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Electrical energy is the basic necessity for the economic development of human 

societies. In recent decades, the electricity industry is undergoing enormous changes, 

which have evolved into a large-scale and competitive industry. The integration of 

volatile renewable energy, and the emergence of transmission switching (TS) techniques 

bring great challenges to the existing power system operations problems, especially 

security-constrained unit commitment (SCUC) solution engines. In order to deal with the 

uncertainty of volatile renewable energy, scenario-based stochastic optimization 

approach has been widely employed to ensure the reliability and economic of power 

systems, in which each scenario would represent a possible system situation. Meanwhile, 

the emergence of TS techniques allows the system operators to change the topology of 

transmission systems in order to improve economic benefits by mitigating transmission 

congestion. However, with the introduction of extra scenarios and decision variables, the 

complexity of the SCUC model increases dramatically and more computational efforts 

are required, which might make the power system operation problems difficult to solve 

and even intractable. Therefore, an advanced solution technique is urgently needed to 



 

 

solve both stochastic SCUC problems and TS-based SCUC problems in an effective and 

fast way. 

In this dissertation, a decomposition framework is presented for the optimal 

operation of the large-scale power system, which decomposes the original large-size 

power system optimization problem into smaller-size and tractable subproblems, and 

solves these decomposed subproblems in a parallel manner with the help of high 

performance computing techniques. Numerical case studies on a modified IEEE 118-bus 

system and a practical 1168-bus system demonstrate the effectiveness and efficiency of 

the proposed approach which will offer the power system a secure and economic 

operation under various uncertainties and contingencies. 
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CHAPTER I 

INTRODUCTION 

1.1 Background 

Electric power systems are networks of electrical components used to generate, 

transfer, and consume electric power. With the expansion of electric power grids, 

electrical energy is essential to human societies all over the world. In the conventional 

electricity power industry, the entire power system operation is dominated by vertical 

integrated utilities. The vertical integrated utilities own the generating sources, 

transmission networks, and distribution networks. In recent years, the electricity industry 

is undergoing enormous changes and has evolved into a distributed and competitive 

industry [1]. The market forces decide the price of electricity and increase the total social 

welfare. 

The Federal Energy Regulatory Commission (FERC) Order No. 888 required the 

power industry to restructure and unbundle electricity markets. As a result, the 

conventional power system has been decomposed into three components: generating 

companies (GENCOs), transmission companies (TRANSCOs), and distribution 

companies (DISCOs). The independent operational control of each component would 

promote a competitive market, which would lead to a more economic power system 

operation. On the other side, the competition would also reduce the reliability of the 

electricity industry. In order to operate the competitive market while ensuring the 
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reliability of power systems, an independent operational control of the power grid is 

necessary [2]. Thus, an independent entity, such as the independent system operator 

(ISO), is introduced to guarantee the independent operation of the grid. 

 

Figure 1.1 Restructured electricity market operation 

 

Restructured power market operation is shown in Figure 1.1. A GENCO operates 

and maintains existing generating plants. GENCOs can compete to sell energy to 
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customers by submitting competitive bids to the electricity market. They try to maximize 

their own profit regardless of the system profit and reliability. Then, ISOs schedule 

generating units in a constrained transmission system to ensure the reliability of the 

power grid [3]. 

Security-constrained unit commitment (SCUC) is widely employed by ISOs and 

regional transmission organizations (RTOs) to schedule a secure and economic power 

operation in both day-ahead and real-time power markets [4]. SCUC handles the 

economic unit generation schedule in a power system for serving the load demand with 

an adequate reserve margin while satisfying temporal and operational limits of generation 

and transmission facilities. The increasing size and complexity of modern power systems, 

the integration of volatile renewable energy, and the emergence of transmission switching 

(TS) techniques bring great challenges to the existing SCUC solution engines. With the 

increasing size of the power systems, the number of branches and nodes can be very 

large; for example, a typical size of the transmission network model of Texas consists of 

4,500 buses, while the Great Britain model has around 2,000 – 2,500 [5]. In addition, due 

to the uncertainty of renewable energy and integration of TS techniques, the constraints 

and control variables of the generating unit commitment problem increase exponentially. 

Recently, significant contributions have been made by many researchers to solve 

large-scale power system operation problems, especially SCUC problems. Most research 

of the power systems optimization and operation study are focused on the day-ahead 

market of the transmission system [6]. 
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1.2 Literature review 

Unit commitment (UC) refers to the task of deciding an optimal schedule and a 

production level of each generating unit to meet the required power demand. The 

traditional UC only considers generating unit constraints but ignores the network 

constraints; but, the SCUC considers the constraints of both generating units and 

transmission network, as well as the contingencies of generating units and/or 

transmission network [7].  

From the viewpoint of market operators, SCUC is adopted in the vertically 

integrated environment to minimize the total operating cost of the power system, or in the 

deregulated environment to maximize the total social welfare. In this work, the 

applications of the SCUC in both the vertical integrated environment and deregulated 

environment are investigated. In the past several decades, various approaches have been 

developed by our researchers to solve the optimal UC/SCUC problem, including the 

enumeration, priority listing, dynamic programming, branch-and-bound, Benders 

decomposition, Lagrangian relaxation (LR), and augmented Lagrangian relaxation (ALR) 

method.  

1.2.1 Exhaustive enumeration method and priority listing method 

The exhaustive enumeration method [8, 9] is adopted to solve the UC problem by 

enumerating all possible combinations of the generating units and then choosing the least 

expensive operating combinations as the optimal solution. In [10, 11], the priority listing 

method is employed to arrange the generating units based on the operational cost and 

then selects the generating units to meet the system load demand. In advance, [12] used 

the priority listing method to solve the single and multi-area UC problem based on a 



 

5 

classical index. [13] proposed an efficient algorithm using the priority listing method 

with import/export constraints.  

1.2.2 Dynamic programming 

Some researchers adopted dynamic programming method to solve the UC 

problem. The dynamic programming can easily add constraints at an hour [14]. However, 

it is difficult to include the constraints affect over time (e.g. minimum up/down 

constraints and time-dependent startup cost). Reference [15] discussed the dynamic 

programming application of UC problem on both the wholly owned and commonly 

owned units. In [16], the practical applicability of the generating unit commitment by 

dynamic programming is discussed.  

1.2.3 Branch-and-bound method 

Branch-and-bound method is another widely adopted mathematics to solve the 

UC problem. In [17], an integer programming method is developed to solve a practical 

size scheduling problem based on the branch-and-bound method. [18] proposed an 

approach to solve UC problem based on branch-and-bound method, which does not 

require a priority listing of the generating units. In [19], a constraint logic programming 

based approach is proposed, in which the constraint logic programming and branch-and-

bound method are applied to provide a flexible approach to the UC problem. 

1.2.4 Benders decomposition method 

Benders decomposition [20] is another widely used optimization method for 

utilities’ use. Figure. 2.1 depicts the hierarchy of SCUC problem, which is based on the 

existing structure in restructured power systems. The Benders decomposition method 



 

6 

decompose the original SCUC problem into a master (UC) problem and a network 

security check subproblem. The initial master problem obtains the optimal generating 

units solution based on the available market information. Then the network security 

subproblem checks the violations and returns the Benders cuts to the master problem to 

reformulate the UC problem. The optimal result would be obtained until all violations are 

eliminated [21-24]. In [25], a transmission-constrained unit commitment is proposed with 

utilization of Benders decomposition. In [26], a Benders decomposition based 

optimization method with consideration of both transmission security and voltage 

constraints is presented, which employs two separate subproblems to check transmission 

and voltage violations. [27] proposed a new approach using Benders decomposition to 

solve the SCUC problem with alternating current (AC) constraints. A Benders 

decomposition based AC corrective/preventive contingency model is proposed in [28], 

which includes unit commitment, ac security-constrained optimal power, and load 

shedding for steady state and contingencies. [29] proposed an efficient fast SCUC for the 

large-scale power system using Benders decomposition, which presented an operational 

strategy for fixing and unlocking the generating units.  
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Figure 1.2 Benders decomposition 

 

1.2.5 Lagrangian relaxation method 

Lagrangian relaxation based approaches are widely used by some utilities [30, 31] 

to relax some constraints and decompose the original optimization problem into several 

independent subproblems. [32] proposed a Lagrangian Relaxation method for UC 

problem and applied that at Electricite De France. In [33, 34], Lagrangian Relaxation 

method is used for a large-scale UC problem with different kinds of generating units, 

including usual thermal units, fuel-constrained thermal units, and pumped storage hydro 

units. [35] proposed a Lagrangian relaxation based optimization framework to deal with 

the ramping rate limit in the UC problem. In [36], Lagrangian relaxation method is 

employed to replace transmission constraints with penalty functions and includes the 

functions in the objective function.  

1.2.6 Augmented Lagrangian relaxation method 

In order to improve the performance of the Lagrangian relaxation based 

optimization method, augmented Lagrangian relaxation method is adopted with the 
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second order penalty term [37, 38]. ALR method is adopted in [39], which presented a 

transient stability constrained unit commitment (TSCUC) model which achieves the 

objective of maintaining both transient stability and economical operation. Alternatively, 

[40] adopted ALR to propose a SCUC solution for the optimal integration of large-scale 

offshore wind energy into a power grid, which considers a linear static state 

representation of multi-terminal voltage source converter (VSC)-based high voltage 

direct current (HVDC) and effectively incorporates this model into SCUC. Reference 

[41] employed ALR to propose a distributed calculation platform to obtain a global shift 

factor in interconnected power systems while protecting information privacy of 

individuals.  

1.3 Research motivations 

Nowadays, the development of power systems is bringing new challenges into 

SCUC solutions, such as increasing size of power systems, high penetration of 

intermittent renewable energy, and the emergence of advanced techniques in the smart 

grids. To solve these emerging challenges, several advanced solution algorithms are 

proposed by our researchers, which will introduce a great number of decision variables 

and constraints. 

In order to deal with the uncertainty introduced by the renewable energy, 

significant contributions have been made by researchers by using scenario-based 

stochastic optimization approaches, in which each scenario would represent a possible 

system situation. Typically, the stochastic SCUC problem needs to model a certain 

number of scenarios, which will dramatically increase the size of the problem in terms of 

the large number of variables and constraints. In addition, the emergence of TS technique 
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allows the system operators to change the topology of transmission systems in order to 

improve economic benefits by mitigating transmission congestion, in which the 

transmission switching lines can be switched ON/OFF. Thus, binary variables are 

employed for both the states of generating units and switchable transmission lines. This 

co-optimization problem is a large-scale and computationally complex optimization 

problem. 

As a result, the complexity of the SCUC model will increase dramatically and 

more computational efforts will be required, which can make the problem difficult to 

solve and even intractable. Therefore, an advanced solution technique is urgently needed 

to solve such stochastic SCUC problems and TS-based SCUC problems in an effective 

and fast way. As one of the major challenges in large-scale power system operation 

problems comes from its model size, the solution efficiency can be improved if we could 

reduce the size of solved problems. Thus, in this dissertation, a decomposition framework 

is presented for the optimal operation of the large-scale power system, which decomposes 

the original large-size power system optimization problem into smaller-size and tractable 

subproblems, and solves these subproblems in a parallel manner with the help of high 

performance computing techniques. 

1.4 Contributions 

In order to overcome the computational bottleneck of the power system 

operations problems in the stochastic security-constrained unit commitment problem and 

co-optimization of the generating unit and transmission switching problem, we propose 

proper decomposition algorithms and implement the proposed approaches in a parallel 

computing environment.  
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1.4.1 Fully decomposed solution module 

The proposed approach decomposes the entire SCUC problem into several 

solution modules, and each major module can be further decomposed into multiple 

smaller submodules, which make the proposed decomposition structure more favorable to 

parallelism. As a result, the proposed decomposition approach makes all decomposed 

problems scalable and tractable, which will theoretically allow us to handle power 

systems of any size with a large number of scenarios/contingencies assuming enough 

processors. 

1.4.2 Fully parallel solution procedure 

As the auxiliary problem principle (APP) method is more desirable to be applied 

for large-scale power system optimization problems in terms of computational speed and 

convergence performance [42], this method is applied to coordinate all above solution 

modules. With the application of APP method, all of decomposed solution submodules 

can be solved simultaneously, instead of in a sequential process. In other words, one 

module does not need to wait for the decisions from another module. Consequently, all of 

the solution modules are solved in a parallel manner, which can fully utilize the high 

performance computing techniques to improve the computational efficiency. 

1.4.3 Handling complicating constraints 

To be specific, in the stochastic SCUC study, the solution performance is 

improved by avoiding the discreteness of unit commitment variables during the 

coordination procedure and improving the convexity of Lagrangian relaxation function. 

