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This dissertation research consists of two parts: (i) investigation of quasiparticle

alignments at high-spins and (ii) identification of triaxial strongly deformed structures

in 168Hf. A γ-ray spectroscopy study was carried out, as well as lifetime measurements

using the Doppler-shift Attenuation Method. Two data sets were obtained from

experiments at Argonne National Laboratory employing the reaction 96Zr(76Ge, 4n).

The decay γ-rays were measured with the Gammasphere Compton-suppressed Ge

spectrometer array. A self-supporting 96Zr foil (“thin target”) was used in the first

experiment, while in the second experiment the 96Zr target material was evaporated

onto a thick Au backing (“backed target” or “thick target”) to stop the recoiling

nuclei for lifetime measurements.

All previously known rotational bands have been extended to higher spins. Seven

new normal-deformed bands, of which three are high-K bands, have been discovered.

Neutron alignments were observed in all bands, and the proton alignments observed

in several bands at the highest spin region (rotational frequency 0.55 - 0.6 MeV).



The results are interpreted within the framework of the cranked shell model (CSM).

Intrinsic configurations for the new bands, up to six quasiparticles, are proposed. The

co-existing coupling schemes, deformation and rotation alignment, involving identical

orbitals at high spin are discussed for the high-K bands.

Possible decay pathways associated with three previously proposed candidates for

triaxial strongly deformed (TSD) structures in 168Hf have been investigated. The

spin and excitation energy of the bandhead for the strongest band, TSD1, were de-

termined approximately based on γ-ray coincidence relationships. Discrete links were

established for the second band. The overall agreement between the observed proper-

ties of the bands and cranking calculations using the Ultimate Cranker code provides

strong support for an interpretation where band TSD1 is associated with a TSD min-

imum, (ε2, γ) ∼ (0.43, 20◦), involving the π(i13/2)
2 and the ν(j15/2) high-j orbitals.

This constitutes the first identification of a TSD band in Hf isotopes, long-predicted

by theoretical studies. The second band is understood as being associated with a

near-prolate shape and a deformation enhanced with respect to the normal deformed

bands. It is proposed to be built on the π(i13/2h9/2) ⊗ ν(i13/2)
2 configuration.
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CHAPTER I

MOTIVATION OF THIS DISSERTATION RESEARCH

The experimental nuclear structure group at Mississippi State University has ac-

tively studied the normal and highly deformed structures in A ≃ 152-170 heavy rare-

earth region. The nucleus 168Hf96 is one of the first nuclei studied up to spins above

30h̄. This nucleus, with Z=72 and N=96, is a typical mid-shell nucleus with stable

quadrupole deformation and is a very good candidate for testing the shell model at

high spin. There are two major previous studies for 168Hf: one for normal deformed

(ND) high spin states by E.M. Beck et al. [1] and another for superdeformed (SD)

bands by our group [2]. Two experiments by our group, the first using a thin target

and another using a thick target, were performed at the Argonne National Laboratory

(ANL), USA. The current dissertation work is based on data analysis obtained from

the same two experiments. Moreover, the goal of this work was three fold: (a) to

study normal deformed high-spin structures in 168Hf with both thin and thick tar-

get data, (b) to perform lifetime measurements using the Doppler Shift Attenuation

Method (DSAM) for a normal deformed band with thick target data, and (c) to in-

vestigate possible decay pathways of three triaxial strongly deformed (TSD) bands

with thin target data.

The previous experimental study of 168Hf presented in Ref. [1] was performed

at the Lawrence Berkeley National Laboratory, USA. In this experiment, high-spins

states of 168Hf were populated by the reaction 124Sn(48Ti, 4n) at beam energies of 210

1



and 215 MeV, using a beam provided by the 88-inch cyclotron. The target consisted

of a stack of three tin foils of ∼0.45 mg/cm2 stacked together as a target so that the

evaporation residues recoiled into vacuum. The γ-rays emitted by the highly excited

nuclei were measured with the Berkeley High Energy Resolution Array (HERA),

which consisted of 21 Compton-suppressed Ge detectors. The detectors were gain

matched on-line to compensate for the Doppler shifts of the rays. A total of ∼2.8

×108 three- and higher-fold events was recorded on tape of which approximately half

came from the 4n channel. A level scheme of 168Hf, shown in Figure 1.1, was extracted

from this experiment. In this figure, an energy in parentheses indicates a tentative

transition, and a spin in parentheses indicates that the multipolarity of the line could

not be firmly determined. The positive-parity band crossing the ground-state band is

the AB band. The two strongest negative-parity bands are AE and AF, respectively.

This was also concluded by Chapman et al. [3]. In this notation, A, B, C and D

are the lowest positive(unique)-parity single particle orbitals (i13/2 neutrons for this

nucleus) in the cranking model; E and F are the lowest two negative(natural)-parity

orbitals (derived from the h9/2 and f7/2 neutrons for this nucleus). This labeling

scheme will be described in Section 6.1 in more detail.

168Hf is one of the best rigid rotors which can be populated at very high spins

[1, 3]. Being a typical mid-shell and well-deformed nucleus, it is interesting that 168Hf

can exhibit rotational band structures (Eγ∝I) without any reduction in collectivity

up to spins above 30. The study of its normal deformed states has provided evidence

for the occurence of both spin alignments and the validity of the coupling scheme in

general. This nuclide also shows superdeformation at very high spin [2].
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Figure 1.1: The level scheme of 168Hf by E.M. Beck at .el . [1].
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Detailed knowledge of the normal deformed states is crucial to understand the

decay pathways of superdeformed states. These normal deformed high spin states in

168Hf have previously been studied by E.M. Beck et al. [1].

In two previous studies [1, 4], an irregularity or second band crossing was observed

and suggested to be caused by the i13/2 or h9/2 proton alignment. High-spin γ-ray

spectroscopy in other isotopes [5-13] also revealed that neutron i13/2 and proton h11/2

and h9/2 orbitals play a crucial role for alignment gain.

In this thesis research, we further studied high-spin structures in 168Hf with the

Gammasphere array. The previously known level scheme of 168Hf [1] has been ex-

tended considerably. Seven new bands were found. In addition, the six previously

known bands have been extended to significantly higher spins. Three of the seven new

bands are high-K bands. Spin and parities of the new bands have been determined

based on the measurements of directional angular correlations from oriented states

(DCO ratios). Theoretical calculations have been performed employing the Ultimate

Cranker (UC) code. Possible intrinsic configurations were suggested for the new bands

and compared with neighboring nuclei. Notably, high-K bands are suggested to be

built on proton excitations and have been confirmed from B(M1)/B(E2) ratios. Since

the quasiparticle excitations and collectivity are interrelated to deformation, we also

measured quadrupole moments through the lifetime experiment of yrast states using

the Doppler shift attenuation method. The results were compared with predictions

from Total Routhian Surface (TRS) and UC calculations.

Chapter 2 incorporates nuclear shapes and various nuclear models. Chapter 3

discusses the concept of lifetime measurements using the Doppler Shift Attenuation

Method. The experimental methods and techniques is thoroughly discussed in Chap-

ter 4 while Chapter 5 deals with data analysis. Chapter 6 and Chapter 7 contain
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information and discussion of the normal, and superdeformed bands respectively. Fi-

nally, a brief conclusion to this thesis is presented in Chapter 8.
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CHAPTER II

THEORETICAL BACKGROUND

2.1 Introduction

The nucleus is a complex, many-body, quantum system in which the interaction

of the nucleons determines the properties of the nucleus. Except for the lightest

systems, nuclear properties cannot be calculated directly from first principles because

of the great computational power required for a system with tens to hundreds of

interacting protons and neutrons. The nuclear landscape exhibits striking elegance

in what could be a jumble of thousands of varied systems which is, in practice, not

easily solved. Nonetheless, there has been considerable success in describing the

nucleus using various approximations or models.

The nucleus continues to fascinate and surprise physicists throughout time. The

early Greek society was one of the first to speculate about the discrete nature of

matter and the possibility that it was composed of atoms. During the past 100 years,

our understanding of matter has greatly improved and scientists continue to study

their structure.

The history of nuclear physics began with the discovery of three radiations (i.e.

α, β and γ) by Antoine Bequerel, Marie and Pierre Curie in the 1890’s [14]. After

Ernest Rutherford discovered nucleus in 1911, J.J. Thomson found that there could
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be several isotopes of a given element. In spite of these remarkable discoveries, still

little was known about the structure of the atom. In 1913, Niels Bohr published his

theory of atomic structure which was only fully understood after the development of

quantum mechanics in the 1920’s [14]. In 1924, Wolfgang Pauli suggested that the

nucleus, apart from spherical, could exist in different shapes (e.g. prolate, oblate)

depending in its mode of excitation [15]. Bohr and Kalckar later proposed that these

non-spherical nuclei can be studied by measuring γ-ray transitions. When a nucleus

is excited in a nuclear reaction, it will “cool” down by emitting particles and then

γ-rays such that it will eventually reach a ground state. With this concept in mind,

heavy-ion accelerators and γ-ray detectors were developed for the γ-ray spectroscopy.

In 1959, Maria Mayer and Hans Jensen came with the idea of the shell model

[16, 17] which could help to explain radioactive stability. Aage Bohr, Ben Mottelson,

and James Rainwater later discovered the phenomenon of collective and single-particle

rotational motion in nuclei. Many features of nuclear rotation were discovered and

understood in terms of the coupling between rotational and other nuclear degrees

of freedom. In 1970 while studying high-spin structures, the phenomenon of back-

bending was discovered which has been understood as the rotational alignment of a

certain pair of nucleons. Since the γ-ray detectors of that time were not very powerful

enough, many γ-ray detector arrays, e.g. Gammasphere and Microball, were devel-

oped around the world in 1980’s and 1990’s. As a result, many new and fascinating

phenomena were discovered and out of which superdeformation is one of the most

important.

7



Superdeformation is not a new phenomenon as it is well known that the fission

isomers [18, 19] in the A ∼ 240 actinide region correspond to second minimum po-

tential energy states with a 2:1 axis ratio in their ground states. Theorists predicted

yrast1 superdeformed states at high spins in the 1970’s [20, 21]. In 1984, the Uni-

versity of Liverpool, Daresbury Laboratory, and the Niels Bohr Institute using the

TESSA2 array [22] found the first experimental evidence of a superdeformed structure

in the nucleus 152Dy [23]. Recent studies show how nuclei exhibit various symmetries

including spherical, prolate, oblate, octupole and triaxial asymmetric shapes. The

nuclear high-spin γ-ray spectroscopy strives to answer some of questions regarding

nuclear shapes and the forces which cause them by studying the γ-ray decay from an

excited nucleus.

A good measure for how well the nuclear system is understood may be seen by how

well theoretical models reproduce experimentally observed effects. Nuclear Models

are attempts at exploiting the similarities in behavior between the nucleus and some

other less complex physical system that can be more easily explained mathematically.

For a model to be considered “good”, one should be able to use it to successfully

calculate some nuclear properties. Sooner or later though, a model may be found to

be inadequate because there may be some aspects of the nucleus with which it cannot

deal. With this in mind, one must carefully choose the model that is best suited to

describe the phenomena being studied. While it is not possible to discuss all nuclear

models in detail, the author has chosen to discuss those models that are useful when

explaining the main features of the present work, namely, triaxial superdeformation

and collective rotation.

1Yrast is referred to a line on a plot of spin versus energy which connects the states with the
lowest energy for a given spin. Consequently no states exist below this line.
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2.2 Early Models of the Nucleus

It was Hans Bethe who first proposed that the Nucleus can be treated as a system

of non-interacting particles held together by a common potential [14]. This single-

body potential not only acts on nucleons bound by the nucleus, but ones near it

as well. Such an approach or “model” provided the means by which the very first

detailed calculations of scattering cross-sections, for particles incident on a nucleus,

were performed. The resulting cross-sections calculated using this approach tended to

vary quite smoothly with beam energy. However, it was later found that cross-sections

are not smooth and instead have irregular resonance structure. These resonances tend

to be narrow, with widths of a few electron volts (eV). It turns out that lifetimes (∆t

∼ h̄/∆E ∼ 10−15 seconds) corresponding to these widths are usually on the order

of a few femto-seconds. These lifetimes are very much longer than the time it takes

a projectile to simply pass by a nucleus (10−22 seconds). Initially this phenomenon

created some confusion, but its explanation led to a drastically new approach in

understanding the nucleus.

In order to explain these resonances, Neils Bohr proposed that a compound nucleus

is formed when a nucleus captures an incident particle. The resulting compound

system lives for a relatively long time before decaying via one of a number of different

reaction channels. The incident particle is attracted to the nucleus and strongly

interacts with all the nucleons in the nucleus. The particle’s energy is then shared

with all the nucleons it encounters until some equilibrium is reached. Subsequently,

this energy is transferred throughout the system by further collisions until a particle

near the surface of the nucleus receives sufficient energy to escape.
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The resulting process takes about 10−15 to 10−18 seconds and corresponds nicely

with the observed resonance widths. During this entire process the nucleus can be

considered as a drop of liquid [14, 24, 25, 26]. In this approach, the nucleus is treated

as a constant density ellipsoid. Any energy is shared throughout the system and can

lead to evacuation on its surface. Like a liquid drop, the nucleus is held together by

surface tension resulting from the mutual attraction between all the nucleons in the

nucleus. Since this drop contains charge, any internal oscillations tend to be destabi-

lizing. This characteristic makes heavy nuclei somewhat unstable and is responsible

for them breaking into fragments (i.e. fission). In 1939, Bohr and Wheeler [27] per-

formed the first detailed calculations of the fission process using this model. The

liquid drop model has also been somewhat successful in calculating binding energies

[28, 29] and the bulk properties of the nucleus [30].

In spite of its great success, the liquid drop model could not explain many phe-

nomenon. Many of the properties calculated using this model tend to vary smoothly

as a function of proton (Z) and neutron (N) numbers. However, this is not what is

observed experimentally. As it turns out, many nuclear properties behave in a dis-

continuous manner and always tend to occur for nuclei with certain numbers of Z and

N. This discontinuities occur when Z or N have values of 2, 8, 20, 28, 50, 82, and 126.

These numbers of protons and neutrons are commonly known as the magic numbers.

In fact, this behavior is very similar to what is observed in the ionization potentials for

atoms. This similarity immediately suggests that, like atoms, nuclei have some type

of shell structure. The liquid-drop and Fermi-gas models predict that the properties

of the nuclei vary smoothly with the mass and other parameters. However, exper-

iments show that this is not the case. Large splitting occurs between the nucleon

energy levels for the magic numbers 2, 8, 20, 28, 50, 82 and 126.
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Nuclei with the number of protons, Z, and/or neutrons, N, equal to the magic num-

bers have higher binding energy than otherwise. This is similar to the shell structure

of the electrons in the atom, obtained by solving the Schrödinger equation for the

Coulomb potential. Compared to the atomic electrons, the nucleons have different

magic numbers, which could not result from the same potential since other forces are

active in the nucleus, primarily the strong force, and therefore a new potential had to

be used. Many different potentials were examined, but the breakthrough came first

when a spin-orbit term, Vso(r) ℓ·σ, was introduced.

2.3 The Spherical Shell Model

One basic feature of the shell model approach is the use of an attractive central

potential [14, 31]. Since the allowed energy shells and their associated quantum

numbers in a given potential can be obtained quantum mechanically, the Schrodinger

equation is written as

Hψ =

[

− h̄2

2m
∆2 + V (r)

]

ψnlm(r) = Enlmψnlm(r) (2.1)

As the attractive force depends on the radial distance from the origin, the angular

dependence of the wave function describing a given particle is separable from the

radial term. Thus, the wavefunction can be written as

ψnlm(r) = ψnlm(r, θ, φ) =
Rnlψnl(θ, φ)

r
(2.2)

The orbital angular momentum (l)2 is a constant of the motion. Therefore, l is a

good quantum number and all states with a different projection of l on the z-axis are

2The shell label represents the orbital angular momentum l (i.e. s, p, d, f, g, h, i,.. correspond
to l=0, 1, 2, 3, 4, 5, 6,..., respectively).
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degenerate (i.e. they all have the same energy). So including the spin degeneracy,

there are 2(2l + 1) states in each level. As in the case of atomic structure, each level

can be filled with 2(2l + 1) particles, as allowed by the Pauli exclusion principle, and

thus, one can obtain the magic numbers for a given potential.

The simple Harmonic oscillator potential is a commonly used, highly degenerate

nuclear potential [14, 31] which is given by

V (r) =
1

2
Mω2r2 + Vo (2.3)

and yields nucleon energy states of

E =
(

N +
3

2

)

h̄ω + Vo (2.4)

with N = 2(n-1) + l where n and l are integers. The corresponding energies are

displayed on the far left side of Figure 2.1. It is important to note that the sequence

of magic numbers produced using this potential (2, 8, 20, 40, 70, 112) does not match

those observed experimentally. At this point, it is obvious that either a different

nuclear potential should be chosen or some modifications to this potential must be

made. One possible modification, or correction, would be the addition of an l2 at-

tractive potential to the above Hamiltonian. Thus, any particle with large amounts

of orbital angular momentum would effectively experience a stronger attractive force

that lowers its energy. In other words, the addition of an l2 term is equivalent to a

more attractive potential at large radii and comes closer to reproducing the constant

interior potential. This modification, however, still fails to reproduce the experimen-

tal magic numbers and additional corrective terms must be added.
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Figure 2.1: Single-particle energies for a simple harmonic oscillator (SHO), a modified
harmonic oscillator with l2 term, and a realistic shell model potential with
l2 term and spin orbit (l.s) terms. Taken from Ref. [31].
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In 1949, following a suggestion by Fermi, Mayer and Jensen [32] proposed that the

potential should include a component dependent upon the intrinsic spin and orbital

angular momentum of a given nucleon. This spin-orbit potential is of the form

V (r) = −Vls(r)l.s (2.5)

and has eigenvalues of l/2 and -(l+1)/2 depending on whether the spin and orbital

angular momentum vectors are coupled to yield  = l+1/2 or  = l-1/2, respectively.

This in turn splits each l > 0 state into two components. Thus, for example, the g

state (l = 4) is split into the g7/2 and g9/2 orbitals, with the half-integer subscripts

being the total angular momentum J. Now J is the only good quantum number

and each level has (2J+1) degeneracy. Since the spin-orbit interaction is attractive,

the energy of those particles whose intrinsic spin and orbital angular momentum are

parallel is lowered. Likewise, for particles whose spin and orbital angular momentum

are antiparallel, their energy is raised. This modification successfully reproduces the

known experimental magic numbers (see Figure 2.1).

2.4 Deformed Shell Model

Even though the spherical shell model has been able to successfully predict various

properties (i.e. ground state spins and excitation energies for nuclei which possess a

closed shell or nearly closed shell of nucleons), it fails when there are many nucleons

outside a closed shell or core. These exterior or valence nucleons not only interact

amongst themselves but with the entire core as well. These interactions tend to de-

form the core and lead to a variety of phenomena such as rotational bands, enhanced

transition probabilities B(E2), and large quadrupole deformations. Since these phe-
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nomena cannot be explained using the spherical shell model, a different framework,

one that considers an average deformed nuclear potential, is required.

A deformed nuclear potential leads to various collective degrees of freedom as

well as influences the motion and energy levels of individual single-particles. One

major and important consequence of the non-spherical nuclear shape is that rotational

motion can be defined in quantum mechanical terms. Up to date, the most successful

deformed shell models are the Nilsson [33, 34] and Wood-Saxon models [35, 36, 37].

2.4.1 Nuclear Deformation

In order to characterize the deformation of a nucleus, deformation parameters

describing the shape of the nucleus have been introduced. In one description, these

are denoted by β2 , β4 and γ. The β2 deformation parameter describes the quadrupole

deformation of the nucleus, and the β4 deformation parameter gives the hexadecapole

deformation of the nucleus, and γ describes its nonaxiality. The mapping of these

shapes as a function of γ and β is shown in Fig. 2.2, using the Lund convention [20].

The shape of the nucleus is said to be prolate when two of its principal axes have

the same length, and the third axis is longer. If the third axis instead is shorter, the

shape is called oblate .

For well-deformed nuclei, axially symmetric shapes often give a good description

of the nuclear properties, although some exceptions probably exist. For nuclei that

are not so strongly deformed, a triaxial shape sometimes is introduced. The size of

this axial asymmetry is described by the γ deformation parameter.
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Figure 2.2: The nuclear deformations described in the Lund convention. Adapted
from Ref. [20].
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Some nuclei far from regions with filled shells are permanently deformed in their

ground states, i.e. they are non-spherical. In the simplest case - that is when a nucleus

has a shape that can be approximated by an ellipsoid - the surface can be described

in terms of the spherical harmonics by

R(θ, φ) = Rav(1 + β2Y 20(θ, φ)) (2.6)

Here, β2 >0 or β2 < 0, the nucleus has the form of a prolate (elongated) or oblate

(flattened) ellipsoid, respectively. Usually the average radius, Rav, is approximated

with

Rav ≈ R0A
1/3;R0 = 1.2fm (2.7)

When the deformation is more complex, the shape can be described by a series of

spherical harmonics

R(θ, φ) = Rav(1 +
∞
∑

λ=1

λ
∑

µ=−λ

αλµY λµ(θ, φ)) (2.8)

or a simplification of this expression. Equation 2.6 is one version of Equation 2.8

where β2 = α20 , valid for cases with axial symmetry.

2.4.2 Triaxiality

We know that the shape of a nucleus can be either deformed or spherical. In most

deformed nuclei the quadrupole deformation is dominant, and, so far, nuclear spectra

have been mostly associated with axially symmetric deformed shapes, i.e., with either

prolate or oblate deformation. However, triaxial deformation (for example, a nuclear

shape with parameters: ǫ2 > 0 and |γ| ∼ 20◦), i.e., deformation implying the breaking
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of axial symmetry, has attracted much attention over the past decades since it opens

a new dimension to study collective nuclear rotation in the sense that the rotation of

axially symmetric nuclei becomes a limit to a more general description. Triaxiality

relates to a nucleus with a shape characterized by three unequal principle body-fixed

axes, like a kiwi fruit. Its occurence in nuclei has been a longstanding prediction of

nuclear structure theory. In such triaxial nuclei, the mass distribution and, therefore,

the moment of inertia is different along each of the three principal axes.

Experimental signatures for a triaxial shape are difficult to establish, and, as

a result, conclusive evidence has only appeared in the last few years, although the

pheneomenon was predicted more than 25 years ago. Triaxiality has now been invoked

to described various phenomena, including so-called chiral bands and wobbling bands.

Both types of collective structures are now widely accepted as unique fingerprints for

triaxiality.

2.4.3 Woods-Saxon and Harmonic Oscillator (Nilsson) Potentials

A highly effective deformed shell model is the Woods-Saxon model [37]. In this

model, a realistic potential often used is the Woods-Saxon potential with rounded

edges:

V o(r) = − V 0

1 + e(r−R)/a
(2.9)

where ‘R’ is about the half-density radius of the nucleus and ‘a’ is the diffuseness

parameter. The form of this potential is between a simple harmonic oscillator and a

square well potential. The total nuclear potential thus becomes

V (r) = V o(r) + V so(r)ℓ · σ (2.10)
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This is the foundation for the shell model for spherical nuclei, which has been very

successful in describing nuclei near closed shells, especially at low excitation energies.

A second effective deformed shell model is obtained by using the the Nilsson potential

which is given by:

V (r) =
1

2
Mω0

2r2 − Cℓ · σ −D(ℓ2− < ℓ2 > N ) (2.11)

The first term in Equation 2.11 gives an anisotropic oscillator potential, the sec-

ond term accounts for the spin-orbit interaction. The third term was introduced to

lower the energy of one-particle states at large values of ℓ, the orbital angular mo-

mentum, to make the potential fit more accurately to observations. The expression

<ℓ2>N=N(N+3)
2

denotes the average value of ℓ2 taken over each N-shell, and is added

in order to avoid a general compression of the shells. The constants C and D are

positive and are obtained by fitting to levels in well-known nuclei.

2.4.4 Nilsson Model

The Nilsson Model is a shell model for deformed nuclei [31, 38]. This model de-

scribes the motion of a single particle in a non-spherical potential. The most basic

form of the Nilsson model incorporates only axially-symmetric quadrupole deformed

shapes. The Nilsson potential (Equation 2.11) can easily be extended to three dimen-

sions, allowing a deformed nucleus with axes of different lengths:

V (r) =
1

2
M(ωx

2x2 + ωy
2y2 + ωz

2z2 − Cℓ · σ −D(ℓ2− < ℓ2 > N) (2.12)
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In the case of axial symmetry, the particle frequencies of the two axes perpen-

dicular to the symmetry axis are equal, ωx = ωy = ω⊥. Introducing the elongation

parameter as ǫ= (ω⊥ - ωz)/ω0 which is related to the deformation parameter β2 by

ǫ =
3

2
(5/4π)1/2β2 (2.13)

Quantum numbers from the Nilsson model are often used to characterize wave func-

tions in deformed nuclei, even though the calculations are based on another model.

