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The Affymetrix GeneChip® Canine Genome 2.0 microarray is re-annotated using 

AgBase tools, up-to-date ID mapping and GO annotations associated with publicly 

available gene products updated on this array. This re-annotation makes the array more 

useful for researchers using the canine microarray for biological discovery. We use flow 

cytometry to determine if liposomal clodronate (LC) is an acceptable alternative to 

surgical splenectomy to facilitate detection of subclinical infection with Babesia canis in 

potential blood donor greyhounds. Our study shows that LC is not a reliable means of 

exposing babesiosis in greyhounds with a recent history of infection.  We evaluate the 

effect of depletion of antigen presenting cells on regulatory T cells (Tregs) in dogs treated 

with LC by multi-color flow cytometry. We demonstrate that LC promotes increases in 

the CD4+CD25+FOXP3+ Tregs affecting mostly the CD4+CD25lowFOXP3+ Tregs subset 

suggesting a role of monocytes in naïve T cell priming and differentiation into Tregs. 
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CHAPTER I 

INTRODUCTION 

There is an ongoing movement to utilize high-throughput functional genomics 

platforms to derive biologically significant information from lists of numerous identifiers 

and accessions. In addition, there is a need for up-to-date accessions to facilitate data 

availability and ease of use for various fields of research. The canine model, which is 

used in several areas of medical research, has the potential to provide translational 

information to promote medical research if data are readily available. 

Babesia is an intracellular protozoan parasite that exploits red blood cells (RBCs). 

It is the causative agent of babesiosis, which is not only considered an emerging disease 

in the U.S., but is also a major concern in veterinary practice. Disease caused by Babesia 

canis is commonly subclinical in greyhounds, which, in turn, become chronic carriers. As 

the most common blood donors used in veterinary medicine, greyhounds must be 

screened for Babesia to prevent a parasite transmission from blood donors to recipients 

that could develop potentially fatal babesiosis. In the past, screening of potential blood 

donors was performed using a surgical splenectomy to reveal circulating protozoa. As the 

spleen is responsible for removing infected RBCs, absence of the spleen will lead to 

observable parasitemia indicating that the animal is unfit to join the blood donor pool. 

However, this invasive practice has dropped out of favor, because it leaves the animal 
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permanently immune-suppressed. Here, we explore the possibility of a medical 

splenectomy utilizing liposome encapsulated clodronate. 

Liposomal clodronate (LC) is used to cause transient immune suppression in both 

research and clinical settings by depleting monocytes, macrophages and immature 

dendritic cells (DCs) via apoptosis. Here, greyhounds exposed to Babesia were treated 

with differing levels of LC and Babesia infected RBC numbers were evaluated via flow 

cytometric analysis over the course of treatment. We propose that LC treatment could be 

an alternative to surgical splenectomy for potential blood donors. 

Also, for the first time, regulatory T cell (Tregs) numbers were evaluated in the 

absence of professional antigen presenting cells (APCs), monocytes, macrophages and 

immature DCs. Tregs are a subset of T cells defined as CD4+CD25+FOXP3+, and that are 

critical for suppression and regulation of normal canine immune responses. Canine Tregs 

are poorly understood, but new staining techniques provide a key to unearthing much 

needed information on this critical cell type. 

Three specific aims accomplished in this thesis research are as follows: 

Functional Annotation of the Affymetrix GeneChip® Canine Genome 2.0 
Microarray 

Hypothesis: By re-annotating the Affymetrix Canine Genome 2.0 microarray, we 

will increase the number of annotations provided for the microarray as a 

whole and the quality of annotations provided for the array. 

Objective: To improve the existing functional annotation of the Affymetrix 

Canine Genome 2.0 microarray. 
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To achieve this objective: A digital file including all Affymetrix probeset 

identifiers on the microarray was re-annotated and updated using AgBase 

tools. This updated information was made publicly available in a user-

friendly format at the Mississippi State University Agbase website. 

Use of liposomal clodronate (LC) to facilitate detection of subclinical Babesia canis 
infection in potential blood donor greyhounds 

Hypothesis: Transient immune suppression by liposomal clodronate (LC) will 

facilitate detection of subclinical Babesia canis infection in potential 

canine blood donors. 

Objective: Evaluate the role of liposomal clodronate in the development of 

parasite infection in erythrocytes of greyhounds with known exposure to 

Babesia canis (PCR and anti-Babesia antibody positive) but without 

evidence of productive Babesia infection in their red blood cells (flow 

cytometry and blood smear negative). 

To achieve this objective: Four greyhounds with a history of varying levels of 

positivity for exposure/confirmed presence of Babesia were given a low, 

medium, and high dose of liposomal clodronate.  To evaluate the effect of 

the drug, the levels of parasite-infected red blood cells in peripheral blood 

was measured using specific single color flow cytometric analysis and 

results analyzed by one-way ANOVA statistics. 
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The effects of selective LC-dependent removal of professional antigen presenting 
cells (APCs), monocytes, macrophages and immature dendritic cells (DCs) on  

the numbers and phenotypes of CD4+CD25+FOXP3+ regulatory T cells 

Hypothesis: Monocytes/macrophages and immature DCs are the major APC 

populations shaping protective adaptive immune responses in dogs, as has 

been demonstrated in humans and mice, and their impaired function leads 

to immune suppression through a conversion of naïve T cells into 

suppressive FOXP3-expressing Tregs. 

Objective: Evaluate the role of professional APCs (monocytes/macrophages/DCs) 

in the generation of FOXP3-expressing regulatory T cells in normal dogs 

and dogs exposed to Babesia canis. 

To achieve this objective: The numbers of Tregs in four greyhounds previously 

exposed to Babesia canis were assessed following the administration of 

low, medium, and high doses of liposomal clodronate. The numbers and 

phenotypes of Tregs and the levels of CD14+ monocytes of four normal 

Walker hounds treated with the medium dose of LC, and Tregs were 

observed. For both studies, multiple color flow cytometric analysis was 

performed and the results were analyzed with one way ANOVA statistics. 
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CHAPTER II 

REVIEW OF PERTINENT LITERATURE 

Microarray and Gene Ontology 

The use of microarrays in research generates a large amount of data that must be 

translated into biologically relevant information. In order to accomplish this, researchers 

use annotation, the practice of attaching biological information to sequences. This 

information can then be interpreted by researchers themselves or entered into modeling 

tools such as pathway analysis and Gene Ontology(GO) enrichment tools [1]. There are 

two components of annotation: structural annotation and functional annotation. Structural 

annotation is the identification of demarcation of the genomic boundaries of individual 

functional elements within the genome sequence and includes providing accessions and 

identifiers for commonly used public databases. This tends to occur as the genome 

sequence is assembled and continues as new information is acquired. Functional 

annotation associates a gene product’s functional information with the gene product itself 

and is not commonly done during genome sequencing [1, 2]. GO has become the 

standard for functional annotation. It is a structured network consisting of defined terms 

and relationships between them that describe three attributes of gene products: molecular 

function, biological process, and cellular component [3]. These three independent 

ontologies are dynamic and while having a common language, they exist in a network 

that changes constantly as more information is acquired [4]. Using GO annotation, 
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researchers can take large amounts of data generated from microarrays and assign 

biological significance to their results based on the function, process, or component they 

are associated with. Researchers spend large amounts of time and money to annotate their 

singular dataset. In this project, we sought to re-annotate the Affymetrix Canine Gene 

Chip 2.0 microarray that was annotated in 2006.  As information content of databases 

such as GO keeps changing, there is a need for re-annotation of microarrays and 

dissemination of this updated information to the public. The end result is improved ability 

to perform analysis of canine samples. 

Liposomal Clodronate 

Clodronate or dichloromethylene-bisphosphonate is being used in various types of 

treatments and experiments in many different fields of the scientific and medical 

communities [5]. When taken into professional phagocytes, including both DCs and 

monocytes/macrophages, clodronate is metabolized to adenosine 5’ triphosphate with the 

end result being the lysis of the mitochondrial membrane within the host 

monocytes/macrophage, which leads to the induction of apoptosis [6, 43], therefore 

depleting the number of viable monocytes/macrophages and DCs that are available for 

immune response. A recent study, however, has argued that clodronate causes cell death 

via necrosis rather than apoptosis as previously reported [7]. If that is the case, the 

cytotoxicity of clodronate could very well cause adverse effects in local tissues when 

released at cell lysis. 

