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This dissertation considers sheltering network planning and operations for natural 

disaster preparedness and responses with a two-stage stochastic program. The first phase 

of the network design decides the locations, capacities and held resources of new 

permanent shelters. Both fixed costs for building a new permanent shelter and variable 

costs based on capacity are considered. Under each disaster scenario featured by the 

evacuee demand and transportation network condition, the flows of evacuees and 

resources to shelters, including permanent and temporary ones, are determined in the 

second stage to minimize the transportation and shortage/surplus costs. Typically, a large 

number of scenarios are involved in the problem and cause a huge computational burden. 

The L-shaped algorithm is applied to decompose the problem into the scenario level with 

each sub-problem as a linear program. The Sheltering Network Planning and Operation 

Problem considered in this dissertation also has a special structure in the second-stage 

sub-problem that is a minimum cost network flow problem with equal flow side 

constraints. Therefore, the dissertation also takes advantages of the network simplex 

method to solve the response part of the problem in order to solve the problem more 
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efficiently. This dissertation investigates the extending application of special minimum 

cost equal flow problem. A case study for preparedness and response to hurricanes in the 

Gulf Coast region of the United States is conducted to demonstrate the usage of the 

model including how to define scenarios and cost structures. The numerical experiment 

results also verify the fast convergence of the L-shaped algorithm for the model. 
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CHAPTER I 

INTRODUCTION 

There are four milestones in this research work. Firstly, a two-stage stochastic 

model is developed to minimize the total evacuation cost. Secondly, in order to tackle 

large evacuation problems, L-shaped method is introduced to solve the Sheltering 

Network Planning and Operation Problem (SNPOP). Thirdly, the second-stage sub-

problem of the SNPOP is a minimum cost network flow problem with side constraints of 

equal flows. Therefore, a modified network simplex method is implemented to solve 

SNPOP more efficiently. Lastly, the problem with two echelons is further studied, and we 

demonstrate that the structure of the minimum cost network flow problem with side 

constraints of equal flows could be extended into many other domains. Therefore, in this 

chapter, introductions related to these four milestones will be stated.   

Introduction to sheltering network 

In May 2009, the U.S. Department of Homeland Security (DHS) announced a 

new national shelter system to help victims of natural disasters, especially evacuees of 

hurricanes (Gibson, 2009). The system would have a database of thousands of places for 

evacuees to go in an emergency. Currently, the Red Cross National Shelter System (NSS) 

keeps information regarding over 54,000 potential sheltering facilities, and the 

information can be accessed by the Federal Emergency Management Agency (FEMA) 

(American Red Cross, 2009). However, most shelters in NSS are not specialized for 

evacuation. They have other functions during regular hours, such as churches, convention 
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centers, stadiums, schools, etc. FEMA provides funding to upgrade some potential 

shelters to meet FEMA standards to provide quality mass sheltering. For example, 

FEMA’s Hazard Mitigation Grant Program (HMGP) provided funding to have a 

community shelter built to meet FEMA standards at D’Iberville High School in Biloxi, 

Mississippi to protect approximately 3,000 occupants during a possible disaster (FEMA, 

2009). In this dissertation, shelters that have already met FEMA standards are defined as 

Existing Permanent Shelters. All other shelters in NSS are defined as Temporary 

Shelters. New Permanent Shelters could be built from scratch or through an updating of 

current Temporary Shelters.  The candidate sites of new Permanent Shelters are defined 

as Potential Permanent Shelter locations. FEMA has to decide how many new Permanent 

Shelters should be built during preparedness. Usually, this decision process is 

complicated mainly because of two reasons: the stochastic manner of disasters and the 

tradeoff between evacuation requirements and evacuation budgets.  Once a natural 

disaster is imminent, FEMA and the Red Cross need to decide which shelters are open 

and provide the relevant information to the public. Obviously, those shelters meeting 

FEMA standards (Permanent Shelters) have higher priority and are more appealing to 

evacuees.  

In this dissertation, a two-stage stochastic programming model is established in 

order to address both the sheltering network planning issue in the preparedness stage and 

the sheltering network management problem in the response stage. The first stage is also 

called the preparedness stage in terms of evacuation management or the master problem 

in terms of problem solving. Similarly, the second stage is also called the response stage 

or the recourse problem. The first stage decides locations, capacities, and holding 

resources of new Permanent Shelters. The solution can help FEMA decide how to 
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allocate funding to build new Permanent Shelters. The first stage also decides how much 

of each resource should be held in each new Permanent Shelter during long-term 

preparedness. The second stage allocates evacuees to shelters and transports resources to 

shelters. Permanent Shelters are given higher priority in this process and are assigned 

with a lower evacuation cost per evacuee compared to Temporary Shelters. 

The advantages of L-shaped method 

SNPOP is a mixed integer problem that can be solved using ordinary algorithms 

like Branch and Bound Algorithm. However, these Mixed Integer algorithms are only 

efficient when the problem-size is restricted to a certain scope. Unfortunately, for most 

evacuation problems caused by serious disasters, they usually involve thousands of 

evacuees, hundreds of shelters, a large amount of evacuation activities and different kinds 

of evacuation resources, which cause a large calculation burden. Therefore, we have to 

consider another method which can solve the SNPOP more efficiently. By observing the 

structure of SNPOP, we find that the SNPOP consists of two stages, preparedness and 

response. In the preparedness stage, we decide how many new FEMA shelters should be 

established and their corresponding capacity and number of inventories in each new 

FEMA shelter. Then, after evacuees suffer a disaster, we try to transfer evacuees from 

disaster affected areas to shelters by satisfying capacity constraints, demand constraints, 

supply constraints, and resource balance constraints so that the total evacuation cost is 

minimized. It is obvious that data generated from the variables of the first stage will be 

applied in the second stage problem as parameters, in which the objective function of 

both problems, first stage problem and recourse problem, will be affected. Therefore, L-

shaped method is applied to minimize the total objective value by adding cuts to the first 
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stage problem to make the upper bound and the lower bound of the problem converge 

together. In addition, the problem itself has stochastic behavior, which means that we 

cannot predict the future precisely. For instance, in a case of a hurricane, we cannot 

forecast the exact hurricane landing point and the category of the hurricane. Another 

example: so far, we still do not have ability to accurately predict the center point of an 

earthquake and the category of the earthquake. If we want to predict the future, the most 

effective approach is to use the statistic method which gives us only probabilities.  In 

other words, by using statistic method, we can know how many possible disaster 

scenarios and their probabilities, and the sum of all scenario probabilities is equal to one. 

L-shaped method is powerful for solving such scenario-based problems, because we can 

treat each scenario as a sub-problem in the second stage and solve each sub-problem 

individually, which we divide a large-size problem into many relatively small sub-

problems. Therefore, we know that L-shaped method is more efficient to solve such 

scenario-based problems, and we will demonstrate the efficiency of the L-shaped method 

in the next chapter.    

Minimum cost network flow problem with equal flows 

The second stage sub-problem of the Sheltering Network Planning and Operation 

Problem is actually a minimum cost network flow problem to which equal flow side 

constraints are added. Therefore, we can take advantage of network structure and the 

existing network algorithm to solve the response part of Sheltering Network Planning and 

Operation Problem more efficiently. However, one challenge is that traditional network 

algorithms like Network Simplex Algorithm cannot be directly applied to the minimum 

cost network flow structure with equal flow side constraints for a reason that will be 
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explained in Chapter 3. Therefore, modifications are needed to make the Network 

Simplex Method adapt to the Sheltering Network Planning and Operation Problem. In 

Chapter 3, we will introduce how to obtain an appropriate model structure to apply the 

modified Network Simplex Method. We will also describe how to obtain an initial 

feasible solution, perform pivoting and value update procedure. Finally, numerical 

experiment is tested to demonstrate the efficiency of the modified network simplex 

algorithm. 
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CHAPTER II 

SHELTERING NETWORK PLANNING AND MANAGEMENT 

A literature review of relevant models and algorithms for evacuation is given in 

Section 2. The problem statement and the two-stage stochastic programming model for 

the Sheltering Network Planning and Operation Problem (SNPOP) are given in Section 3. 

Section 4 discusses the L-shaped algorithm for attacking the computational complexity. 

A case study is conducted in Section 5 for hurricane preparedness and response in the 

Gulf Coast region in the United States. Section 6 concludes the chapter with discussions 

and provides future research directions.   

