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CHAPTER 1

INTRODUCTION

This chapter presents a brief background of the cotton plant and Mississippi cotton
production through the years, cotton water requirements, a general problem statement,

research objectives and the organization of the remainder of research.

Background

Cotton is a major cash crop grown on large scales across the world. The major
cotton producers are China, India, and the United States, respectively. China uses almost
all of the cotton it produces domestically, and the United States has been the largest
exporter for many years. Mississippi and Georgia are the largest cotton producing states
in the mid-south and south-east regions of the United States.

As an important agricultural cash crop, cotton generates income and serves as a
source of employment throughout its production process. Universally, the lint is used as a
textile raw material and the cotton seed is the second most important source of vegetable
oil. The cotton seed cake is a rich source of quality protein for incorporation in animal
feeds. Also the waste after ginning is used for products such as paper and cardboard
(Freeland et al, 2006).

Cotton is a tropical plant with an indeterminate growth habit and extreme
sensitivity to adverse environmental conditions. According to the National Cotton

Council (2012), cotton requires a growing season of 150 and 180 days. Cotton production
1



begins with germination and emergence as the first stage, seedling establishment as the
second stage, leaf area and canopy development as the third, flowering and boll
development as the fourth stage and maturation as the last stage of the cycle. (National
Cotton Council of America, 2012).

Over the years, the cotton plant has been genetically modified to improve its
resistance to pests and diseases and to exhibit better resistance to weed control. However,
the cotton plant’s ability to withstand the scarcity and untimely availability of
precipitation has not received much attention as research in this area is challenging due to
changing climates. Generally, it is difficult to factor the amount and timing of
precipitation as farmers’ control over inputs do not extend to weather variables because
the amount and distribution of water from precipitation is random each year.

Recent climate change evidence and predictions show increasing temperatures,
drought frequency, and shifting rainfall patterns. As indicated in the proceedings of the
Intergovernmental Panel on Climate Change (IPCC, 2000), the combination of increasing
temperature and shifting rainfall amounts and patterns has the potential to negatively
impact agriculture. Climatic variables such as temperature and precipitation in
appropriate amounts and timing positively influence the yield of cotton. However,
empirical results (Freeland et. al., 2010) show that extremely high temperatures and
excessive precipitation during sensitive growth stages (e.g., germination, fruiting,
maturation, harvesting) cause decreases in the quality and quantity of yield (National

Cotton Council of America, 2012).



Problem Statement

Cotton is one of the major row crops produced in the US, and historically it has
been an important component of the Mississippi agricultural economy. Mississippi is
among the top five cotton producing states in the nation. The highest yield was recorded
in 1997 at 901 pounds of lint per acre and the lowest yield per acre occurred in 1866 at 86
pounds of lint per acre. The highest recorded acreage occurred in 1930 with 4,136,000
acres and lowest recorded acreage occurred in 1982 at 680,000 acres. The highest
production occurred in 1937 at 2,692,000 bales and the lowest production occurred in
1866 at 320,000 bales. Despite previous production trends, Mississippi cotton production
has seen a decline in recent years due to economic forces and changing climate
conditions. According to Mississippi cotton and corn statistics compiled, for land that
was planted cotton in 2006, 31.5 percent was planted to corn in 2007 and 10.3 percent
was planted to corn between 2007 and 2008. More recently, total cotton production in
2011 was 1,200,000 bales, but this amount declines in 2012 with a production of
993,000.

Current research on the effects of climate change on cotton production typically
focuses on the effect of some aggregated measure of precipitation. Gwimbi and Mundoga
(2010) measured the impact of climate change for the entire growing season of cotton and
found that cotton production levels declined as precipitation decreased and temperature
increased. They further noted that although other factors such as soil fertility and farm
management practices had an important influence on agriculture, climate remained the
dominant factor influencing cotton production. AbdelGadir et al. (2012) investigated
irrigation effects on cotton yield and found that irrigation significantly increased seed

3



cotton yield in seasons with inadequate rainfall. However, the effect of climate change on
cotton yields may not only depend on total precipitation, but the precipitation occurring
during specific growth stages (i.e., germination, fruiting, and maturation). In this regard,
only a few studies (Parvin et al., 2005; Williford et al., 1995) have focused on the

relationship between the effects of early- and late-season precipitation on cotton yields.

Cotton Water Requirement

Cotton requires between 550 mm and 950 mm (22 to 37 in.) of precipitation
during the season in a consistent and regular pattern (Doorenbos et al., 1984). However,
untimely rainfall and/or irrigation as well as humid weather during the latter stages of
cotton growth, primarily once the bolls begin to open, may complicate defoliation, reduce
yield and quality, lower the crop’s ginning properties, or promote the attack of insect
pests and disease organisms such as boll rot (Freeland et al., 2004; Williford, 1992; Boyd
et al., 2004). Once the boll has opened, exposure of cotton lint to the environment causes
withering, and the fibers can become stained, spotted, dark, and dull (Freeland et al.,
20006).

Of particular interest is the effect of rainfall during harvest. According to Riley
(1961), excessive rain generates poor harvest conditions as mechanical equipment
becomes inoperative when soils are water-logged. If rain persists, maturity may be
delayed until the plants are caught by frost. In addition, excessive rain may generate
periods of high humidity, which can in turn greatly reduce the quality of the cotton if it is
picked while wet. Parvin et al. (2005) found that an additional centimeter of accumulated
rainfall during harvest reduced yields by 0.10 kg, and Williford et al. (1995) found that

each successive rain event during harvest also caused a reduction in yield.
4



Studies linking weather to yield outcomes may either be done through agronomy-
based-simulation models, reduced-form regression analysis, and/or reduced-form natural
experiments (Schlenker and Roberts 2006; 2009a). The reduced-form natural experiment
is the preferred approach as it combines the strengths of the reduced-form approach with
those of crop-simulation models (Schlenker and Roberts 2006; 2009a). Modeling
approaches for yield distributions may either be parametric, semi-parametric and/or
nonparametric. Tack et al. (2012) asserts that in modeling yield variability in response to
climate change, two main lines of research have been employed. The first combines
stochastic weather generators as in agricultural crop models to simulate effects on the
mean and variability of crop yields (e.g., Wang et al., 2011; Wilks, 1992), while the
second relies on historical data to identify the effects of weather variables within a
regression-based framework (e.g., Adams et al., 2001; Boubacar, 2010; Schlenker and
Roberts, 2009a).

