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In this paper, it is clearly shown that the distribution of the initial porosity is a 

critical factor in the prediction of damage evolution and initiation of failure in a cast 

AM60B magnesium notch Bridgeman tensile specimen. Using X-ray computed 

tomography, the actual initial porosity distribution was obtained, and this distribution was 

input into a finite element code as an initial condition. The predicted damage evolution 

from this simulation was compared to the damage evolution of the experimental 

specimen as well as other simulated porosity distributions. This study shows that the 

simulation of the actual porosity distribution predicted well the damage evolution 

observed in the experiment. It is also shown that the initial distribution of porosity plays a 

vital role in the predicted elongation to failure of a notched specimen. The actual 

distribution was shown to fail at a significantly lower strain than random or uniformly 

distributed damage. 
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CHAPTER I 

INTRODUCTION 

The mechanical response of a solid material to external loading is fully dependent 

on its internal structure as well as the way in which it is loaded. In order to predict the 

behavior of a material when used in a part, numerous models with varying degrees of 

sophistication have been created and used. The earliest and simplest predictive material 

model is an isotropic linear elastic model, which while computationally efficient, is only 

capable of accurately predicting material behavior in the elastic range. With the 

significant advances in computational power, models have been developed as need has 

required that can model not only the elastic range but now the inelastic range and 

eventual failure of the material. Then, it was found that initial porosity is an important 

factor in determining the mechanical response of many cast materials (Herrera and 

Kondic 1977, Eady and Smith 1986, Surappa et al. 1986, Caceres 1995, Caceres and 

Selling 1996, Weiler et al. 2005, Lee 2007, Lee and Shin 2007). Therefore for simulation 

based design, the simulation of damage processes is critical to failure prediction in ductile 

materials. 

The effect of porosity on the tensile properties of cast metals has been the focus of 

many studies. Herrera and Kondic (1977) and Surappa et al. (1986) studied the effect of 

average porosity levels of < 0.4% on the tensile response of aluminum alloys. When 

attempting to correlate the tensile strength to average volume fraction of porosity, 

Herrera and Kondic found very large scatter in the data; Surappa et al. actually showed 
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that it is possible for the elongation to failure to increase with an increase in average 

porosity. Surappa et al. also speculated that this might be caused by non-uniform 

distribution of pores within the test bars. Later, Horstemeyer and Gokhale (1999) 

introduce a phenomenological void-crack nucleation model with the purpose of 

predicting damage evolution for design applications. This model is a function of stress 

state, microstructural features, fracture toughness, and strain level. This paper by 

Horstemeyer and Gokhale represents a major step towards creating a tool capable of 

accurately predicting damage evolution as well as the mode and location of fracture. 

More recently, Weiler et al. (2005) used X-Ray tomography to non-destructively measure 

the size and location of internal pores in a tensile specimen of AM60B magnesium. A 

critical strain model was then implemented to predict the mechanical properties of the 

tensile specimens during the fracture process. The predicted values of fracture stress, 

fracture strain, and plane of fracture were then compared to experimental tensile tests. 

This study utilizes an internal state variable (ISV) model to incorporate physical 

details into a finite element simulation of response and failure of a magnesium alloy. 

Possible details include particle size, grain size, and internal porosity. In this study the 

initial porosity distribution is mapped directly from X-Ray CT scans into the finite 

element mesh as an initial condition. Simulation results are compared to detailed 

experimental efforts that include, X-Ray tomography of the actual internal porosity 

distribution at several steps during the tensile test. This represents a significant step in 

simulation technology because in previous studies, if porosity was considered at all it has 

typically been homogeneously or randomly distributed throughout the specimen. While 

Weiler et al. did consider the actual initial internal porosity distribution, this study also 

uses an ISV model to track the evolving damage. Inputting an actual porosity distribution 
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into an ISV model designed to predict the evolution of porosity and damage allows the 

possibility for the possibility of increased accuracy in predictive modeling of parts tested 

to near failure. 

This study focuses on examining the ability of a specific ISV model to predict the 

evolution of damage over the course of a notched Bridgeman tensile test. The actual 

internal porosity distribution for the specimen was found initially using X-Ray CT and at 

four different times during the tensile test using the same method. The study also 

examines the effect of the initial distribution on the simulated damage evolution and on 

the overall behavior of the material. This was accomplished by running simulations using 

initially uniform and initially random damage distributions and comparing the results 

with the actual distribution results.  

Chapter II presents background information concerning the experimental testing 

and the setup of the finite element simulation. The chemical composition, forming 

process, and geometry of the tensile specimen will be discussed. This chapter will also 

present the results from the X-Ray CT and how these results were incorporated into the 

finite element simulation. 

Chapter III presents an introduction to the DMG model in use at Mississippi State 

University. A description of the model as well as the mathematical basis for it will be 

covered briefly. Sections detailing the kinematics, macroscale elastic- plastic material 

response, damage framework, and numerical implementation are included in this chapter. 

Chapter IV presents the results from ABAQUS Standard for the quasi-static case 

of the DMG model described in Chapter III. Comparison of simulations with extensive 

mechanical testing are included. The effect of initial porosity distribution on the damage 
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evolution and mechanical response is studied using simulations with various porosity 

distributions run until the first element failure.  

Chapter V presents the results of simulations run in ABAQUS Explicit. Included 

in this chapter is a verification that the implicit and explicit versions of the ABAQUS 

user defined material model were equivalent and several limitations that were discovered 

when running quasi-static simulations.  

Finally, Chapter VI presents conclusions drawn from the results presented in the 

earlier chapters. Along with these conclusions, some recommendations for future work in 

this area will also be presented.   
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CHAPTER II 

EXPERIMENTAL RESULTS AND FINITE ELEMENT SETUP 

2.1 Introduction 

This section details the experimental testing done for this study and the setup of 

the finite element simulation to be used. The testing was performed in Waters (2001). 

Along with mechanical results, X-Ray CT scans were taken of the specimen before and at 

3 specific points during the loading. It is these scans that will be used to evaluate the 

ability of the DMG model to predict the evolution of damage. 

2.2 Experimental Testing 

The test specimen being modeled in this study was originally tested by Waters 

(2001). The specimen was analyzed using X-Ray Computed Tomography in order to 

obtain a quantification of the porosity distribution existing within the specimen. First, a 

3D reconstruction was created containing all of the porosity data for the entire specimen. 

Then, a routine was created to determine the total void volume fraction for a series of 

increasing diameter rings for one value in the y-direction, as labeled in Figure 2.5. The 

void volume fraction was found for other y-values until the entire notch region had been 

analyzed. This analysis routine provided a map of the void volume fraction as a function 

of radius and the y-value; this mapped void volume fraction data is averaged over the 

entire ring and therefore assumes axial symmetry. As the specimen was tested, CT scans 

were performed at various strain levels in order to track the evolution of damage within 

the part over the range of the test. 
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2.2.1 Material 

The specimens in this study are made of die-cast AM60B magnesium alloy. This 

alloy is often used in the production of automotive parts having complex geometries and 

requiring good elongation, good toughness, and low weight. The chemical composition of 

the tensile specimens in weight percent, is 5.67 % Al, 0.377% MN, 0.15% SI, 0.0011% 

Fe, <0.0035% Cu, <0.0001% Ni, <0.0033% Ca, and the remainder Mg. The samples 

were cast in a 600 ton cold chamber die-casting machine with a 600 ton locking force. 

The injection temperature was between 675 and 690 degrees Celsius, the metal 

temperature was 750 degrees Celsius, and the die temperature was 300 degrees Celsius. 

The shot weight used was 1.63 kg, the shot sleeve diameter was 3.81 cm, and had a shot 

stroke of 29.21 cm. The average gate velocity was 41.15 m/s, and the process had an 

average cycle time of 45 seconds (Waters 2001). 

Table 2.1 Average ultimate tensile strength of all H series experiments and percent 

loads calculated using known notch radius (Waters 2001). Strain values are 

the strain levels at which each load occurred in the experiment.  

Measure 60% load 87% load 93% load σuts (Mpa) 

Force (N) 9176 13304 14225 
207 

Strain 0.60% 2.06% 2.81% 

 

Table 2.1 displays the points during the experimental loading at which CT scans 

were taken. The strain values found in Table 2.1 are the strains at which the 

corresponding loads are first experienced. For comparison between simulations and 

experimental results, the damage distribution at the given strain levels will be evaluated.  
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2.2.2 Geometry 

The notched Bridgeman tensile specimens were obtained in three different notch 

geometries. For each geometry, three specimens were obtained and tested. Each bar was 

11.4 cm long and had an outer diameter of 1.27 cm. The difference in the three 

geometries was the notch root radii; the three different radii were 0.635 cm, 0.794 cm, 

and 1.27 cm. A picture of the geometries is shown in Figure 2.1 (Waters 2001). The 

geometry used for the remainder of this study is on the top, has the smallest notch root 

radius, and is referred to as series H. An H series specimen was chosen for this study 

because detailed CT data was obtained for the specific test H-24. 

 

 

Figure 2.1 Three AM60B magnesium notched Bridgeman tensile specimens with 

three different notch geometries. The geometry used in this study is series 

H, the top specimen, with a notch radius of 0.635 cm. 

2.2.3 Microstructure 

The microstructure of these particular samples was studied in great detail by 

Waters et al. (2000). CT scans of three test specimens with the same geometry were taken 

before testing and at 60, 87, and 93% of the total load. The CT scans taken of the 
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specimens prior to loading are located in Figure 2.2 Figure 2.3 shows the evolution of 

damage in the experimental specimen at 60, 87, and 93% of the total load. All of the data 

in Figure 2.3 underwent the process described in Section 2.2 to convert the 3D CT data 

into 2D axisymmetrically averaged void volume fractions. 

 

 

Figure 2.2 Experimental notch specimen for AM60 Mg showing the three trial 

specimens (a) Trial 1, (b) Trial 2, and (c) Trial 3 with the same geometry 

for which the 3D porosity was measured by computed tomography for the 

longitudinal studies performed at the Stanford Synchrotron Radiation 

Laboratory (Waters et al. 2000). 
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Figure 2.3 The axisymmetrically averaged void volume fractions found from CT scans 

of the experimental specimen at various points in the testing (Waters 2001). 

2.3 Model Setup 

After running the experiments and obtaining the results, the next step is to design 

a finite element simulation that physically represents the state of the material and the 

shape of the specimen before any testing is done. For the purposes of this study the 

tensile specimens are modeled as axisymmetric about the y-axis and assumed to by 

symmetric about the x-axis, axis labels are as shown in Figure 2.5. In order to use the 

results of the CT scans for a now two dimensional simulation, the void data is averaged 

axisymmetrically. The resulting averaged void data are discretized and mapped onto a 

computational mesh using a moving least squares interpolation (Lancaster and 

Salkuaskas, 1981). Figure 2.4 shows both the axisymmetrically averaged CT data and the 

initial discretized distribution of the damage onto the finite element mesh. In the CT scan, 

the large internal pore and the flow line are labeled as “a” and “b”, respectively. 
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Figure 2.4 X-Ray CT results (Waters 2001) of the untested notch Bridgeman 

specimen (above) and the axisymmetrically averaged finite element values 

of void volume fraction used in the simulations (below). Labeled are the 

large pore “a” and the flow line “b”. 

The mesh was created using 4 noded axisymmetric elements with reduced 

integration. For use in ABAQUS version 6.9, the CAX4R element fits the requirements. 

The boundary conditions applied are axisymmetry about the left-hand side, symmetry 

along the bottom face, and a constant velocity of 0.005 mm/s on the top edge of the 

simulation. The simulation mesh contained 12800 four noded elements. Figure 2.5 shows 

the final mesh and the boundary conditions. 
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Figure 2.5 Notch Bridgeman tensile specimen final mesh configuration and coordinate 

system with labeled boundary conditions. 
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CHAPTER III 

DMG MATERAL MODEL 

3.1 Introduction 

The microstructural details of a material and three dimensional stress state can 

play a vital role in determining the overall performance and eventual failure of structural 

components. The material being used, forming processes, and loading histories all affect 

the way a component will respond to a subsequent load. Voids, particles, and cracks seen 

in the microstructure of the material can create local regions of increased stress and 

plastic strain. It is common for simple failure criteria such as Tresca or Von Mises 

equivalent stresses to be used in the analysis and design of components but do not always 

produce results that are both sound and economical. Without accounting for the effect of 

microstructure or loading history, these failure criteria could lead to insufficient or 

inefficient designs. 

This chapter will describe the internal state variable model used in this study. This 

model includes thermodynamically consistent kinematics, damage progression, and an 

elastic-plastic framework. A major motivation for the development of this model is to 

create a physically based mathematical model that is capable of tracking the material’s 

history and using the state of the material to consistently and accurately predict the 

mechanical response of a material under complex loading conditions. The model used in 

this study is based on the constitutive model developed by Bammann et al., 1984, 1989, 

1990, 1993, 1996. The model uses internal state variables to characterize the motion and 
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density dislocations. The evolution of these dislocations and their effect on material 

behavior is a controlling factor on overall material response. The damage evolution 

equations were introduced to the model by Horstemeyer and Gokhale, 1999, and 

Horstemeyer and Lathrop et al., 2000. These damage equations included void nucleation 

and growth evolutions and a phenomenological formulation for the coalescence term. The 

McClintock void growth rule (1968) is utilized to describe the growth of damage 

associated with particles in the material, and the Cocks and Ashby void growth rule 

(1982) is used to describe the growth of pores.  A subsequent coalescence evolution 

equation was added by Allison, 2009 in order to take into account the findings of 

Horstemeyer and Matalanis et al., 2000. It was determined that the influence of 

coalescence could be described as a function of pore diameter divided by nearest 

neighbor distance. 

3.2 Kinematics 

The kinematic formulation used in this model is very similar to that of Davison et 

al. (1977), Bammann and Aifantis (1989), Bammann et al. (1993), Horstemeyer et al. 

(2000), and Horstemeyer et al. (2007). The kinematics of motion use a multiplicative 

decomposition of elastic straining, plastic flow, and damage formation and growth.  The 

deformation gradient,  , is decomposed into elastic(  ), deviatoric inelastic(  
 
), and 

volumetric inelastic parts (  
 
) illustrated in Figure 3.1 and given by  

      
 
  
 .                                                    Equation 3.1 

Equation 3.1 assumes that the motion is described by a continuous function. The 

elastic deformation gradient,   , represents recoverable lattice displacements from their 

equilibrium position. The deviatoric deformation gradient,   
 
, represents dislocations in 
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a continuous field whose motion is both permanent and volume preserving. The 

volumetric deformation gradient,   
 
, represents a continuous field of voids and is 

responsible for the volume change in material during plastic deformation. 

 

 

Figure 3.1 Multiplicative decomposition of the deformation gradient into elastic, 

deviatoric, and dilational parts. 

The Jacobian of Equation 3.1 is related to the volume change or the change in 

density for a constant mass system and is given by 

       
 
 

  

  
 

  

  
                                                 Equation 3.2 

and is required to be positive. The change in volume from the reference configuration 

(State 0) to the intermediate configuration (State2) in Figure 3.1 is V2=V0 + Vv. This 

relationship is true since there is no volume change between States 0 and 1. In moving 

the configuration from State 0 to State 2, a volume of voids, Vv, is added to the initial 

volume, V0, to give the total volume in State 2, V2. Damage, φ, is then introduced as the 
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ratio of the volume of voids divided by the total volume of voids in State 2 or the 

elastically unloaded or unstressed state and is described by Equation 3.3. 

  
  

  
                                                                Equation 3.3 

From this relationship,  

           ,                                             Equation 3.4 

  
 

   
 .                                                           Equation 3.5 

Using Equation 3.4, Equation 3.5 finds the Jacobian of the deformation gradient 

in terms of the newly introduced damage parameter, φ. With the assumption that damage 

produces isotropic volume change, the volumetric portion of the deformation gradient 

becomes 

  
 
 

 

     
 
 

                                                       Equation 3.6 

The velocity gradient, Equation 3.7, associated with the deformation gradient is 

additively decomposed into elastic, volumetric, and deviatoric parts as seen in Equation 

3.8. The velocity gradient can be further decomposed into symmetric and antisymmetric 

parts, Equations 3.9 and 3.10, respectively. 

                                                                 Equation 3.7 

       
 
   

                                            Equation 3.8 

  
 

 
                                                      Equation 3.9 

  
 

 
                                                    Equation 3.10 
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Equations of the form of Equations 3.9 and 3.10 hold true for the elastic, 

volumetric, and deviatoric parts of the velocity gradient. Therefore, the volumetric part of 

the velocity gradient can then be given as 

   
 
  
   

 
  

      
                                                    Equation 3.11 

and the volumetric rate of deformation is  

  
 
 

  

      
  .                                                 Equation 3.12 

If we take the trace of the volumetric rate of deformation, we get Equation 3.13 

that shows that the damage, φ, is directly related to the volumetric rate of deformation. It 

is also helpful to notice here that   
   . 

     
 
  

  

   
                                                           Equation 3.13 

The elastic rate of deformation is related to the volumetric rate of deformation 

according to the additive decomposition of the deformation rates,  

       
 
   

                                         Equation 3.14 

Now that the damage has been related to the rate of deformation, the damaged 

state can be given in terms of the void nucleation and growth in the unstressed 

configuration. Next, let the total number of voids be given by N, the representative 

volume in the reference configuration equal V0, η
*
 is equal to the number of voids per 

unit volume in the reference configuration, and vv is the average void volume of a 

nucleated void. Therefore, the volume of voids is given by 

          .                                                 Equation 3.15 
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Combine Equation 3.15 with the definition, V2 = V0 + Vv , and insert them into 

Equation 3.3 to get 

  
      

         
 

    

      
 .                                                        Equation 3.16 

This form of the damage term was used by Davison et al. (1977). If the number of 

voids per unit volume is known in terms of the intermediate configuration instead of the 

reference configuration, then damage can be written as Equation 3.17. 

  
  

  
 

  

 

 

  
                                                                 Equation 3.17 

Where, 

  
 

  
 

 

  

  

  
   

  

  
                                                           Equation 3.18 

relates the number of voids per unit volume in the intermediate configuration to the 

number in the reference configuration. Once again using the relationship additively 

combining the volume in the reference configuration with the volume of voids to get the 

volume in the intermediate configuration gives the expression 

           ,                                                                      Equation 3.19 

which enables us to find η
*
 from an experimentally determined value for η obtained from 

a specimen that has been loaded and then elastically unloaded.  

3.3 Macroscale Elastic-Plastic Model 

The internal state variable model used in this study was developed by Bammann 

et al. (1993) and modified to account for the stress state dependence of the damage 

evolution by Horstemeyer and Gokhale (1999) and Horstemeyer, Lathrop, et al. (2000). 
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The defining equations of this model are given by the rate of change of observable and 

internal state variables. The equation used to implement the model into the finite element 

method are given by, 

                            
  

   
                       Equation 3.20 

where   and    are the Cauchy stress and the co-rotational or objective rate of the Cauchy 

stress, respectively. In this model the objective Jaumann rate is being used. λ and μ are 

the elastic Lame constants, and   is the second-order identity tensor. The plastic flow rule 

is given by Equation 3.21. 

 

            
                    

         
 

    

      
                                  Equation 3.21 

where    is the deviatoric portion of the stress tensor,    is kinematic hardening, R is 

isotropic hardening, and T is temperature. The function Y(T) is the rate independent yield 

stress, V(T) is related to the magnitude of rate dependence on initial yield, and f(T) 

determines at what strain rate the rate dependence affects yielding. Y(T), V(T), and f(T) 

are temperature sensitive and given by 

                                                                                                Equation 3.22 

                                                                                             Equation 3.23 

                 .                                                                           Equation 3.24 

C1 through C6 are material parameters obtained from uniaxial mechanical tests performed 

at various strain rates and temperature and are all related to yield stress.  
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The hardening rate of the material is separated into Equations 3.25 and 3.26. 