Literature review 

Numerous mathematical programming, queuing, and simulation models for 

studying evacuation have been presented in the literature. Yamada (1996) studied a city 

emergency evacuation planning problem with two network flow models. The first model, 

which sought the shortest paths on an undirected graph, assigned each evacuee to a 

corresponding shelter. Then, the shortest path network was transformed to a minimum 

cost flow problem by adding capacities in each shelter. Choi et al. (1988) proposed a 

network flow model for an evacuation problem considering arc capacity constraints. Liu 

et al. (2006) presented a two-level integrated optimization system for optimal evacuation 

plans. The high-level optimization maximized the throughput during a given evacuation 

duration. The low-level optimization minimized the total time of the whole operation, 

including transportation time and waiting time. Multiple objectives, such as total 
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traveling time and total overload at safe areas, may be involved in transferring evacuees 

to safe areas (Saadatseresht et al., 2009). Li et al. (2008) proposed a two-stage stochastic 

evacuation model in the perspective of traffic allocation planning to identify evacuation 

routes based on total travel times, environmental influences, and economic factors. 

Bakuli and Smith (1996) used a state-dependent queuing network to attack the resource 

allocation problem faced in various emergency situations. Integer programs may be 

combined with state-dependent models to decide the routes in emergency evacuation 

planning (Stepanov and Smith, 2009). Because of the complexity of the evacuation 

problem, intelligent simulation models are widely used as an alternative method to 

construct the evacuation model. Weinroth (1989) developed a simulation model called 

MOBILIXE for a complex and large scale building evacuation problem. Drager et al. 

(1992) provided a model called EVACSIM that could be used to study escape and rescue 

activities on vessels. REMS is another simulation and optimization module to calculate 

the estimated evacuation time and traffic flow during a hurricane evacuation (Tufekci, 

1995). 

Shelters play a critical role in response to massive natural disasters, and several 

papers in the literature consider the locations of shelters in an evacuation process. The 

shelter locations could influence the total congestion-related evacuation time in hurricane 

response (Sheral et al., 1991). A Stakelberg game could be used to build a shelter 

location-allocation model for flood evacuation (Kongsomsaksakul et al., 2005), in which 

the authority decides the location of shelters to minimize the total evacuation time and the 

evacuees, as followers, choose shelters and routes. During the response stage, the 

authority needs to decide which shelter should be opened and how many evacuees should 

be assigned to each shelter (Altay and Green, 2006). Logistics management in 
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emergencies includes dispatching resources and transporting commodities and personnel 

to shelters. Yi and Özdamar (2007) used a mixed integer multi-commodity network flow 

model to decide the routes of shipping both resources and evacuees. Rawls and Turnquist 

(2010) used a stochastic program to determine the location and quantities of emergency 

supplies during the preparedness stage. In this chapter, we will consider both the location 

and capacity issues of shelters in the preparedness stage and the evacuee and resource 

allocation issues in the response stage. This chapter considers the stochastic natures of 

natural disasters and incorporates various scenarios with probabilities into the model. For 

emergency management problems, stochastic models provide a more accurate evacuation 

model that could take all possible scenarios into consideration. In addition to the travel 

time (travel cost) of evacuees, this chapter also considers the transportation of resources 

in the response stage.  

Stochastic programming models have been well applied in transportation planning 

and operations for disaster response. The types and impacts of disasters can be modeled 

as various scenarios with associated probabilities. The impacts may include 

transportation demand of evacuees and resources and reduced transportation capacity. 

Two-stage stochastic programming models could be used to plan the transportation of 

commodities to disaster-affected areas during response (Barbarosogcaronlu and Arda, 

2004), to manage evacuation (Li et al., 2008), or to locate distribution centers of supplies 

in the preparedness (Rawls and Turnquist 2010). Two-stage stochastic programs are used 

in long-term transportation planning to minimize a mean-risk objective of the system loss 

while considering the interdependencies of individual facilities (Liu et al., 2009).  This 

chapter will consider the management of both evacuation and resources. 
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Problem statement and model formulation for sheltering network planning and 
operation problem 

An effective sheltering management strategy should consider a disaster 

preparedness stage before knowing the information of a specific disaster and a disaster 

response stage to optimize the evacuation process for a disaster. The planning stage needs 

to decide the locations and capacities for new Permanent Shelters, which meet FEMA 

standards. Evacuation resources may also be planned to store in new Permanent Shelters 

in preparedness. In the response stage, the authority needs to decide how to assign 

evacuees from demand points to shelters, including both Permanent Shelters and 

Temporary Shelters, which do not meet FEMA standards. Note that the Permanent 

Shelters in the response stage consists of new Permanent Shelters built in the 

Preparedness Stage and Existing Permanent Shelters. The capacity of shelters restricts the 

evacuation assignment decisions (Saadatseresht et al., 2009). Typically, Permanent 

Shelters should have higher priority so that the following model will assign lower 

occupancy cost per evacuee for Permanent Shelters. At the same time, resources, 

including commodities and personnel, need to be transported to shelters to support their 

operations. Therefore, the overall response costs include transportation cost of evacuees, 

transportation cost of resources, operational cost per evacuee in each shelter, and shortage 

or surplus costs of resources if any shortage or surplus happens. Figure 1 illustrates the 

overall sheltering network planning and operation problem (SNPOP). In the middle layer, 

there are two Existing Permanent Shelters, three Temporary Shelters, and two Potential 

Permanent Shelter locations that could be selected to be new Permanent Shelters with 

certain capacities and resource inventory levels in the first stage of SNPOP. After 

knowing the information of a specific natural disaster, perhaps before the area is 

overwhelmed by the disaster, transportation network condition and evacuee demands, 
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including locations and volumes, are assumed to be known. The second stage of SNPOP 

decides the evacuee assignment to shelters and the resource shipment from distribution 

centers (or other resource origins) to shelters. The first stage and second stage of SNPOP 

interact with each other so that this chapter proposes a two-stage stochastic program to 

capture various scenarios of disasters and to consider the total costs in the preparedness 

and response stages.  
 

 

Figure 1 Illustration of SNPOP 

The following information is assumed to be known as parameters for the SNPOP 

model.  

 :  Set of Existing Permanent Shelters; 

 :  Set of Potential Permanent Shelter locations; 

 :  Set of Temporary Shelters; 

S:  Set of all shelters, ; 

K:  Set of evacuee origins; 
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 :  Set of distribution centers (or origins of resources), i is its index; 

R:  Set of resources (commodities or personnel) needed for sheltering, r is its 

index; 

: Capacity of Existing Permanent Shelter j in the number of evacuees, 

; 

:   Capacity of Temporary Shelter j in the number of evacuees, ; 

:  Available amount of commodity r at distribution center i; 

:  Available amount of commodity r at Existing Permanent Shelter j, ; 

:  Fixed cost of setting up a new Permanent Shelter at location j divided by 

the expected number of disasters in the study area during the shelter’s 

expected lifetime, ; 

:  Unit cost of holding resource r at location j per year divided by the 

expected number of disasters per year, ; 

:  Unit cost of having capacity for one evacuee at Permanent Shelters 

divided by the expected number of disasters in the study area during 

shelters’ expected lifetime, ; 

:  Set of disaster scenarios,  is its index; 

  Probability of scenario ; 

:  Total evacuees generated at demand point (affected area) k under 

scenario; 

:  Cost of allocating one person from demand point k to shelter j 

(transportation cost plus operational cost of one evacuee at shelter j) under 

scenario ; 
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:  Cost of transporting one unit of commodity r from distribution center i to 

shelter j under scenario ; 

 :  Unit cost of surplus for commodity r after evacuation; 

 :  Unit cost of shortage for commodity r after evacuation. 

Note that the units for all kinds of resources are normalized to the required 

amount for each evacuee during one disaster period.  

The SNPOP model includes the following decision variables. 

:  1: If the Potential Permanent Shelter location j is chosen for setting up a 

new Permanent Shelter, 0: Otherwise, ; 

:  Capacity of the Permanent Shelter at potential location j, ; 

:  Available amount of resource r at a Potential Permanent Shelter at 

location j, ; 

:  Number of evacuees transported from evacuee origin k to shelter j under 

scenario ; 

:  Amount of commodity r shipped from distribution center i to shelter j 

under scenario ; 

:  Surplus amount for commodity r after evacuation at shelter j under 

scenario ; 

:  Shortage amount for commodity r after evacuation at shelter j under 

scenario . 