As noted earlier, research focusing on the effects of changing climate on cotton
production has typically focused on the effect of aggregate intra-annual precipitation and
temperature variables. Even if the underlying raw data contains observations at a more
disaggregate level (i.e., daily/weekly/monthly), in practice they are aggregated up to an
annual measure to match the observation-level of yields. This approach is potentially
limiting as it artificially smooths over intra-season weather events and patterns that could
have large production effects. While there are other likely intra-season events that have
appreciable production effects, this research focuses on the effects of early- versus late-
season precipitation. This distinction is important as heavy rains occurring near

anticipated harvest dates might cause substantial reductions in realized yields.

5



Objectives

The general objective of this research is to use regression analysis to estimate the

effect of late season precipitation on Mississippi cotton yield distributions. The specific

objectives of this research are the following:

1.

Similar to previous studies, we are interested in looking at the mean and
the variance yield impacts. Additionally, we explore downside and upside
risk impact given the increasing interest in agricultural risk and its
associated insurance policies. We define downside risk impact as the
probability of a negative outcome below the mean and upside risk as the
probability of a positive outcome above the mean.

We utilize estimated impacts from (1) to calculate yield densities for
average drought and wet climates and compare drought and wet climate to
the average climate. While average climate captures the average
precipitation, drought climate captures low late-season precipitation
outcomes and wet climate captures high late-season precipitation
outcomes.

We utilize current cotton price data to convert yield impacts into revenue

impact for major cotton producing counties in Mississippi.

This research is relevant because our empirical findings will provide producers

and policy makers with a better understanding of the relationship between production and

climate. In addition, the proposed regression approach will provide a scientific

framework for developing climate change forecasts that take into account the timing of

precipitation events under different climatic scenarios.

6



Organization of Study

The remainder of this research is organized as follows. Chapter two reviews the
literature, chapter three presents the empirical model and describes the yield and climate

data, chapter four reports the empirical results, and chapter five concludes.



CHAPTER II

LITERATURE REVIEW

This section discusses previous research relevant to the study under three main
categories. The first part discusses yield distributions as a result of uncertainties in
weather variables. The second part discusses the choice of a specific regression
specification. The third part discusses how the regression framework can be used to infer

yield distributions.

Yield Distribution

The need for proper modeling of yield distributions stems in part from the
dramatic growth in participation by farmers in the US crop insurance program and the
introduction of a broad range of new crop insurance products after the enactment of the
2000 Agricultural Risk Protection Act (Goodwin et al., 2004; Glauber 2004).

Tack et al. (2012) posited that in modeling yield variability in response to climate
change, two main lines of research have been employed. First, the use of stochastic
weather generators to obtain climate scenarios with different variability characteristics
and agricultural crop models to simulate effects on the mean and variability of crop
yields. Research of this type includes Mearns et al. (1992, 1996, 1997), Wilks (1992),
Barrow and Semenov (1995), Bindi et al. (1996), Peiris et al. (1996), Phillips et al.

(1996), Riha et al. (1996), Semenov et al. (1996), Wolf et al. (1996), Olesen and Bindi



(2002), Torriani et al. (2007), Xiong et al. (2009), Kapphan et al. (2011), and Wang et al.
(2011) among others. One of the main findings of this line of research is that changes in
weather variables affect both the mean and variability of crop yields, with the magnitude
of the effect depending on the crop and location used in the study (Tack et al., 2012). As
noted in Schlenker and Roberts (2006, 2009), the drawback of these simulation-based
models is that they do not take into account the adaptive behavior of producers.
Specifically, this process requires the use of large numbers of parameters, making
estimations complex; and considers farmers’ production systems and nutrient
applications as exogenous variables; The second line of research is the use of the
regression-based framework (e.g. Adams et al., 2001; Chen et al., 2004; McCarl et al.,
2008; Boubacar, 2010), which utilizes historical data to identify the effects of weather
variables on the mean and variability of yield (Tack et al, 2012).

Empirical studies also present alternative modeling assumptions for crop yield
distributions. Gallagher (1987) utilized the gamma distribution, and Moss and
Shonkwiler (1993), the inverse hyperbolic sine transformation. Others have used the beta
distribution (e.g., Nelson and Preckel 1989; Tirupattur, Hauser, and Chaherli 1996), the
log-normal distribution (e.g., Stokes 2000; Sherrick et al. 2004), the hyperbolic tangent
function transformation (e.g., Taylor 1990), the inverse hyperbolic sine transformation
(e.g., Moss and Shonkwiler 1993; Ramirez, Moss and Boggess 1994; Ramirez 1997, and
Wang et al. 1998), and the Wiebull distribution (Chen and Miranda 2004). Goodwin and
Ker (1998) demonstrated the usefulness of non-parametric models.

They used the nonparametric density estimation approach to evaluate county-

level crop yield distributions. They argued in their study that the nonparametric
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technique, unlike conventional parametric techniques, does not assume a particular
known functional form. They opined that using adequate data, nonparametric estimates
can be improved for insurance purposes. Ker and Coble (2003) developed a semi-
parametric approach.

Sherrick et al. (2004) considered several alternative parametric yield
specifications that have been suggested as candidates by previous works or based on
empirical evidence. For their research, they utilized farm-level data for corn and soybeans
that span a period of 27 years. They estimated five distributions (i.e., normal, lognormal,
logistic, beta, and Weibull,), which formed the basis for comparisons of the economic
impacts across various distributions. The estimated yield distributions were ranked and
compared based on goodness-of-fit tests, and they found the beta and Weibull
distributions provided the best fit for their sample data.