Figure 2.3: A nucleon orbiting an axially symmetric deformed nucleus (K = Ω).
The diagram also defines the quantities j, K and θ for the Nilsson model.
Adopted from Ref. [31].
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2.4.5 Single-Particle Energy Diagrams

In order to develop single-particle energy diagrams in both the Nilsson and Wood-

Saxon frameworks, one needs a single-particle potential with quadrupole deformation

and a short-range attractive nuclear force. Let’s consider a single valence nucleon

orbiting a prolate deformed nuclear core as shown in Fig. 2.3. Since the core is

deformed, the valence nucleon experiences a prolate deformed potential. The closer

the nucleon’s orbit comes to the core (and the rest of the nuclear matter), the lower

its total energy. Thus, the particle’s energy depends on the orientation of its orbit

with respect to the symmetry axis (z-axis). This state is contrary to the spherical

shell model where there is no preferred orientation. This orientation or magnetic

substate of the nucleon, commonly referred to as K, is simply the projection of the

total angular momentum of the single particle on the symmetry axis (Fig. 2.3). Thus,

low K values correspond to single-particle motion along the symmetry axis near the

bulk of the nuclear matter for a prolate deformed core.

Using Figure 2.3, we can calculate the classical orbit angle θ corresponding to

different K values using the expression

θ = arcsin

(

K

j

)

(2.14)

So, for example, the ı13/2 orbital ( = 13/2) has K substates of 1/2, 3/2, 5/2, 7/2, 9/2,

11/2 and 13/2 with corresponding orbital angles θ of 4.4◦, 13.3◦, 22.6◦, 32.6◦, 43.8◦,

57.8◦, and 90◦, respectively. Note that θ changes slowly for low K values, but more

rapidly for higher ones. Thus, one should expect that the energy difference between

orbitals with small K values is somewhat less than that for the large K orbitals.

With this in mind, one can begin to develop the single-particle energy diagram for
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Figure 2.4: Splitting of i13/2 orbital as single-particle energy varies with K (β > 0,
prolate, to the right). Modified from Ref. [31].

the ı13/2 orbital in the region where β > 0 (Fig. 2.4). It is interesting to note that the

separation of adjacent states sharply increases with K. For those orbitals with low

K values, their energy decreases very rapidly with increasing β. The more downward

sloping low K orbitals are commonly known as intruder orbitals because they intrude

into the lower shells. On the other hand, for those orbitals with high K values their

energy increases rapidly with increasing β. The more upward sloping of these orbitals

are referred to as extruder orbitals.

The last step needed to fully develop the entire single-particle energy diagram

(β>0) is to combine all the orbitals with different  values. Since the dominant fea-

ture of a deformed field is the single-nucleon mixing of different  values, one must
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Figure 2.5: Nilsson diagram for protons, 50 ≤ Z ≤ 82 (ǫ4 = ǫ2
2/6) [33, 34].
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Figure 2.6: Nilsson diagram for neutrons, 82 ≤ N ≤ 126 (ǫ4 = ǫ2
2/6) [33, 34].
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superimpose it with the K splitting. Now recalling that no two orbitals with the

same quantum numbers may cross and since the remaining good quantum number

describing the orbit is K, then no two orbitals with the same K values (and parity π)3

may cross. Thus, if two orbitals with the same K approach each other, an infinites-

imal interaction will cause them to repel each other. When one incorporates many

different  orbitals and considers realistic deformations where energies of different or-

bits intermingle, the entire single-particle energy diagram can be constructed. The

single-particle energies for protons and neutrons calculated using a Nilsson potential

[33, 34], are shown in Figures 2.5 and 2.6. Notice that each orbital corresponding

to a given shell converges at spherical shape, ǫ2 = 0 (ǫ2 = 0.95β2) and then slopes

according to the angle of the orbit relative to the mass of the core. Also, notice that

each orbital starts to curve when it approaches another level with the same K and π.

Thus, the shape of orbitals in the diagram relies on 3 factors, K splitting, level-level

repulsion, and input single-particle shell model energies.

2.4.6 Orbital Labeling Convention

In the both Nilsson [33, 34] and Woods-Saxon [35, 36, 37] models, orbitals are

labeled using the following convention [31]:

Kπ[N, nz,Λ] (2.15)

The first term, K, is the projection of the total angular momentum J along the

symmetry (z) axis. The parity of the state is given by π. The principal quantum

number N represents the number of quanta associated with the simple harmonic

3Parity is associated with symmetry properties of the nuclear wavefunction under spatial inversion

and is defined by π = (-1)l where l is the orbital angular momentum.
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Figure 2.7: Asymptotic quantum numbers for the Nilsson model.

oscillator shell (see Fig. 2.1). The number of nodes in the wavefunction in the z

direction is given by nz. The last term, Λ, represents the component of the orbital

angular momentum ℓ along the symmetry (z) axis. By definition, K and Λ are related

by

Λ = K ± 1

2
(2.16)

depending on whether the intrinsic and orbital angular momenta are parallel or an-

tiparallel. Thus, each orbital is two-fold degenerate in K. The asymptotic quantum

numbers for the Nilsson model are shown schematically in Fig. 2.7.
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2.5 Nuclear Excitations and Collective Rotation

In general, the lowest energy excitations of the nucleus can be simply explained

when the nucleus is separated into those nucleons which are actively engaged in its

equilibrium properties and various modes of excitation, the valence nucleons, and

those nucleons which are largely bystanders, the mostly inert closed-shell core. The

lowest energy excitations reflect occupation of orbits which are most accessible, gen-

erally those nearest the Fermi surface. The relative spacing between orbits, shown

up to magic number 126 on the right of Fig. 2.1, and the filling on the last major

shell provide information about the simplest expectations for nuclear excitations. The

relative spacing between orbits within a major shell is a few hundred keV while the

relative spacing between major shells is much larger - up to 1 MeV or more. Excita-

tions between major shells require more energy than excitation within a major shell.

The spacing between orbits and shells and the number of valence particles are useful

starting points for interpreting the structure of the nucleus.

2.5.1 Single Particle Excitations

For simplicity, consider the ground state of a nucleus with an odd number of

nucleons. Due to the short range residual interactions and the Pauli Principle, pairs

of like nucleons in the same orbit prefer to couple to spin-parity Jπ = 0+. The

spin of the ground state will be given by the sum of the angular momenta of all

the nucleons, all but one of which are coupled to spin Jπ = 0+. Therefore, the

ground state spin J of the nucleus is equal to the angular momentum j of the last

nucleon. Excited states may be formed by promoting the odd particle to a higher

energy orbit, leaving the underlying paired particles nearly undisturbed. The energy

of this state approximately corresponds to the difference in energy between the orbits,
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and the state is said to have a different configuration from that of the ground state.

Additional configurations can be formed if a pair of nucleons is broken and these

nucleon’s angular momenta are coupled to various nonzero values determined by the

Pauli principle. In the case of a doubly odd nucleus, one containing odd numbers of

protons and neutrons, either or both of the unpaired particles may be promoted to

higher energy orbits. Pairs of particles may also be moved to higher energy orbits.

While single particle excitations can occur in any nucleus, they are particularly

prevalent at low energies near closed shells. Nuclei near closed shells generally do

not have enough valence particles to facilitate collective motion at low energies, their

structure can be interpreted in terms of single particle excitations. This idea is pivotal

to the trans-lead region. It must be noted that the Shell Model is a greatly useful,

simplifying approach to a small portion of nuclei, specifically those near closed shells.

As valence particles are added, the shell model wave functions become extremely

complicated in terms of the various amplitudes of the nuclear wavefunction, and a

collective description of the nucleus becomes more appropriate.

2.5.2 Quasiparticle Excitations

In nuclei with large numbers of valence particles, such as nuclei in the rare earth

region, excited states may be formed by promoting multiple quasiparticles to higher

energy orbits. Such excitations differ from single particle excitations in that the nu-

clear wavefunction is not necessarily dominated by one amplitude. In deformed nuclei,

the Nilsson Model gives the applicable single particle levels. Though it describes nu-

clei with many valence nucleons, the Nilsson Model recovers the single particle picture

by ignoring the complexity of the underlying even-even system. Only excitations rela-

tive to the Fermi surface are considered. Some of the 0+ states could be explained by
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considering quasiparticle excitations, particularly two- and four-quasiparticle excita-

tions [39] where the spins are coupled to Jπ = 0+. In general quasipartcle excitations

lie higher in energy than typical collective excitations.

Figure 2.8: The normally deformed nucleus can take on various deformations such as
an quadrupole, octupole, and hexadecapole.

2.5.3 Collective Excitations

Only non-collective excitations have been discussed up to this point. However,

when the components of nuclear wavefunction add coherently, the nucleus may un-

dergo collective motion. These collective phenomena, including vibrations and rota-

tions, incorporate varying numbers of nucleons. Collectivity and the onset of defor-

mation are commonly described geometrically in terms of the equilibrium shape of the

nucleus, requiring a paradigm shift from the microscopic description of valence nucle-

ons to the macroscopic picture of fluctuations about the equilibrium shape described

by the degree and spatial orientation of the deformation. The macroscopic spherical

shapes come from a uniform occupation of magnetic substates (microscopic). Con-
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versely, deformed shapes stem from a nonuniform occupation of magnetic substates.

The description of deformation, closely linked to collectivity, is extremely important

in the geometric picture, and three basic shapes emerge from it: spherical, axially

symmetric rotor, and axially asymmetric rotor. Axially asymmetric nuclei are often

called gamma-soft, referring to the gamma degree of freedom, or the axial asymme-

try. The shape of the deformed nucleus takes on many forms as depicted in Figure

2.8. Most deformed nuclei take on a quadrupole deformation. However, octupole and

hexadecapole deformations can also exist in nuclei. The most common quadrupole

deformations can be understood by stretching and squashing a spherical shape in

any of three directions. The prolate nucleus, reminiscent of an American football,

is elongated in one direction and squashed in the other two directions. The oblate

nucleus, similar in shape to a frisbee, is stretched in two directions and squashed

in one direction. Most nuclei are prolate deformed. The parameter β describes the

degree of quadrupole deformation. In spherical nuclei, the nuclear potential well is

centered at zero while in deformed nuclei, the potential well is centered around some

finite value of β.

Deformation requires both valence protons and valence neutrons and can be es-

timated by the numbers of these valence particles [40]. The spacing of energy levels

decreases as deformation increases, and deformation in transitional nuclei is com-

monly estimated by the ratio of the energies of the first 4+ state to the first 2+ state,

or R4/2. For nuclei at or near closed shells, the R4/2 is near 1. As valence particles

are added, the nucleus becomes more collective, and the R4/2 for vibrational nuclei is

∼ 2. Near midshell, with a maximum number of valence particles and deformation,

the R4/2 approaches 3.33 for rotational nuclei. These are ideal limits; ratios for real

nuclei lie in the vicinity of these values.
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The ideal limits give benchmarks for what would be structurally expected in nuclei

falling near the limits. Deviations from the structures expected for these ideal limits

give a great deal of insight into the structure of the nucleus. In the vibrational limit,

the nucleus is spherical and can undergo quadrupole vibrations in which the surface

of the nucleus expands and contracts. These phonons give rise to a regularly spaced

set of harmonic levels.

When the nucleus is deformed, it may vibrate about the deformed equilibrium

shape or rotate. Two types of quadrupole vibrations are possible. In the K = 0

vibration, commonly but somewhat mistakenly referred to as the beta vibration,

the nucleus vibrates along the symmetry axis, much like the case of the spherical

nucleus. In the gamma vibration, the nucleus vibrates about the symmetry axis.

Gamma vibrations occur in both axially symmetric and axially asymmetric nuclei.

Though gamma vibrations are time dependent deviations from the symmetry in the

axially symmetric case, the average shape of the nucleus remains axially symmetric.

Rotational and vibrational modes can be superposed, giving rotational bands built

upon vibrational states.

2.5.4 Gamma Decay

An excited nucleus may decay by emitting some kind of particle, undergoing

fission, or by rapidly emitting a sequence of γ-rays. In these processes, the nucleus

loses not only energy, but also angular momentum. In the last case, it is favorable

for the nucleus to send away γ-rays with a large energy, but with as little angular

momentum as possible. By this one can conclude that the most favorable way for the

nucleus to decay is along the so called yrast line, which is defined as a sequence of all

the states with the highest angular momentum for a given energy.

31



A γ-ray transition is characterized by the change in spin and parity of the nucleus

caused by it, and it can be of electric or magnetic type. The multipolarity, the angular

momentum carried away by the emitted photon for a transition between an initial

state and a final state, is denoted by λ. If there is no change in parity and is even,

the transition is of electric type, as well as when there is a change in parity and λ is

odd. Otherwise, the transition is of magnetic type.

A transition of multipolarity λ is denoted by Eλ if it is electric and Mλ if it is

magnetic. The picture is somewhat complicated by the fact that a transition can have

mixed multipolarity. The admixture must be of higher multipole order and have the

same correct change in parity. For example, a M1 transition can have an admixture

of E2. The mixing ratio describes the amount of the admixture. As stated above,

the lowest possible multipole order dominates. Furthermore, an E transition is more

probable than a similar M transition. As a result of this, the aforementioned E2/M1

mixture is quite common, but a M2 transition is too weak to compete with an E1.

2.5.5 Collective Rotation Motion

An important consequence of deformation is the fact that rotational motion is

a possible mode of excitation. In the spherical case, it is not possible to observe

the collective rotation about an axis of symmetry, since the different orientations of

the nucleus are quantum-mechanically indistinguishable. In the case of an axially

symmetric nucleus, there is a set of axes of rotation, perpendicular to the symmetry

axis. The rotational angular momentum, ~R, is generated by the collective motion

of many nucleons about this axis. Additional angular momentum can be generated

by the intrinsic angular momentum of any valence nucleons, ~J . The total angular

momentum, ~I, of the nucleus is then

32



Figure 2.9: Schematic of the coupling of the collective angular momentum, ~R and
the intrinsic angular momentum of the valence nucleons, ~J . The left
figure illustrates the coupling scheme for deformation alignment and the
right for rotation alignment [38]. The projection of the total angular

momentum, ~I, onto the symmetry axis is K.

~I = ~R+ ~J (2.17)

This angular momentum coupling is shown schematically in Figure 2.9. The in-

trinsic angular momentum of the valence nucleons,
−→
J , is the sum of the angular

momenta of the individual valence nucleons, i.e. ~J=
∑A

i=1
~ji. The projection of the

total angular momentum onto the symmetry axis is K, and is the same as the pro-

jection of ~J . The projection of the angular momentum, ~J , of a valence nucleon is

~Ω; thus ~Ω=
∑A

i=1
~Ωi. In the ground-state rotational band of an even-even nucleus, the

valence particles are paired such that ~J= 0, and the total angular momentum ~I=~R.
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The collective rotational energy can be determined through analogy with a clas-

sical rotating rigid body. The angular momentum of the rotating rigid body is I=ℑ

and hence its classical kinetic energy is

E =
I2

2ℑ =
1

2
ℑω2 (2.18)

where ℑ is the moment of inertia and ω is the rotational frequency. By analogy to

the quantum mechanical case, this becomes

E =
< Î2 >

2ℑ ; < Î2 > = h̄2I(I + 1) (2.19)

Thus the rotational motion of the nucleus leads to a sequence of states with energy

E =
h̄2I(I + 1)

2ℑ0
; (2.20)

In the above equations ℑ0 is the static moment of inertia. It should be noted that the

nucleus, however, is not a rigid body, and measured moments of inertia are somewhat

less (30 to 50%) than rigid body values at low spin. This is due to the effects of

the pairing interaction, which make the nucleus behave like a super fluid (Pairing is

discussed in Section 2.7). Experimental moments of inertia are also larger than those

calculated for the rotation of a super fluid, showing that the nucleus is somewhere

between these two extremes. As the nucleus rotates, it is found that the moment of

inertia changes as a function of spin.
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The ratio h̄2

2ℑ
is called the rotational energy constant. The excitation energies

corresponding to Iπ= 0+, 2+, 4+, 6+, 8+, etc. form a so-called rotational band

sequence. In terms of the rotational energy constant the excitation energies are

E(0+) = 0

E(2+) = 6( h̄2

2ℑ
)

E(4+) = 20( h̄2

2ℑ
)

E(6+) = 42( h̄2

2ℑ
)

E(8+) = 72( h̄2

2ℑ
)

(2.21)

The γ-ray energy for an I→I - 2 transition thus becomes

EI→I−2 =
h̄2

2ℑ(I(I + 1) − (I − 2)(I − 2 + 1)) =
h̄2

ℑ (2I + 1) (2.22)

As can be seen, the γ-ray energy increases regularly for higher spin and excitation

energy.

In the cranked shell model, also called the cranking model, the rotation vector

is assumed to coincide with one of the symmetry axes of the nucleus. The nucleons

can be described as independent particles moving in a rotating potential. One of the

simplest potentials is the Nilsson potential (Section 2.4.3). It doesn’t describe the

nuclear properties as well as the Woods-Saxon potential, but its simplicity makes it

possible to find analytical expressions for the interesting variables.
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2.5.6 Moment of Inertia

The rotating nucleus can be described in terms of its angular rotational frequency,

ω. Classically, this is

ω =
dE

dI
(2.23)

The quantum-mechanical analogue of this is given by

h̄ω =
dE(I)

d
√

I(I + 1) −K2
(2.24)

where d
√

I(I + 1) −K2 is the projection of the total angular momentum onto the

rotational axis, known as the aligned angular momentum, Ix. For a K=0 rotational

band of stretched transitions, this can be approximated by

h̄ω =
EI − EI−2

√

I(I + 1) −
√

(I − 2)(I − 1)
≈ Eγ

2
when I >> K (2.25)

Rotational energy spectra can be discussed in terms of two spin-dependent moments

of inertia, which are related to the first- and second-order derivatives of the excitation

energy with respect to the aligned angular momentum, Ix. The first order derivative

is the kinematic moment of inertia,

ℑ(1) = Ix

(

dE

dIx

)−1

h̄2 = h̄
Ix
ω

(2.26)
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The kinetic moment of inertia can be related to the transition energy, Eγ , through

Equation 2.22. For a rotational band,

Eγ =
h̄2

2ℑ(1)
(4I − 2) (2.27)

The second order derivative is the dynamical moment of inertia,

ℑ(2) =

(

d2E

dI2
x

)−1

h̄2 = h̄
dIx
dω

(2.28)

The dynamical moment of inertia can be related to the difference in transition energy

of consecutive γ-rays,

∆Eγ =
4h̄2

ℑ(2)
(2.29)

Thus, if the dynamical moment of inertia were a constant, the transition energy

difference would be the same for all values of spin. Often this is not true and ℑ(2)

is found to increase with increasing spin. In the limit of rigid rotation, ℑ(2) = ℑ(1),

the two moments of inertia can be related as:

ℑ(2) =
dIx
dω

=
d

dω

(

ωℑ(1)
)

= ℑ(1) + ω
dℑ(1)

dω
(2.30)

2.6 The Cranking Model

The cranking model describes the rotation of a deformed nucleus around one of its

principal axes. In this model, the nucleons can be described as indepedent particles

moving in a rotating potential,e.g. the Nilsson potential.

The coordinates in the laboratory system are denoted by x, y, z, and those in the

rotating frame of reference x’, y’ and z’. The nucleus is assumed to rotate around
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the x-axis, with an angular velocity ω. The rotational transformation between the

laboratory and the intrinsic coordinate system of the nucleus is then given by:

x’ = x

y’ = y cosωt + z sinωt

z’ = -y sinωt + z cosωt

The Schrdinger equation in the time-dependent laboratory system is written as:

ih̄
∂ψlab

∂t
= Hlabψlab (2.31)

A transformation to the rotating system is made by introducing the rotation operator

ℜ:

ℜ = e−iJxωt (2.32)

where Jx = J′

x is the component in the x-direction of the angular momentum operator.

The transformation is given by:

ψlab = ℜψintrℜ−1

Hlab = ℜHintrℜ−1

(2.33)

This inserted in Equation 2.31 gives:

ih̄
∂ψlab

∂t
= (Hintr − h̄ωJx′)ψintr (2.34)

where Hω is called the cranking Hamiltonian, and is time independent. The eigenval-

ues of Hω are called Routhians.
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In addition to this average potential that determines the single-particle orbitals,

a pairing force must also be included. The lowering of the moment of inertia with

the introduction of pairing is discussed in Section 2.7.

Hω from the cranking model is invariant with respect to a rotation with an angle

π around the rotational axis, as well as under space inversion (parity), but not with

respect to similar rotations around the other axes.

The operator corresponding to rotation around the x-axis with an angle π is

denoted by ℜx= ℜ′

x:

ℜx′ = e−iπJ ′

x (2.35)

The eigenvalues of ℜx are denoted by r = e−iπα. Both r and α are defined to as the

signature quantum numbers. The relation between spin and signature is:

I = α(mode2) (2.36)

The only quantum numbers that are conserved in the cranking model are those of

parity and signature. The parity can be positive or negative, and the signature (α)

can take the values of 0 or 1 for nuclei with even nucleon number, and can be +1
2

or

-1
2

for an odd-A nucleus.

The states in a rotational band have, as stated above, an energy that depends

on the nuclear spin as E∝I(I+1). From equation (2.36), one can conclude that the

signature will alternate between two possible values, if I is increased one unit at a

time. In fact, the original rotational band will be split into two parts, where the

transitions within one part are of E2 type, and the transitions between the parts are

of type M1. The parts have the same moment of inertia, and differ only in signature.
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2.7 Pair Correlations

Fermions (e.g. protons and neutrons) tend to pair with similar fermions. These

pairing correlations were first introduced by Bardeen, Cooper, and Schrieffer (BCS)

[41] in their microscopic theory of superconductivity. The BCS theory was immedi-

ately incorporated into nuclear structure theory [42] as experimental evidence greatly

supported the need for pairing correlations. The most well known evidence for pair-

ing is that all even-even nuclei have Iπ = 0+ ground states. Accordingly the ground

states in even-even nuclei are normally ∼ 1-2 MeV below any excited particle state.

The odd-even mass difference, which indicates large gain in binding energy when an

even-even nucleus is formed compared to its neighboring odd mass nuclei, also pointed

towards the necessity of pairing. Other features, which were seen in retrospect, such

as the nuclear moment of inertia being ∼ 30% of the rigid rotor moment of inertia

in deformed nuclei and lower than expected band head energies of excited particle

states in odd mass nuclei, could be explained with the use of BCS theory.

The qualitative description of two like nucleons pairing is shown in Fig. 2.10. Two

partcles pair by orbiting in the same  shell and K orbital, but in opposite directions.

The pair’s angular momentum sums to zero and thus all even-even nuclei will have a

0+ ground state since all the nucleons will be paired initially. A collision will occur

between the two and they will scatter into another equal and opposite orbit. The

interplay between paired nucleons is known as time reversed orbits. A pair orbiting

in a particular  state has an equal chance to scatter back into the same or different

 state. This is actually a crucial point for if the pair were confined to remain in the

same j orbit, then excited states could occur simply by raising both particles to the

next unoccupied orbit. This would imply that the pairing gap observed in even-even
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Figure 2.10: Two particles in a time reversed orbit associated with pairing
correlations. Particles in orbits 1 and 2 collide and scatter into orbits
3 and 4. Adopted from Ref. [43].

nuclei would approximately be equal to twice the energy needed to raise a particle

from  to ′. On average, the gap in even-even nuclei would only be twice the energy

of the excited band heads seen in their odd-A neighbors and not five to ten times

as large as observed experimentally. Instead, by allowing pairs to scatter from  to

′, the 0+ levels mix and thus drive the ground state in even-even nuclei to lower

energies and creates a partial occupancy of levels near the Fermi surface. This partial

occupancy radically changes the concept of particle and hole excitations as will be

shown below.
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Figure 2.11: Partial level occupancy, resulting in a quasi-particle state, due to
pairing. An ideal set of shell model levels are shown (left) and the
resulting occupancy (right). Adopted from Ref. [31].

To continue the discussion, let’s refer to the Fig. 2.11 where the Fermi level is

denoted by λ and the single-particle energies ǫi, ǫo being reserved for the level nearest

the Fermi surface. The pairing gap parameter, ∆, is defined in terms of a sum over

orbits ı,  as

∆ = G
∑

ı,

UıV (2.37)
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where U and V are known as the emptiness and fullness factors, respectively and are

expressed by

Uı =
1√
2



1 +
(ǫı − λ)

√

(ǫı − λ)2 + ∆2





1

2

, Vı =
1√
2



1 − (ǫı − λ)
√

(ǫı − λ)2 + ∆2





1

2

(2.38)

The G factor in Eqn. 2.37 is known as the pairing strength which is dependent on

whether the nucleon is a proton or neutron and the total mass A of the nucleus.