The existing SCUC decomposition methods [43-47] coordinate unit commitment 
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decisions (binary variables) between base case and scenarios. The classical Lagrangian 

relaxation method is adopted to satisfy the complicating (non-anticipativity or 

consistency) constraints with integer variables (unit commitment decisions). In other 

words, they directly process the integer variables appearing in the complicating 

constraints. However, the proposed method will create the complicating constraints with 

only continuous variables (such as the power dispatch of generating units) to indirectly 

coordinate the unit commitment between base case and scenarios by using the augmented 

Lagrangian relaxation method (with the second order penalty function in the Lagrangian 

objective function). These strategies can enhance the solution performance by avoiding 

the discreteness of unit commitment variables during the coordination procedure and 

improving the convexity of Lagrangian relaxation function. 

1.4.4 Decomposed co-optimization subproblem:  

Particularly, in the co-optimization of generating scheduling and transmission 

switching study, we further investigate how to effectively incorporate the transmission 

switching problem into the SCUC problem. The proposed approach decomposes the 

entire TS-based SCUC problem into three major solution modules: the UC module that 

determines the state of generating units; the OPF module that optimizes the power 

generation of generating units while satisfying the network security constraints for both 

base case and credible contingencies; and the individual TS module that only determines 

the state of switchable transmission lines. Secondly, unlike the existing research [48],[49] 

that only considered the preventive action in the proposed TS study. The proposed 

parallel co-optimization approach in this study can allow the contingency dispatch 
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represented by both corrective (post-contingency) and preventive (pre-contingency) 

dispatch control actions. 

1.5 Dissertation organization 

The rest of the dissertation is organized as follows. Chapter II introduces the 

decomposition algorithms and the parallel computing environment. Among these 

decomposition algorithms, the augmented Lagrangian method and auxiliary problem 

principle are employed to decompose the original large-scale power system optimization 

problem into smaller-size and tractable subproblems. In addition, the structure of the 

parallel computing cluster is introduced. 

Chapter III states application of “fully parallel stochastic security-constrained unit 

commitment”. In this chapter, the proposed decomposition framework is applied into 

stochastic security-constrained unit commitment problem, which solves the power system 

optimization problem with consideration of integration of renewable energy and 

uncertainty of the load demand. 

Chapter IV demonstrates the decomposition framework and its application in the 

“parallel co-optimization of generating unit commitment and transmission switching with 

post-contingency corrective”. In this chapter, a co-optimization problem is presented and 

solved with the proposed decomposition framework. 

The conclusion and future work are drawn in Chapter VI. 
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CHAPTER II 

PARALLEL ALGORITHMS AND CALCULATION ENVIRONMENT 

A decomposition framework is presented for optimal operation of the large-scale 

power system, which is applied to scenario-based stochastic SCUC problem and TS-

based SCUC. In this chapter, the proposed parallel algorithms and the parallel computing 

environment will be introduced.  

2.1 Parallel decomposition algorithms 

From the viewpoint of computational complexity, SCUC problem is a large-scale, 

non-linear, non-convex, mixed-integer optimization problem, which makes the SCUC 

problem difficult to solve [50]. With the integration of renewable energy and TS 

technique, the complexity of the SCUC model will increase and more computational 

efforts will be required, which might make the problem difficult to be solved and even 

intractable. Therefore, an advanced solution technique is urgently needed to solve such 

stochastic SCUC problems and TS-based SCUC problems in an effective and fast way. 

The development of distributed multi-processor environment potentially greatly 

increases the computational availability and decreases the communication time 

consumption. In the past several decades, various approaches based on augmented 

Lagrangian method have been developed to decompose the original large-scale, non-

linear, mixed-integer optimization problem. The basic idea of augmented Lagrangian 
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method is to replace the original problem by an equivalent problem. Consider a convex 

program with separable structure as shown below: 

 

min (x) G(y)
s. t .

(x) 0
(y) 0

0

F

h
l
ax by







 

 (2.1) 

where, x and y present two sets of variables, F(x) and G(y) are convex, proper, and lower 

semi-continuous functions. Then the augmented Lagrangian for the problem (2.1) is 

defined as 

  
2( , ) ( ) G(y)

2
T

c
cL x F x ax by ax by        (2.2) 

where   is defined as the first order Lagrangian multipliers and c is a second order 

Lagrangian multipliers. During the iterative solution procedure, the first order and second 

Lagrangian multipliers are updated based on (2.3). 

 
1

1

( )k k

k k

c ax+by

c c

 







 


 (2.3) 

where, coefficient   is set to be equal or larger than one in order to obtain a converged 

optimal result. Detailed discussions about augmented Lagrangian relaxation techniques 

and parameter update strategies can be found in [51]. The principal disadvantage of the 

above Lagrangian (2.2) to the classic Lagrangian relaxation for decomposition methods is 

the presence of the term 2

2
c ax by , because of the production of two variables, which 

destroys the reparability in the (2.2). In order to divide the coupling terms introduced by 

2

2
c ax by , several decomposition methods are proposed, including Alternating 
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Direction Method of Multipliers (ADMM), Diagonalization Quadratic Approximation 

(DQA), and APP. 

2.1.1 Alternating direction method of multipliers 

The basic idea of alternating direction method of multipliers is a relaxation 

approach, in which, we first minimize the augmented Lagrangian (2.2) with respect to x 

and then with respect to y, and finally update the Lagrangian multiplier  , as shown in 

(2.3). 
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 (2.4) 

2.1.2 Diagonalization quadratic approximation  

Compared with ADMM method, the DQA method adopted Taylor series to divide 

the coupled term 2

2
c ax by  in the (2.2). As a result, the augmented Lagrangian (2.2) 

can be rewritten as: 
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which can be further written as: 
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The fundamental difference between ADMM and DQA method is the solution 

structure. In the ADMM method, the optimization of 1ky   has to wait for the result of 

1kx  ; on the other hand, in the DQA method, these two optimization problems can be 

processed in parallel. 

2.1.3 Auxiliary problem principle 

The APP allows us to substitute the augmentation terms with decoupled terms at 

iteration k. According to the APP theory, a master problem could be replaced by an 

alternative problem. We consider the so-called master problem (MP) as: 

 1( ) ( )Min J u J u  (2.7) 

where, we assume ( )J u  is a convex, and differentiable function, 1( )J u  can be non-

convex function. Now let ( )K u  be another functional with the same assumptions as for 

( )J u  and consider the following function as auxiliary which depends on some specific v 

and 0  : 

   1( ) ( ) '( ) '( ) ( )TvMin G u K u J v K v u J u       (2.8) 

where, '( )J v , '( )K v  are differential result of ( )J v  and ( )K v , and v is the optimal 

solution of vG  such that: 

 ( ) ( )v vG v Min G u  (2.9) 

Then, we can get: 

 1 1( ) ( ) ( ) ( )J v J v Min J u J u    (2.10) 

The proof is based on variational inequality character [52]. This means, if v

happens to be a solution of the problem of minimizing vG  (so-called auxiliary problem), 
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then it is also a solution of MP. From the theory above, the equivalent function vG

depends on choice of ( )K u . With different choices of ( )K u , we can get different 

equivalent function vG to original function 1( ) ( )J u J u .  

Therefore, in order to decompose the coupled term x y  of (2.2), ( ),J u 1( )J u and 

( )K u are selected as below: 

 2( )
2
cJ u ax by   (2.11) 

  1( ) ( ) G(y) TJ u F x ax by     (2.12) 

 2 2 2 2( ) ( )K u c a x b y   (2.13) 

Here,   is set to 1. Thus, based on the equation we discussed above, we can get: 

  

 

2 2 2 2

2 ( 1) ( 1) 2 ( 1)

( 1) 2 ( 1) 2 ( 1)

( )

2

2

v

T Tk k k

k k k

T

2 2 2 2 (k-1) (k-1)

T

G c a x b y

ca x caby ca x x
ycabx cb y cb y

+F(x)+G(y)+ ax+by

= c(a x +b y )- c(ax - by )(ax - by)

+F(x)+G(y)+ ax+by





  

  

 

                       

 (2.14) 

where, ( 1)kx  , ( 1)ky  are optimal solutions of x , y  from last iteration, which can be 

considered as constants at each iteration. Consequently, the coupled term x , y is 

decomposed into two separated terms.  

2.1.4 Convergence of the decomposition algorithms 

The success of the augmented Lagrangian based algorithms depends on the ability 

of the algorithm to drive Lagrangian multipliers to the value of multipliers associated 
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with coupling constraints at the optimal solution. The convergence of the augmented 

Lagrangian method for convex problem has been proved in [51]. However, for a non-

convex optimization problem, the non-convexity can be mitigated by quadratic penalty 

terms in the augmented Lagrangian method as a local convexifier [53].  

Although there is no direct proof for the Lagrangian method for mixed-integer 

programming problem, there are several methodologies that have been proposed to 

improve the convergence performance. Reference [54] introduced the standard 

Lagrangian dual problem. Based on this concept, reference [55] employed stabilization 

techniques [56] to improve the convergence performance of augmented Lagrangian 

method, in which the primal form of the stabilization allows a controlled violation of the 

constraints relaxed in a corresponding Lagrangian dual problem. In further, some 

methods have been proposed by other researchers to improve the convergence 

performance. In [57], authors proposed an alternating direction method with self-adaptive 

penalty parameters for monotone variational inequalities, which offers a better 

convergence performance than original sub-gradient method. In [58], the convergence 

proof of the DQA method is given, and authors discussed several method to improve the 

convergence performance, including trust region technique and truncated analytical target 

cascading. In reference [37], the authors proved the convergence of the APP method with 

a convex function and discussed several convergence improvement methods. 

2.2 Parallel calculation environment 

High Performance Computing (HPC) most generally refers to the practice of 

aggregating computing power in a way that delivers much higher performance than one 

could get out of a typical desktop computer or workstation in order to solve large 
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problems in science, engineering, or business. Recent years have seen a dramatic increase 

of the performance of the HPC platforms  

HPC platform is referring to a supercomputer with a high-level computational 

capacity compared to a general-purpose computer. Performance of a supercomputer is 

measured in floating-point operations per second (FLOPS). Supercomputer was 

introduced in the 1960s. While in the 1970s, the super computers only had a few 

processors. Since the appearance of machines with thousands of processors in the 1990s, 

the massively parallel supercomputers with tens of thousands processors are widely used. 

The high performance computing center in Mississippi state university provides 

substantial high performance computing resources for use: Raptor has a peak 

performance of over 10.6 teraFLOPS; Talon has a peak performance of over 34.4 

teraFLOPS; Shadow has a peak performance of 322 teraFLOPS, which was also the 16th 

most energy efficient supercomputer in the world according to the June 2014 Green500 

list [59]. 

The MathWorks Inc. provides the parallel computing toolbox with MATLAB. 

Parallel Computing Toolbox can be used to solve computationally and data-intensive 

problems using MATLAB on multi-core and multiprocessor computers. Parallel 

processing constructs such as parallel for-loops and code blocks, distributed arrays, 

parallel numerical algorithms, and message-passing functions, can be used to implement 

task- and data-parallel algorithms in MATLAB at a high level without programming for 

specific hardware and network architectures. The parallel computing tools can be ran on a 

local machine, or on a remote server, as shown in the Figure. 2.1. 
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Figure 2.1 Operation structure of parallel computing tools 

 

The development of HPC promotes the application of parallel computing 

techniques in the power system optimization problems. Parallel computing techniques 

offer significant potential in critical infrastructure application areas of power and energy 

systems. [60] presents a review of the research activities developed in recent years in the 

field of HPC application to power system problems. Parallel computing techniques can 

significantly improve computational efficiency of power system optimization problem 

with utilization of multi-processors and multi-threads [61], which is a desirable solution 

to today’s stochastic SCUC problem. However, these improvements cannot be achieved 

by the architectures of the machines alone, it is equally important to develop suitable 
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mathematical algorithms and proper decomposition technique in order to effectively 

utilize parallel architectures [62]. 

By adopting decomposition techniques and parallel computing techniques, 

magnitude performance improvement can be obtained in the power system optimization 

problem. 
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CHAPTER III 

FULLY PARALLEL STOCHASTIC SECURITY-CONSTRAINED UNIT 

COMMITMENT 

The increasing size and complexity of modern power systems and the integration 

of volatile renewable energy bring great challenges to the existing security-constrained 

unit commitment (SCUC) solution engines. This chapter presents a fully parallel 

stochastic SCUC approach to obtain an efficient and fast solution for a large-scale power 

system with wind energy uncertainty. Variables duplication and auxiliary problem 

principle techniques are adopted to fully decompose the original stochastic optimization 

problem into three major solution modules: the unit commitment (UC) module solves 

multiple single UC problems; the optimal power flow (OPF) module handles multiple 

hourly direct current optimal power flow (DC-OPF) problems; and the bridge module 

builds a connection between the UC and OPF modules. These three modules are 

conducted for both base case and scenarios, and can be totally solved in a parallel 

manner. Numerical case studies on a modified IEEE 118-bus system and a practical 

1168-bus system demonstrate the effectiveness and efficiency of the proposed approach 

which will offer the power system a secure and economic operation under various 

uncertainties [63]. 
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3.1 Introduction 

Nowadays, the development of power systems is bringing new challenges into 

SCUC solutions, such as increasing size of power systems and high penetration of 

intermittent renewable energy. A traditional approach is to incorporate system reserve 

constraints to ensure sufficient generation capacity available in real time to accommodate 

uncertainties. This is a conservative approach which could over-commit generating units 

and consequently lead to a very high operating cost of power systems [64]. In order to 

deal with the uncertainty of load and renewable energy, scenario-based stochastic 

optimization approaches have been proposed by researchers to solve large-scale power 

system operation problems with uncertainties, in which each scenario would represent a 

possible system situation. The benefits and applications of using stochastic programming, 

instead of deterministic study, to account for the uncertainty in unit commitment are 

examined in [65]. Typically, the stochastic SCUC problem needs to model a certain 

number of scenarios, which will dramatically increase the size of the problem in terms of 

the large number of variables and constraints. 