Distributional assumption of normality of yield distributions has been a long-
standing issue among previous studies (e.g., Day, 1965; Harri et al, 2008; Taylor, 1990;
Ramirez, 1997). While some researchers have reported negative skewness for certain
crops, others also reported positive skewness for these same crops. Day (1965), a major
proponent of nonnormality, used yield distributions from a controlled experiment with
seven different fertilizer levels for Mississippi cotton, corn and oats. His data spans from
1921 to 1957 for cotton and corn and from 1928 to 1957 for oats. He found significant
positive skewness for cotton, significant negative skewness for oats and no significant
skewness for corn. However, as reported in Just and Weninger (1999), Taylor (1990)
estimated multivariate nonnormal probability distributions by fitting hyperbolic tangent

transformations of normal varieties and using Pearson, Geary and Wike-Shapiro tests for
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normality. He reports significant skewness for corn, soybean and wheat yields from
1945-1987 in Macoupin County, Illinois. Hence no consensus has been established as to
the best approach to estimate yield distributions.

Just and Weninger (1999), using a single omnibus test for region-wide and farm
specific yield data, reassessed the evidence for nonnormality of yield research using the
same data as previous studies. They argued that these studies falsely rejected normality of
crop yield data and reported that previous empirical literature did not provide enough
evidence to conclude nonnormality of yield distribution since the data and analysis were
plagued with the misspecification of the nonrandom components of the yield distribution,
misreporting of statistical significance and the use of aggregate time series data to
represent farmland yield distributions. For instance, using the same data as used by
Gallagher (1987), who analyzed U.S soybean yield from 1941-1948 and accounted for
soybean variability by correcting yield model for heteroskedasticity and variation in
deterministic component, concluded a non-rejection of normality.

Harri et al., (2009) ascertained the validity of nonnormality of yield distribution,
using the R-test and multivariate test for normality on 3852 crop/county combinations of
corn, cotton, soybean and wheat. The authors reported that normality rejection rates differ
in previous studies by as much as 15% depending on the trend specification. They further
concluded that a high percentage of county yield data in the Corn Belt region for corn and
wheat appeared to be nonnormally distributed but less so for soybeans and cotton. As
reported, results for cotton show that for the majority of the counties, normality could not

be rejected.
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According to Coble and Barnett (2008), the effect of climate change on yield risk
is much less clear from relatively few studies that provide quantified results. Earlier
research asserted that late-season rainfall seemed to result in a greater yield reduction
than the same amount of rainfall during the early season. Williford et al. (1995) examined
replicated weekly harvest treatments for reductions in yield and quality during 1991,
1992, and 1993 from research plots at Stoneville, Mississippi. He argues that cotton yield
varied considerably by years as yields were 1528, 1110 and 909kg of lint per hectare for
the 3 years, respectively. The three-year period provided different environments that were
reflected in production. The authors estimated different intercepts for the yield for
effective comparisons. Employing regression analysis, they showed a negative
relationship between crop yield and harvest rainfall.

Similarly, Parvin et al., (1990) collected hand-harvested data on the relationship
between yield and growing period for commercial cotton at 22 locations in the Delta area
of Mississippi. They hypothesized that decreases in yield could be explained by increases
in time and rainfall. Using regression analysis and because there could be problems of
multicollinearity (the correlation between rainfall and trend since their data were time
series data), several models were run to ascertain this. Results indicated a correlation
between rainfall and time. They concluded a negative relationship between crop yield and
harvest rainfall. This is in line with the conclusions of Crowther (1925) and Crowther
(1933) who over a period of 23 years showed a relationship between seasonal yield and
weather for cotton grown under irrigation in the Sudan Gezira. They concluded cotton
yields were negatively correlated with the amount of early-May and June rainfall.

Increase in total rainfall during the period of cotton cultivation resulted in a decline in
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yield at the oldest trial farm. Cotton yields were also negatively correlated with late
rainfall and rainfall in the preceding year.

Chen et al. (2004) investigated how changes in climate result in yield variability
of crops such as sorghum, soybeans, wheat, corn and cotton. Their results showed that an
increase in rainfall decreases the variability of cotton and corn yields. Higher
temperatures decrease the variance of cotton and sorghum yields.

Tack et al, (2012) linked weather and irrigation variables in a moment based
maximum entropy framework to trace the shape of yield distribution based on higher
moments, considering the case of Arkansas, Mississippi, and Texas upland cotton yields.
Their results suggested that high temperature and lack of irrigation concentrated yield
outcomes toward the lower tail of the distribution. They further explained that high
temperature is mean enhancing for all counties under study, variance enhancing for three
of the six counties and generates more positively skewed distributions for all but one of
the counties while lack of irrigation is mean enhancing for all counties under study and
variance enhancing for four of the six counties. The lower tail distribution subsequently
has significant implications for price variability, risk management, and crop insurance

(Tack et al., 2012).

Production Function Specification

Empirical studies (e.g., Just and Pope, 1977, 1979; Antle, 1983, 2010) indicate
that it is not enough to consider risk analysis (effect of weather on yield) under
uncertainty of production on the mean effect of inputs on output. This posit is a result of
the limitations of a previous stochastic production function specification and how it

affects coefficient estimates of variance and other higher moments and consequently how
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ineffectively these models capture risk. They argued that for instance, when one
considers “overcapitalization” in grain harvesting, the use of large harvesting equipment
as opposed to small equipment usually leads to less variability of output as a result of
random weather conditions that can destroy a ripe crop before harvest (Just and Pope
1979). Thus in such instances increased input use results in a reduction in variability of

output.