Here, the first three variables of , , and  are decisions in the first 

(preparedness) stage and the remaining variables of , ,  and  

are decisions in the second (response) stage under a specific scenario . With the above 

definition of variables and parameters, the SNPOP model is given as follows.  
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Minimize 

 

  (1) 

S.T. 

                                                                          ; (2) 

                                                           ;  (3) 

                                                        ;  (4) 

                                                        ; (5) 

                                                       ; (6) 

                                                            ; (7) 

             ; (8) 

  ; (9) 

   ;  

 (10) 
. 

The objective function (1) minimizes the total first stage cost and the expected 

cost of the second stage over all scenarios. The first stage cost includes the fixed cost to 

have new Permanent Shelters, the variable cost based on capacity for new Permanent 

Shelters, and the inventory cost of resources stored at new Permanent Shelters. All costs 

are normalized for a disaster. The second stage cost includes transportation costs of 
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evacuees, transportation costs of resource distribution, and the surplus and shortage costs 

for resources after an evacuation. The first constraint set (2), where M is a big number, is 

the only constraint set in the first stage and guarantees a new Permanent Shelter has to be 

established before it is used. Constraint sets (3-5) are capacity constraints of all three 

kinds of shelters. Constraint set (6) ships all evacuees to shelters. Constraint set (7) 

guarantees that the total shipment of resource r from distribution center i will not exceed 

the available amount at the center. Constraint sets (8-10) are used to obtain the shortage 

and surplus of each resource type at each shelter after a disaster. Note that we define the 

unit of one resource type as the required amount of the resource for each evacuee in (8-

10). In practice, the capacity provided by all Temporary Shelters is huge because of their 

big number. Furthermore, the SNPOP model allows resource shortage and surplus at 

shelters. Therefore, the feasibility of the SNPOP is guaranteed under each scenario.  
 

The SNPOP model is an integer program with binary variables in the first 

stage, which decides the locations of new Permanent Shelters. The second stage problem 

under each scenario  formed by constraint sets (2-10) and the objective function of 

 is a 

linear program. Though the second stage problem seems like a network flow problem as 

shown in Figure 1, the model has additional side constraints called equal flow constraints. 

Note that each variable  appears  times in constraint sets (8-10) and appears 

once in constraint set (6), which violates the requirement that one variable (the flow on 

one arc) can only appear in two constraints (on two nodes). Therefore, optimization 
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solvers specifically developed for the network flow problem cannot be directly used to 

solve the second stage problem though the Network Simplex method is typically faster 

than the regular Simplex method for generic linear programs. Based on preliminary 

numerical experiments, the SNPOP with a real-world size cannot be solved by 

optimization solvers, such as ILOG CPLEX 9.0, in a reasonable amount of time.   

The L-Shaped algorithm for the SNPOP 

The computational challenge of solving the SNPOP model (1-10) is mainly from 

the large number of scenarios that are used to describe future disaster events and the 

binary variables in the preparedness stage. The SNPOP model (1-10) could be written as 

follows by separating the two stages of preparedness and response. The first stage 

problem is as follows.  

Minimize 
 

    

S.T. (11) 

Constrain (2);   . 

Where  is the objective function value of the second stage with 

given values of  and under a given scenario . The second-stage sheltering 

network problem under one particular scenario  can be expressed as: 
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Minimize 

 

 (12) 

S.T.  

Constraints (2-10) under scenario ; 

. 

The second-stage sub-problem is feasible under any scenario because it is 

assumed that the total capacity of all shelters, including a large number of Temporary 

Shelters, is enough for all evacuees under any scenarios, and shortage and surplus of 

resources are allowed. The second-stage sub-problem is a linear program with continuous 

variables, so the recourse function of  is continuous, convex, and 

piece-wise linear. It is well known that if the number of second-stage scenarios is finite 

and the second-stage sub-problem for each scenario is a linear problem, the whole 

stochastic program can be solved by building the combination of outer linearization of 

the recourse cost function (RCF) representing  and by solving the 

master cost function (MCF) iteratively using a cutting plane method. This method is 

called the L-shaped method, which was developed by extending Dantzig-Wolfe 

decomposition of the dual problem and Bender’s decomposition of the primal problem to 

the stochastic programming domain (Birge and Louveaux, 1997). The key point of the L-

shaped algorithm is to represent  for any  with a convex hull 
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that is formed iteratively by solving the first-stage problem and the second-stage problem 

(12). The first-stage problem at iteration v is written into (13).  

Minimize 
 

 (13) 

S.T. 

                                                                                     ; (14) 

    

 (15) 

. 

Here,  is the expected value of objective function 

values of the second stage problems over all scenarios at iteration  by solving model 

(12) individually for each scenario  with  and . Assume the 

simplex multipliers associated with constraint set (5) when solving model (12) 

individually for each scenario  at iteration  are , and the simplex multipliers 

associated with constraint set (10) are . Therefore,  

and . The algorithm adds one cut of 

 into the master problem 

at each iteration . The overall algorithm is as follows. 

Step 0.  . 

Step 1.  Solve the master problem (13) and let . 

Step 2,  Let the objective function value be  (the lower bound of the SNPOP 

model),  obtain the values of   from the solution in step 1 and set them 
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as , and let  under  

the current solution from step 1.  

Step 3.  If , continue; otherwise, go to  step 6.  

Step 4.  Solve model (12) individually for each scenario  with  and 

, obtain , , and , and let  be the upper bound of 

the SNPOP problem.  

Step 5.  Add the cut of  

into (13) and go to step 1. 

Step 6.  Stop with the optimal solution. 

Please note that the lower bound  is non-decreasing over iterations but the 

upper bound are not so that the overall upper bound is  at iteration 

V. 
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Figure 2 Areas affected by Hurricane Katrina in FEMA map (FEMA, 2005) 

Case study 

To demonstrate the implementation of the proposed SNPOP model and evaluate 

the effectiveness of the L-shaped algorithm, a case study is conducted for sheltering 

network planning and operations against hurricanes in the Gulf Coast region of the 

United States.  

Case description 

This case study covers the Gulf Coast region of Louisiana, Mississippi, Alabama, 

and Florida. For hurricanes, the most overwhelmed areas are along the coast around the 

landfall. The impact is reduced quickly when a hurricane moves to inland, as shown in 

Figure 2. The figure presents affected areas categorized by types of damage caused by 
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Hurricane Katrina in 2005. Therefore, this research assumes that evacuees are generated 

from the coastal areas near the hurricane landfall. 

The number of evacuees generated in each area under each hurricane scenario is 

mainly decided by two factors: the landfall location and hurricane intensity. Klotzbach et 

al. (2009) predicted the probabilities of landfalls at the county level for eleven regions 

from Brownsville, TX to Eastport, ME based on past tropical cyclones, storms and 

hurricanes occurrences from 1880-2007. There are 205 coastal and near-coastal counties 

within the eleven regions. The historical data of hurricane information for each region 

were from the North Atlantic hurricane database (HURDAT) Reanalysis Project 

conducted by the Hurricane Research Division (HRD) and the Atlantic Oceanographic 

and Meteorological Laboratory (AOML). In addition to hurricane landfall locations, 

hurricane intensity is also an important factor to the volume of evacuees. Usually when 

hurricane intensity increases, the affected area is larger and the number of evacuees 

increases. The Saffir-Simpson Scale is widely used to represent the hurricane category, 

which is based on the wind speed of a hurricane. Like the project conducted by Klotzbach 

et al. (2009), this research classifies hurricanes based on the Saffir-Simpson Scale into 

three broad categories: Storm (tropical storm), Hurricane (category 1and 2 on the Saffir-

Simpson Scale), and Intense Hurricane (category 3, 4 and 5 on the Saffir-Simpson Scale). 

The number of landfalls in each county k under category t during 1880-2007, , is 

calculated as , where is the number of category t hurricanes that occurred in 

region  in which county k is located and  is the coastline distance of county k 

divided by region ’s whole coastline distance. In this research, each scenario is 

characterized by a pair of (k, t), the landfall county k and hurricane category t. The 

probability of scenario  is . This case study considers all hurricane 
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scenarios in which the landfall is between New Iberia, LA and Robertsdale, AL. A 

hurricane may affect neighboring counties beyond the landfall county, but the affected 

areas are restricted along the coastline at the county level (In this chapter, we refer to 

parishes in the State of Louisiana as counties). Table 1 provides affected counties with 

their landfall probabilities under each hurricane category. Note , where  is the 

set of landfall counties and K is the set of all evacuee origins/affected areas. In Table 1, 

 while . This study does not consider the landfalls at 

county 1, county 2, county 18, and county 19. 

