

i


  and . Define this set of α as  
1 2

1 1

21 1
n n

j
j n m

Li




 

 
    

 


α
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1 1 2
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4 ,
1 1

2; 1, 1 1 1, 1 1
n n n

s j j m jn n L
j j n m

Li i L i





  

   
             
   

 α

α
α α α  (3.102) 

Note that 1 4s s   and 2 4s s   . 

In summary, 
1 2

1 2 3 4,
\s s s sn n L

α
α     . Hence, 

 

 

 

11 1 1 1 2

1 2

,1 2

11 1 1 1 2

1 2 3 4

11 1 2

1 1, 12

,

( \ )

1 1

 elements

          

          

n n n n

n n L

n n n n

s s s s

n n n

Ln
m

i i ii
n n L

i i ii

i i i

n

I



 



 

 

 
 
 
 


 

 



      

      

 
 

          
 
 
 







α
α α

α

α

α

α



   



 

 

 

1 1

2,1

11 1 1 1 2

41 2

11 1 2

11 , 12

1 1

 elements

1 1 1

1 1

 elements

              

          

n

n L

n n n n

s

n n n

Ln
m

i

n

i i ii

n n

i i

n

I I



 

 

 
 
 
 



 



 
    
 
 

          

 


      










α

α

α







 

 

1 1

, 21

11 1 1 1 2

4
1 2

1 1

1 2 1 21
2

1 1

 elements

1 1 1

,1 ,1 ,1,1, 1

              +

          

n

n L

n n n n

s

n

m

ii

n

i i ii

n n

i ii
n n n nn LLn

I I

I I I

I I I I I


 



 


 
 

  

 
      
 
 



        

         





α

α

αα





 11 1 2

4

n n n

s
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(3.103) 

rd thFrom the 3 equality to the 4 equality in Eq. (3.103), the fact that 
1

1 0 1I I I    is used. Note that  11 1 2

11 , 12

1 1

 elements

n n n

Ln
m

i i

n

I I



 

 
 
 
 



     
α

and 

 1 1

, 21

1 1

 elements

n

n L

ii

n

I I


    
α

correspond to Case (1) and Case (2) respectively. 

1 2

1 1 1

n n

I I I


  is the duplicate part of Case (1) and Case (2). The last term 

 11 1 1 1 2

4

n n n n

s

i i ii  

 

     
α 

corresponds to Case (3) and has no duplicate 
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part with Case (1) and Case (2). It is worth noting that when 2 mL  α , this last term 

vanishes and 4s is empty, as seen from Eq. (3.102). 

Now, compare Eq. (3.103) with the level-2 SGQ. By Eqs. (3.4) and (3.6), the 

level-2 SGQ is  11 1 1 1 2

1 2
,21 2

,2
n n n n

n n

i i ii
n nI  







      


and  
1 2

1
1 1

n n

j
j

i




  . 

If all  11, ,ji j n are 1, then  
1 2

1 1
1 1

n n

j
j n

i


 

  ; if  
1

1
1 1

n

j
j

i


  , all 

 1 1 21, ,ji j n n n   must be 1. Note that both cases contain the duplicate case when 

all  1 21 1, ,ji j n n   . As with Eq. (3.103), these two cases lead to 

 

   

11 1 1 1 2
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1 2 1 2 1 2,1 ,2 ,2 ,1 ,1 = n n n n n nI I I I I    

(3.104) 

Remark 3.11: By Theorem 3.1, 
1 2 ,2n nI  is exact for all polynomials 

with 
1 2

1
0 3

n n

j
j

a




  . Note, however, that the condition of Theorem 3.6 1 1 2

1 21
n nj aaa

j n nx x x 



is sufficient but not necessary. In fact, from Eq. (3.104), it can be seen that 
1 2 ,2n nI  is exact 

for all polynomials 1 1 2

1 21
n nj aaa

j n nx x x 

 with 
1 1 2

11 1
0 1,0 3

n n n

j j
j j n

a a


  

     because of the 

exactness of 
1 2,1 ,2n nI I for these polynomials. 

1 2 ,2n nI  is also exact for all polynomials 

with 
1 1 2

11 1
0 3,0 1

n n n

j j
j j n

a a


  

     , because of the exactness of 1 1 2

1 21
n nj aaa

j n nx x x 



1 2,2 ,1n nI I is exact for these polynomials. The above discussions also apply to the UT, 

which is exact up to 3rd order polynomials [67], but may be exact for some higher order 

polynomials. On the other hand, the exactness of 
1 2 ,2n nI  for the above polynomials 
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cannot be further generalized to all the polynomials with 
1 2

1
0 4

n n

j
j

a




  . For example, 

is not exact for all polynomials 1 1 2

1 21
n nj aaa

j n nx x x 

 with 
1 1 2

11 1
0 2,0 2

n n n

j j
j j n

a a


  

    1 2 ,2n nI 

. Note that the UT has the same accuracy as the level-2 SGQ [25] because all 

polynomials for which the UT is exact can be exactly calculated by the level-2 SGQ. 

Comparing Eq. (3.103) with Eq. (3.104), one can see that when 2L α and 
1 1 2

m

L


 
  

 

α

, there exist higher-order polynomials that can be exactly calculated by 

the first three terms in Eq. (3.103), but cannot by 
1 2 ,2n nI  (level-2 SGQ). When 2L α , 

1m  , the first three terms in Eq. (3.103) are as accurate as 
1 2 ,2n nI  (level-2 SGQ) is. 

Now, let us consider the contribution of ,  11 1 1 1 2

4

n n n n

s

i i ii  

 

     
α 

the last term of Eq. (3.103), to 
1 2 ,n n L

I
 α

α . This term is generated from Case (3) where 

 
1

1
1 1 1

n

j m
j

i L 


     α , and . When both inequalities are  
1 2

1 1

21 1
n n

j
j n m

Li




 

 
    

 


α

satisfied, there exist at least one 12 (1 )mi m n   and one 1 1 22 ( 1 )ki n k n n     . 

For the polynomials that can be exactly calculated by 
1 2, ,1n s nI I ( s ) using 

Eq. (3.70), the contribution of the last term in Eq. (3.103) is 0, i.e. 

   

   

11 1 1 1 2

11 1 1 1 20

0

n n n nm k

n n n nm

i i ii ii

i i iii

 

 

          

           



(3.105) 

That is because a polynomial f that can be exactly calculated by 1I can be 

exactly calculated by ( 1)jI j  as well, i.e.     1 1jI f I f j  and thus 

     1 0 ( 2)k

k k

i
i i kf I f I f i     . 

Likewise, for the polynomials that can be exactly calculated by 
1 2,1 ,n n sI I ( s ) 

using Eq. (3.103), the contribution of the last term in Eq. (3.103) is also 0, i.e. 
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11 1 1 1 2

11 1 1 1 20

0

n n n nm k

n n n nk

i i ii ii

i i iii

 

 

          

           



(3.106) 

Hence, any polynomial that can be exactly calculated by 
1 2,2 ,1n nI I , 

1 2,1 ,2n nI I , or 

1 2 ,2n nI 
can be exactly calculated by Eq. (3.103). As discussed in Remark 3.11, the types of 

polynomials that can be exactly calculated by 
1 2 ,2n nI  are all covered by the types of 

polynomials that can be exactly calculated by 
1 2,2 ,1n nI I or 

1 2,1 ,2n nI I . 

To summarize, when 2 1m L   α , because 1) the first three terms in Eq. 

(3.103) are more accurate than or as accurate as the level-2 SGQ ( 
1 2 ,2n nI  ) and 2) the last 

term in Eq. (3.103) is 0 for polynomials that can be exactly calculated by 
1 2, ,1n s nI I or 

1 2,1 ,n n sI I ( s ), which include the first three terms in Eq. (3.103), we may conclude 

that ASGQ is more accurate than or as accurate as the level-2 SGQ.■ 

Note that for sufficiently large Lα , there exist polynomials that can be exactly 

calculated by the last term in Eq. (3.103) but cannot be exactly calculated by either the 

first three terms of Eq. (3.103) or the level-2 SGQ ( 
1 2 ,2n nI  ). Examples of these 

polynomials include 2 2
m kx x ( 1 1 1 21 ,  1m n n k n n      ). Also recall that when 2L α

and 1m  , the ASGQ is identical to the level-2 SGQ as discussed in Remark 3.9. 

Remark 3.12: As discussed in Remark 3.11, the UT has the same accuracy as the 

level-2 SGQ. Thus, the ASGQ is more

1 2

1, ,1,2, , 2
n n

 
 
  

α

 accurate than the UT when 2 1m L   α . 

When 3L α and , which may be used for many applications, 

the following equation can be obtained from Eq. (3.103). 

   1 2 1 2 1 2 1 2,3 ,1 ,2 ,3 ,1 ,1n n n n n n n nI I I I I I     α (3.107) 

The illustration of ASGQ in Figure 3.4 can be viewed as a special case 

( 1 21, 1n n  , 3L α ) of Eq. (3.107). 
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Note that, by Eq. (3.107), 
1 2 ,3n nI 

α is exact for all the polynomials of the form 

1 1 2

1 21
n nj aaa

j n nx x x 

 with 
1 1 2

11 1
0 1,0 3

n n n

j j
j j n

a a


  

     or 
1 1 2

11 1
0 5,0 1

n n n

j j
j j n

a a


  

     . In 

contrast, the UT is exact for all polynomials with 
1 2

1
0 3

n n

j
j

a




  . Therefore, ASGQ is 

more accurate than UT when 
1 2

1, ,1,2, , 2
n n

 
 
  

α and 3L α , which satisfies the 

condition of Theorem 3.6. 