Equation 3.25 is the co-rotational rate of kinematic hardening,   , and is representative of 

geometrically necessary dislocations in the material. The material time derivative of the 

isotropic hardening,   , is described in Equation 3.26 and represents the uniform 

distribution of statistically stored dislocations in the material. 

             
 

 
       

               
    

   
 
 

        Equation 3.25 

             
 

 
       

          
   

    

   
 
 

            Equation 3.26 

where DCS0, DCS, and z are related to dendrite cell size and grain size. These constants 

allow for microstructural features to be accounted for in the plastic region of the model. 

The functions h(T) and H(T) are the anisotropic and isotropic hardening modulus, 

respectively, and are described as a function of temperature in Equations  3.28 and 3.31. 

Rd(T) and rd(T) are scalar functions of temperature that describe the dynamic recovery, 

and Rs(T) and rs(T) are scalar functions that describe static (thermal) recovery. These 

functions are  

              
 

  
 

  
 

  
     

  

  
        

   
                         Equation 3.27 

                     
 

  
 

  
 

  
     

  

  
                                 Equation 3.28 

             
    

                                                                         Equation 3.29 

               
 

  
 

  
 

  
     

  

  
        

    
                     Equation 3.30 

                      
 

  
 

  
 

  
     

  

  
                              Equation 3.31 

             
    

                                                                         Equation 3.32 
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where C7 through C12 are material parameters related to the kinematic hardening and 

recovery terms, C13 through C18 are parameters related to isotropic hardening and 

recovery, and Ca and Cb are parameters related to dynamic hardening and anisotropic 

hardening, respectively (Tucker 2009). Also,    
 

 
      

 
 and    

 

 
    

 3where the deviatoric stress σ’ is expressed in indicial notation as  

   
      

 

 
    .                                                                                                   Equation 3.33 

Constants C1 through C18 are determined by macroscale experiments conducted 

at different temperatures and strain rates. 

3.4 Damage 

The damage evolution implemented in this model consists of three major 

components: void nucleation, void growth, and void coalescence. The damage evolution 

given by Horstemeyer (2001) is,  

                                                                                                       Equation 3.34 

where η is the void nucleation, v is the void growth related to particles, φpores is the void 

growth related to pre-existing pores, and C is the coalescence term.   

The nucleation term, η, is the number of voids per unit volume. The evolution 

equation for nucleation used was developed and discussed in depth in Horstemeyer 

(2001) as, 

      
 
  

          

       
    

 

  
 

  
 

  
    

  

  
      

  

   
      

   

 
             Equation 3.35 

where, d is the average particle size, KIC is the fracture toughness, f is the initial void 

volume fraction, a, b, c, Ccoeff, CTη are material constants, I1 is the first invariant of 
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Cauchy stress, and J2 and J3 are the second and third invariants of the deviatoric stress 

tensor.  

The void growth term is then separated into two separate parts, the growth of 

voids nucleated from particles and the growth of existing pores. This model uses the 

McClintock (1968) void growth equation to describe the void growth related to nucleated 

voids from particles. The equation used in the model is 

   
    

      
             

    

    
     

 
                                   Equation 3.36 

where R0 is the initial void radius and m is the McClintock void growth parameter. In 

order to describe the growth of existing pores, the Cocks and Ashby (1982) void growth 

term is implemented as 

         
 

          
                  

       

    

  

  
    

 
         Equation 3.37 

where m is the Cocks-Ashby void growth parameter, σh is the hydrostatic stress, and σe is 

the von Mises equivalent stress. The term σh/σe is a measure of stress triaxiality.  

The third component in the damage evolution is the coalescence term. In early 

forms of this model, the coalescence is described by a phenomenological relationship 

developed by Horstemeyer and Gokhale(1999) as 

              
    

   
 
  
                                                    Equation 3.38 

where CD1 is related to simple coalescence of two voids into one, CD2 is related to the 

nucleation of small voids between larger voids that occurs during microvoid linking, CTC 

is a material parameter related to the temperature dependence of coalescence. This term 
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has since been modified to reflect experimental findings of Horstemeyer, Matalanis et al. 

(2000) by Allison (2009) as 

        
   

   
 
 

                                                                                 Equation 3.39 

where d0 is the initial void diameter, NND is the average nearest pore neighbor distance, 

and ζ is a material parameter. This relationship implies that if two pores are more than 4 

diameters apart from one another, there will be relatively low influence on one another in 

terms of coalescence. However, if the pores are closer than four diameters, coalescence 

can become a critical factor in the total damage evolution. It is this result that is shown in 

Horstemeyer, Matalanis et al. (2000) that inspired a coalescence of this form.  

3.5 Numerical Implementation 

The MSU ISV model has been implemented into various finite element codes, 

including ABAQUS (Bammann et al. 1993 and Horstemeyer, Lathrop et al. 2000). The 

implementation presented here is very closely related to the implementation presented in 

Horstemeyer, Lathrop et al. (2000). In order to implement this model into a finite element 

code, one major simplification is required; the deviatoric plastic rate of deformation,   , 

in the recovery terms of the hardening rate equations 3.25 and 3.26, is replaced with the 

total rate of deformation,  . This replacement assumes that       , which means that 

all deformation is deviatoric plastic deformation. While this assumption is acceptable for 

large strains, it can induce significant errors for small strain problems. This makes 

equations 3.25 and 3.26 become equations 3.40 and 3.41, respectively.  

            
 

 
                      

    

   
 
 

         Equation 3.40 

            
 

 
                      

    

   
 
 

         Equation 3.41 



 

23 

The beginning of each step is to determine the values for the second and third 

deviatoric invariants, J2 and J3, from the previous step to update the hardening and 

recovery terms in equations 3.27 – 3.32. Then, trial values for deviatoric stress, kinematic 

and isotropic hardening, and the yield criterion are calculated by assuming a purely 

elastic step. These equations are implemented as equations 3.42 – 3.45.  

    
    

    
    

   
                                                          Equation 3.42 

    
                                                         Equation 3.43 

    
                                                          Equation 3.44 

    
    

 
                      

       

    
                 Equation 3.45 

In Equation 3.45,                   
       

    
   is the yield radius and 

           . The equation for PHI is found by inverting the flow rule found in 

Equation 3.21 and taking the norm of both sides. If     
  is less than or equal to zero, 

then the assumption of a purely elastic step is valid, and the trial values of     
 ,     

 , 

    
  are updated as the actual values. If     

  is positive, the deviatoric plastic 

component of the strain must be found that satisfies Equation 3.46.  

     
    

  
 

 

   
                

    

  
                                                 Equation 3.46 

It can be shown that   is defined by Equation 3.47. Using this  , it is possible to 

correct the trial values of     
  ,     , and      by Equations 3.48 – 3.50 to give the 

actual values of deviatoric stress (    
 ),     , and      . With these corrected values, 

substitution into the inverted flow rule shows that the condition PHI = 0 is enforced. 



 

24 

  
                                 

         
 
           

    
   

 
    Equation 3.47 

    
      

  
        

   
   Equation 3.48 

         
  

  

   
  

    

   
 
  

  Equation 3.49 

         
    

 
   

    

   
 
  

  Equation 3.50 

Using the corrected value of R, the total effective plastic strain can then be computed 

according to Equation 3.51.  

    
 

   
 
        Equation 3.51 

Next, using the updated pressure term located in Equation 3.52, the total stresses 

(Equation 3.53) and invariants can be found. Using the total stresses, an equivalent stress 

can be calculated as in Equation 3.54 so that the damage terms can be updated.  

     
 

 
         

    

     
                                                         Equation 3.52 

         
                                                                                                      Equation 3.53 

                                                                                                                       Equation 3.54 

From Equations 3.35 – 3.37, the updated equations for nucleation, void growth from 

nucleation, and void growth from existing pores become: 

               
    
 

    

           
   

 

  
 

  
 

  
    

  

  
      

  

   
       

   

 
  Equation 3.55 

             
     

 

        
     

  

 
      

  

  
 

 

 
    

 

                         Equation 3.56 
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        Equation 3.57 

The above implementation is how the MSU ISV model is used in an ABAQUS 

explicit, user-defined material model, or vumat. The growth from nucleated voids term, 

described in Equation 3.57, varies slightly from the form of Equation 3.36, the 

McClintock void growth equation. This form is found in McVeigh and Liu (2008) and  is 

structured like finding the area of a two dimensional void; this differs from the three 

dimensional form found in Jordan (2006, 2007) and Horstemeyer, Lathrop et al. (2000). 

Equation 3.59 shows the three dimensional form of the McClintock void growth 

equation, and it can be seen that it is structured like the volume of a sphere rather than 

like the area of a circle like Equation 3.57.  

     
  

 
       

     
 

      
             

    

    
    

 

                      Equation 3.58 

In addition to the calculations in the explicit implementation of the DMG material 

model, the implicit implementation also requires the calculation of a tangent modulus at 

the end of each increment. It was shown by Nagtegaal (1982) and Simo and Taylor 

(1985, 1986) that the Newton-Raphson method for satisfying global equilibrium loses 

quadratic convergence with the use of a continuous tangent operator. For use with the 

DMG material model, Hammi and Horstemeyer (2007) derived and implemented a 

tangent operator that is consistent with the numerical incrementation used in the local 

constitutive equations in order to improve the quality of global and local convergence.  
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CHAPTER IV 

IMPLICIT SIMULATION RESULTS 

4.1 Introduction 

In this chapter, the implicit finite element program ABAQUS Standard will be 

used to first verify that the DMG material constants are correctly fit to the experimental 

data for cast AM60B, then to simulate the notch tensile tests. ABAQUS Standard uses an 

implicit solver to satisfy the momentum balance equations. In general, an implicit 

integration scheme uses data from the previous step as well as values from the current 

step to approximately solve the system of equations (Reddy 2004), and as such, this 

solution approach is iterative. In implicit finite element codes, an initial guess is found 

using the tangent stiffness from the previous step and then ABAQUS iterates until 

equilibrium is met within a given tolerance. According to Reddy (2004), implicit schemes 

are unconditionally stable but the accuracy breaks down when the time step increases 

with respect to the period of response of the system. 

A study similar to that presented here was performed in Weiler et al. (2005). As in 

this study, Weiler et al. used X-ray CT scans to determine the porosity distribution of a 

tensile specimen. They then used a critical local strain model to predict the plane of 

fracture, fracture strain, and fracture stress. Key differences between the approach in this 

study and that of Weiler include the fact that this study is performed on notched tensile 

specimens and utilizes a material model capable of tracking the state of the specimen. 

The importance of the notched specimen is that the notch introduces stress and triaxiality 
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gradients in the specimen. Unlike Weiler, damage evolution in the DMG model takes 

these gradients into account.  

4.2 Calibration 

In order to have confidence that the simulation will be correctly predicting the 

material response on the scale of the entire notched Bridgman tensile specimens, 

simulations were run to ensure that the model would capture the stress versus strain 

response of the real material as well as adequately predict the evolution of damage in the 

material. Figure 4.1 compares a quasi-static simulation to published experimental data 

(Horstemeyer et al. 2007) for the constants used in this study. 

 

 

Figure 4.1 Comparison of the implicit finite element simulation to uniaxial tension 

experimental data. 

4.2.1 DMG Material Constants 

This figure shows a very good correlation between the mechanical response of the 

simulation and that of the real material. The material constants used in this study were 
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calibrated in Horstemeyer et al. (2007) and are given in Appendix A. These constants are 

used here with only minor recalibration to constant, C5. Figure 4.2 illustrates both the 

motivation and the result of this change in C5. The geometry in the simulations shown in 

Figure 4.2 is a cube that is 1 mm on each side. Each curve represents one uniaxial tension 

simulation at a constant engineering strain rate. The only difference between different 

curves on each graph is strain rate, and the only change between the two graphs is the 

value used for C5. The green curves in Figure 4.2 correspond to the strain rate used in the 

experimental testing. It can be seen in Figure 4.2a that the constants provided will slightly 

over-predict the stress for the QS case, but the response in Figure 4.2b closely matches 

the experimental data. 
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Figure 4.2 Comparison of simulations run with different values of C5. When C5 = 1E-

5, the simulation predicts elevated stresses for quasi-static test (top) and 

when C5 = 1E-4, the simulation predicts stresses corresponding well with 

the experimental data (bottom).   

a 

b 
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Figure 4.2a shows that in order for the model to reach its quasi-static, rate 

independent limit with C5 = 1 x 10
-5

, the strain rate must be no greater than 1 x 10
-5

 s
-1

. 

Since the experimental data shown was performed quasi-statically at a strain rate of 1 x 

10
-4

 s
-1

, the constant C5 was recalibrated such that the model will have approached its 

quasi-static, rate independent limit at the lower bound of available experimental data 

(which is 1 x 10
-4

 s
-1

). After recalibration, C5 = 1 x 10
-4

. Figure 4.2b illustrates the 

change that this C5 has on model response. It can be seen that the new material constant 

allows for the model to reach rate independent limit at the same strain rate as the quasi-

static experiment used to calibrate the model.  

4.2.2 Damage Evolution Response 

Since the purpose of this study is to evaluate the MSU-ISV models ability to 

predict the evolution of damage in a part, simulations were run to show percent 

elongation to failure as a function initial area fraction of porosity. Figure 4.3 shows that 

the model is capable of capturing the general trend of damage progression in the 

experimental data for a single element. Since cast AM60 contains large amounts of 

porosity initially, it is assumed that the initial porosity is the controlling feature in the 

overall damage evolution and therefore nucleation of new voids and the subsequent 

growth of the new voids is neglected. Therefore in Figure 4.3, all of the damage in each 

data point comes solely from the growth of initial pores and the coalescence of those 

pores. 
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Figure 4.3 Comparison of initial porosity versus elongation to failure for the implicit 

simulations and the experimental data. 

4.2.3 Time Step Size Evaluation 

This series of simulations was performed in order to ensure that the time step used 

in the ABAQUS implementation of the problem was sufficiently small to ensure accuracy 

of the predicted results. Figure 4.4 shows that as long as the time step for this particular 

simulation is lower than 6 seconds, the implicit solution will not vary with changing time 

step. However, for time steps larger than 6 seconds, the solution begins to oscillate 

around the converged solution. If the time step is only slightly higher than the stable 

threshold, the solution will oscillate near the transition from elastic to elasto-plastic 

response in the data and then return to the stable solution, but if the time step is about 10 

seconds or higher, at 6% true strain the solution continues to oscillate without damping. 
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Figure 4.4 This figure shows a series of simulations designed to determine the 

accuracy of the implicit solution with various time steps. 

4.3 Notch Bridgeman Simulation Results 

Using the model and boundary conditions presented in Section 2.3, simulations 

corresponding to experiments run by Amy Waters (2001) are presented. In Section 4.3.1, 

the results of the experimental data are compared to the predicted material behavior from 

an ABAQUS Standard finite element simulation. Section 4.3.2 explores the effect of 

various initial porosity distributions on the predicted evolution of damage within a 

specimen. 

 

Seconds 
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4.3.1 Comparison of Simulation to Experimental Results 

 

 

Figure 4.5 The black curve shows the mechanical response of the experimental tensile 

test. The blue curve is the mechanical response of the finite element 

simulation. The green curve is equal to the blue curve with the force values 

multiplied by 0.7. The dashed lines represent, from left to right, 60%, 87%, 

and 93% of the total load; the solid line represents the first element failure 

in the finite element simulation. 

Figure 4.5 shows the loading history of both the simulation and the experimental 

data. Marked by vertical dashed lines are the strains represented by 60%, 87%, and 93% 

of the total “failure load”. For this case, the failure load is considered to be an averaged 

ultimate tensile strength, 207 MPa, as stated in Table 2.1. The strains represented by 

60%, 87%, and 93% of the failure load are 0.6%, 2.06%, and 2.81%, respectively. 

Figures 4.6 -4.9 illustrate the evolution of porosity in the experiment alongside the 
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simulated specimen. Given a cross sectional area at the notch of 74 mm
2
, the 

experimental data predicts a yield stress of approximately 125 MPa. This value is the 

averaged stress across the minimum cross section of the specimen. Under the same 

assumptions, the simulation predicts a yield stress of about 170 MPa. As presented in 

Table 2.1, the average yield point of AM60B magnesium is 130 MPa. Therefore, as far as 

mechanical response is concerned, the simulation predicts stress levels that are 

consistently higher than the experimental data. If the value of force for the simulation 

were multiplied by a constant value of 0.7, the green curve is the result and the 

experimental data is adequately represented. So, while the values for force are very high, 

the shape of the curve for the simulation is basically the same as the experiment. In order 

to compare the damage evolution from the simulation to the experimental data, the strain 

levels indicated by the dashed lines in Figure 4.5 will be used. 

 

 

Figure 4.6 Damage levels at 60% of the failure load for the experiment (left) and the 

simulation (right). 

From Figure 4.6, it can be seen that, to this level of strain, the damage distribution 

in the simulation closely resembles that of the experiment. The peak damage in both 
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cases is located at the isolated pore located to the left of the flow line in the figure. It 

should also be noted that at 60% load, there has only been a 1.7% change in the peak 

damage in the simulation from the initial damage state. 

 

 

Figure 4.7 Damage levels at 87% of the failure load for the experiment (left) and the 

simulation (right). 

Figure 4.7 shows that, by 87% load, the simulated damage has evolved 

considerably more than at 60% load. At this point, the simulation is over-predicting the 

damage evolution at the isolated pore relative to the flow line, according to the 

experimental data. The simulation, however, does still correctly predict the void growth 

trends, such as elevated growth rates around the pore and the flow lines.  
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Figure 4.8 Damage levels at 93% of the failure load for the experiment (left) and the 

simulation (right). 

Figure 4.8 show that the simulation continues to grow the porosity in the regions 

characterized by the pore and the flow lines much more than other regions of the 

specimen. This trend continues to the end of the simulation just after the first element 

failure. For this model, an element is considered failed when the damage goes to unity. 

The first element failure for this simulation occurs at the isolated pore and is shown in the 

damage contour in Figure 4.9. The first element failure occurred at 3.3% true strain. It 

can also be seen that the strain to first element failure corresponds to between 95 and 

100% of the average “total load” as Figure 4.5 evaluates percent of total load. 
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Figure 4.9 Simulation contour plot of the damage distribution at the time of the first 

element failure for the implicit finite element simulation of the notch 

Bridgeman tensile specimen. 

Other than the porosity directly around the pore, the only damage to evolve to a 

significant value is that associated with the flow line. These two regions are significant 

because in the experimental data they are the same regions that experience the most 

damage. In the experimental results, the damage associated with the flow line experiences 

more growth than the damage associated with the large pore, but these results show that 

the model is capable of capturing the trend of elevated pore growth relative to the rest of 

the specimen in these two regions under the application of a uniaxial tensile load.  

Figure 4.10 shows a contour plot of the pressure, von Mises equivalent stress, 

stress triaxiality, and plastic strain at just prior to the first element failure. The maximum 

values for each of these different measures of stress and strain occur at various locations 

around the specimen, however, none of the measures display a maximum at or near the 

location of first failure. 

 

First 

Element 

Failure 
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Figure 4.10 Contour plots of von Mises equivalent stress (top left), effective plastic 

strain (top right), pressure (bottom left), and stress triaxiality (bottom right) 

for the simulation of the notch Bridgeman tensile specimen with the actual 

initial porosity distribution. 