Just and Pope (1977, 1979) argued that a useful production function for such
studies should possess sufficient flexibility so that the effect of input on the deterministic
component of production is different from the effect on the stochastic component. Unlike

the conventional production function specification

y — A(ﬁXiai)eg
i-1 , (2.1)

where y is output, X ,is a factor input (X > 0) and ¢ is a stochastic disturbance with

E(¢)=0and V(&) >0 where E denotes expectations operator and V' denotes variance, a
production function when explicitly written should be of the form
y=f(X)+h(X)e ,E()=0 V(e)=1 (2.2)
By this specification, the presence of, #(X) which is a function of input, when

expressed in its additive form “perturbs the effects of the disturbance in such a way that
relationships of inputs with risk are not determined solely by the relationships of inputs
with expected output” Just and Pope (1979). Therefore, the expectation and variance of
E(y)=f(X) and V(y)=h(X) respectively implies independent effect on mean and

variance of output.
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Several studies (e.g., Antle (1983, 2010); Nelson and Preckel (1989); Tack et al
2012) have conditioned moments on weather, irrigation and technological change. Unlike
the conventional production function approach to modeling crop yield, which involves
parameterizing a deterministic production function and appending an error term to it, the
moment based approach begins with a general parameterization of the moment of the
probability distribution of output. More flexible representations of output distributions
can be obtained using the moment based approach. Antle (1983) outlines motivations for
the choice of a moment based model over the conventional method, and I follow the
author’s discussions here.

1. Unlike the conventional estimation of only the mean output as a function
of input, the probability distribution of output is a unique function of its
moment, thus the moment based approach allows an establishment of the
relationship between input and these moments.

2. Using a flexible moment based approach for testing the stochastic
structure of production Antle (1983) shows that the conventional
econometric models that are based on ad hoc appending of additive or
multiplicative random error terms to a deterministic production function
are not adequate representations of the probability distribution due to the
imposition of arbitrary restrictions on the moment of the output. Just and
Pope (1978) and Kramer (1979) have shown error misspecification to have
economic implications since conventional production function models do

not permit testing of restrictions.
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3. Thirdly, empirical evidence from Day (1965), Anderson (1973),
Roumasset (1976), Just and Pope (1979), Nikiphoroff 1981, Antle and
Goodger (1982) indicates that the second, third and fourth moments of
output may be functions of inputs and these relationships should be
accounted for in the theory of decision making under uncertainty.
Empirical evidence indicates a firm’s behavior under production uncertainty can
therefore always be defined in terms of the moments of the probability distribution of
output. Antle (1983) opined that to minimize the arbitrary restrictions when using the
conventional stochastic function, the moment based approach begins with a general

representation of the moment functions that describe a stochastic technology.

Linking Moments to Distributions

After obtaining the moments of yield distributions, one can use the estimated
moments to infer distributions using the following approaches. The first approach
involves making a distributional assumption and Antle (1983, 2010) model along these
lines. The second approach employs the use of Moment Based Maximum Entropy
framework and a study employing this method includes Tack et al, (2012). In the
Moment Based Maximum Entropy approach, estimated predicted moments are used in a
maximum entropy framework after assuming a particular distribution to generate
densities. The advantage this approach has over conventional methods of estimating
densities is its ability to predict the entire yield density when the only information

available is predicted moments.
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Yield Price and Revenue

Farmers are vulnerable to many possibilities that influence the risk exposure of
their activities. Although they have control over some of their inputs (cultivar type), their
inability to control weather is a major challenge to their operations as weather forms an
integral part of the inputs used for crop production. Empirical studies indicate that wide
swings in the farm revenue can result from variances of weather, yields and prices.

Studies relating yield outcomes to weather variables have established that recent
changes in the weather (precipitation, temperature) tend to increase the risk associated
with farming activities. A farmer’s revenue is dependent on yield and price, and

knowledge of yield cannot be isolated from weather.
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CHAPTER III

EMPIRICAL MODEL

This chapter presents the econometric model and framework employed for the
research. The empirical model used extends the linear moment modeling approaches of
Antle (1983, 2010) and utilizes cotton weather data of Schlenker and Roberts (2006,
2009a) combined with a normal distributional assumption. However, to relax the
symmetry assumption, the lognormal distributional assumption is also utilized to generate

densities.

Linear Moment Model Approach

The Linear Moment Model (LMM) framework is a data based estimation
technique attributed to Antle (1983). The moments of the yield distribution are expressed
as parameterized functions of weather variables, and the parameters are empirically
identified using historical data. The estimated parameters are then used to predict the
moments under alternative climate scenarios, which can then be used to estimate yield
densities under the assumption of normality.

Antle (1983) considers a multiplicative error model that has the advantage of
being transformed into an additive error model by taking its natural logarithm.
Expressing moments as parameterized functions of inputs, this model is of the functional

form
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O =m(x, f)e" 3.1)
where O denotes the output, x =(x,,...,x,) as a vector of inputs, 8 is a parameter vector

and u is a random variable. Using equation 3.1 above, the expectations of the mean and

variance are given as

4, =E[Q]=m(x,B)Ele"] (3.2)

= E[Q=EQ)] =m(x.p)" Ele" ~ E(e")Y (3.3)

Similarly by the above equations the general ith centered moment about the mean is

expressed as

#,=E[Q-E(©Q)] =m(x, p) Ele" ~ E(")] (34
implying that mean and other higher moments of the probability distribution of output are
functions of inputs through the function m(x, ,3) .

Following and extending the stochastic production function discussed in Antle
(1983) and Schlenker and Roberts (2006, 2009a), this research expresses yield in period ¢
as a parameterized function of the conditioning weather variables and a random error

term. The moment model is of the form

yv=r(x,p)+e,
In(;) = f(x,,5,) + &, (3.5)

where y, denotes yield, x, denotes a vector of weather variables and &, and ¢,, denote

random error terms. Under the assumptions E(s,, | x,) = E(&,, | x,) =0, 3.5 implies
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E(y,|x)=f(x5)

2 1B (3.6)
E((yt_E(ytlxt) |xt)=e ZYZE‘(eg22 |xz)
as conditional mean and conditional variance respectively. The above equation (3.6)

indicates that for the different moment’s equation the parameter vector £, is different,

avoiding the imposition of arbitrary restrictions across equations.

As discussed in Tack et al (2012), Maximum Entropy provides a rationale for
generating densities from a set of moments. They opine that maximum entropy is flexible
for approximating densities as it nests a whole family of generalized exponential
distributions including the exponential, pareto, normal, lognormal, gamma and beta
distribution as special cases (Jaynes 1982). Therefore, utilizing the parameters in the
equation (3.8) we establish a relationship of weather variables, irrigation and
technological change with the mean and variance of the yield distribution. They further
argue that “the ability to predict moments under different climatic conditions does not in
and of itself allow us to measure the effect of these climatic conditions on the entire
distribution of yield outcome”. This condition as asserted by Shohat and Tamarkin (1943)
is termed the moment problem and occurs when a finite set of moments is unable to
determine the entire density.

