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Last decade witnessed the explosive growth in mobile devices and their traffic demand,

and hence the significant increase in the energy cost of the cellular service providers. One

major component of energy expenditure comes from the operation of base stations. How

to reduce energy cost of base stations while satisfying users’ soaring demands has be-

come an imperative yet challenging problem. In this dissertation, we investigate the mini-

mization of the long-term time-averaged expected energy cost while guaranteeing network

strong stability. Specifically, considering flow routing, link scheduling, and energy con-

straints, we formulate a time-coupling stochastic Mixed-Integer Non-Linear Programming

(MINLP) problem, which is prohibitively expensive to solve. We reformulate the problem

by employing Lyapunov optimization theory and develop a decomposition based algorithm

which ensures network strong stability. We obtain the bounds on the optimal result of the

original problem and demonstrate the tightness of the bounds and the efficacy of the pro-

posed scheme.
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CHAPTER 1

INTRODUCTION

1.1 Background

In the last few years, with the proliferation of smart phones, tablets, etc., we have

witnessed tremendous growth in the number of cellular subscribers and in their traffic de-

mand [10]. In parallel with the rapidly growing demand for cellular services, the number of

cellular base stations (BSs) all over the world has increased from a few hundred thousands

to more than 4 million, and each of them consumes an average of 25 MWh per year [13].

Studies show that the radio network itself adds up to 80% of an operator’s entire energy

consumption, which represents a significant portion of a network operator’s overall expen-

ditures [5]. Therefore, it is in dire need to find effective solutions to reducing the energy

costs of cellular networks while satisfying subscribers’ ever-increasing traffic demand.

1.2 Related Work

The rising energy costs of cellular networks have led to both academical and industrial

efforts to address the energy efficiency issues and develop the “green cellular networks” [2,

4]. In particular, the energy consumption of a BS can be reduced by improving the BS

hardware design, for example, the efficiency of power amplifiers (PAs) [21]. We can also

reduce BSs’ energy consumption by including additional software and system features to
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balance between energy consumption and network performance, e.g., shutting down BSs

during low traffic hours or cell zooming [26–28, 30]. In particular, Niu et al. [27] propose

algorithms for cell zooming to avoid coverage holes when BSs are turned off. Niu [26]

also studies cell deployment when cell zooming is not sufficient. Oh et al. [28] propose

to switch BSs off by considering a newly introduced notion of network-impact. Peng et

al. [30] propose to turn underutilized BSs off when traffic is low and turn them on when

traffic is high. However, such system level approaches may degrade the cellular network

performance and some cellular users can get disconnected.

Beyond the advance of BS development and control itself, it is crucial to consider

various paradigm-shifting technologies, such as multi-hop relaying and renewable energy

integration, in order to enhance the energy efficiency of cellular networks. Particularly,

multi-hop relaying has been introduced into cellular networks to improve network through-

put [9, 18, 20]. In fact, since multi-hop communications divides direct paths between mo-

bile terminals and BSs into shorter links [19], in which wireless channel impairments

such as path loss are less destructive, lower transmission power can be assigned to the

BSs and relays and hence network energy consumption can also be saved. It has been

shown [32] that using multi-hopping in CDMA cellular networks can reduce the average

energy consumed per call. In addition, renewable energy integration has attracted intense

attention [22]. Sustainable energy resources such as sustainable biofuels, solar and wind

energy seem to be promising options to reduce the overall network energy expenditure and

the CO2 footprint since they are significantly cheaper to maintain in the long run. Erission

and Nokia [1, 6] have developed a green BS that is based on solar power and wind power,
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respectively, without using any grid electricity. Han et al. [12] try to take advantage of

green BSs by maximizing the green energy usage. For subscribers, mobile manufactur-

ers like Samsung and Nokia have released a series of future phones which contain solar

panels [3].

In this paper, we investigate how to minimize the energy cost of cellular networks while

still satisfying users’ traffic demand by considering energy-efficient wireless architectures,

renewable energy integration, and network stability. Specifically, we consider a multi-hop

cellular network consisting of a number of cellular users, a group of base stations, and a

set of available spectrum bands. We envision that each node is equipped with a renewable

energy resource, for example, a solar panel (e.g., for each mobile user) or a wind turbine

(e.g., for each base station), as well as an energy storage unit [1,3,6]. Both spectrum band-

widths and renewable energy resource outputs are modeled as random processes. In this

network, mobile users may communicate with each other or with base stations via multiple

hops, rather than a single hop as in traditional cellular networks. Thus, the communica-

tions can take advantage of locally available spectrums and link rate adaptivity, and hence

provide much higher network capacity.

We first formulate an offline energy cost minimization problem, by jointly exploring

renewable energy resource allocation, routing, and link scheduling, which turns out to be

a time-coupling stochastic Mixed-Integer Non-Linear Programming (MINLP) problem.

Previous approaches usually solve such problems based on Dynamic Programming and

suffer from the “curse of dimensionality” problem [7]. Full statistical information of the

random variables is required to solve the problem, which may be difficult to obtain in
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practice. Therefore, we reformulate the problem by employing Lyapunov optimization

theory [24] and propose an online finite-queue-aware energy cost minimization problem.

In the literature, Lyapunov optimization techniques have been adopted to investigate op-

timization problems in wireless networks [16, 17, 23–25, 33, 34]. Unfortunately, [17, 34]

cannot guarantee that all queues are finite. [16, 23, 25] develop opportunistic scheduling

schemes, which maintain finite queue sizes by dropping some packets. [24, 33] propose

joint stability and utility optimization algorithms, but assume that the users’ input data rate

is interior to the network capacity region. Thus, in spite of these existing studies, none

of the developed algorithms can be adopted to solve our problem, nor to keep all queues

finite.

Considering that the previously formulated online finite-queue-aware energy cost min-

imization problem is an MINLP problem, which is in general NP-hard [31] and needs to be

solved in each time slot, we reformulate it and propose an approximation algorithm to solve

it efficiently. Specifically, by introducing virtual queues, we are able to decompose the re-

formulated problem into four subproblems: link scheduling, resource allocation, routing,

and energy management. We develop three algorithms to solve the first three subproblems,

respectively, based on current network states only. After the first three subproblems are

solved, the fourth subproblem can be easily solved as well. We prove that the proposed de-

composition based approximation algorithm guarantees that all queues in the network are

finite, i.e., network strong stability. Moreover, while the approximation algorithm leads to

an upper bound on the optimal result of the original problem, a lower bound is also found

by solving a relaxed online Linear Programming (LP) problem.
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The main contributions of this paper are briefly summarized as follows:

• We formulate an offline energy cost minimization problem by considering dynamic
spectrum and renewable energy resource availability, routing, link scheduling, and
energy resource allocation.

• We formulate an online finite-queue-aware energy cost minimization problem and
propose a decomposition based algorithm to solve the problem efficiently while
guaranteeing the strong stability of all queues in the network, i.e., network strong
stability.

• We obtain and prove the lower and upper bounds on the optimal result of the original
offline energy cost minimization problem.

• Simulation results demonstrate that the obtained lower and upper bounds are very
tight, and that the proposed scheme results in noticeable energy cost savings.

5



CHAPTER 2

SYSTEM MODELS

2.1 Network Model

As shown in Fig. 2.1, we consider a multi-hop cellular network that consists of U =

{1, 2, · · · , u, · · · , U} users and B = {1, 2, · · · , b, · · · , B} base stations. Let N = U ∪ B.

We denote the set of available spectrum bands by M = {1, 2, · · · ,m, · · · ,M}, and as-

sume that the bandwidth of band m is a random process denoted by {Wm(t)}∞t=0 which

can be observed at the beginning of each time slot. In addition, due to their different geo-

graphical locations, different nodes may have different available spectrum bands. Denote

by Mi ⊆ M the set of available spectrum bands that node i ∈ N can access. Thus, it

is possible that Mi 6= Mj for i 6= j, i, j ∈ N . Assume the system operates in a time-

slotted manner. Suppose there are a set of downlink Internet service sessions denoted by

S = {1, 2, · · · , s, · · · , S}, each of which is denoted as a tuple {ds, vs(t), ss(t)} where ds

stands for the destination of service session s, vs(t) is the required throughput (in terms of

the number of packets) in time slot t, and ss(t) stands for the source base station of service

session s in time slot t.
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Internet

Figure 2.1

System architecture for green multi-hop cellular networks

2.2 Link Capacity

A widely used model [15, 29] employed for power propagation gain between node i

and j, denoted by gij , is gij = C · [d(i, j)]−γ, where i and j denote their locations, d(i, j)

is the Euclidean distance between i and j, γ refers to the path loss exponent, and C is a

constant related to the antenna profiles of the transmitter and the receiver, wavelength, etc.