It can be easily seen from Figure 4.10 that the maximum values for the plastic 

strain, von Mises stress, and pressure all exist near the notch root. The maximum stress 

triaxiality exists not at the notch root, but at the point labeled in the figure. In Agarwal et 

al. (2003), it is shown that pore growth is dependent upon both stress triaxiality and 

plastic strain; for the real distribution, it seems that the influence of the high porosity 

being concentrated around the pore and the flow line dominates the influence of plastic 

strain and stress triaxiality. 

maximum 
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4.3.2 Effect of Initial Porosity Distribution on Evolution of Damage 

After observing that, given the initial porosity distribution of a specimen, the 

DMG model is capable of predicting the general trends in the evolution of that porosity 

as the specimen undergoes deformation, a question arises regarding what effect, if any, 

the porosity distribution actually had on the predicted results in the previous section. That 

is, if the simulation were run with the same total area of porosity, but distributed in a 

different manner, what effect would there be on the predicted response of the specimen? 

In order to answer this question, two additional porosity distributions were developed, 

one with homogeneously distributed porosity in each element in the notched region and 

the other with randomly distributed damage. For both of these new porosity distributions, 

the void volume fraction for the entire part is identical to that of the porosity distribution 

in the previous section. Figure 4.11 compares the three different simulations by means of 

mechanical response. 
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x  

Figure 4.11 The graph shows the force versus strain response for each of the three 

porosity distributions, and the figures are damage contours taken as the first 

element failed in each simulation. 

It is readily seen in Figure 4.11 that the force versus nominal true strain response 

for each of the simulations follows the same path regardless of the initial porosity 

distribution. The difference in the three cases is that the randomly and uniformly 

distributed cases exhibited first element failure at a much larger strain. Also included in 

Figure 4.11 are damage contours taken at first element failure for each simulation. It is 

obvious that the damage evolution in each case is very different. For the real distribution, 

the damage evolution is highest around the pore and the flow line. In the random 

distribution, the damage evolution seems to generally increase as the distance from the 

notch root decreases, but non-uniform initial damage causes non-uniform damage 
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evolution. Finally, in the uniform distribution, the evolution of damage is focused on the 

notch root and radiates outward.  

In the previous section, the fact that the real porosity distribution displayed 

increased void growth at the preexisting pore and flow line was discussed in depth; now 

the current damage state of two new distributions will be compared to the real 

distribution at the first element failure of the real distribution. 

 

 

Figure 4.12 Comparison of the damaged states of the real (top left), random (top right), 

and uniform (bottom) porosity distribution simulations at 3.3% true strain, 

which corresponds to first element failure of the real porosity distribution 

simulation. 

Figure 4.12 clearly shows that at the first element failure of the real initial 

porosity distribution, the random and uniform distributions are still far from failure 

initiation. In fact, at this point the maximum damage in the real distribution is 1 (first 

element failure); however, the maximum damage in the random and uniform distributions 

are 2.6% and 1.0%, respectively.  Within the random and uniform cases, trends about the 
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growth of the voids can also be noted. For the random case, the concentration of elements 

with elevated damage levels gets much higher as the distance to the notch root decreases. 

However, there are some elements with damage levels near the maximum at this strain 

level that are located far from the notch. The damage level does not correspond directly 

to the position relative to the notch root. The same cannot be said about the uniform 

distribution. It can be seen that the damage growth seems to be radiating out from the 

notch root.  

The next strain level chosen to compare the response of the two new porosity 

distributions is 8.8%. This strain corresponds to the first element failure for the randomly 

distributed porosity case. Figure 4.13, shows the damage distribution in the randomly and 

uniformly distributed porosity cases at the point of first element failure in the randomly 

distributed case. 

 

 

Figure 4.13 Comparison of the damaged states of the random (left) and uniform (right) 

porosity distribution simulations at 8.8% true strain, which corresponds to 

first element failure of the random porosity distribution simulation. 

Figure 4.13 shows that the failure of the randomly distributed case occurs neither 

directly at the notch root nor at the element with the highest initial porosity. At this level 
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of strain, the uniformly distributed case still continues the trend of highest damage 

occurring at the notch root and decreasing as the distance from the notch increases. The 

maximum damage present in the uniformly distributed case is 4.5%.  

Now, seeing that the element that fails first in the random distribution simulation, 

Figure 4.14 examines the state of the material in that simulation and to determine the 

cause for failure of the first element. As Figure 4.10 illustrates the state of the material 

just prior to the first element failure for the real damage distribution, Figure4.14 shows 

the same for the randomly distributed case. 

 

 

Figure 4.14 Contour plots of von Mises equivalent stress (top left), effective plastic 

strain (top right), pressure (bottom left), and stress triaxiality (bottom right) 

for the simulation of the notch Bridgeman tensile specimen with the 

random initial porosity distribution. 

maximum 
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Figure 4.14 shows that the von Mises equivalent stress, the equivalent plastic 

strain, and the pressure are all maximum at the notch root, but the stress triaxiality is not. 

The maximum stress triaxiality occurs near the center of the specimen but not near the 

element that fails first.  Therefore, for the case of randomly distributed initial porosity, 

the first element to fail is not located at the site of the maximum initial porosity, von 

Mises stress, equivalent plastic strain, pressure, or triaxiality. The element to fail first had 

slightly higher initial porosity than the other elements in its proximity, was in an area 

with high plastic strain levels, and was experiencing high stress triaxialities. So, while the 

first element failure did not correspond exactly to the maximum value for any of these 

measures, failure did occur at an element where porosity, plastic strain, and stress 

triaxiality were all elevated and working in tandem. 

All that remains is to simulate the uniform distribution to first element failure and 

compare the results with those from the other two distributions. Figure 4.15 shows the 

von Mises equivalent stress, plastic strain, pressure, and stress triaxiality of the uniformly 

damaged case immediately prior to the first element failure. 
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Figure 4.15 Contour plots of von Mises equivalent stress (top left), effective plastic 

strain (top right), pressure (bottom left), and stress triaxiality (bottom right) 

for the simulation of the notch Bridgeman tensile specimen with the 

uniform initial porosity distribution. 

Like the other two cases, the uniform damage case exhibited a maximum von 

Mises stress, equivalent plastic strain, and pressure at the notch root, but the maximum 

stress triaxiality was at the direct center of the specimen. Therefore, if stress triaxiality 

was the governing factor in determining the damage evolution, then the damage near the 

center of the specimen would be elevated. So it is observed that in this model, stress 

triaxiality plays a secondary role in determining the growth of initial porosity. However, 

unlike the previous two cases, the damage, von Mises stress, equivalent plastic strain, and 

pressure all directly increase as the distance to the notch decreases. The predicted 

position of the first element failure for a uniform damage distribution is at the notch root. 

maximum 
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4.4 Discussion 

Several key observations can be drawn from the results presented in this chapter. 

The first observation is that using the DMG model to predict the damage evolution given 

the initial porosity distribution yields a result that follows the trends seen in the 

experimental data. Secondly, it was observed that the initial porosity distribution has no 

effect on the shape of the force versus strain curve for a notch Bridgeman tensile 

specimen. The only effect from the initial porosity distribution is on the damage 

evolution and the eventual first element failure of the specimen. That leads the third and 

final major observation of this chapter that the initial porosity distribution plays a major 

role in predicting the beginning of failure for the specimen.  

In section 4.3.1, it was shown that the DMG model was capable of accurately 

predicting the major trends in the damage evolution when the initial porosity distribution 

is known. This was indicated by Figures 4.6 – 4.8, which show the side by side 

progression of damage in the experiment and simulations. The only two areas that the 

damage significantly evolved are the large pore and the axial flow line. In both the 

simulation and experiment, these two regions dominate the damage evolution for the 

notch Bridgeman specimen. That being said, it should also be noted that, while the model 

did accurately predict the two regions where damage would evolve most significantly, it 

did not predict the correct damage evolution within those regions. Specifically, the 

highest damage in the experiment is found in the pore, but it is very close to the damage 

level found in the top of the flow line. The simulation slightly over-predicted the damage 

at the pore and predicted elevated growth at the lower end of the flow line rather than the 

top of the flow line like the experiment. These small discrepancies between the 

experiment and the simulation notwithstanding, this simulation indicates that the DMG 
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model has the ability to effectively predict the evolution of damage in a part given the 

initial porosity distribution of that part.  

The initial porosity distribution has no effect on the shape of the force versus 

strain response of the tensile specimen. The graph in Figure 4.11 clearly shows that the 

mechanical response for each of the three initial porosity distributions follows exactly the 

same curve. So, while the damage evolution varies greatly with the porosity distribution, 

the only effect that the porosity distribution has on the mechanical response is the point at 

which first element failure occurs. Section 4.3.2 details the differences between the 

damage evolution of the three simulations. The strain to first failure for the real 

distribution is 3.3%. Changing the same volume (area) of porosity into a random 

distribution yields a first element failure at 8.8% strain, an increase of 167% over the 

strain to first failure of the real distribution. If the porosity is averaged homogeneously, 

the strain to failure is 12.3%. That corresponds to an increase of 273% over the real 

distribution and a 40% increase over the random distribution. Therefore, the initial 

porosity distribution plays a vital role in simulating the mechanical response of a part 

near failure. 
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CHAPTER V 

EXPLICIT SIMULATION RESULTS 

5.1 Introduction 

The results obtained from the ABAQUS Standard simulations predicted the trends 

in the experimental data, but were limited to the failure of the first element. In order to 

predict the component behavior beyond the first element failure, an explicit analysis is 

required. An explicit integration scheme is one in which the values are approximated 

using only known values from the previous step (Reddy, 2004 and Zienkiewicz, 1977). 

This simplification in the calculations, however, makes explicit schemes only 

conditionally stable. In this case, that means that the size of the time step is limited 

approximately to the time it takes an elastic wave to cross the smallest element dimension 

in the model. 

5.2 Verification 

With a given set of constants, and a sufficiently small time step, an implicit and 

explicit implementation of the same model should return the same material response for a 

given boundary value problem. In order to verify that the Umat and Vumat being used in 

ABAQUS were equivalent, the same simulation is run in both codes to verify that they 

return equivalent responses. Each simulation was a single 1 mm element loaded in 

uniaxial tension using the ABAQUS calculated time step size. For the explicit 

simulations in this chapter, double precision is always used. The results of those two 

simulations are compared to the experimental results in Figure 5.1. The explicit result 
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clearly shows a different response than the implicit implementation; both the slope of the 

elastic and elasto-plastic regimes are the same. The only observed deviation in the slopes 

of the stress strain curves found in Figure 5.1 is from approximately 0.3% to 1.0% true 

strain. It was shown in Figure 4.4 that the implicit solution shown in Figure 5.1 does not 

change with decreasing time step size and is therefore assumed to accurately represent 

the response of the DMG model. 

 

 

Figure 5.1 Comparison of the stress versus strain response of a 1mm cube as predicted 

by the implicit and explicit implementations of the DMG model. 

Because the implicit solution uses an iterative scheme to minimize the error in the 

solution of the momentum balance equation, the implicit solution will be used as a 

standard for the remainder of this study. In this chapter, the word “error” will be used to 
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describe the difference between the implicit solution and whatever value is being 

analyzed for a given level of strain. Percent error is the error divided by the value of the 

implicit solution at that strain level. 

In order to ascertain the source of the deviation, the values for all of the internal 

state variables were compared and it was found that they were all close in value except 

for the variables representing isotropic hardening. Figure 5.2 shows the plot of the 

isotropic hardening variable κ for both the implicit and explicit implementation schemes. 

The difference between the total stress versus strain responses at any time after about 20 

seconds is approximately 13.8 MPa, while the difference between the values of κ for the 

implicit and explicit schemes is approximately 14 MPa. Therefore, the majority of the 

deviation can be attributed to this discrepancy in isotropic hardening. 
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Figure 5.2 This illustrates clearly the difference in the evolution of the isotropic 

hardening variable kappa between the implicit and explicit schemes. 

Once this was found, all of the plasticity and damage constants were zeroed out of 

the model and simulations rerun using both implicit and the explicit finite element codes 

(ABAQUS Standard and Explicit) in order to isolate the source of the deviation. The 

results were that the implicit and explicit solutions were identical. After this, the 

constants were systematically added back into the simulation until a deviation was 

observed. This process revealed that by setting the constant C1 equal to zero, all other 

constants could be retained with no adverse affects; specifically, with all constants added 

back into the model except C1, the implicit and explicit results are equivalent. Section 5.4 

focuses on the effects of removing C1 from the simulation. However, removing C1 from 

the simulation removes the strain rate dependence of yield from the model, limiting the 
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functionality of the DMG model significantly. Therefore, some effort was spent on 

finding a way to preserve the use of all constants. So, another possible cause for the 

discrepancy between the implicit and explicit schemes is that the time step chosen by 

ABAQUS Explicit is not sufficiently small to accurately compute the response of the 

model. The remainder of this section will explore several methods used to check if and 

insure that the simulation was being run with a sufficiently small time step. 

5.2.1 Reduce Time Step Size (Without Damage) 

Increased integration accuracy of explicit integration schemes can be achieved by 

a reduction of the time step size. As such, simulations were run starting at the ABAQUS 

calculated time step,                 , and lowering it to see if there is any 

improvement of simulation results. The time step was first reduced to               , 

an 10.5 % reduction in time step size. The one element simulation with time step size 

equal to t1 took approximately 22 hours to complete on one processor. With this step size 

from simulation results were practically unchanged. Therefore, the time step was reduced 

further. However, without running any increments, for this set of constants, all time steps 

smaller than     began returning a floating point error from ABAQUS. 

5.2.2 Increase Element Size (Without Damage) 

Because reducing the time step directly was not able to verify that the implicit and 

explicit solutions are equal, another method must then be found to verify that the 

implementations will converge to the same solution. According to Ling (2002), the size 

of the maximum stable time step for a problem is the maximum value of  

     
 

 
                                                                  Equation 5.1 
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for any element in the simulation. In Equation 5.1, a is the characteristic element size,   

is density, and K is the stiffness.      is a function of the Poisson’s ratio and is 

dependent upon the type of element and whether a lumped or consistent mass matrix 

formulation is used. Therefore, enhanced accuracy may be achieved by increasing 

element size. The critical stable time step is the smallest stable time step for any element 

in the simulation. Since the minimum time step that can be used in ABAQUS, as stated in 

Section5.2.1, is larger than the time step required for a 1 mm element simulation to give 

accurate results, a series of simulations were run increasing the size of the element. In 

Equation 5.1,  , K, and      are material parameters and cannot be changed without 

changing the fundamental problem being solved. However, for a uniaxial tension test 

controlled by strain rate on a homogeneous cube, the size of the cube has no effect on the 

mechanical (stress versus strain) response. Therefore, increasing the size of the cube 

directly increases the maximum stable time step of the finite element problem without 

altering any material properties. Figure 5.3 shows the mechanical response of the series 

of simulations with increasing element size. It is immediately apparent that the stress 

versus strain response for the 25 mm element and the 100 mm element contain irregular 

behavior in the form of local bumps in the data. 
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Figure 5.3 Stress versus strain responses of a series of simulations of increasing 

element size with a constant strain rate, boundary conditions, and material 

parameters. 

From Figure 5.3 it can be seen that, as the size of the element increases under a 

constant time step and strain rate, the solution of the explicit problem approaches that of 

the implicit implementation scheme.  For a time step of 1 x 10
-7

 seconds and element 

sizes larger than 225 mm, the explicit results have converged to the same solution, which 

is approximately equal to the implicit solution. Figure 5.4 gives an idea of the rate at 

which the solutions converge as the element increases in size. 
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Figure 5.4 Plot showing the error (MPa and %) at the last step in each simulation. 

Figure 5.4 shows on the left axis the error in stress for each simulation from the 

converged stress level at the final increment in the simulation; on the right axis, this error 

has been converted into percentage of the converged stress. For this series of simulations, 

the last increment corresponds to a true strain of 4.88% and a converged true stress of 

199.4 MPa. It is stated above that the element size which corresponds to a fully 

converged solution is 225 mm; however, for engineering purposes, the error in the 

elements larger than 175 mm is approximately 0.5% or less and can therefore be 

sufficient. With elements larger than 125 mm, the results are convergent to the implicit 

solution. For elements smaller than 125 mm, however, the results are not smooth and 

seem to indicate some form of numerical noise. From this data, you can see that as the 



 

56 

element gets smaller (and therefore the stable time step), the error gets large. These 

results show that for a given time step size, increasing the element size allows the 

predicted mechanical response from the explicit finite element scheme to converge to the 

solution of the implicit finite element problem. It can be inferred from this result and the 

relationship stated in Equation 5.1 that, given a small enough time step size, the solutions 

of the implicit and explicit models will return the same results for any sized element. 

Now that it has been shown that the explicit model will converge to the true solution as 

the time step size tends to zero for the case with no damage, the damaged case will now 

be studied. 

5.2.3 Increase Element Size (With Damage) 

Because the damage evolution equations add nonlinearity to the approximation, 

the same process of increasing element size will be performed with a constant damage of 

3% initial porosity to ensure that the results still converge. Elements are then increased in 

size until the solution converges. Figure 5.5 illustrates the mode of convergence of the 

simulations with damage. 
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Figure 5.5 This figure shows the stress versus strain response of a series of explicit 

finite element simulations with an initial porosity of 3% and increasing in 

element size from 50 mm to 300 mm. 

Figure 5.5 shows that for small element sizes, the simulation predicts significant 

softening in the stress strain response. As the element size increases, the fictitious 

softening diminishes and the stress strain response approaches the implicit solution. For 

elements that are 200 mm or smaller, the error from the converged solution is in the form 

of a severe drop in stress that seems to saturate at a different stress level for each size 

element. For elements larger than 200 mm, the solutions converge to the accurate 

solution in a similar manner to the undamaged simulations. This abrupt change in mode 

seems to indicate a shift from a fictitious softening or over-prediction of the radial return 

to a smooth, stable, and accurate response. Figure 5.6 shows the error in the maximum 
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stress for each simulation, and demonstrates that elements smaller than 200 mm have 

significant scatter. Figure 5.7 shows only the data for elements larger than 200 mm.  

Truncating the data to only include elements larger than 200 mm makes it easy to see that 

the data in Figure 5.7 is convergent to the accurate solution. At an element size of 250 

mm, the solution is within .1 MPa of the converged solution to the problem. Comparing 

Figure 5.6 to Figure 5.4 above, it should be noted that the element size that corresponds 

to the limit of the convergent data is higher for the simulation containing non-zero 

damage. The “critical” element size for the simulations without damage is equal to 

approximately 125 mm and 210 mm for the simulations with damage. This indicates that 

for a given element size, a simulation with damage will require a smaller time step size 

for convergent results than a simulation without damage. 

 

 

Figure 5.6 Plot showing the percent error between the stress at the last step in each 

simulation. 
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Figure 5.7 Truncated plot showing the percent error between the stress at the last step 

in each simulation. Each simulation contains 3% initial porosity, element 

sizes vary from 210 mm to 300 mm. 

5.3 Fixed Mass Scaling 

Because the required element size is too large for realistic problems, another 

method is required to make the models return similar results. Mass scaling will be 

studied. Equation 5.1 says that the stable time step is dependent on element size, material 

density, element stiffness, and Poisson’s ratio. In the Section 5.2, it was shown that the 

explicit model gives accurate results given a very large element size or, potentially, a 

very small time step. Upon examination of Equation 5.1, the stable time step may be 

increased artificially by increasing the material density. The same change in time step 

could be accomplished by lowering the stiffness or possibly changing the Poisson’s ratio, 

but alteration of these quantities would fundamentally change the behavior of the 

material, whereas artificially increasing the material may not significantly alter the 
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momentum balance for the case of quasi- static loading. As a check to verify that the 

mass scaling has only limited effect on the boundary value problem, the ratio of kinetic 

energy to total energy in the system will be considered. For a quasi static simulation, it is 

assumed that the kinetic energy is very close to zero, so in this study it will be checked to 

ensure that the kinetic energy is much smaller than the total energy of the system. 