Recently, significant contributions have been made by researchers to solve large-

scale power system operation problems with uncertainties using scenario-based stochastic 

optimization approaches, in which each scenario would represent a possible system 

situation. The benefits and applications of using stochastic programming, instead of 

deterministic study, to account for the uncertainty in unit commitment are examined in 

[65]. Typically, stochastic SCUC problem needs to model a certain number of scenarios, 

which will dramatically increase the size of the problem in terms of large number of 

variables and constraints. As a result, the complexity of stochastic SCUC model will 



 

24 

increase and more computational efforts will be required, which might make the problem 

hard to be solved and even intractable. Therefore, an advanced solution technique is 

urgently needed to solve such stochastic SCUC problems in an effective and fast way. 

As one of the major challenges in large-scale power system operation problems 

comes from its model size, the solution efficiency can be improved if we could reduce the 

size of solved problems. Using this basic idea, researchers have developed various 

approaches to decompose the original large-scale optimization problem into several 

small-size and tractable subproblems [66]. The existing decomposition approaches can be 

classified into three categories: geographical-structure based decomposition, scenario-

structure based decomposition, and functional-structure based decomposition. 

According to the geographical structure of power systems, reference [67-70] 

proposed a distributed method to decompose a large-scale deterministic SCUC problem 

into several small regional subproblems, and then use an analytical target cascading 

(ATC) technique to coordinate those subproblems. Reference [71] solved a multi-area 

power system operation problem in which a stochastic programming model has been 

studied to consider cross-border trading in the presence of wind power uncertainty.  

The second category of decomposition approaches is based on the scenario 

structure of the problem. Reference [43] adopted a progressive hedging algorithm to 

decompose the stochastic formulations into multiple single-scenario subproblems. 

Reference [44] presented a scenario-tree based stochastic SCUC that considers load 

uncertainty as well as outage of multiple generation and transmission components using 

scenario reduction technique. References [45-47] solved a two-stage stochastic SCUC, 

which can solve the second stage subproblems with scenarios in parallel.  
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According to the functional structure of the problem, the original large-scale 

optimization problem can be decomposed into two major functions: generation 

scheduling and network security checking. Benders decomposition based approaches 

have been widely used to coordinate the master UC problem and the network security 

checking subproblems using Benders cuts (or violation cuts) [27]. Reference [72] 

proposed a two-stage SCUC algorithm in which unit commitment decisions are made in 

the first stage, and the second stage considers security-driven redispatching to mitigate 

the intermittency and volatility of wind power. Benders decomposition technique is 

applied to coordinate these two stages by adding cuts from the second stage back to the 

first stage. An auxiliary problem principle based sequential-parallel solution was 

proposed in [39] to solve a deterministic SCUC problem. In the work [39], single UC 

subproblems are interacted with hourly OPF subproblems through Lagrangian penalty 

functions. Although in this work, either single UC subproblems or hourly OPF 

subproblems can be solved in parallel, the overall solution procedure is still sequential 

because the hourly OPF subproblems have to wait for the unit commitment decisions 

from single UC subproblems. As Amdahl’s law dictated [73], an upper bound on the 

relative speedup achieved on a system with multi-processors is decided by the execution 

time of the sequentially operated applications. This overall sequential solution procedure 

of SCUC becomes the bottleneck to improve computing efficiency. 

In this dissertation, we concentrate on the modeling of the studied stochastic 

SCUC problem and the development of the parallel algorithms. The proposed parallel 

stochastic SCUC approach can decompose the stochastic SCUC problem by generating 
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units and time periods, as well as by scenarios. The major contributions of this work are 

summarized as follows:  

3.1.1 Fully decomposed problem structures 

The proposed approach decomposes the entire stochastic SCUC problem into 

three major solution modules: the UC module determines the state of generating units; 

the OPF module optimizes the power generation of generating units while satisfying the 

network security constraints; and the bridge module builds a connection between the UC 

and OPF modules. Each major module can be further decomposed into multiple smaller 

submodules. The UC module is composed by multiple single UC submodules. The OPF 

module includes multiple hourly OPF submodules. Multiple bridge submodules will 

work as junction points to link single UC and hourly OPF submodules. In addition, all 

submodules are applied to both base case and scenarios. As a result, the proposed 

decomposition approach makes all decomposed problems scalable and tractable, which 

will theoretically allow us to handle power systems of any size with a large number of 

scenarios assuming enough processors. 

3.1.2 Handling of complicating constraints 

The existing SCUC decomposition methods [43-47] coordinate unit commitment 

decisions (binary variables) between base case and scenarios. The classical Lagrangian 

relaxation method is adopted to satisfy the complicating (non-anticipativity or 

consistency) constraints with integer variables (unit commitment decisions). In other 

words, they directly process the integer variables appearing in the complicating 

constraints. However, the proposed method will create the complicating constraints with 
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only continuous variables (such as the power dispatch of generating units) to indirectly 

coordinate the unit commitment between base case and scenarios by using the augmented 

Lagrangian relaxation method (with the second order penalty function in the Lagrangian 

objective function). These strategies can enhance the solution performance by avoiding 

the discreteness of unit commitment variables during the coordination procedure and 

improving the convexity of Lagrangian relaxation function. 

3.1.3 Fully parallel solution procedure 

As the APP method is more desirable to be applied for large-scale power system 

optimization problems in terms of computational speed and convergence performance 

[42], this method is applied to coordinate all above solution modules. With the 

application of APP method, all of the single UC, hourly OPF and bridge/TS modules for 

both base case and scenarios/contingencies can be solved simultaneously, instead of in a 

sequential process. In other words, the OPF module does not need to wait for the unit 

commitment decision from the UC module, and the study on scenarios/contingencies 

does not need to be based on the solution of base case. Consequently, all of the solution 

modules are solved in a parallel manner, which can fully utilize the parallel computing 

techniques to improve the computational efficiency. Also, the parallelization of the 

proposed algorithm is implemented on a distributed computing cluster which is 

composed by up to 8 computers. 

3.2 Formulations 

Scenario-based stochastic SCUC model is widely used by power system operators 

to deal with increasing uncertainties in power systems, especially from intermittent 
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renewable energy. Mathematically, the stochastic SCUC problem can be formulated as a 

mixed integer programming (MIP) based two-stage stochastic programming problem. 

This MIP problem makes the unit commitment decision in the first stage and considers 

security-driven redispatching with uncertainty in the second stage. Without loss of 

generality, a set of general MIP formula of the two-stage stochastic SCUC is represented 

by (4.1) that minimizes the total expected operating cost, while satisfying both unit and 

system operational constraints for all given scenarios over the studied time horizon. 

 

0 0,...,
. .

NS s sMin cx Min dy
sx sy y

S t Ax b
s s s sM x N y h s

 




  

 (3.1) 

where the binary variables x are the first-stage variables, which represent the status of 

generating units (e.g. ON/OFF); the second-stage decision variables, such as the power 

dispatch of generating units in both base case (indicated by superscript 0) and scenarios 

(indicated by superscript s), can be represented by the continuous variables 0y  and sy , 

respectively; the cost coefficients c and d are for the corresponding binary x and 

continuous y variables; and the parameters s  are the probability of base case ( 0s  ) 

and scenarios ( 0s  ) and subject to 0 s 1
1

NS

s
  


. In order to clearly introduce the 

proposed decomposition strategy in the chapter, we reformulate the optimization problem 

(3.1) by (3.2) – (3.9), 

 0 0
1

NS s sMin cx dy dy
s

   


 (3.2) 
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 . .s t  Ax b  (3.3) 

 0 0 0 0E x F y d   (3.4) 

 0 0 0H y e  (3.5) 

 0
min maxy x y y x   (3.6) 

 0s s s sE x F y d s     (3.7) 

 0s s sH y e s    (3.8) 

 0min max
sy x y y x s     (3.9) 

The objective function (3.2) minimizes the total expected operating cost. The 

constraint (3.3) is relevant to only binary variables x, like minimum On/Off time limits of 

generating units. The constraint (3.4) is for base case, which include both unit state x and 

continuous power dispatch 0y , such as the ramping limits of generating units. The 

constraint (3.5) is for only continuous power dispatch variables 0y  in base case, such as 

the power balance constraints, reserve requirements and the power flow limits 

with/without the consideration of contingencies. The specific constraint (3.6) represents 

the generation capacity limits [ ]min maxy x y x  that depend on the state x of generating 

units. Similar to above constraints (3.4)-(3.6), the constraints (3.7)-(3.9) are for different 

scenarios which represent uncertainties in load demands and wind generations in this 

chapter.  

In this stochastic SCUC problem, the objective function (3.2) is decomposable 

without any coupling terms. The set of constraints (3.3)-(3.9) can be categorized using 
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two strategies. One strategy is to divide the constraints by scenarios, which categorize 

constraints (3.3)-(3.9) into base case constraints (3.3)–(3.6) and scenario case constraints 

(3.7)–(3.9). The other strategy is to divide the constraints by its function, which 

categorizes constraints (3.3)-(3.9) into a MIP based UC model (including (3.3), (3.4), 

(3.6), (3.7) and (3.9)) and a linear programming (LP) based OPF model (including (3.5) 

and (3.8)) with only continuous variables 0y  and sy . This chapter combines both 

strategies to divide all the constraints into four groups: the MIP based UC model for base 

case (3.3), (3.4) and (3.6); the MIP based UC model for scenario (3.7) and (3.9); the LP 

based OPF model for base case (3.5); and the LP based OPF model for scenario (3.8). 

However, all these four groups of constraints are coupled by complicating variables x , 

0y  and sy . For examples: the status x of generating units should be the same for both 

base case and scenarios; and the power dispatch variables 0y  and sy  appear in both the 

UC and OPF models. Such complicating variables are making the entire optimization 

problem indecomposable and probably intractable. Therefore, a new decomposition 

strategy and solution method is proposed in the following sections. 

3.3 Decomposition strategy 

In order to eliminate those complicating variables and fully decompose the original 

stochastic SCUC problem into scalable subproblems, the following four major steps will 

be conducted: 

 Step 1: Replace complicating variables with complicating constraints 
using variables duplication technique. 

 Step 2: Relax complicating constraints using augmented Lagrangian 
relaxation method. 
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 Step 3: Decompose coupling terms in the Lagrangian objective function 
using APP method. 

 Step 4: Formulate independent solution modules. 

3.3.1 Replace complicating variables 

In order to replace complicating variables with complicating constraints, several 

groups of variables are introduced as duplications of the existing variables. The problem 

(3.2)-(3.9) can be rewritten as shown in (3.10) – (3.23). 

 0 0 0 s sMin cx dy dyuc ucs
    (3.10) 

 . .s t 0Ax b  (3.11) 

 0 0
ucEx Fy d   (3.12) 

 0
opfHy e  (3.13) 

 0 0 0
maxmin ucy x y y x   (3.14) 

 s s
ucEx Fy d   (3.15) 

 s
opfHy e  (3.16) 

 maxmin
s s s

ucy x y y x   (3.17) 

 0,
maxmin

s s s
ucy x y y x   (3.18) 

 0 0
uc brdgy y  (3.19) 

 0 0
opf brdgy y  (3.20) 

 0, 0s
uc brdgy y  (3.21) 
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 s s
uc brdgy y  (3.22) 

 s s
opf brdgy y  (3.23) 

where 0x  and sx , as duplications of the original binary variables x, are introduced for 

both base case and scenarios, respectively. Duplications of 0y  for UC and OPF 

constraints in base case are noted as 0
ucy  and 0

opfy , respectively. Similarly, duplications 

of sy  for UC and OPF constraints in scenario cases are noted as s
ucy  and s

opfy , 

respectively. In addition, one more group of duplications of 0y , variables 0,s
ucy  are 

introduced into the generation capacity limits (3.18) for scenarios to represent the power 

dispatch from base case.  