The number of evacuees in each county generated under each scenario depends on 

three factors, its population, the landfall location, and the hurricane category. Table 1 lists 

the assumed percentage of population who will be evacuees in each county when a 

category t hurricane makes landfall in county k.  
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Table 1 Locations and population of affected areas and landfall/scenario 
probabilities 

 

County 

Index 
County 

Population 

(2007) 

Storm 

Probability 

Hurricane 

Probability 

Intense 

Hurricane 

Probability 

 

Possible 

Affected 

Areas K  

1 Cameron, LA 7,238 

  

  

 2 Abbeville, LA  56,096 

  

  

 3 New Iberia, LA 74,965 0.03162 0.01551 0.00699 

Possible 

Landfall 

Areas K’ 

4 Franklin, LA 51,311 0.04278 0.02098 0.00946 

5 Houma, LA 108,424 0.08835 0.04333 0.01954 

6 Thibodaux, LA 92,713 0.03162 0.01551 0.00699 

7 Hahnville, LA 52,044 0.02581 0.01266 0.00571 

8 Gretna, LA 423,520 0.01674 0.00821 0.00370 

9 

Pointe a la Hache, 

LA 21,540 0.04836 0.02372 0.01069 

10 Chalmette, LA 19,826 0.04371 0.02143 0.00967 

11 New Orleans, LA 239,124 0.03139 0.01539 0.00694 

12 Covington, LA 226,625 0.04255 0.02086 0.00941 

13 Woodville, MS 40,421 0.02604 0.01277 0.00576 

14 Bay St. Louis, MS 171,875 0.03441 0.01687 0.00761 

15 Pascagoula, MS 130,577 0.03813 0.01870 0.00843 

16 Mobile, AL 406,309 0.03441 0.01687 0.00761 

17 Robertsdale, AL 174,439 0.04836 0.02372 0.01069 

18 Pensacola, FL 37,600 

  

  

 19 Milton, FL 147,044       
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Table 2 Percentage of evacuees when a category t hurricane makes landfall in 
county k 

Hurricane 

Category 

County Index 

k-2 k-1 k k+1 k+2 

t=1 0 5% 10% 5% 0% 

t=2 0 10% 20% 10% 0% 

t=3 20 50% 70% 50% 20% 

 

This case study considers a total of 57 Existing Permanent Shelters and 26 

Potential Permanent Shelter locations. Locations and capacities of Permanent Shelters are 

provided in Figure 4. The locations and capacities of the Existing Permanent Shelters are 

based on the published information from the state government of Louisiana and the 

American Red Cross (2009). The Potential Permanent Shelter locations are randomly 

selected in highly populated areas. As mentioned in Section 1, there are thousands of 

Temporary Shelters in the study region. It is not possible or necessary to consider 

individual Temporary Shelters separately. Under each scenario, the authority needs to 

decide how much Temporary Shelter capacity should be used in each area and open 

Temporary Shelters based on a priority table decided in the preparedness stage. This case 

study consolidates Temporary Shelters into 31 regions (see Table 3). The capacities are 

randomly created based on a uniform distribution U [10,000, 20,000].   
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Table 3 Locations and capacities of temporary shelters 

New Orleans, 

LA 19,859 

Baton Rouge, LA 

16,043 

Shreveport, LA 

12,428 

Metairie, LA  

18,028 

Lafayette, LA  

14,200 

Lake Charles, LA 

15,920 

Kenner, LA  

18,350 

Bossier City, LA 

16,365 

Monroe, LA  

17,305 

Alexandria, LA  

12,783 

Jackson, MS  

19,791 

Gulfport, MS  

17,498 

Biloxi, MS  

19,719 

Hattiesburg, MS 

,19,874 

Greenville, MS  

11,080 

Meridian, MS  

15,217 

Tupelo, MS  

11,017 

Birmingham, AL 

13,896 

Montgomery, AL 

10,085 

Mobile, AL  

14,738 

Huntsville, AL  

14,415 

Tuscaloosa, AL 

15,264 

Hoover, AL  

11,572 

Dothan, AL  

15,459 

Decatur, AL  

10,405 

Auburn, AL  

13,619 

Gadsden, AL  

10,265 

Houston, TX  

14,804 

Austin, TX  

15,978 

Dallas, TX  

18,103 

San Antonio, TX 

15,414 

  

Seven distribution centers and five resource types are considered in this case (i.e., 

). The assumed locations of the distribution centers and their 

available resource amounts, , are listed in Table 4. Please note the unit of each 

resource type is defined as the required amount for each evacuee. The values of  are 
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randomly created based on a uniform distribution U [200,000, 250,000]. Some resources 

are assumed to be held already at Existing Permanent Shelters, and the amount of 

resource r at shelter j, , is randomly drawn from a uniform distribution U [300, 700]. 

A recent paper by Rawls and Turnquist (2010) discussed how to determine the location of 

distribution centers and corresponding quantities of emergency supplies during the 

preparedness stage. 

Table 4 Available resources at distribution centers,  

Distribution Center Resource 1 Resource 2 Resource 3 Resource 4 Resource 5 

Shreveport,LA 225,256 228,134 217,613 215,397 228,707 

Baton Rouge,LA 207,045 217,146 204,282 222,609 214,199 

Jackson,MS 224,312 209,614 213,999 216,399 227,476 

Hattiesburg,MS 223,112 209,816 230,161 212,570 229,716 

Birmingham,AL 214,038 219,692 211,080 215,177 209,016 

Montgomery,AL 206,149 205,763 207,242 232,612 220,534 

Dallas, TX 210,505 220,394 220,399 207,767 201,767 

 

The transportation costs include two parts: the costs of transporting evacuees from 

affected areas to shelters and the costs of shipping resources from distribution centers to 

shelters. The cost of allocating one evacuee from affected area k to shelter j in scenario ω 

is calculated based on the formula of ,  in which kjd is the 

distance (in miles) from evacuee demand origin k to shelter j, vb is the unit transportation 

cost (in dollars per mile per evacuee), and  is a scenario-based weight capturing 
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the increased transportation costs of the affected areas because of possible infrastructure 

damages and traffic congestion. The values of  are decided by uniform 

distributions in Table 5 when the landfall county is m and the hurricane category is t. For 

other counties,  This case study sets  per mile per person. 

Table 5  values when a category t hurricane makes landfall in county m 

Hurricane 

Category 

County Index k 

m-2 m-1 m m+1 m+2 

t=1 1 U(1.00, 1.10) U(1.20, 1.25) U(1.00, 1.10) 1 

t=2 1 U(1.05, 1.15) U(1.25, 1.35) U(1.05, 1.15) 1 

t=3 U(1.05, 1.15) U(1.30, 1.35) U(1.40, 1.45) U(1.30, 1.35) U(1.05, 1.15) 

 

With better facilities and management, Permanent Shelters are usually preferred 

over Temporary Shelters. The additional cost, randomly drawn from a uniform 

distribution U [100,110], is considered for evacuees going to a Temporary Shelter and is 

added into the transportation cost  from evacuee demand point k to Temporary 

Shelter . The cost of shipping one unit of resource r from distribution center i to 

shelter j is calculated as ,  in the same fashion as . 

The transportation cost per unit per mile, , is assumed to be different for resources, 

and their values are given in Table 6. The table also lists the unit surplus cost and 

shortage cost at shelters after an evacuation process and the unit holding cost at 

Permanent Shelters for each resource type. Here, the values of , , , and  are 
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randomly created based on uniform distributions of U [0.1, 0.2], U [40, 70], U [50, 80], 

and U [20,70] respectively. 