Commonly used values of Gp = 17/A and Gn = 23/A are used. A plot of the ratio

(ǫı-λ)/∆ versus V2 is shown on the right hand side of Fig. 2.11. One may note V2

→ 1 for (ǫı-λ) ≪ 0 and V2 → 0 for (ǫı-λ) ≫ 0. Since U2 acts oppositely to the same

conditions and that U2 + V2 = 1, Uı
2 may be regarded as the probability the ıth

orbital is empty and Vı
2 is the probability it is filled. Therefore, in the presence of

pairing, the amount of energy needed to promote a particle to a higher single-particle

state (ǫı-λ) is replaced by the energy, Eı, necessary to excite a quasiparticle given by

Eı =
√

(ǫı − λ)2 + ∆2 (2.39)

It is no longer proper to speak of the particles and holes now, but rather quasiparticles

partially filling levels.

The big energy gap between the ground state and the first two-quasiparticle

structures in even-even nuclei is now precisely described by Equation 2.39. A two-

quasiparticle state would require an excitation of

Ee−e
xı

=
√

(ǫı − λ)2 + ∆2 +
√

(ǫ − λ)2 + ∆2 (2.40)
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A minimum of 2∆ in energy is required before any simple two-quasiparticle excitation

may be obsrved in even-even nuclei. In fact, most two-quasiparticle structures occur

at ∼ 1.5-2.0 MeV and typical values of ∆ for even-even nuclei range from 0.7-1.0 MeV.

The reason for the lower than the expected band head states from particle excitation

in odd-A nuclei may also be empirically seen by Equation 2.39. The excitation energy

for an excited quasiparticle state will be

E0
xı

= Eı − E0 =
√

(ǫı − λ)2 + ∆2 −
√

(ǫ0 − λ)2 + ∆2 (2.41)

where E0(ǫ0) is the quasiparticle (single-particle) energy of the orbit nearest the Fermi

level. The effect lowers the excitation energies of orbitals near the Fermi surface and

actually decreases quasiparticle excitations by ∆ at (ǫı − λ) ≫ ∆.

2.7.1 The Coriolis Anti-Pairing (CAP) Effect

The Coriolis force is produced by a body moving with a velocity ~υ on a rotating

system animated by an angular velocity ~ω. The effect of the Coriolis force is an

apparent deflection of the path of this object, which does not actually deviate from

its path, but rather appears to do so because of the motion of the coordinate system.

Since we live on the earth - a rotating planet, the Coriolis effect is very common.

The resulting ocean currents, weather patterns and the vortices formed during the

draining of our bathtubs are accepted consequences of these forces. Nevertheless,

the forces are generally weak, and they do not affect our human activities. This is

probably the reason why only advanced studies in Physics deal with this phenomenon.

It turns out that nuclear rotation generates inertial forces, which simulate the

effects of electric and magnetic fields. As in the case of any rotating system, the
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Figure 2.12: The classical picture of the Coriolis force on two nucleons (1 and 2)
moving in a rotating system.

inertial forces can be separated into centrifugal and Coriolis forces. The former act

radially and result in a stretching of the nucleus. The effect is analogous to the

stretching of a polar molecule by the application of an electric field. The Coriolis

force takes the form:

FCor = −2m~ω × ~υ (2.42)

where m is the mass (i.e. nucleon in our case) and ~υ the velocity of the moving object

(nucleon). This expression inescapably reminds us of the force e~υ×~B on an electric

charge e, moving with velocity ~υ in a magnetic field ~B. Thus, the effects of these

forces are similar to those induced by electric and magnetic fields [44].

At low spins(∼10h̄) the nucleus displays well established superfluid properties

with nucleons teaming up in time reversed orbits, or “Cooper pairs”. For two nucle-

ons paired together in time reversed orbitals, an increase in rotational frequency ω will

increase the Coriolis interaction, which acts in opposite directions for each nucleon,

as shown in Fig. 2.12. When the Coriolis force becomes greater than the pairing

energy for two nucleons, at a certain critical rotation frequency (ωc), the pairing cor-
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relations will be quenched completely. This process is the analogue of the quenching

of superconductivity by a sufficiently high magnetic field, and it is called the Coriolis

Anti-pairing (CAP) effect, first discussed by Mottelson and Valatin in 1960 [45]. This

can be interpreted as the breaking of the nucleonic pair, aligning the spins of both

nucleons with that of the collective motion, so that the nucleons give a non-vanishing

contribution to the total angular momentum of the nucleus. This effect is known as

backbending and denotes a change in the intrinsic structure of the nucleus. In fact, in

1971 Johnson et al. [46] found, for the first time, a sudden change (i.e. backbending)

in the ground-state rotational bands of 162Er and 158,160Dy.

Figure 2.13: An example of band crossing in 168Hf. The figure depicts excitation
energies of bands G and AE as a function of spin relative to a rigid-
rotor reference.

In the region between 10 and 20 units of angular momentum (h̄), the backbending

anomaly can be observed in the transition energies of the ground-state rotational

bands of many deformed nuclei. The nuclear excitation energy is observed to deviate
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from the expected rigid rotor I(I+1) dependence. If we look at a certain plot (Fig.

2.13) of spin against frequency, the curve will be found to move backwards (to the

left) in the crossing spin region. But at a higher frequency, the curve again moves to

the right. The term backbending arose from the ”S” shape of the curve seen in the

plot, since the moment of inertia bends back and up.

2.7.2 Theoretical Quasipartcle Energy Diagrams

The quasipartcle Routhian with pairing is given as

h′q.p. = h′s.p. − ∆(P+ + P ) − λN̂ (2.43)

where the single-particle Routhian

h′s.p. = hs.p.(β) − ωjx (2.44)

contains the single-particle angular momentum and the single-particle Hamiltonian

hs.p. which in this case has the Nilsson potential. The Nilsson potential is described

by a set of deformation parameters represented by β. The operator P+ creates a pair

field with a fixed strength defined by the pairing strength parameter ∆. The chemical

potential λ determines the expectation value of the particle number N̂ which is fixed

to the number of protons or neutrons of the nucleus under consideration.

2.7.3 Shape Vibrations

Vibrations, in addition to rotation, are also one of the collective excitation modes

of the nucleus. One of the bands of this work (BE) has the nature of octupole

vibrations in 168Hf. It corresponds to a type of oscillation of the shape of the nucleus.
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Figure 2.14: Schematic of the different modes of nuclear vibration.

When a spherical nucleus absorbs small amounts of energy, its density distribution

can start to vibrate around the spherical shape. The magnitude of this vibration can

be described by the coefficients αλµ defined in Equation 2.8 in section 2.4.1. For small

amplitude vibrations, the Hamiltonian for a vibration of multipole order λ, which is

actually the difference between the energy of the deformed shape corresponding to

the vibration and the energy of the nucleus at rest, can be written as:

Hλ =
1

2
Cλ

∑

µ

∣

∣

∣αλµ

∣

∣

∣

2
+

1

2
Dλ

∑

µ

∣

∣

∣

dαλµ

dt

∣

∣

∣

2
(2.45)
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With the assumption that the different modes of vibrational excitation are inde-

pendent from one another, the classical equation of motion can be obtained from the

above Hamiltonian,

Dλ
d2αλµ

dt2
+ Cλαλµ = 0 (2.46)

Therefore, a small vibration can be considered as an harmonic oscillation with the

amplitude, αλµ, and the angular frequency, ωλ =
(

Cλ

Dλ

)

1/2. The vibrations are quan-

tized where the quanta are called phonons, and h̄ωλ is the quantity of vibrational

energy for the multipole λ. Each phonon is a boson carrying angular momentum λh̄

and a parity π = (-1)λ. The different modes of low order vibrational excitation (λ =

0, 1, 2, 3) are illustrated in Fig. 2.14.

2.8 Electromagnetic Properties of Deformed Nuclei

2.8.1 Electric Quadrupole Moment

The nuclear quadrupole moment is one of the most important properties of a

deformed nucleus, and the observation of large quadrupole moments in nuclei away

from closed shells is one of the best direct evidences for the existence of stable nuclear

deformation. The intrinsic quadrupole moment, Q0, in the body fixed frame of a

deformed nucleus rotating about its z-axis can be defined in terms of the charge

distribution in the nucleus, ρe(r), and, hence, of the nuclear shape, as:

Qo =
∫

(3z2 − r2)ρe(r)d
3r ≈

(

8Z

5

)

(

a− b

a+ b

)

r2
o (2.47)

where a and b are the lengths of the major and minor axes of the nucleus, respectively,

and ro = a+b
2

. Therefore, the nuclear quadrupole moment is a direct measure of the

nuclear deformation, i.e., for a spherical shape, Qo = 0; for a prolate shape, Qo >
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0; and for an oblate nucleus, Qo < 0. The Qo moment can also be related to the

deformation parameter, β2. In axially symmetric nuclei with quadrupole deformation

only, the first order expression can be given as:

Qo =

(

3Z√
5π

)

r2
oβ2 (2.48)

Generally, the experimental quadrupole moments measured in the laboratory frame

are the spectroscopic quadrupole moments, Qspec. From Ref. [47], the intrinsic

quadrupole moment, Qo can be obtained by projecting the spectroscopic quadrupole

moment onto the frame of reference fixed on the nucleus through the following rela-

tion:

Qo =
(I + 1)(2I + 3)

3K2 − I(I + 1)
Qspec (2.49)

where K is the projection of I onto the symmetry axis, as described in Section 2.5.5.

For a K = 0 band, such as the ground state band in even-even nuclei, this relation

has the simpler form:

Qo =
(I + 1)(2I + 3)

I(2I − 1)
Qspec (2.50)

Moreover, the experimental transition quadrupole moment, Qt, which can be derived

from the measurement of the lifetime of a state , is related to the Qo moment by the

relation [48]:

Qt(I + 1) =
√

Qo(I)Qo(I + 2) (2.51)
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2.8.2 Magnetic Moment

In contrast to the nuclear electric moment, the nuclear magnetic moment reflects

the contribution of the individual nucleons inside the nucleus. It is convenient to

separate the orbital and spin contributions of the neutrons and protons. The magnetic

moment operator can be expressed as:

µ̂ = µN

A
∑

i=1

[glili + gsisi] (2.52)

where µN is the nuclear magneton, gli and gsi are the orbital and the spin gyromag-

netic ratios (the gyromagnetic ratio is the ratio of the magnetic dipole moment to the

angular momentum of a nucleus), respectively. Besides this contribution, the rotation

of the core as a whole, i.e., the collective rotation, contributes to the nuclear magnetic

moments. In units of the nuclear magneton, the latter contribution is proportional to

the angular momentum of rotation, R. Combining all of the contributions together,

the magnetic moment operator can be written, after some mathematical treatment,

as:

µ̂ = gRI + [gK − gR]
K2

I + 1
(2.53)

The observed nuclear magnetic moment is the expectation value of the magnetic

moment operator on a nuclear state |I,K>:

µ = 〈I,K|µ̂z|I,K〉 (2.54)

where I is the total angular momentum, K is the projection of I onto the symmetry

axis, and the z-axis is the axis of rotation.
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2.8.3 γ-ray Angular Correlations and the DCO Ratio

A γ-ray with multipolarity λ is either electric (denoted by Eλ ) or magnetic

(denoted by Mλ ), or a mixture of these. Emitting a γ-ray with multipolarity changes

the spin I of the nucleus acccording to

|Ii − If | ≤ λ ≤ |Ii + If | (2.55)

where the indices i and f denote initial and final, respectively. The change in parity

π for Mλ and Eλ transitions is ruled by

πi · πf = (−1)λ; for Eλ transitions

πi · πf = (−1)λ+1; for Mλ transitions
(2.56)

The angular intensity distribution, W(θ, φ), of the γ-rays depends on the multipo-

larity λ of a transition. Consequently, by analyzing the intensity at different angles

the multipolarity can be determined, but not the electric or magnetic nature of the

transition. For example, compare the angular distributions of the electric or mag-

netic fields from oscillating dipoles and quadrupoles. The analogy also explains why

electric or magnetic transitions can not be distinguished because the far fields from

electric or magnetic multipoles do not differ.

The angular distribution is only measurable when the emitting nuclei have some

kind of non-uniform orientation. In heavy-ion collisions, the spin of the compound

nucleus points in a direction perpendicular to the incoming beam.
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The angular distribution of the photons will thus be symmetric in the forward

and backward directions and independent of the azimuthal angle φ. For the perfect

alignment of the nucleus, the angular distribution is

W (θ, φ) = W (θ) = 1 + A2P2(cosθ) + A4P4(cosθ) + ......... (2.57)

However, in the real world the alignment of the spin is not perfect and the attentuation

factors α2 , α4 , .... are introduced to deal with this. In heavy-ion experiments, the

alignment is found to have a Gaussian distribution and thus the attentuation factors

are uniquely dependent on each other. Higher orders of attentuation factors are

normally negligible and the angular distribution becomes

W (θ) = 1 + α2A2P2(cosθ) + α4A4P4(cosθ) (2.58)

The coefficients A2 and A4 depend on the initial and final spin, the initial and final

angular momentum of the transition and eventually the mixing ratio δ.

One way to utilize this concept to measure the multipolarity of a transition is to

deduce what is known as its DCO (Directional Correlation of Oriented nuclei) ratio.

In this case at least two detectors, placed at different angles, θ1 and θ2, are needed.

Let I denote the intensity of a transition, γ the transition of which the multipolarity

is to be measured and γG a transition with a known multipolarity. Then the DCO

ratio can be expressed as:

RDCO =
I(γ at θ1 gated by γG at θ2)

I(γ at θ2 gated by γG at θ1)
(2.59)
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The expected DCO ratios for transitions with a certain multipolarity can then be

calculated as a function of θ1 and θ2.
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CHAPTER III

LIFETIME MEASUREMENTS USING THE DOPPLER SHIFT ATTENUATION

METHOD

3.1 Doppler-Shift Methods

Normal deformed (ND) states typically have mean lifetimes in the range of 0.1 ps

to ∼1 ps, which are too short for direct electronic timing methods to apply. Electronic

timing is able to measure lifetimes to only ∼ 10−11s. Lifetimes of excited nuclear

states in the 10−14s to 10−9s range can be measured with Doppler-shift methods,

the recoil distance plunger method (RDM) and the Doppler-shift attenuation method

(DSAM). These techniques utilize the fact that, after a nuclear reaction has occurred,

the velocity of a recoiling nucleus in an excited state may be obtained, at the moment

of the γ-ray decay of that state, by measuring the Doppler energy shift of the γ ray.

In the RDM, after leaving a target, the nuclei excited by a reaction move freely in a

vacuum until they are quickly stopped (< 0.5 ps) by a movable plunger. The plunger

typically moves from 1 µm to 1 cm from the target. Because of the Doppler shift,

the energies of the γ-rays emitted by the stopped and moving nuclei are different.

Knowing the velocity of the recoiling ions and, consequently, the time it takes them

to reach the plunger, makes it possible to obtain lifetimes in the range of 10−9-10−12s.

Since the RDM was not used in this work, it will not be discussed further. In the
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Figure 3.1: The principle of the Doppler shift attenuation method of measuring
lifetimes in the residual nucleus B∗, formed in the reaction A(a, b)B∗.
The recoiling nucleus B∗ slows in the material of the target and backing
while emitting a γ-ray with the mean lifetime τ of the excited state.
Adopted from Ref. [49].

DSAM the lifetime of a level emitting a γ-ray is typically compared with the slowing

time of a recoiling nucleus in a target and backing. The basic method is illustrated

in Fig. 3.1. A beam of incoming particles a impacts the target nuclei A. Reaction

products b are emitted, leaving the final nucleus B∗ in the excited state whose lifetime

is to be measured. From an initial recoil velocity vo the excited nucleus slows in the

target and backing. When the mean recoil velocity has dropped to v, a γ-ray is

emitted. v is determined experimentally by measuring the average Doppler shift of

the emitted γ-rays. The Doppler shift is given by

E(θ) = Eo (1 + β cos θ) (3.1)
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where β = v/c, E is the average detected γ-ray energy at the angle θ, E0 is the energy

of the γ-ray in the reference frame of the nucleus, and θ is the angle of γ-ray emission

with respect to the direction of the incoming beam of particles.

v now needs to be related to the time of emission. Knowing the stopping power

of the target and backing material allows the determination of the velocity of the

recoiling nucleus as a function of time from the force equation

dE

dx
= −Mdv

dt
(3.2)

In the above relation dE
dx

is the stopping power of the material in which the nucleus

is traveling, M is the mass of the recoiling nucleus, and dv
dt is the rate of change of

the nucleus’s velocity. Use of this equation provides a clock to measure time from the

instant of compound nucleus formation until the nucleus either exists or stops in the

backing.

3.2 Stopping Powers

The major systematic error in the DSAM depends on determination of stopping

powers. The discussion of heavy-ion stopping powers can be separated into three

velocity regions:

• Low velocity, where v
c
≤0.5%. Nuclear stopping is the dominant mechanism for

energy loss.

• Medium velocity, where 0.5%≤v
c
≤1.5%. Nuclear and electronic stopping are almost

equal.

• High velocity, where v
c
≥1.5%. Electronic stopping is the dominant mechanism for

energy loss.
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Nuclear stopping results from the scattering of the recoiling nucleons by the

Coulomb and nuclear fields of the nuclei in the stopping material. Since the re-

coiling nuclei and the nuclei with which they interact have comparable masses, there

are relatively large energy losses and changes in direction per collision. However, only

small amounts of experimental stopping power data are available in this velocity re-

gion, so it is conventional to use theoretical estimates of stopping cross sections when

calculating the heavy-ion energy loss. The treatment of the slowing process for low-

and medium-velocity ions by Lindhard et al. has been widely accepted [50]. Lindhard

wrote the rate of energy loss in the form

dE

dx
=

(

dE

dx

)

e

+

(

dE

dx

)

n

(3.3)

where the subscripts e and n refer to the electronic and nuclear contributions to the

stopping, respectively. The nuclear stopping power
(

dE
dx

)

n was calculated by Lindhard

from numerical solutions of the Thomas-Fermi equation. An analytic expression that

fit the nuclear stopping cross sections, obtained by Lindhard, was given by Winterbon

et al. [51]. As previously mentioned, recoiling nuclei in the nuclear stopping regime

experience large directional changes. Since DSAM measurements are interested in

the component of velocity along the initial recoil direction, the equations of Lindhard

and Winterbon must be modified. Blaugrund has given a formulation that takes the

directional changes into consideration [52]. Currie [53] used a Monte-Carlo method

that achieved essentially the same results as Blaugrund’s approach. It has become

commonplace to use
(

dE
dx

)

n as calculated by the Lindhard-Winterbon-Blaugrund for-

mulation as the nuclear stopping power in the DSAM. Electronic stopping powers are

then determined by more empirical methods, as discussed below.
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Electronic stopping involves the interaction of the recoiling nuclei with atomic

electrons. The recoiling nuclei are always much heavier than the electrons with which

they interact. Consequently, it will take many collisions, resulting from the Coulomb

forces, before the energy of a recoiling nucleus is lost. The electronic stopping process

can therefore be regarded as continuous, with no change in direction of the recoiling

nucleus.

Although it is relatively easy to measure heavy-ion stopping powers for the v
c
≥3%

region, only a few measurements have been made. Hence, to a lesser extent, the

determination electron stopping powers again relies on the calculations of models.

Northcliffe and Schilling [54] have compiled a semi-empirical table of stopping powers

for heavy ions. The compilation was based on measured proton stopping powers,

with the assumption of smooth variations between the measured points for different

stopping materials. The stopping powers for ions other than protons were then derived

by the introduction of an effective charge of the moving ion γZ1

(γZ1)
2 = γ2

p (dE/dx)HI / (dE/dx)P (3.4)

where (dE/dx)HI and (dE/dx)P are at the same velocity in the same material. γP

is the effective charge of the proton and is unity for proton energies ≥0.5 MeV. The

parametrization of Pierce and Blann [55] is often used for the effective charge

γ = 1 − e
−0.95vR (3.5)
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where vR is the reduced velocity v/voZ1
2/3. With the aid of more extensive measure-

ments on 4He stopping powers, a typical expression for the effective charge parametriza-

tion became [56]

γ = 1 − A(Z1)e
−0.87v/(voZ0.65

1
) (3.6)

with

A(Z1) = 1.035 − 0.4e−0.16Z1 (3.7)

Ziegler and Chu [57] illustrated that 4He stopping powers show a strong periodic

dependence on the atomic number of the stopping materials Z2. The stopping material

exhibits a pronounced shell structure effect, which decrease with increasing incident

particle energy. It becomes almost negligible for incident particle energies> 1 MeV/A.

In light of the observed shell effects Ward [56] suggested that the Northcliffe and

Schilling calculations be scaled to the measured 4He stopping powers.

3.3 Sidefeeding

The in-band γ-ray intensity of ND cascades generally increases with decreasing

transition energy until a plateau is reached. This means there are unobserved states

that feed the in-band ND levels. When a ND state emits a γ ray, the velocity of the

nucleus can be viewed as a function of that ND state’s intrinsic lifetime and of all

the lifetimes of the preceding states. The ND state’s apparent lifetime reflects the

time history of the feeding cascade, thus, the lifetimes of the unobserved sidefeeding

states must be considered when calculating the in-band ND lifetimes. This unknown

sidefeeding will introduce additional uncertainties into the calculated in-band ND

lifetimes. However, the uncertainty can be reduced by analyzing spectra which are

produced by gating on top of the ND band of interest. Gating-on top of a ND band
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is a requirement that one or more of the γ rays detected in a coincidence event be

at an energy equal to a high-energy transition in the ND cascade of interest. This

basically constrains all intensity in the ND spectrum to pass through the high energy

transitions upon which gates are set. Consequently, sidefeeding to ND states below

the transition energies used for gating is eliminated.

Gating-on-top is possible with the largest and most modern γ-ray arrays, such as

Gammasphere. Unfortunately, in this work, gating on top reduced the statistics such

that Doppler-shift measurements could not be performed. Hence, the effect of the

sidefeeding states is the main uncertainty in lifetime values for 168Hf.

3.4 Lineshapes

To study lifetimes for the transitions of a rotational band, a Doppler-shift atten-

tuation program “LINESHAPE” [58], developed by Bacelar et al. [59] and Gascon et

al. [60], has been used. This program has been extensively modified and combined

with the least- squares minimization routine MINUIT, written by James and Roos

[61]. MINUIT includes minimization routines MIGRAD, SIMPLEX, and SEEK, and

the error routine MINOS.

SIMPLEX, by Nelder and Mead [62], uses the simplex method for the minimiza-

tion of a function of N parameters. The method depends on the comparison of the

function values at the N+1 vertices of a general simplex followed by the replacement

of the vertex with the highest value by another point. A simplex is the smallest N-

dimensional geometrical figure with N+1 vertices: a triangle for N=2, a tetrahedron

for N=3, etc. New simplices are formed by reflecting one point in the hyperplane of

the other points.
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The simplex adapts itself to the local landscape of the function, elongating down

inclined planes, changing direction upon encountering a valley at an angle, and con-

tracting in the neighborhood of a minimum.

MIGRAD, a gradient search method using Fletcher’s switching variation [63] to

the Davidon-Fletcher-Powell variable matrix algorithm [64], approaches a local min-

imum closely and generates parabolic error estimates, which would be true errors if

the chi-square function were really quardatic with respect to each parameter.

SEEK performs a minimization using a Monte Carlo technique. The parameter

values are chosen randomly according to uniform distributions centered at the best

previous set of values. If chi-square is lower for these new values, they become the

starting point for the next iteration, otherwise the previous set remains the starting

point as the process is continued through a series of iterations.

MINOS finds the true positive and negative errors (confidence intervals) of a pa-

rameter by examining the behavior of chi square in the vicinity of the best value of

the parameter. The value of the parameter of interest is varied in steps, both increas-

ing and decreasing from its best value, and at each step, chi-square is reminimized

by varying the N-1 remaining parameters. This process is continued until chi-square

increases by one unit.

LINESHAPE calculates the γ-ray lineshapes and extracts lifetimes by fitting the

experimental data. Detailed descriptions of the method and its application can be

found in reports of recent lifetime measurements for Hf isotopes [65-67]. The magni-

tude and direction of the velocity, so-called ”velocity profile”, for the recoiling ions in

the target and backing materials was calculated in a Monte Carlo fashion [53]. In the

calculation for the slowing down process, both electronic and nuclear stopping pow-

ers were considered. For the electronic stopping power, the tabulated values of Ref.
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[54], corrected for the α-stopping power [57], were used. For the nuclear stopping

power, a multiple Coulomb scattering formalism was used [50]. From the velocity

profile distribution, a set of γ-ray peak shapes at each time step was obtained for

each γ-ray angle and were stored in a “shape-versus-time” matrix. To reproduce the

lineshapes, the γ-ray yield per time step was calculated by using the solution of the

Bateman’s equation [68]. The calculated lineshapes were then obtained by summing

the independent lineshapes at each time step, weighted by summing the γ-ray yield.

In order to fully analyse these lineshapes three gated γ-γ coincidence matrices

were generated using the thick target data: one with coincidence events between the

ten detectors at 50◦ and the other detectors; the second with the ten 130◦ detectors

and others; and the third matrix with coincidence events between the 90◦ detectors

and the others. In order to observe the Doppler shifted transitions, 1D spectra were

obtained by gating the 2D matrices on lower states of a rotational band and summing

over all the clean gates for the forward and backward angle detectors. Spectra from

the 90◦ detectors also were obtained for comparison.