5.3.1 Mass Scaling Without Damage 

As with the earlier sections, analysis will begin with the undamaged case and the 

damage will be added back in later. This section will study the effect of mass scaling on 

the explicit solution without the presence of damage. For this series of simulations, mass 

scaling is varied from no scaling, actual density, to a mass scaling factor of 1 x 10
15

. The 

purpose of this range of values is to capture the entire range of responses related to 

artificially changing the mass of each individual element. Figure 5.8 shows the stress 

versus strain response for the range of scaling factors. 
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Figure 5.8 Stress versus strain responses for a series of simulations with increasing 

mass scaling factors. All simulations are run at the same strain rate and all 

elements are the same size. 

Each of these simulations was run allowing ABAQUS to calculate the time step 

for each. As such, the time step is not constant for these simulations, but the element size 

(1 mm) and engineering strain rate (3.5 x 10
-4

 s
-1

) are held constant. The explicit 

simulation with no mass scaling is approximately the same as the bottom curve on the 

figure with a mass scaling factor of 100. Increasing mass scaling from 10 to 1 x 10
8
, the 

results tend to the implicit solution. As the mass scaling factor is increased from 1 x 10
9 

to 1 x 10
13

, there is very little change in the stress versus strain response of the element; 

all simulations in this range correspond closely to the converged solution from the 

element size study. When the mass scaling factor is raised further to 1 x 10
14

, the 
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oscillating response seen in Figure 5.8 is observed. As the scaling is increased beyond 

this level, instability increases quickly. Therefore, for a 1mm, one element simulation 

with no damage, imposing a mass scaling factor between 1 x 10
9
 and 1 x 10

13
 causes the 

explicit and implicit implementations of the model to return similar stress versus strain 

responses. For quasi-static simulations, the kinetic energy should be negligible when 

compared to the total energy in the system. Introducing excessive mass scaling can 

artificially cause the kinetic energy to increase to levels that influence the results. Table 

5.1 shows the kinetic energy, the total energy and the ratio of kinetic to total energy in 

each of the simulations. According to Table 5.1, quasi-static simulations with mass 

scaling less than 1E12 will have less than one percent of the total energy of the system in 

the form of kinetic energy. As the mass scaling factor increases from there, the amount of 

kinetic energy becomes significant and therefore could change the results of the 

simulation. 

Table 5.1 Kinetic and total energy in each of the mass scaling simulations.  

Mass Scaling Factor 1.00E+02 1.00E+04 1.00E+06 1.00E+08 1.00E+10 1.00E+12 1.00E+14 

Kinetic Energy (mJ) 6.86E-15 6.86E-13 6.86E-11 6.86E-09 6.87E-07 8.46E-05 1.05E-02 

Total Energy (mJ) 4.33E-03 4.33E-03 4.33E-03 4.33E-03 4.33E-03 4.27E-03 1.19E-02 

Ratio (KE / TE) 1.60E-12 1.58E-10 1.58E-08 1.58E-06 1.59E-04 1.98E-02 8.82E-01 
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Figure 5.9 Plot showing the percent error of the true stress at 4.8% true strain for 

simulations with mass scaling factors ranging from 1 E 1 to 1 E 12. The 

error is measured between the stress in each simulation and the stress of the 

converged solution to this problem, 199.4 MPa. 

Figure 5.9 shows the rate at which the solutions converge to the accurate solution 

with respect to the mass scaling factor. Like the data in Figure 5.6, Figure 5.9 contains 

two distinct regions of data. The first region is from a mass scaling factor of 1 (actual 

density) to a scaling factor of 1 x 10
6
; the data in this region does notcorresponds to the 

implicit solution, rather it displays a numerical drift. The second region is found between 

mass scaling factors of 1 x 10
7
 and 1 x 10

12
 and is characterized by a plateau 

corresponding to the implicit solution. For a mass scaling factor greater than or equal to 1 

x 10
13

, the solution begins to show irregularity in the form of oscillations; when the 

scaling is high enough, the oscillations become unbounded and instability results. 
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5.3.2 Mass Scaling with Damage 

The previous section showed that for the given set of constants, the explicit 

solution for a 1mm element with no damage will converge for a range of mass scaling 

factors; this section will determine the effect of adding in the nonlinearities associated 

with damage and alongside mass scaling in the element. For the data presented in Figures 

5.10 and 5.11, the initial damage is 3%. 

 

 

Figure 5.10 Stress versus strain responses for a series of simulations with increasing 

mass scaling factors and a non-zero initial porosity (3%). All simulations 

are run at the same strain rate and all elements are the same size. 

Figure 5.10 shows the variation of mechanical response of a simulation with 

increased mass scaling. The trends seen in this figure are similar to those in Figure 5.8. 

Specifically, for the range of mass scaling from 1 to 1 x 10
6
, the stress versus strain 
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response tends towards the implicit result. For the range of 1 x 10
7
 to 1 x 10

13
, the 

solutions are approximately the same and equal to the implicit solution. For mass scaling 

factors greater than 1 x 10
14

, the solution begins to oscillate towards instability like in 

Figure 5.8. 

 

 

Figure 5.11 Plot showing the percent error of the true stress at 4.8% true strain for 

simulation with an initial porosity of 3% and mass scaling factors ranging 

from 1 E 1 to 1 E 13. The error is measured between the stress in each 

simulation and the stress of the converged solution to this problem, 195.1 

MPa. 

Figure 5.11 shows the percent error at the end of each simulation versus the mass 

scaling factor used. Comparing the data in Figure 5.11 and 5.9, similar trends are found 

in both. For the simulations of scaling factors less than 1 x 10
7
, the error is large and not 

predictably converging to any value. However, for the simulations containing a scaling 

factor between         and          the error converges smoothly to zero. 
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After showing that the explicit solution converges to the implicit solution for a 

given range of mass scaling factors with and without damage, simulations were run to 

determine what if any effect mass scaling had on the evolution of damage. The following 

simulations were run with a mass scaling factor of 1 x 10
9
 and 1 x 10

10
 because these 

values fall in the middle of the converged simulations for the data in Figures 5.9 and 

5.11. Figure 5.12 shows that the elongation to failure was identical for the two values of 

mass scaling. Also, it shows that while the general trend in the experimental data is still 

captured by the simulation, the values for elongation to failure found in the explicit 

simulations are slightly higher than those found in Figure 3.3 from the implicit 

simulations. Therefore, it seems as though the full scale explicit simulations with mass 

scaling factors of         or          will predict similar damage evolutions as the 

implicit simulations but at higher strain levels. 

 

 

Figure 5.12 Plot comparing the elongation to failure of simulations run with various 

initial porosity levels and experimental data. The simulations were run on 1 

mm elements with mass scaling factors of 1 E 9 and 1 E 10. 
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5.3.3 Notched Bridgeman Simulations 

Once it had been shown that there is a range of mass scaling factors that will 

cause the explicit implementation to return a similar material response to the implicit 

implementation, simulations were performed of the full notch Bridgeman tensile 

specimen. The simulation of the notched Bridgeman tensile specimen was performed 

using mass scaling factors of         ,        ,         . These values were chosen 

because they represent a transition from the region of scaling factors that do not closely 

match the implicit result to the region of factors that has converged to the implicit result. 

Each of the three simulations was then evaluated at the same strain levels as the implicit 

solution in Section 4.3.1. 

 

 

Figure 5.13 Damage levels at 60% of the failure load for the experiment ( top left) and 

the simulations with mass scaling factors of 1 E 6 (top right), 1 E 8 (bottom 

left), and 1 E 10 (bottom right). The damage contours were taken at 0.6% 

true strain. 
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Figure 5.13 shows the damage distribution at 60%; for this data, that corresponds 

to a true strain of 0.6%. It is readily observed that, for this strain level, all simulations 

yield nearly identical results. The main result from this figure is that at 60% of the 

projected total load, the damage has evolved very little.  Figure 5.14 shows the evolution 

of damage through 87%, which corresponds to 2.1% true strain. It can be seen from this 

figure that the simulation using the scaling factor of         is not evolving much at all 

while the damage in the other two simulations very closely resemble that in the implicit 

solution. As with the implicit solution and the experiment, damage is evolving most 

significantly at the large pore and the flow line. 

Figure 5.15 shows the evolution at 93%, a true strain of 2.8%. This figure shows 

much the same thing as Figure 5.14, the simulation using low mass scaling is not 

evolving damage and the other two simulations return results very similar to the implicit 

solution. 
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Figure 5.14 Damage levels at 87% of the failure load for the experiment ( top left) and 

the simulations with mass scaling factors of 1 E 6 (top right), 1 E 8 (bottom 

left), and 1 E 10 (bottom right). The damage contours were taken at 2.1% 

true strain. 
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Figure 5.15 Damage levels at 93% of the failure load for the experiment ( top left) and 

the simulations with mass scaling factors of 1 E 6 (top right), 1 E 8 (bottom 

left), and 1 E 10 (bottom right). The damage contours were taken at 2.8% 

true strain. 

Up to the point of Figure 5.15, the simulations with scaling factors of         and 

         predict the major trends in the evolution of damage. They both predict that the 

vast majority of the void growth will occur at the two locations which contain the highest 

initial void volumes, the large pore and the flow line.  

The final step was to evaluate what each model predicted for complete failure. 

This poses a problem, however, for all of simulations; Figure 5.16 shows the damage 

distribution in the final step for the simulation with a mass scaling factor of         .  

This simulation gets a little more information than the implicit simulation, but this 

simulation predicts first element failure at 4.6% true strain where the implicit simulation 

predicted first element failure at approximately 3.3% true strain. At this point in the 
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simulation, ABAQUS Explicit exited with an error. The same error occurred in the other 

two explicit simulations, but for those simulations, it occurred prior to the first element 

failure. When attempting to run the simulations with random and uniform damage 

distributions, the same error occurred again. Details concerning the state of the failed 

simulations can be found in Appendix A, but as of the writing of this work, the source of 

the error had not been identified. 

 

 

Figure 5.16 Damage contour at the final increment of the simulation of the notched 

Bridgeman tensile specimen applying a mass scaling factor of 1 E 10. 

5.4 Without Rate Sensitivity on the Initiation of Yield 

This section takes an alternative approach aimed at getting the implicit and 

explicit implementations of the DMG model to yield the same results. As discussed in the 

beginning of this chapter, it was observed that in the undamaged one element 

simulations, all of the discrepancy between the two implementations is introduced with 
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C1. C1 is the constant that, along with C2, determines the rate sensitivity of the initial 

yield point. Therefore, setting C1 equal to zero effectively removes the rate sensitivity of 

the initial yield point from the plasticity model. 

5.4.1 One Element Simulations 

The first step towards using this approach in a full specimen simulation is to 

compare the predicted material response for 1 element simulations using ABAQUS 

Standard and ABAQUS Explicit. Figure 5.17 below shows the stress versus strain 

response of the implicit and explicit simulations when C1 = 0. Upon inspection of the 

figure, it is easily observed that the two models return equivalent results. So, for a 1 mm 

element with no mass scaling, at a quasi- static loading rate, making C1 = 0 in the DMG 

model removes the discrepancy between the implicit and explicit solutions. 

 

 

Figure 5.17 This plot shows the stress versus strain response for an implicit and explicit 

simulation with no damage and C1 = 0. The results are plotted over 

experimental data for a quasi static tensile test. 
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In order to run the full sized simulations in a more computationally efficient 

manner, mass scaling is often used. Therefore, simulations were run to see what effect, if 

any, that the mass scaling would have on the mechanical response of the simulation. 

Figure 5.18 shows the results of 1 element simulations run with an element size of 1 mm, 

strain rate of 3.5 x 10
-4

 s
-1

, and mass scaling factors of 100, 10000, 1000000, and 

100000000. It is clear from Figure 5.18 that mass scaling on the order of that shown in 

the figure has no effect on the shape of the stress versus strain response. The biggest 

difference between these simulations is the total run time; the simulations with mass 

scaling factors equal to 1E2, 1E4, 1E6, and 1E8 required 1.75 hours, 11 minutes, 1 

minute, and 7 seconds, respectively. 

 

 

Figure 5.18 Plot showing the stress versus strain response for simulations run in 

ABAQUS Explicit on 1 mm elements and having a range of mass scaling 

factors from 100 to        . 
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So, now it has been shown that removing C1 from the model makes the implicit 

and explicit solutions equal in simulations containing no damage. The next step is then to 

verify that the same is true when damage is present in the element. Therefore, a 

simulation was run in the implicit and explicit code with 3% damage and the results 

compared. Those results can be found in Figure 5.19. 

 

 

Figure 5.19 Stress versus strain results of simulations run with 3% initial porosity and 

C1 = 0. 

The results found in Figure 5.19 show that the implicit and explicit schemes 

return similar results for the simulations run with 3% initial porosity. The results are not, 

however, identical. For the purposes of this study, the results are sufficiently accurate. 

Since this section has shown that removing C1 from the model will cause the implicit and 

explicit results to be equal or similar for a quasi static strain rate, the next step is to apply 

the material constants used here to the full notch Bridgeman tensile specimen. 
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5.4.2 Notched Bridgeman Simulations 

Simulations of the notch Bridgeman tensile specimen were run with mass scaling 

factors of        ,        , and          in order to verify that the mass scaling would 

cause minimal change in the damage evolution and mechanical response of the 

simulation. When analyzing the results of the three simulations with the real porosity 

distribution and different mass scaling factors, it was readily observed that the 

simulations were nearly identical; therefore, only results from the simulation with a mass 

scaling of         will be presented here. Figures 5.20 – 5.22 show the predicted damage 

evolution from these simulations side by side with the experimental damage evolution. 

 

 

Figure 5.20 Damage contours at 0.6% true strain for the experiment (left) and 

simulation (right). 

Figure 5.20 shows the damage contours at approximately 60% of the failure load, 

which occurs at 0.6% true strain. It is clear from this figure that the simulation accurately 

predicts the damage evolution to this point in the simulation. Comparing the results from 

this point in the explicit simulation to the implicit simulation discussed in Section 4.3.1, 

the evolution of damage is the same in both cases. 
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Figure 5.21 Damage contours at 2.1% true strain for the experiment (left) and 

simulation (right). 

Figure 5.21 contains the damage contours at about 87% of failure, which 

corresponds to 2.1% true strain. Like the contours shown in Figure 5.20, the predicted 

damage evolution in the explicit simulation closely match both the trends seen in the data 

and the predicted response from the implicit simulation. Figure 5.22 shows the damage at 

93% of failure or 2.8% true strain. The predicted damage evolution from the explicit 

simulation captures the trends in the experimental data. Comparing this result to the 

implicit solution shows only slight quantitative differences while maintaining the same 

qualitative properties. 
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Figure 5.22 Damage contours at 2.8% true strain for the experiment (left) and 

simulation (right). 

The final step in evaluating the explicit simulation of the notch Bridgeman tensile 

specimen without the influence of C1 is to analyze the damage state at the end of the 

simulation. 

 

 

Figure 5.23 Damage contour at the final increment of the simulation of the notched 

Bridgeman tensile specimen with C1 = 0 and applying a mass scaling 

factor of 1 E 6. 
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Figure 5.23 shows a result much like Figure 5.16 in the mass scaling study; first 

element failure is located in the pore and it begins to grow perpendicular to the axis of 

loading. This figure also shows that the only significant damage evolution occurs either at 

the pore or at the flow line, a trend noticed in all of the simulations and the experiment. 

The primary difference between this simulation and the implicit simulation of the full 

specimen is that first element failure in this simulation occurred at a true strain of 4.01% 

and the first element failure for the implicit simulation occurred at a true strain of 3.2%. 

Therefore, other than predicting a slightly larger elongation to first element failure, 

removing C1 from the simulation does not inhibit the ability of the DMG model to 

predict damage evolution in a specimen at quasi-static strain rates. 

The purpose for running the simulation in ABAQUS Explicit, however, was to 

evaluate the model’s ability to predict damage evolution beyond the initial failed 

elements. To that end, this simulation was unable to achieve any results. At the point in 

the simulation from which Figure 5.23 was taken, the simulation exited and returned an 

error. The error that occurred is an illegal floating point error somewhere in the 

calculations. The same error occurred in the simulations with random and uniform 

damage distributions as well. Appendix A details the state of each of the simulations at 

the point at which this error occurs. 

5.5 Discussion 

The results presented in this chapter lead to several major observations. The first, 

and most significant, is that in order for the implicit and explicit implementation schemes 

to return the same solution for a quasi- static tensile simulation, the time step size must be 

exceedingly small for reasonably sized elements. Since running quasi- static simulations 
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with very small time steps leads to unreasonable computational cost ( 22 hours for 5% 

strain in a 1 element simulation), methods of making the two schemes were examined. 

Two such methods were found, mass scaling and removing C1. Both of these methods 

have problems associated with them, but allow for an accurate solution at much lower 

computational cost than lowering the time step size alone. Finally, it was shown in this 

chapter that it is possible for the simulations run in ABAQUS Explicit to predict damage 

evolution in a specimen in the same manner as ABAQUS Standard.  

In order to have confidence that the simulations being run in any code are in any 

way accurate, it is necessary to validate the results. In this case, using ABAQUS Explicit 

a calculated time step size does not allow the results for this simulation to match the 

theoretical solution with any accuracy. However, changing the problem so that the only 

change is increasing the maximum stable time step by increasing the element size allows 

the explicit solution to approach the true solution. Increasing the element size is not an 

option in a real engineering problem, so mass scaling was used to increase the maximum 

stable time step size and C1 removed from the simulation to remove the source of the 

difference between the implicit and explicit solutions.  

Mass scaling was shown to cause the mechanical response of a one element 

simulation to approach the implicit solution within a range of mass scaling factors. This 

method of making the implicit and explicit solutions equal changes the boundary value 

problem in that it artificially increases the density of the system. The change in the 

problem is minimal, however, due to the extremely low strain rate involved in this 

simulation. When using this method on the full notch Bridgeman tensile specimens, the 

predicted damage evolution was similar to that in the implicit solutions. The only 
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observed difference between the results is that the explicit simulation with mass scaling 

returned the same results as the implicit solution but at slightly higher strains.  

The next method of making the implicit and explicit solutions equal involves 

setting the material parameter C1 equal to zero. This change makes the solution for the 

implicit and explicit implementation schemes the same, but it removes the strain rate 

sensitivity at initial yield from the DMG model. Because this simulation is quasi- static, 

this limitation does not affect the results, but it does severely limit the functionality of the 

DMG model. The full specimen simulations run using this method demonstrated the 

same damage evolution qualities as the mass scaling simulations without the drawback of 

higher strains. The results from these simulations were the same as those run using 

ABAQUS Standard. The purpose of running the simulations in ABAQUS Explicit was to 

see how the model predicted failure progression through the specimen, however, and no 

method found was able to capture this result. The next chapter contains suggestions for 

possible future work. 
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CHAPTER VI 

CONCLUSIONS AND FUTURE WORK 

The most significant result of this study is that the implicit implementation 

scheme of the DMG model is capable of predicting the trend of damage evolution in a 

part given the initial porosity distribution. Chapter 4 showed that, while the specific 

details about the damage were not captured perfectly, the damage evolution was highly 

dependent on the initial porosity distribution. The strain at first element failure also 

showed a very large dependence on the porosity distribution. Specifically, the first 

element failure for the real, random, and uniform distributions occurred at 3.3, 8.8, and 

12.3% true strain, respectively. Therefore, if the porosity had been obtained in an average 

sense over the notched area of the specimen and randomly distributed for simulation 

purposes, the model would predict the first element failure 167% higher strain than for 

the real simulation; if the porosity was uniformly distributed, the predicted strain to 

failure would have been 273% greater. 

With respect to the results presented in Chapter 5, the most significant 

observation is that damage evolution similar to that obtained with the implicit 

implementation can be found using an explicit scheme and a mass scaling factor of 

        .  However, the results show that this damage evolution is at a higher strain level. 

The first element failure of the explicit simulation with a mass scaling factor of          

occurred at 4.6% true strain, 39% higher than was predicted by the implicit simulation. 