3.3.3 The Anisotropic Sparse-grid Quadrature Filter 

The anisotropic sparse-grid quadrature filter algorithm (ASGQF) is designed to 

place more sparse-grid quadrature points in directions with larger uncertainties according 

to the state covariance information. In this dissertation, the eigenvalues of the covariance 

matrix are used as the metric of uncertainty. However, the state variables may have very 

different scales or units, which make it difficult for the eigenvalues to reflect the true 

relative uncertainties. To eliminate this effect, the covariance matrix P is scaled by a 

diagonal matrix D . The elements of the importance vector α , which put weights on a set 

of mutually perpendicular directions given by the eigenvectors of the scaled covariance 

matrix TDPD , are determined based on the eigenvalues of  TDPD . An element of α is 

assigned a small value or high importance if the corresponding eigenvalue is large. 

The anisotropic sparse-grid quadrature filter algorithm (ASGQF) differs from the 

SGQF algorithm of [25] only in the points iγ , the weights iW , and the covariance 

decomposition matrix S in Eq. (2.31) and S in Eq. (2.35). They are obtained by the 

following procedure in the ASGQF, where 1| 1k k P P is used for the prediction step and 

| 1k kP P is used for the update step. 
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TDPD

α TDPD

α TDPD

iγ iW α

S S 1
ref

D S T T
ref refDPD S S

1) Calculate the eigenvalues of using the singular value decomposition (SVD) 

or eigenvalue decomposition (EIG). In MATLAB, SVD sorts the eigenvalues in 

descending order and EIG sorts the eigenvalues in ascending order. 

2) Determine the importance vector , based on the eigenvalues of . The 

elements of are in ascending order if the eigenvalues of are in descending 

order. 

3) Generate the ASGQ points and weights based on , using the ASGQ rule 

shown in Eqs. (3.92)-(3.96). 

4) Calculate in Eq. (2.31) and in Eq. (2.35) as , where . It 

can be shown .   1 1 1 1 TT T T T
ref ref ref ref

       P D DPD D D S S D D S D S

Note that the ASGQ points iγ and weights iW that are the quadrature points and 

weights in Eq. (2.27) for a specific α can be calculated off-line. In addition, when the 

univariate points and weights are generated by the GHQ rule, the anisotropic sparse-grid 

quadrature filter is called the anisotropic sparse Gauss-Hermite quadrature filter. 
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CHAPTER IV 

AEROSPACE APPLICATIONS 

In this chapter, the proposed filters are applied to three aerospace applications: 

attitude estimation, orbit determination, and spacecraft relative navigation. 

4.1 Spacecraft Attitude Estimation 

The spacecraft attitude estimation problem is to estimate the spacecraft‟s 

orientation from noisy measurement data and known reference observations [90]. 

Parameters used to represent the three-axis attitude fall into two categories in general: 

constrained parameters such as the unit quaternion and unconstrained parameters such as 

the Euler angles, the Rodrigues parameters, the modified Rodrigues parameters (MRPs) 

[44, 90], and the generalized Rodrigues parameters (GRPs) [50]. The quaternion is 

widely used to represent the attitude because it is free of singularities and the quaternion 

kinematics equation is bilinear. However, the unity-norm constraint of the quaternion is 

often violated in the standard filtering process [50]. A common approach to overcome 

this problem is to use the quaternion for global nonsingular attitude representation and a 

set of unconstrained parameters for local attitude representation and filtering process [44, 

50]. This approach will be used in the attitude estimator of this chapter. 

Many nonlinear filtering methods, such as the Extended Kalman filter (EKF) [42], 

the Unscented Kalman Filter (UKF) [35, 36], and the Particle Filter (PF) [32, 44] have 

been employed for spacecraft attitude estimation since it is a nonlinear filtering problem. 

The EKF is the most widely used nonlinear filtering method for spacecraft attitude 
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estimation [47]. A simplified Kalman filter and smoother for spacecraft attitude 

estimation based on the QUEST algorithm was proposed in [48]. A more robust approach 

named the extended quaternion-estimator, based on the EKF and quadratic constrained 

programming, was proposed in [49]. Besides the EKF, the UKF [50] demonstrated more 

accurate and robust performance than the EKF in attitude estimation when the initial 

attitude estimation error is large. The PF has been shown to achieve better accuracy than 

the UKF and the EKF at the expense of high computational complexity [43, 44]. 

In this section, the Sparse Gauss-Hermite Quadrature Filter (SGHQF) is used for 

the spacecraft attitude estimation. The attitude quaternion kinematics and the gyro and 

vector observation models are briefly reviewed. 

4.1.1 Attitude Kinematics Model 

Assume the spacecraft attitude is represented by the quaternion, denoted by 

4,
TT q   q q , where  1 2 3, , Tq q qq is the vector component, the quaternion kinematics 

can be described by [50] 

    
1
2
1                          T

B t t



 

q q ω

q q
(4.1) 

with ω as the angular velocity, and 

 
 4 3 3

T

q
B 

  
  

 

I q
q

q
(4.2) 

as the cross-product matrix, i.e. (4.3)  
3 2

3 1

2 1

0
0

0

q q
q q
q q

 
 

  
 
  

q q

The equivalent discrete-time kinematic equation to propagate the quaternion is 

 1k k k q ω q (4.4) 

where 4,
TT

k k kq   q q is the quaternion at time k and 

86 



 

 

          

     

   

 

   

                                     

                                       

    

 

     

   

                               

   

                                                     

   

  

                                                   

  

   

 

                             

 
   

 
3 3cos 0.5

cos 0.5
k k k

k T
k k

t

t


   
   

   

ω I ψ ψ
ω

ψ ω
(4.5) 

kω is the angular velocity at the k-th sampling interval, t is the sampling time interval, 

and  sin 0.5 /k k k kt ψ ω ω ω and  k ψ is a cross product matrix. 

In the above attitude kinematics model, the angular velocity is measured by a gyro. 

A widely used model for the angular velocity measurement is given by [50] 

       vt t t t  ω ω β η

   ut tβ η

(4.6) 

(4.7) 

where  tω and  tω are the measured angular velocity and the true angular velocity, 

respectively,  v tη and  u tη are independent Gaussian white noise processes with zero 

mean and standard deviations of v and u respectively, and  tβ is the gyro bias. 

In the discrete filter design, the estimated angular velocity is given by [50] 

| |
ˆˆ k k k k k ω ω β (4.8) 

where |
ˆ

k kβ is the updated gyro bias estimate and the propagated gyro bias is given by 

1| |
ˆ ˆ

k k k k β β (4.9) 

4.1.2 Vector Observation Model 

The vector observation model for attitude estimation is given by [50], 

k k k k y r nA (4.10) 

where kn is the measurement noise. It is assumed to be white Gaussian noise, with zero 

mean and covariance kR . kr and ky are an observation pair acquired in two different 

Cartesian coordinate systems at time k , and kA is the rotation matrix 

     
2

4 3 3 42 2T T
k k k k k k k k kq q

      
 

q q q I q q qA A (4.11) 
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4.1.3 Sparse Gauss-Hermite Quadrature Filter for Attitude Estimation 

In this section, the SGHQF is used for spacecraft attitude estimation. Following 

[50], we use the unconstrained generalized Rodrigues parameters (GRPs) to represent the 

three-component attitude error in the filtering algorithm and use the quaternion to 

perform attitude propagation. The main difference between the proposed SGHQF in this 

chapter and the UKF (USQUE) of [50] is the point selection strategy. In addition, the 

SGHQF and the USQUE account for the effect of process noise on the state error 

covariance with slightly different techniques.  Define a 6 1 state vector as: 
TT T   x δp β (4.12) 

where δp is the GRPs to represent attitude errors, and is defined by 

4
cf a q




δqδp (4.13) 

where a is a parameter in  0,1 , 4[ , ]qδq is the error quaternion, and cf is a scale factor. 

When 0a  and 1cf  , Eq. (4.13) gives the Gibbs vector; when 1ca f  , it gives the 

standard modified Rodrigues parameters (MRPs). 

In the following attitude estimation algorithm, we assume the number of 

quadrature points is pN . Given the initial estimates of attitude quaternion 0|0q̂ , gyro bias 

0|0β̂ , initial covariance 0|0P , initial estimated state vector 0|0 0|0
ˆˆ

TT T 
 

x 0 β , the process 

noise covariance kQ , and the measurement covariance kR , the prediction step and update 

step of the SGHQF used for attitude estimation can be summarized as follows: 

4.1.3.1 Prediction Step 

1) using the singular value Compute the factorization of |
T

k k P SS

 | |ˆk k i k ki  ξ Sγ x , 

 
 

 

ˆ
|

| ˆ
|

p
k k

k k
k k

i
i

i





 
  
  

ξ
ξ

ξ
, 1, , pi N

decomposition and set 

where (4.14) 

88 



 

 

      

 

  

   

 

 

   

                           
 

 

                            

    

                                      

 

   

    

                              

  

 

 

   

 

      

  

and i is the point index,  ˆ
|
p

k k iξ are attitude error components, and  
ˆ
|k k iξ are gyro bias 

components. 

Note that 1γ is the origin point;  ( 2, , )i pi Nγ are the SGHQ points generated 

by Algorithm I in Section 3.1.1. 

Since we use Eq. (4.4) for attitude propagation, we need to transform each of the 

 ˆ
|
p

k k iξ into an error quaternion and then calculate the corresponding quaternion that will 

be used in attitude propagation. 

Error quaternions       | | 4, |,
TTpre pre pre

k k k k k ki i q i 
  

δq δq can be calculated by [50] 

     ˆ1
| 4, | |

pre pre p
k k c k k k ki f a q i δq ξ (4.15) 

 
     

 

2 2ˆ ˆ2 2
| |

4, | 2ˆ2
|

1p p
k k c c k kpre

k k p
c k k

a i f f a i
q i

f i

 




   




ξ ξ

ξ
(4.16) 

The corresponding quaternions  |ˆ pre
k k iq are given by 

   | | |ˆ ˆpre pre
k k k k k ki iq δq q (4.17) 

The superscript „pre‟ represents the prediction step; denotes the quaternion 

product. Note that  | |ˆ ˆ1pre
k k k kq q . 