We adopt the Physical Model [11,15] as the interference model, i.e., a data transmission

is successful only if the received signal-to-interference plus noise ratio (SINR) is no less

than a threshold Γ. Specifically, if node i sends data to node j on band m in time slot t, the

capacity can be calculated as

cmij (t) =


Wm(t) log2(1 + Γ), if SINRm

ij (t) ≥ Γ

0, otherwise.
(2.1)

where SINRm
ij (t), the SINR of the signal sent from i to j on band m in time slot t, is

SINRm
ij (t) =

gijP
m
ij (t)

ηjWm(t) +
∑

j∈N ,j 6=i gkjP
m
kv(t)

(2.2)

Here, ηj is the thermal noise power density at the receiver j, Pm
ij (t) is the transmission

power of node i to node j on band m in time slot t, and Pm
kv(t) is the transmission power
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of an interfering node k to its receiver v on band m in time slot t. We also denote the

maximum transmission power of node i by P i
max.

2.3 Energy Consumption

For a node i (i ∈ N ), its consumed energy in time slot t, denoted by Ei(t), is attributed

to the energy needed to feed the antenna denoted by Econst
i , the energy consumed when

staying in idle mode denoted byEidle
i , and the energy for serving the trafficETX

i (t), i.e. [8],

Ei(t) = Econst
i + Eidle

i + ETX
i (t). (2.3)

ETX
i (t) will be introduced later.

2.4 Renewable Energy Generation and Energy Storage

We assume that each node i ∈ N has a renewable energy resource, for example, a solar

panel (e.g., for each mobile user) or a wind turbine (e.g., for each base station). The output

of node i’s renewable resource, denoted byRi(t), is an i.i.d. stochastic process that satisfies

0 ≤ Ri(t) ≤ Rmax
i , where Rmax

i is the maximum energy output and a constant. This

is because the output of a renewable energy resource mainly depends on meteorological

conditions and is dynamic.

We also assume that every node i has its own energy storage unit, e.g., a battery, for

storing energy obtained from its renewable energy resource or drawn from the power grid,

which can be used at later time slots. Thus, node i’s renewable resource output Ri(t) can

be used to charge the energy storage device or serve i’s energy demand, i.e.:

Ri(t) = cri (t) + ri(t), (2.4)
8



where cri (t) and ri(t) are the energy used for charging node i’s energy storage unit and

serving node i’s current energy demand, respectively.

In addition, notice that node i’s energy storage unit works as an energy buffer, whose

energy level, denoted by xi(t), can be modeled as an energy queue, i.e.,

xi(t+ 1) = xi(t) + ci(t)− di(t). (2.5)

where di(t) is the energy discharged from the energy storage unit for serving node i’s

energy demand, and ci(t) is the energy charging the energy storage unit, i.e.,

ci(t) = cri (t) + ωi(t)c
g
i (t) (2.6)

ωi(t) =


1, if i ∈ B

ξi(t), if i ∈ U
(2.7)

where cgi (t) is the energy drawn from the power grid and ωi(t) indicates whether node i is

connected into the power grid in time slot t. Note that base stations are always connected

to the grid while mobile terminals are only occasionally connected. Thus, we assume that

{ξi(t)}∞t=0 is an i.i.d. random process where ξi(t) ∈ {0, 1}.

Due to the fact that serving node i’s energy demandEi(t) by directly using energy from

the grid or from the renewable energy resource, is more efficient than by first charging the

energy storage unit and then discharging it, we have the following two constraints

1di(t)>0 + 1cri (t)>0 ≤ 1 (2.8)

1di(t)>0 + 1cgi (t)>0 ≤ 1 (2.9)
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where 1A is an indicator function that is equal to 1 when the event A is true, and zero oth-

erwise. Notice that the above constraints (2.8) and (2.9) will hold whenever the following

inequality holds:

1ci(t)>0 + 1di(t)>0 ≤ 1 (2.10)

Besides, denote by xmaxi the maximum amount of energy that can be stored by node i’s

energy storage unit. Then, we need

0 ≤ xi(t) ≤ xmaxi . (2.11)

Denote by cmaxi and dmaxi the maximum amount of energy that node i’s energy storage unit

can be charged with and that can be discharged from node i’s energy storage unit during a

single time slot, respectively. Thus, we have

ci(t) ≤ min[cmaxi , xmaxi − xi(t)] (2.12)

di(t) ≤ min[dmaxi , xi(t)]. (2.13)

From (2.12) and (2.13), we get ci(t) + di(t) ≤ xmaxi − xi(t) + xi(t) = xmaxi , which

should hold for any ci(t) and di(t) that satisfy (2.12) and (2.13). Since ci(t) ≤ cmaxi and

di(t) ≤ dmaxi , we also have the following constraint:

cmaxi + dmaxi ≤ xmaxi . (2.14)

2.5 Energy Serving and Generation Cost

Node i’s energy demand is satisfied by the energy from the power grid, its local renew-

able energy resource, and its own energy storage device. Particularly, we have Ei(t) =
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ωi(t)gi(t) + ri(t) + di(t), where gi(t) is the amount of energy drawn from the power grid

to satisfy user i’s energy demand in time slot t.

Besides, the amount of energy that node i draws from the power grid in time slot t,

denoted by pi(t), satisfies

0 ≤ pi(t) = ωi(t)
(
gi(t) + cgi (t)

)
≤ pmaxi (2.15)

where pmaxi is a constant determined by the physical characteristics of user i’s connection

to the grid.

Since the energy needed from the power grid for mobile terminals is negligible com-

pared to that required for base stations, the total amount of energy supplied by power grid

in time slot t, denoted by P (t), is P (t) =
∑

i∈B
(
gi(t)+cgi (t)

)
. Thus, the energy cost of the

cellular service provider in time slot t can be calculated as f(P (t)), where f(·) is assumed

to be a non-negative, non-decreasing, and convex function.

2.6 Definitions

Next, we introduce some definitions and theorems that would be used later in this

paper [24].

2.6.1 Definition 1: Time Average of Random Process

The time average of a random process a(t), denoted by a, is a = limT→∞
1
T

∑T−1
t=0 E[a(t)].

2.6.2 Definition 2: Rate Stability

A discrete time process a(t) is rate stable if limt→∞
a(t)
t

= 0 with probability 1, and

strongly stable if limT→∞ sup 1
T

∑T−1
t=0 E[|a(t)|] <∞.

11



2.6.3 Theorem 1: Queue Rate Stability

Let Q(t) denote the queue length of a single-server discrete time queueing system,

whose initial stateQ(0) is a non-negative real-valued random variable, and future states are

driven by stochastic arrival and server processes a(t) and b(t) according to the following

dynamic equation:

Q(t+ 1) = max{Q(t)− b(t), 0}+ a(t) for t ∈ {0, 1, 2, ...}. (2.16)

Then Q(t) is rate stable if and only if a ≤ b.

2.6.4 Theorem 2: Necessity for Queue Strong Stability

If a queue Q(t) is strongly stable, and there is a finite constant c such that either a(t) +

b−(t) ≤ c with probability 1 for all t (where b−(t) , −min[b(t), 0]), or b(t) − a(t) ≤ c

with probability 1 for all t, then Q(t) is rate stable, i.e., a ≤ b.

Besides, we say that a network is rate stable or strongly stable if all queues in this

network are rate stable or strong stable as described above.

12



CHAPTER 3

DYNAMIC ENERGY COST OPTIMIZATION

In this section, we investigate the dynamic energy cost minimization problem in a

multi-hop cellular network.

3.1 Network Layer Design

Recall that we consider downlink traffic in the network. Specifically, the destination

nodes are served by the base stations via multiple hops, with the help of other nodes.