The data also indicated that for a constant strain rate test, the capability to impose rate 
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dependent yield can be removed and yield an accurate result. In terms of solving the 

specific boundary value and obtaining results past the point of first element failure, the 

explicit solution as currently implemented would not consistently predict a failure 

progression and without mass scaling, no full scale results could be obtained. It should 

also be noted that the ABAQUS defined stable time step is too large to return accurate 

results when used in simulating a quasi-static test.  

Possible future work related to this study would focus around being able to obtain 

results on the damage evolution of a part beyond first element failure. First, since the 

ABAQUS calculated stable time step is too large for quasi-static application, it would be 

beneficial for the stable time step associated with this model to be calculated either 

outside of ABAQUS or within the user subroutine that defines the material model. Next, 

since the inaccuracy associated with the explicit results is only present if C1 is not equal 

to zero, a rate independent version of the model should be implemented to be used in 

quasi-static simulations that have necessity to use ABAQUS Explicit. Finally, in order to 

increase the computational efficiency of the user subroutine describing the DMG model, 

it should be thoroughly examined in order to remove or replace sections of the code that 

slow down computation time. 
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APPENDIX A 

CONDITIONS OF SIMULATION EXIT IN THE PRESENCE OF A FLOATING 

POINT ERROR



 

87 

A.1 Mass Scaling Simulations 

A.1.1 Sample Input File 

 
*HEADING 

**--------------------------------------------------------------------** 

**--------------------------------------------------------------------** 

**Parameters 

*PARAMETER 

**--------------------------------------** 

  Period        = 180. 

  Velocity      =   0.005 

  Mass_Scaling  =   1E+10 

**--------------------------------------** 

**--------------------------------------** 

** Material Parameters for VUMAT BCJ Model (vumat_dmg-52p.f) 

**----------  Material Parameters 

**----------  Constants from USCAR 

**----------  Modified to fit experiments by dbh 

  G         = 12810. 

  a         = 1.0 

  K         = 38440. 

  b         = 0. 

  Tmelt     = 5556. 

**----------  BCJ Parameters 

  C01       = 2.66 

  C02       = 0. 

  C03       = 92.82 

  C04       = 47.93 

  C05       = 1.000e-04 

  C06       = 6.991e-07 

  C07       = 1.929e+07 

  C08       = 6.868e+03 

  C09       = 1.577e+03 

  C10       = 0.6931 

  C11       = 6.529e-05 

  C12       = 1.064e+06 

  C13       = 14.8 

  C14       = 6.911e-07 

  C15       = 4.077e+04 

  C16       = 1.024e+02 

  C17       = 0. 

  C18       = 0. 

  C19       = 0. 

  C20       = 0. 

  Ca        = 1.883 

  Cb        = 8.272e-03 

**----------  Temperature Parameters 

  InitTemp  = 297. 

  HeatGen   = 0. 

**----------  Microstructure Parameters 

  VoidGrthn = 0.246 

  InitVRad  = 2.0000e-4 

  TorsCsta  = 1. 

  NuclCsta  = 1. 

  NuclCstc  = 1. 

  NuclCoef  = 0. 

  KIc       = 17.3 

  PartSize  = 4.000e-04 

  PartVF    = 0.07 

  cd1       = 0.7 

  cd2       = 1. 

**----------  Grain Size Parameters 

  Dcs0      = 20. 

  Dcs       = 20. 
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  zz        = 0.0509 

  InitVVF   = 0.01 

**----------  Other BCJ Parameters 

  C21       = 0. 

  C22       = 0. 

  C23       = 0. 

  C24       = 0. 

  C25       = 0. 

  C26       = 0. 

**----------  Temperature Parameters for Nucleation and Coalescence 

  Tnucl     = 0. 

  Tcoal     = 0. 

**----------  Flag, Cacon and Elastic Modulus porosity exponent 

  Flag      = 0. 

  Cacon     = 10. 

  Zeta      = 0. 

** 

** END PARAMETERS 

**---------------------------------------------------------------** 

**---------------------------------------------------------------** 

**---------------------------------------------------------------** 

*NODE, INPUT=mesh5.nd 

*INCLUDE,INPUT=mesh5.ns 

*ELEMENT, INPUT=mesh5.el, TYPE=CAX4R, ELSET=ALL 

**-------------------------------------------------------------** 

**-------------------------------------------------------------** 

*SOLID SECTION,ELSET=ALL,MATERIAL=AM60B 

**HOURGLASS STIFFNESS 

**49.248 

**-------------------------------------------------------------** 

*MATERIAL,NAME=AM60B 

*DENSITY 

 1.8E-09 

*USER MATERIAL,CONSTANTS=55 

**---------------------------------------------------------------------------------------

------------** 

**---------------------------------------------------------------------------------------

------------** 

   <G>,     <a>,      <K>,      <b>,      <Tmelt>,       <C01>,      <C02>,       <C03>, 

   <C04>,  <C05>,   <C06>,     <C07>,       <C08>,       <C09>,      <C10>,       <C11>, 

   <C12>,  <C13>,   <C14>,     <C15>,       <C16>,       <C17>,      <C18>,       <C19>, 

   <C20>,   <Ca>,    <Cb>,  <InitTemp>,  <HeatGen>, <VoidGrthn>, <InitVRad>,  <TorsCsta>, 

 <NuclCsta>,  <NuclCstc>,  <NuclCoef>,    <KIc>,  <PartSize>,    <PartVF>,  <cd1>, <cd2>, 

  <Dcs0>,  <Dcs>,    <zz>,   <InitVVF>,     <C21>,       <C22>,      <C23>,       <C24>, 

      <C25>,       <C26>,     <Tnucl>,     <Tcoal>,      <Flag>,     <Cacon>,     <Zeta> 

**---------------------------------------------------------------------------------------

------------** 

*DEPVAR 

25 

**---------------------------------------------------------------------------------------

------------** 

**---------------------------------------------------------------------------------------

------------** 

**--------------------------------------------------------** 

**--------   AMPLITUDE FOR CONSTANT STRAIN RATE   --------** 

**--------------------------------------------------------** 

**AMPLITUDE,NAME=RATE,VALUE=ABSOLUTE,INPUT=disp.inp 

**-------------------------------** 

**-------    COMPACTION    ------** 

**-------------------------------** 

*BOUNDARY 

LSIDE, 1,1,0.0 

BSIDE, 2,2,0.0 

**-------------------------------------------------------** 

**---------INITIAL CONDITIONS ADDITION-------------------** 

**-------------------------------------------------------** 

*INITIAL CONDITIONS,TYPE=SOLUTION,INPUT=m5v1_final.dat 

*RESTART,WRITE,NUMBER INTERVAL=100,TIME MARKS=NO,OVERLAY 

**----------------------------------------** 
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*STEP,NLGEOM=YES 

*DYNAMIC,EXPLICIT 

,<Period> 

**----------------------------------------** 

*BULK VISCOSITY 

0.06, 1.2 

**----------------------------------------** 

** Mass Scaling:  

*Fixed Mass Scaling, factor=<Mass_Scaling> 

**----------------------------------------** 

**----------  TENSION  B.C.  -------------** 

*BOUNDARY,TYPE=VELOCITY 

TSIDE, 2, 2, <Velocity> 

**---------------------** 

**---  User Boundary Conditions for constant strain rate (vdisp.f) 

**BOUNDARY,USER,TYPE=VELOCITY 

**FACE4,1,1, 

**---------------------** 

**MONITOR,DOF=1,NODE=2 

**----------------------------------------** 

**----------------------------------------** 

*OUTPUT, FIELD, NUMBER INTERVAL=100 

*ELEMENT OUTPUT,ELSET=ALL 

S, SDV, LE 

*NODE OUTPUT 

COORD, U, V, RF 

**----------------------------------------** 

*FILE OUTPUT,TIMEMARKS=YES,NUM=100 

*NODE FILE 

U,RF 

*EL FILE 

SDV,LE,S 

*END STEP 

**--------------------------------------------------------------------** 

**--------------------------------------------------------------------** 

**--------------------------------------------------------------------** 

 

A.2 Sample Input File for Simulations with C1 = 0 

 
*HEADING 

**--------------------------------------------------------------------** 

**--------------------------------------------------------------------** 

**Parameters 

*PARAMETER 

**--------------------------------------** 

  Period        = 180. 

  Velocity      =   0.005 

  Mass_Scaling  =   1E+10 

**--------------------------------------** 

**--------------------------------------** 

** Material Parameters for VUMAT BCJ Model (vumat_dmg-52p.f) 

**----------  Material Parameters 

**----------  Constants from USCAR 

**----------  Modified to fit experiments by dbh 

  G         = 12810. 

  a         = 1.0 

  K         = 38440. 

  b         = 0. 

  Tmelt     = 5556. 

**----------  BCJ Parameters 

  C01       = 0. 

  C02       = 0. 

  C03       = 92.82 

  C04       = 47.93 

  C05       = 1.000e-04 



 

90 

  C06       = 6.991e-07 

  C07       = 1.929e+07 

  C08       = 6.868e+03 

  C09       = 1.577e+03 

  C10       = 0.6931 

  C11       = 6.529e-05 

  C12       = 1.064e+06 

  C13       = 14.8 

  C14       = 6.911e-07 

  C15       = 4.077e+04 

  C16       = 1.024e+02 

  C17       = 0. 

  C18       = 0. 

  C19       = 0. 

  C20       = 0. 

  Ca        = 1.883 

  Cb        = 8.272e-03 

**----------  Temperature Parameters 

  InitTemp  = 297. 

  HeatGen   = 0. 

**----------  Microstructure Parameters 

  VoidGrthn = 0.246 

  InitVRad  = 2.0000e-4 

  TorsCsta  = 1. 

  NuclCsta  = 1. 

  NuclCstc  = 1. 

  NuclCoef  = 0. 

  KIc       = 17.3 

  PartSize  = 4.000e-04 

  PartVF    = 0.07 

  cd1       = 0.7 

  cd2       = 1. 

**----------  Grain Size Parameters 

  Dcs0      = 20. 

  Dcs       = 20. 

  zz        = 0.0509 

  InitVVF   = 0.01 

**----------  Other BCJ Parameters 

  C21       = 0. 

  C22       = 0. 

  C23       = 0. 

  C24       = 0. 

  C25       = 0. 

  C26       = 0. 

**----------  Temperature Parameters for Nucleation and Coalescence 

  Tnucl     = 0. 

  Tcoal     = 0. 

**----------  Flag, Cacon and Elastic Modulus porosity exponent 

  Flag      = 0. 

  Cacon     = 10. 

  Zeta      = 0. 

** 

** END PARAMETERS 

**---------------------------------------------------------------** 

**---------------------------------------------------------------** 

**---------------------------------------------------------------** 

*NODE, INPUT=mesh5.nd 

*INCLUDE,INPUT=mesh5.ns 

*ELEMENT, INPUT=mesh5.el, TYPE=CAX4R, ELSET=ALL 

**-------------------------------------------------------------** 

**-------------------------------------------------------------** 

*SOLID SECTION,ELSET=ALL,MATERIAL=AM60B 

**HOURGLASS STIFFNESS 

**49.248 

**-------------------------------------------------------------** 

*MATERIAL,NAME=AM60B 

*DENSITY 

 1.8E-09 

*USER MATERIAL,CONSTANTS=55 
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**---------------------------------------------------------------------------------------

------------** 

**---------------------------------------------------------------------------------------

------------** 

   <G>,     <a>,      <K>,      <b>,      <Tmelt>,       <C01>,      <C02>,       <C03>, 

   <C04>,  <C05>,   <C06>,     <C07>,       <C08>,       <C09>,      <C10>,       <C11>, 

   <C12>,  <C13>,   <C14>,     <C15>,       <C16>,       <C17>,      <C18>,       <C19>, 

   <C20>,   <Ca>,    <Cb>,  <InitTemp>,  <HeatGen>, <VoidGrthn>, <InitVRad>,  <TorsCsta>, 

 <NuclCsta>,  <NuclCstc>,  <NuclCoef>,    <KIc>,  <PartSize>,    <PartVF>,  <cd1>, <cd2>, 

  <Dcs0>,  <Dcs>,    <zz>,   <InitVVF>,     <C21>,       <C22>,      <C23>,       <C24>, 

      <C25>,       <C26>,     <Tnucl>,     <Tcoal>,      <Flag>,     <Cacon>,     <Zeta> 

**---------------------------------------------------------------------------------------

------------** 

*DEPVAR 

25 

**---------------------------------------------------------------------------------------

------------** 

**---------------------------------------------------------------------------------------

------------** 

**--------------------------------------------------------** 

**--------   AMPLITUDE FOR CONSTANT STRAIN RATE   --------** 

**--------------------------------------------------------** 

**AMPLITUDE,NAME=RATE,VALUE=ABSOLUTE,INPUT=disp.inp 

**-------------------------------** 

**-------    COMPACTION    ------** 

**-------------------------------** 

*BOUNDARY 

LSIDE, 1,1,0.0 

BSIDE, 2,2,0.0 

**-------------------------------------------------------** 

**---------INITIAL CONDITIONS ADDITION-------------------** 

**-------------------------------------------------------** 

*INITIAL CONDITIONS,TYPE=SOLUTION,INPUT=m5v1_final.dat 

*RESTART,WRITE,NUMBER INTERVAL=100,TIME MARKS=NO,OVERLAY 

**----------------------------------------** 

*STEP,NLGEOM=YES 

*DYNAMIC,EXPLICIT 

,<Period> 

**----------------------------------------** 

*BULK VISCOSITY 

0.06, 1.2 

**----------------------------------------** 

** Mass Scaling:  

*Fixed Mass Scaling, factor=<Mass_Scaling> 

**----------------------------------------** 

**----------  TENSION  B.C.  -------------** 

*BOUNDARY,TYPE=VELOCITY 

TSIDE, 2, 2, <Velocity> 

**---------------------** 

**---  User Boundary Conditions for constant strain rate (vdisp.f) 

**BOUNDARY,USER,TYPE=VELOCITY 

**FACE4,1,1, 

**---------------------** 

**MONITOR,DOF=1,NODE=2 

**----------------------------------------** 

**----------------------------------------** 

*OUTPUT, FIELD, NUMBER INTERVAL=100 

*ELEMENT OUTPUT,ELSET=ALL 

S, SDV, LE 

*NODE OUTPUT 

COORD, U, V, RF 

**----------------------------------------** 

*FILE OUTPUT,TIMEMARKS=YES,NUM=100 

*NODE FILE 

U,RF 

*EL FILE 

SDV,LE,S 

*END STEP 

**--------------------------------------------------------------------** 
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A.3 Condition at Simulation Failure 

At the time of the failure of each of the full-scale explicit simulations, all of the 

ISVs were analyzed. None of the ISVs were changing drastically in magnitude or going 

to zero from a non-zero value. As of the writing of this work, no cause has been found for 

the floating point operation error found in these simulations.  
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APPENDIX B 

OPTIMIZATION OF EXPLICIT NUMERICAL IMPLEMENTATION
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Since a large portion of this project involves performing quasi static simulations 

over long periods using an explicit scheme, it is expected that the simulations will be very 

computationally expensive. Therefore, an effort was made to locate areas in the explicit 

implementation where the code could be made more computationally efficient. Two 

places were found where the same calculations were being made several times over each 

element each increment. The first of these calculations is located in the section of the 

code presented below. This section of code calculates the hardening and recovery terms 

for each increment.  

 

VUMAT (original) 

c stress state dependent material constants 

        adj    = half*(one+tanh(cc19*(cc20-theta))) 

        if(cc19.eq.zero) adj = one 

        vtheta = cc1*exp(-cc2/theta) 

        ytheta = cc3*exp(cc4/theta)*adj 

        ftheta = cc5*exp(-cc6/theta) 

c        if(dj2.eq.0)then 

        if(dj2 .lt. 1.0D-08)then 

          rd1=cc7*(1-ca*(4./27.))*exp(-cc8/theta) 

          h1=(cc9-cc10*theta)*(1+ca*(4./27.)) 

          rs1    = cc11 * exp(-cc12/theta) 

          rd2    = cc13*(1-ca*(4./27.))*exp(-cc14/theta) 

          h2     = (cc15-cc16*theta)*(1+ca*(4./27.)) 

          rs2    = cc17 * exp(-cc18/theta) 

          rd3    = cc21*(1-ca*(4./27.))*exp(-cc22/theta) 

          h3     = (cc23-cc24*theta)*(1+ca*(4./27.)) 

          rs3    = cc25 * exp(-cc26/theta) 

        else 

          rd1    = cc7*(1-ca*(4./27.-dj3**2./dj2**3.) 

     *                -cb*dj3/dj2**1.5)*exp(-cc8/theta) 

          h1     = (cc9-cc10*theta)*(1+ca*(4./27.-dj3**2./dj2**3.) 

     *                 +cb*dj3/dj2**1.5) 

          rs1    = cc11 * exp(-cc12/theta) 

          rd2    = cc13*(1-ca*(4./27.-dj3**2./dj2**3.) 

     *                 -cb*dj3/dj2**1.5)*exp(-cc14/theta) 

          h2     = (cc15-cc16*theta)*(1+ca*(4./27.-dj3**2./dj2**3.) 

     *                  +cb*dj3/dj2**1.5) 

          rs2    = cc17 * exp(-cc18/theta) 

          rd3    = cc21*(1-ca*(4./27.-dj3**2./dj2**3.) 

     *              -cb*dj3/dj2**1.5)*exp(-cc22/theta) 

          h3     = (cc23-cc24*theta)*(1+ca*(4./27.-dj3**2./dj2**3.) 

     *                  +cb*dj3/dj2**1.5) 

          rs3    = cc25 * exp(-cc26/theta) 

        endif 
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After the else statement in the code above,  the calculations for rd1, h1, rd2, h2, 

rd3, and h3 all contain two of the same calculations. The terms containing ca and cb in 

each of these calculations will be the same for a given element on a single increment. 

Therefore the following substitution was made: 

 

   HRST1  = ca*(4./27.-dj3**2./dj2**3.) 

   HRST2  = cb*dj3/dj2**1.5 

 

The resulting code after the change is in the table below. 

VUMAT (updated) 

c stress state dependent material constants 

        adj    = half*(one+tanh(cc19*(cc20-theta))) 

        if(cc19.eq.zero) adj = one 

        vtheta = cc1*exp(-cc2/theta) 

        ytheta = cc3*exp(cc4/theta)*adj 

        ftheta = cc5*exp(-cc6/theta) 

        if(dj2 .lt. 1.0D-08)then 

          rd1=cc7*(1-ca*(4./27.))*exp(-cc8/theta) 

          h1=(cc9-cc10*theta)*(1+ca*(4./27.)) 

          rs1    = cc11 * exp(-cc12/theta) 

          rd2    = cc13*(1-ca*(4./27.))*exp(-cc14/theta) 

          h2     = (cc15-cc16*theta)*(1+ca*(4./27.)) 

          rs2    = cc17 * exp(-cc18/theta) 

          rd3    = cc21*(1-ca*(4./27.))*exp(-cc22/theta) 

          h3     = (cc23-cc24*theta)*(1+ca*(4./27.)) 

          rs3    = cc25 * exp(-cc26/theta) 

        else 

   HRST1  = ca*(4./27.-dj3**2./dj2**3.) 