2) Predicted quaternions  1|ˆ pre
k k iq are propagated using Eq. (4.4) 

      1| |ˆ ˆ ˆpre pre
k k k k ki i i q ω q

where    
ˆ
|ˆ k k k ki i ω ω ξ . 

(4.18) 

Since the state vector is defined by GRPs, quaternions  1|ˆ pre
k k iq need to be 

transformed into GRPs in order to use the SGHQF algorithm. First, the corresponding 

error quaternions       1| 1| 4, 1|,
Tpre pre pre

k k k k k ki i q i  
 
  

δq δq are calculated by 

     
1

1| 1| 1|ˆ ˆ 1pre pre pre
k k k k k ki i



  
   δq q q . Then, the corresponding predicted attitude error 

components  ˆ
1|

p
k k i

ξ and gyro-bias components  
ˆ

1|k k i

ξ of  1|k k iξ are calculated from 

the error quaternions by 
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(4.19) 

and 

 
 

 
1|ˆ

1|
4, 1|

pre
k kp

k k c pre
k k

i
i f

a q i













δq
ξ

   
ˆ ˆ

1| |k k k ki i 

 ξ ξ (4.20) 

3) The corresponding propagated state vector value and covariance are given 

by the SGHQF algorithm 

 1| 1|
1

ˆ
pN

k k i k k
i

w i 



x ξ (4.21) 

     1| 1| 1| 1| 1|
1

ˆ ˆ
pN

T

k k i k k k k k k k k k
i

w i i    



   P ξ x ξ x Q (4.22) 

where 
 

2 2 3 2 2
3 3 3 3

2 2 2
3 3 3 3

1 1
3 2

1
2

v u u

k

u u

t t I t I

t I t I

  

 

 

 

    
        

    
  

    
  

Q with t as the measurement 

sampling period. 

4) Transform the first three elements of 1|ˆ k kx , i.e. 1|ˆ k kδp into the error 

quaternion form and then calculate the predicted quaternion 1|ˆ k kq . The corresponding 

error quaternion is given by 1| 1| 4, 1|,
TT

k k k k k kq  
   δq δq

and 

 1
1| 4, 1| 1|ˆk k c k k k kf a q

   δq δp

 
2 22 2

1| 1|
4, 1| 22

1|

ˆ ˆ1

ˆ

k k c c k k
k k

c k k

a f f a
q

f


 





   




δp δp

δp

(4.23) 

(4.24) 

Then, the predicted quaternion 1|ˆ k kq is given by 

 1| 1| 1|ˆ ˆ 1pre
k k k k k k  q δq q (4.25) 

Reset the first three elements of 1|ˆ k kx to zeros. This step is used to move information 

from one part of the estimate to another part [50]. 
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4.1.3.2 Update Step 

1) Compute the factorization 1|
T

k k P SS and set  1| 1|ˆk k i k ki  δ Sγ x . 

where      
ˆˆ

1| 1| 1|

TT Tp
k k k k k ki i i 

  
 
 

δ δ δ (4.26) 

Since GRPs cannot be directly used in the measurement equation as given by (4.10), 

 ˆ
1|

p
k k i

δ must be transformed into the error quaternion form. Then we can calculate the 

corresponding quaternions  1|ˆ upd
k k iq which will be used in Eq. (4.10). 

Note that we use 1|ˆ upd
k kq to denote the quaternion used in the update step to avoid 

confusion with the quaternion 1|ˆ pre
k kq used in the prediction step. Error quaternions 

 1|
upd
k k iδq are given by 

      1| 1| 4, 1|,
TTupd upd upd

k k k k k ki i q i  
 
  

δq δq (4.27) 

where      ˆ1
1| 4, 1| 1|

upd upd p
k k c k k k ki f a q i

   δq δ (4.28) 

 
     

 

2 2ˆ ˆ2 2
1| 1|

4, 1| 2ˆ2
1|

1p p
k k c c k kupd

k k p
c k k

a i f f a i
q i

f i

 




 





   




δ δ

δ
(4.29) 

Then, quaternions  1|ˆ upd
k k iq are calculated by 

   1| 1| 1|ˆ ˆupd upd
k k k k k ki i  q δq q (4.30) 

2) States are updated using the SGHQF algorithm as follows 

 1| 1 1| 1 1 1ˆ ˆ ˆk k k k k k k       x x L y y (4.31) 

1| 1 1| 1
T

k k k k k xy    P P L P (4.32) 

where 1ky is the true measurement value at time 1k  . 

  1 1| 1
1

ˆˆ
pN

upd
k i k k k

i
w i  



y q rA (4.33) 

      1| 1| 1| 1 1
1

ˆˆ ˆ
pN Tupd

xy i k k k k k k k k
i

w i A i    



  P δ x q r y (4.34) 

       1| 1 1 1| 1 1
1

ˆ ˆˆ ˆ
pN Tupd upd

yy i k k k k k k k k
i

w A i A i     



  P q r y q r y (4.35) 

 
1

k xy k yy



 L P R P (4.36) 
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3) The updated quaternion 1| 1ˆ k k q is then calculated using the first three 

elements of 1| 1ˆ k k x , i.e. 1| 1ˆ k k δp and 1|ˆ k kq , i.e. 1| 1 1| 1 1|ˆ ˆk k k k k k    q δq q where 

1| 1 1| 1 4, 1| 1,
TT

k k k k k kq     
   δq δq with 

 1
1| 1 4, 1| 1 1| 1ˆk k c k k k kf a q

      δq δp

 
2 22 2

1| 1 1| 1
4, 1| 1 22

1| 1

ˆ ˆ1

ˆ

k k c c k k
k k

c k k

a f f a

f

   

 

 

   




δp δp
δq

δp

(4.37) 

(4.38) 

Reset to zeros. 1| 1ˆ k k δp

The SGHQF for the spacecraft attitude estimation can be summarized in 

Algorithm II. 
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Algorithm 4.1  SGHQF for Spacecraft Attitude Estimation 

  0|0 0|0 0|0ˆ ˆ ˆ, SGHQF_ATTITUDE , , , , , , ,T t n L   q P q P x y

( 0|0q̂ : initial estimated quaternion; 0|0P : initial covariance matrix; T : total time of the 

simulation; y : measurement values; t : propagation step size; n : dimension of the 

filtering algorithm; L : accuracy level for the SGHQ; q̂ : estimated quaternions 

( |ˆ ˆ, 0, , /k k k T t  q q ); P : covariance matrix ( | , 0, , /k k k T t  P P )) 

Generate SGHQ points and weights    , SGHQ ,W n L  using Algorithm I; 

For k=0: T/ 

Prediction: 

t

1) Factorize |
T

k k P SS and let  | |ˆk k i k ki  ξ Sγ x ( i γ ). 

2) Calculate quaternions |ˆ pre
k kq by Eqs.(4.15)-(4.17). 

3) Propagate quaternions |ˆ pre
k kq to 1|ˆ pre

k kq by Eq. (4.18). 

4) Calculate attitude errors  ˆ
1|

p
k k i

ξ by Eq. (4.19). 

5) Calculate the predicted state 1|ˆ k kx and covariance 1|k kP using Eqs. (4.21) 

and (4.22). 

6) Calculate the predicted quaternion 1|ˆ k kq by Eqs. (4.23)-(4.25) and reset 

the first three elements of 1|ˆ k kx to zeros. 
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Algorithm 4.1 (continued) 

Update: 

1) Factorize 1|
T

k k P SS and recalculate points  1| 1|ˆk k i k ki  δ Sγ x . 

2) Calculate quaternions  1|ˆ upd
k k iq by Eqs. (4.27)-(4.30). 

3) Update the state 1| 1ˆ k k x and covariance 1| 1k k P by Eqs. (4.31)-(4.36); output 

1| 1k k P to P . 

4) Calculate the error quaternion 1| 1k k  q using Eqs. (4.37), (4.38) and update 

the quaternion 1| 1ˆ k k q by 1| 1 1| 1 1|ˆ ˆk k k k k k    q δq q ; output 1| 1ˆ k k q to q̂ . 

Reset the first three elements of 1| 1ˆ k k x to zeros. 

END FOR 

4.1.4 Numerical Results and Analysis 

Both the sparse Gauss-Hermite quadrature filter (SGHQF) and anisotropic sparse 

Gauss-Hermite quadrature filter (ASGHQF) are used. 

4.1.4.1 The Performance of SGHQF 

In this section, several test cases are simulated to evaluate the performance of 

SGHQF against several well-known nonlinear filtering techniques. The simulation of the 

true attitude and sensor data is taken from [50]. The orbit parameters used here are 

obtained from the TRMM spacecraft [50]. Only the three-axis magnetometer (TAM) and 

gyroscopes are used for measurements. The magnetic field reference model is the 10th 

International Geomagnetic Reference Field Model. The noise of the TAM model is zero 

mean white Gaussian noise with a standard deviation of 50 nT. The gyro noise is also 

assumed to have a white Gaussian distribution with zero mean and standard deviation of 
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10 3/23.1623 10 rad / su
  and 7 1/23.1623 10 rad / sv

  [3]. The initial gyro bias is 

assumed to be zero. The parameters in GRPs are set to 1a  and 4cf  . 

Since we have shown that the CKF and UKF using certain parameters are special 

cases of the SGHQF, it is necessary to conduct a comprehensive comparison of these 

nonlinear filters, which include EKF, CKF, UKF, and the GHQF. 

As discussed before, different numbers of points for the univariate GHQ with 

different accuracy levels can be used for SGHQ. In the following cases, we use three 

point-selection strategies: L , 2 1L , and 2 1L  , for the level- L univariate GHQ . For 

nd rdconvenience, we denote them the 1st SGHQF, 2 SGHQF, and 3 SGHQF respectively. 