When administered as a free pharmaceutical, bisphosphonates such as clodronate 

are considered to be “bone-seeking molecules” [7], and only very small amounts of the 

drug are taken up via phagocytosis. Thus, the resulting intracellular concentrations are 
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too small to induce the most often desired apoptosis [5]. In order to circumvent this, 

clodronate is often administered in the liposome encapsulated formation. This prolongs 

the amount of time the molecule spends in circulation and increases the chance of 

phagocytosis by professional phagocytes [7]. In instances when the immune response 

may be detrimental to the overall health of the patient, clodronate is one way that we may 

suppress both the innate and adaptive responses. 

Liposomes are tiny vesicles composed of one or more concentric phospholipid 

bilayers, and they have been found to be efficient methods of delivering water soluble 

drugs to phagocytes [5]. Size and charge of the liposome are important characteristics to 

take into consideration when developing treatments or experiments. It has been found 

that the optimal liposome is negatively charged and has a size of 85±20nm.  If too large, 

the particle runs the risk of inducing the production of pro-inflammatory cytokines such 

as IL-6, TGF-α, and IL-1β that can cause further damage when treating conditions such 

as autoimmune diseases. If too small, they can have no effect at all [7]. 

Liposomes are known to enhance phagocytosis in monocytes/macrophages, but 

there are at least two conditions that must be met in order for the encased clodronate to 

induce apoptosis in these cells. First, the phagocytosis of a liposome-encased clodronate 

is not enough to ensure apoptosis. There are many cell types that will take in this 

molecule, but the cells must also have the mechanisms required to lyse the liposomal 

membrane to release the clodronate contents. Second, the intracellular concentration of 

clodronate must reach a threshold. If the concentration is too low, apoptosis may not 

occur. In one study, activated monocytes were observed to have higher levels of 

phagocytosis and therefore had higher levels of associated apoptosis when compared to 
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resting or non-activated monocytes. Overall, the intracellular concentration of clodronate 

regulates the cytotoxic effects or degree of cell death achieved by a single dose of 

liposome-encased clodronate [5]. 

Many scientists are using liposome-encased clodronate to deplete the numbers of 

monocytes/ macrophages and DCs in the course of an immune response for many 

different types of experimental studies. LC has been used to provide controls for 

experiments evaluating the role of monocytes and macrophages in muscle injury [8] and 

even in diseases such as acute gout [9]. LC is being used to treat various autoimmune 

diseases due to its selective targeting of disease-related monocytes and macrophages [5], 

and it has been used in the study of dengue fever to prove that monocytes and 

macrophages are critical elements in controlling the virus [10]. In 2004, a study showed 

that by depleting monocytes and macrophages by administration of liposome-encased 

clodronate, hyperalgesia was decreased in part due to the decrease in pro-inflammatory 

mediators produced by those cell types [6]. However, when administering liposomal 

clodronate systemically, there is not a significant amount of monocytes/macrophage 

depletion in specific sites. In these cases where a specific tissue is being evaluated, direct 

local injections are effective in lowering monocyte/ macrophage numbers for several 

days. Depletion percentages for circulating monocytes/macrophages have been reported 

as high as 70%, and for certain populations of monocyte-derived tissue macrophages has 

been anywhere from 15-60% [6]. 

In 2005, a method utilizing LC’s macrophage depletion characteristics was 

developed that allowed for the acceleration of alveolar macrophage reconstitution [11]. 

Also, LC has been used to decrease the instance of dissemination and brain invasion by 
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Cryptococcus neoformans. The causative agent of cryptococcosis, Cryptococcus 

neoformans is thought to use monocytes as a type of “Trojan horse” that can carry it to 

various organs including the spleen and lungs and even across the blood brain barrier 

[12]. Another study describes how the act of depleting macrophages can generally be 

both good and bad. It exacerbates early aortic lesions allowing for increase in collagen 

content which can cause a widening or growth to be observed. On the other hand, the 

depletion of macrophages does decrease the production of pro-inflammatory cytokines as 

previously stated [13]. 

All in all, encapsulation inside liposomes enhances the effectiveness of clodronate 

as an immune response inhibitor. Liposome-encased clodronate has widespread uses in 

both research and treatment, but should be selected for use on a case-by-case basis. It has 

both beneficial effects as well as adverse effects, and those must be weighed carefully. 

Babesia 

Babesia canis is an intracellular protozoan parasite carried by ticks, in particular 

Rhipicephalus sanguineus ( the brown dog tick), which invades canine red blood cells 

(RBCs). Transmission from tick to canine host is complete after a 2-3 day feeding 

attachment by the tick [14, 15]. Once in the canine host circulatory system, the organism 

attaches to RBCs and is internalized via endocytosis [16]. Once in the cytoplasm of the 

host’s RBCs, then the organism is free to reproduce via binary fission resulting in rupture 

of current RBC and infection of local RBCs [14].  

It is known that Rhipicephalus sanguineus transmits the causative agent of canine 

babesiosis in greyhounds in the United States. Babesia canis subspecies vogeli, and 

disease caused by this protozoan has been recognized in greyhound kennels [14]. 
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Greyhounds are the most commonly used blood donors in veterinary medicine, because a 

high percentage of the breed are universal blood donors, have high hematocrits, gentle 

dispositions, and easy to access jugular veins [17]. Greyhounds and their propensity for 

babesiosis causes concern in blood transfusion recipients, because a transfusion with 

Babesia-infected blood commonly leads to potentially devastating babesiosis. In donor 

recipients of Babesia-infected blood, severe babesiosis can lead to multiple organ 

dysfunction syndromes, septic shock, or even death [14, 18]. In puppies or adult dogs, 

babesiosis can often develop alongside a secondary disease. These cases are often 

characterized by fever, lethargy, anorexia and jaundice. Clinically, evidence may indicate 

hemolytic regenerative immune-mediated anemia, leukocytosis, and thrombocytopenia 

[19, 20, 14]. In greyhounds, it is often hard to diagnose babesiosis since it is most 

commonly a mild infection with non-specific clinical signs, and affected dogs can 

become chronic sub-clinical carriers [18].  

Accepted methods for detection of babesiosis include microscopic identification 

of the organism on fresh blood smears, serologic testing using an IFA (indirect 

fluorescent antibody test), PCR (polymerase chain reaction) assay targeting the Babesia 

spp. small subunit ribosomal RNA (ribonucleic acid) gene in the blood, and flow 

cytometric evaluation of RBCs [14].There are limitations to some of these tests. Blood 

smears utilizing Giemsa stains are not sensitive tests for detecting Babesia, because it is 

hard to visualize the organism unless a moderate to high parasitemia is present [14, 21]. 

When running antibody tests such as IFA, it can be hard to distinguish active infection 

from one that has already cleared due to the persistence of antibodies within the host’s 

immune system [18, 22]. Flow cytometry also relies on a detectable parasitemia. In 
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instances where tests are positive, donors must be rejected to prevent possible 

repercussions due to transfusions with infected blood. Although PCR is a definitive test 

for Babesia canis, this is not a technique most clinics have quick and easy access to, and 

PCR positivity alone does not permit quantitation of the number of infected RBCs. For 

this thesis research, the focus turned to flow cytometric analysis. Several methods for 

quantifying red blood cells infected with Babesia via flow cytometry have been 

successful: the use of HE (hydroethidine) in DMSO (dimethyl sulfoxide) for staining was 

utilized here [22, 23]. 