   HRST2  = cb*dj3/dj2**1.5 

          rd1    = cc7*(1-HRST1 

     *                -HRST2)*exp(-cc8/theta) 

          h1     = (cc9-cc10*theta)*(1+HRST1 

     *                 +HRST2) 

          rs1    = cc11 * exp(-cc12/theta) 

          rd2    = cc13*(1-HRST1 

     *                 -HRST2)*exp(-cc14/theta) 

          h2     = (cc15-cc16*theta)*(1+HRST1 

     *                  +HRST2) 

          rs2    = cc17 * exp(-cc18/theta) 

          rd3    = cc21*(1-HRST1 

     *              -HRST2)*exp(-cc22/theta) 

          h3     = (cc23-cc24*theta)*(1+HRST1 

     *                  +HRST2) 

          rs3    = cc25 * exp(-cc26/theta) 

        endif 
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The second change involves a similar situation to the first. The term,   
    

   
 
  

, 

was isolated in which there no possibility of change over the entire course of the 

simulation, but this term is calculated in 8 different places in the code. Therefore, this 

term was replaced with the constant, dcs1, and subsequently replaced throughout the 

code. These changes resulted in an increase in speed of about 11% for a 1 element 

simulation run on one processor.  
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APPENDIX C 

UMAT REFERENCED IN THIS STUDY
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       subroutine umat(stress,statev,ddsdde,sse,spd,scd, 

     1   rpl,ddsddt,drplde,drpldt, 

     2   stran,dstran,time,dtime,temp,dtemp,predef,dpred,cmname, 

     3   ndi,nshr,ntens,nstatv,props,nprops,coords,drot,pnewdt, 

     4   celent,dfgrd0,dfgrd1,noel,npt,layer,kspt,kstep,kinc) 

 INCLUDE 'ABA_PARAM.INC' 

c *************************************************** 

      character*8 cmname 

      dimension stress(ntens),statev(nstatv), 

     1 ddsdde(ntens,ntens), 

     2 ddsddt(ntens),drplde(ntens), 

     3 stran(ntens),dstran(ntens),time(2),predef(1),dpred(1), 

     4 props(nprops),coords(3),drot(3,3),t(6),de(6), 

     5 dfgrd0(3,3),dfgrd1(3,3),xi(6) 

c 

      data third  /.333333333333333/ 

      data twothd /.666666666666667/ 

      data con1   /.81649658092773/ 

      data pi     /3.1415927/ 

      data iparam1,iparam2,iparam3 / 0,0,0 / 

c                                                                       

c*********************************************************************** 

c 

c     *  ntens = number of non-zero stress components (4 for 2d, 6 for 3d) 

c     *  nshr  = number of non-zero shear components (1 for 2d, 3 for 3d) 

c     *  ndi   = number of non-zero normal stresses (always 3) 

c     *  nstatv = number of state variables (25) 

c     *  nprops = number of material parameters (50) 

c 

c************************************************************************* 

c 

c     *  statev(1) = alpha-xx 

c     *  statev(2) = alpha-yy 

c     *  statev(3) = alpha-zz 

c     *  statev(4) = alpha-xy 

c     *  statev(5) = alpha-yz 

c     *  statev(6) = alpha-zx 

c     *  statev(7) = kappa 

c     *  statev(8) = temperature 

c     *  statev(9) = effective plastic strain 

c     *  statev(10) = McClintock void growth(second phase pores) 

c     *  statev(11) = rate of change of M porosity 

c     *  statev(12) = stress triaxiality  

c     *  statev(13) = nucleation  

c     *  statev(14) = damage 

c     *  statev(15) = nucleation rate  

c     *  statev(16) = damage rate 

c     *  statev(17) = nucleation from previous time step 

c     *  statev(18) = Cocks-Ashby void growth(large pores) 

c     *  statev(19) = rate of change of CA porosity 

c     *  statev(20) = alpha-xx long range 

c     *  statev(21) = alpha-yy long range 

c     *  statev(22) = alpha-zz long range 

c     *  statev(23) = alpha-xy long range 

c     *  statev(24) = alpha-yz long range 

c     *  statev(25) = alpha-zx long range 

 

c 

c************************************************************************* 

c 

c     *  props(1) thru props(5) are constants for Johnson/Bammann 

c     *  formulas for shear and bulk moduli 
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c     *  props(1) = mu zero         , props(2) = a 

c     *  props(3) = K zero          , props(4) = b 

c     *  props(5) = T melt          , props(6) = C1 

c     *  props(7) = C2              , props(8) = C3 

c     *  props(9) = C4              , props(10)= C5 

c     *  props(11)= C6              , props(12)= C7 

c     *  props(13)= C8              , props(14)= C9 

c     *  props(15)= C10             , props(16)= C11 

c     *  props(17)= C12             , props(18)= C13 

c     *  props(19)= C14             , props(20)= C15 

c     *  props(21)= C16             , props(22)= C17 

c     *  props(23)= C18             , props(24)= C19 

c     *  props(25)= C20             , props(26)= CA 

c     *  props(27)= CB             

c     *  props(28)= initial temperature 

c     *  props(29)= heat generation coefficient 

c     *  props(30)= McClintock damage constant, n 

c     *  props(31)= initial void radius 

c     *  props(32)= torsional constant a in nucleation model 

c     *  props(33)= tension/comp constant b in nucleation model 

c     *  props(34)= triaxiality constant c in nucleation model 

c     *  props(35)= coefficient constant in nucleation model 

c     *  props(36)= fracture toughness, related to nucleation model 

c     *  props(37)= ave size of particles, related to nucleation model 

c     *  props(38)= particles vol fraction, related to nucleation model 

c     *  props(39)= coalescence factor, D=nucleation*void volume*coal. 

c     *  props(40)= coalescence factor, D=nucleation*void volume*coal. 

c     *  props(41)= reference grain size or dendrite cell size,dcs0 

c     *  props(42)= grain size or dendrite cell size of material,dcs 

c     *  props(43)= grain size or dendrite cell size exponent,zz 

c     *  props(44)= initial void volume fraction for CA void growth 

c     *  props(45)= C21             , props(46)= C22 

c     *  props(47)= C23             , props(48)= C24 

c     *  props(49)= C25             , props(50)= C26 

c     *  props(51)= nucleation temperature dependence 

c     *  props(52)= coalescence temperature dependence 

c     *  props(53)= flag to use vvfr4.dat file, 0=no, 1=yes 

c     *  props(54)= flag to use random vvf generator, 0=no, 1=yes 

c     *  props(55)= Cocks Ashby void growth constant 

c****************************************************************** 

c 

c   * iparam1 = 0 for linear return (uses total strain in recovery) 

c   *         = 1 for quadratic return (uses plastic strain in recovery) 

c   *           (only linear return implemented in this version) 

c 

c   * iparam2 = 0 for Simo tangent stiffness matrix 

c   *         = 1 for Lathrop tangent stiffness matrix 

c   *           (only Simo stiffness implemented in this version) 

c 

c   * iparam3 = 0 for trial kappa = kappa(n) 

c   *         = 1 for trial kappa = kappa(n + 1/2) 

c 

c************************************************************************ 

c---- initialize void volume fraction  

c     this initization reads void volume fraction from the file 

c     vvfr4.dat which is a text file in which each line contains 

c     two entries: 

c       element number, void volume fraction 

c     the first line must be element 1, the next element 2 etc. 

c     this file may be using the program mkvvf 

c 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
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c      if (props(53).eq.1)then 

c        if(time(2).eq.0.0)then 

c         write(6,'(a,i4)') "(initdmg.f) init umat, el = ",noel 

c          open(11,file='/cavs/cmd/data1/users/dbh44/Kfrazier/m5b1/m5v1.csv', 

c     *    status='OLD') 

c          do i=1,noel 

c            read(11,*)idum, vvf 

c             vvf = 0.0 

c          end do 

c          close(11) 

c          props(44) = vvf 

c       end if 

c      else 

c       go to 15 

c      end if 

c      print *, "after initialization" 

c---- initialize state variables 

c     temperature is set first by *initial condition command in abaqus 

c     or by props(28) 

c 13   if (props(54).eq.1)then 

c         if(time(2).eq.0.0)then 

c            iseed=3 

c            do i=1,noel 

c               iseed = 2045*iseed + 1 

c               iseed = iseed -((iseed/1048576)*1048576)             

c               randx = real(iseed + 1)/1048577.0 

c               vvf = (.06)*randx 

c            end do 

c            props(44) = vvf 

c         end if 

c      else 

c         go to 15 

c      end if 

c 

 15   if(time(2).eq.0.0)then 

        statev(1) = 0.0 

        statev(2) = 0.0 

        statev(3) = 0.0 

        statev(4) = 0.0 

        statev(5) = 0.0 

        statev(6) = 0.0 

        statev(7) = 0.0 

        statev(8) = props(28) 

        statev(9) = 0.0 

        statev(10) = pi*props(31)**2.0 

        statev(11) = 0.0 

        statev(12) = 0.0 

        statev(13) = props(35) 

        statev(14) = props(44) 

        statev(15) = 0.0 

        statev(16) = 0.0 

        statev(17) = 0.0 

        statev(18) = props(44) 

        statev(19) = 0.0 

        statev(20) = 0.0 

        statev(21) = 0.0 

        statev(22) = 0.0 

        statev(23) = 0.0 

        statev(24) = 0.0 

        statev(25) = 0.0 

         if(temp.eq.0.0)then 

          if(props(28).eq.0.0)then 
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           write(*,*)' error - temperature is zero' 

           stop 

          else 

           statev(8) = props(28) 

          endif 

         else 

          statev(8) = temp 

         endif  

       endif 

c      

c****************************************************************** 

c 

      cc1  = props(6) 

      cc2  = props(7) 

      cc3  = props(8) 

      cc4  = props(9) 

      cc5  = props(10) 

      cc6  = props(11) 

      cc7  = props(12) 

      cc8  = props(13) 

      cc9  = props(14) 

      cc10 = props(15) 

      cc11 = props(16) 

      cc12 = props(17) 

      cc13 = props(18) 

      cc14 = props(19) 

      cc15 = props(20) 

      cc16 = props(21) 

      cc17 = props(22) 

      cc18 = props(23) 

      cc19 = props(24) 

      cc20 = props(25) 

      cc21 = props(45) 

      cc22 = props(46) 

      cc23 = props(47) 

      cc24 = props(48) 

      cc25 = props(49) 

      cc26 = props(50) 

      ca = props(26) 

      cb = props(27) 

      cd1 = props(39) 

      cd2 = props(40) 

      dcs0 = props(41) 

      dcs = props(42) 

      zz = props(43) 

c 

      htcp = props(29) 

c 

c---- g = shear modulus   twog = 2*g   blk = bulk modulus  

c 

      if(props(28).eq.0.)statev(8) = temp 

      theta = statev(8) 

      if (props(5).eq.0) then 

      blk = props(3) 

      g = props(1) 

      else 

      tratio = theta/props(5) 

      tratio = min(tratio,0.9999) 

      g = props(1)*(1.-tratio*exp(props(2)*(1.-1./tratio))) 

      endif 

      twog = 2.0 * g 

      blk = props(3) - props(4)*tratio 
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c 

c---- damage 

      dam1=1.0-statev(14) 

      dam2 = 1.0-min(1.0,dtime*statev(16)/dam1) 

      phi1 = 1.0-statev(18) 

c 

c---- calculate pressure 

c 

      davg = third * (dstran(1) + dstran(2) + dstran(3)) 

      pold = third * (stress(1) + stress(2) + stress(3)) 

      p = pold*dam2 + dam1*blk * davg * 3.0 

c 

c---- check for melt 

c 

      if(theta.gt.props(5)) then 

       do 35 i=1,ntens 

       stress(i) = 0. 

   35  statev(i) = 0. 

       p = min(0.,p) 

       stress(1) = p 

       stress(2) = p 

       stress(3) = p 

       statev(7) = 0. 

       statev(9) = 0. 

       go to 315 

       endif 

c 

c---- compute function evaluations 

c       theta = temperature 

c       ytheta = static yield stress 

c       vtheta,ftheta = functions to define rate dependence of yield 

c       h1,h2,h3 = plastic hardeing moduli 

c       rs1,rs2,h3 = static recovery functions 

c       rd1,rd2,h3 = dynamic recovery functions     

c 

c deviatoric stress 

       ds11=stress(1)-pold 

       ds22=stress(2)-pold 

       ds33=stress(3)-pold 

       ds12=stress(4) 

       ds23=stress(5) 

       ds13=stress(6) 

c invariants of stress 

       dj2=0.5*(ds11**2.+ds22**2.+ds33**2.+ 

     *     2*(ds12**2.+ds23**2.+ds13**2.)) 

       dj3=ds11*(ds22*ds33-ds23**2.)-ds22*(ds11*ds33-ds13**2.) 

     *     +ds33*(ds22*ds11-ds12**2.) 

c  

c stress state dependent material constants 

      adj    = 0.5*(1.+tanh(cc19*(cc20-theta))) 

      if(cc19.eq.0.)adj=1.0 

      vtheta = cc1*exp(-cc2/theta) 

      ytheta = cc3*exp(cc4/theta)*adj 

      ftheta = cc5*exp(-cc6/theta) 

        if(dj2.eq.0)then 

          rd1=cc7*(1-ca*(4./27.))*exp(-cc8/theta) 

          h1=(cc9-cc10*theta)*(1+ca*(4./27.)) 

          rs1    = cc11 * exp(-cc12/theta) 

          rd2    = cc13*(1-ca*(4./27.))*exp(-cc14/theta) 

          h2     = (cc15-cc16*theta)*(1+ca*(4./27.)) 

          rs2    = cc17 * exp(-cc18/theta) 

          rd3    = cc21*(1-ca*(4./27.))*exp(-cc22/theta) 
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          h3     = (cc23-cc24*theta)*(1+ca*(4./27.)) 

          rs3    = cc25 * exp(-cc26/theta) 

 

        else 

          rd1    = cc7*(1-ca*(4./27.-dj3**2./dj2**3.) 

     *                -cb*dj3/dj2**1.5)*exp(-cc8/theta) 

          h1     = (cc9-cc10*theta)*(1+ca*(4./27.-dj3**2./dj2**3.) 

     *                 +cb*dj3/dj2**1.5) 

          rs1    = cc11 * exp(-cc12/theta) 

          rd2    = cc13*(1-ca*(4./27.-dj3**2./dj2**3.) 

     *                 -cb*dj3/dj2**1.5)*exp(-cc14/theta) 

          h2     = (cc15-cc16*theta)*(1+ca*(4./27.-dj3**2./dj2**3.) 

     *                  +cb*dj3/dj2**1.5) 

          rs2    = cc17 * exp(-cc18/theta) 

          rd3    = cc21*(1-ca*(4./27.-dj3**2./dj2**3.) 

     *              -cb*dj3/dj2**1.5)*exp(-cc22/theta) 

          h3     = (cc23-cc24*theta)*(1+ca*(4./27.-dj3**2./dj2**3.) 

     *                  +cb*dj3/dj2**1.5) 

          rs3    = cc25 * exp(-cc26/theta) 

        endif 

c 

c---- update alpha using abaqus rotation matrix 

c 

      if(rs1.ne.0. .or. rd1.ne.0. .or. h1.ne.0.)then 

      if(ntens.eq.4)then 

       term1 = drot(1,1)*statev(1) + drot(1,2)*statev(4) 

       term2 = drot(1,1)*statev(4) + drot(1,2)*statev(2) 

       term3 = drot(2,1)*statev(1) + drot(2,2)*statev(4) 

       term4 = drot(2,1)*statev(4) + drot(2,2)*statev(2) 

       term5 = statev(1) + statev(2) 

       statev(1) = drot(1,1)*term1+drot(1,2)*term2-term5*drot(1,3)**2 

       statev(2) = drot(2,1)*term3+drot(2,2)*term4-term5*drot(2,3)**2 

       statev(3) = - (statev(1) + statev(2)) 

       statev(4) = drot(2,1)*term1+drot(2,2)*term2 - 

     $             term5*drot(1,3)*drot(2,3) 

      else 

       term1=drot(1,1)*statev(1)+drot(1,2)*statev(4)+drot(1,3)*statev(6) 

       term2=drot(1,1)*statev(4)+drot(1,2)*statev(2)+drot(1,3)*statev(5) 

       term3=drot(1,1)*statev(6)+drot(1,2)*statev(5)+drot(1,3)*statev(3) 

       term4=drot(2,1)*statev(1)+drot(2,2)*statev(4)+drot(2,3)*statev(6) 

       term5=drot(2,1)*statev(4)+drot(2,2)*statev(2)+drot(2,3)*statev(5) 

       term6=drot(2,1)*statev(6)+drot(2,2)*statev(5)+drot(2,3)*statev(3) 

       term7=drot(3,1)*statev(1)+drot(3,2)*statev(4)+drot(3,3)*statev(6) 

       term8=drot(3,1)*statev(4)+drot(3,2)*statev(2)+drot(3,3)*statev(5) 

       term9=drot(3,1)*statev(6)+drot(3,2)*statev(5)+drot(3,3)*statev(3) 

       statev(1)=term1*drot(1,1)+term2*drot(1,2)+term3*drot(1,3) 

       statev(2)=term4*drot(2,1)+term5*drot(2,2)+term6*drot(2,3) 

       statev(3)=term7*drot(3,1)+term8*drot(3,2)+term9*drot(3,3) 

       statev(4)=term1*drot(2,1)+term2*drot(2,2)+term3*drot(2,3) 

       statev(5)=term4*drot(3,1)+term5*drot(3,2)+term6*drot(3,3) 

       statev(6)=term1*drot(3,1)+term2*drot(3,2)+term3*drot(3,3) 

      endif 

      endif 

c---- update long range alpha using abaqus rotation matrix 

c 

      if(rs3.ne.0. .or. rd3.ne.0. .or. h3.ne.0.)then 

      if(ntens.eq.4)then 

       term1 = drot(1,1)*statev(20) + drot(1,2)*statev(23) 

       term2 = drot(1,1)*statev(23) + drot(1,2)*statev(21) 

       term3 = drot(2,1)*statev(20) + drot(2,2)*statev(23) 

       term4 = drot(2,1)*statev(23) + drot(2,2)*statev(21) 

       term5 = statev(20) + statev(21) 
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       statev(20) = drot(1,1)*term1+drot(1,2)*term2-term5*drot(1,3)**2 

       statev(21) = drot(2,1)*term3+drot(2,2)*term4-term5*drot(2,3)**2 

       statev(22) = - (statev(20) + statev(21)) 

       statev(23) = drot(2,1)*term1+drot(2,2)*term2 - 

     $             term5*drot(1,3)*drot(2,3) 

      else 

       term1=drot(1,1)*statev(20)+drot(1,2)*statev(23)+drot(1,3)* 

     *       statev(25) 

       term2=drot(1,1)*statev(23)+drot(1,2)*statev(21)+drot(1,3)* 

     *       statev(24) 

       term3=drot(1,1)*statev(25)+drot(1,2)*statev(24)+drot(1,3)* 

     *       statev(22) 

       term4=drot(2,1)*statev(20)+drot(2,2)*statev(23)+drot(2,3)* 

     *       statev(25) 

       term5=drot(2,1)*statev(23)+drot(2,2)*statev(21)+drot(2,3)* 

     *       statev(24) 

       term6=drot(2,1)*statev(25)+drot(2,2)*statev(24)+drot(2,3)* 

     *       statev(22) 

       term7=drot(3,1)*statev(20)+drot(3,2)*statev(23)+drot(3,3)* 

     *       statev(25) 

       term8=drot(3,1)*statev(23)+drot(3,2)*statev(21)+drot(3,3)* 

     *       statev(24) 

       term9=drot(3,1)*statev(25)+drot(3,2)*statev(24)+drot(3,3)* 

     *       statev(22) 

       statev(20)=term1*drot(1,1)+term2*drot(1,2)+term3*drot(1,3) 

       statev(21)=term4*drot(2,1)+term5*drot(2,2)+term6*drot(2,3) 

       statev(22)=term7*drot(3,1)+term8*drot(3,2)+term9*drot(3,3) 

       statev(23)=term1*drot(2,1)+term2*drot(2,2)+term3*drot(2,3) 

       statev(24)=term4*drot(3,1)+term5*drot(3,2)+term6*drot(3,3) 

       statev(25)=term1*drot(3,1)+term2*drot(3,2)+term3*drot(3,3) 

      endif 

      endif 

c 

c---- compute effective strain rate 

c 

      if(dtime.ne.0.0)then 

       dum = 0. 