The total number of SGHQ points with the accuracy level-2 and level-3 using these three 

point-selection strategies for 6-dimensional problems are listed in Table 4.1. 

Table 4.1 Total number of points for 6-dimensional SGHQFs (level-2 and level-3), 
CKF, UKF, and GHQF 

level-2 level-3 

1st SGHQF 13 85 

nd2 SGHQF 13 97 

rd3 SGHQF 13 109 

UKF 13 

CKF 12 

GHQF (mL=3) 729 

The following simulation results are all averaged values of 50 Monte-Carlo runs. 

Case 1: No Initial Estimation Error And Zero Initial Bias Estimate 
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In the first case (Case 1), EKF, SGHQFs (level-2 and level-3), UKF, CKF and the 

conventional GHQF (level-2) using 3 points for each dimension are compared assuming 

that there is no initial attitude estimation error and the initial bias estimate is set to zero. 

The initial attitude covariance is set to is the rotation angle about the eigen-

axis of rotation) and the bias covariance is set to . Since the simulation exhibits 

 
2

0.5 ( 0.5

 
2

0.1 / h

very similar performance for all filters in this case, the results are not shown here. 

Case 2: 30 degree Initial Attitude Estimation Error And Zero Initial Bias Estimate 

The second case (Case 2) is to add 30 degree error to the initial attitude estimate 

using the same parameters as those in Case 1. The initial bias estimate is still set to zeros. 

The initial attitude covariance is set to  
2

30 and the bias covariance is set to  
2

0.1 / h . 

We use the same initial covariance for the EKF, UKF, CKF, and SGHQFs. 

The norm of attitude estimation error for this case is shown in Figs. 4.1-4.2. The 

results of SGHQFs with different accuracy levels and different univariate point-selection 

strategies are shown in Figure. 4.1. The 2nd SGHQF (level-2) exhibits identical 

performance with the 3rd SGHQF (level-2) since they use the same point set in the 

filtering algorithm. In addition, they both have slightly better performance than the 1st 

SGHQF (level-2). Furthermore, the SGHQFs (level-3) using different point-selection 

strategies show no noticeable difference (they are overlapped and indistinguishable in the 

figure). In Figure. 4.2, SGHQFs are compared with EKF, UKF, CKF, and the 

conventional GHQF. Because SGHQFs at level-3 with different point-selection strategies 

have very close performance, we use the SGHQF (level-3) to denote all of them. It can be 

seen that both the SGHQFs (level-2) and the SGHQF (level-3) are more accurate than the 

EKF. Furthermore, the SGHQF (level-3), the conventional GHQF, and the UKF ( 0  ) 

/CKF exhibit nearly the same performance (they are overlapped and indistinguishable). 
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They are slightly better than the 2nd (or the 3rd) SGHQF (level-2) and the 1st SGHQF 

(level-2). Different SGHQFs at level-2 show slightly different performance while they all 

work well for this case and are much better than EKF. 

Figure 4.1 Norm of attitude estimation errors for SGHQFs using different point-
selection strategies and accuracy levels (Case 2) 
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EKF
1st SGHQF(Level 2)/UKF(=-5)

2nd or 3rd SGHQF(Level 2)/UKF(=-3)
UKF(=0)/CKF
GHQF
SGHQF(Level 3)

EKF

1stSGHQF(Level 2)/UKF(=-5)

2nd/3rdSGHQF(Level 2)/UKF(=-3)

UKF(=0)/CKF
GHQF

SGHQF (Level 3)

Figure 4.2 Norm of attitude estimation errors in comparison with EKF, UKF, CKF 
and GHQF (Case 2) 

Case 3: 30 Degree Initial Attitude Estimation Error And 10 / h Initial Gyro Bias 

Estimate In The y-axis 

The third simulation case (Case 3) adds 10 / h initial gyro bias in the y-axis in 

addition to the 30 degree initial attitude estimation error. The initial attitude covariance 

is set to  
2

30 and the initial bias covariance is set to  
2

10 / h . 

In Figures 4.3-4.5, the performance of SGHQFs with different accuracy levels and 

different point-selection strategies, UKF, CKF, the conventional GHQF (mL=3), and EKF 

are compared. In Figure 4.3, CKF, SGHQFs (level-2) and EKF are compared. It is shown 

that only CKF converges within the 3 error bounds, while EKF, the 1st SGHQF, and 

nd rdthe 2 or 3 SGHQF (level-2) do not. In addition, the 1st SGHQF (level-2) converges 

nd rdfaster than the 2 or 3 SGHQF (level-2). Furthermore, all SGHQFs (level-2) converge 

98 



 

 

        

    

     

     

    

  

   

   

 

 

 

    
   

faster than the EKF. Note that by Theorem 3.2, the 1st SGHQF (level-2) and the 2nd or the 

3rd SGHQF (level-2) have identical performance with the UKF using the parameters 

5   and 3   , respectively. In Figure 4.4, it is shown that the SGHQF (level-3) 

converges into the 3 error bound, within 1 hour, while the CKF needs more than three 

hours. Moreover, both SGHQF (level3) and CKF have better performance than EKF and 

SGHQF (level-2). The UKF with the suggested parameter ( 3 n   ) does not converge 

into 3 error bound within 8 hours. The result of the GHQF is not shown in Figures 4.3 

and 4.4 because the performance is very close to SGHQFs (level-3). It is shown in Figure 

4.6. 
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Upper/Lower 3  Error Bound
EKF
1st SGHQF (Level2)/UKF(=-5)
2nd or 3rd SGHQF (Level2)/UKF(=-3)
UKF (=0)/CKF

EKF

EKF

UKF(=0)/CKF

2nd/3rdSGHQF(Level2)/UKF(=-3)
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1stSGHQF(Level2)/UKF(=-5)
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2nd/3rdSGHQF(Level2)/UKF(=-3)
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UKF(=0)/CKF
2nd/3rdSGHQF(Level2)/UKF(=-3)

Figure 4.3 Attitude errors of SGHQFs (level-2), UKF, CKF, and EKF with 3  error 
bounds (Case 3) 
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Upper/Lower 3  Error Bound
2nd or 3rd SGHQF (Level2)/UKF(=-3)
UKF (=0)/CKF
SGHQF(Level3)

Figure 4.4 Attitude errors of SGHQFs (level3), UKF, and CKF with 3  error bounds 
(Case 3) 

The norm of total estimation errors using the SGHQFs with different accuracy 

levels and different point-selection strategies are shown in Figure 4.5. In this case, the 2nd 

SGHQF (level-2) and the 3rd SGHQF (level-2) (they are identical) have worse 

performance than the 1st SGHQF (level-2), which is also shown in Figure 4.4. The 

SGHQFs with the accuracy level-3 using different point-selection strategies still show no 

noticeable difference. The performance comparison of EKF, GHQF (mL=3), UKF, CKF, 

and SGHQFs (level-2 and level-3) is shown in Figure 4.6. The SGHQF (level-3) is still 

used to represent all SGHQFs (level-3) using different point-selection strategies, since the 

nd rddifference between them is nearly indistinguishable. It can be seen that the 2 (or the 3 ) 

SGHQF (level-2) has identical performance with the UKF ( 3   ) and the 1st SGHQF 

(level-2) has identical performance with the UKF ( 5   ), as predicted by Theorem 3.2. 
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Moreover, different SGHQFs with the accuracy level-2 exhibit more obvious difference 

in this case. The SGHQF (level-3) has better performance than all SGHQFs with the 

accuracy level-2, the UKFs, and the CKF. It implies that the SGHQF (level-3) is able to 

capture large uncertainties more efficiently than other filters. 

The conventional GHQF (mL=3) exhibits performance that is similar to the 

SGHQF (level-3). However, considering the computational burden, the SGHQF is 

superior to the conventional GHQF. In addition, EKF shows the worst performance in 

this case. 

For this case of study, it can be noticed that the univariate point-set selection 

strategy may greatly affect the performance of the SGHQF with the accuracy level-2, 

which can be considered as a tunable parameter like the  parameter for the UKF. 

However, the SGHQF with the accuracy level-3 is not sensitive to the univariate point-set 

selection. In this sense, the SGHQF will reach a more stable and guaranteed estimation 

performance as the accuracy level increases. Recall that the UKF can only ensure the 

accuracy level up to 3rd order polynomials while the SGHQF with the accuracy level-3 is 

accurate up to 5th order polynomials. In addition, from the filter design perspective, the 

SGHQF algorithm is very flexible with regard to the choice of accuracy levels, depending 

on the estimation requirements and computational resources. The designer can easily use 

a higher accuracy level (L>3) SGHQF to solve more complex multi-dimensional 

nonlinear estimation problems. 
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Figure 4.5 Norm of attitude estimation errors for SGHQFs using different point-
selection strategies and accuracy levels (Case 3) 
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4.1.4.2 The Performance of ASGHQF 

In this section, the performance of the ASGHQF is demonstrated and compared 

with the EKF, UKF, CKF, SGHQF, and the GHQF. 