Table 6 Unit transportation cost, surplus cost, and shortage cost for resources 

   Resource Type 

1 2 3 4 5 

Unit Transportation Cost ( ) ($ per mile per unit) 0.11 0.12 0.15 0.1 0.14 

Unit Surplus Cost ( ) ($ per unit) 40 66 63 58 70 

Unit Shortage Cost ( ) ($ per unit) 57 70 63 53 57 

Unit Holding Cost at Permanent Shelters ( ($ per unit) 40 38 48 28 31 

Results and analysis 

The case described in 5.1, including 57 Existing Permanent Shelters, 26 Potential 

Permanent Shelter locations, 31 Temporary Shelters, 7 distribution centers, 5 types of 

emergency resources, 19 hurricane affected areas, and 45 evacuation scenarios, is solved 

with the L-shaped algorithm described in Section 4. The algorithm is coded with 

Microsoft C++ on a Dell desktop with Intel®  Core (TM) 2 CPU, 6600 @ 2.40 GHz and 

2.00 GB of RAM by calling the optimization solver of CPLEX 9.0 for solving the master 

and sub-problems. The algorithm reaches the optimal solution of $21,824,600 after 206 

iterations and 3,509 seconds. Figure 3 illustrates the convergence of the upper bound and 

lower bound of the SNPOP over iterations.  
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Figure 3 Convergence of the L-shaped algorithm in solving SNPOP 

The result is illustrated in Figure 4, a map created by Google Earth©. The map 

displays the distribution of Existing Permanent Shelters, Potential Permanent Shelter 

locations, Temporary Shelters, distribution centers and affected areas. The information 

about Existing Permanent Shelters including shelter name, location, and capacity is 

sourced from American Red Cross National Shelter System. Figure 4, for example, 

shows that Faulkner State Community College Shelter is an Existing Permanent Shelter 

located in the city of Bay Minette, and it has a capacity of 746. There are a total of 26 

potential locations for new Permanent Shelters. The solution selects 6 of them, marked as 

pink in Figure 4, to build new Permanent Shelters. All selected potential shelter locations 

are close to affected areas to reduce the second-stage evacuation cost. 
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Figure 4 Distribution of shelters, affected areas, and distribution centers 

In addition to evacuation preparedness, emergency managers may also be 

interested in the evacuation operations under each scenario, including evacuee 

transportation, resource shipment, and how much Temporary Shelter capacity should be 

used. Figure 5, also created by Google Earth©, illustrates the recommended operations 

under scenario 45, in which an intense (Category 3) hurricane makes landfall in county 

17 and affects counties 15 through 19. The map includes the information of evacuee 

flows from affected areas to various shelters and resource flows from distribution centers 

to shelters. There are six route networks with different colors in the map, five for evacuee 

flows from different affected areas and one for the resource flow. Because of this 

interactive map, a user can click the shelter or route to find out relevant information.  

Figure 5 shows that shelter 53 will use all its capacity to host 500 evacuees while shelter 

54 will hold 716 evacuees, below its 800 capacity. All the evacuees at these two shelters 
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will be from affected area 15. Figure 5 also shows that, in general, evacuees should be 

transported or guided to nearby Permanent Shelters. If the nearby existing and newly 

built Permanent Shelters do not have enough capacity, Temporary Shelters or far away 

Permanent Shelters may be used.  

 

 

Figure 5 One scenario of evacuation process 

Chapter conclusion 

This chapter considers sheltering network planning in the preparedness stage and 

operations in the response stage for national disasters, especially for hurricanes. The 

locations and capacities of new Permanent Shelters are decided in the planning phase. 

Building a new Permanent Shelter involves both fixed costs and variable costs based on 

capacity. Once information from one specific disaster is known, the operational issues are 
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addressed, including the transportation of evacuees from affected areas and the shipment 

of resources from distribution centers. The evacuee flows also decide how many 

Temporary Shelters should be opened in each area. The Sheltering Network Planning and 

Operation Problem (SNPOP) is modeled as a two-stage stochastic programming model 

with integer variables in the first stage. The first-stage master problem captures the 

planning problem while the second-stage sub-problems deal with the response problem 

under all possible scenarios. Because of the large size, the stochastic programming model 

cannot be solved directly with existing optimization solvers. Therefore, this dissertation 

adopts the L-shaped algorithm to separate the two stages and solve the second-stage sub-

problems individually with iterations.   

A comprehensive case study for hurricane preparedness and response in the Gulf 

Coast region of the United States is presented to demonstrate the method of data 

collection and verify the SNPOP model and the L-shaped algorithm. Each hurricane 

scenario is characterized by its landfall and intensity. The data collection includes the 

definition of scenarios with probabilities, the location and capacity information of 

Existing Permanent Shelters, and various cost components. The numerical experiment 

results show that the L-shaped algorithm converges well, and a real-world problem could 

be solved in a reasonable amount of time. 

Though the case study could be solved within thousands of seconds, the 

computational burden could still be an issue if we increase the number of scenarios 

further to capture more stochastic features of disasters or increase the resolution of the 

problem from counties to smaller areas. A future direction is to develop a more efficient 

algorithm to solve each sub-problem. As mentioned before, each sub-problem is not 

exactly a network flow problem because of the side constraints of equal flows. Specific 
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algorithms could be developed to solve the minimum-cost network flow problem with 

equal flow constraints after taking advantage of the special location of the equal flow 

constraints in the network for the SNPOP sub-problems.  
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CHAPTER III 

EQUAL FLOW STRUCTURE 

In Chapter 2, we use ILOG CPLEX solver to directly solve the second-stage sub-

problem of SNPOP as a part of the L-Shaped algorithm. With a larger network, the 

computational time for solving each sub-problem is dramatic long.  In this chapter, the 

second-stage sub-problem is reconsidered as a network flow problem with equal flow 

constraints, and we use a Revised Network Simplex algorithm (RNS) to solve it. The 

network consists of two parts, the first part for evacuee flows and the second part for 

resource flows. In the first part of the network, evacuees are transferred from disaster 

affected areas to shelters. Each evacuee requires a certain amount of evacuation 

resources. In the second part of the network, distribution centers supply resources to 

shelters. In order to consist with SNPOP, the second network also has a surplus node and 

a shortage node for each type of resource. Dummy nodes are added to make sure the 

whole network problem is always feasible. These two sub-networks are connected by 

resource equal flow arcs, which cause the whole network different from the minimum-

cost network flow problem and make the traditional network Simplex algorithm 

inappropriate. To address the computational challenge, we will revise the traditional 

network Simplex to incorporate the equal flow constraints. The motivation to have an 

algorithm based on network Simplex is that network Simplex algorithms can typically 

solve LP problems more efficiently compared with the Simplex algorithm in terms of 

solution time.  
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Minimum cost network flow problem with equal flow constraints 

Similar to Calvete (2003), let’s consider a network of [ , ]N A . {1,..., }N n  is the 

set of all nodes while {( , ) : , }A i j i j N  is the set of all arcs.  is the supply volume at 

node i. Negative   means that node i is a demand node. ijc represents unit flow cost on 

arc (i, j) and iju denotes the capacity of arc (i, j). Assume there are p equal flow 

requirements.  Let sA denote the sth set of arcs that must have equal flows, s = {1, 2,…, 

p}. The minimum cost network flow problem with equal flow constraints can be modeled 

as (16 - 21), in which  is the decision variable representing the flow over arc (i,  j).  

Minimize 
 
                                    (16) 

S.T. 

                       (17) 

                                                            (18) 

                                                            (19) 

                                                            (20) 

                                                   (21) 

In model (16 - 21), the objective function (16) is to minimize flow costs over all 

arcs. The first constraint set (17) is for flow conservation at nodes. Each of other 

constraint sets (e.g., 18 - 20) is to guarantee the same flows over arcs belonging to the 



 

35 

same equal flow set, where  is the flow amount for the sth set of equal flow arcs.  

Finally, additional capacity restriction is imposed on each arc.  

In order to solve model (16 - 21) by taking advantage of the high computational 

speed of the network Simplex method, we will reformulate the model and introduce some 

properties. Let   denote the network [ , ]N A  and 1
p
s sA A A  . Then, model (16 - 21) 

can be rewritten into (22 - 24). 

Minimize 
 
      (22) 

S.T. 

                          (23) 

                (24) 

Here,  is the number of arcs in the equal flow arc set s flowing out of node i 

minus the number of arcs in the equal flow arc set s flowing into node i. Its value could 

be positive, negative, or zero. The revised network simplex algorithm discussed below 

will be based on model (22 - 24). To address the difference of equal flow constraints, 

Calvete (2003) revised the network simplex algorithm for the general equal flow 

problem. Therefore, we apply Calvete’s algorithm to solve the second-stage sub-problem 

of SNPOP. However, since the second-stage sub-problem of SNPOP has its own specific 

structure, we plan to develop a more efficient algorithm based on Calvete’s network 

simplex algorithm to solve the second-stage sub-problem of SNPOP. 
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An illustration of the equal flow problem with the second-stage sub-problem of 
SNPOP 

The second-stage sub-problem of SNPOP can be represented as a minimum-cost 

network flow problem with equal flow constraints. The whole network is comprised by 

two sub-networks, and the two sub-networks are connected by the equal flow arcs. Based 

on the structure of the second-stage sub-problem of SNPOP in chapter 2, a small example 

that has 2 affected areas, 2 shelters, 2 types of resources, and 2 distribution centers is 

presented in Figure 6. The sub-network for evacuee-flow, which is at the left side and has 

Nodes 0 through 3 in Figure 6, has two sets of nodes, the set of affected areas (Nodes 0 

and 1 in Figure 6) denoted by K and the set of shelters (Nodes 2 and 3) denoted by S. 