In order to guarantee an equal value to above duplications of complicating variables 

x , 0y  or sy , 

 Bridge variables 0ybrdg  are introduced to ensure that the duplications of 

complicating variables 0y  have the same value ( 0 0 0,s
uc ucopfy y y   from 

the constraints (3.19)-(3.21));  

 Bridge variables sybrdg  are added to make sure that the duplications of 

complicating variables sy  have the same value ( s sy yuc opf  based on the 

constraints (3.22)-(3.23)); 
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 From the constraints (3.19) and (3.21), we get 0,0 sy yuc uc . And, these two 

continuous variables 0yuc , 0, syuc  are restricted by corresponding 

generation capacity limits (3.14) and (3.18). If both 0yuc  and 0, syuc  are 

equal to zero (no generation), we can get the state of generating units 
0 0x   and 0sx  . However, if both 0yuc  and 0, syuc  are within their lower 

( miny ) and upper ( maxy ) bounds, we must have 0 1x   and 1sx  . 

Therefore, a group of constraints (3.14), (3.18), (3.19) and (3.21) will 
together ensure that the duplications of complicating variables x are equal 

( 0 sx x ), which physically means the state of generating units keep the 
same for both base case and scenarios.  

Now, the problem constraints can be grouped into the following six types, 

including four types (Types 1-4) of separable constraints and two types of complicating 

constraints: 

 Type 1: UC-base constraints: UC constraints for base case include the 

constraints (3.11), (3.12) and (3.14) with the duplication variables 0x  and 
0yuc ; 

 Type 2: UC-scenario constraints: UC constraints for scenarios include the 

constraints (3.15), (3.17), and (3.18) with the duplication variables sx  , 
syuc  and 0, syuc . 

 Type 3: OPF-base constraints: OPF constraints for base case include the 

constraints (3.13) with the duplication variables 0yopf . 

 Type 4: OPF-scenario constraints: OPF constraints for scenarios include 

the constraints (3.16) with the duplication variables syopf .  
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 Type 5: Complicating constraints for base case: the constraints (3.19)-

(3.21) link the duplication variables 0yuc , 0yopf , 0, syuc  using bridge 

variables 0ybrdg . Such complicating constraints are coupling above Types 

1-3 constraints. 

 Type 6: Complicating constraints for scenarios: the constraints (3.22) and 

(3.23) link the duplication variables syuc  and syopf  using bridge variables

sybrdg . Such constraints are coupling above Type 2 and Type 4 

constraints. 

So far, all the complicating variables x , 0y  and sy  in the original problem (3.2)-

(3.9) are replaced by the complicating constraints (3.19)-(3.23), which will be further 

decomposed using the augmented Lagrangian method as discussed in the following 

subsection. 

3.3.2 Relax complicating constraints 

In this subsection, augmented Lagrangian relaxation method is adopted to 

decompose complicating constraints (3.19) - (3.23) by adding the first-order and the 

second-order penalty functions into the objective function (3.10). Accordingly, the 

objective function of corresponding Lagrangian relaxation problem is written as,  
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 (3.24) 

where   and c  are the penalty multipliers associated with the first-order and the second-

order terms, respectively. The penalty multipliers will be updated during the iterative 

solution process. After relaxing complicating constraints by penalty multipliers, the 

remaining constraints (3.11)-(3.18) become separable and decomposable. However, the 

Lagrangian relaxation function (3.24) is still unable to be decomposed because of the 

coupling terms (the product of variables) introduced by the second order penalty function 

in (3.24).  

3.3.3 Decompose objective function 

In order to remove coupling terms from the objective function (3.24), an APP 

method [37] is applied in this step to replace (3.24) with its auxiliary problem (3.25), in 

which the coupling terms are substituted by independent terms with the help of iterative 

results from the previous iterations.  
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 (3.25) 

where ( 1)ky   are the results obtained from the previous iteration k-1, which can be 

considered as constants in the current iteration k. As a result, decoupled auxiliary 

objective functions can be obtained by reorganizing this auxiliary problem (3.25), which 

is relevant to different groups of variables, and will be presented in the next subsection. 

3.3.4 Formulate independent solution modules 

By associating decoupled objective functions with their corresponding constraints 

groups, the original stochastic SCUC problem can be divided into the following six 

independent solution modules, including the UC-base module, the UC-scenario module, 

the OPF-base module, the OPF-scenario module, the bridge-base module and the bridge-
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scenario module. The relationship and variables/data exchange between modules are 

shown in Figure 3.1. 

 

Figure 3.1 The relationship and variables exchange between solution modules 

 

3.3.4.1 UC-base module 

The UC-base module is composed by the objective function (3.26) and constraints 

(3.11), (3.12) and (3.14), with variables 0x  and 0yuc . 

 
 

0 0 0 2( )

0, ( 1) 0, ( 1)0 0 0 0( )

Min cx c yuc uc
k kd c y y yuc uc uc brdg uc 



 
   

 (3.26) 

Note that constraints in the UC-base module can be separated for individual 

generating units, and there is no coupling terms between the generating units in the 

objective function as well. Thus, the UC-base module can be further decomposed into 

multiple single UC-base submodules.  
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3.3.4.2 UC-scenario module 

The UC-scenario module includes the objective function (3.27) and constraints 

(3.15), (3.17), (3.22) and (3.23), with variables sx , s
ucy  and 0,s

ucy . Similar to the UC-base 

module, for each scenario, the UC-scenario module can be further decomposed into 

multiple single UC-scenario submodules. 

  

 

, ( 1) , ( 1)2( )

0, , ( 1) 0, ( 1)0, 0, 0, 0, 0,2( ) ( )

s sMin d yucs
s k s ks s s s s sc y c y c y yuc uc uc uc uc uc brdg ucs

s k ks s s s sc y c y y yuc uc uc uc uc brdg ucs









  
      

  
      

 (3.27) 

3.3.4.3 OPF-base module 

The OPF-base module is adopted to optimize decomposed objective functions 

under network constraints in base case. This module consists of the objective function 

(3.28) and constraint (3.13), with variables 0
opfy . As all the constraints in the OPF-base 

module can be separated for single period study, this module can be further divided into 

multiple single-hour OPF-base submodules. 

 
 

0 0 2( )

0, ( 1) 0, ( 1)0 0 0( )

Min c yopf opf
k kc y y yopf opf opf brdg opf
 

  

 (3.28) 
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3.3.4.4 OPF-scenario module 

The OPF-scenario module has the objective function (3.29) and constraint (3.16), 

with variables s
opfy . Similar to the OPF-base module, for each scenario, the OPF-scenario 

module can be further decomposed into multiple single-hour OPF-scenario submodules. 

 
 

2( )

, ( 1) , ( 1)( )

s sc yopf opf
Min

s k s ks s ss c y y yopf opf opf brdg opf

 
 

  
    

 

 (3.29) 

3.3.4.5 Bridge-base module 

The bridge-base module is introduced here as an unconstrained optimization 

problem (3.30) with variable 0
brdgy , which is used to collaborate the UC-base, the OPF-

base and the UC-scenario modules, as shown in Figure.3.1.  

  
 

 

0,0 0 0 2( )

0, ( 1) 0, ( 1)0 0

0, ( 1) 0, ( 1)0 0 0

0, , ( 1) 0, ( 1)0, 0,

sMin c c c yuc opf uc brdgs

k kc y yuc uc uc brdg
k kc y y yopf opf opf brdg brdg

s k ks sc y yuc uc uc brdgs s







 
  

 
 

  
   
 
  

    
 

     
 
 

 (3.30) 

In (3.30), the solution of the kth iteration in bridge-base is impacted by the iterative 

result of the (k-1)th iteration from itself and other modules like the UC-base, OPF-base, 

and UC-scenario modules for all scenarios. Obviously, this objective function can be 

decomposed into multiple submodules in terms of generating units, studied periods and 

scenarios. 
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3.3.4.6 Bridge-scenario module 

Similarly, the bridge-scenario module is introduced to connect the UC-scenario 

and OPF-scenario modules, as shown in Figure.3.1. The bridge-scenario module is also 

an unconstrained optimization problem (3.31) with variable s
brdgy . This module can be 

further decomposed into multiple submodules in terms of generating units, studied 

periods and scenarios. 

 

 

 
 

2( )

, ( 1) , ( 1)

, ( 1) , ( 1)

s s sMin c c yuc opf brdgs
s k s ks sc y yuc uc uc brdg sybrdgs k s ks ss c y yopf opf opf brdg







  
  
 

   
    

  

 (3.31) 

Finally, a fully decomposed structure of the studied stochastic SCUC problem is 

illustrated in Figure.3.2. By adopting the proposed decomposition strategy, the original 

large-scale stochastic SCUC problem is decomposed into numbers of small-size 

submodules which can be simultaneously solved. Commercial MIP solvers can be used to 

solve submodules with a piecewise linearized objective function and a set of linear 

equality and inequality constraints. 
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3.4 Solution procedure 

According to the discussions above, two levels of decomposition are adopted in 

the chapter. Augmented Lagrangian relaxation method is used in the first level to 

decompose complicating constraints, while the APP technique is employed in the second 

level to decouple the Lagrangian relaxation function. Thus, the proposed parallel solution 

procedure includes two loops: an outer loop and an inner loop. The outer loop 

collaborates UC, OPF and bridge modules by updating penalty multipliers, while the 

inner loop ensures the accuracy of APP approximation. Figure. 3.34 shows the proposed 

parallel solution procedure which is discussed below:  

 Step 1: Set the iteration index, r=0 for the inner loop and k=0 for the outer 
loop, and choose initial values for all the variables 0z  (including 0y , sy , 

0yuc , 0yopf , 0, syuc , syuc  and syopf  ) and Lagrangian multipliers  and c.  

 Step 2: Set the inner loop iteration index r=r+1, solve UC, OPF and bridge 
modules in parallel, and obtain optimal results ,k rz  of the current inner 
iteration r. 

 Step 3: Check the inner loop convergence using (3.32) where 1  is the 

convergence threshold for the mismatch of duplicated variables within 
inner loops. If it is satisfied, set ,k rkz z , and go to Step 4. Otherwise, 
go back to Step 2.  

 , , 1
1

k r k rz z    (3.32) 



 

43 

 

Figure 3.3 Flowchart of the proposed parallel SCUC approach 

 

 Step 4: Check the following stopping criteria including necessary-
consistency conditions (3.33) and (3.34) where 2  is the convergence 

threshold for the mismatch of duplicated variables within outer loops and 

3  is the convergence threshold for the mismatch between each couple of 

complicating variables; and sufficiency condition (3.35) where 4  is the 

convergence threshold for the cost difference between two successive 
iterations [74]. If all of them are satisfied, then stop and the optimal value 
z  is obtained; otherwise, go to Step 5.  

Necessary-consistency conditions: 

 1
2

k kz z    (3.33) 
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 (3.34) 

Sufficiency condition: 

 
1( ) ( )

4( )

k kL z L z
kL z




  (3.35) 

where ( )kL z is the optimal result of (3.24) at the outer loop iteration k. 

 Step 5: Update Lagrangian multipliers using (3.36) and (3.37), set k = k+1 
and r =0, and go to Step 2. 
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    , )s k
dg

 (3.36) 

 1k kc c   (3.37) 

where c is the second order penalty multiplier (including 0
ucc , 0

opfc , s
ucc , s

ucc , and 0,s
ucc ) and 

the coefficient   is set to be equal or larger than one in order to obtain a converged 

optimal result. The success of the proposed Lagrangian relaxation based method depends 

on the ability of the algorithm to drive Lagrangian multipliers to the value of multipliers 

associated with complicating constraints at the optimal solution. With the combination of 

convergence criteria (3.32)-(3.35) and multipliers updating process (3.36)-(3.37), it has 

been proven to converge to the optimal solution of the original optimization problem 
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when the problem is convex [37]. Although there is a convergence proof of the APP 

algorithm for convex optimization problems, there is no direct proof for a non-convex 

MIP problem, which is modeled in this chapter. However, for this non-convex 

optimization problem, the non-convexity can be mitigated by the augmented Lagrangian 

method. Quadratic penalty terms are added to the Lagrangian objective function as a local 

convexifier to improve the convexity of the problem [53]. In addition, according to our 

experiments/testing experiences, we would like to mention that the effectiveness of the 

used APP algorithm on the studied non-convex stochastic SCUC problem is satisfactory 

and acceptable, which can be supported by the following case studies. 

3.5 Numerical study 

The proposed decomposition framework has been tested on the scenario-based 

stochastic SCUC problem. In this chapter, a modified IEEE 118-bus power system and a 

practical 1168-bus power system are used to illustrate the computational efficiency and 

convergence performance of the proposed parallel approach for solving the stochastic 

SCUC problem with consideration of wind generating units. 

As a key input to the scenario-based stochastic SCUC study, the possible 

realization of the system uncertainties can be simulated by various scenario generation 

and selection methods[75]. For the scenarios generation, different probability distribution 

functions have been adopted by researchers to generate a group of scenarios representing 

the load and wind generation uncertainties, such as hyperbolic distribution function [76], 

normal distribution function [77], and truncated normal distribution function [78, 79]. In 

this chapter, the forecasts of the load and wind generation are represented by the 

truncated normal distribution function with 99.95% confidence interval and they are in 
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the range of [ 3.5 , 3.5 ]     . In this study, the mean   is the hourly power forecast, 

and the standard deviation   is 5% of the mean. In our study, the wind power generation 

profiles for base case are obtained and scaled based on the actual wind generation data 

[80]. 