The initial true gyro bias is assumed to be 0.1 / hour . The initial attitude 

estimation errors and the initial gyro bias estimation errors are assumed to be random and 

follow a normal distribution with a standard deviation of , respectively. 30 and 10 / hour

Considering the different scales of the GRPs and the gyro bias, the scaling matrix 

in Section 3.3.3 is chosen to be D=diag([1/3600, 1/3600, 1/3600,1,1,1]). The importance 

of the vector α and the numbers of points of different filters used in the simulation are 

shown in Table 4.2. For comparison, six cases of α are considered. The values of α are 

chosen such that more points are placed in the dimensions with larger uncertainties. Note 

that by Eq. (3.74), the p th ASGHQF ( 3L α ) generates more points in the first p 

( 1, ,6p  ) dimensions since these dimensions are more important due to larger 

uncertainties. 
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Table 4.2 Importance vector α of ASGHQF and numbers of points of different filters 

Importance vector Number of points 

ASGHQF( )/SGHQF(L=2) 

/UKF( ) 

 1,1,1,1,1,1α 13 

1st ASGHQF( )  1,2,2,2,2,2α 15 

nd2 ASGHQF( )  1,1,2,2,2,2α 25 

rd3 ASGHQF( )  1,1,1,2,2,2α 37 

th4 ASGHQF( )  1,1,1,1,2,2α 53 

th5 ASGHQF( )  1,1,1,1,1,2α 73 

th6 ASGHQF( )/SGHQF (L=3)  1,1,1,1,1,1α

 

 

    

   

 

  

    

    

    

    

    

     

   

 

   

   

 

 

   

   

  

 

  

 

  

2L α

3 n  

3L α

3L α

3L α

3L α

3L α

3L α 97 

GHQF 729 

Recall that the 6th ASGHQF ( 3L α ) is identical to SGHQF (L=3) as discussed in 

Section 3.3, since all the elements of α are the same. The points and weights of the 

SGHQs and the ASGHQs are obtained using the SGHQ algorithm of Ref. [25]and Eq. 

(3.74), respectively. Moreover, accuracy levels 2 and 3 (i.e. L=2 or 3) are used for the 

SGHQF and accuracy level-3 is used for the ASGHQF (i.e. 3L α ). Note that the level-2 

( 2L α ) ASGHQ is the same as the level-2 SGHQ, according to Remark 3.9, and the 

UKF ( 3 n   ) is also the same as the level-2 SGHQF [25]. 

In Figure 4.7-4.9, the performance of ASGHQFs with different α , EKF, UKF 

( 3 n   ), CKF, GHQF, and SGHQF are compared based on 100 Monte Carlo runs . In 

Figure 4.7, the attitude errors of the EKF, UKF, CKF, and GHQF are compared. The 3

bound of the GHQF is used, since it has the highest accuracy. It is shown that in the 

simulated period of time, the EKF and the UKF ( 3 n   ) do not converge into the 3
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bound, whereas the CKF and GHQF do. In Figure 4.8, the EKF, the ASGHQFs with 

th thdifferent α , and the GHQF are compared. Because the 5 ASGHQF and the 6 

ASGHQF have very close performance to the GHQF, they are not shown. In Figure 4.9, 

the norms of the total attitude estimation errors are compared for the EKF, UKF, CKF, 

ASGHQFs and GHQF. It is can be seen that the EKF is the worst and the CKF is more 

accurate than the UKF ( 3 n   ). In addition, all ASGHQFs are more accurate than the 

UKF, as predicted by Theorem 3.5, since the UKF is in fact a level-2 SGHQF. The 3rd 

th thASGHQF and the 4 ASGHQF are both more accurate than the CKF. The 5 ASGHQF, 

the 6th ASGHQF, and the GHQF are very close and are nearly indistinguishable from 

each other. 

As for the computational efficiency of the filtering algorithm, it is worth noting 

that all point-based Gaussian approximation filters share the same filtering algorithm 

given by Eqs.(2.29)-(2.35). The difference lies in the methods of computing the points iγ

and weights iW . Note that they are generated offline. The more points there are, the more 

function evaluations and matrix-vector computations will be involved in the online 

filtering algorithm as seen from Eqs. (2.29)-(2.35). Therefore, the main computational 

load depends on the number of points. The other slight difference of ASGHQF from 

others is on the scaling of the covariance matrix and the new formulae for computing 

in Eq. (2.31) and S in Eq. (2.35) (Section 2.2.1.2). However, the extra computation only 

involves two matrix multiplications, i.e. TDPD , which is very minor compared to the rest 

of the computation load. The computation load of the new ASGHQF lies in between 

UKF and GHQF/SGHQF. But, it is more accurate than UKF and maintains close 

performance to GHQF and SGHQF. The primary advantage of the ASGHQF is that it is 

S
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more flexible to use than the SGHQF and GHQF, allowing the designer to tune the 

importance vector α to balance the computational load with the accuracy requirement. 
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Figure 4.7 Attitude estimation errors of EKF, UKF, CKF, and GHQF 
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Figure 4.8 Attitude estimation errors of EKF, ASGHQFs, and GHQF 
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Figure 4.9 Comparison of total attitude estimation error norms using EKF, UKF, CKF, 
ASGHQFs and GHQF 

4.2 Spacecraft Orbit Determination 

In this section, the performance of the SGQF is demonstrated by the orbit 

determination problem and is compared with EKF, UKF, CKF, and GHQF. The orbit 

determination problem is to obtain accurate satellite position and velocity from noisy 

observations. 

The low-earth orbit (LEO) satellite dynamics can be described by [91] 

3=- G Dr


  r r a a v (4.39) 

where  , , Tx y zr is the position of the satellite in the inertial coordinate frame (I-J-K), 

2 2 2r x y z   , v is a white Gaussian process noise, and Ga is the instantaneous 

acceleration due to the 2J perturbation [92]. 2J is the dimensionless second zonal 

harmonic that quantifies the major oblateness effect of the Earth. The 2J perturbation 
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may cause a noticeable precession of the LEO satellite orbits. Da is the atmospheric drag 

with 
1
2

d
D d rel rel

s

C A v
m

  a v (4.40) 

where d is the atmospheric density; sm is the satellite‟s mass; dC is the drag 

coefficient; relv is the velocity vector relative to the rotating atmosphere and A is cross-

sectional area [51]. In this chapter, we only consider 2J and atmospheric drag 

perturbations. The lunar/solar gravity perturbation is very small and is negligible for the 

low-earth orbit (LEO) satellite. All the unmodeled perturbations are regarded as the 

process noise. 

The measurement model is described by 

1

1

2 2

2 2 2
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(4.41) 

where the azimuth (az), the elevation (el), and the range  
T

u e n    can be 

measured by the radar site on the ground with respect to the local observer coordinate 

system,  ( ˆ ˆ ˆu e n  ; “up, east and north”). The range can be related to the position vector 

in the inertial frame (I-J-K) by the coordinate transformation given by Eq. (4.42). 

cos 0 sin cos sin 0 cos cos
0 1 0 sin cos 0 cos sin

sin 0 cos 0 0 1 sin

u

e

n

x
y

z

             
      

             
                  

R
R

R
(4.42) 

108 



 

 

 

  

  

 

 

  

   

  

  

 

  

    

are the latitude and local sidereal where 6378.1363kmR is the earth radius,  and 

time of the observer respectively, and , ,  and az eln n n are the white Gaussian 

measurement noise. The geometry of the observation model is shown in Figure 4.10. 

Inertial 
Reference 
Direction

Equatorial 
plane

Spacecraft
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I J
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Observer

Observer’s 
meridian 
plane



u
n




e

Figure 4.10 Illustration of the observation geometry 

Generally, it is impossible to track a LEO satellite continuously from a single 

radar station. In the assumed simulation scenario, the reasonable track time is about 5 

minutes. Hence, the simulation time is set to be 5 minutes and the measurement period is 

5 seconds. The step size of 0.1 second and the fourth-order Runge-Kutta algorithm are 

used for dynamic propagation [52]. The latitude and the longitude of the radar site are 

010.749 and 070.5983 , respectively. The initial simulation time is March 29, 2011, 

17:00:00. Moreover, the atmospheric drag parameters are 2.2dC  , 20.02m kgsA m  , 

and the atmospheric density d is calculated by the exponential model [51]. 
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The state description of this orbit determination problem is 

     0

TT T Tp x y z x y z  
  

x x x . The initial true state value is assumed to 

be    0 0 0

TT Tp v 
  

x x x . where    0 6949.599783,1045.733299,64.918535 km
Tp x

and    0 0.902571,5.697655,4.841182 km/s
Tv  x are the initial true position and 

velocity of the satellite, respectively. The above orbital parameters, including the initial 

conditions, the radar site, and the track time are verified to be feasible using STK®, a 

well-accepted software tool for high-fidelity modeling of satellite orbits. 

The level-2 and level-3 SGQFs are applied to this orbit determination problem 

and compared with the EKF, the UKF, the CKF, and the GHQF. The level-2 SGQ points 

and weights are computed using Eq. (2.46) and the level-3 SGQ points and weights are 

computed using Eqs. (3.24)-(3.26). 

There are three cases of level-3 SGQFs as discussed in Section 3.2. Case 1 does 

not have any tunable parameters and uses the GHQ points 1 2 3ˆ ˆ ˆ 3p p p   ; Case 2 has 

two tunable parameters, 1p̂ (= 2p̂ ) and 3p̂ ; and Case 3 has three tunable parameters, 1p̂ , 

2p̂ , and 3p̂ . The SGQF parameter 1p̂ is used in both level-2 and level-3 SGQFs. The 

other two parameters are used only in the level-3 SGQFs. In other words, the level-2 

SGFQ only has one tunable parameter 1p̂ while the level-3 SGQFs have up to three 

tunable parameters. 

To investigate the effect of the SGQ parameters on the filter performance, seven 

SGQFs with different parameters are tested. The GHQ points 1 2 3ˆ ˆ ˆ 3p p p   are used 

as the reference points about which 1p̂ , 2p̂ , and 3p̂ are varied and given in Table 4.3. 

Note that, for level-2 SGQFs, the SGQ points and weights are only determined by 1p̂ , 

and for level-3 SGQFs the locations and weights of most points are determined by 1p̂
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from Eqs. (3.24)-(3.26) . Therefore, the influence of 1p̂ is more significant than the other 

two points. 