Evacuees from any affected area could be transferred to any shelter, such as from 

affected area 0 to shelter 2 or shelter 3. The other sub-network is for resources, which is 

in the right-hand side of Figure 6 and includes Nodes 4 through 17. To have consistent 

flow directions with the evacuee flows, the resource flows are defined from shelters to 

distribution centers. In other words, the resource flows in Figure 6 represent demand 

flows rather than physical flows of resources. In this sub-network there are five sets of 

nodes, the set of shelter-resource nodes denoted by SR (Nodes 4 through 7), the set of 

distribution-center-resource nodes denoted by DR (Nodes 14 through 17), the set of 

shortage nodes for each resource type denoted by ST (Nodes 8 and 9), the set of surplus 

nodes for each resource type denoted by SP (Nodes 10 and 11), and the set of dummy 

nodes for overall surplus or shortage for all resource types (Nodes 12 and 13). In Figure 

6, all even-numbered nodes are for resource type 1 while others are for resource type 2 in 

the resource flow sub-network. Arcs connecting the shelter-resource nodes and 

distribution-center-resource nodes represent the demand amount of one resource type at 

one shelter that is satisfied by the shipment from some distribution centers. In Figure 6, 
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for example, type 1 resource demand is flown from node 4 (a shelter-resource node) to 

node 14 (a distribution-center-node). If demands of one type of resource at a shelter are 

less than the total available amount, including the amount from distribution centers and 

the existing amount at the shelter, the additional demand will be flown from a surplus 

node that is for this resource type. For example the flow on arc (4, 10) in Figure 6 

represents the surplus of resource type 1 at shelter 1 in operations. Otherwise, if the total 

available amount of one resource type is not enough to meet demands in a shelter, there 

will be a shortage flow from the shelter to the shortage node for that resource type. For 

instance, if the demand for type 1 resource from shelter 1 in node 4 cannot be satisfied, 

there will be a shortage flow form node 4 to shortage node 8. In order to guarantee that 

the total supply is equal to the total demand for the whole network, two dummy nodes of 

12 and 13 are introduced into Figure 6 to make the whole structure always feasible. Table 

7 is given to summarize the definition of all node sets with the example shown in Figure 

6.  
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Figure 6 An example of the second stage sub-problem of SNPOP 

Table 7 Summary of node set definition 

Set Definition Example in Fig 3.1 

K: the set of affected areas {0,1} 

S: the set of shelters {2,3} 

SR: the set of shelter-resource nodes {4,5,7,8} 

ST: the set of shortage nodes for resources {8,9} 

SP: the set of surplus nodes for resources {10,11} 

DM: the set of dummy nodes {12,13} 

DR: the set of distribution-center-resource nodes {14,15,16,17} 
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The two sub-networks are connected by equal flow arcs. For evacuees in each 

shelter, since they require all types of resources (two kinds of resources in Figure 6) and 

the demand quantities for each resource (measured as the required amount for each 

evacuee) are the same, there are two arcs with the same flow from each shelter (e.g. arc 

(2, 4) and arc (2, 5)) in the example illustrated in Figure 6. The number of equal flow arc 

sets is  and each set has arcs. Since the flows on equal flow arcs are the same, they 

should enter or exit the basis simultaneously over Simplex iterations. This feature causes 

the failure of implementing the traditional network simplex algorithm, which introduces 

only one new variable/arc into the basis in an iteration and finds a pivoting cycle after 

adding the entering arc. The new value of each arc in a pivoting cycle depends on the 

maximum value that can be flown in the cycle. However, it is difficult to carry out the 

pivoting process by using the traditional network simplex algorithm if there are multiple 

arcs entering the basis together with the same amount of flow. 

In this example,  corresponds to the cost for equal flow arc s. The second-stage 

sub-problem of SNPOP has all 0sc  for s=1,…, p and  corresponds to the cost in 

(2.1) in Chapter 2 as follows: 

 

 (25) 

Regarding arc capacity of this example,  is the capacity of sth shelter, which is 

from the first stage solution of SNPOP.  For any other arcs, , . Also 
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showed in Figure 6, i is the node potential of node i at one iteration and will be used in 

the modified Simplex method later. 

Revised network simplex algorithm for the minimum-cost network flow problem 
with equal flow constraints 

The network Simplex algorithm for the minimum-cost network flow problem 

roughly follows six steps.  

Step 1. Find the first basic feasible solution. 

Step 2. Calculate the node potentials and reduced costs for all non-basic arcs. 

Step 3. Check the optimality conditions. If it is optimal already, stop. 

Step 4. Decide the entering non-basic variable (arc).  

Step 5. Decide the exiting basic variable (arc).  

Step 6. Update the values of all basic variables (arcs) and go to step 2.  

In this Section, for each step, we first introduce the methods of the network 

Simplex algorithm for regular minimum-cost network problem and discuss the necessary 

changes of the algorithms for the network with equal flow constrains.   

Basic feasible solutions 

As described in previous section, for any basic feasible solution in the network 

simplex method (Ahuja, 1999), a network [ , ]N A with n nodes has n-1 basic arcs, and all 

other arcs have flows either on their lower bounds or on their upper bounds. Let (T, L, U) 

denote a basic feasible solution. T is the set of basic arcs whose flows could be between 

their lower bounds and upper bounds. L is the set of non-basic arcs whose flows are on 

their lower bounds.  U is the set of non-basic arcs whose flows are on their upper bounds. 

For the network with equal flow constraints, if there are r equal flow arc sets in the basis, 
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where r is between 1 and p, the remaining arcs, which all belong to , form a forest with 

  spanning trees. The forest is denoted as F. In F, each spanning tree is denoted as 

, where  represents the kth spanning tree. Let B denote node-arc incidence 

matrix of basic arcs. It basically consists of two parts: the first part is constructed by basic 

equal flow arc sets and represented by column matrices of 1 2, ,..., rA A A ; The second part 

is constructed by all other basic arcs and their node-arc incidence matrix is denoted as . 

Therefore,  and in order to obtain a feasible solution to model 

(22 - 24), B has to have a rank of n-1. The rank of matrix B is equal to n-1 if and only if 

the matrix D has full rank (Calvete, 2003). 

Any basic solution of a network  with r equal flow arc sets in the basis,  

where r could be between 0 and p, consists of (r+1) spanning trees in   and requires that 

. Based on Calvete (2003), an (r+1) spanning forest F in   is a ‘good 

forest’ with respect to the variables { } , {1,..., },s s Sf S p S r   , if . 

For the network structure for the second-stage sub-problem of SNPOP illustrated in Fig. 

5, there are at least  trees in , where  is the number of resource types 

involved in the original SNPOP problem. In other words, when r  , there is no way 

to construct an forest. For example, if there is no equal flow set in the basis for 

the example in Fig. 5, there will be at least three trees formed by basic arcs in   and we 

cannot find any tree in . 

Initial basic feasible solution 

There are several methods to obtain an initial basic feasible solution for 

minimum-cost network flow problems. In Ahujia (2003), one dummy node denoted by “-

1” is simply added and is connected to each of all nodes with an arc having infinite upper 
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bounds. If node i has a nonnegative demand, an artificial arc of (i, -1) is added; otherwise, 

an artificial arc (-1, i) is added. The first basic feasible solution is established by letting 

the flow of the artificial arc connected to node i be the demand (or supply) of node i.   

Since the second-stage sub-problem of the SNPOP is always feasible, there is at least one 

basic feasible solution in which all artificial variables are zeros. Therefore, a very big 

number is assigned to artificial arcs/variables  or  as unit flow costs. The 

advantage of this initial solution generating method is that it can be easily applied to 

general minimum-cost network Simplex algorithm. However, for the second-stage sub-

problem of SNPOP, this method is time-consuming because of two major reasons. First, 

the second-stage sub-problem of SNPOP usually involves a large number of nodes and 

arcs. If we introduce the node -1 to construct the initial basic solution, n number of 

additional arcs will be added and it will take at least n iterations to move these artificial 

arcs out of the basis. Second, the pivoting procedure of the second-stage sub-problem of 

SNPOP is much more complicated than the general minimum-cost network problem and 

causes more computational burden. Thus, we try to save pivoting iterations to reduce the 

overall computational time. In order to achieve this purpose, another initial solution 

generating method is introduced to get the first basic feasible solution for the second-state 

sub-problem of SNPOP under scenario  as follows.  