Regulatory T cells 

Although they are well documented in human and murine research, little is known 

about the functional significance of regulatory T cells (Tregs) in the canine. However, it 

is apparent that Tregs are an important constituent of healthy function of the host immune 

system. Tregs may be either thymus-derived naturally occurring Tregs or Tregs that are 

induced in the periphery from conventional peripheral CD4+ T cells [24, 25]. Regulatory 

T cells are responsible for maintaining tolerance and preventing autoimmunity by 

retaining the ability to suppress the activation and function of effector T cells and antigen 

presenting cells (APCs) via their suppressive actions, which include both direct and 

indirect suppression. Direct suppression used against effector T cells can be considered 

an activation-dependent process, but requires cell-cell interactions in order actively 

suppress effector T cells [26]. On the other hand, indirect suppression, in evidence versus 

APCs, includes induction of the enzyme IDO (indoleamine 2,3-dioxygenase) which 

causes the development of a strong immunosuppressive agent and induces more Tregs 

[30]. 
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In normal systems, when activated or increased in numbers to a suitable 

concentration, Tregs can help to prevent autoimmune dysfunction of the host system [31, 

33], or they may exacerbate any ongoing pathology [32, 34, 35, 36, 37, 38, 39]. Although 

more research is needed, studies have shown that a nuclear transcription factor FOXP3 

(forkhead box P3 transcription factor) is necessary for the natural generation of naïve T 

cells into regulatory T cells with suppressive functions. Without FOXP3, the 

recognizable immunosuppressive function can be lost [27, 28, 29]. Currently, it has been 

shown that conventional T cells stimulated via antigen in the presence of essentials such 

as TGF-β, IL-10, and retinoic acid will be induced to Tregs [40, 41, 42]. 

There is still much research to be performed in order to comprehensively detail 

the function of Tregs and their role in the canine immune response, but studies are 

beginning to show that functions of Tregs in canines are similar to known functions 

described in human and murine models. 
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CHAPTER III 

FUNCTIONAL ANNOTATION OF THE AFFYMETRIX CANINE 2.0 

MICROARRAY 

Abstract 

Researchers using high-throughput functional genomics platforms such as 

microarrays must be able to derive biologically relevant insights from the results, which 

are returned as lists of numerous identifiers and accessions. This is a problem due to the 

amount of time and resources needed to turn those accessions into applicable data. The 

lack of functional annotation associated with arrays is also a challenge for modeling array 

data. Despite an increase in the amount of canine genomics research, the annotation files 

provided for the Affymetrix GeneChip® Canine Genome 2.0 microarray contain 

functional annotations for only 14.5% of transcripts represented on this array. We re-

annotated the Affymetrix canine array, providing updated database identifiers and new 

functional annotations. Here we linked the Affy probe IDs to identifiers from commonly 

used databases to create an ID mapping file which can be used to facilitate data sharing 

between differing databases. In addition, we linked these same gene products to existing 

functional annotation using the Gene Ontology (GO), and provided new GO annotation 

where none existed. After remapping, we identified 10,737 existing GO annotations for 

5,127 of the newly mapped gene products represented on the array. In addition, we added 

70,148 annotations for 16,966 gene products. Thus, we have provided annotations for 
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94% of this array, which represents a seven-fold increase in the number of gene products 

than were originally annotated. The resultant data is publicly available at the AgBase 

website (http://agbase.msstate.edu) and will be periodically updated during standard 

database updating procedures. The new data provided enables canine researchers to more 

efficiently functionally model their Affymetrix array datasets and translate array data into 

additional knowledge. 

Background 

The canine genome was initially released in July 2004 by the BROAD Institute’s 

Dog Genome Project, and then a new version was released in May 2005 [4, 5]. A 

commonly used canine microarray, the Affymetrix GeneChip® Canine Genome 2.0 

(GPL: 3738), with probes for over 18,000 canine mRNA/EST transcripts and over 20,000 

non-redundant predicted genes, was designed to help obtain biologically relevant 

information from this genome (6). The identifier mappings and GO annotations 

associated with this array were last updated in 2006 [7].  

The outdated or lack of functional annotations associated with microarrays 

hinders researchers who wish to model their array data results to obtain biologically 

relevant information. Thus, despite the importance of canine array research, only 5% of 

available datasets generated using this array have been published, while only 4% of 

available datasets have been published for all canine array platforms (based on Gene 

Expression Omnibus database, 2/2013), Figure 3.1. This represents thousands of dollars 

of research that has not yet been translated to biological relevance for biomedical and 

veterinary research. Moreover, these figures are likely to under-represent the magnitude 

of the problem, because not all datasets from canine array research will have been 

http://agbase.msstate.edu/
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submitted as researchers try to obtain annotations. However, re-annotation of arrays with 

the most up-to-date functional annotations can lead to significant changes in the 

interpretation of array datasets [8]. 

 

Figure 3.1 Estimation of data generated using canine assays.  

Representative of canine datasets in GEO as of 2/2013. 

Annotation is the practice of attaching biological information to sequences, and it 

is this information that is used not only by researchers but also by functional modeling 

tools such as pathways analysis and Gene Ontology (GO) enrichment analysis tools. 

There are two components of annotation: structural annotation and functional annotation. 

Structural annotation is the identification of individual functional elements within the 

genome sequence and includes providing accessions and identifiers for commonly used 

public databases. This is generally initiated as the genome sequence is assembled and 

continues on-going as new information is acquired. Functional information, alternatively, 

associates a gene product’s functional information with the gene product itself and is not 

commonly performed during genome sequencing [1].   
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GO has become the standard for functional annotation, and is a structured 

network consisting of defined terms and relationships between them that describe three 

attributes of gene products: Molecular Function, Biological Process, and Cellular 

Component [2]. These three independent ontologies are dynamic and while having a 

common language, they exist in a network that changes constantly as more information is 

acquired [3]. 

To make functional modeling in canine research more accessible for researchers, 

we re-annotated the largest and most frequently used microarray, the GeneChip® Canine 

Genome 2.0 Array from Affymetrix. This updated array annotation will be made publicly 

available at AgBase at http://www.agbase.msstate.edu. 

Methods 

Affymetrix Array Files and Array Statistics 

The Affymetrix GeneChip® Canine Genome 2.0 (GEO platform accession GPL: 

3738) has probes that represent 18,000 canine mRNA/EST transcripts and over 20,000 

non-redundant predicted genes. We obtained canine array dataset numbers from the Gene 

Expression Omnibus (GEO) database (http://www.ncbi.nih.gov/geo) using specific 

searches (Figure 3.1). The number of canine datasets submitted was obtained using the 

search criteria: dog[organism]. The number of those datasets that were linked to 

publications was obtained using the refined search criteria: dog[organism] AND “gds 

pubmed”[filter]. The number of datasets submitted from only the Affymetrix GeneChip® 

Canine Genome 2.0 array, was obtained using search criteria: GPL3738. The number of 

those datasets that were linked to publications was obtained by the refined search criteria: 

GPL3738 AND “gds pubmed”[filter]. 

http://www.agbase.msstate.edu/
http://www.ncbi.nih.gov/geo
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Accession Mapping 

Since different functional modeling tools often require different public database 

accessions or identifiers, accession mapping of Affy probe IDs to multiple public 

databases was done to provide an up-to-date, comprehensive cross-mapping file to 

support functional modeling. The ArrayIDer tool is available for public use and can be 

accessed via the AgBase website. This tool accepts numerous ID types, including 

Affymetrix probeset identifiers which result from the use of Affymetrix microarrays. A 

document is then generated by the tool which matches these probeset identifiers to a list 

of equivalent identifiers used by other publically available databases such as UniProtKB, 

Ensembl, RefSeq, and Entrez Gene. ID types preferred were UniProtKB (Universal 

Protein Knowledgebase) and RefSeq, with UniProtKB identifiers desired due to their 

high-quality manual annotations. Ensembl, RefSeq, and Entrez identifiers were mapped 

back to any corresponding UniProtKB and RefSeq protein identifiers using the publically 

available BioMart application provided by the Ensembl website [7]. All RefSeq protein 

identifiers were then checked against the National Center for Biotechnology Information 

(NCBI) database to update this list of identifiers with any revisions or deletions. Updated 

RefSeq protein identfiers were then mapped to UniProt identifiers using the publically 

available ID Mapping application [8]. These updated identifiers were compiled into a 

single ID Mapping file that is available online at the AgBase Array Annotation section. 