Therefore, as a network layer buffer, each node i maintains a data queue Qs
i for each

service session s. The queueing law for Qs
i is as follows:

Qs
i (t+ 1) = max{Qs

i (t)−
∑

j∈N ,j 6=i

lsij(t), 0}+
∑

j∈N ,j 6=i

lsji(t) + ks(t) · 1i=ss(t), (3.1)

where lsij(t) is the number of packets transmitted from i to j for service session s in time

slot t, and ks(t) (0 ≤ ks(t) ≤ Kmax
s ) is the number of packets that the source base station

of service session s receives from the Internet. Note that the destination node ds does not

need to maintain a data queue for its own service since data will be directly passed on to

the upper layers.

13



Besides, at the source and destination nodes, we have the following routing constraints:

∑
j∈N ,j 6=i

lsji(t) = 0, if i = ss(t), s ∈ S, (3.2)∑
j∈N ,j 6=i

lsij(t) = 0, if i = ds, s ∈ S, (3.3)∑
j∈N ,j 6=i

lsji(t) = vs(t), if i = ds, s ∈ S, (3.4)∑
i∈B

1i=ss(t) = 1. (3.5)

Constraints (3.2) and (3.3) indicate that there is no incoming data and outgoing data at

the source node and the destination node for service session s, respectively. Constraint

(3.4) models the throughput requirement of service session s, where vs(t) is the number of

packets required by session s. Constraint (3.5) indicates that there is only one source base

station for session s in any time slot t.

3.2 Link Layer Design

Next, we illustrate the channel allocation and link scheduling constraints on data trans-

missions.

Assume that band m is available at both node i and node j, i.e., m ∈ Mi ∩Mj . We

denote

αmij (t) =


1, if node i transmits to node j using band m in time slot t,

0, otherwise.
(3.6)

Since a node is not able to transmit to or receive from multiple nodes on the same

frequency band, we have

∑
j∈N ,j 6=i

αmij (t) ≤ 1, and
∑

i∈N ,i 6=j

αmij (t) ≤ 1. (3.7)
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Besides, a node cannot use the same frequency band for transmission and reception,

due to “self-interference” at physical layer, i.e.,

∑
i∈N ,i 6=j

αmij (t) +
∑

q∈N ,q 6=j

αmjq(t) ≤ 1. (3.8)

Moreover, we consider that each node is only equipped with one single radio, which

means that each node can only transmit or receive on one frequency band at a time. Thus,

we have ∑
m∈Mj

∑
i∈N ,i 6=j

αmij (t) +
∑
m∈Mj

∑
q∈N ,q 6=j

αmjq(t) ≤ 1. (3.9)

Notice that (3.7) and (3.8) will hold whenever (3.9) holds.

Recall that in (2.3), ETX
i (t) is node i’s consumed energy for serving its traffic. Thus, it

can be calculated as follows:

ETX
i (t) =

∑
m∈Mi

∑
j∈N ,j 6=i

αmij (t)P
m
ij (t)∆t+

∑
m∈Mi

∑
j∈N ,j 6=i

αmji(t)P
recv
i ∆t, (3.10)

where node i’s receiving power, i.e., P recv
i , is a constant, and ∆t is the time duration of

one time slot.

In addition to the above constraints at a certain node, there are also constraints due

to potential interference among different nodes. In particular, according to the Physical

Model discussed in Section 2.2, if node i uses a frequency band m for transmitting data to

another node, the cumulative interference from all the other nodes transmitting on m at the

same time plus the noise power level should be low enough so that the SINR of node i’s

transmission is above the threshold Γ, i.e., gijPm
ij (t) ≥ Γ

(
ηjW

m(t)+
∑

k 6=i,v 6=j gkjP
m
kv(t)

)
.

15



Rewriting the above expression in the form of a constraint that accommodates all the link-

band pairs in the network, we have

gijP
m
ij (t)αmij (t) +Mm

ij

(
1− αmij (t)

)
≥ Γ

(
ηjW

m(t) +
∑

k 6=i,v 6=j

gkjP
m
kv(t)α

m
kv(t)

)
, (3.11)

where Mm
ij

(
1 − αmij (t)

)
is set as the sum of interferences from all the other nodes and the

noise, i.e., Mm
ij

(
1− αmij (t)

)
= Γ

(
ηjW

m(t) +
∑

k 6=i gkjP
k
max

)
.

Moreover, the flow rate over link (i, j) should satisfy the following inequality, i.e.,

δ
∑
s∈S

lsij(t) ≤
∑

m∈Mi∩Mj

cmij (t)α
m
ij (t)∆t (3.12)

where δ is the number of bits per packet. (3.12) indicates that the total number of bits

transmitted on a link during one time slot cannot exceed the link’s capacity multiplied by

the duration of one time slot.

3.3 Offline Finite-Queue-Aware Energy Cost Minimization

Our objective is to minimize the time-averaged expected energy cost of the cellular

service provider given the routing, link scheduling and energy capabilities, while guaran-

teeing the strong stability of the network. Thus, the offline finite-queue-aware energy cost

optimization problem can be formulated as follows:

P1: Minimize ψ = lim
T→∞

1

T

T−1∑
t=0

E[f(P (t))],

s.t. Constraints (2.10)-(2.15), (3.2)-(3.5), (3.9)-(3.12), ∀t ≥ 0

Q(t) and x(t) are strongly stable, (3.13)

where Q(t) = {Qs
i (t),∀i ∈ N , s ∈ S} and x(t) = {xi(t),∀i ∈ N}. We denote the

optimal result of P1 by ψ∗P1. We can see that without the constraint (3.13), P1 is a time-
16



coupling stochastic Mixed-Integer Non-Linear Programming (MINLP) problem, which is

already prohibitively expensive to solve. Previous approaches usually solve such prob-

lems based on Dynamic Programming and suffer from the “curse of dimensionality” prob-

lem [7]. They also require detailed statistical information on the random variables in the

problem, i.e., the available spectrums, and output of renewable energy resources at each

node, which may be difficult to obtain in practice. In addition, the constraint (3.13) makes

P1 an even more complicated problem. Next, we will reformulate this problem into an

online optimization problem using Lyapunov optimization to break the time coupling in

P1, and find a feasible solution to it only based on the current network states.

17



CHAPTER 4

ONLINE FINITE-QUEUE-AWARE ENERGY COST MINIMIZATION

In this section, we exploit Lyapunov optimization techniques to design an online finite-

queue-aware algorithm to solve the energy cost minimization problem without requiring

any priori knowledge of the network parameters.

Before we delve into the details, we first reformulate P1 into an equivalent offline opti-

mization problem P2. In particular, summing the inequality (3.12) over all t ∈ {0, 1, ...T −

1}, and taking expectation and limitation on both sides, we get

lim
T→∞

1

T

T−1∑
t=0

E[δ
∑
s∈S

lsij(t)] ≤ lim
T→∞

1

T

T−1∑
t=0

E[
∑

m∈Mi∩Mj

cmij (t)α
m
ij (t)∆t]. (4.1)

Thus, we define P = limT→∞
1
T

∑T−1
t=0 E[f(P (t)) − λ

∑
s∈S
∑

i∈B ks(t) · 1i=ss(t)], where

λ is a coefficient that can be determined by the system operator. We then formulate the

following optimization problem P2:

P2: Minimize ψ = P

s.t. Constraints (2.10)-(2.15), (3.2)-(3.5), (3.9)-(4.1), ∀t ≥ 0.

We denote the optimal result of P2 by ψ∗P2. We formulate P2 in such a way to help en-

sure the strong stability of the network, which will be clear later. Besides, note that similar

to P1, P2 is also a time-coupling MINLP problem. In what follows, we will formulate a

drift-plus-penalty problem based on P2, which we call P3.
18



4.1 Modeling Virtual Queues

In order to guarantee that all queues in the network are stable, we introduce virtual

queues as follows. Consider a virtual queue Gij(t) at node i for each of its one-hop neigh-

bor j with the following queueing law:

Gij(t+ 1) = max
{
Gij(t)−

1

δ

∑
m∈Mi∩Mj

cmij (t)α
m
ij (t)∆t, 0

}
+
∑
s∈S

lsij(t). (4.2)

This virtual queue can be understood as the link-layer buffer for link (i, j). The queue

backlog Gij(t) represents the total number of packets stored at node i to be transmitted to

node j at the beginning of time slot t1.