In the following, the root-mean square errors (RMSEs) of SGQFs over 50 runs are 

compared with those of the EKF, UKF, CKF, and GHQF. The RMSEs of the position 

and velocity estimates at time k are defined as 

        2 2 2
pos

1

1 ˆ ˆ ˆRMSE
mcN

k k k k k k
nmc

k x x y y z z
N 

      (4.43) 

        
2 2 2

vel
1

1 ˆ ˆ ˆRMSE
mcN

k k k k k k
nmc

k x x y y z z
N 

      (4.44) 

where 50mcN  is the number of simulation runs;  ˆ ˆ ˆ T
k k kx y z and ˆ ˆ ˆ

T

k k kx y z 
 

are 

the estimated position and velocity at time k, respectively. 

Table 4.3 Parameters of SGQFs 

1p̂ 2p̂ 3p̂

1st SGQF (Case 1) 3 3 3

 

 

    

 

 

   
 

               

               

   

    

  

    

     

     

      

     

     

     

     

 

 

nd2 SGQF (Case 2) 1.71 1.71 2.50 

rd3 SGQF (Case 2) 1 1 2.5 

th4 SGQF (Case 2) 0.5 0.5 2 

th5 SGQF (Case 3) 1.71 1.00 2.50 

th6 SGQF (Case 3) 1 2.5 1.5 

th7 SGQF (Case 3) 0.5 2 1 

Two different scenarios, with small initial estimation errors and large initial 

estimation errors, are used to test the filter performance. 
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1.1.1 The First Scenario: Small Initial Estimation Errors 

In this scenario, the initial estimates are assumed with small errors 

   0ˆ 6989.157085,1061.379082,117.351971 km
Tp x and 

   0ˆ 0.899065,5.291087,5.005861 km/s
Tv  x . The initial covariance is 

    2 22 2 2 2 2 2
0 diag 10 ,10 ,10 km , 10 ,10 ,10 km/s           

P . The reasonable process and 

measurement noise covariances are assumed to be [52]. 

      2 2 217 17 17diag 0,0,0,10 km/s ,10 km/s ,10 km/sk
   

 
Q and 

      2 2 2o o 2diag 0.015 , 0.015 ,0.025 kmk
 
  

R respectively. 

The SGQFs (level-2 and level-3) using the parameters in Table 4.3 are tested and 

compared with the EKF, UKF/CKF, and GHQF. Since  is a tunable parameter for UKF, 

a range of 3, 2, 1,0,1,2,3     are used for the test. The position and velocity RMSEs 

are shown in Figure 4.11 and Figure 4.12 respectively. Because there is no discernible 

difference among all SGQFs (level-2 or level-3) and UKFs are identical to level-2 

SGQFs (Theorem 3.3), only one of the level-2 SGQFs and one of the level-3 SGQFs are 

given in Figure 4.11 and Figure 4.12. The simulation results show that SGQFs are 

slightly more accurate than EKF. The level-2 SGQFs, level-3 SGQFs, and GHQF all 

have such close performance that their RMSEs are indistinguishable. Therefore, the 

point-based methods (UKFs, SGQFs, and GHQF) do not show significant advantages 

over EKF when the initial estimation errors are small. 
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Figure 4.11 RMSEs of the position with small initial estimation errors 
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Figure 4.12 RMSEs of the velocity with small initial estimation errors 
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4.2.2 The Second Scenario: Large Initial Estimation Errors 

In this scenario, the initial estimates are assumed with large errors 

   0ˆ 7252.009273,1358.407862,383.904071 km
Tp x and 

   0ˆ 0.613101,5.991868,5.138553 km
Tv  x . The initial covariance is 

    2 24 4 4 2 2 2
0 diag 10 ,10 ,10 km , 10 ,10 ,10 km/s           

P . 

4.2.2.1 Results of UKFs and level-2 SGQFs 

In this section, we compare the SGQF at accuracy level-2 with EKF and GHQF. 

The first group of tested level-2 SGQFs is the UKFs with a range of the tunable 

parameters 3, 2, 1,0,1,2,3     . Recall that the UKF is identical to the level-2 SGQF 

with 1p̂ n   (Theorem 3.3 and Eq. (3.30)). The role of the tunable parameter  for 

UKF is the same as the tunable parameter 1p̂ for SGQF. The RMSEs of the position and 

velocity estimates for EKF, UKFs, and GHQF are shown in Figure 4.13 and Figure 4.14, 

respectively. 
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Figure 4.13 RMSEs of the position with large initial estimation errors: EKF, UKFs, and 
GHQF 
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Figure 4.14 RMSEs of the velocity with large initial estimation errors: EKF, UKFs, and 
GHQF 

As can be seen, UKFs and GHQF are much more accurate than EKF for large 

initial estimation errors. Additionally, all the UKFs for different  parameters exhibit 

close performance. Note that the suggested parameter of [35], and the  is 3 3n    

CKF is identical to the UKF when 0  . For this particular application, UKF has the 

best performance when 3  . The CKF is slightly better than the UKF with the 

suggested value of 3   . GHQF is obviously more accurate than all UKFs. 

In the above group of tested UKFs or level-2 SGQFs, the parameter 1p̂

corresponding to the same as  used for UKF are all greater than or equal to 3 . So in 

the second group of tested level-2 SGQFs, we use the values of 1p̂ that are smaller than 

3 for further comparison. These parameters of 1p̂ correspond to the 1st SGQF through 

4th SGQFs as shown in Table 4.3. Since all the UKFs and CKF do not show much 

difference in performance, we will select the CKF and the UKF with the suggested 

115 



 

 

   

  

 

   

 

 

 

 

 

 

 
 

 

parameter 3   as the references for comparison with other level-2 SGQFs, i.e. the 1st 

SGQF (level-2) to the 4th SGQF (level-2) in Table 4.3. 

The RMSEs of the position and velocity for EKF, level-2 SGQFs, and GHQF are 

shown in Figure 4.15 and Figure 4.16. As can be seen, all level-2 SGQFs are much more 

accurate than the EKF but not as accurate as GHQF. Note that the 1st SGQF (level-2) is 

the same as the UKF with the suggested parameter 3   . 

In summary, all the level-2 SGQFs including UKF and CKF with different 

parameter values demonstrate close performance, which is more accurate than EKF but 

not as accurate as GHQF. 
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Figure 4.15 RMSEs of the position with large initial estimation errors:  EKF, level-2 
SGQFs, and GHQF 
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Figure 4.16 RMSEs of the velocity with large initial estimation errors:  EKF, level-2 
SGQFs, and GHQF 

4.2.2.2 Results of level-3 SGQFs 

In this section, the level-3 SGQFs with different parameters of 1 2ˆ ˆ,p p , and 3p̂

corresponding to the three cases in Table 4.3, is compared with EKF, UKF ( 3  with 

the best performance), and GHQF. The RMSEs of the position and velocity are shown in 

Figure 4.17 and Figure 4.18. 

It can be seen that all level-3 SGQFs are more accurate than the EKF and level-2 

SGQF/UKF. All level-3 SGQFs are overlapped and have no discernible difference, which 

implies that these level-3 SGQFs are not sensitive to the SGQ parameters. Note that the 

level-2 SGQ can approximate the integral calculations up to the 3rd order polynomials 

whereas level-3 SGQ can be exact up to the 5th order polynomials (Theorem 3.1). From 

the simulation tests, it indicates that the 3rd order polynomial approximation is not 

accurate enough, which is the reason that one can see the performance difference (Section 

4.2.1) using different parameters of 1p̂ (or  for UKF). However, the level-3 SGQ that is 
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exact up to the 5th order polynomials is accurate enough to capture the nonlinear 

characteristics and initial estimate uncertainty of this orbit estimation problem. Note that 

no matter how the parameters are tuned, the 5th order accuracy can be 1p̂ , 2p̂ , 3p̂

guaranteed and thus the performance will not exhibit noticeable difference. 
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Figure 4.17 RMSEs of the position with large initial estimation errors: EKF, UKF, 
level-3 SGQFs, and GHQF 

Figure 4.17 and Figure 4.18 also show that the level-3 SGQFs have the same 

performance as the GHQF ( Lm =3). However, the level-3 SGQFs uses 73, 85, and 97 

points for the Cases 1, 2, and 3, respectively whereas the GHQF uses 63 (=729) points. 

No comparison was made using the GHQF with higher accuracy because it would require 

a large number of GHQ points, for example, 65 (=15625) for Lm =5. The number of 

points for different SGQFs and GHQF are shown in Table 4.4, which indicates that the 

SGQF is computationally much more efficient than the GHQF. 
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Figure 4.18 RMSEs of the velocity with large initial estimation errors: EKF, UKF, 
level-3 SGQFs, and GHQF 

Table 4.4 Number of Points for different SGQFs and GHQF 

SGQF 

(Case 1) 

SGQF 

(Case 2) 

SGQF 

(Case 3) 

GHQF 

level-2 13 13 13 
729 

level-3 73 85 97 

From the above simulation results, Figure 4.13-4.18, it can be seen that the level-3 

SGQFs demonstrate the best performance and are good enough for this orbit 

determination problem. It is worth noting that for other applications, higher level-SGQF 

may be desirable. 

In this section, GHQ points are used as the reference points to tune the parameters 

of SGQ. If the three-point univariate GHQ is used for 2I and 3I , the reference points are 
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1 2 3ˆ ˆ ˆ 3p p p   . Higher accuracy GHQ points can be used for 2I and 3I as well. For 

example, 3 and 5 univariate GHQ points can be used for 2I and 3I , respectively, with the 

reference points being . The parameters of SGQ can 1ˆ 3p  , 2ˆ 1.3556p  and 3ˆ 2.8570p 

be tuned around these reference points. For SGQ of higher than three accuracy levels, 

which need more points to match higher moments, more than 3 univariate GHQ points 

should be used as the reference points. In addition, the GHQ points are optimal for the 

integrals when the integrand function is of the special form that is the multiplication of a 

polynomial function and the Gaussian pdf. For a general form that is the multiplication of 

a general nonlinear function and a non-Gaussian pdf, the GHQ points may not be optimal 

and the tunable parameter ˆ ip can play an important role in the performance of the SGQF. 