Figure 3.2 outlines the workflow of re-mapping and re-annotating the GeneChip® Canine 

Genome 2.0 microarray. 
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Figure 3.2 Workflow schematic showing the process of ID mapping and linking GO 
annotation. 

Functional annotation begins by accession mapping through ArrayIDer which divides the 
input file into broad categories: ESTs, BROAD, Entrez, Ensembl, UniProKB, Genbank 
RefSeq. UniProtKB and Genbank RefSeq are sent through GORetriever which pulls 
existing GO annotations while the rest undergo manual biocuration. ESTs, BROAD, and 
Entrez accessions go through sequence analysis of functional motifs and domains. 

GO Annotation 

Since a key step in functional modeling is GO enrichment analysis, canine gene 

products from the ID Mapping file were linked to GO annotations. Currently, there is no 

dedicated GO annotation for dog gene products and the main source of existing GO 

annotation are the UniProtKB annotations provided by the EBI GOA Project [1]. We 

used the ID mapping file to identify any array probes that had a mapping to UniProtKB 

and used GORetriever [2] to get these annotations. Next we provided GO annotations for 

the remaining gene products represented on the array based on their type of database 

accession (which indicates the type of data available for the corresponding gene product). 



 

23 

Expressed Sequence Tags (ESTs): Since there is no experimental functional data 

available for ESTs, these sequences can only be GO annotated based upon sequence 

analysis of functional motifs and domains [9]. EST sequences identified form the canine 

microarray were downloaded from the dbEST, prepared as FASTA files and this data was 

submitted to the InterProScan program [3]. The resulting InterPro identifiers were 

mapped to GO using the InterPro2GO mapping file [4]. These annotations are given the 

GO evidence code “Inferred from Electronic Annoation” (IEA) and provide broad 

functional information that can be used to predict function and support hypothesis testing. 

BROAD: These identifiers are associated with the BROAD Institute of MIT and 

Harvard and the canine genome project. Retrieving annotations for this subset of 

identifiers is still currently ongoing. Updated annotations will be added to the publically 

available files as they are retrieved. 

UniProtKB and RefSeq Identifiers: Using the GORetriever tool that is provided to 

the public by AgBase [2], all existing GO annotation for probes on the microarray 

associated with UniProtKB and RefSeq identifiers were separately annotated through 

critical analysis of experimental data of published literature using Gene Ontology 

Consortium (GOC) guidelines. The resulting compilation of updated GO annotations for 

all gene products associated with the Affymetrix GeneChip® Canine 2.0 microarray were 

compiled into a single file and will be made publicly available at the AgBase website in 

the Array Annotations section after quality check is done using GOC guidelines [6]. 

GAQ Score 

The GO Annotation Quality (GAQ) Score [5] measures the breadth of GO 

annotation, the level of detail of the annotation, and the type of evidence used to make the 
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annotation to provide a quantitative measure of the overall quality of the GO annotations. 

All updated anntoations retrieved were combined into a single file that was arranged into 

the gene associated file format 2.0, and then uploaded into the AgBase tool in a delimited 

form. Output form this tool provides a summary containing the total GAQ score, the 

number of non-redundant gene products, and the mean GAQ. 

Results and Discussion 

Since functional annotation is continually changing as more data is added, to 

derive biologically relevant functional information from arrays, scientists need ready 

access to the most up-to-date annotation. Although microarrays are used to study canine 

systems, only a small fraction of the data is published [Figure 3.1]; this lack of functional 

annotation is hindering biological modeling of this data. For example, the Affymetrix 

canine microarray was last annotated in May 2006, although it represents 36% of datasets 

submitted in GEO. Our re-annotation provides increased amounts of functional 

information and shows that the overall quality of this annotation has also increased. 

Moreover, we provide annotated data in a format that will facilitate functional analysis 

and make it publicly available for GO enrichment analysis tools. 

The Affymetrix GeneChip® Canine Genome 2.0 microarray (GPL:3738) contains 

over 18,000 probesets which represent over 20,000 gene products [10,11]. Prior to 

remapping, the original 18,342 unique probeset identifiers from the array were mapped to 

a total of 26,818 unique identifiers and accessions from UniProtKB, RefSeq, and 

Ensembl which are commonly used public databases. Since each probeset is mapped to 

its equivalent accession in each database, this ID mapping file creates a useful look up 

table used to retrieve data from each of these databases. The identifiers represented on 
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this array were as follows: 6% UniProtKB, 55% RefSeq, 10% Ensembl, 1% Entrez Gene, 

1% BROAD, and 27% ESTs [Figure 3.3].  From the small percentage of UniProtKB in 

comparison to the larger percentage of the RefSeq and ESTs, we can see that high-quality 

information linked to this array is limited. With the highest quality annotations being 

UniProtKB, this initial mapping indicates a need for re-mapping and re-annotation with 

the purpose of increasing the percentage of UniProtKB accessions. For example, the 

majority of mapping is to RefSeq accessions. Of those 15,024 accessions, less than 1% of 

the identifiers mapped to known proteins, designated NP. The remaining accessions were 

mapped to predicted proteins, designated XP. Thus, less than 1% of those RefSeq 

accessions have undergone manual biocuration to confirm or deny their predicted 

function. 

 

Figure 3.3 Breakdown of identifier types before and after re-mapping. 

The increase in the number of UniProtKB indicates that the quality of the annotations 
retrieved for the new ID mapping file will also increase. 

After re-mapping, the probeset identifiers from the array were linked to a total of 

29,909 unique identifiers and accessions. This increase in the number of identifiers 

associated with this array is due to probeset identifiers mapping to more than one 



 

26 

identifier. The new breakdown of identifier types represented is as follows: 22% 

UniProtKB, 50% RefSeq, less than 3% Ensembl, 1% BROAD, and 24% ESTs [Figure 

3.3]. As indicated previously, the higher the number of UniProtKB accessions, the higher 

the quality of total annotations associated with the array.  UniProtKB accessions are the 

highest quality identifiers because of the biocuration the identifiers must undergo and the 

comprehensive nature of information linked to the identifiers. Although the majority of 

identifiers once again mapped to RefSeq accessions, as a result of the re-mapping, there 

was a marked improvement in the quality of annotations to be retrieved based on the 

increase in the percentage of UniProtKB identifiers. The complete results can be found at 

the AgBase website.  

In the original annotation file (released in 2006), the Affymetrix annotation file 

provided with the canine array linked the probesets with 15,822 GO annotations for 2,608 

gene products represented on the array. After re-mapping these identifiers, we linked the 

updated probeset with 10,737 GO annotations representing 5,127 gene products. This 

decrease in the amount of GO annotations is partly due to the new set of gene products 

associated with the array and partly because of revisions to the GO annotations (as 

functional annotations are improved, some previous annotation may be deleted or 

revised). Since our remapping of the array probesets decreased the initial functional 

annotation associated with these gene products, we next provided additional GO 

annotation for these gene products. 

Since the EBI GOA Project provides GO annotations for UniprotKB proteins and 

AgBase biocurators provide GO annotation for Genbank(RefSeq) proteins with no 

equivalent UniProtKB entry, we found that there were already 41,155 existing GO 
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annotations for UniProtKB accessions and 69,821 existing GO annotations for 

Genbank(RefSeq) proteins. Moreover, AgBase biocurators manually added detailed, 

experimental base GO annotations from published papers, providing another 321 GO 

annotations for 44 gene products (this work is ongoing). Since 98% of the 

Genbank(RefSeq) proteins are designated as “XP” or “unknown proteins” (that is, there 

is no direct evidence that these proteins are translated, but rather they are predicted based 

on EST and homology to other known mammalian proteins), it is unlikely that these 

proteins will have any direct experimental evidence as to their function. Thus, we focus 

our manual biocuration on the 1053 UniProtKB proteins that currently have no GO and 

the 97 “known” Genbank(RefSeq) proteins (designated with “NP” prefix). 