For queue Gij(t), we have

1

δ

∑
m∈Mi∩Mj

cmij (t)α
m
ij (t)∆t−

∑
s∈S

lsij(t) ≤
1

δ

∑
m∈Mi∩Mj

cmij (t)α
m
ij (t)∆t ≤

1

δ
cmaxij ∆t (4.3)

where 1
δ
cmaxij ∆t is a constant. Therefore, if we can guarantee the strong stability of this

queue, we can ensure its rate stability, i.e., constraint (4.1), according to Theorem 2.6.4.

Besides, the virtual queue backlog is always nonnegative according to the queueing law

(4.2).

Instead of utilizing Gij(t) directly, we build another virtual queue Hij(t) = βGij(t),

where β = maxi,j∈N ,j 6=i { 1
δ
cmaxij ∆t}. Thus, the queueing law of Hij(t) is

Hij(t+ 1) = max
{
Hij(t)−

β

δ

∑
m∈Mi∩Mj

cmij (t)α
m
ij (t)∆t, 0

}
+ β

∑
s∈S

lsij(t). (4.4)

Note that the strong stability of Hij(t) implies the strong stability of Gij(t), and hence

(4.1) would directly follow.
1In order to guarantee that the queue size of Gij(t) is an integer in each time slot, the service rate of the

queue should in fact be b 1δ
∑
m∈Mi∩Mj

cmij (t)α
m
ij (t)∆tc. Here, we assume 1

δ

∑
m∈Mi∩Mj

cmij (t)α
m
ij (t)∆t

to be integers for simplicity.
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4.2 Reformulation of Dynamic Energy Cost Minimization Using Lyapunov Opti-
mization

We first define a shifted energy level zi(t) for any node i ∈ N to better control its

energy storage unit, i.e.,

zi(t) = xi(t)− V γmax − dmaxi , (4.5)

where γmax is the maximum first-order derivative of f(P (t)) with respect to P (t), and V is

a positive constant to be defined later. Thus, according to (2.5), zi(t) is updated following

the queueing law below:

zi(t+ 1) = zi(t) + ci(t)− di(t). (4.6)

Note that xi(t) is stable as long as zi(t) is stable.

Next, we define a Lyapunov function [24] as

L(Θ(t)) ,
1

2
[
∑
s∈S

∑
i∈N

(Qs
i (t))

2 +
∑
i∈N

∑
j∈N ,j 6=i

(Hij(t))
2 +

∑
i∈N

(zi(t))
2] (4.7)

where Θ(t) = {Q(t),H(t), z(t)}. We assume Q(0) = 0, H(0) = 0, and z(0) = 0.

This function represents a scalar measure of queues in the system. L(Θ(t)) being small

indicates that all queue backlogs are low, while L(Θ(t)) being large implies that at lease

one queue backlog is high. Meanwhile, its one-slot conditional Lyapunov drift is defined

as

∆(Θ(t)) , E
[
L(Θ(t+ 1))− L(Θ(t))|Θ(t)

]
. (4.8)
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In order to minimize the long-term time-averaged expected total cost of energy from

UC, instead of directly minimizing ∆(Θ(t)), we intend to minimize the upper bound of

the drift-plus-penalty function, which is defined as:

∆(Θ(t)) + V E
[
f(P (t))− λ

∑
s∈S

∑
i∈B

ks(t) · 1i=ss(t)|Θ(t)
]

(4.9)

where V ≥ 0 is a constant that represents the weight on how much we emphasize on the

energy cost minimization. Such a scheduling decision can be explained as follows: we

want to make ∆(Θ(t)) small to push queue backlog towards a lower congestion state, but

we also want to make
(
f(P (t))− λ

∑
s∈S
∑

i∈B ks(t) · 1i=ss(t)

)
small in each time slot so

that the energy cost can be low.

4.2.1 Lemma 1: Upper Bound of Drift-plus-penalty Function

We can have the following lemma.

Given ∆(Θ(t)) defined in (4.8), we have

∆(Θ(t)) + V E
[
f(P (t))− λ

∑
s∈S

∑
i∈B

ks(t) · 1i=ss(t)|Θ(t)
]

≤ B + Ψ1(t) + Ψ2(t) + Ψ3(t) + Ψ4(t), (4.10)

where B is a constant, i.e.,

B=
1

2

∑
s∈S

∑
i∈N

[(
max

j∈N ,j 6=i
{1

δ
cmaxij ∆t}

)2

+
(

max
j∈N ,j 6=i

{1

δ
cmaxji ∆t}+ lmaxs · 1i=ss(t)

)2]
+
∑
i∈N

∑
j∈N ,j 6=i

[β
δ

(cmaxij ·∆t)
]2

+
1

2

∑
i∈N

max
{

(cmaxi )2, (dmaxi )2
}

(4.11)
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Ψ1(t) is only related to the link scheduling variables αmij (t)’s, i.e.,

Ψ1(t) = −β
δ
E
[∑
i∈N

∑
j∈N ,j 6=i

(
Hij(t)

∑
m∈Mi∩Mj

cmij (t)α
m
ij (t) ·∆t

)
|Θ(t)

]
, (4.12)

Ψ2(t) is related to the resource allocation variables ks(t) and 1i=ss(t)’s, i.e.,

Ψ2(t)=E
[∑
s∈S

∑
i∈B

(
(Qs

i (t)− λV )(ks(t) · 1i=ss(t))
)
|Θ(t)

]
, (4.13)

Ψ3(t) is only related to the routing variables lsij(t)’s, i.e.,

Ψ3(t)=E
[∑
s∈S

∑
i∈N

Qs
i (t)
( ∑
j∈N j 6=i

lsji(t)−
∑

j∈N ,j 6=i

lsij(t)
)

|Θ(t)
]

+ E
[∑
i∈N

∑
j∈N ,j 6=i

(
βHij(t)

∑
s∈S

lsij(t)
)
|Θ(t)

]
, (4.14)

and Ψ4(t) is related to the energy management variables ci(t), di(t) and P (t), ∀i ∈ N , i.e.,

Ψ4(t) = E
[∑
i∈N

(
zi(t)(ci(t)− di(t))

)
|Θ(t)

]
+ V E

[
f(P (t))|Θ(t)

]
. (4.15)

Proof: Note that ∀x, y, z with x ≥ 0, 0 ≤ y ≤ ymax, 0 ≤ z ≤ zmax, we have

(max{x− y, 0}+ z)2 ≤ x2 + y2 + z2 + 2x(z − y)

≤ x2 + y2
max + z2

max + 2x(z − y). (4.16)

Due to (3.12), we know that
∑

j∈N ,j 6=i l
s
ij(t) ≤ 1

δ

∑
j∈N ,j 6=i

∑
m∈Mi∩Mj

cmij (t)α
m
ij (t)∆t.

Denote by cmaxij the maximum possible link capacity of link (i, j). Since cmij (t) depends on

d(i, j) and Wm(t), among which d(i, j) is constant, then cmaxij is determined by Wmax,

i.e., the maximum bandwidth that the channels available on link (i, j) can have. Thus,

according to (3.9), i.e., one node can transmit to at most one neighbor on at most one band

at a time, we can get
∑

j∈N ,j 6=i l
s
ij(t) ≤ maxj∈N ,j 6=i{ 1

α
cmaxij ∆t}. Similarly, we also have
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∑
j∈N ,j 6=i l

s
ji(t) ≤ maxj∈N ,j 6=i

1
δ
cmaxji ∆t. Besides, we have ks(t) ≤ Kmax

s . Thus, based on

(3.1), (4.4), (4.5) and (4.16), we can obtain the following inequalities:

(
Qs
i (t+ 1)

)2≤
(
Qs
i (t)
)2

+
(

max
j∈N ,j 6=i

{1

δ
cmaxij ∆t}

)2

+
(

max
j∈N ,j 6=i

{1

δ
cmaxji ∆t}+Kmax

s · 1i=ss(t)