This shortcoming can be improved using the maximum entropy concept (Stohs,
2003; Tack et al, 2012). According to Jaynes (1982), the maximum entropy (MAXENT)
distribution is “uniquely determined as the one which is maximally noncommittal with
regards to missing information and it agrees with what is known but expresses maximum
uncertainty with respect to all other matters”. The normal distribution is the maximum

entropy distribution under the assumption that the mean and variance are sufficient
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statistics for the distribution. In the empirical application, we maintain that this is the case

but also evaluate the robustness of the findings when log normality is maintained.

Modeling Conditional Normal Moments

The normal distribution is a continuous probability distribution and is

characterized by the first and second moments £, = F [Y | X ] ando, = E [(Y -1’ X ]

To generate predicted values for these moments under alternative climate scenarios, this
research extends equation (3.7) and utilizes the regression models

Vi = By + Blow, + Bymed,, + B;high, + p,eprecip, + fslprecip,
+ pirr low, + Biirr,med,, + Biirr, high, + Pytrend,, + &,

it?

i=1,..,N,t=1,.,T (3.7)

2 . . .
In £ = B+ Blow, + B,med, + B high, + B,eprecip, + Bilprecip,
+ Birr,low, + Birr,med,, + Biirr, high, + Bjtrend,, +¢,,,

izl,...,N,tzl,...,T (38)
where the dependent variable y, is the yield for county ; in period ¢, f,, is a county-by-

equation fixed effect and In slz_t denotes the squared errors of equation 3.8. Research

includes the same low, medium and high temperature variables as in Schlenker and
Roberts (2009a) and Tack el al. (2012), which capture the intensity of exposure to
particular temperature intervals during the growing season. We include a dummy variable
for irrigation to control for the most important source of intra-county production
heterogeneity and also include interactions with the temperature variables to allow
temperature effects to vary across dryland and irrigated acreage. A trend is estimated to

account for technological change over time. Departing from Schlenker and Roberts
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(2009a) and Tack et al. (2012), I split precipitation into eprecip, and Iprecip, to

differentiate the effect of early- versus late-season precipitation.

Conditional Normal Densities

Estimating the normal densities involves the following steps. First, using the
above equations (3.8), where yield is regressed on precipitation variables while

controlling for temperature, irrigation and technological change over time, we obtain

parameter estimates P, and residuals. The square of the residuals from the first regression

estimation is taken and its natural logarithm estimated. The second step involves
regressing the natural logarithm of the squared residuals from step 1 on the same

explanatory variables while still controlling for irrigation and technological change over

time as depicted in equation 3.9 to obtainB, . B, and B, can then be used to predict the

conditional mean and variance of the normal distribution.

This moments-model approach thus provides a mechanism by which weather,
irrigation, and technological change affect moments of the crop yield distribution. Using
the data discussed in the following section, we consistently estimated these moments
using ordinary least squares with standard errors clustered at the county level. The

conditional density of a normal distribution is given as

1
SO lxuo)=
o\2r G9)
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2 .. . . . .
where ¢ and o° are the conditional mean and variance respectively. Thus given estimates

A

of these parameters x and o, densities can be estimated using

| oy
Flxpu,0)=1— exp 27 ¢,
o271

(3.10)

Conditional Lognormal Densities

Since symmetry is imposed for a normal distribution automatically, we relax this
assumption by assuming a lognormal distribution. The conditional density of a lognormal

distribution is given as

_0'5[ (Iny—p, )JZ

On

1
TV %5 p,00) =3 ———exp :
I 1m0l o, r
(3.11)

where p,, is the location parameter and o, is the scale parameter. In general, if Y is
distributed lognormal, LN (4,,,o.) then it can be defined by the transformation InY=X
where X is distributed N(u,, o) . This transformation implies that the lognormal
parameters can be written as a function of normal parameters,

2
My, =1np, —%Gﬁl and o, = ln(1+o-—’zv)

Hy (3.12)
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These equations imply that parameter estimates from the previous subsection

A

1y and o, can be used to estimate the lognormal parameters £, and o, . This in turn

allows one to estimate the conditional lognormal densities using

) 0.5

A A 1
S5ty Ow) =4 —F——=exp

yowN2rx

. 2
(Iny—pa, )J

Gln

(3.13)

The data used for these estimations are discussed in the subsection that follows.

Data Source

Research used a panel of county level upland cotton yield data from 1972 to 2005;
however, I restrict my attention to the 11 counties located in Mississippi with 612
observations. The yield data were obtained from the National Agricultural Statistics
Service, and yield is defined as production divided by planted acreage. This measure
rather than production divided by harvested acres allows us to better capture the effect of
weather outcomes. The relatively short span of yield data is because NASS began
distinguishing between irrigated and dryland yields in 1972. This distinction is crucial for
the identification of precipitation effects, as the impact of an additional unit of naturally
occurring rain likely differs across these production practices.

This research utilizes the same temperature data as in Schlenker and Roberts
(2009a) and Tack et al (2012), which is constructed as degree days and distinguishes
between low, medium, and high temperature intervals. The weather data spans 1950-2005
and 1s based on the rectangular grid system underling PRISM that covers the contiguous

United States. The data contains daily temperature and precipitation information, which
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is crucial for distinguishing between early- and late-season conditions. A distribution of
temperatures is constructed within each day, using a sinusoidal curve between minimum
and maximum temperatures, which permits estimation of the time in each 1 °C
temperature interval between -5 °C and 50 °C. The area-weighted average time at each
degree over all PRISM grid cells within a county is constructed, which are then summed
over the six month active cotton growing period from May to October

Low temperature is constructed as the number of degree days between 0°C and
15°C, medium temperature is constructed in the same way but with bounds 15°C and
31°C, and high temperature measures degree days above 32°C. Schlenker and Roberts
(2009a) found out that depending on the crop, yield growth increases gradually with
temperature up to 29-32°C but decreases sharply for all three crops used for the study.
Critical threshold temperatures were 29°C, 30°C and 32°C for corn, soybeans and cotton
respectively. Tack et al. (2012), utilizing the same temperature data, found that exposure
to low and medium temperature have relatively minor effects on mean yields compared
to temperatures above 32°C.