Likewise, EST sequences also have no functional literature. However, because 

ESTs are typically short sequences, they cannot be reliably linked to orthologous genes in 

other species. Providing a first pass functional annotation for these sequences requires an 

analysis of functional motifs and domains to identify sequences with conserved function 

[9]. Using this approach, we provided 22,006 annotations for 7,291 ESTs on the array 

that had no equivalent mRNA or proteins sequence. However, 99.2% of the gene 

products were annotated as ND or “no data”. While this may be considered as a “null” 

result, it does alert researchers to the fact that there is currently no functional data 

available for these transcripts; further functional classification must await improved 

sequence annotation. However, these initial GO annotations can be added to the AgBase 

database  in order to perform periodical updates to add more functional information as it 

becomes available. 
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Overall, we added 70,148 GO annotations for 16,966 gene products. This 

represents an increase from an initial 14% of the gene products represented on the array 

associated with functional annotation to 94% of the gene products represented on this 

array having some GO annotations. This represents almost a seven-fold increase in the 

number of gene products than were initially annotated [Figure 3.4]. Moreover, analysis of 

the GO quality (using the AgBase GAQ Score tool) mirrors this data in indicating an 

increase in quality of mean GAQ score from the initial 87.4% to 90.4%. 

 

Figure 3.4 Gene products represented on the array that are linked to GO annotation. 

Of the 18,000 gene products represented, the original annotation file available with the 
Affymetrix GeneChip® Canine Genome 2.0 microarray only provided GO annotations 
for 14% of the entire array. After re-mapping and re-annotation, we have provided GO 
annotations for 94% of all gene products represented on this array. 

Conclusion 

By re-analyzing and updating the annotation data associated with the Affy canine 

array we were able to provide a comprehensive list of public database accessions that the 

probes represent and to associate these gene products with GO annotation to facilitate 

functional modeling. In doing so, we have not only updated the canine gene products 
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represented on the array to reflect the newest genome release, but we have also improved 

the functional annotation linked with these products by almost seven-fold. Since 95% of 

the canine datasets produced from this array (and submitted to GEO as of 2/2013) remain 

unpublished, our goal is to facilitate functional modeling of data produced by this and 

other canine arrays. By making this data publicly available we expect to facilitate the use 

of canine functional genomic data to provide insights into canine biology, rather than to 

generate long lists of transcripts. With the advent of new sequencing technologies that are 

producing even larger and more complex transcriptome data sets, it is becoming 

increasingly important that functional annotation is provided for those gene products 

which have functional data available.
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CHAPTER IV 

USE OF LIPOSOMAL CLODRONATE (LC) TO FACILITATE DETECTION OF 

SUBCLINICAL INFECTION WITH BABESIA CANIS IN POTENTIAL  

BLOOD DONOR GREYHOUNDS 

Background 

An emerging disease in the U.S., babesiosis has become a particular problem in 

greyhound kennels. As greyhounds, often retired from the racetrack, are the most 

common breed to be used as blood donors, babesiosis has a critical impact on the use of 

blood donors in veterinary medicine [3]. In greyhounds, babesiosis is most commonly 

associated with Babesia canis vogeli, a protozoan parasite of red blood cells (RBCs) that 

is carried by the brown dog tick, Rhipicephalus sanguineus [1]. It is thought to take 2-3 

days of attachment by the tick for transmission of the sporozoite stages of the organism to 

occur [4]. 

Although babesiosis is usually subclinical in greyhounds, it can cause serious 

illness, even fatalities, in dogs inadvertently transfused with infected blood [5, 6]. 

Identification of donors with occult Babesia infection is therefore essential for 

transfusion safety. Techniques utilized to detect the presence of Babesia include direct 

microscopic observance of blood smears, IFA (indirect fluorescent antibody) serology, 

PCR (polymerase chain reaction) [2, 6], and counting infected cells using a laser-based 

cell counter such as flow cytometry [7, 8]. Each method has its own draw backs. For 
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example, the blood smear depends on active parasitemia, but in greyhounds the infection 

is commonly subclinical with animals being chronic carriers [6]. The organism therefore 

might not show up when using only direct microscopy. This is also a draw back with 

detection via flow cytometry. When running antibody tests, it is hard to prove whether a 

positive test is the result of a current infection or an infection already cleared by the 

host’s immune system. PCR, on the other hand, is a definitive test for Babesia infection, 

but it is not a technique that most clinics have readily available. It does not allow for 

quantitation of the number of infected RBCs. 

In the past, deciding whether or not an animal could become a blood donor was as 

easy as surgically removing the spleen. Since the spleen is required to help fight infection 

with blood-borne pathogens, splenectomy would allow for a flare-up of any blood borne 

parasite.  This highly invasive procedure is no longer recommended, and an alternative is 

needed. In this study, we sought to evaluate the use of liposomal clodronate (LC) to 

facilitate the detection of subclinical infection with Babesia canis in potential blood 

donor greyhounds. 

Liposomal clodronate has been shown to deplete macrophages and monocytes by 

induction of apoptosis via lysis of the mitochondrial membrane [9,10]. This results in an 

overall transient immune suppression that loses effect when the drug is no longer present 

in therapeutic levels. Since macrophages are needed to recognize and remove Babesia-

infected RBCs from circulation, it has been proposed that LC may ‘unveil’ hidden 

babesiosis in infected greyhounds. The main objective of this study was to determine if 

LC would reveal any sequestered organisms in dogs with a history of exposure to 

Babesia canis  
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Methods 

Dogs 

Four healthy Babesia canis-exposed adult greyhounds and one Walker hound 

(used as a non-treated control) was used for this study. Health was confirmed based on 

physical examination, blood smear, complete blood count (CBC), serum biochemistry, 

and urinalysis. The greyhounds had a history of being variably positive for Babesia canis 

infection: one was IFA negative/PCR low positive, another was IFA and PCR negative 

but came from the same source as the other affected dogs and was housed and transported 

with them, another was IFA positive/ PCR high positive, and a final dog was IFA 

negative/ PCR positive. Greyhound results also varied between IFA/PCR testing dates. 

At the time of administration of LC, all dogs had become negative on every test for 

Babesia canis for at least three months. All animals were cared for according to 

guidelines approved by the Mississippi State University Institutional Animal Care and 

Use Committee (IACUC), and were housed in a university setting under standard 

conditions. The Mississippi State University animal facilities and program are accredited 

by the American Association for Accreditation of Laboratory Animal Care.  

Treatment 

Liposome clodronate (LC) (dichloromethylenedisphosphonic acid disodium salt, 

SIGMA, encapsulated into liposomes at Colorado State University) was administered to 

four greyhounds at low (0.5 ml/kg), medium (1 ml/kg), and high (2 ml/kg) doses via slow 

intravenous infusion at a constant rate into an indwelling peripheral venous catheter over 

a 90-minute period, using an infusion pump. 
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Study Design 

A schematic of the study design is shown in Figure 4.1. Briefly, the study began 

with baseline monitoring for levels of infected RBCs in greyhounds prior to treatment 

with LC and subsequent assessment of levels of infected RBCs in LC-treated dogs 

(Figure 4.1).  

 

Figure 4.1 LC treatment timeline. 

Arrows L (yellow), M (blue), H (red) indicate the low, medium, and high dose 
treatments. Each dash indicates a RBC assessment time point (three times a week).  
(D)  represents the number of RBC assessment time points in the study. 

Reagents 

BD Pharm Lyse™ (10X) lysing solution (BD Biosciences) was used to remove 

red blood cells from the white blood samples collected in EDTA tubes. Hydroethidine 

(HE) or dihydroethidium (Invitrogen D1168) in DMSO (Sigma D2650) at 1:2000 was 

used to stain any nuclear components within RBCs for analysis by flow cytometry. 

Cell Preparation 

White Blood Cells (as positive controls) 

To remove red blood cells (RBCs), whole blood samples collected in EDTA were 

incubated with BD Pharm Lyse ™ lysing buffer for 15 minutes in the dark at room 

temperature, gently vortexing every 5 minutes. The remaining cell populations were 

washed, incubated with a 1:2000 hydroethidine solution for 30 minutes at 37°C, then 

were washed and analyzed by flow cytometry. 
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Red Blood Cells  

Whole blood samples collected in EDTA were washed and buffy coats were 

discarded. RBCs were incubated with a 1:2000 hydroethidine solution for 30 minutes at 

37° C, then were washed and the level of HE inclusion was analyzed by flow cytometry. 