       do 40 i=4,ntens 

   40  dum = dum + dstran(i)**2 

       ddd = sqrt(dstran(1)**2+dstran(2)**2+dstran(3)**2 +  

     $       0.5*dum) * con1 / dtime 

       else 

       ddd = 0.0 

      endif 

c 

c---- calculate trial alpha, kappa and yield radius 

c 

      alphaxx = statev(1)+statev(20) 

      alphayy = statev(2)+statev(21) 

      alphazz = statev(3)+statev(22) 

      alphaxy = statev(4)+statev(23) 

      alphayz = statev(5)+statev(24) 

      alphazx = statev(6)+statev(25) 

      alpm = con1 * sqrt(alphaxx**2 + alphayy**2 + alphazz**2+ 

     $       2.*(alphaxy**2 + alphayz**2 + alphazx**2)) 

      sto = dtime*rs1*alpm*(dcs0/dcs)**zz 

      sto2 = dtime*rs2*(dcs0/dcs)**zz 

       if(iparam1.eq.0)then 

        sto  = dtime * (rs1+rd1*ddd+rs3+rd3*ddd)*alpm*(dcs0/dcs)**zz 

        sto2 = dtime * (rs2+rd2*ddd)*(dcs0/dcs)**zz 

       endif 

      do 50 i=1,ntens 
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   50 statev(i) = statev(i) * (1.0 - sto) 

      do 51 i=20,ntens+20-1 

   51 statev(i) = statev(i) * (1.0 - sto) 

       if(iparam3.eq.0)then 

        trialk = statev(7) 

       else 

        trialk = (-1.0+sqrt(1.+2*sto2*(statev(7)+0.5*h2*ddd*dtime)))/ 

     $                 max(1.e-30,sto2) 

       endif 

      statev(7) = statev(7) - sto2 *  trialk * trialk 

      ak = (vtheta * log((ddd+sqrt(ddd**2+ftheta**2))/ftheta) + 

     $     ytheta + statev(7))*dam1 

c 

c---- calculate trial elastic deviatoric stresses 

c 

      do 60 i=1,3 

   60 stress(i) = dam2*(stress(i)-pold)+dam1*twog*(dstran(i)-davg) 

      do 70 i=4,ntens 

   70 stress(i) = dam2*stress(i) + dam1*g*dstran(i) 

c 

c---- compute xi (deviatoric stress - 2/3 alpha) 

c 

      do 80 i=1,ntens 

   80 xi(i) = stress(i) - twothd * statev(i) 

c 

c---- compute (magnitude of xi) squared 

c 

      dum = 0.0 

      do 85 i=4,ntens 

   85 dum = dum + xi(i)**2 

      ximag2 = xi(1)**2 + xi(2)**2 + xi(3)**2 + 2.*dum 

c 

c---- check for plasticity 

c 

      ak2 = ximag2 - twothd * ak * abs(ak) 

      if(ak2 .le. 0.0 .or. ddd.eq.0.0) go to 300 

c 

c---- plasticity process begins here 

c 

      ximag = sqrt(ximag2) 

c 

c---- return trial stresses to yield surface, add pressure term 

c      and update state variables 

c 

      if(iparam1.eq.0)then 

      dgam = (ximag-con1*ak)/(dam1*twog+twothd*(dcs0/dcs)**zz 

     *                    *(h1+h3+h2*dam1)) 

      endif 

      dgam2 = dgam / ximag 

c 

      dsig = dam1*twog * dgam2 

      do 90 i=1,ntens 

   90 stress(i) = stress(i) - dsig * xi(i) 

      stress(1) = stress(1) + p 

      stress(2) = stress(2) + p 

      stress(3) = stress(3) + p 

c 

      statev(7) = statev(7) + dgam * con1 * h2*(dcs0/dcs)**zz 

      statev(7) = max(0.,statev(7)) 

c 

      dalph = (h1+h3) * dgam2 

      do 100 i=1,ntens 
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  100 statev(i) = statev(i) + dalph * xi(i)*(dcs0/dcs)**zz 

c 

c---- update plastic strain (for output purposes only) 

c 

      statev(9) = statev(9) + dgam * con1 

c 

c---- update temperature for adiabatic problems 

c 

      dum = 0.0 

      do 110 i=4,ntens 

  110 dum = dum + stress(i)*xi(i) 

      statev(8) = statev(8) + htcp*dgam2*( stress(1)*xi(1) + 

     $            stress(2)*xi(2) + stress(3)*xi(3) + 2.0*dum) 

c 

c---- update damage 

c 

      epsdot=dgam*con1/dtime 

      sige=max(1.e-15,sqrt(0.5*((stress(1)-stress(2))**2.+ 

     *     (stress(2)-stress(3))**2.+(stress(3)-stress(1))**2.+ 

     *     6*(stress(4)**2.+stress(5)**2.+stress(6)**2.)))) 

c 

c Cocks-Ashby large pore growth term 

          cacon = abs(vtheta/ytheta) 

          if(cacon.lt.props(55)) then 

           cacon=props(55)*(8.0*exp(-0.00705*props(28))) 

          endif 

          Print*,'cacon=',cacon 

          dterm=2*(2*cacon-1)/(2*cacon+1) 

          arg = min(15.,p*dterm/sige) 

   beta = sinh(max(0.,arg) ) 

   c90 = 1. + cacon 

   psi = min(15.,beta*dtime*epsdot*c90) 

   tmp = max(0.,(1.0+(phi1**c90-1.0)*exp(psi))) 

    statev(18) = min((1.0-tmp**(1./c90)),.99) 

c Cocks-Ashby void growth rate 

    statev(19) = beta*epsdot*(1./(1.-statev(18))**(vtheta/ytheta) 

     *                 -(1.-statev(18))) 

c McClintock form of void growth 

           abc=3.**0.5/(2.*(1.-props(30)))*sinh(3.**0.5* 

     *         0.5*(1.-props(30))*(2*p/sige+third)) 

           vrad=props(31)*exp(statev(9)*abc/con1) 

           statev(10)=pi*vrad**2.0 

           statev(11)=3.*statev(10)*abc*epsdot 

c Nucleation of voids 

c deviatoric stress 

       ds11=stress(1)-p 

       ds22=stress(2)-p 

       ds33=stress(3)-p 

       ds12=stress(4) 

       ds23=stress(5) 

       ds13=stress(6) 

c invariants of stress 

       di1=3.*p 

       dj2=0.5*(ds11**2.+ds22**2.+ds33**2.+ 

     *     2*(ds12**2.+ds23**2.+ds13**2.)) 

       dj3=ds11*(ds22*ds33-ds23**2.)-ds22*(ds11*ds33-ds13**2.) 

     *     +ds33*(ds22*ds11-ds12**2.) 

          if(dj2.le.0.)then 

          r1=0. 

          r2=0. 

          r3=0. 

          else 
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          r1=(4./27.-dj3**2./dj2**3.) 

          r2=dj3/dj2**(3./2.) 

          r3=di1/(dj2**0.5) 

          endif 

           r3=abs(r3) 

c    if(r3.lt.0)then 

c            r3=-r3 

c           endif 

          zzz=(props(32)*r1+props(33)*r2+props(34)*r3) 

          zzz=abs(zzz) 

          zzzz=(props(37)**0.5/(props(36)*props(38)**third))*zzz 

          statev(17)=statev(13) 

          statev(13)=props(35)*exp(statev(9)*zzzz/con1)* 

     *                exp(-props(51)/statev(8)) 

c added for nonmonotonic path sequences, statev(17) is old nucleation 

          if(statev(13).lt.statev(17)) then 

          statev(13) = abs(statev(17)+statev(13)) 

          endif 

c Coalescence factor 

          cf=(cd1+cd2*statev(13)*statev(10))* 

     *           exp(props(52)*statev(8)) 

     *           *(dcs0/dcs)**zz 

c Damage 

      damage=cf*(statev(13)*statev(10)+statev(18)) 

      if(damage.gt.0.6) damage=.99 

      statev(14)=min(damage,0.99) 

c Nucleation Rate 

          epsdot=abs(epsdot) 

      statev(15)=zzzz*statev(13)*epsdot 

c Damage Rate 

      zsecond=cf*(statev(15)*statev(10)+statev(13)*statev(11)+ 

     *        statev(19)) 

      zthird=(statev(13)*statev(10)+statev(18))* 

     *       cd2*(dcs0/dcs)**zz*exp(props(52)*statev(8))* 

     *       (statev(15)*statev(10)+statev(13)*statev(11)) 

      statev(16)=zsecond+zthird 

c 

c Triaxiality 

   statev(12)=p/sige 

c  

c---- form elastic-plastic constitutive matrix 

c     if bbb=1 then conventional stiffness is calculated 

c     otherwise simo stiffness is calculated 

c 

      if(iparam2.eq.0)then 

      alpm2 = con1 * sqrt(alphaxx**2 + alphayy**2 + alphazz**2 

     $        + 2.*(alphaxy**2.+alphayz**2.+alphazx**2.)) 

      bbb = (con1*(ak+h2*con1*dgam) + alpm2 - alpm) / ximag 

      bbb=min(1.0,bbb) 

      slope = h1+h3+h2-(rd1+rd3)*alpm2*alpm2-rd2*statev(7)*statev(7) 

      slope = max((1.e-5*(h1+h2+h3)),slope) 

      gamma = 1./(1.+slope/3.0/g) - (1.0-bbb) 

      r = dam1*(twog * gamma / ximag**2) 

      z1 = dam1*(blk + twothd * twog * bbb) 

      z2 = dam1*(blk - third * twog * bbb) 

      z3 = dam1*(g * bbb) 

      do 140 i=1,ntens 

      do 140 j=1,ntens 

  140 ddsdde(i,j) = - r * xi(i) * xi(j) 

      ddsdde(1,1) = z1 + ddsdde(1,1) 

      ddsdde(2,2) = z1 + ddsdde(2,2) 

      ddsdde(3,3) = z1 + ddsdde(3,3) 
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      ddsdde(1,2) = z2 + ddsdde(1,2) 

      ddsdde(1,3) = z2 + ddsdde(1,3) 

      ddsdde(2,1) = z2 + ddsdde(2,1) 

      ddsdde(3,1) = z2 + ddsdde(3,1) 

      ddsdde(2,3) = z2 + ddsdde(2,3) 

      ddsdde(3,2) = z2 + ddsdde(3,2) 

      do 130 i=4,ntens 

  130 ddsdde(i,i) = z3 + ddsdde(i,i) 

      endif 

 2000 format(' debug',5e13.5/4e13.5) 

      go to 400 

c 

c---- elastic process begins here 

c 

  300 continue 

      do 310 i=1,3 

  310 stress(i) = stress(i) + p 

      dgam=0. 

c 

c---- form elastic stiffness matrix 

c 

  315 continue 

      do 320 i=1,ntens 

      do 320 j=1,ntens 

  320 ddsdde(i,j) = 0.0 

      z1 = dam1*(blk + twothd * twog) 

      z2 = dam1*(blk - third * twog) 

      ddsdde(1,1) = z1 

      ddsdde(2,2) = z1 

      ddsdde(3,3) = z1 

      ddsdde(1,2) = z2 

      ddsdde(1,3) = z2 

      ddsdde(2,1) = z2 

      ddsdde(3,1) = z2 

      ddsdde(2,3) = z2 

      ddsdde(3,2) = z2 

      do 330 i=4,ntens 

  330 ddsdde(i,i) = dam1*g 

c 

c---- clean up 

c 

  400 continue 

      statev(7) = max(statev(7),0.0) 

c 

      return 

      end 



 

109 

APPENDIX D 

VUMAT REFERENCED IN THIS STUDY
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      subroutine vumat ( 

C Read only - 

     *     nblock, ndir, nshr, nstatev, nfieldv, nprops, lanneal, 

     *     stepTime, totalTime, dt, cmname, coordMp, charLength, 

     *     props, density, strainInc, relSpinInc, 

     *     tempOld, stretchOld, defgradOld, fieldOld, 

     *     stressOld, stateOld, enerInternOld, enerInelasOld, 

     *     tempNew, stretchNew, defgradNew, fieldNew, 

C Write only - 

     *     stressNew, stateNew, enerInternNew, enerInelasNew ) 

C 

      include 'vaba_param.inc' 

C 

      dimension coordMp(nblock,*), charLength(nblock), props(nprops), 

     1     density(nblock), strainInc(nblock,ndir+nshr), 

     2     relSpinInc(nblock,nshr), tempOld(nblock), 

     3     stretchOld(nblock,ndir+nshr),  

     4     defgradOld(nblock,ndir+nshr+nshr), 

     5     fieldOld(nblock,nfieldv), stressOld(nblock,ndir+nshr), 

     6     stateOld(nblock,nstatev), enerInternOld(nblock), 

     7     enerInelasOld(nblock), tempNew(nblock), 

     8     stretchNew(nblock,ndir+nshr), 

     9     defgradNew(nblock,ndir+nshr+nshr), 

     1     fieldNew(nblock,nfieldv), 

     2     stressNew(nblock,ndir+nshr), stateNew(nblock,nstatev), 

     3     enerInternNew(nblock), enerInelasNew(nblock) 

      dimension xi(6) 

C      

      character*80 cmname 

      parameter ( zero = 0.d0, one = 1.d0, two = 2.d0, three = 3.d0, 

     *     third = one / three, half = 0.5d0, twothds = two / three, 

     *     op5 = 1.5d0 ) 

 

      data con1   /.81649658092773/ 

      data pi     /3.1415927/ 

      data iparam1,iparam2,iparam3 / 0,0,0 / 

c                                                                       

c*********************************************************************** 

c 

c     *  ntens = number of non-zero stress components (4 for 2d, 6 for 3d) 

c     *  nshr  = number of non-zero shear components (1 for 2d, 3 for 3d) 

c     *  ndi   = number of non-zero normal stresses (always 3) 

c     *  nstatv = number of state variables (25) 

c     *  nprops = number of material parameters (50) 

c 

c************************************************************************* 

c 

c     *  statev(1) = alpha-xx 

c     *  statev(2) = alpha-yy 

c     *  statev(3) = alpha-zz 

c     *  statev(4) = alpha-xy 

c     *  statev(5) = alpha-yz 

c     *  statev(6) = alpha-zx 

c     *  statev(7) = kappa 

c     *  statev(8) = temperature 

c     *  statev(9) = effective plastic strain 

c     *  statev(10) = McClintock void growth (second phase pores) 

c     *  statev(11) = rate of change of M porosity 

c     *  statev(12) = stress triaxiality  

c     *  statev(13) = nucleation  

c     *  statev(14) = damage 

c     *  statev(15) = nucleation rate  
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c     *  statev(16) = damage rate 

c     *  statev(17) = nucleation from previous time step 

c     *  statev(18) = Cocks-Ashby void growth(large pores) 

c     *  statev(19) = rate of change of CA porosity 

c     *  statev(20) = alpha-xx long range 

c     *  statev(21) = alpha-yy long range 

c     *  statev(22) = alpha-zz long range 

c     *  statev(23) = alpha-xy long range 

c     *  statev(24) = alpha-yz long range 

c     *  statev(25) = alpha-zx long range 

c 

c************************************************************************* 

c 

c     *  props(1) thru props(5) are constants for Johnson/Bammann 

c     *  formulas for shear and bulk moduli 

c     *  props(1) = mu zero         , props(2) = a 

c     *  props(3) = K zero          , props(4) = b 

c     *  props(5) = T melt          , props(6) = C1 

c     *  props(7) = C2              , props(8) = C3 

c     *  props(9) = C4              , props(10)= C5 

c     *  props(11)= C6              , props(12)= C7 

c     *  props(13)= C8              , props(14)= C9 

c     *  props(15)= C10             , props(16)= C11 

c     *  props(17)= C12             , props(18)= C13 

c     *  props(19)= C14             , props(20)= C15 

c     *  props(21)= C16             , props(22)= C17 

c     *  props(23)= C18             , props(24)= C19 

c     *  props(25)= C20             , props(26)= CA 

c     *  props(27)= CB             

c     *  props(28)= initial temperature 

c     *  props(29)= heat generation coefficient 

c     *  props(30)= McClintock damage constant, n 

c     *  props(31)= initial void radius 

c     *  props(32)= torsional constant a in nucleation model 

c     *  props(33)= tension/comp constant b in nucleation model 

c     *  props(34)= triaxiality constant c in nucleation model 

c     *  props(35)= coefficient constant in nucleation model 

c     *  props(36)= fracture toughness, related to nucleation model 

c     *  props(37)= ave size of particles, related to nucleation model 

c     *  props(38)= particles vol fraction, related to nucleation model 

c     *  props(39)= coalescence factor, D=nucleation*void volume*coal. 

c     *  props(40)= coalescence factor, D=nucleation*void volume*coal. 

c     *  props(41)= reference grain size or dendrite cell size,dcs0 

c     *  props(42)= grain size or dendrite cell size of material,dcs 

c     *  props(43)= grain size or dendrite cell size exponent,zz 

c     *  props(44)= initial void volume fraction for CA void growth 

c     *  props(45)= C21             , props(46)= C22 

c     *  props(47)= C23             , props(48)= C24 

c     *  props(49)= C25             , props(50)= C26 

c     *  props(51)= nucleation temperature dependence 

c     *  props(52)= coalescence temperature dependence 

c     *  props(53)= flag to use vvfr4.dat file, 0=no, 1=yes 

c     *  props(54)= Cacon 

c     *  props(55)= elastic modulus - porosity exponent 

c**************************************************************************** 

c 

c   * iparam1 = 0 for linear return (uses total strain in recovery) 

c   *         = 1 for quadratic return (uses plastic strain in recovery) 

c   *           (only linear return implemented in this version) 

c 

c   * iparam2 = 0 for Simo tangent stiffness matrix 

c   *         = 1 for Lathrop tangent stiffness matrix 
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c   *           (only Simo stiffness implemented in this version) 

c 

c   * iparam3 = 0 for trial kappa = kappa(n) 

c   *         = 1 for trial kappa = kappa(n + 1/2) 

c 

c************************************************************************ 

c---- initialize void volume fraction  

c     this initization reads void volume fraction from the file 

c     vvfr4.dat which is a text file in which each lineabaqus analysis 

user=vumat_dmg-55p_edit.f input=RND.inp job=RND double cpus=4 parallel=domain 

domains=4 contains 

c     two entries: 

c       element number, void volume fraction 

c     the first line must be element 1, the next element 2 etc. 