4.3 Spacecraft Relative Navigation 

The relative navigation of spacecraft is important to many space missions, such as 

rendezvous, docking, and formation flying [93, 94]. A variety of technologies have been 

proposed to determine the relative attitude and orbit between spacecraft. GPS was used in 

[95, 96] for relative navigation. However, GPS signals are difficult to obtain in many 

situations like deep-space missions. To circumvent the GPS limitations, many self-

dependent measurement systems have been proposed. The inner-formation gravity 

measurement satellite system was used in [97] and laser radar based relative navigation 

was proposed in [98]. The vision-based navigation system has recently drawn much 

attention [93, 99]. There are many advantages of the vision-based navigation system, 

such as small sensor size and wide sensor field of view. More features can be found in 

[100]. 
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In this section, the relative navigation of two spacecraft is considered. The relative 

navigation problem includes the estimation of the relative attitude and the relative orbit. 

In addition, the gyro bias of the chief and the deputy can also be obtained or corrected. 

The dimension of the system state is 16 and is thus a high dimension estimation problem. 

In the vision-based navigation system, beacons (specific light sources) are used to 

achieve a selective vision and position-sensing diode based sensors placed in the focal 

plane are used to locate the beacons (light sources) [100]. 

The classical extended Kalman filter (EKF) has been used in [54, 93] to estimate 

the attitude and orbit simultaneously. However, the EKF may not be accurate when the 

initial uncertainty is large. Many point-based Gaussian approximation filters proposed in 

recent years can be used to improve the estimation accuracy. Among these filters, the 

unscented Kalman filter (UKF) is probably the most widely used [35, 36]. The UKF has 

been employed to solve the relative navigation problem in [101]. Although the UKF is 

more accurate than the EKF, it is less accurate than the Gauss-Hermite quadrature filter 

(GHQF) [56]. Nevertheless, the GHQF cannot be used to for the relative navigation 

problem because the number of points required by the GHQF increases exponentially 

with the increase of the dimension, which is the curse-of-dimensionality problem. The 

sparse Gauss-Hermite quadrature filter (SGHQF) [25] can be used to alleviate this 

problem while maintaining close performance to the GHQF. In addition, we have shown 

that the SGHQF can achieve higher accuracy than the UKF by using additional 

quadrature points [25]. In this section, the SGHQF is used to solve the vision-based 

relative navigation problem. 
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4.3.1 Relative Navigation Model 

In this section, the relative attitude kinematics and the relative orbit dynamics of 

two spacecraft, as well as the vision-based measurement model, are briefly reviewed. 

4.3.1.1 Relative Attitude Kinematics 

The relative attitude is described by the relative quaternion and its kinematics at 

time 1k  , and is given by [93] 

(4.45) 

with 

   , 1 , 1 1k d k c k k   q ω ω q
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(4.47) 

and             (4.48) 

(4.49) 

where , 1c kω and , 1d kω are angular velocities of the chief and the deputy at the time 1k  , 

respectively. t is the sample interval and  1k ψ is a cross product matrix. Assume 

that and is defined by 1 1, 1 2, 1 3, 1, , T
k k k k     

   ψ  1k ψ

 
3, 1 2, 1

1 3, 1 1, 1

2, 1 1, 1

0
0

0

k k

k k k

k k

 

 

 

 

  

 

 
 

   
  

ψ (4.50) 

The model used to measure the angular velocity is given by [50] 
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v  ω ω β ε (4.51) 

uβ ε (4.52) 

where ω and ω are the continuous-time measured and true angular velocity, 

respectively. β is the gyro bias, and vε and uε are independent white Gaussian noise 

with zero mean and covariance 2
3 3v I  and 2

3 3u I  , respectively. 

In the standard filtering formulation, given the post-update gyro drift rate 1
ˆ

k


β , 

the estimated angular velocity 1ˆ kω is given by [50, 93] 

1 1 1
ˆˆ k k k

 

   ω ω β (4.53) 

where 1kω is the measured angular velocity at time 1k  . 

The prediction of the gyro drift is given by 

(4.54) 1
ˆ ˆ

k k
 

β β

4.3.1.2 Relative Orbit Dynamic Equations 

In this section, we consider a circular or near circular orbit. In this case, Clohessy-

Wiltshire equations can be obtained [51] 

(4.55) 22 3 0r rx y x   

2 0ry x 

2 0rz z 

where  , , Tx y z and  , , Tx y z are the relative position and velocity vector, respectively 

and r is the mean orbital rate, given by 

3r a


 

(4.56) 

(4.57) 

(4.58) 

with  and a being the standard gravitational parameter and the radius of the chief, 

respectively. The radius of the chief is assumed to be known. 
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Define the state variables of the relative orbit as  , , , , , T
r x y z x y zx . 

Considering the perturbation noise, the state equation becomes 

  2

2

2 3
2

r r
r r x

r y

r z

x
y
z

y x v
x v
z v

 





 
 
 
 

   
  

  
 

   

x xf (4.59) 

where xv , yv , and zv are the Gaussian noise with variances of 2
x , 2

y , and 2
z , 

respectively. 

4.3.1.3 Vision-Based Measurement Model 

The vision-based measurement can be modeled as [93] 

                1,2, ,i i i sA i N  b q r n (4.60) 

with ;      TA q q q

 
 4 3 3

T

q I 
  

   
 

ρ
q

ρ
(4.61) 

(4.62)  
 4 3 3

T

q I
 

  
  

 

ρ
q

ρ

where 4,
TT q   q ρ is the relative quaternion in which ρ is the vector part and 4q is the 

scalar part; sN is the number of sensors; ib denotes the measured value by the ith sensor 

and ir is given by [93] 

     
2 2 2

1 i

i i

i i i i

X x
Y y

X x Y y Z z Z z

 
 

 
 

       

r (4.63) 

Note that  , ,i i iX Y Z is the known object space location of the ith beacon and in is white 

Gaussian noise. 
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4.3.2 Relative Attitude And Orbit Estimation 

The state vector of the relative navigation, including the relative attitude and the 

relative orbit is given by where and denote the relative ,
TT T

a r   x x x 9
a x 6

r x

attitude vector and the relative orbit vector, respectively. Many parameters can be used to 

represent the three-axis attitude as discussed in Section 4.1. 

In this chapter, unconstrained MRPs are used to represent attitude errors in the 

filtering algorithm. Given the attitude error represented by MPRs δp , the error 

quaternion is given by 

(4.64) 

(4.65) 

where and are two parameters. 

4,
TT q   δq δρ

 
2 22

4 22

1m c c m

c

a f f a
q

f


   




δp δp

δp

 1
4c mf a q δρ δp

ma cf

Given the error quaternion δq , the MRPs δp is given by 

4
c

m

f
a q







qδp (4.66) 

In this section, we use 1ma  and 4cf  . Define the state of the relative attitude at time 

k as , , ,ˆ
TT T T

a k k c k d k   x δp β β , where kδp , ,c kβ , and ,d kβ are the attitude error, the gyro 

bias of the chief, and the gyro bias of the deputy, respectively. 

4.3.2.1 Relative Navigation Algorithm 

Given the initial estimate 0 ,0 ,0ˆ ˆ ˆ,
TT T

a r   x x x , 0q̂ and the initial covariance 0P , the 

point-based Gaussian approximation relative navigation filtering can be summarized as 

follows. 

Prediction 

1) The transformed points are        1| 1 , 1| 1 , 1| 1,
TT T

k k a k k r k ki i i     
 
  

ξ ξ ξ

calculated by Eq. (2.31). Note that 
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with i being the 

point index and [50]; are the transformed 

SGHQ points corresponding to the six dimensional state . 

are then transformed into error quaternion by Eqs. (4.64) and 

       
ˆ ˆ

, 1| 1 , 1| 1 , 1| 1 , 1| 1
c d

TT T T
a k k a k k a k k a k ki i i i       

 
 

β βδpξ ξ ξ ξ

 , 1| 1 3 11a k k  δpξ 0   , 1| 1

T

r k k i ξ

rx  , 1| 1a k k i 

δpξ

 1| 1
pre
k k i δq

(4.65). The superscript „pre‟ denotes the prediction step. 

can be obtained by 2) The transformed quaternions 

, where 

 1| 1ˆ pre
k k i q

   1| 1 1| 1 1| 1ˆ ˆpre pre
k k k k k ki i     q δq q denotes the quaternion product. 

3) The predicted quaternions  | 1ˆ pre
k k iq are predicted by Eq. (4.45). Note, 

and , 1ˆ d kω are obtained by Eq. (4.53). , 1ˆ c kω

4) Error quaternions are calculated by 

. Then, the predicted points 

can be calculated by Eq. (4.66). The predicted points and 

are given by Eq. (4.54) and is obtained by the 

 | 1ˆ pre
k k iδq

     
1

| 1 | 1 | 1ˆ ˆ ˆ 1pre pre pre
k k k k k ki i



  
   δq q q  , | 1a k k i

δpξ

 
ˆ
, | 1
c

a k k i

βξ

 
ˆ
, | 1
d

a k k i

βξ  , | 1r k k iξ

relative orbit dynamics in Eqs. (4.55)-(4.57). Hence, 

can be obtained.        | 1 , | 1 , | 1,
TT T

k k a k k r k ki i i  
 
  

ξ ξ ξ

5) The mean and covariance are calculated by Eqs. (2.29)-(2.30). Then the 

first three mean values are transformed into the error quaternion | 1k kδq . 