For the scenario selection, normally, the scenario reduction technique is used to 

reduce the size of scenarios and create a proper scenario tree that will be studied by the 

stochastic SCUC problem. Several scenario reduction algorithms have been adopted by 

researchers, which include the fast backward method, the fast backward/forward method, 

and the fast backward/backward method [81, 82]. As these scenario reduction algorithms 

have different computational performance and accuracy, the selection of an algorithm 

would depend on the size of the problem and the required accuracy. For example, the fast 

backward method provides the best computational performance but the worst accuracy, 

while the fast forward method could provide a more accurate result with longer 

computational time [79]. Since the main purpose of this chapter is to handle as many 

scenarios as possible using the proposed parallel algorithm, the scenario reduction 

technique is not adopted in our study. However, as an input study, it can be easily 

integrated with our work. 

The specific parameters are set as the same in all case studies. The penalty 

multipliers are set as 0 0  , 0 0.05c   for all penalty functions, and updating 

parameters for the second order multipliers is 1.01  . The convergence thresholds are 

set as 1 0.2MW  (3.32), 2 0.1MW   (3.33), 3 0.1MW  (3.34), and 4 0.01% 

(3.35). 
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3.5.1 Modified IEEE 118-bus power system  

A modified IEEE 118-bus system [27] consisting of 54 generating units, 10 wind 

units, 186 branches, 91 demand sides, 5 critical transmission line contingencies and up to 

30 scenarios is studied. The following three cases are solved using ILOG CPLEX 12.5’s 

MIP solver on a 3.4 GHz personal computer with 8G memory: 

 Case 1: Deterministic case  

 Case 2: Stochastic case with one scenario 

 Case 3: Stochastic case with up to 30 scenarios 

3.5.1.1 Deterministic case 

A deterministic SCUC problem is studied using the proposed method. Because of 

no consideration of load and wind uncertainties in this case, there are only three major 

modules cooperating with each other in parallel, which are the UC-base, OPF-base and 

bridge-base modules. A converged result is obtained after 157 iterations. In order to 

compare the proposed parallel method with the conventional centralized method (a single 

MIP model with all variables and constraints together), their total operating cost and 

calculation time are listed in Table 3.1. The total operating cost of the system is $1,585,539, 

which is very close to the conventional centralized SCUC solution of $1,585,065. 

However, as the testing case is small, the calculation speed of the centralized solution is 

faster than our method on a single PC. 

Table 3.1 Operating cost and computation time in case A. 

Items Centralized  Parallel % Change 
Total Cost ($) $1,585,065 $1,585,539 +0.03% 

Time (seconds) 39.58 235.56 +495.15% 
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3.5.1.2 Stochastic case with one scenario 

 A stochastic case with one scenario is studied in this case. In this stochastic 

study, there are a total of 18,624 variables ( 0x , sx , 0
ucy , 0

opfy , 0,s
ucy , s

ucy and s
opfy ) and 

139,248 constraints (including 6,480 complicating constraints (3.19)-(3.23)). Six major 

modules are implemented to obtain a converged result after 211 iterations. Table 3.2 

shows the total operating cost and computation time of both centralized and parallel 

solutions. As we can see, the CPU time consumption of the proposed parallel solution is 

still higher than the centralized one, while its total operating cost is very close to the 

centralized solution (only 0.07% increase). 

Table 3.2 Operating cost and computation time in case A.2 

Items Centralized Parallel % Change 
Total Cost ($) $ 1,584,882 $ 1,585,938 +0.07% 

Time (seconds) 66.1 760.7 +1150.14% 
 

3.5.1.3 Stochastic case with up to 30 scenarios 

In order to further examine the impact of increasing number of scenarios, case 

studies with more scenarios (up to 30) are studied in this case. Because of the size of the 

optimization problem and the limitation of computing hardware, only up to 5 scenarios 

can be tested by the centralized method. The comparison of the total operating cost and 

computational time between the centralized method and the proposed parallel method are 

listed in Table 3.3, in which with the increase of number of scenarios, the CPU time 

consumption of the centralized method increases from 39.58 seconds (base case) to 

960.16 seconds (5 scenarios). However, using the proposed parallel algorithm, we can 
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obtain the results for all cases having up to 30 scenarios. As an example, Table 3.4 lists 

the size of submodules for a case with 30 scenarios using the proposed parallel solution. 

All submodules are scalable and tractable. From Table 3.3, we can see that with the 

increase of number of scenarios, the CPU time consumption of the proposed parallel 

method increases from 235.56 seconds to 21,210.6 seconds (around 5.892 hours). 

Considering a significant increase in the number of variables (from 8,016 to 326,256), 

constraints (from 67,032 to 2,233,512), and complicating constraints (from 2,592 to 

41,472), the increase in calculation time is reasonable and acceptable for such a 

complicated optimization problem running on a single PC. Note that more iterations 

might be needed to obtain an optimal solution for the cases with more scenarios and it 

results in increase of total calculation time. 

Table 3.3 Results of stochastic SCUC with up to 30 Scenarios in case A.3 

# of  
scen 

Centralized Parallel 
Time (sec.) Total Cost ($) Time (sec.) Total Cost ($) # of Iter 

0 39.58 $1,585,065 235.6 $1,585,540 157 
1 66.14 $1,584,882 760.7 $1,585,939 211 
2 230.89 $1,585,185 1,237.7 $1,586,395 208 
3 390.19 $1,584,120 3,757.5 $1,586,638 228 
4 632.36 $1,585,296 5,350.7 $1,586,797 264 
5 960.16 $1,591,332 5,618.2 $1,592,664 288 
10 N/A N/A 6,712.5 $1,590,585 382 
15 N/A N/A 9,187.0 $1,605,158 438 
20 N/A N/A 11,639.9 $1,610,329 520 
25 N/A N/A 14,533.0 $1,616,201 515 
30 N/A N/A 21,210.6 $1,621,116 557 
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Table 3.4 Size of submodules for 30 Scenarios in case A.3 

Module Number of  
submodules 

Number of  
variables 

Number of  
Constraints 

UC base 54 96 192 
UC scenario 1620 144 288 

OPF base 24 64 2361 
OPF scenario 720 64 2361 
Bridge base 1,296 1 0 

Bridge scenario 38,880 1 0 
 

3.5.2 A practical 1168-bus power system 

In this case, a practical 1168-bus power system with 169 thermal units, 10 wind 

units, 1474 branches, 568 demand sides, 10 critical transmission line contingencies and 

up to 20 scenarios is studied to illustrate the computational performance of the proposed 

parallel algorithm for solving a large-scale stochastic SCUC problem. The following two 

cases are solved using ILOG CPLEX 12.5’s MIP solver on a 3.4 GHz personal computer 

with 8G memory: 

 Case 1: Deterministic case 

 Case 2: Stochastic case with up to 20 scenarios 

3.5.2.1 Deterministic case 

In this case, we studied a deterministic case with 24,576 variables and 819,336 

constraints. Using the proposed parallel method, a converged result is obtained after 282 

iterations. The total operating cost and calculation time of the proposed algorithm are 

$3,332,264 and 514.4 seconds on a single PC, respectively. The comparison with the 

centralized solution ($3,313,296 with 573.2 seconds) listed in Table 3.5 supports that the 

accuracy of the proposed parallel solution can be guaranteed while its calculation time is 

10.26% less than the centralized one. 



 

51 

Table 3.5 Operating cost and computation time in case B.1 

Items Centralized Parallel % Change 
Total Cost ($) $3,313,296 $ 3,332,264 +0.57% 

Time (Seconds) 573.2 514.4 -10.26% 
 

In order to further illustrate the convergence performance of the proposed 

algorithm, the power mismatch 0y  between the generation outputs obtained from the 

UC-base and OPF-base modules, 0 0 0( )opf ucy y y    , are shown in Figure. 3.4. The total 

number of power mismatches is 4,056 (169 units ×24 hours). From Figure.3.45 (a), at the 

first iteration, the power mismatch is very huge (the largest one is 294.45 MW) because 

all the generating units in the UC-base module are uncommitted in order to minimize 

their operating cost, while some of generating units in the OPF-base module must be 

committed and supply certain amount of power to satisfy the system constraints such as 

power balances. As shown in Figure.3.4 (b), after 50 iterations, the worst power 

mismatch has been dramatically reduced to 54.00 MW, and 2,893 out of 4,056 power 

mismatches are below the predefined convergence threshold (0.1MW). At the 282th 

iteration, as shown in Figure.3.4(c), all the power mismatches converged within their 

thresholds (0.1MW), and the largest power mismatch is 0.0748MW, while the majority of 

those mismatches have nearly no error at convergence.  
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Figure 3.4 The power mismatches between the UC-base and OPF-base modules over 
iterations 
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3.5.2.2 Stochastic case with up to 20 scenarios 

In this case, a stochastic SCUC problem with up to 20 scenarios is studied. 

Basically, it is really difficult to get an optimal and even a near-optimal centralized 

solution within a limited calculation time. However, the proposed parallel method makes 

it possible and doable to solve such large-scale optimization problems on a single PC. As 

an example, the case with 20 scenarios includes 678,336 variables and 17,530,536 

constraints (including 251,472 complicating constraints (3.19)-(3.23)). After using the 

proposed parallel method, we list the size of submodules in Table 3.6. Table 3.7 

summarizes the detailed computational results for the proposed parallel solution. For the 

case with 20 scenarios, an optimal result is obtained after 530 iterations with an operating 

cost of $3,660,700 and a CPU time of 13.889 hours. Figure 3.5 shows the convergence 

performance of the proposed method. In these four cases, most complicating constraints 

can quickly converge after 200 iterations. For example, in the test case with 20 scenarios, 

221,717 out of 251,472 (87.95% within threshold) are converged at 200 iterations, and 

330 more iterations are needed to find the final converged result (100% within threshold). 

Table 3.6 Size of Submodules for 20 scenarios in Case B.2 

Module Number of 
submodules 

Number of 
variables 

Number of 
Constraints 

UC base 169 96 192 
UC scenario 3380 144 288 

OPF base 24 179 32,787 
OPF scenario 480 179 32,787 
Bridge base 4,056 1 0 

Bridge scenario 81,120 1 0 
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Table 3.7 Operating cost and computation time in case B.2 

# of Scen. # of Iter Time (hours) Total Cost ($) 
5 372 3.636 $3,370,900 
10 471 7.026 $3,468,400 
15 462 8.031 $3,562,200 
20 530 13.889 $3,660,700 
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3.5.3 Parallel implementation 

To further justify the effectiveness of the proposed parallel algorithm, the two 

largest cases in Case Studies A and B are tested on a computing cluster that is composed 

by up to 8 computers with a quad-core 2.8GHz Intel Core processor, 8GB of RAM and 

8MB of cache per node: one for the IEEE118-bus power system with 30 scenarios and 

the other for the 1168-bus power system with 20 scenarios. 

For this parallel implementation, all of the single UC and hourly OPF submodules 

for both the base case and the scenarios are evenly distributed among multiple processors. 

However, all the bridge submodules are assigned to the head node of the cluster because 

they all can be solved very quickly by one processor (e.g. less than 1 second per iteration 

in our tests). 

The performance of the parallel implementation has been evaluated using from 1 

to 8 nodes of the cluster. First of all, the obtained results are exactly the same as that 

presented in Case Studies A and B. Figure 3.6- 3.8 show the processing time, the speedup 

and the efficiency curves with the increasing number of processors, respectively. The 

processing time of the parallel computing includes the computational time (e.g. the time 

for the data processing and CPLEX solver), and the communication time (e.g. the time 

for the job submit and data return) between the head node and computing nodes. The 

speedup is a ratio of the processing time on a single processor to the processing time 

using multiple processors. The efficiency is defined as the speedup divided by its number 

of processors. The following observations can be obtained from Figure. 3.6-3.8: 

 The processing time is significantly reduced as the number of processors 

increases (e.g. the processing time for the case of the 1168-bus power system with 
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20 scenarios is reduced from 21.96 hours on a single processor to 2.90 hours 

using 8 processors). 

 The speed up curves are almost linear, which indicates that the proposed parallel 

algorithm is scalable. 

 The parallel implementation illustrates an excellent efficiency for both cases; 

around 94%-99% efficiency using multiple processors.  

Therefore, the above observations showed that the processing time can be further 

reduced when more computer processors are available.  