)2

+2Qs
i (t) ·

( ∑
j∈N ,j 6=i

lsji(t) + ks(t) · 1i=ss(t) −
∑

j∈N ,j 6=i

lsij(t)
)

(4.17)

(Hij(t+ 1))2≤
(
Hij(t)

)2
+ 2
(β
δ
cmaxij ∆t

)2
+ 2Hij(t) ·(∑

s∈S

β lsij(t)−
β

δ

∑
m∈Mi∩Mj

cmij (t)α
m
ij (t)∆t

)
(4.18)

(
zi(t+ 1)

)2 ≤
(
zi(t)

)2
+ max{(cmaxi )2, (dmaxi )2}+ 2zi(t)

(
ci(t)− di(t)

)
(4.19)

Applying these inequalities to the drift-plus-penalty function, we have

∆(Θ(t)) + V E[f(P (t))− λ
∑
s∈S

∑
i∈B

ks(t) · 1i=ss(t)|Θ(t)]

≤1

2

∑
s∈S

∑
i∈N

[(
max

j∈N ,j 6=i
{1

δ
cmaxij ∆t}

)2
+
(

max
∈N ,j 6=i

{1

δ
cmaxji ∆t}

+Kmax
s · 1i=ss

)2]
+
∑
i∈N

∑
j∈N ,j 6=i

(β
δ
cmaxij ∆t

)2
+

1

2

∑
i∈N

max
{

(cmaxi )2, (dmaxi )2
}

+E
[∑
s∈S

∑
i∈N

Qs
i (t)
[ ∑
j∈N ,j 6=i

lsji(t) + ks(t) · 1i=ss(t) −
∑

j∈N ,j 6=i

lsij(t)
]
|Θ(t)

]
+E
[∑
i∈N

∑
j∈N ,j 6=i

Hij(t)
[∑
s∈S

βlsij(t)−
β

δ

∑
m∈Mi∩Mj

cmij (t)α
m
ij (t)∆t

]
|Θ(t)

]
+E
[∑
i∈N

(
zi(t)(ci(t)− di(t))

)
|Θ(t)

]
+V E

[
f(P (t))− λ

∑
s∈S

∑
i∈B

ks(t) · 1i=ss(t)|Θ(t)
]

(4.20)

Thus, Lemma 1 directly follows.
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Based on the drift-plus-penalty framework, our objective is to minimize the right-hand-

side of (4.10), and hence to minimize Ψ1(t) + Ψ2(t) + Ψ3(t) + Ψ4(t) since B is a constant,

given the current system status Θ(t) = {Q(t),H(t), z(t)} in each time slot. We now use

the concept of opportunistically minimizing an expectation [24], which is to minimize:

Ψ̂1(t)=−β
δ

∑
i∈N

∑
j∈N ,j 6=i

(
Hij(t) ·

∑
m∈Mi∩Mj

cmij (t)α
m
ij (t)∆t

)
(4.21)

Ψ̂2(t)=
∑
s∈S

∑
i∈B

(
(Qs

i (t)− λV )(ks(t) · 1i=ss(t))
)

(4.22)

Ψ̂3(t)=
∑
s∈S

∑
i∈N

Qs
i (t)
( ∑
j∈N j 6=i

lsji(t)−
∑

j∈N ,j 6=i

lsij(t)
)

+
∑
i∈N

∑
j∈N ,j 6=i

(
Hij(t)

∑
s∈S

βlsij(t)
)

(4.23)

Ψ̂4(t)=
∑
i∈N

(
zi(t)(ci(t)− di(t))

)
+ V f(P (t)). (4.24)

Therefore, the problem of online finite-queue-aware energy cost minimization can be

formulated as follows:

P3: Minimize Ψ̂1(t) + Ψ̂2(t) + Ψ̂3(t) + Ψ̂4(t)

s.t. Constraints (2.10)-(2.15), (3.2)-(3.5), (3.9)-(3.12), ∀t ≥ 0.

Θ(t) is strongly stable. (4.25)

Note that the constraint (4.1) has been left out in P3 (compared to P2) since it can be

guaranteed if H(t) is strongly stable as mentioned before.

4.3 A Decomposition Based Approximation Algorithm

In the following we decompose P3 into four subproblems (from S1 to S4) and solve

them respectively. The intuition is that since each subproblem has fewer variables com-

pared with that in P3 and can be solved easily, by solving the subproblems one by one, the
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later subproblems can treat the variables that have been solved in previous subproblem as

constants. Consequently, we can obtain a feasible solution to P3.

4.3.1 Link Scheduling

First, we minimize Ψ̂1(t) by finding the optimal link scheduling policy, i.e., determin-

ing the variables αmij (t)’s (∀i, j ∈ N , j 6= i,m ∈Mi ∩Mj), as follows:

S1: Minimize Ψ̂1(t)

s.t. Constraint (3.9).

Since the variables αmij (t)’s can only take value of 0 or 1, the above subproblem is a

Binary Integer Programming (BIP) problem. In the following, based on the similar ideas

in [14, 29], we propose a heuristic greedy scheme called the sequential-fix (SF) algorithm

to find a suboptimal solution to this problem, the solution of which can be obtained in

polynomial time. The main idea of SF is to fix the binary variables αmij (t)’s sequentially

through a series of relaxed linear programming problems. Specifically, we first set αmij (t)’s

to 0 if Hij(t) = 0, remove all the terms associated with such αmij (t)’s from the objective

function, and eliminate the related constraints in (3.9). Then, in each iteration, we first relax

all the 0-1 integer constraints on αmij (t)’s to 0 ≤ αmij (t) ≤ 1 to transform the problem to a

linear programming (LP) problem. Then, we solve this LP to obtain an optimal solution

with each αmij (t) being between 0 and 1. Among all the values, we set the largest αmij (t) to

1. After that, based on the constraint (3.9), we can fix αmpj(t) = 0 and αnjq(t) = 0 for any

n ∈ Mj and p, q ∈ N . Besides, if the result includes several αmij (t)’s with the value of

1, we can set those αmij (t)’s to 1 and perform an additional fixing for the largest fractional
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variable in the current iteration as illustrated above. Having fixed some αmij (t)’s in the first

iteration, we remove all the terms associated with those already fixed αmij (t)’s from the

objective function, eliminate the related constraints in (3.9), and update the problem to a

new one for the next iteration. The iteration continues until we fix all αmij (t)’s to be either

0 or 1.

4.3.2 Resource Allocation

Second, we minimize Ψ̂2(t) by finding the source base station for each service session

s (s ∈ S) and determining its incoming packet rate ks(t), i.e.,

S2: Minimize Ψ̂2(t)

s.t. Constraints (3.5).

We develop the following search algorithm to locally find a resource allocation policy.

Specifically, at the beginning of each time slot, given the current queue backlogs Qs
i (t)’s

(∀i ∈ B) for each service session s, we find the base station with the smallest Qs
i (t) and

choose it as the source base station. If there are multiple variables with the same smallest

queue backlog, we randomly pick one of them as the source base station. After that, we

can determine the source node’s incoming packet rate as follows:

ks(t) =


Ks
max, if Qs

ss(t)− λV < 0

0, otherwise.
(4.26)
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4.3.3 Routing

Third, after reorganizing Ψ̂2(t), we minimize it by finding the optimal routing policy,

i.e., determining the variables lsij(t)’s (∀s ∈ S, i, j ∈ N , j 6= i), as follows:

S3: Minimize
∑
s∈S

∑
i∈N

∑
j∈N ,j 6=i

(
−Qs

i (t) +Qs
j(t) + βHij(t)

)
· lsij(t)

s.t. Constraints (3.2)-(3.4), (3.12).

We can see that S3 is an Integer Linear Programming (ILP) problem with the only

variables being lsij(t)’s. We notice that the total flow rate
∑

s∈S l
s
ij(t) over link (i, j) does

not affect the flow rates over other links {(p, q)|p 6= i ∩ q 6= j}, and only depends on its

link capacity according to the constraint (3.12). Besides, the objective function of S3 can

be viewed as a weighted sum of the variables lsij(t)’s. Therefore, we can determine the flow

rate over any link (i, j) at node i locally, based on its current queue backlogs Qs
i (t) and

Hij(t), and the queue backlogs of node j, i.e., Qs
j(t). In the following, we will propose an

algorithm to obtain the optimal solution for lsij(t)’s.