The total amount of water applied to an acre of cotton consists of naturally
occurring precipitation when considering non-irrigated dryland production systems and
both farmer-controlled irrigation plus precipitation when considering irrigated systems.
However, the actual amount of water applied via irrigation is typically unobservable, so
we focus here on the effect of precipitation and allow this effect to vary across dryland
and irrigated acreage as in Tack et al. (2012).

To allow for different effects across early- versus late-season precipitation during

the May-October growing season, this study utilizes the underlying daily precipitation
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data to construct three measures of precipitation. Specifically for the first option, the
early measure aggregates the daily records through the first five months of the growing
season thus May through September, while the late measure sums the daily records over
the final month of October. In the second precipitation measure, early precipitation is
divided into two sub-seasons. Here early measure aggregates the daily records from May
through June and mid precipitation measure as July to October. This research maintains
late measure as the sum of the daily records over the final month of October.

Although empirical results (Crowther, 1925) show a negative correlation between
yield and the preceding year’s rainfall, recent studies have not given much attention to
the isolation of the amount of moisture existing in the soil prior to the start of a new crop
production season. Importantly, since irrigation systems are not utilized prior to planting,
the amount of soil moisture is reasonable measured by precipitation. Thus the third
measure of precipitation considers the following demarcations: the amount of
precipitation prior to planting, which comprises aggregated daily precipitation records for
the month of April and amount of precipitation during the season, which is aggregated
daily precipitation records from May through October.

State level cotton prices were also obtained from NASS. Although yield data used
for the studies spans 33 years, price data obtained from NASS and used to examine the
impact of drought and wet climate on a farmer’s revenue span 7 years (2005-2012). The
relatively short span of price data used in this analysis is a result of recent declination of
cotton production although yield keeps increasing. Plots for cotton production have been
allotted for corn and other agricultural crops production. For effective analysis with the

yield data measured in 10Ib units, the price data used were of the same units.
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CHAPTER IV

RESULTS AND DISCUSSIONS

This chapter presents and discusses the empirical results of the research. The first
subsection presents summary statistics of the data; the second subsection presents and
discusses the estimation of moments used for generating densities; the third subsection is
devoted to the discussion of results of the effect of drought and wet climates on these
densities. The last subsection discusses how current cotton prices are used to convert

yield impact into revenue impacts.

Descriptive Statistics of Data

Descriptive statistics for the county-level yield data obtained from NASS are
presented in Table 4.1. The data contains 612 total observations spanning 11 counties and
33 years. Four of these counties (Coahoma Holmes, Humphreys and Yazoo) only report
dryland acreage, while the remaining seven counties (Bolivar, Leflore, Quitman,
Sunflower, Tallahatchie, Tunica and Washington) report irrigated acreage. Overall,
observations for irrigated acreage account for 38.9 percent of all observations and the

remaining 61.1 percent account for dryland acreage of all observations.
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Table 4.1  Summary statistics of dataset

. Sample . #of
Variable Name Mean(s.d) Min Max Obs
Yield (101b.units per acre) 73.93(18.59)  23.19 122.40 612
Low Temperature (degree days) 2694.2(21.64) 2611.78 2742.17 612

Medium Temperature (degree days)  1676.60(115.33) 1343.84 2041.65 612

High Temperature (degree days) 290.58(18.82)  4.18 94.01 612
Early Precipitation (centimeters) 50.55(13.72)  25.05 106.85 612
Late Precipitation (centimeters) 9.33(6.23) 005 32.54 612
Irrigation (Yes=1) 0.39(0.49) 0 1 612

Notes: Values reported for temperature and precipitation variables correspond to the May through October
growing season. Low temperature measures degree days between 0C and 14C; medium temperature
measures degree days between 15C and 31C; and high temperature measures degree days above 32C

The normalized measure of dispersion of a probability distribution is called the
coefficient of variation (CV) and is derived as a ratio of the standard deviation to the non-
zero mean and may be expressed in percentages. From table 4.1, the coefficient of
variation of the county yield data used for the study is approximately 25 percent. The
early precipitation variable records a CV of approximately 27 percent and late
precipitation variable records approximately 67 percent as coefficient of variation. It is
interesting to note from the table the variable late precipitation is more variable than early
precipitation and yield when their coefficient of variation is used as criteria for making

analysis.
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Estimation of Moments and Densities

This study first utilizes the historical data to estimate the parameters of equation
(3.8). Given these estimates ﬁl and ﬁz , we predict the conditional mean and variance for
each county ; according to

El(y, | 0)]=pX,
o 0=px, @
E[((y; = E[(y; [ 0)" [ 0)] = B X,
where the regressors are held at their average sample values within each county, X, .

This study considers dryland (ir» set to 0) and irrigated (ir» set to 1) production

separately, thus there are a total of 44 predicted moments corresponding to “average

climate”, four for each county. Denote these as 4, ando;, where a denotes average

climate and k£ =0,1 denotes dryland and irrigated acreage respectively. For each county,

we then solve for the associated lognormal parameters. These in turn generated the

associated conditional densities fj,f = f(»; ,uAfZ , J:i ).