The LINESHAPE program assumes that a rotational band, with the known

discrete-line energies and a set of rotational transitions with the same moment of

inertia, precedes the highest-spin transitions. The lifetime τ of an E2 transition with

energy Eγ is

1/τ = 12.2Eγ
5B(E2, I → I − 2), (3.8)

where Eγ =
4I − 2

2J (2)/h̄2 , (3.9)

B(E2, I → I-2) is given in Equation 2.58 where τ is in ps, Eγ in MeV, and B(E2, I

→ I-2) in e2b2. A sidefeeding cascade with a constant moment of inertia is linked to
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each level. For each level, the sidefeeding intensity is obtained experimentally and the

sidefeeding time is controlled by a parameter, Qs being included in the fit. Thus, the

lifetime of a state and its corresponding sidefeeding times were fitted for each γ-ray

transition, starting from the highest level to the lowest six.
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CHAPTER IV

THE EXPERIMENTAL TECHNIQUES

4.1 The Fusion-Evaporation Reaction

A persistent technique in science to investigate a physical system is to view it under

extreme conditions. For example, one of the ways of studying a nucleus is by observing

how it responds to stress and stain, e.g. input angular momentum and excitation

energy. The fusion-evaporation reaction has proven to be an extremely useful tool in

the studies of nuclear structure physics. With heavy ions, this reaction imparts large

amounts, up to the fission limit, of energy and angular momentum to the compound

nucleus, and allows the observation of some unstable nuclei as well. However, the

current sources of heavy ions (or stable ions) are abundant in nature and thus, only a

limited number of nuclei can be produced in this fusion-evaporation reaction due to

the lack of stable beams and targets. Currently, advanced radioactive beam facilities

are under development and an incredible knowledge in nuclear structure physics can

still be achieved.

In order to create a highly excited nucleus, a suitable ion beam and target material

are chosen for fusion such that the beam must be high enough to overcome the

Coulomb repulsion of two nuclei. A linear accelerator or a cyclotron are generally

used for this task. Once a highly-excited and rapidly rotating compound nucleus
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is formed, it decays, after about 10−19s, by emitting protons, neutrons, and alpha

particles. The so called emitted or evaporated particle not only loses most of the

excitation energy, but also loses little (∼ 1-2 h̄) angular momentum. This process

continues until the energy of the nucleus is about 10 Mev above the yrast line - a

state at which the emission of γ rays begins.

Figure 4.1: Diagram illustrating the de-excitation mechanism for a heavy ion fusion-
evaporation reaction [69].

During the early stage (statistical cooling phase) of γ-ray emission, very strong

electric dipole (E1) transitions are emitted from the “cooling” nucleus. [70]. As

the nucleus approaches (∼ 3 MeV) the yrast line, the nucleus de-excites mostly via

higher multipole transitions [70]. At this final stage, the deformed nucleus emits

discrete collective cascades, or bands, until both the excitation energy and angular
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momentum are exhausted, (i.e. ground state), as shown in Fig. 4.1. The γ rays

thus emitted from the de-exciting nucleus are then collected by detectors and later

analyzed. This entire process, from the formation of the compound nucleus to decay

to its ground state, takes about 10−9 seconds. Figure 4.2 illustrates the different

stages of the fusion-evaporation reaction.

n
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Figure 4.2: Diagram of the fusion-evaporation process [71].
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4.2 Reaction Choice

While choosing a reaction, the physicist has to consider various factors, and the

target is, of course, a major concern. It is very important that the target must

be pure (∼ 95 %), stable and available. Depending upon nuclear properties to be

studied, the target may be either a thin self-supporting foil or a thick foil with Pb

or Au backing. While a thin target (∼ 500µg/cm2) is chosen for coincidence γ-

ray analysis to construct a decay or level scheme, a thick target (> 1mg/cm2) with

a Pb or Au backing (∼ 10 mg/cm2) is preferred for lifetime measurements. For

the thin target experiment, the peaks will suffer Doppler shifting while the thick

target spectra may consists of both Doppler-broadened and non Doppler-broadened

components, depending on the lifetimes of the corresponding states emitting the γ

rays. One technique, i.e., Doppler Shift Attenuation method to measure the lifetime

from Doppler-broadened spectra, has been discussed in detail in Chapter III.

It is always advantageous for experimentalists to have high beam currents to

record maximum counts, which is achieved from the proper combination of stable

beam and target. Since the angular momentum and excitation energy introduced

into the compound nucleus depend on the beam type, one must follow precaution

while choosing a heavy or light beam. Generally, a computer code is employed in

order to help choose a suitable beam and target combination. It is noted that using

the heavier beam means the more spin to be introduced into the system. Once an

appropriate beam-target combination is selected, the other task is to determine the

minimum energy required for the beam-target fusion to occur.

68



The beam must have sufficient kinetic energy to overcome the Coulomb barrier,

which can be calculated from the expression [72]:

Vc(R) =
1

4πǫo

ZbZte
2

R
(4.1)

where b and t represents the beam and target, respectively and

R = [1.36(A
1/3
b + A

1/3
t ) + 0.5]fm. (4.2)

Once the Coulomb barrier is found sufficiently low, the proper beam energy can be

determined by doing calculations in detail.

4.3 Designing a Gamma-Ray Detector System

The Figures 4.3 and 4.4 illustrate a γ-ray detector system and its interior view,

respectively. The most important properties of a γ-ray detector array are: (1) high

efficiency1 in detecting incident γ-rays, (2) high energy resolution resulting in very

narrow energy peaks, (3) high ratio of full-energy to partial-energy events, and (4)

high granularity to localize individual γ rays and reduce the probability of two γ-ray

hits in one detector from the same event. For γ rays in the MeV range, by far the

best combination of these properties is given by semiconductors made of high-purity

germanium (Ge) crystals. The largest Ge crystals that can currently be produced

commercially are cylinders about 10 cm in diameter and 10 cm long which, with

about 30% relative efficiency for incident 1.3 MeV γ rays, produce a full-energy peak

with a full width at half its maximum (FWHM) of about 2 keV at this energy. For

1The efficiency of a detector is defined as the ratio of number of counts in the 1332.5 keV peak
from a 60Co source placed 25 cm away to the number of counts observed in a 3” × 3” NaI crystal
under the same conditions.
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increases in both efficiency and granularity, these Compton-suppressed detectors are

assembled into arrays. The first such array was set up in Europe in 1980 and consisted

of five detectors whereas Gammasphere [73] has 110 Ge crystals, 70 of which have

two independent elements, for a total of 180 separate detectors. Gammasphere will

be discussed in detail in Section 4.6.
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Figure 4.3: Gammasphere Detector Geometry [71].
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4.4 Compton-Suppressed Ge Spectrometer

The dominant characteristic of Ge detectors is their excellent energy resolution2

when applied to γ-ray spectroscopy. The great superiority of the Ge detector in energy

resolution allows the separation of many closely spaced γ-ray energies, which remain

unresolved in other detector system. Consequently, virtually all γ-ray spectroscopy

that involves complex energy spectra is now carried out with Ge detectors. Of the

various ways γ rays can interact in matter, only three interaction mechanisms have any

real significance in γ-ray spectroscopy: (i) photoelectric effect (ii) Compton scattering,

and (iii) pair production. Photoelectric effect predominates for low-energy γ rays (up

to several hundred keV), pair production predominates for high-energy γ rays (above

5 - 10 MeV), and Compton scattering is the most probable process over the range of

energies between these two extremes.

The photoelectric effect is an interaction in which the incident γ-ray photon is

absorbed and a photoelectron is produced from one of the electron shells of the

absorber atom with a kinetic energy given by the incident photon energy minus the

binding energy of the electron in its original shell. Thus, the result of the photoelectric

effect is the liberation of a photoelectron, which carries off most of the γ-ray energy,

together with one or more low-energy electrons corresponding to absorption of the

original binding energy of the photoelectron. If nothing escapes from the detector,

then the sum of the kinetic energies of the electrons that are created must equal the

original energy of the γ-ray photon. The photoelectric effect is therefore an ideal

process if one is interested in measuring the energy of the original γ-ray.

2The energy resolution of a detector is defined as the ratio of the full width at half maximum
(FWHM) to the mean or average pulse height, i.e. peak in the observed spectrum.
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Figure 4.4: Segmented Ge crystal of Gammasphere [71].

Pair production is a nuclear process, which occurs when a high-energy photon,

generally interacting with an atomic nucleus, produces a particle (electron) and an

antiparticle (positron). It is the chief method by which energy from γ rays is observed

in condensed matter.

The background of a γ-ray spectrum has two main sources. One stems from

statistical decay of the hot nucleus and gives a quasi-continuum background. The

other is caused by Compton scattering. Compton scattering is the process in which

a photon scatters from an electron, thereby losing some of its energy. Because all

angles of scattering are possible, the energy transferred to the electron can vary from

zero to a large fraction of the γ-ray energy. When this occurs in a detector, the result

is that the detected energy of the γ ray will be lower than the actual energy as a part

of the γ ray escapes the detector. The Compton background can be substantially
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reduced by detecting in the anti-Compton shield photons that are scattered out of

the Ge detectors, and then discarding the corresponding Ge detector signals using

anticoincidence.
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Figure 4.5: Effect of Compton background suppression [71].

Because of the cosmic radiation that can continuously bombard the earth’s at-

mosphere and the existence of natural radioactivity in the environment, all radiation

detectors record some background signal. The nature of this background varies greatly

with the size and type of detector and with the extent of shielding that may be placed

around it. Because the magnitude of the background ultimately determines the min-

imum detectable radiation level, it is most significant in those applications involving
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radiation sources of low activity. However, background is often important enough

in routine usage so that the majority of radiation detectors are provided with some

degree of external shielding to effect a reduction in the measured level. Background

radiations are conveniently grouped into five categories: (i) the natural radioactiv-

ity of the constituent materials of the detector itself, (ii) the natural radioactivity

of the ancillary equipment, supports, and shielding placed in the immediate vicinity

of the detector, (iii) radiations from the activity of the earth’s surface (terrestrial

radiation), walls of the laboratory, or other far-away structures, (iv) radioactivity in

the air surrounding the detector and (v) the primary and secondary components of

cosmic radiation.

4.5 The Principle of Compton Suppression

For a better ratio of full-energy to partial-energy events (called the peak-to-total,

or P/T ratio), the Ge detectors are surrounded by a dense scintillator (bismuth ger-

manate (BGO) being the most common), which detects γ rays Compton-scattered

out of the Ge crystal and then electronically suppresses the partial-energy pulse left

in the Ge detector (Figure 4.5). This results in an improvement in the P/T ratio

for a 1.1 MeV gamma ray from about 0.25 for the bare crystal to about 0.6 when

suppressed. This is an enormously important signal to background gain, without

which high-fold3 coincidence measurements would not be practical. For example, for

a typical situation in Gammasphere when six γ rays hit separate Ge detectors, the

fraction of events with full-energy photo-peaks rises by a factor of about 200 with

Compton suppression.

3Fold is the number of γ rays detected in a given event.
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Figure 4.6: Gammasphere closed and ready for beam [71].

4.6 Gammasphere

Gammasphere is a γ-ray detector system that was designed to sensitively carry

out high-fold γ-ray coincidence measurements. This gives a large resolving power,

and makes it possible to identify weak cascades. The design goal was to achieve high

efficiency, a good response function, high energy resolution and detectors resistant to

neutron damage. The detector type that was chosen was a 4π array of n-type Ge

detectors, mounted in 17 rings symmetric about the beam line, with BGO Comp-

ton suppressors. BGO (bismuth germanate Bi4Ge3O12) is a very dense scintillation

material. This makes it possible to detect a large fraction of the scattered γ rays,

while the scintillator is kept small. The full energy efficiency of Gammasphere is

about 9% at 1.3 Mev, which is a very high efficiency in this context, and its relative
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energy resolution is around 0.2% at the same energy. The design of Gammasphere

makes it possible to study nuclei at the limits of stability, e.g. nuclei near the drip

lines or nuclei with high masses or angular momenta. Figure 4.6 shows a picture of

Gammasphere. Detailed geometries of the detectors are listed in Table 4.1.

Table 4.1: Arrangement of detectors in Gammasphere.

Ring Number Angle Detectors

1 17.27 1,2,3,4,6
2 31.72 5,7,8,9,10
3 37.38 11,12,13,14,16
4 50.07 15,17,18,19,20,21,22,23,24,26
5 58.28 25,27,28,30,32
6 69.82 29,31,33,34,35,36,37,38,40,42
7 79.19 39,41,44,46,48
8 80.71 43,45,47,50,52
9 90.0 49,51,53,54,55,56,57,58,60,62
10 99.29 59,61,64,66,68
11 100.81 63,65,67,70,72
12 110.81 69,71,73,74,75,76,77,78,80,82
13 121.72 79,81,83,84,86
14 129.93 85,87,88,89,90,91,92,93,94,96
15 142.62 95,97,98,99,100
16 148.28 101,102,103,104,106
17 162.73 105,107,108,109,110

aThe experiment performed with 101 Ge detectors in Gammasphere.
bDetectors 1 - 6, 10, 53, 58 were missing in this experiment.
cDetector # 36 removed after tape 4.

4.7 Technical Innovations-Electrically Segmented Detectors

For many of the Gammasphere experiments the energy resolution is dominated

by the Doppler broadening due to the recoil motion of the nucleus emitting γ rays,

which depends on the opening angle of the Ge detector. High granularity is needed to

reduce this effect. To accomplish this, about 70 of the GAMMASPHERE detectors
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have been electrically segmented into two D-shaped halves (Fig. 4.4). The high-

resolution, total-energy signal is still read from a common electrode at the center of

the detector while lower resolution signals can be read separately from each half thus

indicating which side of the crystal was hit first. Thus, the effective angular size of

the Ge detector is reduced by a factor of two. In typical experiments this improves

the resolving power of Gammasphere by a factor of two. This innovation of creating

electrically segmented Ge detectors, made by the Gammasphere collaboration, is now

an established technique used by manufacturers around the world. This important

technique has laid the technical foundation for the next generation of highly seg-

mented detector arrays, ”GRETA”, the Gamma-Ray Energy Tracking Array, which

is calculated to be about 1000 times more powerful than Gammasphere!
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CHAPTER V

EXPERIMENTAL MEASUREMENTS AND RESULTS

5.1 Experiment Details

The two experiments by our group, the first using a thin target and the second

using a thick target, were performed at the Argonne National Laboratory (ANL),

USA.

In the experiment using the thin target, high-spin states in the nucleus 168Hf were

populated by the reaction 96Zr (76Ge, 4n) at a beam energy of 310 MeV. The beam

was provided by the ATLAS accelerator at the Argonne National Laboratory. A

self-supporting thin foil of 76Zr (667 µg/cm2) was used as a target such that the evap-

oration residues recoiled into vacuum. The γ rays emitted by the highly excited nuclei

were measured with Gammasphere, which consisted of 101 Compton-suppressed de-

tectors. The experiment lasted for about 96 hrs, and a total of 2.2 × 109 events

were recorded on tape, with a requirement of ≤ 5 suppressed Ge detectors in prompt

coincidence. Heavimet collimators were placed in front of the Ge spectrometers to

reduce the background signals. A beam wobbling mechanism developed at ANL was

used to deposit the beam particles to the target evenly in the area of 4 mm × 5 mm.

This helped with the heat dissipation in the target, making it possible to use a higher

than usual (typically ∼1.5 pnA) beam current of ∼5 pnA to obtain more data in a
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limited time. In the case of the thin target, the compound nucleus is not stopped

in the target, but continues to move, and decays during flight. The measured γ-ray

energies from different detectors must therefore be corrected for the Doppler effect.

A thick target (a 96Zr foil with thick Au backing, 21 mg/cm2) was used in the sec-

ond experiment. In both experiments, the γ rays emitted by the nuclei were detected

using Gammasphere. Detector ID and γ-ray energies were recorded to magnetic tapes

along with coincidence timing information. The information above allows for Doppler

correction of the γ-rays in the off-line analysis. The coincidence information for the

γ-rays was used to construct the level scheme of 168Hf.

As mentioned earlier, the thin target data is good for coincidence analysis. The

thick target data was mainly used for level lifetime analysis using the Doppler Shift

Attenuation Method. It can also be used in the coincidence analysis for low-spin

transitions, which are emitted after the recoiling nuclei completely stopped in the Au

backing and form sharp peaks in the γ-ray spectra. Therefore, the thick target data

may have better energy resolution than the thin-target data for low-spin transitions.

It has been found that thin target data is pretty good for our analysis for decay-out

transitions.

5.2 Off-line Data Analysis

This section briefly introduces the analysis process of the experimental data that

leads to the ultimate goal of any γ-ray spectroscopy experiment: establishing a level

scheme of the nucleus of interest. The analysis procedure starts by scanning the raw

data tapes, followed by energy and efficiency calibration of the Ge detectors, and ends

with building a coincidence cube or matrix.
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Several software packages and scanning routines were used at each level of the

analysis process. The function and use of software packages will be described in brief.

5.2.1 Data Base Construction

To perform data analysis, a database on the computer disk was constructed from

the raw data on magnetic tapes by using the sorting program BDDB, developed at

the Neils Bohr Institute (NBI). For each coincident event, only γ-ray multiplicity,

detector IDs, and gamma energies were written into the database. The γ-ray energies

detected by each detector were corrected for the Doppler shift before being written

into the database.

If the source of the γ-ray photons is moving considerably compared to the speed of

light, the γ-ray energies are subject to Doppler shifts when measured in the laboratory

system. The measured energy of a Doppler shifted γ-ray is

E ′ = Eγ,β =
1 + β cos θ√

1 − β2
Eo (5.1)

where the θ is angle between the detector and the beam direction, β = v/c, v is

the velocity of the recoiling nucleus and c the speed of light. The linear momentum

(and thereby the β value) for each recoiling nucleus is a composition of the primary

momentum transferred from the projectile, the momenta for the emitted particles

and the momentum losses due to scattering in the target. Out of these effects, only

the latter cannot be corrected for on an event-by-event basis. Momentum changes

due to γ-ray emission can be neglected. The γ-ray energies were sorted into spectra

corresponding to the detector rings in Gammasphere with different θ. The energy

shifts of strong γ-ray lines were measured in these spectra and a β value of 4.09%
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was obtained by fitting the data to Equation 5.1. The Doppler Correction of γ-ray

energies corresponding to this value were then made event by event, based on the

detector angle (ID).

5.2.2 Cube and Hypercube Construction

Two RADWARE programmes “incub8r” and “4play” were used to create a three-

dimensional histogram (cube) and a four-dimensional histogram (hypercube) from

the database for the analysis of γ-ray coincidence relationships.

When the γ-ray data are sorted into coincident histograms, γ-γ or γ-γ-γ, it in-

cludes background counts. The background counts are due to Compton-scattered

γ-rays and quasicontinuum (unresolved) transitions. The procedure used in this anal-

ysis to subtract the background contribution in the gated spectra is described by Ref.

[74]. This procedure consists of the following steps. (1) A one-dimensional projection

of the higher dimensional histogram is obtained. (2) A background is drawn manually

to the projected spectrum. (3) Software, either ESCL8R (γ-γ) or LEVIT8R (γ-γ-γ)

[75], uses the prescription described in Ref. [74] with both the one-dimensional spec-

trum and the automatic smooth background in gated spectra [76]. The prescription is

based in large part on the method of background subtraction developed by Palameta

and Waddington [77] with extensions to higher fold, such as γ-γ-γ.

There are some additional background considerations to take into account de-

pending on the reaction. For reactions in which several neutrons are evaporated, a

”neutron-bump” can arise in the spectra. This bump results when inelastic neutron

scattering in the Ge detectors excites the 2+→0+ transitions in 72Ge or 74Ge. In the

reaction used for the present work, this bump was not visibly present in the projec-

tions of the 1D spectra and as such was neglected in the drawn background curves
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Figure 5.1: An example of background subtraction in γ-ray spectra.
Taken from Ref. [76].

(see Fig. 5.1). The background should be approximately smooth and continuous for

the entire spectrum. Also, a background spectrum which runs along the exact bottom

of the peaks in the projection will tend to be too large. Depending on the overall

statistics of the projected histogram, this maximum background should be reduced

by 15 - 30% for triples (cubes). Experimentation with different background curves is

often necessary to achieve the best results. The goal is to create a background spec-

trum, which when subtracted from the gated spectra in any dimensionality, gives a

resultant spectrum that appears to have a background fluctuation around zero counts

along the entire energy scale with the only significant non-zero counts in actual peaks.

5.2.3 Coincidence Analysis and Level Scheme Construction

For the analysis of prompt γ-ray cascades, the most common histograms are cre-

ated by sorting γ-γ events into a two-dimensional energy spectrum (matrix). For
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example, when two γ-rays γ1 and γ2 are detected simultaneously in a given event,

then two histogram cells are incremented in the following way: (row, column) = (γ1,

γ2). Therefore, scanning 2-fold γ-ray events using the previous procedure, results in

a symmetric γ-ray matrix. An event containing three γ-rays would be resolved into

three pairs ([γ1, γ2], [γ1, γ3], and [γ2, γ3]), and so on. If the nucleus of interest is

formed in a charged-particle exit channel of a fusion evaporation reaction, then the

use of charged-particle detectors to associate the emitted γ-rays with the correspond-

ing charged-particle exit channel is essential. In this case, all γ-ray events sorted into

matrices or cubes are essentially correlated with the emission of the charged-particle

channel of interest. Large detector arrays, such as Gammasphere, have so many de-

tectors that three and higher-fold Ge coincidences are common. In this case, cubes

(3-D histograms) of γ-γ-γ events are typically created.

The code ESCL8R [75] was used to the analyze the γ-γ matrices from our two

high-spin experiments. The code automatically keeps track of energy calibrations, ef-

ficiencies, and electron conversion coefficients. ESCL8R incorporates the background

subtraction algorithm described in Ref. [75]. Once matrices are created, γ-γ co-

incidence relationships are studied by examining slices of these matrices. Slices, or

gates, are created by summing the contents of a set of channels that represent a peak.

The resulting one-dimensional histogram is then further analyzed to determine what

events occurred in coincidence with the gated γ-ray. For a symmetric γ-γ matrix, a

gate can be placed on either axis of the matrix at a particular energy. At the gating

energy, all counts in matrix channels sharing the same coordinate (x) are projected

on the other axis (y).
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The width in channels for a given gate, e.g. γx, depends on the full width at half

maximum (FWHM) of the peak determined by

FWHM(x) =

√

f 2 + g2
x

1000
+
(

h
x

1000

)2

(5.2)

where x is channel number, f is a constant due to noise in the detectors and amplifiers,

g is from the statistics of the charge collection process, and h is due to Doppler-

broadening of the peaks from the emitted γ rays of recoiling nuclei. Typical values

for the parameters used in the above expression are approximately f = 3, g =1, and

h = 4 for an energy dispersion of 0.5 keV per channel and a recoil velocity of ∼ 2.5%

of the speed of light.

The higher fold data (F ≥ 3) from large detector arrays demand a more complex

analytical tool than the γ-γ matrix to fully extract all the information provided.

For the Gammasphere experiment, the 2p channel data were sorted in a γ-γ-γ cube,

which adds an additional axis of correlation. The code LEVIT8R [75] which is a

three dimensional (3D) version of ESCL8R and thus works in a similar way, was

used to inspect the cube. LEVIT8R offers the option of fitting the energies and

intensities to a two dimensional projection or directly to the cube. Using an additional

γ ray for gating can, in most cases, significantly enhance the resulting gated spectra.

This double-gating technique on a given cube works exceptionally well at resolving

coincidence relationships when one of the gating γ rays is an unresolved doublet, i.e.

it appears in two or more bands.

An additional improvement over the cube is the hypercube as it can create four

dimensional (4D) histograms. The code 4DG8R is a 4D version of LEVIT8R and is

used to inspect hypercube. The 4D histograms greatly increase the peak to back-
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ground ratio in bands that have (>> 4) γ-rays in coincidence. This is typical for

superdeformed (SD) bands and are therefore more likely candidates for the use of 4D

histograms. It is important to note that high statistics are necessary for the creation

of a 4D data set: approximately 3 - 4×109 four-fold or higher multiplicity events.

Also, these large histograms require a minimum of around 2.5 - 3 GB of hard disk

space.

5.3 Experimental Results

5.3.1 Level Scheme

Figures 5.2 and 5.3 illustrate the final level scheme derived from this data. The

current research work can be classified into two parts: Normal Deformed (ND) and

Triaxial Strongly Deformed (TSD) structures.

The previous level scheme [1] was studied using the hypercube from the thin-target

data and cubes from both thick and thin target data. As a result, the scheme has

been extended at the low-spin region as well as to higher spins, and a total of seven

new bands have been discovered. The Doppler-shift attenuation method was used

to measure lifetimes of yrast states. The deformation extracted from this measure-

ment has been compared with predictions from theoretical Total Routhian Surface

calculations. In addition, three triaxial strongly deformed (TSD) bands previously

reported by Ref. [2], have been investigated. The linking transitions to one of these

bands was found. The spin and parity assignments in this work were derived from the

DCO ratios and therefore should also be considered tentative for some transitions.