Flow Cytometry 

Canine RBCs were gated based on their relative size and granularity using 

forward and side scatters (FSC and SSC, respectively) with FACSCalibur Flow 

Cytometer (Becton Dickinson). Data were analyzed using FlowJo 7.6.4 Software (Tree 

Star, Inc.). The staining resulting from inclusion of HE into the RBC was analyzed by 

using single histogram statistics (Figure 4.2). 
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Figure 4.2 Assessment of RBCs exhibiting HE inclusion by flow cytometry. 

Canine red blood cells were gated using forward and side scatters (A). RBCs stained by 
inclusion of HE into the nuclei were analyzed by using single color histogram statistics 
(B-negative control; C-experimental sample). 

Statistical Analysis 

RBCs exhibiting inclusion of HE as a specific population was expressed as a 

percentage of the total RBC numbers. Then, data was subjected to a one-way analysis of 

variance (ANOVA) followed by Fisher’s LSD multiple comparison post hoc test and are 

presented as means + SD. The level of significance for all tests of effects was set at 

P<0.05. 
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Results and Discussion 

Many canine vector-borne diseases can cause serious, even life-threatening 

clinical conditions in dogs, with a number also having significant zoonotic potential and 

affecting human populations [1, 11]. Since greyhounds are one of the most common 

breeds utilized as blood donors in veterinary medicine, accurate and efficient detection of 

canine vector borne diseases such as babesiosis is essential for preventing potentially 

devastating transfusions of infected blood. Here we used flow cytometry to determine the 

level of Babesia canis infection in greyhounds treated with LC.  

Consistent baseline negative status on assays for Babesia upon repeat testing was 

confirmed over a 2 week period by a single IFA,flow cytometry and PCR approximately 

every second day and daily smear examination (data not shown). Flow cytometry and 

blood smear examinations (modified Wright’s stain) were performed at MSU, and 

serology (IFA) and PCR were performed at the North Carolina State University (NCSU) 

Vector Borne Disease Diagnostic Laboratory. The 4 greyhounds were then given 

intravenous liposomal clodronate at a single low dose of 0.5 ml/kg.  Babesia status was 

monitored over a 2 week period post-treatment by daily smear examination, and by flow 

cytometry and PCR approximately every second day. The same study design was then 

repeated at a medium liposomal clodronate dose of 1 ml/kg and then, finally, at a high 

liposomal clodronate dose of 2 ml/kg except that, after the final dose of liposomal 

clodronate, Babesia status was monitored for an extended post-treatment period of 4 

weeks by daily smear examination, by flow cytometry and PCR every second day, and by 

repeat serology. There were minor numerical non-significant increases in the numbers of 

HE+  RBCs at various time points in greyhounds exposed to all three doses of LC (Figure 
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4.3). Interestingly, a marked increase in the numbers of HE+ RBCs was found in an 

unrelated canine patient with increased numbers of reticulocytes by CBC (Figure 4.4) 

suggesting that the LC-related increases in greyhounds could be due to increased 

numbers of reticulocytes, although daily CBCs performed on the 4 greyhounds did not 

support this speculation. Based on lack of evidence of Babesia infection by blood smear 

examination, PCR or serology at any point during the study period (data not shown), we 

conclude that LC does not appear to be a reliable means of exposing occult babesiosis in 

greyhounds with a recent history of harboring the organism. To investigate if the 

numerical non-significant increases in HE+ RBCs numbers were due to the effect of LC, 

RBCs from 3 healthy Walker hounds (see Methods, Chapter 5) exposed to the medium 

dose of LC were assessed by flow cytometric analysis. There were no significant 

differences in the numbers of HE+ RBCs in the LC-treated animals compared to the non-

treated controls (data not shown) suggesting that the observed numerical increases in the 

numbers of HE+ RBCs were not LC-related. 
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Figure 4.3 Effect of LC exposure on numbers of RBCs exhibiting inclusion of HE in 
greyhounds in Babesia canis-exposed greyhounds. 

RBCs from 4 healthy but Babesia-exposed greyhounds treated with low (0.5 ml/kg), 
medium (1 ml/kg), and high (2ml/kg) doses of LC were assessed by single color flow 
cytometry approach. Data are expressed as a mean % of total RBCs. No statistical 
significance indicated. 

 

Figure 4.4 Flow cytometric analysis of RBC HE incorporation in the canine clinical 
patient diagnosed with reticulocytosis. 
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CHAPTER V 

SELECTIVE LC-DEPENDENT REMOVAL OF PROFESSIONAL ANTIGEN 

PRESENTING CELLS, MONOCYTES/MACROPHAGES, AND  

IMMATURE DENDRITIC CELLS PROMOTES INCREASES 

 IN CD4+CD25+FOXP3+ REGULATORY T CELLS 

Abstract 

A critical component of host immune systems, regulatory T cells (Tregs) have 

been described in detail in humans and mice. Although some researchers have begun to 

study canine Tregs, comprehensive functional information has not yet been produced. We 

evaluated the effect of depletion of professional antigen presenting cells (APCs) on the 

levels and phenotypes of regulatory T cells (Tregs) in dogs treated with liposomal 

clodronate (LC) by multi-color flow cytometric analysis. We demonstrate that numbers 

of Tregs increased after administration of various LC doses in greyhounds, and the same 

effect was found in Walker hounds by using the medium LC dose. Our study shows a 

correlation between levels of CD14+ monocytes and Tregs in dogs treated with LC. These 

data demonstrate that, as in humans, the population of CD4+CD25high T cells most 

reliably identified as the highly enriched FOXP3+ Tregs in dogs. In addition, we defined 

the CD4+CD25lowFOXP3+ cells as the major regulatory T cell subset affected by LC 

exposure suggesting the role of monocytes in naïve T cell priming and differentiation into 

Tregs. 
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Introduction 

An important aspect of the host immune system, regulatory T cells (Tregs) are a 

known CD4+CD25+FOXP3+ subset of T cells which are responsible for maintaining 

tolerance by suppression of natural immune responses [1]. These cells have been proven 

to develop normally, and they can also be induced to develop as antigen specific Tregs 

from conventional peripheral CD4+ T cells [2].  

Although there is very little known about the functional significance of regulatory 

T cells in the canine, Tregs are an important constituent of healthy function in the host 

immune system. In normal systems when activated or increased in numbers to a suitable 

concentration, Tregs can help to prevent autoimmune dysfunction of the host [3], or they 

may only exacerbate a current problem [4]. Although more research is needed, studies 

have shown that FOXP3 (forkhead box P3 transcription factor) is necessary for the 

generation of naïve T cells into regulatory T cells with suppressive functions. Without 

FOXP3, the recognizable immunosuppressive function can be lost [5]. 

Monocytes and macrophages are professional antigen presenting cells (APCs) that 

express multiple phagocytic and signaling pattern recognition receptors (PRRs) that sense 

and bind pathogen-associated molecular patterns (PAMPs) and produce cytokines [6,7,8]. 

Recent studies show that monocytes and macrophages are not limited to presenting 

antigens to effector T cells and stimulating and shaping T cell-mediated immune 

responses; they also prime naïve T cells, thus initiating adaptive immune responses 

[6,7,8,9,10]. 

Liposomes have been proven to increase the effectiveness of certain drugs by 

being used as drug carriers and allowing the liposome to follow its natural course, 
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undergoing phagocytosis. Clodronate (dichloromethylene bisphosphate), a small 

hydrophilic molecule which functions to induce apoptosis via lysis of the mitochondrial 

membrane of host monocytes, dendritic cells, and macrophages, is one such drug [11]. 

The overall effect on the immune system of administering liposomal clodronate is a 

transient immune suppression which may be either detrimental or helpful to the host. It 

can be seen in the depletion of the number of viable circulating monocytes and 

macrophages [12]. Liposome encapsulated clodronate (liposomal clodronate, LC) is 

currently being used in research in a variety of approaches that include: to selectively 

deplete monocytes and macrophages to provide controls for evaluating muscle injury 

[13]; to prove the role of the immune cells in dengue fever [14]; to accelerate alveolar 

macrophage reconstitution [15]; to decrease dissemination and brain invasion of 

Cryptococcus neoformans;[16], and to treat diseases such as gout and various 

autoimmune diseases [17].  