BEGIN 

Step 1: Let k be the first affected area in the set of K, whose evacuee demand is 

. 

Step 2: Among shelters that have any positive available resources and have not 

reached their capacities, select the one with the least evacuee transportation cost  . 
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In other words, , where . Here, 

 is the amount of resource r at shelter j and  is the upper bound of shelter j.  

Step 3: Flow the amount of  from affected area k to 

shelter . Flow necessary resources from distribution centers to shelter  to meet 

evacuees’ demand with the least cost while considering the available amount of each 

resource at the distribution centers. Update  , , 

and . Here,  is the set of resource types.  

Step 4: If , go to Step 2.  

Step 5: If  and there is no remaining affected area in K, go to END. 

Step 6: If > 0, remove be the next affected area in K and go to Step 3. If 

, let k be the next affected area in K and go to Step 2.  

END 

The procedure to obtain the first basic feasible solution is very myopic and does 

not lead to a quality solution. The procedure is based on the assumption that utilizing the 

available resources at a shelter first has potential of avoiding the shipping cost for 

resources from distribution centers to shelters. This procedure will force the flows on 

equal flow arcs reach upper bounds one by one. Therefore, there is at most one equal 

flow arc set in the basis so that the initial feasible solution is simple and has a good 

structure (the initial forest will have one equal arc set and two trees and we do not have to 

develop techniques to satisfy a pre-pivoting condition (Calvete, 2003) that a forest must 

have a good tree structure).  Please see the example in Figure 7.  
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Figure 7 An example of the initial solution of SNPOP 

Calculating the value of equal flow arcs 

A basic equal flow set connects trees in a forest corresponding to a basic feasible 

solution. In order to obtain the flow of an equal flow arc set, we need to know the supply 

or demand for the trees that are connected by the equal flow set. The total flow of all 

basic equal flow arcs out of a tree is equal to the total supply minus total demand of all 

nodes in the tree minus the net flow amount of non-basic equal flow arcs and non-basic 

arcs (the flows on their upper bounds) connected to the tree.  According to Calvete 

(2003), the values of the basic variables  are determined by solving the following 

linear system: 
 

                      (26) 
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            (27) 

    , (28) 

                , (29) 

                  , (30) 

          and . (31) 

Optimality condition 

In the Network Simplex algorithm for a regular minimum-cost network problem, 

node potentials of a basic feasible solution, which is a tree connecting all nodes, can be 

calculated based on the relationship of  by arbitrarily setting 

the node potential of a node equal to zero. Then, reduced cost for each non-basic arc is 

calculated as . The current basic feasible solution is an optimal 

solution if and only if the following two conditions are satisfied: 

a. for every arc , and  

b. for every arc  

However, this procedure needs to be slightly modified for the equal flow network 

simplex method. A given basic feasible solution is a “good (r+1) forest” rather a single 

tree. If we calculate the node potentials separately for each tree by arbitrarily setting one 

node potential in each tree to be zero, the problem that 0sc  for , 1,..,s T s r  may 

occur. Therefore, node potential normalization procedure across trees is must be 
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developed. After getting node potentials in a separate way for each tree, calculate the 

reduced cost for each basic equal flow set as  
 
                                           (32) 

If all , then are the right node potentials and no 

adjustment is necessary. Otherwise, calculate the adjustment amount  for each tree  

as  

                                   (33) 

Then, the node potentials are adjusted as follows.  

                                           (34) 

In the Network Simplex algorithm for a regular minimum-cost network problem 

[N, A] that has n nodes, a basic feasible solution has n-1 basic variables. When the 

optimality condition is not satisfied, the pivoting procedure decides which non-basic arc 

will enter the basis and which basic arc will leave the basis. The number of basic 

variables is always equal to n-1 over iterations. The entering non-basic arc is usually 

selected based on its reduced cost and the most common way is to choose the arc with 

the largest  among all admissible arcs. A non-basic arc  is called admissible if 
 

                                      (35) 
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                                       (36) 

The entering arc, together with some basic arcs, forms a unique cycle because 

basic arcs form a tree.  If the entering arc is on its lower bound in the current basic 

solution, to determine the leaving arc, we keep increasing the flow of the entering arc 

along its direction by  units until the value of an arc in the cycle reaches its bounds, 

which will leave the basis. Then, the flows on all arcs in the cycle are increased by  

units in the direction of the entering arc to complete one pivoting with one arc entering 

the basis and one arc leaving the basis. The leaving arc could be the entering arc itself if 

 is equal to the upper bound of the entering arc. It is Vice Versa if the flow of the 

entering arc is on its upper bound.  

When the network involves equal flow constraints, the pivoting procedure is 

modified and the following three different cases are considered. In the following 

discussion, we assume the entering non-basic variable is on its lower bound and therefore 

we consider an increase of its flow by . If the entering non-basic variable is on its upper 

bound, we just modify all steps by considering a decrease of its flow by .  

Case 1. The entering arc is . 

In case 1, the entering arc has both node i and node j belonging to the same tree 

 . In this case, the pivoting procedure will be performed in tree hT  only, and all other 

trees will not be affected. The whole process including cycle identification and leaving 

arc determination is the same as the Simplex method for the regular minimum-cost 

network problem. 

Case 2. The entering arc is . 
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If the entering arc  and node i and node j belong to different trees, 

increasing the flow over arc (i, j) by  (for the situation that ) will affect both tree 

h and tree q. Thus, after introducing the new arc (i, j) into the basis, will decrease 

by  and  will increase by . Based on equation (25), the values on equal flow arc 

sets will change as follows.  
 

 

(37) 

After obtaining the new flows on the equal flow arcs, we need to update the flows 

on all trees after updating the supply and demand on the nodes connecting the trees and 

equal flow arcs. In algorithm development, we first set  and calculate its impact on 

all basic variables, including both  and . A 

ratio test is then conducted to see which basic variable will reach its bound first when we 

increase the value of  and call this basic variable the exiting variable. All basic 

variables’ values are updated with the determined  and finish a pivoting.  

Case 3. The entering variable is  

When  is increased by , the net supply of each tree , , will decrease by 

. Therefore, the flows of all basic equal flow sets should be updated as 
 

 

(38) 
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With the changes of equal flow arc flows, including the entering variable and 

current basic variable, the flows of other basic arcs,  are 

updated. Following the same procedure in Case 2, the exiting variable could be 

determined and all basic variables’ values could be updated. 

Computational results 

The numerical experiments are conducted on the second-stage sub-problem of 

SNPOP introduced in the case study in Chapter 2, which is a network flow problem with 

equal flow side constraints. In Chapter 2, the problem is solved directly by CPLEX.  

Here, we convert the second-stage sub-problem of SNPOP into a network structure and 

solve it with a RNS Simplex algorithm (RNS) for equal flow constraints described in this 

chapter. The RNS algorithm was programmed by Visual C++.  Both the CPLEX solver 

and the revised network Simplex algorithm are tested on a PC that has Intel(R) Core 

(TM)2 CPU with 2.40 GHz and 2.39 Ghz, 2.00GB of RAM under Windows XP 

professional operation system.  

Seven instances with different sizes are tested to compare the efficiency of the 

two algorithms. The network is increased over instance by increasing the number of 

temporary shelters (ts), the number of potential permanent shelters (ps) and the number of 

existing permanent shelters (es), the number of distribution centers (n), types of resources 

(l) and the number of affected areas (t) in Table 8.  Among these seven networks, the 

smallest network consists of 55 nodes and 285 arcs and the largest network is constructed 

by 352 nodes and 1,596 arcs.    
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Table 8 Test problems 

 
# Nodes # Arcs ts ps es n l t 

Problem 1 55 285 5 5 5 4 2 2 

Problem 2 100 420 10 10 10 4 2 2 

Problem 3 190 840 20 20 20 4 2 2 

Problem 4 235 1050 25 25 25 4 2 2 

Problem 5 283 1274 35 26 30 4 2 2 

Problem 6 316 1482 45 26 31 4 2 2 

Problem 7 352 1596 57 26 31 4 2 2 

 

Both the RNS and CPLEX solver provide the same optimal solution but the RNS 

algorithm is more efficient in terms of the average CPU time. For instance, the RNS 

algorithm  takes 0.122 seconds to solve the largest instance, instance 7, a nearly 91.87% 

improvement compared with CPLEX solver. 
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Table 9 Computational results 

Instance 
Optimal Objective Value Average CPU Time (Sec.) 