It should be noted that the DCO measurements for the TSD bands were performed

using skim tape, and another 3d cube from the skim tape was also used for γ-ray co-

incidence analysis. The programs “incub8r” for the cube data and “matdco” for the
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DCO ratio were modified in accordance to skim data. In chapter VI and VII, we will

discuss respectively ND and TSD structures in detail, and Chapter VIII summarizes

the current work.

The new level scheme for 168Hf deduced from this work is shown in Figures 5.2 and

5.3. In the present study, seven new bands, including three High-K bands, have been

identified and many new transitions which link these bands and the known lower spin

levels, have been established for both new and previously known bands. The DCO

ratios have been measured for most γ-rays. The γ-ray energies, intensities and DCO

ratios are listed in Table 5.1. Intensities were normalized to 100 for the 456-keV 8+

→ 6+ transition in the ground state band (G).

5.3.2 Low-K Bands

5.3.2.1 Ground State Band (G)

This band was known up to Iπ = 22+ prior to this work [1] and has now been

extended to 36+. Six new linking transitions, namely 1012.0, 1323.4, 1357.3, 1385.5,

1429.3 and 1477.6 keV, feeding into the yrast band have been found. The measured

DCO ratios varying from 0.90 to 1.15 confirm their stretched quadrupole nature.

5.3.2.2 Yrast (AB) Band

The band AB was previously known up to state 38+ [1] and has been extended

tentatively to 48+. The band feeds the band G through two decay-out transitions,

551.3 and 319.8 keV. The DCO ratio of the 551.3-keV linking transition is consistent

with what expected for an E2 multipolarity.

86



Figure 5.2: Partial level scheme of 168Hf obtained from the present work. Transition
energies are given in keV. Bands are labeled by their configuration using
the cranking model notation (see Table 6.1).
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Figure 5.3: Partial level scheme of 168Hf obtained from the present work.
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5.3.2.3 Band AE

This negaitve-parity band has been extended from Iπ = 41− to Iπ = 47−. Many

new intra-band connections with bands BE, AF, AM and HK-1 and decay-out tran-

sitions have been observed. The stretched quadrupoles (∆I=2) nature of all in-band

transitions are confirmed and consistent with the previous study. The multipolarity

of the decay-out transitions 853.0-, 738.0-, 631.7- and 365.5 keV are of E1 character.

5.3.2.4 Band AF

This band has been extended from Iπ = 38− to Iπ = 40−. The band is fed by

band BE through a number of intra-band transitions. The DCO ratios of the 1235.4-,

980.0-, 311.2-, 182.2- and 145.4-keV transitions reconfirmed the previous spin and

parity assignments.

5.3.2.5 Band BE

This band has been extended from Iπ = 26− to Iπ = 32−. The decay of this band

is highly fragmented. It feeds band G as well as bands AE and AF. A number of new

decay-out transitions have been found. Contrary to previous study which considers

a 795 keV γ-ray as a member of this band with highest spin, we have assigned the

795.5 keV line as an intra-band transition depopulating the 26− state of the AH band

and interestedly, a 795.2 keV transition which connects the 26− state of band BE and

the 24− state of band AH indicating the mixing of the two bands. Spin and parity

assignments are confirmed based on the DCO ratios of the linking transitions 1111.6-,

502.5- and 485.9- keV, which are of M1 character, and are consistent with Ref. [1].
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5.3.2.6 Band AG

This band is reported for the first time. Figure 5.4 shows the double gated spec-

tra illustrating the in-band transitions. The band decays directly to band G through

1116.4-, 982.9- and 827.0 keV transitions. The spin and parity have been assigned

based on the DCO ratios of 0.75(10) and 0.74(10) for 1116.4- and 982.9 keV, respec-

tively, indicating E1 transitions to band G. The total intensity for this band accounts

for only ∼1% of the total feeding to band G and thus it is a very weak band. The

intensities of low spin transitions were measured along with linking transitions.

Figure 5.4: Gamma-ray coincidence spectrum of band AG, doubly gated by the band
members which are labeled by γ-ray energies. The transitions marked
with the stars belong to the ground state (G) band. The inset shows two
decay-out transitions, 982.9- and 1116.4 keV.
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Figure 5.5: Double-gated spectrum for band AH showing the in-band transitions.
The stars indicate transitions in band G.

5.3.2.7 Band AH

This band is also reported for the first time. Figure 5.5 shows the band members

up to spin 36−. This spectrum is a sum of double-gated spectra, where almost any

two of the in-band transitions served as double gates. The band depopulates at the

12− and 10− states by 233.0 and 970.4 keV decay-out transitions, respectively. The

spin and parity assignment is solely based on the DCO ratio of 0.87(13) for 970.4 keV

γ-ray indicating an E1 transition to the 10+ state in band G. The total intensity of

this band accounts for only ∼1% of the total intensity of the band G. The intensities

of 379.0 keV and 233.0 keV were measured relative to 456.3 keV in band G. Since the

475.9, 557.5 and 596.5 keV transitions are doublets with transitions in the BE and
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AF bands, their intensities were estimated by comparing them with other transitions

with similar energy and spin in other bands. The intensity of the 613.6 keV was not

determined because of an energy doublet in the same band.

Figure 5.6: Double-gated spectrum for band AM showing in-band and decay out
transitions. The inset shows higher energy decay-out transitions.

5.3.2.8 Band AM

This band has been extended significantly from Iπ = 11− to Iπ = 33−, compro-

mising of eleven new band members, see Fig. 5.6. Several linking transitions have

been found feeding the ground state band G and yrast band AB. The DCO ratio

measurements for 1324.0-, 1107.8- and 179.4 keV suggest that this is also a negative

parity band.
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Figure 5.7: Double-gated spectra for the bands X1 (left) from a gate list
containing 807.8- and 815.8 keV transitions, and X2 (right) from a
gate list containing 720.5-, 800.9-, 829.9- and 846.2 keV transitions
showing band members. The inset in the left figure shows decay-out
transitions for X1. The transitions indicated by stars are from the band
G.

5.3.2.9 Band X1

Band X1 with highly fragmented decay pathways to the AB and G bands is

reported for the first time, see Fig. 5.7. The assignments of spin and parity for this

band are based on a measured DCO ratios of 0.49(9) and 0.69(10) for the strongest

decay-out transitions 1371.1 keV and 1366.3 keV to the 22+ and 24+ states of band

AB, respectively, which suggests an E1 multipolarity. The three transitions from

this band to other members of bands AB and G are too weak to provide reliable

information for DCO ratios.
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5.3.2.10 Band X2

Band X2 is also reported for the first time, see Fig. 5.7. Since the strongest

decay-out transition (846.5 keV) from the bottom of the band and a band member

at 846.2 keV are an energy doublet, the spin and parity are based on the measured

DCO ratio of another depopulating transition 840.1 keV from the state 22+ to the

band G.

5.3.3 High-K Bands

Three high-K1 bands are reported for the first time in 168Hf, as shown in Fig. 5.3.

5.3.3.1 Band HK-1

The lowest state of the band has been assigned Iπ = 12− based on the following

arguments. Four γ-ray decay paths have been observed which link the 13− and

15− states into the known level scheme via 854.7-, 1306.3-, 1439.4- and 1590.3-keV

transitions to states in bands G, AB and AE. The double-gated spectra presented in

Fig. 5.8 illustrates some of these decay branches. The DCO ratio has been determined

for the 1306.3 keV γ-ray, a transition to the 14+ state of band G, to be of stretched

dipole character. The other linking transition from the third state in this band must

also be either E1 or M1 to compete with this decay. Since they go to the 14+ state in

band AB and 15− in band AE, this limits the spin to 15. Consequently, band HK-1

has been assigned negative parity assuming that E1 is more probable than M1 nature

for these high energy decay-out transitions.

1A high-K band has, as the name refers, a higher value of K. No or small signature splitting can
be observed for these bands, and the band head may have a longer lifetime because they have very
different intrinsic quasiparticle configurations from the lower-spin levels to which they decay. There
is the appearance of strong intra-band M1 transitions.
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Figure 5.8: Double-gated spectra from a gate list consisting of M1 transitions for
the band HK-1. Top: the left side illustrates decay-out transitions while
the figure at right shows lower energy transitions. Bottom: shows the
band members where higher energy transitions can be seen in the inset.
The transitions marked with stars belong to the band G.

5.3.3.2 Band HK-2

The lowest state of the band has been assigned Iπ = 15− based on the following

arguments. This state decays to the known level scheme via 843.6- and 1610.2 keV

transitions to the 16+ member of band G and the 14+ member of band AB, respec-

tively. One expects either an E1 or M1 transition to depopulate the band head since

there is a high probability of a lower lying state with a spin difference of 1 thus ruling

out an E2 transition. This limits the spin to 15. The double-gated spectra presented

in Fig. 5.9 illustrates some of these decay branches. The spin/parity is based on
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Figure 5.9: Double-gated spectra for the band HK-2 showing decay-out (top) and
lower in-band transitions (bottom). The strong transitions 261.3- and
371.0 keV are from band G.

the DCO ratios of 0.93(15) and 1.08(12) for the 1610.2- and 843.6-keV decay-out

transitions, respectively which are consistent with E1 transitions.

5.3.3.3 Band HK-3

The lowest state of the band has been assigned Kπ = 15− based on the following

arguments. It decays to the known level scheme via a 1459.8-keV transition from

the band head to the 14+ state in band G and 1140.0-, 1305.3-, and 1592.9-keV

transitions from the first two band states to the 14+ and 16+ members of the band

AB. The double-gated spectra presented in Fig. 5.10 illustrates some of these decay

branches. Since E1 or M1 transitions are expected to dominate, this limits the spin
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Figure 5.10: Double-gated spectra for the band HK-3. Top: the left side illustrates
decay-out transitions while the figure at right shows very lower energy
transitions. Bottom: it shows both the lower and higher energy transi-
tions of the band. The transitions marked with stars belong to the band
G.

to 15. The assignment of negative parity is based on the DCO ratio 0.98(14) for the

1140.0 keV transition from the band head to the 16+ state in band AB and assumption

that E1 is more probable than M1 nature for high energies.
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Table 5.1: γ-ray energies, intensities and DCO ratios in

168Hf.

Iπi Ei(keV) Eγ(keV)a Iγ
b RDCO Assignment

Band G:

0+ 0.0

2+ 123.9 123.6 23(2) E2

4+ 385.6 261.3 79(3) 1.09(10) E2

6+ 756.8 371.0 86(3) 1.40(15)c E2

8+ 1213.3 456.3 100(3) 1.42(16)c E2

10+ 1735.6 522.4 E2

12+ 2305.7 570.0 70(3) 1.09(11) E2

14+ 2990.1 684.5 E2

16+ 3623.6 766.6 E2

633.5 E2

18+ 4321.9 1012.0 E2

698.3 4.4(7) E2

20+ 5048.8 726.9 E2

22+ 5762.9 1323.4 E2

714.1 E2

24+ 6481.0 1357.3 1.02(17) E2

718.3 3.18

26+ 7260.5 1385.5 0.94(12) E2

779.8 E2
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Table 5.1 (Continued.)

Iπi Ei(keV) Eγ(keV)a Iγ
b RDCO Assignment

28+ 8116.8 1429.3 E2

856.4 E2

30+ 9040.5 1477.6 E2

923.9 E2

32+ 10016.7 976.2 E2

34+ 11042.9 1026.2 E2

36+ 12102.3 1059.4 E2

Band AB:

14+ 2857.0 551.3 45(2) 0.98(10) E2

16+ 3309.9 452.9 E2

319.8 E2

18+ 3832.0 521.9 E2

20+ 4439.5 607.3 19(2) 0.95(9) E2

22+ 5123.8 684.1 E2

24+ 5875.0 751.0 15(1) E2

26+ 6687.5 812.2 E2

28+ 7562.6 874.8 E2

30+ 8501.4 938.8 E2

32+ 9501.1 999.7 E2

34+ 10551.8 1050.7 E2

36+ 11638.6 1086.8 E2
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Table 5.1 (Continued.)

Iπi Ei(keV) Eγ(keV)a Iγ
b RDCO Assignment

38+ 12743.3 1104.7 E2

40+ 13852.1 1108.8 E2

42+ 14972.6 1120.5 E2

44+ 16128.1 1155.5 E2

46+ 17337.2 1209.1 E2

48+ 18606.3 1269.1 E2

Band AE:

7− 1734.9 978.0 E1

9− 2066.6 853.0 6.2(7) 0.80(8) E1

331.8 0.72(6) 0.97(12) E2

11− 2473.6 738.0 8.4(8) 0.64(14) E1

406.9 3.6(4) 0.97(14) E2

13− 2937.3 631.7 9.8(9) 0.62(9) E1

463.7 13.5(9) 0.98(10) E2

15− 3441.7 504.4 16(1) 0.97(10) E2

451.6 E1

17− 3989.1 547.4 1.03(10) E2

365.5 0.55(8) E1

19− 4577.3 588.2 0.99(5) E2

255.4 E1

21− 5196.8 619.5 1.02(10) E2
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Table 5.1 (Continued.)

Iπi Ei(keV) Eγ(keV)a Iγ
b RDCO Assignment

23− 5852.8 656.0 1.02(9) E2

25− 6565.1 712.3 1.03(9) E2

27− 7346.2 781.1 1.02(9) E2

29− 8196.9 850.7 0.93(8) E2

31− 9113.6 916.7 0.99(9) E2

33− 10090.1 976.5 0.99(9) E2

35− 11117.1 1027.0 1.06(7) E2

37− 12178.6 1061.5 1.09(10) E2

39− 13254.8 1076.2 0.96(12) E2

41− 14342.0 1087.2 E2

43− 15461.1 1119.1 1.04(12) E2

45− 16632.3 1171.2 1.03(9) E2

47− 17866.2 1233.9 E2

Band AF:

6− 1992.3 1235.4 0.85(11) E1

8− 2193.2 980.0 3.3(4) 0.84(10) E1

380.0 3.0(6) 0.91(12) E2

200.9 0.88(13) E2

10− 2466.4 399.7 0.53(14) M1/E2

311.2 2.0(2) 0.87(7) E2

273.2 5.9(6) 0.91(8) E2
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Table 5.1 (Continued.)

Iπi Ei(keV) Eγ(keV)a Iγ
b RDCO Assignment

145.4 0.72(12) 0.41(7) M1

12− 2828.0 361.6 9.2(8) 0.93(9) E2

182.2 <0.5 0.59(8) M1

14− 3269.0 441.0 9.2(9) 0.98(8) E2

16− 3777.2 508.2 0.98(7) E2

18− 4335.8 558.6 1.08(7) E2

20− 4933.8 598.0 9.4(9) 1.05(8) E2

22− 5574.1 640.3 1.02(9) E2

24− 6268.6 694.4 1.03(9) E2

26− 7029.3 760.7 1.02(9) E2

28− 7860.7 831.4 1.02(10) E2

30− 8762.3 901.6 1.03(8) E2

32− 9730.7 968.4 1.02(10) E2

34− 10756.3 1025.5 1.14(14) E2

36− 11828.5 1072.2 0.96(12) E2

38− 12931.6 1103.1 1.02(10) E2

40− 14038.3 1106.7 0.99(12) E2

Band BE:

4− 1497.2 1111.6 0.88(12) E1

6− 1813.2 1056.3 2.2(3) 0.89(15) E1

316.0 0.5(2) E2
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Table 5.1 (Continued.)

Iπi Ei(keV) Eγ(keV)a Iγ
b RDCO Assignment

8− 2155.2 942.0 1.0(1) 1.06(11) E1

420.3 1.5(2) M1

342.0 4.0(5) E2

10− 2552.6 485.9 0.6(2) 0.72(9) M1

397.4 2.5(3) 1.05(9) E2

359.4 1.01(8) E2

12− 2976.1 509.7 E2

502.5 0.9(3) 0.73(10) M1

423.5 1.9(3) 0.98(11) E2

14− 3451.6 623.6 E2

514.3 M1

475.5 2.5(3) 1.06(9) E2

16− 3988.3 719.3 E2

546.6 M1

536.7 1.05(8) E2

18− 4578.0 800.8 E2

589.7 1.04(10) E2

588.9 M1

20− 5212.8 877.0 1.06(8) E2

635.5 M1

634.8 0.99(11) E2

22− 5893.6 959.8 E2
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Table 5.1 (Continued.)

Iπi Ei(keV) Eγ(keV)a Iγ
b RDCO Assignment

680.8 1.03(10) E2

24− 6628.1 734.5 1.03(10) E2

26− 7439.6 811.5 1.02(10) E2

795.2 1.09(12) E2

28− 8329.7 890.1 0.94(9) E2

30− 9262.7 933.0 0.99(11) E2

32− 10226.2 963.5 E2

Band AG:

11− 2852.0 1116.4 0.65(15) 0.75(10) E1

13− 3288.6 982.9 <0.5 0.74(10) E1

436.6 0.8(2) 0.92(14) E2

15− 3817.1 827.0 <0.5

528.5 1.5(2) 1.19(13) E2

17− 4414.9 597.8 0.5(1) 0.93(12) E2

19− 5027.2 612.3 1.3(3) 0.89(14) E2

21− 5657.7 630.5 0.9(2) 0.98(13) E2

23− 6318.0 660.3 1.3(3) 1.03(10) E2

25− 7084.2 766.2 1.05(13) E2

27− 7918.7 834.5 E2

29− 8811.6 892.9 1.15(15) E2

31− 9749.2 937.6 E2
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Table 5.1 (Continued.)

Iπi Ei(keV) Eγ(keV)a Iγ
b RDCO Assignment

33− 10756.2 1007.0 1.11(16) E2

Band AH:

10− 2706.0 970.4 0.87(13) E1

12− 3085.0 379.0 0.9(2) 0.97(15) E2

233.0 <0.5 0.61(8) M1

14− 3560.9 475.9 0.87 0.98(11) E2

16− 4118.5 557.5 0.71 1.03(9) E2

18− 4715.0 596.5 1.0(2) 0.91(8) E2

20− 5328.6 613.6 1.04(13) E2

22− 5942.2 613.6 E2

24− 6644.4 702.2 1.05(10) E2

26− 7423.6 795.5 E2

779.2 0.94(13) E2

28− 8270.3 846.7 1.02(16) E2

30− 9173.9 903.6 0.89(13) E2

32− 10132.2 958.3 0.90(8) M1/E2

34− 11139.4 1007.2 0.89(11) M1/E2

36− 12186.3 1046.9 E2

Band AM:

7− 2080.9 1324.0 0.9(2) 0.72(9) E1

9− 2321.0 1107.8 1.7(3) 0.65(8) E1
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Table 5.1 (Continued.)

Iπi Ei(keV) Eγ(keV)a Iγ
b RDCO Assignment

586.1 E2

240.0 1.0(2) E2

127.8 M1/E2

11− 2645.8 579.1 E2

324.8 1.5(2) 1.02(12) E2

179.4 <0.5 M1

13− 3065.6 592.0 E2

419.8 0.80(15) 0.93(11) E2

237.6 M1

15− 3589.0 651.7 E2

523.4 E2

17− 4189.7 748.0 E2

600.7 0.93(12) E2

19− 4829.0 639.3 1.09(11) E2

21− 5478.5 1039.0 E1

901.2 1.04(13) E2

649.5 1.10(12) E2

23− 6150.2 1026.3 E1

953.4 0.91(9) E2

671.7 0.93(10) E2

25− 6892.5 1017.6 1.06(10) E1
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Table 5.1 (Continued.)

Iπi Ei(keV) Eγ(keV)a Iγ
b RDCO Assignment

742.3 1.06(8) E2

27− 7705.8 1018.3 0.89(10) E1

813.3 0.90(13) E2

29− 8594.3 888.5 E2

31− 9552.4 958.1 0.91(11) E2

33− 10567.1 1014.7 0.94(11) E2

Band X1:

19− 5146.1 824.2 E1

21− 5801.6 752.8 E1

655.5 E2

23− 6495.0 1371.1 <0.5 0.49(9) E1

693.4 <0.5 E2

25− 7241.2 1366.3 <0.5 0.69(10) E1

746.2 <0.5 E2

27− 8037.7 1350.2 <0.5 E1

796.5 <0.5 E2

702.1 E2

Band X2:

20+ 5168.4 1336.5 E2

846.5 0.91(13) E2

22+ 5888.9 840.1 0.93(13) E2
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Table 5.1 (Continued.)

Iπi Ei(keV) Eγ(keV)a Iγ
b RDCO Assignment

720.5 1.10(12) E2

24+ 6689.8 926.9 1.02(12) E2

800.9 1.15(12) E2

26+ 7519.7 829.9 E2

Band HK-1:

13− 3896.0 1590.3 E1

162.4 M1

14− 4086.0 352.4 E2

190.0 M1

15− 4296.4 1439.4 E1

1306.3 <0.5 0.90(10)c E1

854.7 M1

400.4 E2

210.4 0.70(15) 0.96(11)c M1

16− 4528.3 442.3 1.39(16)c E2

231.9 1.0(2) 0.78(10) M1

17− 4772.8 476.4 1.49(15)c E2

244.5 0.76(10) M1

18− 5011.5 483.2 1.61(18)c E2

238.7 0.93(10)c M1

19− 5245.8 473.0 1.27(15)c E2
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Table 5.1 (Continued.)

Iπi Ei(keV) Eγ(keV)a Iγ
b RDCO Assignment

234.3 0.65(9) M1

20− 5496.0 484.5 E2

250.2 1.9(3) 0.74(8) M1

21− 5767.9 522.1 1.45(16)c E2

271.9 1.8(3) 0.70(8) M1

22− 6064.6 568.6 E2

296.7 2.1(2) 0.75(10) M1

23− 6381.9 613.9 0.98(14) E2

317.2 1.5(2) 0.63(8) M1

24− 6720.0 655.4 1.37(15)c E2

338.2 1.1(3) 0.71(8) M1

25− 7076.1 694.3 1.05(11) E2

356.1 0.95(8)c M1

26− 7451.5 731.5 1.39(16)c E2

375.4 0.97(9)c M1

27− 7838.1 762.0 1.10(11) E2

386.6 1.7(2) 0.97(10)c M1

28− 8244.3 792.8 1.78(25)c E2

406.2 1.3(2) M1

29− 8665.3 827.2 1.2(3) E2

421.0 1.6(3) M1

30− 9102.0 857.7 E2
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Table 5.1 (Continued.)

Iπi Ei(keV) Eγ(keV)a Iγ
b RDCO Assignment

436.7 M1

31− 9556.2 890.9 0.90(11) M1/E2

454.2 M1

32− 10025.0 923.0 E2

468.8 1.3(2) M1

33− 10513.2 957.0 E2

488.2 M1

34− 11011.3 986.3 E2

498.1 M1

35− 11532.7 1019.5 E2

521.4 M1

36− 12068.9 1057.6 E2

536.2 M1

37− 12618.7 1086.0 E2

549.8 M1

Band HK-2:

15− 4467.3 1610.2 1.0(2) 0.93(15)c E1

843.6 <0.5 1.08(12)c E1

16− 4671.1 203.9 <0.5 0.82(10) M1/E2

17− 4894.1 426.8 E2

223.1 0.8(1) 0.70(8) M1

18− 5139.1 468.0 E2
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Table 5.1 (Continued.)

Iπi Ei(keV) Eγ(keV)a Iγ
b RDCO Assignment

244.9 0.78(10) M1

19− 5412.2 518.0 E2

273.1 1.03(12)c M1

20− 5695.1 556.0 E2

282.9 1.17(13)c M1/E2

21− 6002.2 590.0 0.95(11) E2

307.1 0.84(7) 0.63(7) M1

22− 6329.1 634.0 0.96(8) E2

326.9 0.61(8) M1

23− 6672.2 670.0 1.02(15) E2

343.1 0.77(9) M1

24− 7028.1 699.0 1.08(11) E2

355.9 0.94(11)c M1

25− 7406.2 734.0 1.33(22)c E2

378.1 1.02(11)c M1

26− 7796.1 768.0 1.11(16) E2

389.9 0.72(9) M1

27− 8201.2 795.0 0.92(11) E2

405.1 M1

28− 8620.1 824.0 1.33(20)c E2

418.9 M1

29− 9053.2 852.0 E2
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Table 5.1 (Continued.)

Iπi Ei(keV) Eγ(keV)a Iγ
b RDCO Assignment

433.1 M1

30− 9501.1 881.0 E2

447.9 M1

31− 9962.5 909.3 E2

461.4 M1

32− 10439.1 938.0 E2

Band HK-3:

15− 4449.9 1592.9 E1

1459.8 E1

1140.0 <0.5 0.98(14)c E1

16− 4615.2 1305.3 <0.5 E1

165.3 <0.5 0.78(16) M1

17− 4809.2 359.3 E2

194.0 <0.5 0.65(7) M1

18− 5029.5 414.3 1.32(13)c E2

220.3 <0.5 1.03(12)c M1

19− 5274.6 465.4 E2

245.1 0.81(10) M1/E2

20− 5544.3 514.8 E2

269.7 0.68(8) M1

21− 5832.8 558.2 1.67(20)c E2
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Table 5.1 (Continued.)