In particular, we first set the variables lsij’s (∀j = ss(t), i ∈ N \ {j}, s ∈ S) and those

(∀i = ds, j ∈ N \ {i}, s ∈ S) to 0 according to constraints (3.2) and (3.3). Besides, if a

node j = ds (s ∈ S) in time slot t, then the variable lsij (∀i ∈ N \ {j}) with the small-

est coefficient in the objective function of S3 is set to vs(t) due to constraint (3.4). In all

the other cases, in order to minimize the objective function, node i also sets the variables

lsij(t)’s (∀j ∈ N , j 6= i, s ∈ S) to 0 if their coefficients are non-negative. Otherwise, for

any lsij(t)’s (s ∈ S) over link (i, j), node i sets the variable with the smallest coefficient to

1
δ

∑
m∈Mi∩Mj

cmij (t)α
m
ij (t)∆t while the rest to 0, due to the constraint (3.12). The intuition
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is that by doing so, the link (i, j) can be fully utilized while minimizing S3. Besides, if

there are variables lsij(t)’s with the same smallest coefficients on link (i, j), node i ran-

domly picks one of them and sets it to 1
δ

∑
m∈Mi∩Mj

cmij (t)α
m
ij (t)∆t while the rest to 0.

Note that αmij (t)’s are known from the link scheduling optimization problem S1. It is pos-

sible that 1
δ

∑
m∈Mi∩Mj

cmij (t)α
m
ij (t)∆t is equal to 0 if

∑
m∈Mi∩Mj

αmij (t) = 0. Then, the

corresponding variable lsij(t) is also equal to 0.

4.3.4 Energy Management

Fourth, in order to minimize Ψ̂4(t), we try to find the optimal energy management

for all i ∈ N , i.e., determining the variables Pm
ij (t)’s, cri (t)’s, cgi (t)’s, ri(t)’s, di(t)’s, and

gi(t)’s. This problem can be formulated as follows:

S4: Minimize Ψ̂4(t)

s.t. Constraint (2.10)-(2.15), (3.11).

Notice that S4 is a convex optimization problem, which can be easily solved, e.g., using

CPLEX, given the system states and shifted energy levels zi(t).

In summary, in each time slot, the online finite-queue-aware energy minimization prob-

lem P3 can be solved after S1, S2, S3 and S4 are solved. The queues Q(t), H(t) and z(t)

are then updated in each time slot according to the queueing laws (3.1), (4.4), and (4.5), re-

spectively. We will show in the next section that all queues are strongly stable. We denote

the corresponding time-averaged expected total energy cost by ψP3.
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CHAPTER 5

PERFORMANCE ANALYSIS

In this section, we first prove that the proposed approximation algorithm can guarantee

network strong stability. Then, we derive both the lower and upper bounds on the optimal

result of P1.

5.1 Network Strong Stability

Our proposed algorithm finds a feasible solution to P3 which satisfies the constraints

(2.10)-(2.15), (3.2)-(3.5), (3.9)-(3.12). We can have the following theorem.

5.1.1 Theorem 3: Network Strong Stability

Our proposed approximation algorithm guarantees that the queues Q(t), H(t) and z(t)

are all strongly stable.

Proof: First, we demonstrate the strong stability of Q(t) by considering an arbitrary queue

Qs
i (t). Specifically, we prove by induction that Qs

i (t) ≤ λV +Ks
max.

When t = 0, we have Qs
i (0) = 0 < λV +Ks

max.

Assume that we have Qs
i (t) ≤ λV + Ks

max in time slot t (t ≥ 0). Then, we consider

the following two cases to prove the stability of Qs
i (t).
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1) if i = ss(t): According to the queueing law of Qs
i (t), we have

Qs
ss(t+ 1) = max{Qs

ss(t)−
∑

j∈N ,j 6=ss

lsssj(t), 0}+ ks(t). (5.1)

Based on the derived solution to the subproblem S2, we have the following two sub-

cases:

• If Qs
ss(t) ≥ λV , according to the optimal solution to S2, we know that ks(t) = 0.

Thus, we have

Qs
ss(t+ 1) ≤ Qs

ss(t) ≤ λV +Ks
max. (5.2)

• If Qs
ss(t) < λV , according to the optimal solution to S3, we get that ks(t) = Ks

max.
Following (5.1), we have

Qs
ss(t+ 1) ≤ Qs

ss(t) +Ks
max ≤ λV +Ks

max. (5.3)

Therefore, we have Qs
ss(t) ≤ λV +Ks

max.

2) if i 6= ss(t) and i 6= ds: We then explore the stability of Qs
i (t) when i 6= ss and

i 6= ds, whose queueing law is:

Qs
i (t+ 1) = max{Qs

i (t)−
∑

j∈N ,j 6=i

lsij(t), 0}+
∑

j∈N ,j 6=i

lsji(t). (5.4)

Since only one neighboring node can transmit to node i in time slot t, we denote it by

j. Consider the coefficient in front of lsji(t) in the objective function of S3.

• If Qs
i (t) < Qs

j(t)− βHji(t), according to (5.4), we have

Qs
i (t+ 1)≤Qs

i (t) + lsji(t) < Qs
j(t)− βHji(t) + lsji(t) (5.5)

≤Qs
j(t) ≤ λV +Ks

max,

The third inequality above can be proved in the following two cases.

– If Hji(t) = 0, according to the solution to S1, we can know that αmji(t) = 0
∀m ∈Mj ∩Mi, and hence lsji(t) = 0. Thus, the inequality holds.

– If Hji(t) ≥ 1, we have βHji(t) ≥ lsji(t), as lsji(t) ≤ maxi,j∈N ,j 6=i{1
δ
cmaxij ∆t} =

β as defined before.
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• If Qs
i (t) ≥ Qs

j(t)− βHji(t), according to our proposed solution to S3, we know that
lsji(t) = 0. Following (5.4), we have

Qs
i (t+ 1) ≤ Qs

i (t) ≤ λV +Ks
max. (5.6)

Therefore, we also have Qs
i (t) ≤ λV +Ks

max.

Note that the destination node ds does not need to maintain a data queue since data will

be directly passed on to the upper layers. Consequently, based on the above results, we can

see that an arbitrary queue Qs
i (t) is finite in any time slot. Thus, Q(t) is strongly stable by

Definition 2.

Second, we prove the strong stability of H(t), and particularly,

Hij(t) ≤ max
0≤k≤t

∑
s∈S

lsij(k) (5.7)

for any i, j ∈ N , by induction. We consider an arbitrary queue Hij(t).

When t = 0, we have Hij(0) = 0, and hence (5.7) holds.

When t = 1, we have Hij(1) =
∑

s∈S l
s
ij(1) according to the queueing law (4.4), and

(5.7) holds.

Assume (5.7) holds in time t, i.e., Hij(t) ≤ max0≤k≤t
∑

s∈S l
s
ij(k). Then, at the begin-

ning of time slot t+ 1, we have

Hij(t+ 1) = max
{
Hij(t)−

β

δ

∑
m∈Mi∩Mj

cmij (t)α
m
ij (t)∆t, 0

}
+ β

∑
s∈S

lsij(t). (5.8)

If Hij(t) >
β
δ

∑
m∈Mi∩Mj

cmij (t)α
m
ij (t)∆t, with inequality (3.12), we have

Hij(t+ 1) ≤ Hij(t) ≤ max
0≤k≤t

∑
s∈S

lsij(k) ≤ max
0≤k≤t+1

∑
s∈S

lsij(k). (5.9)

If Hij(t) ≤ β
δ

∑
m∈Mi∩Mj

cmij (t)α
m
ij (t)∆t, then

Hij(t+ 1) =
∑
s∈S

lsij(t) ≤ max
0≤k≤t+1

∑
s∈S

lsij(k). (5.10)
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Therefore, (5.7) holds when t = t+ 1 as well.

Since
∑

s∈S l
s
ij(t) ≤

β
δ
cmaxij ∆t, we have thatHij(t) ≤ β

δ
cmaxij ∆t and hence always finite

and strongly stable.