To evaluate the effect of late season precipitation on yields, we construct densities
for both “drought” and “wet” climates. These alternative climates are defined in exactly
the same way as in the average climate scenario, except that the late precipitation variable
is held at a different value. Within each county, we use the historical late precipitation
data to identify the p” percentiles of the empirical distribution. To generate yield

densities across a range of late season precipitation values, we hold the late precipitation

variable at the pth percentile for p € {1, 5,10,15,85,90, 95,99} , and then estimate the

A A A

corresponding parameters z; and o and densities f;
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For each density, we calculate the mean, variance, downside risk, and upside risk

according to

A

mean]] = [ yf (v 1}, o5y, (4.2)
0

A

varf = [ (y—mean?)’ f (y; 1}, 0} dy,

4.3)
dsidel, = | f(v; u,00)d,
] (4.4)
uside!, =1— _[ S (3 > 0 )y
o 4.5)

for each county — irrigation combination ik and late-season percentile

pE {1,5, 10,15,85,90,95, 99} . This study uses a fairly simplistic measure of downside and
upside risk, the probability of an outcome below z, for the former and the probability of

an outcome above z, for the latter. For the results presented here, we set z, to 10 percent

below the mean under average climate and z, to 10 percent above. We measure the

impact of the drought and wet climates on the percentage change in the mean, variance,
upside and downside risk by measuring the percentage change relative to average

climate.

Normal and Lognormal Results

This subsection discusses generated densities, yield and revenue impacts as
influenced by average, drought and wet climates. Results presented comprise the three

different measures for precipitation discussed earlier and referred to as Models 1, 2 and 3.
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For each model, the study considers densities followed by yield impacts and then revenue

impacts for normal distribution and subsequently lognormal distribution.

Model 1 results under normality

In the first model, precipitation variables included in regression equations are
early and late precipitation. Early precipitation aggregates daily precipitation records
from May through September and late precipitation captures the last month, October.
Following the empirical method, research generates densities and discusses results across
counties used in the study.

Figures 4.1 — 4.11 present normal density distributions for model 1. Normal
densities presented hold late precipitation variable for drought climate at the 1% percentile
(most severe drought) and wet climate at 99" percentile (most severe moisture). From the
densities, we observe there is not much difference in the means of the average, drought
and wet climate distributions. In general, the figures qualitatively suggest that drought
generates a slight reduction in the mean and variance, while excessive rainfall is
associated with a slight increase in mean and a rather large increase in variance. Tables

4.2 - 4.9 quantify the qualitative impact from figures 4.1- 4.11.
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Figure 4.3  Trrigated and dryland yield distribution for Holmes, (model 1)
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Figure 4.4  Trrigated and dryland normal yield distribution for Humphrey, (model 1)
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M1 Sunflower, Dryland

.06 .08+
.06
2,04 =
(2] (2]
C c
[ [
o 204
] (]
£ £
2.02 =
02
0 0
T T T T T T T T T T
0 50 100 150 200 0 50 100 150 200
Cotton Yield,10Ibunits Cotton Yield,10Ibunits
Avgprecip Wetprecip Avgprecip Wetprecip
Droughtprecip Droughtprecip

Figure 4.7  Trrigated and dryland normal yield distribution for Sunflower, (model 1)
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Figure 4.8  Trrigated and dryland normal yield distribution for Tallahatchie, (model 1)
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Figure 4.11 Irrigated and dryland normal yield distribution for Yazoo, (model 1)

Yield impact
Research also considers the impact of drought and wet climates on the mean,
variance, upside and downside risk. Drought impact is constructed as
100 x [ F"¢" (v, )= F™ ¢ (y:)]/ F“*(y;) while wet impact is constructed as

100X [F" (y;)— F"* (y,)]/ F"“**(y;) . This research considers drought and wet

impact for a range of late precipitation variables and reports results in Tables 4.2 — 4.21
below. For each table, I discuss average results associated with drought and wet climate.
From table 4.2, the acreage weighted average of the drought climate county level impact
on mean (variance) yields are -1.63% (-47.52%) and -1.27 % (-47.72%) for dryland
acreage and irrigated acreage respectively. Interestingly, severe late-season drought does

not have a major impact on mean yields, but the variance surrounding this effect has
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narrowed substantially. The results suggest that irrigation provides some protection
against the mean yield effect but the variance effect is equivalent across production
methods. This research defines upside and downside risk as the probability of an outcome
from the upper and lower tail of the distribution. The acreage weighted average of the
drought climate county level impact on upside risk (downside risk) yields are -11.91 % (-
39.53%) for dryland and -18.42 % (-43.25%) for irrigated acreage. Thus severe drought
is associated with a large reduction in variance, and this reduction is spread
disproportionately across upside and downside risk. On the other hand, the acreage
weighted average of wet climate impact on the mean (variance) yields are 3.77%
(333.94%) and 2.82 % (344.21%) while impact on upside risk (downside risk) yields are
24.96% (57.91%) and 36.91% (66.87%). Thus, a small increment in the means and a
rather large increment in the variances for both production methods subsequently cause

upside and downside risk to increase with much impact on irrigated acreage.
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Table 4.2 Yield impact results, normal distribution (model 1)

System County Drought 1% Wet 99%
%Mean %Var  %Up %Down %Mean %Var  %Up %Down

Bolivar -1.73 -47.46  -10.65 -39.71 3.88 337.87 2495 56.21
Coahoma -1.58 -47.20  -9.33 -31.75 420 391.04 19.62 49.47
Holmes -1.54 -47.29 -13.40 -41.09 2.80 23290 24.61 52.18
Humphreys ~ -1.63 -49.72 -16.29 -48.23 3.75 41535 37.02 7255

~= Leflore -1.56 -46.94 -1132  -36.66  3.77 366.19 2585 54.84

—i Quitman -1.71 -46.82  -7.16 -29.43 442 34579 1449 44.62

Z

A Sunflower -1.82 -46.26  -12.36 -5046  4.15 35494 3412  80.89

Tallahatchic -1.62  -46.06 -642  -2498 478 34590 9.02  43.43

Tunica 167 -4722 -872 3297 407 35165 1926 47.92
Washington  -1.56  -49.02 -1670 -4833  3.13  309.14 3365 68.33
Yazoo 153 -4874  -1871 5121 256 22257 3199 66.52
Average 163 -4752 -1191 -39.53 377 33394 2496 57.91
T Bolivar | -1337 7 4767 -1731 -4361 297 34230 3605 6676
Coahoma  -121 4726 -16.10 -37.60 3.03 41477 3491 60.83
Holmes 122 -4746  -19.68 -4484 221 23302 3365 6136
Humphreys 130 -50.10 2121 -47.62 297 41381 4363 74.05
?;3 Leflore 123 -47.13  -1588 3797 293 37027 3335 59.11
£ Quitman 128 -46.84 -1482 3698 3.3 377.09 3190 57.75
=