Iπi Ei(keV) Eγ(keV)a Iγ
b RDCO Assignment

288.5 0.58(9) M1

22− 6140.4 596.1 0.96(13) E2

307.6 0.69(10) M1

23− 6460.8 628.0 1.02(11) E2

320.4 0.62(5) M1

24− 6794.0 653.6 1.02(13) E2

333.2 1.02(10)c M1

25− 7135.9 675.1 0.93(10) E2

341.9 0.69(7) M1

26− 7486.7 692.7 E2

350.8 1.11(15)c M1

27− 7842.3 706.4 1.07(12) E2

355.6 M1

28− 8208.7 722.0 E2

366.4 M1

29− 8586.5 744.2 E2

377.8 M1

30− 8987.9 779.2 E2

401.4 M1

31− 9385.6 799.1 E2

Band ED:
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Table 5.1 (Continued.)

Iπi Ei(keV) Eγ(keV)a Iγ
b RDCO Assignment

25− 7335.6 770.0 E2

27− 8075.1 1387.6 E1

739.5 0.93(14) E2

29− 8845.5 807.8 <0.5 0.91(11) E2

770.4 <0.5 1.10(16) E2

31− 9661.3 815.8 0.95(14) E2

33− 10530.7 869.4 1.02(7) E2

35− 11437.4 906.7 0.93(10) E2

37− 12384.4 947.0 1.06(11) E2

39− 13374.4 990.0 1.05(12) E2

41− 14414.9 1040.5 0.98(14) E2

43− 15512.1 1097.2 0.95(13) E2

45− 16670.1 1158.0 E2

47− 17890.9 1220.8 E2

49− 19175.9 1285.0 E2

Band TSD1:

(35) 12977.4 677.2 0.95(11) E2

(37) 13699.5 722.0 1.09(12) E2

(39) 14470.3 770.6 0.91(12) E2

(41) 15294.5 824.1 0.89(11) E2

(43) 16172.0 877.3 0.98(7) E2
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Table 5.1 (Continued.)

Iπi Ei(keV) Eγ(keV)a Iγ
b RDCO Assignment

(45) 17103.6 931.4 0.89(10) E2

(47) 18088.2 984.4 1.02(10) E2

(49) 19129.8 1041.4 E2

(51) 20227.5 1097.4 E2

(53) 21381.0 1153.5 1.05(15) E2

(55) 22596.2 1214.6 E2

(57) 23869.4 1273.2 E2

(59) 25202.9 1333.5 E2

(61) 26586.9 1384.0 E2

Band TSD2:

15070.0 811.1 0.89(11) E2

15932.2 862.2 0.93(12) E2

16842.5 910.3 E2

17803.1 960.6 1.05(13) E2

18819.7 1016.6 E2

19894.6 1075.0 E2

21030.2 1135.6 E2

22225.3 1195.1 E2

23480.9 1255.7 E2
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aAccuracy of γ-ray energies is ∼0.3 keV except for the weakest
transitions where the uncertainties are larger.

bIntensities are mostly obtained from gated spectra and normalized
to the 456.3 keV transition in band G, which has an intensity 100.

cDCO ratios obtained by gating on ∆I = 1 transitions. All other
DCO ratios are obtained by gating on stretched E2 transitions.

Figure 5.11: Line shapes of the Eγ = 607.3 keV transition in the band AB. Exper-
imental data are shown as histogram, fitted shapes as red lines and the
green lines show the fitted backgrounds with contaminants.
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Figure 5.12: Line shapes of the Eγ = 684.1 keV transition in the band AB. Exper-
imental data are shown as histogram, fitted shapes as red lines and the
green lines show the fitted backgrounds with contaminants.
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Figure 5.13: Line shapes of the Eγ = 751.0 keV transition in the band AB. Exper-
imental data are shown as histogram, fitted shapes as red lines and the
green lines show the fitted backgrounds with contaminants.
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Figure 5.14: Line shapes of the Eγ = 812.2 keV transition in the band AB. Exper-
imental data are shown as histogram, fitted shapes as red lines and the
green lines show the fitted backgrounds with contaminants.
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Figure 5.15: Line shapes of the Eγ = 874.8 keV transition in the band AB. Exper-
imental data are shown as histogram, fitted shapes as red lines and the
green lines show the fitted backgrounds with contaminants.
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Figure 5.16: Line shapes of the Eγ = 938.8 keV transition in the band AB. Exper-
imental data are shown as histogram, fitted shapes as red lines and the
green lines show the fitted backgrounds with contaminants.
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5.3.4 Measured Quadrupole Deformation of Band AB

Double gated spectra, used for lineshape fitting, were created for each angle of

detectors using the program REBEL. The gate list includes the 261.3, 371.0, 522.4

and 551.1-keV transitions. Spectra at three angles (50◦, 90◦ and 130◦) were used

for lineshape analysis. The detectors at 50◦ and 130◦ are referred to as the forward

and backward directions and are symmetric about 90◦. The 607.3 keV transition was

the lowest-spin γ-ray to show any Doppler broadened lineshape. The data from the

forward and backward detectors were fitted simultaneously. The fitted peak shapes of

the band AB are shown in Fig. 5.11-5.16 for the 607.3, 684.1, 751.0, 812.2, 874.8 and

938.8-keV transitions. The results of the lifetimes and the corresponding quadrupole

moments are listed in Table 5.2.

Table 5.2: Lifetimes and quadrupole moments of the transitions of the band AB in
168Hf.

Ii→Ii Eγ (keV) τ (ps)a Qt (eb)b Qs (eb)

20+→18+ 607.3 0.67±0.07 6.48±0.34 6.48±0.50
22+→20+ 684.1 0.34±0.04 6.73±0.35 4.66±0.42
24+→22+ 751.0 0.25±0.04 6.25±0.49 4.56±0.26
26+→24+ 812.2 0.18±0.04 6.01±0.67 4.57±0.27
28+→26+ 874.8 0.11±0.04 6.25±1.03 4.40±0.27
30+→28+ 938.8 0.07±0.01 6.56±0.29 3.99±0.30

aThe symmetric error bars on τ are calculated using the propagation
formula for errors, whereby the relative error on τ is twice that on
Qt.

bThe symmetric error in Qt are given by the computer code.

It should be noted that although several contaminant peaks are included in the fit

(Fig. 5.11-5.16), the ratio of the calculated lineshape component to the total fitted

curve remains unchanged. Moreover, whether or not this contaminant peak is in-

cluded, the lineshape of the transition and hence the associated quadrupole moment
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is unaffected. It is, therefore, only introduced to present the data in a better way.

The relative error in the lifetime is small and most of the uncertainty comes from sys-

tematic errors in the stopping power during the slowing-down process, which could

be as large as 15%.

Figure 5.17: The quadrupole moment, Qt, extracted from lifeshape analysis (top)
and kinetic moment of inertia J(1) (bottom) as functions of rotational
frequency for the band AB. The solid line in top panel represents the
averaged Qt.

Based on the measured lifetimes and extracted Qt of the high-spin states in band

AB, it is possible to achieve experimental information on the nuclear shape and to

compare it with calculations. The deformation parameter β2 was calculated using

the expression
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Qt = 0.0126ZA2/3β2(1 + 0.36β2) cos(γ + 30o), (5.3)

which gives β2 = 0.24 for Qt = 6.4eb, assuming γ = 0. In 166Yb, an isotone of 168Hf,

J.C. Bacelar et al. [78] report that the measured lifetimes suggest a change in shape

around spin 30h̄. Our lifetime measurement doesn’t provide any evidence of any

change in shape between spin 20 and 30 for the yrast band in 168Hf. Thus, there is

no major loss of collectivity towards higher yrast states and the nucleus still remains

very collective at spin 30+, as can be seen from nearly constant Qt values. This is

also justified by Fig. 5.17 where a constant value for the kinetic moment of inertia,

J(1), is observed over that range of spin. However, an upbend, as described in section

6.2.1, is seen around spin 32 due to the proton alignment which, presumably, did not

cause a change in shape and deformation. It should be noted that any change in

shape indicated by Qt, if so, will alter J(1) too as J(1) is also influenced by the shape,

alignments and pairing correlations. Due to the fact that, in the well-deformed region

around 168Hf, the alignment of the i13/2 neutron does not affect the shape appreciably

because of the stiffness of the potential and the higher position of the Fermi level,

our experimental result is in excellent agreement with our theoretical understanding

in this spin range. The measured quadrupole deformation, β2 = 0.24, is also in

satisfactory agreement with β2 = 0.25 for the ND minimum obtained from the UC

calculation.

124



CHAPTER VI

QUASIPARTICLE CONFIGURATIONS AND BANDCROSSINGS IN NORMAL

DEFORMED BANDS

6.1 Cranking Calculations for 168Hf Using the Ultimate Cranker Code

Cranked-shell model calculations have been carried out for 168Hf using the Ulti-

mate Cranker [79, 80] code, with the resulting Nilsson orbitals shown in the Quasipar-

ticle diagrams (Fig. 6.1), indicating the neutron and proton orbitals relevant to our

level scheme. Pairing was taken into account and the standard parameters were used

from Ref. [81]. The quasiparticle Routhians for 168Hf are depicted in Fig. 6.1. In

this figure the adopted notation A, B, C, D are the first lowest unique-parity single-

particle orbitals for neutrons while a, b, c, d are those for protons (Table 6.1). This

is discussed in more detail later. Table 6.2 summarizes the experimental and calcu-

lated band crossings for most of the new bands. The configurations for the previously

known bands will be discussed briefly and that for seven new bands will be discussed

in detail.

Since there are only two good quantum numbers in the CSM, the Routhians can

be labeled with one of four different assignments: (π, α) = (+, +1
2
) = solid line, (+, -

1
2
) = dotted, (-, +1

2
) = dash-dotted, and (-, -1

2
) = dashed. In order to avoid confusion,

the trajectories are labeled with the Nilsson quantum numbers that are valid at h̄ω
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Figure 6.1: Quasiparticle diagram for neutrons (top) and protons (bottom) for 168Hf
calculated at β2=0.254, β4=0.002 and γ=0. The levels are labeled by
parity and signature as (+, +1/2) solid lines, (+, -1/2) dotted lines, (-,
-1/2) dashed lines, and (-, +1/2) dot-dashed lines.
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Table 6.1: Quasiparticle labeling convention for 168Hf.

Spherical shell Nilsson Labels

Models States orbitals α = +1/2 α = −1/2

νi13/2 ν[642]5
2
+ A B

νi13/2 ν[651]3
2
+ C D

νh9/2 ν[523]5
2
− E F

νf7/2 ν[521]3
2
− G H

νp3/2 ν[521]1
2
− M N

νh11/2 ν[505]11
2
− I J

πg7/2 π[404]7
2
+ a b

πd5/2 π[402]5
2
+ c d

πh11/2 π[514]9
2
− e f

πh9/2 π[541]1
2
− g h

πi13/2 π[660]1
2
+ m n

= 0 MeV. A convention of the lowest two positive-parity proton orbitals receiving

the labels a...c and the two lowest energy negative-parity proton orbitals having the

label e...g has been employed. The inverse convention is used for the neutrons and

the lack of a lower case discriminates a neutron from a proton. This information is

summarized in Tables 6.1 which should be used in conjunction with Fig. 6.1. One

may notice from Fig. 6.1 that every trajectory has an equal and opposite trajectory

reflective about e′ = 0 Mev. These negative energy trajectories, below h̄ω = 0.25

MeV, have been given the negative label since the signature has been inverted (i.e.

e′α = -e′−α). If the system has an even amount of particles, then one considers all

of the negative energy levels are filled and all of the positive trajectories are open at

low rotational energy (h̄ω < 0.25 MeV). If there is an odd number of particles, then

all of the negative energy levels are filled at low energy and one particle may fill any
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of the positive quasiparticle trajectories. Of course those levels which lie lowest in

energy are the most likely to be filled. Characteristics of the experimental rotational

bands may be predicted by extracting information from the associated trajectory. For

example, alignment, which is the amount of angular momentum projected onto the

axis of rotation by the unpaired particles of the nucleus, can be predicted from the

Routhians. The alignment from a quasiparticle is equal to the negative slope of the

Routhian trajectory [82]

ı = −de
′

dω
(6.1)

where ı is the alignment. Therefore, one may observe from Fig. 6.1 that the (a,

b) band should have more alignment than either the (e,f) or (g,h) bands at low

rotational energy in 168Hf. This indeed is found to be experimentally true as will be

discuseed in the following sections.

Table 6.2: Comparison of observed and calculated band crossing frequencies and
experimental alignment gain in 168Hf.

Band Crossing h̄ωexp. (keV) h̄ωcal. (keV) ∆h̄ω ix gain (h̄)

AE BC 310 300 +10 3.0
AF BC 280 300 -20 2.8
AG BC 290 300 -10 5.0

AD 400 325 +75
AH BC 275 300 -25 5.0

AD 375 325 +50
AM BC 290 300 -10 4.5

HK-3 BC 290 300 +10 3.3
X2 AD 400 325 +75 2.8
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6.1.1 Band Crossings

Multi-quasiparticle bands may interact and “cross” lower seniority1 bands. Fig.

2.13 shows an example of such a crossing for 168Hf. The plot displays the excitation

energy of the levels in two bands minus the energy for a rigid rotor as a function

of spin. The Coriolis and centrifugal forces pull in opposite directions on the two

particles paired in a time reversed orbit. Therefore, as the nuclear rotation increases,

these forces increase their strengths which will pull the particles out of their orbits

and align them both with the rotational axis. The most susceptible particles to this

alignment are those in high- orbitals. The i13/2 neutrons in the mass A≈ 150 region

are the highest  particles observed and thus are the first to align. One can observe

from Fig. 2.13 that at higher spins the AE-band (which has two aligned i13/2 and h9/2

neutrons i.e. A and E) is energetically favored and thus more likely to be observed.

These band crossings are represented by the inflection points where the trajectories

of similar parity and signature repel from each other in Fig. 6.1. The first occurrence

is observed at h̄ω ≈ 0.28 MeV in the quasineutron diagram. An interaction between

the ±A and ±B levels results in the -A and -B quasineutrons crossing into the positive

energy portion of the diagram. This represents the AB (two ı13/2 neutrons) particles

aligning at a crossing frequency of h̄ω ≈ 0.28 MeV. One may note that other band

crossings are possible between the BC, AD, and CD neutrons. Experimentally, these

band crossings are easily observed by the large amount of alignment gained in the

band. This gain in alignment results from the once paired particles (whose angular

momentum summed to zero) aligning their angular momentum in the same direction

as the nuclear rotation. The CSM can predict how much alignment gain should

occur in a particular band crossing. Alignment is an additive property, so to find

1Seniority defines the number of quasiparticles upon which the configuration of a band is based.
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the amount of alignment gained from an AB crossing, one simply adds the negative

slopes of the A and B trajectories. Extensive comparisons of the experimental band

crossing frequencies (h̄ωc) and alignment gains to the CSM will be discussed.

It is not necessary that all band crossings show up experimentally which appear

in the quasiparticle diagrams of Fig. 6.1. For instance, let’s consider the band based

on the a proton. Since there is a particle in a trajectory, it would violate the Pauli

principle to allow the -b particle to occupy the same level. Therefore the ab band

crossing may not occur and is customarily known as a blocked band crossing. There

will be no experimentally observed alignment gain at the predicted h̄ωc which will

confirm the configuration assignment of that particular band.

6.1.2 Total Routhian Surface

Total routhian surface (TRS) calculations determine the total routhian through a

surface of deformation parameters β2, β4 and γ for a given nucleus (Z, N). The cal-

culations employ the Ultimate Cranker approach using UC code. These calculations

can be performed on various nuclei and at various rotational frequencies (h̄ω). The

total routhian is minimized with respect to the deformation parameters β2, β4 and

γ, with β2 and γ being transformed into the cartesian coordinates X and Y, given by

[83]

X = β2 cos(γ + 30◦) (6.2)

Y = β2 sin(γ + 30◦) (6.3)

The total routhian is actually minimized at each (β2, γ) lattice point with respect

to β4 after which the equilibrium deformation is minimized over the entire lattice.

The calculations are such as to allow various nuclear configurations to be set up for
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Figure 6.2: Total energy surfaces for 168Hf, showing the ND minima. The contour
line separation is 0.5 MeV.

131



Figure 6.3: Total energy surfaces for the P(0,0)N(1,2) (lower) and P(1,2)N(0,0) (up-
per) configurations, which contain the lowest TSD and ED minima, re-
spectively. The contour line separation is 0.2 MeV.
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minimization, in that it is possible to perform the calculations for various signature

and parity combinations in the nucleus of interest. The resulting TRS plots show the

energy contours which result from the minimization procedure over the entire lattice.

The potential-energy surfaces for 168Hf are plotted in Fig. 6.2 and 6.3 for different

rotational frequencies, showing ND, ED and TSD minima. The calculations used a

Cranked Woods-Saxon potential with universal parameters [36].

6.2 Low-K Band Configurations

6.2.1 Bands AB, AE, AF and BE

Similar bands with configurations AB, AE, AF and BE were also reported pre-

viously for the isotones 166Yb, 170W and for the isotope 166Hf [4, 12, 84]. Fig. 6.4

shows the alignment plot of bands G, AB, AE, AF and BE for isotones 166Yb and

170W, and isotope 166Hf of 168Hf as a function of the rotational frequency. For a better

representation, an identical reference with Harris parameters ζ0= 28h̄2 MeV−1 and

ζ1 = 42h̄4 MeV−3 has been chosen for all four nuclei. Band G is crossed by band

AB at h̄ω ∼ 0.37 MeV which represents the alignment of a pair of neutrons at the

[642]5/2+ orbital. The two strongest negative-parity bands, AE and AF, undergo BC

crossing at h̄ω ∼ 0.3 MeV, and there is little signature splitting thereafter (Fig. 6.4).

The low-lying octupole vibrational band, as reported in Ref. [4], may have caused a

gradual increase in the alignment of ∼ 4h̄ for these bands. They do not show any

evidence for an AB band crossing near h̄ω = 0.2 MeV which is blocked by the already

occupied orbital A. This observation, as well as the negative parity of the band, are

all consistent with the characteristics of a neutron configurations for them i.e. AE

and AF.
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Figure 6.4: Alignment versus h̄ω of bands G, AB, AE, AF and BE deduced from
the experiment: 168Hf [present work], 166Hf [4], 166Yb [84] and 170W [12].
Open circles represent the band G, full circles the AB band, open squares
the AE band, full squares the AF and open diamond the BE band.

Band BE does not show any indication of AB or BC alignment. Its excitation

energies are above the AE and AF bands. As suggested by E. M. Beck [1] and S.

Jonsson [85], this band is either mixed with or the continuation of the octupole band.

134



The bands AB, AE and AF exhibit another crossing at higher rotational frequency

(h̄ω ∼ 0.5 MeV) with the alignment of ∼ 6.2h̄ and we interpret this as the first proton

crossing. Similar proton crossings have previously been proposed in 169Hf [65], 167Hf

[86] and 166Hf [87]. The proposed configuration of the proton pair responsible for the

second upbend is gf, or π([541]1/2−(α = +1/2) ⊗ π([514]9/2−(α = −1/2). Should

this configuration be responsible for the upbend in all three bands, the dispersion

in crossing frequencies could possibly be explained by the fact that these crossing

frequencies are sensitive to deformation changes since the [541]1/2− orbital is partic-

ularly deformation driving. Alternatively, one might also consider the configuration

mb, or π([660]1/2+(α = +1/2) ⊗ π([404]7/2+(α = −1/2). The UC calculations show

that the alignment of this pair may occur at frequencies similar to that of the mixed

gf crossing. The pronounced down-sloping of the π[660]1/2+ orbital as a function of

rotational frequency is well known, and this orbital alone is expected to contribute

about 5.7h̄ to the alignment. For the bands AE and AF in 166Yb and 170W, the full

alignment cannot be ascertained as they have not been observed at sufficiently high

spins. “Wiggles” can be seen in the curve for the ground-state band (G) because of

its interaction with the AB band which is closest in energy [1, 84].

6.2.2 Bands AG and AH

Figures 6.5, 6.6 and 6.7 show the plots for excitation energy minus rigid-rotor

references versus spins, aligned angular momentum and experimental routhians, re-

spectively, for new bands observed in this study. The routhian diagram [Fig. 6.7]

shows very little signature splitting between bands AG and AH for spins below 20,

which strongly suggests that they are signature partners based on the same orbitals.

They also interact with each other at the lowest spins. The bands undergo BC cross-
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Figure 6.5: Excitation energies minus a rigid rotor reference as a function of spin for
new bands in 168Hf. The Harris parameters used are ζ0 = 28h̄2 MeV−1

and ζ1 = 42h̄4 MeV−3.

ing (Fig. 6.6) at h̄ω ∼ 0.33 MeV with an apparent alignment gain of ∼ 5h̄. The

missing AB crossing is understood as a blocking phenomenon and consequently, this

band must contain A neutron orbital. The neutron orbitals I and J (Fig. 6.1) lie far

away from the Fermi surface and they are very unlikely. The presence of [521]3/2−

(G, H) is justified from Figures 6.6 and 6.7, where very similar, both theoretically

(Fig. 6.1) and experimentally, signature splitting between G and H can be observed

around a rotational frequency of 0.3 - 0.5 MeV. Since the excitation energy of band

AH is slightly smaller than that of the band AG, this is also in good agreement with

the UC calculations (Fig. 6.1), where the orbit H lies below the orbit G. Thus, the

two-quasiparticle configuration AG, AH are the most probable configuration.
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Figure 6.6: Alignments of new bands with Harris parameters ζ0 = 28h̄2 MeV−1 and
ζ1 = 42h̄4 MeV−3.

6.2.3 Band AM

The band AM does not show AB band crossing; however, BC crossing is present

at h̄ω ∼ 0.3 MeV with the alignment of ∼5h̄. In Fig. 6.8, the alignment and routhian

of band A of 169Hf is compared to that of band AM showing that they exhibit similar

behavior. It points to the fact that the orbital A [642]5
2
+ is the prime configuration

candidate for band AM. Its excitation energies are just above the AE and AF bands

which rules out the coupling of A with E or F. Among the two possibilities, M or

N from neutron orbital [521]1
2
−, orbital N can be ruled out as it pushes the band to

higher excitation energy than that of the bands AG and AH (see Fig. 6.1), which

is experimentally not true. Based on this argument, the possible two-quasineutron
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Figure 6.7: Routhians versus rotational frequency for new bands, except X1 and X2
relative to a reference with Harris parameters ζ0 = 28h̄2 MeV−1 and ζ1

= 42h̄4 MeV−3 in 168Hf.

configurations could, therefore, be AM. The signature partner is not observed because

of the expected strong signature splitting.

6.2.4 Bands X1 and X2

These two bands are very short. Band X1 seems to show AD crossing, and thus

neutron orbital B could be involved in its configuration. Band X2 seems to undergo

BC crossing, and thus neutron orbital A could be involved in its configuration.
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Figure 6.8: Alignments (top) and routhians (bottom) of band AM in 168Hf and band
A in 169Hf with the same Harris parameters as in Fig. 6.5.

6.3 High-K Band Configurations

To find possible configurations on which high-K bands are built, their B(M1)/B(E2)

ratios extracted from in-band M1/E2 branching ratios are compared with calculated

values relevant to the possible configurations, as described below. Their alignment

patterns, excitation energy, dynamic moment of inertia and the routhians are also

compared with that of high-K bands of neighboring nuclei 167Hf, 169Hf, 166Yb, 167Yb

and 168Yb , where they exhibit similar characters.
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Relatively large alignment, high excitation energy and strong M1 transitions sug-

gest that the high-K bands in 168Hf are associated with four quasiparticle structure

consisting of two neutrons and probably two protons.

A high-K band, as the name refers, should be based on high-Ω orbitals which

can boost high components of angular momentum along the symmetry axis (simply

called K). Most neutron orbitals do not yield high-Ω in this mass region, except the

neutron state [505]11/2− which is, however, slightly far below the Fermi surface2 if

one takes smaller β deformation into account. The proton high-Ω orbitals available

are [514]9/2− (h11/2), and [404]7/2+ (g7/2) (Table 6.1). Employing the tilted cranking

model, J.R.B. Oliveira et al. [88] has suggested three high-K bands in 166Yb, 167Yb

and 168Yb, based on similar [505]11/2−, [523]7/2− and [404]7/2+ states which are

also reported in several Er, Dy, Gd, and Sm odd-N isotopes, and in 149Nd and 167Yb

[89]. Although the proton states are usually not active due to the gap at Z=70, a Iπ=

Kπ= 8− state might have been created due to the excitation of two quasiproton states

[514]9/2− and [404]7/2+. As mentioned above, Ref. [88] has reported high-K bands

built on a similar Kπ= 7− state, which justifies their involvement in such high-K

structures.