Third, we prove the strong stability of z(t). Since zi(t) ≤ xi(t), the strong stability

of z(t) directly follows if we prove the strong stability of x(t). Firstly, we define the

maximum value of V as:

V max = min
i∈N

xmaxi − cmaxi − dmaxi

γmax
. (5.11)

Assume that for arbitrary node i, (2.11) holds in time slot t. Then we consider three

cases when in the time slot t+ 1.

• If 0 ≤ xi(t) < dmaxi , Recall that ci(t) = ωi(t)c
g
i (t) + cri (t). In this case, the partial

derivative of the objective function of S4, i.e., Ψ̂4(t), with respect to cri (t), is

∂Ψ̂4(t)

∂cri (t)
= zi(t) + V

∂f(P (t))

∂cri (t)
≤ xi(t)− V γmax − dmaxi + 0 < 0. (5.12)

Thus, by solving S4, i.e., minimizing Ψ̂4(t), our energy management scheme leads to
the control decisions that maximizes cri (t). Due to constraint (2.8), we have di(t) =
0. Therefore, according to (2.5), we get xi(t + 1) = xi(t) + ci(t) and hence 0 ≤
xi(t+ 1) ≤ dmaxi + cmaxi ≤ xmaxi due to constraint (2.14).

• If dmaxi ≤ xi(t) ≤ V γmax + dmaxi , Since V ≤ V max ≤ xmax
i −cmax

i −dmax
i

γmax , we have
xi(t) ≤ xmaxi − cmaxi . Thus, according to (2.5), we can obtain xi(t + 1) ≤ xmaxi −
cmaxi + ci(t)− di(t) ≤ xmaxi and xi(t+ 1) ≥ dmaxi + ci(t)− di(t) ≥ 0.

• If V γmax + dmaxi < xi(t) ≤ xmaxi . Note that V ≤ xmax
i −cmax

i −dmax
i

γmax , and hence
V γmax + dmax ≤ xmaxi − cmaxi < xmaxi . The partial derivative of the objective
function of S4 with respect to di(t) is

∂Ψ̂4(t)

∂di(t)
= −V ∂f(P (t))

∂di(t)
− zi(t) ≤ 0− xi(t) + V γmax + dmaxi < 0. (5.13)

Thus, our energy management scheme minimizing Ψ̂4(t) results in control decisions
that satisfy di(t) = dmaxi . Due to constraint (2.10), we have ci(t) = 0. Thus,
according to (2.5), we get xi(t + 1) = xi(t) − dmaxi and hence 0 ≤ xi(t + 1) ≤
xmaxi − dmaxi ≤ xmaxi .
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Therefore, we can see that (2.11) holds for all t ≥ 0.

5.2 Lower and Upper bounds on ψ∗P1

In what follows, we obtain both lower and upper bounds on the optimal results of P1,

i.e., ψ∗P1.

5.2.1 Theorem 4: Upper Bound

The solution obtained from our proposed algorithm serves as a suboptimal yet feasible

solution to P1, and the corresponding time-averaged expected amount of energy cost works

as an upper bound on the optimal result of P1, i.e., ψ∗P1 ≤ ψP3.

Proof: The proposed decomposition based algorithm finds a solution that satisfies all the

constraints in P3, i.e., (2.10)-(2.15), (3.2)-(3.5), (3.9)-(3.12), and (4.25). Thus, the solution

is also a feasible solution to P1, and the corresponding time-averaged expected energy cost,

i.e., ψP3, is no less than the optimal result of P1, i.e., ψP3 ≥ ψ∗P1.

Next, we find a lower bound on ψ∗P1. We first present a lemma as follows.

5.2.2 Lemma 2: Lower Bound

The time-averaged expected amount of energy cost achieved by optimally solving P3,

denoted by ψ∗P3, is within a constant gap B
V

from the minimum time-averaged expected

energy cost achieved by P2, i.e., ψ∗P2. Particularly, we have ψ∗P3 − B
V
≤ ψ∗P2 where B and

V are defined in Section 4.2.

Proof: Denote by α̂mij (t), k̂s(t), 1̂i=ss(t), l̂sij(t), ĉi(t), d̂i(t), and ̂f(P (t)) the results obtained

by our proposed scheme in time slot t, i.e., based on the optimal solution to P3. We also
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denote by αm∗ij (t), k∗s(t), 1∗i=ss(t), l
s∗
ij (t), c∗i (t), d∗i (t), and f ∗(P (t))(t) the results that we get

for time slot t based on the optimal solution to P1. Thus, from Lemma 4.2.1, we can have

∆(Θ(t)) + V E[ ̂f(P (t))− λ
∑
s∈S

∑
i∈B

k̂s(t) · 1̂i=ss(t)|Θ(t)]

≤B + Ψ̂1(t) + Ψ̂2(t) + Ψ̂3(t) + Ψ̂4(t)

≤B + Ψ∗1(t) + Ψ∗2(t) + Ψ∗3(t) + Ψ∗4(t)

=B + V E[f ∗(P (t))− λ
∑
s∈S

∑
i∈B

k∗s(t) · 1∗i=ss(t)]

+Ψ̂∗1(t) + Ψ̂∗3(t) +
∑
s∈S

∑
i∈B

(
Qs
i (t)(k

∗
s(t) · 1∗i=ss(t))

)
+
∑
i∈N

(
zi(t)(c

∗
i (t)− d∗i (t))

)
=B + V E[f ∗(P (t))− λ

∑
s∈S

∑
i∈B

k∗s(t) · 1∗i=ss(t)]

+
∑
i∈N

∑
j∈N ,j 6=i

Qs
i (t) lim

T→∞

1

T

T−1∑
t=0

(
ls∗ji (t) + k∗s(t) · 1∗i=ss(t)

−ls∗ij (t)
)

+
∑
i∈N

∑
j∈N ,j 6=i

Hs
ij(t) lim

T→∞

1

T

T−1∑
t=0

(∑
s∈S

βls∗ij (t)

−β
δ

∑
m∈Mi∩Mj

cmij (t)α
m∗
ij (t)∆t

)
+
∑
i∈N

zi(t) lim
T→∞

1

T

T−1∑
t=0

(
c∗i (t)− d∗i (t)

)
(5.14)

Note that the third step is due to the fact that the optimal solutions to P1 are obtained

independent of the current queues Θ(t). The fourth step is due to the strong law of large

numbers: If {a(t)}∞t=0 are i.i.d. random variables, we have Pr( 1
T

limt→∞
∑T−1

t=0 a(t) =
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E{a(t)}) = 1 almost surely. Consequently, taking expectation of the above inequality

yields:

E[L̂(Θ(t+ 1))]− E[L̂(Θ(t))] + V E[ ̂f(P (t))− λ
∑
s∈S

∑
i∈B

k̂s(t) · 1̂i=ss(t)]

≤B + V E[f ∗(P (t))− λ
∑
s∈S

∑
i∈B

k∗s(t) · 1∗i=ss(t)]

+
∑
i∈N

∑
j∈N ,j 6=i

Qs
i (t) lim

T→∞

1

T

T−1∑
t=0

E
[
ls∗ji (t) + k∗s(t) · 1∗i=ss(t)

−ls∗ij (t)
]

+
∑
i∈N

∑
j∈N ,j 6=i

Hs
i (t) lim

T→∞

1

T

T−1∑
t=0

E
[∑
s∈S

βls∗ij (t)

−β
δ

∑
m∈Mi∩Mj

cmij (t)α
m∗
ij (t)∆t

]
+
∑
i∈N

zi(t) lim
T→∞

1

T

T−1∑
t=0

E
[
c∗i (t)− d∗i (t)

]
(5.15)

Since we have prove the strong stability of Q(t), H(t) and z(t) are all strongly stable,

we know that Q(t), H(t) and z(t) are also rate stable, according to Theorem 2. So we can

have:

ls∗ji (t) + k∗s(t) · 1i=ss − ls∗ij (t) ≤ 0 (5.16)∑
s∈S

βls∗ij (t)− β

δ

∑
m∈Mi∩Mj

cmij (t)α
m∗
ij (t)∆t ≤ 0 (5.17)

c∗i (t)− d∗i (t) ≤ 0 (5.18)