 

Figure 3.6 Processing time vs. the number of processors  

 

 

Figure 3.7 Speedup vs. the number of processors  
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Figure 3.8 Efficiency vs. the number of processors 
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CHAPTER IV 

PARALLEL CO-OPTIMIZATION OF GENERATING UNIT COMMITMENT AND 

TRANSMISSION SWITCHING WITH POST-CONTINGENCY CORRECTIVE 

ACTION 

Transmission switching is an efficient way to improve the network controllability, 

which is also adopted to increase the economic benefits of power systems by mitigating 

the network congestion. The co-optimization of the generating unit commitment and 

transmission switching is a large-scale and computationally complex optimization 

problem, which is hard to solve by traditional centralized and/or master-slave based 

decomposition approaches. This chapter presents a parallel co-optimization approach to 

obtain an efficient and fast solution for a power system operation with post-contingency 

corrective actions. Augmented Lagrangian method and auxiliary problem principle are 

adopted to decompose the original co-optimization problem into three major solution 

modules: the unit commitment (UC) module, the optimal power flow (OPF) module and 

the transmission switching (TS) module. These three major function modules make the 

decision for different optimization problems: the UC module determines the generating 

unit statues (ON/OFF) and power output level based on the generation constraints; the 

OPF module decides the power output of each generating units based on the transmission 

network constraints; the TS module selects the transmission line statues (ON/OFF) in 

order to mitigate the congestion on the transmission network. In addition, UC module can 
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be further decomposed by generating units, OPF and TS module can be further 

decomposed by time periods. These three modules can be solved simultaneously, which 

makes the proposed method favorable for parallelization to consequently improve the 

computational efficiency. Numerical cases are tested on a distributed computing cluster 

with 16 computers to justify the effectiveness and efficiency of the proposed approach. 

Numerical cases are tested on a distributed computing cluster with 16 computers 

to justify the effectiveness and efficiency of the proposed approach. 

4.1 Introduction 

Transmission switching (TS) has been discussed in the past few years as an 

effective way to increase the controllability of power system operations. From a 

conventional viewpoint, the network topology was considered static during the normal 

system operation. Therefore, transmission switching was usually used as corrective 

actions for system security reasons [83] (e.g. line overloading [84], [85] and voltage 

stability [86], [87]). Significant contributions have been made by our researchers to 

improve the system controllability using transmission switching. In order to mitigate the 

line overloading during contingencies, reference [84] applied a current injection to 

simulate the change of the transmission topology. In [85], a fast algorithm was developed 

for selecting and ranking possible circuits for corrective control by network switching to 

relieve line overloading. In addition to line overloading mitigation, reference [86], [87] 

proposed methodologies for corrective controls to improve voltage stability during 

contingencies. 

Transmission switching can also improve the economic efficiency of power 

system operations by mitigating the network congestion, which was introduced in [88]. 
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Inspired by this idea, dispatching transmission lines was extended to re-configure the 

transmission network topology by switching a set of branches off, which increases the 

economic benefit in the generation dispatching problem. Reference [89] formulated a 

mixed integer programming (MIP) problem to find the optimal generation dispatch and 

transmission topology by employing binary variables to represent the states of switchable 

transmission lines. Reference [48, 90-92] further analyzed the N-1 reliable DC optimal 

generation dispatch with transmission switching. Also, [93] proposed a Benders-based 

optimization framework to solve the TS-based generation dispatch problem with 

consideration of voltage stability and N-1 reliability test.  

In addition to TS-based generation dispatch problem, a co-optimization problem 

of generating unit commitment and transmission switching was developed in [49]. In this 

study, authors employed binary variables for both the states of generating units and 

switchable transmission lines, which leads to a large-scale and computationally complex 

TS-based SCUC problem. In order to reduce the computational burden, a heuristic 

decomposition approach was employed in this study, which solved for the transmission 

switching variables with fixed unit commitment variables, and then solved for the new 

unit commitment variables with the fixed transmission switching variables, iteratively. In 

order to improve the computational efficiency of the TS-based SCUC co-optimization, 

[94] leveraged Benders method to decompose this large-scale TS-based SCUC co-

optimization problem into two MIP problems: a unit commitment master problem solves 

generation scheduling problem; in turn, a TS subproblem handles optimal power flow 

problem and transmission switching decisions together. Because of the mathematical 

nature of the TS subproblem with binary variables, this MIP subproblem cannot always 
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generate effective Benders cuts that guarantee a converged solution of the studied TS-

based SCUC problem. Furthermore, the overall solution procedure of the above papers 

[49] and [94] is sequential because the TS problem has to wait for the unit commitment 

decisions from the UC problem. Because the computationally complex MIP-based 

problems and the overall sequential solution procedure become the bottlenecks to 

improve computational efficiency, therefore, a more efficient approach with fully 

decomposed structure and parallel solution procedure is needed to solve this large-scale 

TS-based SCUC co-optimization problem. 

We further investigate how to effectively incorporate the transmission switching 

problem into the parallel SCUC. The proposed approach decomposes the entire TS-based 

SCUC problem into three major solution modules: the UC module that determines the 

state of generating units; the OPF module that optimizes the power generation of 

generating units while satisfying the network security constraints for both base case and 

credible contingencies; and the individual TS module that only determines the state of 

switchable transmission lines. Moreover, each major module is further decomposed into 

multiple smaller submodules: the UC module can be decomposed by unit into multiple 

single UC submodules; the OPF module can be divided by period into multiple hourly 

OPF for both base case and contingencies; and the TS module can be divided into 

multiple submodules in terms of switchable transmission lines and studied periods; 

Secondly, unlike the existing research [48],[49] that only considered the preventive 

action in the proposed TS study. The proposed parallel co-optimization approach in this 

study can allow the contingency dispatch represented by both corrective (post-

contingency) and preventive (pre-contingency) dispatch control actions; Finally, the 
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proposed parallel solution procedure can fully utilize the parallel computing techniques to 

improve the computational efficiency, which can be illustrated on our distributed 

computing cluster composed by 16 computers with a quad-core 3.4GHz Intel Core 

processor, 16GB of RAM and 8MB of cache per computer. 

4.1 Formulations 

The TS-based SCUC co-optimization problem can be formulated as a mixed 

integer programming (MIP) problem. Its objective function is to minimize the total 

operating cost of the power system, while satisfying the physical constraints of the 

system. This optimization problem subjects to four groups of constraints: unit 

commitment constraints group (UC constraints), network security constraints group (OPF 

constraints) for both base case and contingencies, transmission switching constraints 

group (TS constraints), and complicating constraints group which is used to link the 

above three constraints groups. In the following subsections, the variables used in 

different constraints groups are noted with their corresponding superscript and subscript. 

The variables in the UC, OPF and TS constraints groups are noted by superscript uc, opf 

and ts, respectively; the variables and parameters in the base case and contingency case 

are noted by subscript 0 and c, respectively; and the variables of switchable and non-

switchable lines are noted by subscript S and NS.  

4.1.1 Objective function 

The objective function of the studied problem is to minimize the total operating 

cost (4.1), 

 0( , )Min F I P  (4.1) 
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where the binary variables I  are the unit commitment decision variables (e.g. On/Off); 

the power dispatches of generating units in base case are represented by the continuous 

variables 0P ; and the function ( )F   represents the generation cost plus startup/shutdown 

cost of the generating units. The operating cost of the post-contingency generation re-

dispatch is not included in the objective function since the feasibility of surviving a 

contingency, rather than the economic interest, has high priority during the contingency. 

4.1.2 Unit commitment constraints 

The UC constraints group represents the unit commitment constraints of the 

generating units under the normal and contingency operating conditions, which include 

physical generation constraints in the base case (4.2) – (4.4), and the contingency cases 

(4.5), and the permissible adjustment constraint between base case and contingency cases 

(4.6). 

 min 0 max
ucP I P P I   (4.2) 

 0 0A I b  (4.3) 

 0 0 0 0
ucE I F P h   (4.4) 

 min max
uc

cP I P P I   (4.5) 

 0
uc uc

c cP P    (4.6) 

Constraint (4.2) limits the output of generating units within their capacity, which 

depends on the states of the generating units. Constraint (4.3) represents a set of 

constraints which are only relative with commitment variables I  (e.g. min ON/OFF limit 

of generating units). Constraint (4.4) stands for a set of constraints which are related to 
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both power output and commitment variables (e.g. ramping up/down constraints). 

Constraint (4.5) represents the generation capability limit for the contingency cases. 

Constraint (4.6) ensures that a generating unit is capable to transfer from its base case 

operating point to a new operating point when a contingency occurs (corrective action). 

By setting permissible adjustment limits c  to zero, constraint (4.6) stands for the 

preventive N-1 security requirement. 

4.1.3 Optimal power flow constraints 

The OPF constraints group represents the network security, which is composed by 

the following two groups of constraints: OPF-base and OPF-contingency constraints 

groups: 

4.1.3.1 OPF-base constraints 

The OPF-base constraints (4.7)-(4.13) represent the network security constraints 

in the normal operation. 

 min 0 max     (4.7) 

 0 max0 opfP P   (4.8) 

 0 0 0, 0, 0, 0, 0 0P opf L opf L opf D
NS NS S SK P K PL K PL K D     (4.9) 

 max max
0,
opf

NS NS NSPL PL PL    (4.10) 

 max max
0,
opf

S S SPL PL PL    (4.11) 

    
1

0, 0, 0, 0
Topf L

NS NS NSPL X K 


  (4.12) 

    
1

0, 0, 0, 0
Topf L

S S SPL X K 


  (4.13) 
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where 0
PK , 0,

L
NSK , 0,

L
SK and 0

DK  are incidence matrices for generator to bus, non-

switchable line to bus, switchable line to bus, and the load demand to bus, respectively; 

variables 0,
opf

NSPL  and 0,
opf

SPL  stand for the “Actual” power flow on the non-switchable 

lines and switchable lines, respectively; 0,NSX and 0,SX  are the line reactance matrix of 

non-switchable lines and switchable lines, respectively; variable 0,
opf

SPL  in (4.13) is 

introduced to define a “Fictitious” value for the power flow on a switchable line, which is 

calculated by the voltage angles of the switchable line’s ending points. Constraint (4.7) 

limits the voltage angle of each bus; constraint (4.8) is unit’s generation output limit 

(noticing the lower bound of the generating unit output is relaxed); constraint (4.9) 

ensures the Kirchhoff current law at each node in the normal operating case; power flow 

limits of non-switchable and switchable lines are enforced by constraints (4.10) and 

(4.11), respectively; constraint (4.12) stands for power flow equations for non-switchable 

lines; and constraint (4.13) is used to get a “Fictitious” power flow value for switchable 

lines. To be noticed, the equality/inequality relationship between the “Actual” power flow 

0,
opf

SPL  and the “Fictitious” power flow 0,
opf

SPL  for switchable lines is decided by the TS 

module, which is discussed in the subsection II.D. 

4.1.3.2 OPF-contingency constraints 

The OPF-contingency constraints group includes the network security constraints 

in the contingency operation (4.14)–(4.20), in which all parameters, variables, equalities 

and inequalities are similar to that in the OPF-base constraints group (4.7)-(4.13).  

 min maxc     (4.14) 
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 max0 opf
cP P   (4.15) 

 , , ,S , 0P opf L opf L opf D
c c c NS c NS c c S cK P K PL K PL K D     (4.16) 

 max max
,

opf
NS c NS NSPL PL PL    (4.17) 

 max max
,

opf
S c S SPL PL PL    (4.18) 

    
1

, , ,
Topf L

c NS c NS c NS cPL X K 


  (4.19) 

    
1

, , ,
Topf L

c S c S c S cPL X K 


  (4.20) 

4.1.4 Transmission switching constraints 

The transmission switching constraints group limits the state of the switchable 

lines, including base case constraints (4.21), (4.22), and contingency case constraints 

(4.23), (4.24). 

 max 0, max
ts

SZ PL PL Z PL      (4.21) 

 0,0 0, 0(1 ) (1 )
ts ts

S SZ M PL PL Z M       (4.22) 

 max , max
ts
c SZPL PL ZPL   (4.23) 

 , ,(1 ) (1 )
ts ts
c Sc c S cZ M PL PL Z M       (4.24) 

where variable Z  represents the state of the switching lines; variables 0,
ts

SPL  and 0,
ts

SPL  

stand for the “Actual” power flow and the “Fictitious” power flow in the TS module, 

respectively; 0M  and cM , in (4.22) and (4.24), are often called the “big M” values for 

base case and contingency cases, respectively. Constraints (4.21) and (4.22) stand for the 

physical constraints in the normal operating condition. Constraint (4.21) limits the 
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“Actual” power flow of the switchable lines, which depends on the state of the lines. In 

addition, the relationship between “Fictitious” power flow 0
ts

PL  and “Actual” power flow 

0
tsPL  are defined by (4.22). As a result of these two constraints in the base case, when one 

switchable line is operating/closed, the binary variable Z  is equal to one, and the 

“Actual” power flow of a switchable transmission line 0,
ts

SPL  is equal to its “Fictitious” 

value 0,
ts

SPL , in other words, its power flow meets Kirchhoff voltage law; otherwise, Z  is 

equal to zero, and the “Actual” power flow 0,
ts

SPL  is equal to zero, which has no matter 

with the “Fictitious” value 0,
ts

SPL  that is relaxed. Similarly, constraints (4.23) and (4.24) 

are employed to represent the physical constraints of transmission switching under 

contingency conditions.  