The predicted quaternion | 1ˆ k kq is obtained by  | 1 | 1 | 1ˆ ˆ 1pre
k k k k k k  q q q

Update 

1) Similarly, the transformed points 

are generated by Eq. (2.35). Then can be transformed into the 

error quaternion by Eqs. (4.64) and (4.65). The superscript 

„upd‟ denotes the update step; [50]. 

       | 1 , | 1 , | 1,
TT T

k k a k k r k ki i i  
 
  

ξ ξ ξ

 , | 1a k k i

δpξ

 | 1
upd
k k iδq

 , | 1 3 11a k k δpξ 0

2) Calculate quaternions .    | 1 | 1 | 1ˆ ˆupd upd
k k k k k ki i  q δq q
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3) Given the measurement values, the state 

updated by Eqs. (2.21)-(2.23) with 

and covariance can be 

, , and . 

|ˆ k kx |k kP

 | 1ˆ upd
k k iq  | 1k k iξ ib kR

4) Calculate the error quaternion |k kδq by Eqs. (4.64) and (4.65). and the 

updated quaternion . | | | 1ˆ ˆk k k k k kq δq q

4.3.2.2 Approximation of The Process Noise 

The covariance of discrete-time noise process 1kQ used in filtering is intractable 

because it depends on the attitude matrix [93]. A numerically approximated discrete-time 

process noise can be obtained as follows. 

The error-state dynamics of the relative navigation problem is given by [93] 

c   x F x Gv (4.67) 

where 

   

 

3 3 3 6

3 3 3 3 3 3 3 6

3 3 3 3 3 3 3 6

6 3 6 3 6 3

ˆ ˆ 0
0 0 0 0
0 0 0 0

0 0 0
r

d

r

r

A I  

   

   

  

   
 
 
 
 

 
 
 x

ω q

F
x

x
f

  3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3

ˆ 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0 0
0 0 0 0

A I
I

I

I

   

    

    

    

    

  
 
 
 
 
 
 
 

q

G

(4.68) 

(4.69) 

The covariance of the process noise cv is given by 

(4.70)  2 2 2 2 2 2 2
3 3 3 3 3 3 3 3diag , , , , , ,c cv dv cu du x y zI I I I         

                 
Q

where 2
3 3cvI  and 2

3 3cu I  are covariance matrices corresponding to gyro noises in Eqs. 

(4.51) and (4.52) of the chief, respectively. Similarly, 2
3 3dvI  and 2

3 3du I  are covariance 

127 

https://2.21)-(2.23


 

 

   

  

   

             

    
 

             

 

                

  

  

    

   

 

 

 

 

   

  
  

matrices corresponding to gyro noises of the deputy. 2
x , 2

y , and 2
z are covariances of 

Gaussian process noises in the relative orbit dynamics (Eq. (4.59)). 

Then, the approximated discrete-time Q is given by [93] 

22 12
TQ B B (4.71) 

where 12B and 22B can be obtained from the following equations. 

with 

11 12

21 22

e
 

  
 

A B B
B B

T
c
T t

 
  
 

F GQ G
A

0 F

(4.72) 

(4.73) 

Note that  e  is the matrix exponential operator and that the discrete-time process noise at 

time 1k  can be obtained using Eq. (4.71). 

4.3.3 Simulation Results and Analysis 

In this section, simulation results are presented to compare the SGHQF with the 

EKF, the UKF, and the CKF. In the simulation scenario, the chief orbit radius is assumed 

to be 7,278,136 m. The initial estimated states are generated randomly by adding random 

errors with the normal distribution  0,N 0 P to the initial true value 

0 0 ,0 ,0 ,0, , ,
TT T T T

c d r   x q β β x , where 

 0 0.011108,0.707019,0.58552,0.396443029419108 T
 q , 

 ,0 200m,98.3471m,200m,0.05m s, 0.4067m s,0.05m s T
r  x ,  ,0 1,1,1 deg hourT

c β

, and  ,0 1,1,1 deg hourT
d β . 

For 0P , the initial covariance of the attitude is  2
diag 20 ,20 ,20   . The initial 

covariance matrices of the gyro biases for the chief and the deputy are assumed to be the 
same and are  2

diag 10 h,10 h,10 h   . The initial covariance of the position and 
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velocity are   2diag 10m,10m,10m and   2diag 0.01m s,0.01m s,0.01m s , 

respectively. 

To achieve bounded relative orbit, the following constraint for the initial values 

should be satisfied [51] 

0 02 ry x  (4.74) 

and 

where r is given by Eq. (4.58). 

0 02 ry x  (4.75) 

The true angular velocities of the chief and deputy are given by 

and , respectively. The  0,0.001, 0.001 rad sT
c  ω  0.001,0,0.001 rad sT

d  ω

standard deviations of the gyro biases for the chief and the deputy are 

and , respectively. Four 10 3 210 10 rad scu du     5 3 210 10 rad scv dv    

beacons are used in the simulation. The locations of the beacons are listed in Table 4.5. 

Table 4.5 Locations of beacons 

iX iY iZ

Beacon 1 0.5 0.5 0 

Beacon 2 -0.5 0.5 0 

Beacon 3 0.5 -0.5 0 

Beacon 4 -0.5 -0.5 0 

In the filters, the fourth-order Runge-Kutta method is used to propagate the state 

rx of the relative orbit. The covariance in the measurement equation is  
2

0.0005iR  . 
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The simulation time is 30 minutes and the sampling time is 1 second. The 

measurement period is 10 seconds. The following simulation results are based on 50 

Monte Carlo runs. The averaged absolute estimation errors of each state are shown in 

Figure 4.19-4.23. From Figure 4.19, it can be seen that the SGHQFs and CKF have better 

performance than the EKF and the UKF ( 3 12n     ) for attitude estimation. The 

perform of UKF is close to that of EKF and the level-2 SGHQF is close to CKF. Among 

all tested point-based Gaussian approximation filters, the level-3 SGHQF converges 

much faster than the UKF, the level-2 SGHQF, and the CKF, and achieves the best 

accuracy. Furthermore, from Figure 4.20 and Figure 4.21, only the level-3 SGHQF can 

obtain acceptable results for estimating the gyro biases of the chief and the deputy. 

The relative position and velocity are shown in Figure 4.22 and CHAPTER IV, 

respectively, in which the EKF and UKF are not shown in because they cannot converge 

into acceptable ranges. It can be seen from Figure 4.22 and CHAPTER IV that the level-2 

SGHQF and the CKF are very close and the level-3 SGHQF achieves the best 

performance in terms of the convergence rate and the estimation accuracy. 
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Figure 4.19 Averaged absolute attitude error of EKF, SGHQFs, UKF, and CKF 
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Figure 4.20 Averaged absolute error of gyro biases of EKF, SGHQFs, UKF, and CKF 
for the chief spacecraft 
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Figure 4.21 Averaged absolute error of gyro biases of EKF, SGHQFs, UKF, and CKF 
for the deputy spacecraft 
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Figure 4.22 Averaged absolute error of relative position of SGHQFs and CKF 
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Figure 4.23 Averaged absolute error of relative velocity of SGHQFs and CKF 
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CHAPTER V 

CONCLUSIONS AND FUTURE RESEARCH 

To summarize this dissertation, the following conclusions can be obtained. 

1) Three new sparse-grid based Gaussian approximation filters, including sparse 

Gauss-Hermite quadrature filter, sparse-grid quadrature filter, and anisotropic sparse-grid 

filter, have been proposed. The sparse Gauss-Hermite quadrature filter alleviates the 

curse-of-dimensionality problem of the conventional Gauss-Hermite quadrature filter 

while maintaining close performance to it. In addition, the sparse Gauss-Hermite 

quadrature filter can achieve higher accuracy than the extended Kalman filter and the 

unscented Kalman filter. The sparse-grid quadrature filter extended the sparse Gauss-

Hermite quadrature filter by replacing the Gauss-Hermite quadrature rule with the 

moment matching method. Tunable parameters can be used to make the filtering design 

more flexible. The anisotropic sparse-grid quadrature filter provides an alternative to the 

sparse-grid quadrature filter to tradeoff the computation complexity with the estimation 

accuracy. 

2) Theoretical analysis is given to prove the guaranteed performance of the three 

proposed sparse-grid based filters. It has been shown in this dissertation that the 

unscented Kalman filter with suggested parameter is a subset of the sparse Gauss-

Hermite quadrature filter. In addition, the unscented Kalman filter with any parameter is 

a subset of the sparse-grid quadrature filter. The relationship among the numerical rules 

used in Gaussian approximation filters including the unscented transformation, the 
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cubature rule, the sparse Gauss-Hermite quadrature, the sparse-grid quadrature, and the 

anisotropic sparse-grid quadrature, has been established in terms of points, weights, and 

accuracy. It has been shown that all these point-based rules can be closely unified in the 

general sparse-grid framework. The sparse-grid based filters can achieve higher accuracy 

than the unscented Kalman filter. Furthermore, the computational complexity in terms of 

the number of points used in these filters has been analyzed. It is shown that the number 

of points increases polynomially with the increase of the dimension, which alleviates the 

curse-of-dimensionality. 

3) Three aerospace applications, including spacecraft attitude estimation, orbit 

determination, and relative spacecraft navigation, are investigated to demonstrate the 

performance of the sparse-grid based filters. The simulation results have shown that the 

sparse-grid based filters achieve the best overall performance in terms of estimation 

accuracy and computational efficiency against the extended Kalman filter, unscented 

Kalman filter, cubature Kalman filter, and Gauss-Hermite quadrature filter. 

There are two future research objectives. The first objective is to design a new 

sparse-grid filtering framework that can handle highly non-Gaussian systems. The sparse-

grid generation in this dissertation will be extended to integrals with general probability 

density functions and new point propagation and update strategies will be developed. The 

second objective is to extend the sparse-grid filtering method to continuous-discrete 

systems, which can be used to solve the Fokker-Planck-Kolmogorov equation. The new 

filter will be based on the solution to the Fokker-Planck-Kolmogorov equation and the 

Bayesian update formula. The extended filter is expected to fully represent the 

probability density function and improve the accuracy of the conventional continuous-

discrete Gaussian approximation filters. 
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