Therefore, we can obtain

E[L̂(Θ(t+ 1))]− E[L̂(Θ(t))] + V E[ ̂f(P (t))− λ
∑
s∈S

∑
i∈B

k̂s(t) · 1̂i=ss(t)]

≤B + V E[f ∗(P (t))− λ
∑
s∈S

∑
i∈B

k∗s(t) · 1∗i=ss(t)] (5.19)

35



Summing the above over t ∈ {0, 1, 2, ..., T − 1} for any positive integer T yields

E[L̂(Θ(T ))]− E[L̂(Θ(0))] + V
T−1∑
t=0

E[ ̂f(P (t))− λ
∑
s∈S

∑
i∈B

k̂s(t) · 1̂i=ss(t)]

≤ TB + V
T−1∑
t=0

E[f ∗(P (t))− λ
∑
s∈S

∑
i∈B

k∗s(t) · 1∗i=ss(t)]. (5.20)

Since all queues are finite in all time slots, dividing both sides of (5.20) by VT and

taking limits as T →∞ leads to

lim
T→∞

1

T

T−1∑
t=0

E[ ̂f(P (t))− λ
∑
s∈S

∑
i∈B

k̂s(t) · 1̂i=ss(t)]

≤ lim
T→∞

1

T

T−1∑
t=0

E[f ∗(P (t))− λ
∑
s∈S

∑
i∈B

k∗s(t) · 1∗i=ss(t)] +
B

V
, (5.21)

which means ψ∗P3 −B/V ≤ ψ∗P2

Recall that P1, P2 and P3 are both Mixed-Integer Programming problems. We relax

P2 to a Linear Programming (LP) problem without the strong stability constraint (3.13)

denoted by P2, and formulate a corresponding online energy cost minimization problem

denoted by P3. We can see that P3 is a relaxed LP problem based on P3 without the

strong stability constraint (4.25), which can be easily solved. Denoted by ψ∗
P1

and ψ∗
P3

the

time-averaged expected amount of energy cost obtained by optimally solving P1 and P3,

respectively, based on Lemma 2, we can know that ψ∗
P3
− B

V
≤ ψ∗

P2
. Since obviously we

also have ψ∗
P2
≤ ψ∗P2 ≤ ψ∗P1, we can arrive at the following result.

The optimal result of P1 is lower bounded by ψ∗
P3
−B/V , where ψ∗

P3
can be obtained

by optimally solving P3.
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CHAPTER 6

SIMULATION RESULTS

6.1 System Settings

In order to complement the analysis in the previous sections, we carry out extensive

simulations to evaluate the performance of our proposed scheme. Our goals are to obtain

the lower and upper bounds on the optimal result of P1, to examine the tradeoff between

energy cost and queue size, and to demonstrate the energy efficiency of our scheme com-

pared with that of other similar energy management strategy. Simulations are conducted

under CPLEX 12.4 on a computer with a 3.00 GHz CPU and 4 GB RAM.

6.2 Experiment Results

Specifically, we consider a square network of area 2000m× 2000m, where 2 base sta-

tions are located at coordinates (500m, 500m), (1500m, 500m), respectively, and 20 users

are randomly distributed. Besides, we assume there is one cellular band with bandwidth

1 MHz and four other spectrum bands whose bandwidth are independently and uniformly

distributed within [1, 2] MHz in each time slot. Only a random subset of the spectrum

bands are available at each mobile user while base stations can access all the bands. Each

service session has a traffic demand of 100 Kbps. Some other important simulation pa-

rameters are listed as follows. The path loss exponent is 4 and C = 62.5. The SINR

37



1 2 3 4 5 6 7 8 9 10

x 10
5

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5
x 10

12

V

T
im

e
−

a
v
e

ra
g

e
d

 e
x
p

e
c
te

d
 e

n
e

rg
y
 c

o
s
t

 

 

upper bound

lower bound

Figure 6.1

Time-averaged expected energy cost
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Total data queue backlog size of base stations over time
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Figure 6.3

Total data queue backlog size of mobile users over time
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Total energy buffer size of base stations over time
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Total energy buffer size of mobile users over time
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Performance comparison of different architectures
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threshold is Γ = 1. The noise power spectral density is η = 10−20 W/Hz at all nodes. All

nodes (∀i ∈ U) have the same maximum transmission power, which is P i
max = 1 W while

base stations have a much larger transmission power, i.e., 20 W. In addition, the outputs of

mobile users’ renewable energy resources and that of base stations’ are assumed to be in-

dependently and uniformly distributed within [0, 1] W and [0, 15] W, respectively, in each

time slot. The maximum charging and discharging limits on each user’s energy storage

device in a time slot, i.e., cmaxi and dmaxi , are both set to 0.06 kWh for mobile users and 0.1

kWh for base stations. The maximum amount of energy that each node can draw from the

power grid in a time slot, i.e., pmaxi , is set to 0.2 kWh. The energy generation cost function,

i.e., f(P (t)), is defined as f(P (t)) = aP 2(t) + bP (t) + c, where a = 0.8, b = 0.2 and

c = 0. All our results presented below are collected after the experiments run for a period

of T = 100 time slots, the duration of each of which is set to 1 minute.

In Figure 6.1, we show both the upper and lower bounds on the optimal result of P1.

Recall that the upper bound is achieved by our proposed algorithm, i.e., ψP3, and the lower

bound is obtained by optimally solving the relaxed problem P3, i.e., ψ∗
P3
−B/V . We can

find that the lower and upper bounds get closer to each other as V increases.

Then, we examine the tradeoff between energy cost and the queue backlog sizes in-

curred by our scheme. We find that in Figure 6.2 and Figure 6.3, the data queue backlog

sizes of base stations and mobile users increase as time goes by and are bounded. We can

also get similar results in Figure 6.4 and Figure 6.5 for energy queues. Since the expected

total sizes of all data queues and energy buffers of both mobile users and base stations are

all finite, each single data queue and energy buffer in the network are finite in each time
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slot, therefore guaranteeing the strong stability of the network. Besides, a larger V results

in a larger queue backlog size. This is because a larger V means more emphasis on the

energy cost minimization than on the queue size and that the system needs to have a larger

queue buffer so as to save more energy cost. The results in Figure 6.1-Figure 6.5 together

show the tradeoff between energy cost minimization and queue length in our proposed

algorithm.

Lastly, we compare the time-averaged expected energy cost of our proposed architec-

ture with other cellular network architectures, i.e., multi-hop network without renewable

energy, one-hop network with renewable energy, and one-hop network without renewable

energy. As shown in Figure 6.6, our system has the lowest time-averaged expected energy

cost among these four network systems when V goes from 1×105 to 5×105. Specifically,

compared with the multi-hop network without renewable energy, our system can take ad-

vantage of the renewable energy and the energy stored locally and hence save energy cost.

In addition, by comparing one-hop and multi-hop networks, we can find that the latter have

lower energy cost. This is because multi-hop technology enables nodes in the network to

use lower transmission powers to help each other with the transmissions and reduce energy

consumption.
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CHAPTER 7

CONCLUSIONS AND FUTURE WORKS

7.1 Main Contributions

In this paper, we propose an energy cost minimization framework for downlink data

communication in multi-hop cellular networks. In particular, with the objective of mini-

mizing the long-term time-averaged expected energy cost of cellular service provider while

guaranteeing the strong stability of the network, we construct a time-coupling stochastic

Mixed-Integer Non-Linear Programming (MINLP) problem, which is prohibitively expen-

sive to solve. By employing Lyapunov optimization theory, we reformulate the problem

and develop a decomposition based scheme to solve the problem in each time slot without

priori knowledge of the network statistics. The proposed scheme can ensure the network

strong stability. Both lower and upper bounds on the optimal result of the original optimiza-

tion problem are obtained. Extensive simulation results validate the energy cost savings of

the proposed scheme.

7.2 Future Research

In our future work, we are going to continue on this topic by investigating the delay

problems while guaranteeing the energy constraints in multi-hop cellular networks. On the

other hand, as the cloud computing has become a new paradigm that attracts increasing
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attentions for both academia and industry, the security and privacy issues in cloud comput-

ing become more critical. Therefore, in our future works, we plan to design an efficient,

secure and private cloud computing framework by incorporating current energy efficient

algorithms in this dissertation and new secure and private techniques.
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