One of the best techniques to investigate the wavefunctions of nuclear states is to

compare the experimentally determined γ-ray transition probabilities between states

versus theoretical predictions. This is often possible by measuring directly the ratio of

the intensities of γ-rays which de-excite collective states. Strongly coupled rotational

bands with K 6= 0 are composed of two sequences of stretched quadrupole transitions (I

→ I-2) which are linked by stretched dipole transitions (I → I-1). Important quantities

such as the deformation of the nucleus and what quasiparticles are associated with

2The Fermi surface is the highest energy orbital occupied by the last neutron or proton.
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a given band can be deduced from these transition probabilities. The E2 transition

is the most common transition in the deformed rotational structure of the rare-earth

region. For coupled bands with connecting ∆I = 1 mixed M1/E2 transitions, the

experimental values of B(M1, I → I-1)/B(E2, I → I-2) have been extracted from the

expression

B(M1)

B(E2)
= 0.693

T1

T2

E5
2

E3
1

1

1 + δ2
(6.4)

where subscripts 1,2 refer to the ∆I = 1 and ∆I = 2 transitions, respectively. E and

T are respectively the intensity and γ-ray energy in MeV while δ is the E2:M1-mixing

ratio given by

δ =
√

0.7Eγ
〈I|M(E2)|I − 1〉
〈I|M(M1)|I − 1〉 (6.5)

It is apparent from Eq. 6.5 that for a pure E2 transition, δ goes to infinity, while for

the case of a pure M1 transition, δ vanishes. The effect of the mixing ratio on the

branching ratio is the following: when the mixing is dominated by E2, the mixing

ratios are large, and when the M1 dominates, the (1+δ2)−1 term has essentially no

effect. Moreover, the correction is in general less than 10% and has, therefore, been

neglected. The calculated B(M1) values are based on an extension of the geometrical

model of Ref. [90]:

B(M1, I → I − 1) =
3

8πI2

{√
I2 −K2

[

∑



(g − gR)Ω

]

−K

[

∑



(g − gR)ı

]}2

µ2
N

(6.6)

The value used for the collective gyromagnetic ratio is gR = 0.35. The intrinsic g

factors, g, used for the different quasiparticle orbitals (see Table 6.1) are A, B, C,

D: -0.28; E, F: 0.25; G, H: -0.61; e, f: 1.29; g:0.76; a, b: 0.63; c, d: 1.57; k: 1.35. The
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values of g have been calculated from the wavefunctions in Ref. [91]. For the aligned

quasineutron pair (BC) a summed alignment of 6h̄ together with K = 0 has been

used. The theoretical B(E2) values have been calculated according to the expression

[92]

B(E2, I → I − 2) =
5

16π
Q2

o〈IK20|I − 2K〉2 (6.7)

where Qo is the transition quadrupole moment (often determined from lifetime mea-

surements - see Chapter V).

Figure 6.9: Dynamic moment of inertia J(2) as a function of rotational frequency for
the high-K bands.
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Figure 6.10: Experimental B(M1)/B(E2) ratios compared to theoretical calculations
for the proposed configuration of the band HK-1.

6.3.1 Band HK-1

The dynamic moment of inertia for all high-K bands is depicted in Figure 6.9.

The band HK-1 experiences a crossing at h̄ω ∼ 0.2 MeV, which is interpreted as AB

crossing (Fig. 6.5). The BC crossing around 0.3 MeV is clearly missing because of a

blocking phenomenon, suggesting that the band must contain the B neutron orbital.

Based on relatively large alignments and high excitation energy, the band should,

as aforementioned, be composed of a four-quasiparticle structure involving protons

which are supposed to play a major role for the corresponding alignment gain. The
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alignment pattern follows that of band AB, and the initial alignment is higher than

that of HK-2 and HK-3 which can only be caused by an AB neutron pair. Thus,

the neutron configuration may involve AB. The full configuration proposed is (gaAB,

gbAB), coupled to Kπ = 4− as will be discussed in the following paragraphs. Figure

6.10 shows the experimental B(M1)/B(E2) values as a function of spin together with

some relevant theoretical B(M1)/B(E2) values.

The quasiprotons having the lowest energies are c, f and g where two of them

are negative parity. Therefore, the other possible configurations could also be (afAB,

bfAB), (cfAB, dfAB) and (cgAB, dgAB) with Kπ = 8−, 7− and 3− respectively.

However, for the configuration (afAB, bfAB), the experimental B(M1)/B(E2) value

becomes too high and out of scale in Fig. 6.10. In addition, the AB crossing frequency

is 0.21 MeV, lower than the 0.25 MeV in the yrast band. If we replace the proton ‘a’ by

‘c’, this makes the B(M1)/B(E2) ratio even higher for the configuration (cfAB, dfAB).

The B(M1)/B(E2) ratio of (gaAB, gbAB) agrees much better with experimental

values. The ratios for (cgAB, dgAB) are good too, but this configuration can be

discarded based on the fact that one should see the lower orbital [404]7/2+ first

rather than [402]5/2+. According to UC calculation, the proton [541]1/2− orbital is

lower than the [404]7/2+ and [514]9/2− orbitals above a frequency of ∼ 0.25 MeV.

This orbital can be seen in the HK-2 (geBE/gfBE) and HK-3 (geAE/gfAE) bands,

and is also present in 167Lu and neighboring nuclei. The proton [404]7/2+ orbital is

higher than the [514]9/2− orbital (e or f) seen in HK-2 and HK-3, and total proton

parity changes to negative for the ga/gb combination. These could be the reasons

that the [541]1/2−⊗[404]7/2+ combination is not seen in neighboring nuclei. The

neutron configuration AB for HK-1 is much lower than that in HK-2 and HK-3 (BE

and AE). This could make the total excitation energy of HK1 lower than HK-2 and
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Figure 6.11: Alignments (top) and routhians (bottom) of HK-1 and a coupled band
(HK) in 168Hf and 166Hf respectively, with the same Harris parameters
as in Fig. 6.5.

HK-3. This is consistent with the fact that HK-1 has a lower energy than HK-2

and HK-3. The E1 decays out of HK-2 and HK-3 change the parities of the neutron

wave functions, while in HK-1 these E1 decays change the parity for the proton wave

functions.

The final choice of configuration of the band HK-1 is thus settled on (gaAB,

gbAB). Using this low K-value (4), the AB crossing frequency is similar to that of

the yrast band. The alignment gain looks fine too. The introduction of g i .e. the

[541]1/2− proton orbital, is also supported by its involvement in a coupled band for
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166Hf [87]. In Fig. 6.11, the alignment and routhian of the HK-1 band in 168Hf is

compared to that of the coupled band in 166Hf, where both bands exhibit similar

alignments and routhians.

6.3.2 Band HK-2

The band HK-2 doesn’t exhibit any band crossing (Fig. 6.5 and 6.6). The ab-

sence of both AB and BC crossing suggests that this band is likely to be built on a B

neutron state. The alignment, before the BC crossing, is ∼ 1 h̄ smaller than that in

the band HK-3 which favors neutron configuration BE. Its alignment increases very

smoothly and attains only the ∼ 3.5 h̄ gain even during the long interval of rotational

frequency. The initial angular momentum is around 6-7 h̄. The B(M1)/B(E2) argu-

ment favors a configuration of two neutrons and two protons. The full configuration

proposed is ν([642]5/2+⊗[523]5/2−)⊗π([541]1/2−⊗[514]9/2−) (geBE, gfBE), coupled

to Kπ = 10−, for which the calculated B(M1)/B(E2) ratios agree with the data (Fig.

6.12). Apart from HK-3, this will be another band based on deformation alignment.

Other possible configurations are ν([642]5/2+⊗[523]5/2−)⊗π([404]7/2+⊗[402]5/2+)

(acBE, bcBE), coupled to Kπ = 11− and ν([642]5/2+)2⊗π([404]7/2+⊗[514]9/2−)

(aeAB, beAB), coupled to Kπ = 13−. However, (acBE, bcBE) can be discarded

on the basis that the initial alignment is too small compared to the observed values.

For (aeAB, beAB), this proton combination is also seen in heavier Hf isotopes, but the

problem is that the band is extended to spins lower than the AB crossing frequency

and maintain a pretty constant spin alignment. The neutron configuration is not AB.

The lowest state observed is 15− which is greater than the calculated Kπ = 10−

band head, but this can be explained in terms of K-mixing. It is uncertain if the

band has achieved the lowest observed state. Thus, either the lowest observed state
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Figure 6.12: Experimental B(M1)/B(E2) ratios compared to theoretical calculations
for the proposed configuration of the band HK-2.

Kπ = 15− is not the true bandhead, or, if it is, the K-quantum number is strongly

mixed [93].

Fig. 6.13 shows the alignment and dynamic moment of inertia of the HK-2 band

in 168Hf compared to that of a high-K band in 168Yb where both bands exhibit similar

characteristics. Both alignment curves rise very smoothly with rotational frequency,

and they follow each other. None of their dynamic moments of inertia show any

backbending and the points are just spread all over. Moreover, the four quasiparticle

(two neutrons and two protons) structure of the high-K band in 168Yb [88] with
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Figure 6.13: Alignments (top) and dynamic moment of inertia (bottom) of HK-2
and a high-K band in 168Hf and 168Yb respectively. The Harris param-
eters are kept identical.

the presence of identical ν[642]5/2+ orbitals provides supports to our configuration

assignment of (geBE, gfBE) for HK-2 in 168Hf.

6.3.3 Band HK-3

The band HK-3 has been assigned a similar configuration to the coupled band

(geAE, gfAE) in 166Hf [87]. The relatively large alignment and excitation energy

(Figs. 6.5 and 6.6) suggest that this band is a four quasiparticle structure, probably

also involving quasiprotons. The band undergoes BC crossing at h̄ω ∼ 0.3 MeV, while
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Figure 6.14: Experimental B(M1)/B(E2) ratios compared to theoretical calculations
for the proposed configuration of the band HK-3, with and without an
aligned (BC) neutron pair.

AB crossing around h̄ω ∼ 0.28 MeV is clearly missing (see Fig. 6.6). Due to the fact

that a BC crossing is observed, the band HK-3 must contain the A quasineutron.

The other quasineutrons could therefore be D, E, F, G or H. The lowest combination

of one of these with A is AE. The quasiprotons having the lowest energies are e,

f and g, and are all of negative parity. A good candidate for the configuration is,

therefore, ν([642]5/2+⊗[523]5/2−)⊗π([541]1/2−⊗[514]9/2−), with different possibil-

ities for the K quantum number. Another possibility, in which E is replaced by G,

could be ν([642]5/2+⊗[521]3/2−)⊗π([541]1/2−⊗ [514]9/2−). Figure 6.14 shows the
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Figure 6.15: Alignments (top) and dynamic moment of inertia (bottom) of band HK-3
in 168Hf and bands K and k in 169Hf.

experimental B(M1)/B(E2) values as a function of spin together with some relevant

theoretical B(M1)/B(E2) values. Accordingly, the configuration for the band HK-3

is proposed to be ν([642]5/2+⊗ [523]5/2−)⊗π([541]1/2−⊗[514]9/2−), (geAE, gfAE)

coupled to Kπ = 10−. The agreement is striking also above I = 23−, where the BC

crossing must be included to match the observed experimental trend.

The other possible configuration, where the same orbitals couple to Kπ = 9−, has

theoretical B(M1)/B(E2) values lower than the Kπ = 10− configuration and the exper-

imental values. If the E quasineutron is replaced by an F quasineutron corresponding
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to the configuration (gfAF, geAF), the expected excitation energy becomes a little

higher. The theoretical B(M1)/B(E2) values for this configuration are identical to

those of (geAE, gfAE). If only E is interchanged with G or F with H, corresponding

to the configurations (geAG, gfAG) or (gfAH, geAH), the theoretical B(M1)/B(E2)

values become too small. The positive signature of the proton orbital [660]1/2+,

labeled m, is close to the Fermi surface as well, but B(M1)/B(E2) values of config-

urations involving this orbital together with [404]7/2+ are too low compared to the

experimental values.

Based on the arguments mentioned above, the final choice of configuration of the

band HK-3 is settled on (geAE, gfAE) which has the lowest excitation energy of all

candidates. Additional support can be gathered from Fig. 6.15 which exhibits very

similar alignments and dynamic moments of inertia for the high-K bands k and K in

169Hf, and for HK-3 in 168Hf. It is impressive that all of them exhibit BC crossing

while AB crossing is blocked. The roles of the ν[642]5/2+ and π[514]9/2− orbitals

are justified by their presence in bands k and K, as suggested by K.A. Schimidt et al.

[93].

6.4 Rotation and Deformation Alignment

The band HK-3 and the negative-parity band, AE, are both of six-quasiparticle

nature at their highest spins, where they appear to have identical quasiparticles in-

volved, namely gf AE BC and ge AE BC for the two signatures of the band HK-3,

and AE BC gf for the band AE. The use of the same quasiparticle labels, though,

can not be justified for both bands which are obviously quite different. In the band

AE(BC) the two quasiprotons align their angular momenta along the rotational axis

at high spin, as expected from the UC calculations in which principal axis cranking
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Figure 6.16: Excitation energy with a rigid rotor reference subtracted, as a function
of spin, for the bands AE and HK-3 in 168Hf.

(PAC) is realized. In the high-K band the quasiprotons must be coupled mainly

to the deformation axis from the lowest spins. The high-K band is not a solution

expected from PAC calculations. The high spin parts of the two bands, therefore,

realize different coupling of particles in the same orbitals. These couplings apparently

result in a difference in aligned angular momentum of ∼ 2.5h̄ (see Fig. 6.16). In Fig.

6.16, the two bands cannot be compared at identical spins, but a linear extrapolation

of the energy for the coupled band, which may be justified from the constant align-

ment above h̄ω ∼ 0.3 MeV, shows a preference of a few hundred keV for the rotation

aligned coupling.

This case of co-existing coupling schemes is similar to the band (geAE, gfAE) in

166Hf [87]. The four neutrons are most likely spectators, and the difference is to be

traced to the coupling of the two protons. This is probably a resemblance to the cases
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of s- and t-bands representing aligned and tilted coupling of the ı13/2 quasineutrons

in some neutron-rich rare-earth nuceli [94]. As stated in Ref. [87], such rather exotic

cases of six-quasiparticle bands call for more advanced theoretical considerations.

6.5 Summary

The current study of normal deformed bands in the even-even nucleus, 168Hf, has

led to the discovery of seven new bands and a substantial extension of the six previ-

ously known bands. Spins and parities of levels in the new bands have been assigned

based on the measured DCO ratios of their decay-out transitions. All new bands,

except X2, have been assigned negative parity. Of the seven new bands, three are

high-K bands which form coupled pairs connected by strong M1 transitions. Based on

our Cranked shell model calculations and a systematic comparison with neighboring

nuclei, possible intrinsic configurations were suggested. High-K bands are proposed

to be based on proton excitations and have been confirmed from B(M1)/B(E2) ratios.

Bands AB, AE and AF have been extended to high spins where a second upbend can

be seen clearly which are described by h11/2 and h9/2 proton alignment. It is con-

cluded that these bands are associated with six quasiparticle configurations at higher

spin.

Lifetimes of yrast states have been measured using the Doppler shift attenuation

method. The extracted quadrupole deformation is in good agreement with predic-

tions from TRS calculations. No reduction in collectivity has been observed. It is

particularly interesting that the trend of collectivity at these high spin for yrast states

in 168Hf is different from that in 166Yb where the B(E2) has been found to drop by

∼ 40% [84].
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CHAPTER VII

TRIAXIAL STRONGLY DEFORMED STRUCTURES

7.1 Introduction

The search for experimental signatures of triaxial nuclear shapes has proved to

be very challenging. Potential energy surface (PES) calculations using different ap-

proaches, see e.g. Ref. [95, 96], predict that nuclei with Z∼72 and N∼94 constitute a

region where such exotic shapes coexist with others associated with normal deformed

(ND) prolate shapes. More systematic subsequent cranking calculations using the Ul-

timate Cranker (UC) code [79, 80] predict high-spin triaxial strongly deformed (TSD)

minima with (ε2, γ) ∼ (0.40,±20◦) for nuclei in this region. These TSD minima are

caused by large single-particle shell gaps associated with proton numbers Z = 71 and

72, and neutron numbers N = 94 and 97 [97, 98]. Indeed, TSD structures have been

identified in several Lu isotopes and the wobbling1 motion, a low-lying collective exci-

tation mode characteristic of nuclei with stable triaxiality [99], has been established in

163,165,167Lu [100-103] and, possibly, in 161
71Lu [104]. Further theoretical investigations

based on the particle-rotor model [105, 106] and on the cranked shell model plus ran-

dom phase approximation [107] pointed to the essential role of the rotation-aligned

i13/2 quasiproton which allows wobbling to compete in energy with quasiparticle exci-

1Like a failure of alignment causes wobbling in your car wheel, a triaxial-shaped rigid-body shows
“wobbling motion” in its rotation.
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tations in these Lu nuclei. An extensive search for TSD bands in Hf (Z = 72) nuclei

has been carried out without success in proving triaxiality. The strongly deformed

bands observed in 170−175Hf [108-111] were suggested to fall into two groups, labeled

as ED and SD, based on their rotational properties and theoretical studies using the

UC calculations and the Cranked Relativistic Mean-Field (CRMF) approach [109].

The ED bands are likely built on the proton i13/2h9/2 configuration, and are associ-

ated with near prolate shapes with ε2 ∼ 0.3, i.e., deformations enhanced with respect

to the normal deformed nuclear shapes, ε2 ∼ 0.22 characterizing the ground states.

For the bands in the SD group, only band-2 in 175Hf is linked to known structures

[111]. The suggested intrinsic configurations of this band, and likely similar SD bands

in 172−174Hf, involve the πi13/2 (proton), as well as the νj15/2 (neutron) orbitals orig-

inating above the N = 126 spherical shell closure. The SD bands are associated

with superdeformed prolate shapes (CRMF calculated Qt ∼ 11.6 eb, compared to

experimental values varying between 12 and 14 eb [110, 111]) with little triaxiality.

Therefore, the UC and the CRMF calculations do not support a TSD nuclear shape

for the reported SD bands in the heavier 170−175Hf isotopes. Pronounced triaxial

minima exist in the calculations, but they would result in even smaller calculated

quadrupole moments. Three candidate TSD bands were also reported in 168Hf [2]

which is closer to the UC predicted neutron shell gap, however, none of the bands

were linked to the known structures. The second motivation of this dissertation re-

search is to search for possible decay pathways of these bands and investigate their

properties in order to understand their nature.
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Figure 7.1: Partial level scheme of 168Hf from this work. Gamma ray energies are in
keV. Dashed lines represent tentative transitions. Gamma-ray energies
of higher spin transitions in bands TSD1 (up to tentative 61 h̄) and ED
(former TSD2, up to 49 h̄) are given on the spectra shown in Fig. 7.2.
The spin, parity, and excitation energy of TSD1 are uncertain, see text
for a detailed discussion. Band TSD2 (former TSD3) is not shown in the
figure, its transition energies can be found in Ref. [2].
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7.2 Experimental Results

A partial level scheme of 168Hf from this study is presented in Fig. 7.1. The

two weaker bands reported in the previous publication [2], TSD2 and TSD3, were

renamed to ED and TSD2, respectively. The reason for the change will be discussed

below. Other new results about ND structures are discussed in Chapter VI and will be

published in an upcoming full paper [112]. The strongest depopulating transition from

band ED to lower-spin ND structures is the 808 keV γ ray, which feeds the I = 27 h̄

level in the intermediate structure, band X1, before decaying to the yrast band AB.

The intensities of the 808 keV decay-out and the 770 keV in-band transitions from

the 29− state are almost equal. Band X1 decays mainly to the band AB between the

26+ and 22+ levels with the 1371 keV γ ray being the strongest linking transition.

Band X1 also feeds the bands G and AE. However, the linking transitions to band

AE could not be established. Several depopulating transitions from bands ED and

X1 can be seen in the spectrum of Fig. 7.2.

DCO ratios were measured for all transitions in the three candidate TSD bands,

except for those very weak transitions at the highest spins, and the results were

consistent with expectations for E2 cascades. The 1371 and 1366 keV transitions de-

populating band X1 have DCO ratios of 0.49(9) and 0.69(10), respectively, consistent

with a stretched dipole character. Furthermore, we suggest negative parity for band

X1 because the linking transitions most likely have an E1 multipolarity. An M1 tran-

sition of such high energy would be expected to exhibit an E2 admixture resulting in

a larger DCO ratio. The 808 keV decay-out transition from ED has a DCO ratio of

0.91(11) indicating either a stretched E2 or a △I = 1 M1/E2 character. The large

error in the DCO ratio, caused by the low statistics, does not allow us to make further
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Figure 7.2: Gamma-ray coincidence spectra of bands TSD1 and ED in 168Hf, doubly
gated by the band members which are labeled by γ−ray energies. In
the TSD1 spectrum, the stars and plus signs indicate transitions in the
normal deformed bands AE and AF, respectively. The transition with
the highest spin marked in band AE is 917 keV (31− → 29−), and in
band AF is 902 keV (30− → 28−). The inset shows the intensity profile
of band TSD1. In the ED spectrum, the decay-out transitions of bands
ED and X1 are also labeled by energies, with the stars denoting the
transitions in ND structures.

distinction between the two scenarios. However, the latter possibility can be ruled

out since it would require the 702 keV γ ray, deexciting the 27− level in X1 to a lower

level in ED, to be an M3 transition, which is highly unlikely. Therefore, both the 808

and 702 keV γ rays are E2 transitions. The mixing of the two 27− states in bands X1

and ED, which are 37.4 keV apart, causes the decay from ED to X1 and vice versa.

This provides additional support for the spin/parity assignments for ED. Therefore,

the band ED has a parity and signature (π, α) = (−, 1), i. e., it is associated with

odd spins.
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The band TSD1 decays mainly to the negative parity bands AE and AF, whose

members can be seen in the coincidence γ−ray spectrum, doubly-gated on TSD1

transitions, as shown in Fig. 7.2. The intensity of band TSD1 decreases in the two

lowest transitions, 722 and 677 keV (see inset of Fig. 7.2). Therefore, the decay-out

from TSD1 occurs over the lowest three levels of the band. This fact, together with

the observation that TSD1 decays to at least two different bands, must result in a

highly fragmented decay pattern. The exact decay pathways from TSD1 to these two

bands could not be established. However, all γ rays in TSD1, including the lowest 677

keV transition, are in coincidence with transitions in band AE below spin 31− and

in band AF below spin 30−. The spin of the lowest TSD1 level would, most likely,

be 32 h̄ if this level decays to the 31− state in band AE through a dipole transition,

like the high-energy dipole γ rays in the statistical decay of the superdeformed bands

in mass 150 and 190 regions [113, 114]. Such a one-step direct link is not observed.

Another, possibly more plausible, scenario would be a two-step link between the

lowest TSD1 level and the states in bands AE and AF, e.g., a situation similar to the

decay from band ED to X1 through level mixing, with subsequent decay to the yrast

line. This would result in a spin of 33 or 34 h̄ for the lowest TSD1 level. Therefore,

the spin of this level can only be determined approximately to be ∼ 33 h̄, or higher.

Consequently, the highest level in TSD1 is 61 h̄, which is typical for the highest

spins observed for nuclei in this region, or higher. The possibility of a three-step link

cannot be ruled out, but is less likely, since it would further raise the spin of band

TSD1. The band decays to bands AE and AF, indicating its closer connection to the

negative parity structures, but the parity of TSD1 could not be determined. Band

TSD2, consisting of 9 transitions [2], is likely located at a higher excitation energy

than TSD1 because it is more weakly populated. It feeds the yrast band, as well as
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Figure 7.3: Kinematic (J (1)) and dynamic (J (2)) moments of inertia for highly-
deformed bands in 168,171,175Hf. The values for the J (1) moment of band
TSD1 in 168Hf are plotted based on the adopted spin values, see text for
details.

another negative-parity ND band found in the present study (not shown in Fig. 7.1)

[112], but its decay pathways could not be established.

7.3 Discussion

7.3.1 Band ED

The kinematic (J (1)) and dynamic (J (2)) moments of inertia are presented in Fig.

7.3 for the three bands in 168Hf, the ED bands in 171,175Hf [109, 111] and the SD

band-2 in 175Hf. The ED bands start from spins as low as I ∼ 15 − 20 h̄. Their J (2)

moments increase slightly with rotational frequency, excluding the low-spin region

where the J (2) values are affected by paired band crossings and/or by interactions

with ND bands. Over the entire frequency range, the J (1) moment of band ED in
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168Hf is similar to those of the ED bands in the heavier Hf isotopes, which are ∼20%

larger than those of the ND bands in these nuclei. The J (2) moment of band ED in

168Hf exhibits large irregularities, partly indicating a character change at lower spins,

and partly reflecting the interaction with band X1. Its aligned angular momentum ix

(see Fig. 7.4) is comparable to those of the ED bands in 170Hf [108] and 171,175Hf, and

is clearly larger than that of the yrast band AB, which is an extension of ground state

band G after the first i13/2 neutron band crossing at a rotational frequency h̄ω ∼ 0.28

MeV. The large initial alignment at low frequencies is typical for structures with

aligned high-j quasiparticles. Band ED in 168Hf starts at a higher rotational frequency

(∼ 0.38 MeV) than other ED bands, and its alignment increases gradually to 6.5 h̄

above that of the yrast band, possibly due to a changed character at the lowest spins.