c     this file may be using the program mkvvf 

c 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c      

c****************************************************************** 

c      

      ntens = ndir+nshr 

c      

c-------  BCJ parameters 

c 

c set material constants 

c  

      cc1  = props(6) 

      cc2  = props(7) 

      cc3  = props(8) 

      cc4  = props(9) 

      cc5  = props(10) 

      cc6  = props(11) 

      cc7  = props(12) 

      cc8  = props(13) 

      cc9  = props(14) 

      cc10 = props(15) 

      cc11 = props(16) 

      cc12 = props(17) 

      cc13 = props(18) 

      cc14 = props(19) 

      cc15 = props(20) 

      cc16 = props(21) 

      cc17 = props(22) 

      cc18 = props(23) 

      cc19 = props(24) 

      cc20 = props(25) 

c 

      htcp = props(29) 

c   

      cc21 = props(45) 

      cc22 = props(46) 

      cc23 = props(47) 

      cc24 = props(48) 

      cc25 = props(49) 

      cc26 = props(50) 

c 

      ca   = props(26) 

      cb   = props(27) 

      cd1  = props(39) 

      cd2  = props(40) 

      dcs0 = props(41) 

      dcs  = props(42) 
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      zz   = props(43) 

      zeta = props(55) 

c   Add this term throughout 

      dcs1 = (dcs0 / dcs)**zz 

c 

c-------------------------------------------------------------------- 

c     If stepTime equals to zero, assume the material pure elastic  

c     and use initial elastic modulus 

c 

      if ( TotalTime .eq. zero ) then  

        do k = 1, nblock 

c 

c--------- initialize state variables 

          if (props(54).eq.one)then 

            randx = rand(0)/(1-2*rand(0))   

            vvf = props(44)*randx 

          endif 

   stateOld(k,8)  = props(28) 

   stateOld(k,10) = pi*props(31)**two 

   stateOld(k,13) = props(35) 

   stateOld(k,14) = props(44) 

   stateOld(k,18) = props(44) 

c--------- temperature is set first by *initial condition command in abaqus 

c     or by props(28) 

          stateOld(k,8)  = props(28) 

          if(tempOld(k) .eq. zero) then 

            if(props(28) .eq. zero) then 

              write(*,*)' error - temperature is zero' 

              stop 

            else 

              stateOld(k,8) = props(28) 

            endif 

          else 

            stateOld(k,8) = tempOld(k) 

          endif 

          if(props(28).eq.zero) stateOld(k,8) = tempOld(k) 

        end do 

      end if 

      if ( StepTime .eq. zero ) then  

        do k = 1, nblock 

c--------- g = shear modulus   twog = 2*g   blk = bulk modulus  

          g   = props(1) 

          blk = props(3) 

c---------- Trial stress 

          blkg  = blk-twothds*g 

          trace = strainInc(k,1) + strainInc(k,2) + strainInc(k,3) 

          blkgt = blkg*trace 

          do i=1,ntens 

            stressNew(k,i) = stressOld(k,i) + twog * strainInc(k,i) 

          end do 

          stressNew(k,1) = stressNew(k,1)  

     *                   + twog * strainInc(k,1) + blkgt 

          stressNew(k,2) = stressNew(k,2)  

     *                   + twog * strainInc(k,2) + blkgt 

          stressNew(k,3) = stressNew(k,3)  

     *                   + twog * strainInc(k,3) + blkgt 

        end do 

        return 

      end if 

c--------------------------------------------------------------------  

c 

      do 100 k = 1, nblock 
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c 

c--------- temperature  

        if(props(28).eq.zero) stateOld(k,8) = tempOld(k) 

        theta = stateOld(k,8) 

c--------- state variables 

        do i=1,nstatev 

           stateNew(k,i) = stateOld(k,i) 

        end do 

c-------- damage 

c   stateOld(k,14) = zero 

        dam1 = one-stateOld(k,14) 

        dam2 = one-min(one,dt*stateOld(k,16)/dam1) 

        phi1 = one-stateOld(k,18) 

c 

c--------- g = shear modulus   twog = 2*g   blk = bulk modulus 

        if (props(5).eq.zero) then 

           tratio = zero 

           g   = props(1) 

        else 

           tratio = theta/props(5) 

           tratio = min(tratio,0.9999) 

           g = props(1)*(one-tratio*exp(props(2)*(one-one/tratio))) 

        endif 

        twoga = two * g 

        blka  = props(3) - props(4)*tratio 

        twog  = (twoga * dam1**zeta) 

        blk   = (blka * dam1**zeta) 

c 

c------ calculate pressure 

        davg = third*(strainInc(k,1) + strainInc(k,2) + strainInc(k,3)) 

        pold = third*(stressOld(k,1) + stressOld(k,2) + stressOld(k,3)) 

        p = pold*dam2 + dam1*blk * davg * three 

c 

c---- check for melt 

c 

        if(theta.gt.props(5)) then 

          do i=1,ntens 

            stressNew(k,i) = zero 

            stateNew(k,i)  = zero 

          end do 

          p = min(zero,p) 

          stressNew(k,1) = p 

          stressNew(k,2) = p 

          stressNew(k,3) = p 

          stateNew(k,7)  = zero 

          stateNew(k,9)  = zero 

          go to 200 

        endif 

c 

c---- compute function evaluations 

c       theta = temperature 

c       ytheta = static yield stress 

c       vtheta,ftheta = functions to define rate dependence of yield 

c       h1,h2 = plastic hardeing moduli 

c       rs1,rs2 = static recovery functions 

c       rd1,rd2 = dynamic recovery functions     

c 

c deviatoric stress 

        ds11 = stressOld(k,1)-pold 

        ds22 = stressOld(k,2)-pold 

        ds33 = stressOld(k,3)-pold 

        ds12 = stressOld(k,4) 
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        ds23 = stressOld(k,5) 

        ds13 = stressOld(k,6) 

c invariants of stress 

        dj2 = half*(ds11**two+ds22**two+ds33**two 

     *        + two*(ds12**two+ds23**two+ds13**two)) 

        dj3 = ds11*(ds22*ds33-ds23**two)-ds22*(ds11*ds33-ds13**two) 

     *        + ds33*(ds22*ds11-ds12**two) 

c  

c stress state dependent material constants 

        adj    = half*(one+tanh(cc19*(cc20-theta))) 

        if(cc19.eq.zero) adj = one 

        vtheta = cc1*exp(-cc2/theta) 

        ytheta = cc3*exp(cc4/theta)*adj 

        ftheta = cc5*exp(-cc6/theta) 

c        if(dj2.eq.0)then 

c        if(dj2 .lt. 1.0D-08)then 

c          rd1=cc7*(1-ca*(4./27.))*exp(-cc8/theta) 

c          h1=(cc9-cc10*theta)*(1+ca*(4./27.)) 

c          rs1    = cc11 * exp(-cc12/theta) 

c          rd2    = cc13*(1-ca*(4./27.))*exp(-cc14/theta) 

c          h2     = (cc15-cc16*theta)*(1+ca*(4./27.)) 

c          rs2    = cc17 * exp(-cc18/theta) 

c          rd3    = cc21*(1-ca*(4./27.))*exp(-cc22/theta) 

c          h3     = (cc23-cc24*theta)*(1+ca*(4./27.)) 

c          rs3    = cc25 * exp(-cc26/theta) 

c        else 

c          rd1    = cc7*(1-ca*(4./27.-dj3**2./dj2**3.) 

c     *                -cb*dj3/dj2**1.5)*exp(-cc8/theta) 

c          h1     = (cc9-cc10*theta)*(1+ca*(4./27.-dj3**2./dj2**3.) 

c     *                 +cb*dj3/dj2**1.5) 

c          rs1    = cc11 * exp(-cc12/theta) 

c          rd2    = cc13*(1-ca*(4./27.-dj3**2./dj2**3.) 

c     *                 -cb*dj3/dj2**1.5)*exp(-cc14/theta) 

c          h2     = (cc15-cc16*theta)*(1+ca*(4./27.-dj3**2./dj2**3.) 

c     *                  +cb*dj3/dj2**1.5) 

c          rs2    = cc17 * exp(-cc18/theta) 

c          rd3    = cc21*(1-ca*(4./27.-dj3**2./dj2**3.) 

c     *              -cb*dj3/dj2**1.5)*exp(-cc22/theta) 

c          h3     = (cc23-cc24*theta)*(1+ca*(4./27.-dj3**2./dj2**3.) 

c     *                  +cb*dj3/dj2**1.5) 

c          rs3    = cc25 * exp(-cc26/theta) 

c        endif 

        if(dj2 .lt. 1.0D-08)then 

          rd1=cc7*(1-ca*(4./27.))*exp(-cc8/theta) 

          h1=(cc9-cc10*theta)*(1+ca*(4./27.)) 

          rs1    = cc11 * exp(-cc12/theta) 

          rd2    = cc13*(1-ca*(4./27.))*exp(-cc14/theta) 

          h2     = (cc15-cc16*theta)*(1+ca*(4./27.)) 

          rs2    = cc17 * exp(-cc18/theta) 

          rd3    = cc21*(1-ca*(4./27.))*exp(-cc22/theta) 

          h3     = (cc23-cc24*theta)*(1+ca*(4./27.)) 

          rs3    = cc25 * exp(-cc26/theta) 

        else 

   HRST1  = ca*(4./27.-dj3**2./dj2**3.) 

   HRST2  = cb*dj3/dj2**1.5 

          rd1    = cc7*(1-HRST1 

     *                -HRST2)*exp(-cc8/theta) 

          h1     = (cc9-cc10*theta)*(1+HRST1 

     *                 +HRST2) 

          rs1    = cc11 * exp(-cc12/theta) 

          rd2    = cc13*(1-HRST1 

     *                 -HRST2)*exp(-cc14/theta) 
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          h2     = (cc15-cc16*theta)*(1+HRST1 

     *                  +HRST2) 

          rs2    = cc17 * exp(-cc18/theta) 

          rd3    = cc21*(1-HRST1 

     *              -HRST2)*exp(-cc22/theta) 

          h3     = (cc23-cc24*theta)*(1+HRST1 

     *                  +HRST2) 

          rs3    = cc25 * exp(-cc26/theta) 

        endif 

c 

c---- compute effective strain rate 

c 

        if(dt .ne. zero)then 

          dum = zero 

          do i=4,ntens 

            dum = dum + strainInc(k,i)**two 

          end do 

          ddd = sqrt(strainInc(k,1)**two+strainInc(k,2)**two 

     *              + strainInc(k,3)**two + half*dum) * con1 / dt 

        else 

          ddd = zero 

        endif 

c 

c---- calculate trial alpha, kappa and yield radius 

c 

        alphaxx = stateOld(k,1)+stateOld(k,20) 

        alphayy = stateOld(k,2)+stateOld(k,21) 

        alphazz = stateOld(k,3)+stateOld(k,22) 

        alphaxy = stateOld(k,4)+stateOld(k,23) 

        alphayz = stateOld(k,5)+stateOld(k,24) 

        alphazx = stateOld(k,6)+stateOld(k,25) 

        alpm = con1 * sqrt(alphaxx**two + alphayy**two + alphazz**two 

     *        + two*(alphaxy**two + alphayz**two + alphazx**two)) 

c        sto = dt*rs1*alpm*(dcs0/dcs)**zz 

c        sto2 = dt*rs2*(dcs0/dcs)**zz 

        sto = dt*rs1*alpm*dcs1 

        sto2 = dt*rs2*dcs1 

        if(iparam1.eq.0)then 

c          sto  = dt * (rs1+rd1*ddd+rs3+rd3*ddd)*alpm*(dcs0/dcs)**zz 

c          sto2 = dt * (rs2+rd2*ddd)*(dcs0/dcs)**zz 

          sto  = dt * (rs1+rd1*ddd+rs3+rd3*ddd)*alpm*dcs1 

          sto2 = dt * (rs2+rd2*ddd)*dcs1 

        endif 

        do i=1,ntens 

          stateNew(k,i)    = stateOld(k,i) * (one - sto) 

          stateNew(k,i+19) = stateOld(k,i+19) * (one - sto) 

        end do 

        if(iparam3.eq.0)then 

          trialk = stateOld(k,7) 

        else 

     *    trialk = (-one+sqrt(one+two*sto2*(stateOld(k,7) 

     *                        + half*h2*ddd*dt)))/ max(1.e-30,sto2) 

        endif 

        stateNew(k,7) = stateOld(k,7) - sto2 *  trialk * trialk 

        ak = (vtheta * log((ddd+sqrt(ddd**two+ftheta**two))/ftheta) 

     *     + ytheta + stateNew(k,7))*dam1 

c 

c---- calculate trial elastic deviatoric stresses 

c 

        do i=1,3 

          stressNew(k,i) = dam2*(stressOld(k,i)-pold) 

     *                   + dam1*twog*(strainInc(k,i)-davg) 
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        end do 

        do i=4,ntens 

          stressNew(k,i) = dam2*stressOld(k,i) + dam1*g*strainInc(k,i) 

        end do 

c 

c---- compute xi (deviatoric stress - 2/3 alpha) 

c 

        do i=1,ntens 

          xi(i) = stressNew(k,i) - twothds * stateNew(k,i) 

        end do 

c 

c---- compute (magnitude of xi) squared 

c 

        dum = zero 

        do i=4,ntens 

          dum = dum + xi(i)**two 

        end do 

        ximag2 = xi(1)**two + xi(2)**two + xi(3)**two + two*dum 

c 

c---- check for plasticity 

c 

        ak2 = ximag2 - twothds * ak * abs(ak) 

        if(ak2.le.zero .or. ddd.eq.zero) then 

c 

c---- elastic process begins here 

          do i=1,3 

            stressNew(k,i) = stressNew(k,i) + p 

          end do 

          go to 200 

        end if 

c 

c---- plasticity process begins here 

c 

        ximag = sqrt(ximag2) 

c 

c---- return trial stresses to yield surface, add pressure term 

c      and update state variables 

c  

        if(iparam1.eq.0)then 

c        dgam = (ximag-con1*ak)/(dam1*twog+twothds*(dcs0/dcs)**zz 

c     *                    *(h1+h2*dam1)) 

        dgam = (ximag-con1*ak)/(dam1*twog+twothds*dcs1 

     *                    *(h1+h2*dam1)) 

        endif 

        dgam2 = dgam / ximag 

c 

        dsig = dam1*twog * dgam2 

        do i=1,ntens 

          stressNew(k,i) = stressNew(k,i) - dsig * xi(i) 

        end do 

        stressNew(k,1) = stressNew(k,1) + p 

        stressNew(k,2) = stressNew(k,2) + p 

        stressNew(k,3) = stressNew(k,3) + p 

c 

        stateNew(k,7) = stateNew(k,7) + dgam * con1 * h2*(dcs0/dcs)**zz 

        stateNew(k,7) = max(zero,stateNew(k,7)) 

c 

        dalph = (h1+h3) * dgam2 

        do i=1,ntens 

c          stateNew(k,i) = stateNew(k,i) + dalph * xi(i)*(dcs0/dcs)**zz 

          stateNew(k,i) = stateNew(k,i) + dalph * xi(i)*dcs1 

        end do 
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c 

c---- update plastic strain (for output purposes only) 

c 

      stateNew(k,9) = stateOld(k,9) + dgam * con1 

c 

c---- update temperature for adiabatic problems 

c 

      dum = zero 

      do i=4,ntens 

        dum = dum + stressNew(k,i)*xi(i) 

      end do 

      stateNew(k,8) = stateOld(k,8) 

     *              + htcp*dgam2*( stressNew(k,1)*xi(1) 

     *              + stressNew(k,2)*xi(2) + stressNew(k,3)*xi(3) 

     *              + two*dum) 

c---- update damage 

c 

      epsdot = dgam*con1/dt 

      sigeqv = (stressNew(k,1)-stressNew(k,2))**two 

     *       + (stressNew(k,2)-stressNew(k,3))**two 

     *       + (stressNew(k,3)-stressNew(k,1))**two 

     *       + 6.0*(stressNew(k,4)**two+stressNew(k,5)**two 

     *                                 +stressNew(k,6)**two) 

      sigeqv = sqrt(half*sigeqv) 

      sige = max(1.e-15,sigeqv) 

c 

c Cocks-Ashby large pore growth term 

         cacon = abs(vtheta/ytheta) 

c         if(cacon.lt.props(54))  cacon=props(54) 

         if(cacon.lt.props(54)) then 

          cacon=props(54)*(8.0*exp(-0.00705*props(28))) 

         end if 

         dterm=two*(two*cacon-1)/(two*cacon+1) 

         arg = min(15.,p*dterm/sige) 

  beta = sinh(max(zero,arg) ) 

  c90 = one + cacon 

  psi = min(15.,beta*dt*epsdot*c90) 

  tmp = max(zero,(one+(phi1**c90-one)*exp(psi))) 

   stateNew(k,18) = min((one-tmp**(one/c90)),.99) 

c Cocks-Ashby void growth rate 

         vy = vtheta/ytheta 

   stateNew(k,19) = beta*epsdot*(one/(one-stateNew(k,18))**vy 

     *                 -(one-stateNew(k,18))) 

c McClintock form of void growth 

         sqtth = three**half 

         abc   = sqtth/(two*(one-props(30))) 

     *         * sinh(sqtth*half*(one-props(30))*(two*p/sige+third)) 

         if(props(31).gt.zero) then 

            vrad  = props(31)*exp(stateNew(k,9)*abc/con1) 

         else 

            vrad  = zero 

         end if 

         stateNew(k,10) = pi*vrad**two 

         stateNew(k,11) = three*stateNew(k,10)*abc*epsdot 

c Nucleation of voids 

c deviatoric stress 

         ds11 = stressNew(k,1)-p 

         ds22 = stressNew(k,2)-p 

         ds33 = stressNew(k,3)-p 

         ds12 = stressNew(k,4) 

         ds23 = stressNew(k,5) 

         ds13 = stressNew(k,6) 
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c invariants of stress 

         di1 = three*p 

         dj2 = half*(ds11**two+ds22**two+ds33**two 

     *       + two*(ds12**two+ds23**two+ds13**two)) 

         dj3 = ds11*(ds22*ds33-ds23**two)-ds22*(ds11*ds33-ds13**two) 

     *       + ds33*(ds22*ds11-ds12**two) 

         if(dj2.le.zero) then 

           r1 = zero 

           r2 = zero 

           r3 = zero 

         else 

           r1 = (4./27.-dj3**two/dj2**3.) 

           r2 = dj3/dj2**(op5) 

           r3 = di1/(dj2**half) 

         endif 

         r3 = abs(r3) 

         zzz  = (props(32)*r1+props(33)*r2+props(34)*r3) 

         zzz  = abs(zzz) 

         zzzz = (props(37)**half/(props(36)*props(38)**third))*zzz 

         stateNew(k,17) = stateOld(k,13) 

         stateNew(k,13) = props(35)*exp(stateNew(k,9)*zzzz/con1) 

     *                  * exp(-props(51)/stateNew(k,8)) 

c added for nonmonotonic path sequences, statev(17) is old nucleation 

         if(stateNew(k,13).lt.stateNew(k,17)) then 

           stateNew(k,13) = abs(stateNew(k,17)+stateNew(k,13)) 

         endif 

c Coalescence factor 

c         cf = (cd1+cd2*stateNew(k,13)*stateNew(k,10))* 

c     *          * exp(props(52)*stateNew(k,8))*(dcs0/dcs)**zz 

         cf = (cd1+cd2*stateNew(k,13)*stateNew(k,10))* 

     *          * exp(props(52)*stateNew(k,8))*dcs1 

c Damage 

         damage=cf*(stateNew(k,13)*stateNew(k,10)+stateNew(k,18)) 

         if(damage.gt.0.6) damage = .99 

         stateNew(k,14) = min(damage,0.99) 

c   stateNew(k,14) = zero 

c Nucleation Rate 

         epsdot = abs(epsdot) 

         stateNew(k,15)=zzzz*stateNew(k,13)*epsdot 

c Damage Rate 

         zsecond = cf*(stateNew(k,15)*stateNew(k,10) 

     *                +stateNew(k,13)*stateNew(k,11) 

     *                +stateNew(k,19)) 

c         zthird = (stateNew(k,13)*stateNew(k,10)+stateNew(k,18)) 

c     *          * cd2*(dcs0/dcs)**zz*exp(props(52)*stateNew(k,8)) 

c     *          * (stateNew(k,15)*stateNew(k,10) 

c     *            +stateNew(k,13)*stateNew(k,11)) 

         zthird = (stateNew(k,13)*stateNew(k,10)+stateNew(k,18)) 

     *          * cd2*dcs1*exp(props(52)*stateNew(k,8)) 

     *          * (stateNew(k,15)*stateNew(k,10) 

     *            +stateNew(k,13)*stateNew(k,11)) 

         stateNew(k,16)=zsecond+zthird 

c Triaxiality 

   stateNew(k,12) = p/sige 

c 

  200 continue 

c 

      stateNew(k,7) = max(stateNew(k,7),zero) 

c 

 100  continue 

      return 

      end 
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