Current researchers in canine immunology utilize the specialized depletion tactics 

made possible by LC, but have also begun to explore the unknown concerning regulatory 

T cells. 

In the current study, we assessed the levels and phenotypes of 

CD4+CD25+FOXP3+ regulatory T cells in greyhounds and Walker hounds treated with 

different doses of LC. 

Materials and Methods 

Dogs 

Healthy adult greyhounds and Walker hounds were used for this study. Health 

was confirmed based on physical examination, complete blood count (CBC), serum 
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biochemistry, and urinalysis. CBC and serum biochemistry were completed by the 

Mississippi State University College of Veterinary Medicine Diagnostic Laboratory 

Services (CVM-DLS).All animals were cared for according to guidelines approved by the 

Mississippi State University Institutional Animal Care and Use Committee (IACUC), and 

were housed in a university setting under standard conditions. The Mississippi State 

University animal facilities and program are accredited by the American Association for 

Accreditation of Laboratory Animal Care. 

Treatment 

Liposome clodronate (LC) (dichloromethylenedisphosphonic acid disodium salt, 

SIGMA, encapsulated into liposomes at Colorado State University) was administered to 

four greyhounds at low (0.5 ml/kg), medium (1 ml/kg), and high (2 ml/kg) doses via slow 

intravenous infusion at a constant rate into an indwelling peripheral venous catheter over 

a 90-minute period, using an infusion pump. 

In the Walker hound study, LC (Encapsula NanoSciences in Nashville, TN) was 

administered to three Walker hounds as previously described at a single dose of 1 ml/kg. 

In both studies, control dogs received no treatment. 

Study Design 

The design of the greyhound study is shown in Figure 5.1. Briefly, the study was 

divided into baseline monitoring of Tregs in greyhounds prior to their treatment with 

different doses of LC and the assessment of levels of regulatory T cells in LC-treated 

dogs (Figure 5.1). Similarly to the greyhound study, the Walker hound study consisted of 

the baseline and after the treatment monitoring of Tregs. However, the experimental 
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animals were exposed only to the medium dose of LC, and their peripheral blood 

monocytes levels as well as total cell blood counts were determined in addition to Tregs. 

 

Figure 5.1 LC treatment timeline. 

Arrows L, M, H indicate the low, medium, and high dose treatments. The dashes indicate 
Treg assessment time points. (D-0/25/13) represents the number of assessment time 
points in the study. (A) represents the greyhound study. (B) represents the Walker hound 
study. 

Reagents and Antibodies 

BD Pharm Lyse™ (10X) lysing solution (BD Biosciences) was used to remove 

red blood cells from the white blood samples collected in EDTA tubes. 

Fluorescein -conjugated mouse anti-canine CD14 mAbs (LS-C43762, Lifespan 

Biosciences, Inc.) were used to stain monocytes. Fluorescein -conjugated rat anti-canine 

CD4 (LS-C127352, Lifespan Biosciences, Inc), Phycoerythrin (PE)-conjugated mouse 

anti-canine CD25 (P4A10) and the FOXP3 Staining Buffer Set (including 

Fixation/Permeabilization Diluent, Fixation/Permeabilization Concentrate, 10X 

Permeabilization Buffer) and allophycocyanin (APC)-conjugated rat anti-canine FOXP3 

mAbs (FJK-16s) (all from eBioscience Inc.) were used to stain regulatory T cells. 
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Cell Preparation 

Monocytes 

Whole blood samples collected in EDTA were incubated with Fluorescein-

conjugated anti-CD14 mAbs for 30 minutes in the dark at 4°C. To lyse and remove red 

blood cells, samples were incubated with BD Pharm Lyse ™ lysing buffer for 15 minutes 

in the dark at room temperature, gently vortexing every 5 minutes. The resulting cell 

populations were washed and analyzed by flow cytometry. 

Regulatory T cells 

Whole blood samples collected in EDTA were incubated with Fluorescein-

conjugated anti-CD4 and PE-conjugated anti-CD25 mAbs for 30 minutes in the dark at 

4°C. To remove red blood cells, samples were incubated with BD Pharm Lyse ™ lysing 

buffer for 15 minutes in the dark at room temperature, gently vortexing every 5 minutes. 

Red blood cells were removed, and the remaining cell populations were washed and 

stained with anti-FOXP3 staining buffer set following the manufacturer’s instructions. 

Briefly, cells were incubated with fixation/permeabilization solution for 30 minutes in the 

dark at 4°C, washed twice with permeabilization buffer followed by incubation with 

APC-conjugated anti-FOXP3 mAbs for 30 minutes in the dark at 4°C. After a single 

wash, cells were then analyzed by flow cytometry. 

Flow Cytometry 

Red blood cell depleted canine cells were gated based on their relative size and 

granularity using forward and side scatters (FSC and SSC, respectively) with 

FACSCalibur Flow Cytometer (Becton Dickinson). Immunofluorescent stainings were 
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analyzed using FlowJo 7.6.4 Software (Tree Star, Inc.). The CD14 immunofluorescent 

staining in canine monocytes was analyzed by using single histogram statistics (Figure 

5.2). A three-color analysis was performed to assess the FOXP3 staining by gating on 

CD4+CD25+ double positive T cells and analyzed by using single histogram statistics 

(Figure 5.3). In addition, the intensity of the CD25 fluorescence in the CD4+FOXP3+ 

cells was assessed by using dot plots with multiple gate statistics (Figure 5.4). 

 

Figure 5.2 Assessment of CD14+ monocytes by flow cytometry. 

RBC- depleted canine cells were gated based on their relative size and granularity using 
forward and side scatters (A). The CD14 immunofluorescent staining in canine 
monocytes was analyzed by using single histogram statistics (B). 
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Figure 5.3 Identification of CD4+CD25+FOXP3+ regulatory T cells by three color 
flow cytometry approach. 

RBC- depleted canine cells were gated based on their relative size and granularity using 
forward and side scatters (A). Two color analysis for the CD4+CD25+ T cells was 
performed by using dot plots with quadrant statisics (B). The FOXP3 staining intensity 
was analyzed by using single histogram statistics (C). 
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Figure 5.4 FOXP3 expression in peripheral blood of CD25low, CD25medium, and 
CD25high CD4+ T cells. 

The CD4+ T cells were gated based on the brightness of CD25 staining (A). FOXP3 
histograms of T cells of low, medium, and high CD25 fluorescence intensity (B,C,D, 
respectively). 

Statistical Analysis 

Regulatory T cell marker-specific populations were expressed as a percentage of 

the total lymphocyte numbers or as absolute cell numbers. CD14+ monocyte populations 

were expressed as a percentage of PBMC. Then, data was subjected to a one-way 

analysis of variance (ANOVA) followed by Fisher’s LSD multiple comparison post hoc 
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test and are presented as means + SD. The level of significance for all tests of effects was 

set at P<0.05. 

Results 

Liposomal clodronate exposure promotes increases in the levels of 
CD4+CD25+FOXP3+ regulatory T cells in greyhounds 

To characterize effects of the monocyte depletion on the levels of Tregs in dogs, 

we treated 4 healthy greyhounds with different doses of LC and assessed the levels of 

peripheral blood Tregs by flow cytometry. Percentage of CD4+CD25+FOXP3+ Tregs 

significantly increased in greyhounds treated with low and medium doses of LC (Figure 

5.5). Although the percentage of Tregs in dogs treated with high dose of LC increased, 

these increases were non-significant (Figure 5.5). 

 

Figure 5.5 LC exposure promotes increases in regulatory T cell populations in dogs. 