161



The first proton alignment observed around h̄ω ∼ 0.55 MeV in the ND bands is

clearly missing in all ED bands.

In order to understand the intrinsic configurations of the 168Hf bands, we per-

formed cranking calculations using the UC code. Pairing is taken into account in

the code, and the standard parameters [81] were used for the Nilsson potential. The

calculated configurations are labeled as P(π1, α1)N(π2, α2). For protons, π1 = 0 (or 1)

represents the positive (or negative) parity, and α1 = (signature × 2). The π2 and α2

symbols are defined similarly for neutrons. There are four theoretical bands with an

aligned angular momentum close to that of band ED. They all have the proton config-

uration P(l,2), see Fig. 7.5. Of the four neutron configurations, N(0,0) is energetically

favored, lying about 0.5 MeV below the nearly degenerate configurations N(l,0) and

N(l,2). The N(0,2) configuration has the highest energy, lying about 0.7 MeV above

the N(0,0) configuration. The P(1,2)N(0,0) configuration has (π, α) = (−, 1), i.e., neg-

ative parity and odd spins, in agreement with the values established for band ED. The

configurations P(l,2)N(l,2) and P(l,2)N(1,0) are signature partners with practically

no signature splitting. Such bands are not observed experimentally. Therefore, band

ED is likely associated with the configuration P(1,2)N(0,0), or π(il3/2h9/2)⊗ν(i13/2)
2.

The UC calculated excitation energies for such a band, minus a rigid-rotor reference,

are compared with the experimental values in Fig. 7.6. The experimental bands are

shifted down by 3.4 MeV so that the average energies of levels between 14 - 36 h̄ in

the yrast band overlap with those of the calculated band. The calculated ED band

fits the observed band ED well, but with a slightly lower excitation energy. In addi-

tion, the calculated aligned angular momenta are 5.6, 2.5, 6.1 h̄ for the πi13/2, πh9/2,

and ν(i13/2)
2 orbitals, respectively, with a total alignment of 14.2 h̄. This amount is

slightly higher than the 12.3 h̄ initial alignment of band ED which actually approaches
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this value with increasing spin, as shown in Fig. 7.4. The potential energy surface

for the P(1,2)N(0,0) configuration is presented in Fig. 6.3 for I = 35 h̄. The ED

minimum is located at (ε2, γ) = (0.26, 9.3o). This deformation is slightly enhanced

compared to the ND bands, but similar to deformations calculated for the ED bands

observed systematically in 170,171,175Hf [109]. These bands are all built on the proton

i13/2h9/2 configuration, but are coupled to different neutron configurations.

7.3.2 Band TSD1

Band TSD1 and the SD band-2 in 175Hf [111] are located at higher spins than the ED

bands. Their J (1) moments are considerably larger than the J (2) values and both J (1)

and J (2) moments decrease smoothly with increasing rotational frequency. The large
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aligned angular momentum of TSD1 in 168Hf can be achieved in configurations in-

volving one or two i13/2 protons and at least one j15/2 neutron. In UC calculations, all

sixteen configurations which represent the lowest energy for all possible combinations

of proton and neutron parity and signature, fulfill this requirement at a TSD shape

for at least a part of the experimentally observed spin range. The calculations, as de-

picted in Fig. 7.5, show that the proton configuration P(0,0) is energetically favored

by 1 MeV or more, compared to other proton configurations. The four neutron config-

urations, on the other hand, lie much closer in energy; over most of the experimental

spin range they are within 0.3 MeV of each other. It is, therefore, likely that the ob-

served band TSD1 will have the P(0,0) proton configuration, combined with a neutron

configuration which cannot be specified further in view of the small energy differences

just noted. Thus, four configurations are possible for band TSD1. If the band has

negative parity, the configuration is either P(0,0)N(1,2) (odd spin) or P(0,0)N(1,0)

(even spin). If the band has positive parity, the configuration is either P(0,0)N(0,0)

(even spin) or P(0,0)N(0,2) (odd spin). The proton configuration is always the same,

namely π(i13/2)
2, and all four neutron configurations contain one neutron in the j15/2

subshell. The negative parity bands have a slightly lower energy than the positive

parity ones, suggesting that the observed band TSD1 may have negative parity. The

most probable intrinsic configuration is then π(i13/2)
2 ⊗ ν(j15/2i13/2). The excitation

energies of the P(0,0)N(1,2) configuration are plotted in Fig. 7.6 together with that

of band TSD1 with a bandhead spin I = 33 h̄ and an assumed energy of 12.55 MeV,

which fits the calculated band the best. The uncertainties in the assumed energy of

the lowest TSD1 level will change the vertical position of the plotted band. With

the rigid-rotor reference energies chosen in the plot, the band TSD1 appears like a

straight line. The slope of the line is closely related to the moment of inertia and
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Figure 7.6: Experimental and UC calculated excitation energies minus a rigid-rotor
reference for bands in 168Hf. The experimental bands are shifted down
by 3.4 MeV so that the average energy of levels between 14 - 36 h̄ in the
yrast band overlaps with that of the calculated band. The zero point
of the energy scale corresponds to the spherical non-rotating liquid drop
energy. Band TSD1 is plotted with assumed bandhead spin and energy
values, as discussed in the text. The calculated band a1 is a prime
candidate for the ND band X1.

to the spin assumed for the bandhead. If the adopted spin of TSD1 is changed by 1

h̄, the slope of the line changes by ∼ 5.3%. The calculated quadrupole moment of

such a band is ∼ 10.5 eb, in agreement with the experimentally measured value of

Qt = 11.4+1.1
−1.2 eb [2], and is substantially larger than Qt ≈ 6.4(0.5) eb for the yrast

band [112]. As seen in the potential energy surface in Fig. 6.3, the calculated band

is associated with a TSD minimum at (ε2, γ) ∼ (0.43, 20◦). A neutron shell gap at

large triaxiality for N = 97 is essential for this TSD minimum [98]. When going

above N ∼ 97, rotational bands with similar moments of inertia and aligned angular

momentum are predicted to appear in several Hf isotopes, but not necessarily at the
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same triaxial deformation. For example, similarities are seen in Figs. 7.3 and 7.4

when comparing the band TSD1 in 168Hf96 and band-2 in 175Hf103. However, our UC

calculations, as well as previous CRMF calculations [109], show that the rotational

properties of the band-2 are reproduced by a band built on a prolate minimum. The

calculated quadrupole moment, Qt ∼ 12 eb, agrees reasonably well with the prelim-

inary values of Qt ∼ 13 eb measured for the band [111]. The same characteristic

high-j orbitals as in TSD1 of 168Hf, πi13/2 and νj15/2, are occupied. Details of the UC

calculations will be published elsewhere [115].

The configuration of band TSD1 is very different from that of the wobbling bands

observed in neighboring Lu isotopes, where only one aligned high-j intruder orbital,

the i13/2 proton, is involved. The zero-phonon bands in Lu isotopes start from spins

as low as 6.5 - 12.5 h̄ (rotational frequency h̄ω ∼ 100 - 200 keV), with excitation

energies less than 100 keV above the yrast line at low spins. These bands are strongly

populated, e.g., ∼10% and ∼8% relative to yrast band in 163Lu [100] and 167Lu [103],

respectively. The wobbling excitations built on these zero-phonon bands are more

favored in energy than the TSD bands based on quasiparticle excitations in the TSD

minimum which are located at higher energies, e.g., about 1 MeV higher than the zero-

phonon band in 163Lu [116]. The band TSD1 in 168Hf is located at much higher spin

and excitation energy than the zero-phonon bands in the Lu isotopes. Consequently,

its intensity, 0.26(10)% relative to yrast band, is very weak as compared to those of the

Lu bands. Furthermore, the calculations suggest that there are several quasiparticle

configurations located very close to TSD1, including those shown in Fig. 7.5, which

may compete with wobbling excitations more favorably. Therefore, it will be difficult

to observe collective wobbling excitations built on band TSD1. A similar situation

was suggested to be present for the TSD bands of 163Tm [117]. Band TSD2 could
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correspond to one of the four low-lying TSD bands predicted by the UC calculations,

considering the fact that the J (2) moments of TSD2 and TSD1 are similar (see Fig.

7.3), and that TSD2 is likely located at a higher excitation energy than TSD1 because

it is more weakly populated. If band TSD2 was plotted in Fig. 7.6 with an assumed

bandhead spin of 40 h̄ and energy about 2 MeV higher than that of the suggested 33

h̄ bandhead of the band TSD1, band TSD2 would follow the behavior of TSD1 very

closely.

7.4 Summary

Decay pathways of previously reported candidates for TSD structures in 168Hf were

analyzed. Discrete links were firmly established for band ED. The spin of the lowest

level in TSD1 was determined to be 33 h̄ or higher, based on the observed γ-ray coin-

cidence relationships. Detailed rotational properties of the bands were investigated.

The results of cranking calculations using the UC code reproduce all experimental

observables rather well. The measured properties and the overall agreement with a

theoretical analysis provide strong support for an interpretation where band TSD1

is associated with a TSD minimum with (ε2, γ) ∼ (0.43, 20◦), involving the π(i13/2)
2

and the ν(j15/2) high-j orbitals. This constitutes a confirmation of the existence of a

first TSD band, long-predicted in Hf isotopes. Band ED is likely associated with a

near-prolate shape and a deformation slightly enhanced with respect to the normal

deformed bands. It is proposed to be built on the π(i13/2h9/2) ⊗ ν(i13/2)
2 configura-

tion. Such ED bands have recently been observed systematically in several heavier

Hf isotopes. The results discussed in chapter 7 have been published in a paper [118].
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CHAPTER VIII

CONCLUSION AND OUTLOOK

8.1 Summary of Results

This dissertation research comprises a γ-ray spectroscopic investigation of normal

deformed (ND) and triaxial strongly deformed (TSD) bands in 168Hf, based on coin-

cidence data acquired in two experiments performed at Argonne National Laboratory

(ANL) using Gammasphere.

Seven new normal-deformed rotational bands have been established and six previ-

ously known bands have been extended to substantially higher spins. Spin and parity

of new levels have been assigned based on the DCO ratio measurements. Further-

more, possible intrinsic configurations were proposed with the help of cranking model

calculations. High-spin structures involving up to six quasiparticles (four quasineu-

trons and two quasiprotons) have been observed. The co-existing coupling schemes

in six-quasiparticle structures of band HK-3 involve identical orbitals. This is similar

to the first observation of such co-existing coupling schemes reported in 166Hf [87].

Out of the three previously observed candidate TSD bands, band TSD1 has been

confirmed as the first TSD band in Hf isotopes. TSD2 has been firmly linked to nor-

mal deformed structures and has been renamed to band ED, because of its enhanced

deformation, with the aid of “Ultimate Cranker” calculations.
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Lifetime measurements using the Doppler-shift Attenuation Method (DSAM) have

revealed the transition quadrupole moment of Qt ∼ 6.4 eb up to spin 28h̄ for the yrast

band. This provides a direct measurement of deformation associated with normal

deformed shapes in 168Hf.

8.2 Future Directions

The first high-spin triaxial strongly deformed band in Hf isotopes, band TSD1,

has been identified, but its discrete decay pathways are not established. Even though

Gammasphere is currently the most powerful gamma ray facility in the world for

nuclear structure study, its sensitivity pales in detecting very weak γ-rays. There is

a major effort to build GRETA (Gamma-Ray Energy Tracking Array) in USA and

AGATA (Advanced GAmma Tracking Array) in Europe, which have about 100-1000

times the sensitivity of Gammasphere. Once GRETA or AGATA is operational, even

weaker transitions may be detected, and thus the TSD bands in 168Hf can be further

studied.

Band ED, similar to bands systematically observed recently in several Hf iso-

topes, is proposed to be associated with an enhanced deformation relative to the ND

bands. This is supported by theoretical calculations, but an experimental lifetime

measurement is needed to confirm this presumption.

It should also be emphasized that further investigation of the high-K bands is

necessary. The tilted-axis cranking calculations (see, e.g., Ref. [88]) may provide

more insights for the quasiparticle configurations involved.
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[86] M.B. Smith, G.J. Campbell, R. Chapman, P.O. Tjøm, R.A. Bark, G.B. Hage-
mann, N. Keeley, D.J. Middleton, H. Ryde, K.-M. Spoh, Eur. Phys. J. A 6, 37
(1999).

[87] D. Ringkjøbing Jensen, J. Domscheit, G.B. Hagemann, M. Bergstrøm, B. Her-
skind, B.S. Nielsen, G. Sletten, P.G. Varmette, S. Törmänen, H. Hübel, W. Ma,
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B.M. Nyakó, D.T. Joss, M. Aiche, Eur. Phys. J. A 8, 165-176 (2000).

[88] J.R.B. Oliveria, S. Frauendorf, M.A. Deleplanque, B. Cederwall, R.M. Diamond,
A.O. Macchiavelli, F.S. Stephens, J. Burder, J.E. Draper, C. Duyar, E. Rubel,
J.A. Becker, E.A. Henry, M.J. Brinkman, A. Kuhnert, M.A. Stoyer, T.F. Wang,
Phys. Rev. C 50, 3 (1994).

[89] D.H. Smalley, A.G. Smith, S.Y. Araddad, C.W. Beausang, R. Chapman, J. Cop-
nell, A. Fitzpatrick, S.J. Freeman, S. Leoni, F. Lidén, J.C. Lisle, J.F. Sharpey-
Schafer, J. Simpson, J.P. Sweeney, D.M. Thompson, W. Urban, S.J. Warburton,
J. Wrzesinski, J. Phys. G: Nucl. Part. Phys. 22 (1996) 1411-1420.

[90] F. Dönau, Nucl. Phys. A 471, 469 (1987).

[91] B.E. Chi, Nucl. Phys. A 83, 97 (1966).

[92] A. Bohr, B.R. Mottelson, Nuclear Structure, Vol. 2 (W.A. Benjamin, New York,
1975).

174



[93] K.A. Schmidt, M.Bergström, G.B. Hagemann, B. Herskind, G. Sletten, P.G.
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THE PROCEDURE FOR DCO RATIO MEASUREMENT
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Introduction

Theoretically, we have defined how to calculate the DCO ratio in Chapter II. In

this appendix, we present the procedures to calculate it practically. There are four

programs (matedco, slice, subbgmat, m2mat and gf3) that are used.

Steps:

(1) A gate list is made by selecting strong and clean gating transitions: the matrices

used for the DCO ratio are single-gated matrices.

(2) The program “matedco” is used to scan the database and to build the matrix

“dcomat.mat”. An event is placed in the matrix if there is a coincidence between a

detector in group ‘x’, including detectors in rings 2,3,15,16 and 17, and a detector in

group ‘y’, including detectors in rings 5, 6, 7, 8, 9, 10, 11, 12 and 13.

(3) The program “slice” is used to obtain the total projection spectra on the two

axes. The program “gf3” is used to read the total projection spectra and then the

command “bg” is used to generate the smooth background spectra.

(4) The program “subbgmat” is used to subtract the smooth matrix background to get

the background-subtracted matrices. While running this program, total projection

spectra and smooth one-dimension background spectra are required as inputs. In

addition, a unit efficiency spectrum will be required as well.

(5) Based on background-subtracted matrices and the output factor from “subbgmat”,

the program “m2mat” is used to multiply matrices by this output factor:

m2mat -o output.mat input.mat -s scalefactor

(6) The commands “sl” and “wi” in “gf3” are used to generate a gate list (the .win

file).

(7) The program “slice” is run, taking the “*.win” file as input, to slice the matrix to
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obtain the final spectra. Based on these final spectra, the areas of peaks of interests

are found.

(8) Finally, the ratio of the peak areas obtained from the x- and y- directions is

calculated.
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APPENDIX B

THE PROCEDURE FOR THE PLOT OF ALIGNMENTS, MOMENT OF

INERTIA, ROUTHIANS ETC.
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Introduction

In this appendix, we will explain the procedure for plotting the graphs for align-

ment, moment of inertia, routhians etc. These quantities are theoretically defined in

Chapter II.

Steps:

(1) Run the program dixie gls.

(2) Give the .gls file.

(3) Enter the appropriate values for Harris parameters (for example, 35, 40).

(4) Use the commands xa, xm, xe, xr etc to get the displayed plots for alignment,

moment of inertia, energy and routhian respectively.

(4) Use the command wp to write a dixie-type (.pdc) file.

(5) Stop and exit the program using the command st.

(6) Run the program plot to obtain .psc and .psg files.

(7) Run the program pedit to edit the plot. We can add or delete any text using this

program.

(8) Finally, run the program plot2ps to obtain the .ps file for the plot.

(9) Use the command ggv to view the plot.
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APPENDIX C

LINESHAPE: A COMPUTER PROGRAM FOR DOPPLER-BROADENED

LINESHAPE LIFETIME ANALYSIS
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Introduction

A set of general-purpose computer programs for analysis of Doppler-broadened

gamma-ray lineshapes for deducing nuclear lifetimes has been developed at ORNL

incorporating several existing programs. The following is a brief description on how

to run the program ”LINESHAPE”.

Getting Started

1. Run the program DECHIST OR. It simulates by Monte Carlo techniques the

slowing-down process of the recoils in the target and in the backing. It reads input

data from a data file, filename.DAT, and produces a list file, filename.LIS, and a

history file, filename.HIS, that contains the velocity and direction of the recoils at

every time step for each simulated recoil. The .LIS file also contains some statistical

information about the recoil histories. These two output files are given the same

filename as the .DAT file.

The following input information is needed: the Z and A of the projectile, target,

backing, and recoil nucleus, the densities of the target and backing in g/cm3, the

target thickness in mg/cm2, the angle between the target and beam in degrees, and

the beam energy in MeV. These may be read from a .DAT file or entered interactively

in response to the program’s questions (and saved in a .DAT file). One must also

give the time step in ps, an integer seed to start the random number generator, and

the number of recoil histories desired. Suggested values: for the time step, 0.01 times

the shortest expected life-time; and 3000 or more histories. A disk quota of 100,000

blocks may be necessary.

Stopping powers are generated internally from one of several models. Your choice
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of models can be selected from a menu. A file STOPP.OUT is generated which

contains a tabulation of stopping powers as a function of ion energy for (1) recoil in

target, (2) recoil in backing, and (3) projectile in target.

2. Run the program HISTAVER OR. It takes the output from the .LIS file and

.HIS file generated by DECHIST OR and produces another .LIS file and .HIS file

containing, for each time step, the velocity profile as seen by a detector at a certain

angle. You will need to run this program once for every angle used in the analysis,

and for each of these a .LIS and .HIS file will be generated. The program requests a

filename for these output files. It should be different from the filename of the input

.LIS and .HIS files so that these will not be overwritten.

The following input information is needed: the target-detector distance, the de-

tector radius, the detector angle theta in degrees, the number of detectors at that

angle, and, for each detector, its relative efficiency and angle phi.

3. Select the level scheme which contains the transitions you wish to analyze.

Obtain energies for the E2 transitions between these levels. Number the levels con-

secutively starting with the lowest. If you are analyzing two coupled bands, number

the levels in order of increasing energy, which means that one band will have even

numbers and the other odd. Determine the spin of the lowest level and the K value

of the band.

For coupled bands, determine the M1/E2 branching ratios out of each level. These

must be greater than zero and less than one. For a single band, set all of the branching

ratios equal to 1.0. This is how the LINESHAPE tells which case to analyze.

Determine the intensity of the side-feeding (in relative units) into each level in-

cluded in the analysis. This should be obtained, if possible, from spectroscopic data

for the same reaction at the same beam energy. Choose the side-feeding model for
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each level, either a rotational band or a cascade whose transitions will have indepen-

dently varied lifetimes. For rotational bands, choose the number of transitions in the

bands (from 1 to 6), and the moment of inertia (I/h̄2 in 1/MeV). A value of 65/MeV

is typical. These must be the same for all rotational bands. For independently varied

side-feeders, the number of transitions in the cascade (from 1 to 5) and the initial

lifetimes (which must all be different) must be specified for each level being fed. The

number of transitions in the feeding cascades may be different for different levels being

fed. It is possible to use rotational band feeding for some levels and independently

varied cascade feeding for others.

4. Select the spectra that you will use for the analysis, one per angle. Including

the 90 degree angle in the analysis is recommended, as it helps to identify contami-

nants. Gates can be summed. It is also possible to use different spectra for different

transitions. Obtain a linear energy calibration (slope (in MeV/ch) and intercept (in

MeV)). All spectra must have the same energy calibration.

For each data spectrum, construct an error spectrum which contains, for each

channel, the SQUARE of the error in the corresponding data channel. If these errors

are not accurate, the error results of MINOS analysis will not be valid. For a singles

spectrum, the spectrum itself may serve as the error spectrum. This is the default if no

error spectrum is provided. For a gate spectrum from which a (weighted) background

spectrum has been subtracted, the error spectrum may be generated by adding the

original raw gate spectrum to the (weighted) background spectrum.

LINESHAPE can read spectra in the (ORNL) .SPK format and in the (NBI) .SPE

format. A filename with no extension is assumed to be .SPK.

For each gamma-ray transition you wish to analyze, select the low-channel and

high-channel limits of a ‘window’ which contains the Doppler-broadened photopeak
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and sufficient channels on each side to fit a linear background. Making the window

wider than necessary will increase the running time and dilute the normalized chi-

square. Determine the FWHM (in channels) for stopped (unbroadened) peaks in the

window for each angle.

If two or more Doppler-broadened photopeaks overlap, they must be fitted to-

gether in the same window. To do this you must use the same low- and high- channel

limits for each transition in the window. It is permissible, however, for two different

windows to overlap in the background area as long as the peaks being fitted to not

overlap.

If there are any contaminant peaks in the window, determine their centroids ac-

curately, and the program will include them in the fit. It can handle up to eight

peaks per window. If any of the contaminant peaks do not overlap the peak whose

lineshape is being fitted, they can be eliminated from the fit by specifying regions to

be excluded. The FWHM of contaminant peaks may be different from that of the

broadened photopeak.

5. Obtain an .eff file for the efficiency calibration. You will have to divide each

spectrum by this file.

6. Run LINESHAPE. Use the SETUP command to setup the entire level scheme.

Supply the information as the program asks for it. Save (DUMP) that setup. Next,

use the CALCULATE command. It creates shape-versus-time matrices for each of

the gamma-rays included in the analysis for which there is data. Save those shapes

with DU/S (dump/shape). You can look at those shapes on a graphics terminal with

the DS command.

7. Start the least squares fit. Start from the top, using the SW (Select Window)

command to exclude the lower levels from the analysis, and then move down the
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band fitting successive windows in turn. It is recommended that you save your fitted

parameters after each step to avoid losing results if there is a computer or program

malfunction. To minimize disk space usage, you can over- write previous dump files,

since all parameters are saved each time, not just the ones currently being fitted.

LINESHAPE contains three minimization routines from the program MINUIT

developed at CERN. These are SEEK, SIMPLEX, and MIGRAD. SEEK searches

randomly over a region around the starting values of the parameters, SIMPLEX

moves in quickly to the region of the minimum and MIGRAD converges very closely

to the minimum when starting not too far away. The recommended fitting procedure

is to call SEEK if the starting values of the parameters are only “wild guesses”, then

call SIMPLEX and MIGRAD in that order. If the starting values of the parameters

are reasonable, then start with SIMPLEX followed by MIGRAD.

You can observe the quality of the fit on a graphics terminal with the DD com-

mand, which displays the data, followed by the DF command, which overlays the fit.

You can also observe the decay curves with the DC command.

Using ALT (Alter) you can change the values of parameters and observe the effect

on the fit, on the decay curves, etc.

8. At the initial stage of the analysis, you should try to obtain the best values

of the peak widths for each window, and also the best positions of the contaminant

peaks (“best” meaning the values that give the lowest chi-squares). These parameters

can be varied with the ALT command but not least-squares fitted.

9. After obtaining the best fits for each window separately, you should fix the

window parameters (NORM, A, B, and PA) and vary Q and TS and/or QS for

several adjacent levels; perhaps for the entire level scheme. The command FW or

FIX/WIN is useful for fixing all window parameters.
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10. The errors on the parameters after MIGRAD has converged are derived from

the covariance matrix, and should be reasonably good if the parameters are not

strongly correlated. However, since the Q and TS and/or QS for a given transition

are probably correlated (e.g. one could increase and the other decrease without

changing chi-square much), one should call the MINOS error analysis routine only

after obtaining the best fits to all of the parameters. When running MINOS, all of

the Q and TS and/or QS parameters above the state of interest should be free.
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