RNS CPLEX RNS CPLEX 

1 $       942,664.00  $      942,664.00  0.000 1.360 

2 $    1,252,880.00  $   1,252,880.00  0.011 1.375 

3 $    1,540,800.00  $   1,540,800.00  0.041 1.375 

4 $    1,803,020.00  $   1,803,020.00  0.065 1.390 

5 $    2,325,250.00  $   2,325,250.00  0.081 1.406 

6 $    2,946,690.00  $   2,946,690.00  0.098 1.406 

7 $    3,697,570.00  $   3,697,570.00  0.122 1.500 

 

Please note that the second-stage problem has to be solved for many times when 

using the L-shaped method to solve the SNPOP. The time saving from the RNS method 

could improve the overall computational efficiency for the L-shaped method solving the 

SNPOP. The improvement will allow us to attack SNPOP instances with larger network 

and more scenarios. 
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CHAPTER IV 

PROBLEM EXTENSION AND APPLICATIONS 

In the previous chapter, the network Simplex is modified to solve the minimum-

cost network flow problems with equal flow side constraints. The numerical results 

demonstrate that the revised network Simplex outperforms the CPLEX solver when 

solving the second-stage sub-problem of SNPOP in terms of computational time. The 

revised network Simplex algorithm is mainly based on Calvete (2003)’s work, which is 

for general minimum-cost network flow problems. We believe the second-stage sub-

problem of SNPOP has some special properties that can be used to further improve the 

algorithm so that a larger SNPOP with more areas and more scenarios can be solved. In 

this chapter, the properties will be identified for future improvement. In addition to the 

sheltering network planning and operation problem, the general structure of the network 

with equal flow side constraints can be extended to many other fields in which equal 

amount of entities are required. In the chapter, the minimum cost network flow problem 

with echelon equal flow constraints is defined and studied.  

Minimum cost network flow problem with echelon equal flow constraints 

Consider a directed network , where  is the set of nodes 

and  is the set of directed arcs.   and  are the upper bound and 

the unit flowing cost from node  to node for .  is comprised by two 

exclusive sets  such that  and  Let 

  and  .  is further comprised by 
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q exclusive sets , where  and  

. Let  where . 

We assume that . Let  and , where 

. Here, ,  do not communicate with each other in . The 

network is illustrated in Figure 8.  To consider the equal flow constraints, let  be 

subsets of . The equal flow constraints require that , 

where  is the flow along arc . Each subset  connects one node in  

(denoted by ) and q nodes in , one from each of  and is denoted by 

, where .  Please note that in the network under study, two arcs from 

different sets of  do not share any common nodes. In order to facilitate the 

analysis and create the first basic feasible solution, we add (q - 1) artificial arcs to 

connect q nodes of  and call this set of arcs . Please note that  and 

 for .The new network is denoted by  and will be used 

in the following analysis.  

Let  and , . Define  the number 

of arcs in  outgoing from node i minus the number of arcs incoming to node i. 

Therefore,  
 

                             (39) 

After defining , we can represent the two-echelon equal flow 

problem with the following linear program (39 - 42) (Calvete, 2003). 
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Minimize 
 
                                                                  (40) 

S.T. 

                         ; (41) 

                                                                                   ; and (42) 

                                                                         . (43) 
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Figure 8 Equal flow network structure 

 

The model (39 - 42) has  constraints and the rank of the technical coefficients of 

(40) is . According to Calvete (2003), when r of the  equal flow variables  are in 

the basis, the remaining basic arcs in form r+1 spanning trees (i.e., there are  

basic variables are from ).  Because do not communicate in the network of  

at least of one of equal flow variables  is in the basis (i.e., basic arcs in 

form at least 2 spanning trees).  
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Thereon: For any basic feasible solution to the minimum cost network flow 

problem with echelon equal flow constraints defined by (39 - 42), all ,  are 

basic variables.  

Proof: When r=1, there are two spanning trees, one belonging to  and the other 

belonging to . Because , where  are connected 

to each other only through arcs in , all ,  must be the basic variable in order 

to have a single tree in the graph of .  During one pivoting procedure, no 

matter which non-basic variable is selected to enter the basis, when we increase (or 

decrease) this non-basic variable by , all ,   will stay the same so that  all 

,  will not leave the basis. Note that only equal flows and arcs in  connect 

each sub-network  with the remaining nodes in . Because any flows on the equal 

flows have the same amount of flow-in (or flow-out) for all sub-networks  where 

, any change of ,  from 0 will fail the flow balance of sub-

networks , which is true before a pivoting.  

In order to study the characteristics of a basic feasible solution in which r of 

 are basic, we define the following matrix D, whose dimension is  . 

Each row corresponds to one spanning tree of basic arcs in , and each column 

corresponds to one equal flow variable. Without any loss of generality, we assume  

 are basic and the first k spanning trees belong to , called  . We 

assume  contains . Furthermore, let  denote the tree containing the arc set . The 

remaining trees are called . Obviously,  belong to the 

network of .  
 



 

57 

  (44) 

Additionally, the D matrix has the following characteristics: 

1.  . 

2. . 

3. . 

4. . 

5.   

When r=1, there are two spanning trees. One belongs to , and the other belongs to 

. So  is a  matrix as 
 
            (44) 

Construct  by removing the  row from D. Note that the  row 

corresponds to the tree including all , . Based on Theorem 2 in Calvete 

(2003), . Note the first column of  is . The above 
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prorperties could be used to develop efficient algorithms to solve the minimum cost 

network flow problem with echelon equal flow constraints.  

Potential applications 

The minimum-cost network flow problem with equal flow constraints can be 

applied to many fields. In urban water demand problems, a simple equal flow constraint 

can be added in different time horizons to determine the maximum dimension of water 

demand center and then to minimize the total water allocation cost (Manca et al 2008). 

Another example is the irrigation problem. Usually, the irrigation problem requires 

proportional water demands during subsequent time periods. We can treat the time-

dependent proportional water flows in the same way as equal flows to address the 

dimensions of water demand centers (Manca et al 2008). 

The application of equal flow constraints can also be implemented to solve water 

scarcity problems. In critical cases, like drought and chemical pollution, insufficient 

water supply will happen in reservoirs. To satisfy the demands in demand areas and to 

avoid infeasibility of the problem, dummy nodes are added, and corresponding arcs 

connecting demand nodes and dummy nodes are established to allow water shortage 

(Sechi and Zuddas, 2008). To minimize the shortage, heavy costs are associated with 

those arcs. However, by adding the dummy arcs, we can only guarantee the dummy flow 

can only be used during the water scarcity case. We still could not manage the water 

shortage. In order to manage shortages based on different water supply priorities and to 

apply certain deficit rules instead of just adding heavy cost on shortage arcs, equal flow 

or proportional flow constraints in different time horizons can be added to the 

optimization model to manage flow assignments during an extreme case. 
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Another important application of the minimum-cost network flow problem with 

equal flow constraints is in the airplane industry. Verweij et al (1997) investigated a 

problem that airplane production plants and assembly plants are located separately. From 

the production plants to the assembly plants, airplane parts need to be transported by a 

special transport aircraft. Because of the restrictions of the transport aircraft, the parts 

have to be organized and transported as a pre-specified combination. Therefore, equal 

flow constraints are applied to reflect the part flows. The objective of this problem is to 

investigate an optimal transportation strategy such that the total flying time of the 

transport aircraft is minimized. 

We believe the minimum-cost network flow problem with equal flow constraints 

can also be implemented in many other fields, such as supply chain network management 

and assembly line scheduling. For example, an automotive assembly line needs to 

manage its part supply chains simultaneously with multiple part suppliers. The orders of 

different types of parts are also dependent on production plans. For example, producing a 

car may require four wheels, one engine, one transmission, etc.  The flows of all parts, 

with normalized units, should be equal to guarantee the assembly requirement. In other 

words, we can manage the whole supply network as a minimum-cost network flow 

problem with equal flows that connect sub-networks for each part (or assembly) type. 

The whole network also has the above two properties discussed in this chapter. This 

dissertation study is expected to identify the application areas of the minimum-cost 

network problem with equal flow constraints and test the revised network Simplex in 

those applications. 
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