Regulatory T cells from 4 healthy greyhounds exposed to low (0.5 ml/kg), medium (1 
ml/kg), and high (2 ml/kg) doses of LC were assessed by three color flow cytometry 
approach. Data are expressed as a mean % Tregs of total PBMC. (a b) indicates treatment 
differences (P<0.05). 
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Effects of LC treatment on the peripheral blood regulatory T cell and monocyte 
fluctuations in Walker hounds 

To further investigate possible mechanisms of LC-dependent regulatory T cell 

fluctuations, we assessed the levels of CD4+CD25+FOXP3+ Tregs and CD14+ monocytes 

in Walker hounds challenged with medium dose LC. As expected, LC treatment 

promoted decreases in CD14+ monocyte numbers in all experimental dogs after 24hrs of 

treatment, followed by significant increases during compensatory period (4-7 days post 

treatment) and declining to initial baseline levels after 8-11 days of LC challenge (Figure 

5.6, C). In general, the LC-dependent Tregs fluctuations were similar to the changes in 

the levels of CD14+ monocytes. However in contrast to the monocyte levels, the 

percentage of Tregs after 24hrs of treatment showed only slight non-significant decrease 

(Figure 5.6, A). Next, we evaluated the absolute numbers of Tregs in the peripheral blood 

of Walker hounds before and after LC treatment. Figure 5.6, B demonstrates a significant 

decrease in the Treg numbers after 24hrs of LC treatment, an expected compensatory 

increase and a significant recovery of Tregs during the normalization period. 
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Figure 5.6 Effects of LC treatment on the levels of CD4+CD25+FOXP3+ regulatory T 
cells and CD14+ monocytes in peripheral blood of Walker hounds. 

Regulatory T cells and monocytes from 3 healthy dogs exposed to medium dose of LC (1 
ml/kg) were assessed by three and one color flow cytometry analysis, respectively. (A) % 
Tregs of total lymphocytes; (B) absolute numbers of Tregs; (C) % monocytes of total 
PBMC; (1) Baseline levels[prior to treatment]; (2) Initial response to LC [24 hours post 
treatment]; (3) Compensatory response to LC [4-7 days post treatment]; (4) 
Normalization [8-11 days post treatment]. Data are expressed as a mean % of total 
PBMC (A,C) or as mean absolute cell counts (B). (a b *) indicates group differences 
(P<0.005). 

CD4+CD25lowFOXP3+ are the major regulatory T cell subset affected by LC 
exposure 

Previously reported data in humans demonstrated that although CD4+CD25+ T 

cells contain Tregs, other cells such as recently activated pathogenic T cells may also fall 

in this phenotypic subset [29]. The top 2% CD4+CD25bright T cells most reliably 

identified a highly enriched FOXP3+ Tregs.  To identify the population of Tregs 

selectively targeted by LC we applied multiple gate statistics for the assessment of CD25 

fluorescence intensity in CD4+CD25+FOXP3+ T cells (Figure 5.7). There was a 
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numerical decline in % of Tregs expressing low, medium and high levels of CD25 two 

days after treatment, followed by an increase, which was significant only in 

CD4+CD25low FOXP3+ Tregs. The levels of Tregs in all three populations with 

differential expression of CD25 after two weeks of LC exposure were comparable with 

their levels prior to the LC treatment. 

 

Figure 5.7 LC exposure promotes significant increases in the most recently activated 
CD4+CD25lowFOXP3+ Tregs. 

CD4+FOXP3+ T cells from the dogs exposed to LC were gated based on brightness of 
CD25 staining resulting in separation into low, medium, and high expressers of CD25. 
(1) Baseline levels [prior to treatment]; (2) Initial response to LC [24 hours post 
treatment]; (3) Compensatory response to LC [4-7 days post treatment]; (4) 
Normalization [8-11 days post treatment]. Data are expressed as mean % of total Tregs. 
(a b) indicates group differences. 

Discussion 

Adequately described in humans and mice, regulatory T cells 

(CD4+CD25+FOXP3+ T cells) are an essential requirement for the healthy function of the 

mammalian immune system as they function to modify or inhibit effector cells. This 
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makes them a double edged sword. When functioning properly, they help to maintain 

homeostasis within the immune response, but if malfunctioning or absent, they can 

impede beneficial immune responses, and systemic and/or organ-specific autoimmunity 

can result [19]. 

Little is known about the functional purpose and clinical relevance of Tregs in 

canines, but results from recent studies have provided initial phenotypic and functional 

characterizations of Tregs within the canine system [20, 21, 22]. Current research 

objectives include understanding Tregs across a wide range of disease models. The 

results of current studies indicate that increased numbers of Tregs are associated with 

disease consequence [22, 23, 24, 25, 26, 27]. This study expands previous research to 

include new breeds of healthy dogs, while observing variation between numbers of Tregs 

in greyhounds and Walker hounds. 

In the current study, the overall effect of the differing doses of LC on the 

experimental dogs was assessed during the greyhound study. As previously mentioned, 

LC has many uses in the treatment of autoimmune diseases as well as research [13, 14, 

15, 16, 17, 18]. The goal in using LC was to transiently knock out the immune system by 

initiating a period of monocyte/macrophage/DC depletion, thus allowing us to evaluate 

the levels of decrease or generation of regulatory T cells over the defined treatment 

period.  

For each dog, a similar pattern was observed in the levels of Tregs in response to 

each dose (low, medium, high). The overall health of the dogs also varied. At the low and 

medium dose, no clinical signs or negative effects were witnessed in the dogs. While at 

the high dose, dogs developed clinical signs including transient fever, diarrhea, clear 
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nasal discharge, and general malaise. To this end, the medium dose (1 mg/kg) was chosen 

to be utilized in the Walker hound study. This dose allowed resultant changes in Treg 

levels to be observed while avoiding the development of clinical signs.  

For the first time, this study evaluated numbers of canine regulatory T cells in the 

absence of professional antigen presenting cells (APCs), monocytes, and immature DCs 

by utilizing LC. In the greyhound study, the number of Tregs after a visible profound 

decline (during the initial response phase, 24 hrs post treatment) significantly increased 

when dogs were treated with the low and medium dose, and while the high dose also 

resulted in increase in Tregs, no significance was observed. 

The relationships between monocytes/macrophages and Tregs within the canine 

model are unknown. Recent studies have expanded the role of monocytes and 

macrophages beyond presenting antigens to effector T cells and stimulating T cell 

mediated immune responses. They also are responsible for initiating adaptive immunity 

via priming of naïve T cells, triggering the generation of new Tregs, a critical subset of T 

cells [6,7,8]. Therefore, in the Walker hound study, both monocyte and Treg numbers 

were assessed simultaneously. The significant decreases in monocyte numbers in all 

experimental dogs 24 hrs after treatment was expected and reflects the expected 

mechanism of action of LC. When the bisphosphonate clodronate is incorporated within 

liposomes, phagocytosis by monocytes/macrophages and immature DCs is enhanced 

[28]. Lysis of the mitochondrial membrane of host cells by LC induces apoptosis 

resulting in the transient depletion of monocytes [11]. At the same time, absolute Treg 

numbers were also evaluated showing significant compensatory gains as well as the 

significant recovery of Treg numbers during the normalization period. In theory, these 
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compensatory gains reflect initiation of adaptive immune response by production of new 

Tregs via activation from naïve T cells in the periphery.  

As a part of the Walker hound study, we produced data that mirrors information 

reported in human Tregs that, although canine CD4+CD25+ T cells contain Tregs, other 

cells such as recently activated pathogenic T cells may also fall in this phenotypic subset. 

The top 2% CD4+CD25bright T cells most reliably identified a highly enriched FOXP3+ 

Tregs in dogs. We report that CD4+CD25lowFOXP3+ is the major regulatory T cell subset 

affected by LC exposure, showing the significantly increased numbers after 4-7 days of 

LC-treatment. These increases suggest the active recruitment and generation of Tregs 

from naïve CD4+ peripheral blood T cells. 

In conclusion, further research is essential in creating a working understanding of 

canine CD4+CD25+FOXP3+ Tregs, and the role of professional APCs monocytes and 

DCs in their generation. Tregs are a critical subset of immune cells which are produced 

during T cell development in the thymus and can be induced in the periphery from naïve 

T cells to provide antigen specific inhibition in cases of infection or disease.
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