4.1.5 Complicating constraints 

In order to secure the equal value of the complicating variables in the above 

constraints groups (including 0
ucP  and 0

opfP , uc
cP  and opf

cP , 0,
opf

SPL  and 0,
ts

SPL , 0,
opf

SPL  and 

0,
ts

SPL ,  ,
opf
c SPL  and ,

ts
c SPL , ,

opf
c SPL  and ,

ts
c SPL ), the complicating constraints (4.25)–(4.27) 

are introduced as follows,  

 0 0
uc opfP P , uc opf

c cP P  (4.25) 

 0, 0,
opf ts

S SPL PL , 0, 0,
opf ts

S SPL PL  (4.26) 

 , ,
opf ts
c S c SPL PL , , ,

opf ts
c S c SPL PL  (4.27) 
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Constraint (4.25) ensures the equality of the complicating variables between UC 

and OPF module for base case and contingency cases. Constraints (4.26)–(4.27) are the 

complicating constraints between OPF and TS modules, which ensure the physical 

relationship between the “Actual” power flow ( 0,
opf

SPL , 0,
ts

SPL , ,
opf
c SPL , and ,

ts
c SPL ) and the 

“Fictitious” power flow ( 0,
ts

SPL , 0,
opf

SPL , ,
ts
c SPL , and ,

opf
c SPL ) in the base case and 

contingency cases. For example, in the base case, the physical relationship between the 

“Actual” power flow ( 0,
opf

SPL  and 0,
ts

SPL ) and the “Fictitious”  power flow ( 0,
ts

SPL  and 

0,
opf

SPL ) for a switchable line is ensured by a combination of constraints (4.13), (4.21), 

(4.22), and (4.26). When a switchable line is operating/closed, Z  is equal to one in the 

TS module. Because of constraints (4.21) and (4.22) in the TS module, the “Actual” 

power flow of a switchable transmission line 0,
ts

SPL  is equal to its “Fictitious” value 

0,
ts

SPL ; with the help of constraints (4.13) and (4.26), we can get 

    
1

0, 0,0, 0, 0, 0, 0
Tts opfopf ts L

S SS S S SPL PL PL PL X K 


     (4.28) 

On the other hand, when a switchable line is disconnected/opened, Z  is equal to 

zero. As a result of constraints (4.21) and (4.22) in the TS module, the “Actual” power 

flow 0,
ts

SPL  is equal to zero, which is no matter with the “Fictitious” power flow 0,
ts

SPL . 

In addition, based on the constraint (4.26), we can get the “Actual” power flow from both 

OPF and TS modules are equal, 0, 0, 0opf ts
S SPL PL  . Similarly, the corresponding physical 

relationship in the contingency cases are ensured by constraints (4.20), (4.23), (4.24) and 

(4.27). 
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4.2 Parallel decomposition and solution strategies 

In this section, a decomposition strategy is presented to decompose the original 

TS-based SCUC co-optimization problem into three independent solution modules solved 

in a parallel manner: UC module, OPF module and TS module.  

4.2.1 Relax complicating constraints 

In this section, augmented Lagrangian relaxation method is adopted to decompose 

coupling constraints (4.25)-(4.27) by adding the first-order and the second-order penalty 

functions into the objective function (4.1). Accordingly, the objective function of 

corresponding Lagrangian relaxation problem is written as, 

 

20
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 (4.29) 

where the first term is the operating cost and the other terms are the penalty functions of 

relaxed coupling constraints (4.25)-(4.27).  (including 0
P , 0

PL , 0
PL , P

c , PL
c , and 

PL
c ) and c (including 0

Pc , 0
PLc , 0

PLc , P
cc , PL

cc , and PL
cc ) are the first-order and second-

order Lagrangian multipliers associated with coupling constraints, respectively.  
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4.2.2 Decompose objective function 

After relaxing coupling constraints by penalty multipliers, the remaining 

constraints (4.2)-(4.24) become separable and decomposable. To remove coupling terms 

(the product of variables) from the objective function, APP method [74] is applied to 

replace (4.29) with its auxiliary problem (4.30) (see Appendix for the detailed 

derivation), in which the coupling terms are substituted by independent terms with the 

help of iterative results from the previous iteration k-1.  
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 (4.30) 

 

4.2.3 Formulate independent solution modules 

By associating decoupled objective functions (4.30) with their individual 

constraints groups, the original TS-based SCUC co-optimization problem is divided into 

submodules as shown in the Figure 4.1. 
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Figure 4.1 Decomposed Modules of TS-based SCUC 

 

4.2.3.1 UC module 

The UC module is a mixed integer quadratic programming (MIQP) problem, 

which determines the state and dispatch of generating units. This module is composed by 

the objective function (4.31), and unit commitment constraints group (4.2)-(4.6). 

Apparently, the UC module can be further decomposed into multiple single UC 

submodules, since there are no coupling relationships among generating units in this UC 

module. 
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 (4.31) 

4.2.3.2 OPF modules 

The OPF module is a quadratic programming problem without any mixed integer 

variables, including OPF-base module and OPF-contingency module to optimize the 

decomposed objective functions under network security constraints in the normal 

operation and the possible contingency states, respectively. 
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4.2.3.2.1 OPF-base module 

The OPF-base module is composed by the objective function (4.32) and OPF-base 

constraints group (4.7)-(4.13). As all the constraints in the OPF module can be separated 

for single period study, this module can be further divided into multiple single-hour OPF 

submodules. 
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 (4.32) 

4.2.3.2.2 OPF-contingency module  

Similarly, the OPF-contingency module optimizes decomposed objective 

functions under possible contingency states. This module is composed by the objective 

function (4.33) and OPF-contingency constraints group (4.14)-(4.20), which can be 

further divided into multiple single-hour OPF submodules. 
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 (4.33) 

4.2.3.3 TS module 

The TS module, a mixed integer quadratic programming (MIQP) problem, 

decides the state of switchable transmission lines. This module consists of the objective 

function (4.34) and TS constraint group (4.21)-(4.24). The TS module can be further 



 

74 

separated into multiple single line single period TS submodules, which will make it more 

favorable to be adopted in the parallel computing implementation. 
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 (4.34) 

Finally, a fully decomposed structure of the studied TS-based SCUC co-

optimization problem is illustrated in Figure 4.2. By adopting the proposed 

decomposition strategy, the original large-scale TS-based SCUC problem is divided into 

numbers of small-size submodules that can be simultaneously solved by using ILOG 

CPLEX 12.6's solvers.  
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4.3 Parallel solution procedure 

A parallel solution procedure, as shown in Figure 4.3, is discussed as below: 

 

Figure 4.3 Solution flow chart 
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 Step 1: Set the iteration index k=1, and choose initial values for all the 
variables 0z (including 0

ucP , uc
cP , 0

opfP , 0,
opf

SPL , 0,
opf

SPL , opf
cP , ,

opf
c SPL , 

,
opf
c SPL , 0,

ts
SPL , 0,

ts
SPL , ,

ts
c SPL , and ,

ts
c SPL ), the Lagrangian multipliers  and 

c . 

 Step 2: Solve single unit UC submodules, single period OPF-base 
submodules, single period single contingency OPF-contingency 
submodule, and single line single period TS submodules in parallel. 
Collect optimal results from each individual submodule, to obtain kz  for 
the current iteration k. 

 Step 3: Check the following stopping criteria (4.35)-(4.37), where 1  is the 
convergence threshold for the mismatch of complicating variables 
between outer loops; 2  is the convergence threshold for the mismatch 
between each couple of complicating variables; and 3  is the convergence 
threshold for the cost difference between two successive iterations (where 

( )L  is the optimal result of (4.29)). If all of them are satisfied, then stop 
and set the optimal value z   equal to kz  and stop; otherwise, go to Step 4. 

 1
1

k kz z    (4.35) 
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 (4.36) 

 
1

3
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k k
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  (4.37) 

 Step 4: Update Lagrangian multipliers using (4.38) and (4.39), set k = k+1, 
and go to Step 2. 
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where the coefficient   is set to be equal or larger than one in order to obtain a 

converged optimal result. The success of the proposed Lagrangian relaxation based 

method depends on the ability of the algorithm to drive Lagrangian multipliers to the 

value of multipliers associated with complicating constraints at the optimal solution. With 

the combination of convergence criteria (4.35)-(4.37) and multipliers updating process 

(4.38)-(4.39), it has been proven to converge to the optimal solution of the original 

optimization problem when the problem is convex. Although there is a convergence 

proof of the APP algorithm for convex optimization problems[37], there is no direct 

proof for a non-convex MIP problem, which is modeled in this chapter. However, for this 

non-convex optimization problem, the non-convexity can be mitigated by the augmented 

Lagrangian method. Quadratic penalty terms are added to the Lagrangian objective 
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function as a local convexifier to improve the convexity of the problem [53]. In addition, 

according to our experiments/testing experiences, we would like to mention that the 

effectiveness of the used APP algorithm on the studied non-convex stochastic SCUC 

problem is satisfactory and acceptable, which can be supported by the following case 

studies. 

4.4 Numerical study 

In order to illustrate the performance of the proposed parallel approach, a 

modified IEEE 118-bus power system [28] consisting of 54 generating units, 186 

branches, 91 demand sides, 10 switchable transmission lines (e.g. line 1, 8, 21, 22, 36, 37, 

39, 128, 153, and 181) and up to 20 contingencies is studied in this section. The specific 

parameters and convergence thresholds are set as the same in all case studies, in which 

the penalty multipliers are set as 0 0  , 0 0.01c   for all penalty functions, the updating 

parameters for the second order multipliers is 1.01  , and the convergence thresholds 

are set as 1 0.2MW   (4.35), 2 0.2MW  (4.36), and 3 0.01%  (4.37). In addition, the 

proposed algorithm is implemented on a parallel computing cluster with 16 computing 

nodes with a quad-core 3.4GHz Intel Core Processor, 16GB of RAM and 8MB of cache 

per node to test the computational efficiency.  

4.4.1 Case A: Single-hour case without contingency 

In this case, a single hour TS-based SCUC without any contingency is adopted to 

demonstrate the convergence performance of complicating constraints (4.25)-(4.27). The 

converged result is obtained in 125 iterations with the operating cost of $91,674.5, which 

is same as the centralized result $91,674.5. Because of the absence of contingencies, 
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there are three modules cooperating with each other in this case study, which are UC 

module, OPF-base module, and TS module. These three modules coordinate with each 

other by 74 complicating constraints, including 54 complicating constraints (4.25) 

coordinating the UC module and the OPF-base module for the power outputs of the 

generating units, and 20 complicating constraints (4.26) coordinating the OPF-base 

module and the TS module for both the “Actual” and “Fictitious” power flows on the 

switchable transmission lines. 

To focus on the transmission line switching study, the switchable transmission 

line 37 and line 21 are selected to show the convergence performance of the complicating 

constraint (4.26) in Figure 4.4. In the convergence curves of the switchable transmission 

line 37, as shown in Figure 4.4 (a), the state of this switchable transmission line is always 

connected during the iterative procedure. Although there are a disturbance occurring at 

the 79th iteration, all the values of “Actual” and “Fictitious” power flow in the OPF-base 

module and the TS module ( 0,
opf

SPL , 0,
ts

SPL , 0,
ts

SPL  and 0,
opf

SPL ) try to follow each due to 

the penalties, and finally converge at -120.04MW. In the convergence curve of “Actual” 

and “Fictitious” power flows of line 21, as shown in Figure 4.4 (b), the line 21 is initially 

connected in the first 71 iterations. As a result of the constraints (4.13), (4.21), (4.22) and 

(4.26), the values of “Actual” and “Fictitious” power flows in the OPF-base module and 

the TS module ( 0,
opf

SPL , 0,
ts

SPL , 0,
opf

SPL  and 0,
ts

SPL ) are very close to each other at around -

180MW. However, according to the updated penalty functions, the state of this 

switchable line changes at 72th iteration, the value of its “Actual” power flow in the TS 

module, 0,
ts

SPL  becomes to zero immediately due to the constraint (4.21). After 
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oscillation in the following several iterations, the “Actual” power flow 0,
opf

SPL  in the OPF-

base module is also converged to zero. However, because of the constraint (4.22) when 

the line is disconnected, the value of its “Fictitious” power flow 0,
ts

SPL  and 0,
opf

SPL  are 

relaxed, and get converged after several iterations at a new value of -468.80MW. In 

addition, the convergence curve of switchable transmission line 22 is shown in Figure 4.4 

(c). Initially, this switchable transmission line is disconnected after first several iterations. 

At 55th iteration, the “Actual” and “Calculated” power flow in the OPF-base module (

0,
opf

SPL  and 0,
opf

SPL ) are almost converged at zero, and which in the TS module ( 0,
ts

SPL  and 

0,
ts

SPL ) the “Calculated” power flow are -78.33MW. However, as a result of updated 

penalty parameter, the mismatch between “Actual” power flow 0,
opf

SPL  and 0,
ts

SPL  

increases after the 55th iteration, and finally the state of this line changes to “connected” 

at the 74th and 75th iterations. As a result, the “Calculated” power flow 0,
opf

SPL  and 0,
ts

SPL  

are equal to each other due to the constraint (4.22); consequently, the “Actual” power 

flow 0,
opf

SPL  and 0,
ts

SPL  change dramatically according to the updated penalty functions. 

However, after that, the state changes back to “disconnected” at 77th iteration, which lead 

to another convergence after several iterations.  
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(a) In switchable transmission line 37 

 
(b) In switchable transmission line 21 

 
(c) In switchable transmission line 22 

Figure 4.4 Convergence performance of “Actual” and “Fictitious” power flows 
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4.4.2 Case B: Contingency case with up to 20 contingencies 

In order to further examine the performance of the proposed approach with 

contingencies, a 24-hour case with up to 20 contingencies is studied. The comparisons of 

the total operating cost and the computational time between the proposed parallel method 

on 16 computing nodes and the centralized method are listed in Table 4.1. As we can see, 

a converged parallel result ($1,705,801) for the base case is obtained after 353 iterations, 

which is very close to the result ($1,703,492) of conventional centralized MIP model 

(only 0.14% more). Noticing that this testing case is too small to benefit from 

parallelization in terms of the calculation time, but is used to verify the solution quality 

by comparing a proven centralized result to our parallel method. With the increase of 

number of contingencies, the CPU time consumption of the centralized method is 4,682.5 

seconds for 5 contingencies (because of the size of this co-optimization problem and the 

limitation of computing hardware, only up to 5 contingencies can be tested by the 

centralized method). However, using the proposed parallel method, we can obtain the 

results for all the cases having up to 20 contingencies. As an example, before the 

decomposition, the original TS-based SCUC problem with 20 contingencies is composed 

by 197,904 variables (including 1,536 binary variables and 196,368 continuous variables) 

and 684,144 constraints (including 37,296 complicating constraints). By adopting the 

proposed decomposition method, the original co-optimization problem is divided into UC 

module, OPF-base/OPF-Contingency module, and TS module. Furthermore, these three 

major modules are decomposed into 54 single UC submodules (with 552 variables and 

2,112 constraints per submodule), 24 single hour OPF-base submodules (with 314 

variables and 1,020 constraints per submodule), 480 single hour OPF-contingency 
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submodules (with 313 variables and 1,017 constraints per submodule), and 240 single 

hour and single line TS submodules (with 43 variables and 84 constraints per 

submodule), respectively. All scalable submodules can be solved within a less 

computational time (e.g. around 0.0048-0.12 seconds). Table 4.2 shows the subproblem 

distributions among 16 computing nodes, in which the average computational time of 

each CPU is very close to each other. 

Figure 4.5 further shows the convergence performance of the proposed method 

for the cases with 0, 5, 10, 15 and 20 contingencies. For example, in the test case with 20 

contingencies, 35,188 out of 37,296 (94.35% within threshold) are converged at 200 

iterations (as shown in the zoomed figure of Figure 4.5), and 157 more iterations are 

needed to find the final converged result (100% within threshold). 

Table 4.1 Results of multi-hour case with up to 20 Contingencies in Case B 

# of  

Ctgc. 

Centralized Parallel (16 CPUs) 

Time 

(sec.) 
Cost ($) 

Time 

(sec.) 
Cost ($) 

# of 

Iter 

0 45.8 1,703,492 1,001.1 1,705,801 353 

5 4,682.5 1,713,140 1,403.2 1,722,074 395 

10 N/A N/A 1,689.5 1,728,229 388 

15 N/A N/A 1,851.6 1,732,421 356 

20 N/A N/A 2,165.1 1,739,823 357 
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Table 4.2 Subproblem distribution among CPUs in case B 

CPU 
NO. 

Single UC 
subproblem 

Single hour 
OPF-base 

subproblem 

Single hour 
single 

contingency 
OPF-ctgc 

subproblem 

Single hour 
single line 

TS 
subproblem 

Cplex 
Time 
per 

iteration 

1 - 6 4 1 19 14 0.6429 
7 - 8 3 1 19 38 0.6434 
9 - 16 3 2 41 10 0.6433 
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CHAPTER V 

CONCLUSION AND FUTURE WORK 

5.1 Conclusions 

In this dissertation, several decomposition methods are developed to model and 

solve the modern power system operations problem. The proposed methods are 

implemented and justified in the high performance environment.  

In Chapter 2, the mathematical decomposition methods and high performance 

environment have been introduced. In this chapter, we introduced the concepts, theories 

and applications of various optimization algorithm, including augmented Lagrangian 

method, alternating direction method of multipliers, diagonalization quadratic 

approximation method, and auxiliary problem principle. The convergence issues of these 

optimization algorithms have been discussed.  

In Chapter 3, a fully parallel stochastic SCUC approach was presented, which can 

be utilized to quickly implement a generation scheduling of a large-scale power system 

with uncertainties. The test cases on a modified IEEE 118-bus system and a practical 

1168-bus system showed the effectiveness of the proposed approach. With the 

application of variables duplication and APP techniques, the original stochastic SCUC 

problem was divided into multiple single UC modules and hourly OPF modules, which 

are connected by bridge modules. All of the decomposed modules can be simultaneously 

solved to improve the computational efficiency. Another salient benefit of the proposed 
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decomposition structure is that the number of variables and constraints in each 

submodule are constant and independent from the number of scenarios. In other words, 

the complexity of submodules would not increase with a larger number of scenarios, 

which makes the proposed approach very promising to deal with a large-scale power 

system with uncertainties. In general, the computational burden of stochastic approaches 

depends on the number of scenarios considered by the study. The capability of handling 

scenarios relies on the calculation efforts of solution methods, the availability of 

computing resource, and the requirements of the solution quality (such as the optimality 

and the computing time). For a particular power system, a study can be conducted to 

evaluate the quality of the solution to the number of scenarios, and consequently it can 

help in choosing a proper number of scenarios that can be handled in the system to avoid 

unnecessary computation burden. 

In Chapter 4, we presented a parallel approach to solve a TS-based SCUC co-

optimization problem that minimizes the operating cost of a power system by scheduling 

generating units and switchable transmission lines with consideration of post-contingency 

corrective actions. By technically introducing the concept of “Actual” and “Fictitious” 

power flows on the switchable line, we successfully separate the transmission line 

switched-On/Off decision-making from the network-based OPF problem, which 

dramatically reduce the computational complexity of the OPF problem with TS. With the 

application of augmented Lagrangian method and auxiliary problem principle, the 

original TS-based SCUC co-optimization problem is decomposed into several scalable 

and tractable solution modules, including single unit UC modules, hourly OPF modules, 

and single line single hour TS modules. All of these divided solution modules can be 
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solved simultaneously to improve the computational efficiency. The test cases showed 

the effectiveness and efficiency of the proposed approach with parallel implementation 

on a multi-processor computing cluster. Moreover, the proposed parallel approach will 

offer the power system a secure and economical efficient operation with more 

controllability. 

5.2 Future works 

Based on the proposed decomposition framework and numerical case study result, 

further research will be conducted as listed below:  

The SCUC algorithm proposed in Chapter 3 is formulated based on the DC 

optimal power flow model. It can be further improved to solve the SCUC problem with 

AC optimal power flow model, which could provide a more accurate evaluation of the 

power flow network. In this case, the energy loss and the transient/voltage stability issues 

can be considered. The TS-based SCUC algorithm proposed in Chapter 4 is formulated to 

schedule the generating units and states of the switching lines. This study can be further 

extended to be applied on the mid-term maintenance schedule and the long-term 

transmission planning problem. 

In addition, more function modules of the proposed decomposition framework 

can be integrated into the decomposition framework. With the development of modern 

power systems, many innovative techniques have been introduced and implemented in 

the existing power grids, such as demand response, energy storage system, electric 

vehicle[95], etc. Many solution approaches and applications have been proposed by our 

researchers to solve the corresponding power system operation problems. Consequently, 

extra variables and constraints are included in the existing SCUC solution engines. As a 
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result, the computational burden of the SCUC problem will increase dramatically. In the 

future, the proposed decomposition framework can be developed to solve more complex 

power systems with many these advanced techniques, as shown in the figure below.  

 

Figure 5.1 Structure with more function modules 
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AUXILIARY PROBLEM PRINCIPLE APPLICATIONS 
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In this appendix, the selection and the derivation of the auxiliary problem 

principle of “Fully Parallel Stochastic Security-Constrained Unit Commitment” and 

“Parallel Co-Optimization of Generation Unit Commitment and Transmission Switching 

with Post-Contingency Corrective” will be discussed 

A.1 Auxiliary problem principle applications in “fully parallel stochastic 
security-constrained unit commitment” 

The Auxiliary Problem Principle (APP) allows us to substitute the augmentation 

terms in the augmented Lagrangian function (3.24) with decomposed terms. According to 

the APP theory, a master problem could be replaced by its alternative problem. Without 

loss of generalization, the augmented Lagrangian function (3.24) can be represented as: 

 1( ) ( )Min J u J u  (A.1) 
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 (A.3) 

where, ( )J u is a convex, and differentiable function, 1( )J u  is a non-convex mixed-

integer function. Then, its auxiliary problem is defined as: 

   1( ) ( ) '( ) '( ) ( )TvMin G u K u J v K v u J u       (A.4) 
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where, ( )K u  is a selected convex differentiable function,   is a selected positive 

number, v  is the optimal solution of vG , '( )J v , '( )K v  are differential result of ( )J v  and 

( )K v , respectively. Based on the variational inequality character [52], we can get: 

 1 1( ) ( ) ( ) ( )J v J v Min J u J u    (A.5) 

This means, if  happens to be a solution of the auxiliary problem of minimizing 

 (A.4), then it is also a solution of its master problem (A.1). Based on the theory 

above, the equivalent function vG depends on choice of  and . With different 

choices of  and , and we can get a different equivalent function (A.4) to its original 

function (A.1). In this study,  is set as 1, ( )K u is selected as below: 
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 (A.6) 

As a result, based on the equation (A.4), we can obtain its auxiliary problem (A.7). 
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A.2 Auxiliary problem principle applications in “parallel co-optimization of 
generation unit commitment and transmission switching with post-
contingency corrective” 

The Auxiliary Problem Principle (APP) allows us to substitute the augmentation 

terms in the augmented Lagrangian function (4.29) with decomposed terms. According to 

the APP theory, a master problem could be replaced by its alternative problem. Without 

loss of generalization, the augmented Lagrangian function (4.29) can be represented as: 

 1( ) ( )Min J u J u  (A.8) 
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where, ( )J u is a convex, and differentiable function, 1( )J u  is a non-convex mixed-integer 

function. Then, its auxiliary problem is defined as: 

   1( ) ( ) '( ) '( ) ( )TvMin G u K u J v K v u J u       (A.11) 

where, ( )K u  is a selected convex differentiable function,   is a selected positive number,

v  is the optimal solution of vG , '( )J v , '( )K v  are differential result of ( )J v  and ( )K v , 

respectively. Based on the variational inequality character [52], we can get: 
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 1 1( ) ( ) ( ) ( )J v J v Min J u J u    (A.12) 

This means, if v happens to be a solution of the auxiliary problem of minimizing  

(A.11), then it is also a solution of its master problem (A.8). Based on the theory above, 

the equivalent function vG depends on choice of  and . With different choices of  

and , and we can get a different equivalent function (A.11) to its original function 

(A.8). In this study,  is set as 1, ( )K u is selected as below: 
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As a result, based on the equation (A.11), we can obtain its auxiliary problem (A.14). 
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SETUP OF THE MATLAB DISTRIBUTED COMPUTING SERVICE CLUSTER  
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The proposed framework is tested by MATLAB Distributed Computing Service 

(MDCS), which is employed to cooperate the parallel computing cluster with 16 

computing nodes. In Appendix B, the setup procedure of the MDCS is presented, which 

would be helpful for the setup of the MDCS cluster. 

B.1 Start mdce service 

Turn on mdce service on all the nodes in the parallel computing clustering (including both the 
head node and the computing nodes). 

a) in the “command window”, get into the path of “your MATLAB 
location”\toolbox\distcomp\bin. 

b) input “mdce install” to install mdce service 
c) input “mdce start” to start mdce service 

 

B.2 Create and configure job manager 

Open the “admincenter.bat” in the “your MATLAB location”\toolbox\distcomp\bin 
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Under the “Hosts” tab, click “Add or Find” to add nodes by Hostnames or IP address 

 

Under “Job Manager” tab, click “start” to create job manager, and select the location of 

this MJS 
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Under “Worker” tab, click “start” to create worker. In which, you can select your 

computing nodes and the number of workers in each computing node. 
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B.3 Add job manager in MATLAB 

In the MATLAB interface, select job manager in the head node, by selecting 

“Discover Clusters…” under “Parallel” Tab, and check the check box of “On your 

network”. 
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Select the desired “job manager”, and set it as your default cluster 
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Finally, you can run your MDCS code on your head node. 
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