Sunflower  -1.39  -46.70 -21.44 -53.99 317 35340 50.07 96.09
Tallahatchie -123 4612 -11.80 -29.75 3.08 37936 23.66 48.66

Tunica 126 -4723  -17.10 -4124 300 37220 3678  65.17
Washington -125  -49.33 2243 4936 251 30834 4182 7333
Yazoo 124 -49.05 -2483 5281 206 22174 40.18 7242
Average 127 4772 <1842 4325 282 34421 3691  66.87

Note: %Mean denotes percentage change in mean yield considering drought and wet impact respectively. % Variance
(Var) denotes percentage change in variance yield considering drought and wet impact respectively, %Upside (Up) and
%Downside (Down) denotes percentage change in the probability of upside and downside yield risk considering
drought and wet impact respectively.

In Tables 4.3 to 4.5 below, yield impacts are reported for less severe drought and
less excessive rain scenarios. In general, we see a trend of drought being associated with

reduction in mean, variance, upside and downside risk under both production methods.
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Conversely, wet climate has been associated generally with an increment in mean,
variance upside and downside risk. However, when drought and wet climates are
generated holding late precipitation at 85 and 15™ percentiles, (Table 4.5) we see a
reverse of drought and wet impact on the mean, variance, upside and downside yield risk.
From the table, the acreage weighted average of the drought climate county level impact
on mean (variance) yields are 0.98% (50.44%) for dryland and 0.76 % (50.39%) for
irrigated acreage. This increment in variance causes an increment in upside risk
(downside risk) of 7.96% (20.91%) and 11.30 % (23.68%) respectively. On the other
hand, acreage weighted average of wet climate impact on the mean (variance) yields are -
1.01% (-33.14%) and -0.78% (-33.22%), which subsequently causes reduction in upside
risk (downside risk) yields as -7.63% (-24.19%) and -11.49 % (-26.66%) for dryland and

irrigated acreage.
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Table 4.3  Yield impact results, normal distribution (model 1)

System County Drought 5% Wet 95%
%Mean %Var  %Up %Down %Mean %Var  %Up %Down

Bolivar 1.59 -44.89  -9.89 -36.47 197 11458 13.28  34.40
Coahoma  -1.56 -46.91  -9.25 -31.44 294 228.10 16.61 38.30

Holmes  -142  -4457 -1235 -3760 180 11644 1607 3721
Humphreys -147 4636 -1476 -4344 230 17572 2368  51.90
3 Leflore  -143 4433 -1048 3361 163 9767 1219 2940
Z Quiman  -170 4654 701 2915 265 16594 1146 3045
8 Sunflower -1.68 4390 -1157 -4680 198 10630 1606  46.77
Tallahatchie -1.58 4524 -627  -2427 189 10404 742  20.69
Tunica  -1.64  -46.62 -858 3231 206 12416 1142  29.09
Washington -140 4559 -1509 -4345 183 12848 2022 4593
Yazoo  -132 4402 -1623 -4431 196 14559 2478 5428
Average  -1.53 4536 -11.05 -36.62 209  137.00 1575 38.04
7 Bolivar 4122 4507 -1599 4019 152 11438 1939 4041
Coahoma -120  -4696 -1595 -3725 224 23395 27.02  48.67
Holmes  -112  -4471 -1808 -41.17 141 11624 2220 4329
_ Humphreys 117 4667 <1903 4292 183 17498 2838 5254
£ Leflore  -113  -4450 -1464 3487 128 9750 1583 3153
ED Quitman ~ -127  -4657 -1469 -3664 197 17040 2149  41.52

Sunflower -1.28 -4427 -1991 -5024 1.51 105.78  24.50 54.11
Tallahatchie -1.19 -4530 -11.50 -2894 142 106.81 12.76  25.65

Tunica -1.24 -46.63  -16.79 -4047 1.56 124.86 2033  40.27
Washington -1.12 -45.85 -20.18 -4446 147 128.06 25.53  48.77
Yazoo -1.06 -44.25 -21.46 -45.85 1.58 145.08 31.33 58.75

Average -1.18 -45.53 -17.12  -40.27 1.62 138.00 22.61 44.14

Note: %Mean denotes percentage change in mean yield considering drought and wet impact respectively. % Variance
(Var) denotes percentage change in variance yield considering drought and wet impact respectively, %Upside (Up) and
%Downside (Down) denotes percentage change in the probability of upside and downside yield risk considering
drought and wet impact respectively.
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Table 4.4  Yield impact results, normal distribution (model 1)

System County Drought 10% Wet 90%
%Mean %Var %Up %Down %Mean %Var %Up %Down
Bolivar -1.31 -38.98  -8.26 -29.70  1.51 79.51 10.17 27.58
Coahoma -1.19 -38.51 -7.14 -23.39 096 48.58 5.84 15.31
Holmes -1.31 -42.07  -11.44  -3457 148 89.08 13.30 31.71
Humphreys -1.24 -41.23  -12.60 -36.73  1.85 12596  19.15 43.73
Leflore -1.30 -41.23  -9.52 -30.20  1.19 64.37 8.93 22.46
=  Quitman -1.18 -35.57  -5.08 -19.53  1.28 61.51 5.78 16.71
i Sunflower  -1.48 -40.14  -10.34 4128 1.29 59.94 10.29 32.09
a Tallahatchie -1.36 -40.54  -545 -20.51  1.11 53.40 4.59 13.15
Tunica -0.92 -29.95  -4.95 -17.23  0.74 33.78 4.14 11.98
Washington -1.21 -40.98  -13.07 -37.37 147 94.43 16.34 38.33
Yazoo -1.14 -39.71  -14.15  -3846  1.92 141.02  24.27 53.37

Average -1.24 -38.99  -9.27 -2991 1.35 77.42 11.16 27.86

Bolivar -1.01 -39.10  -13.20 -32.94 1.16 79.37 14.99 32.21
Coahoma -0.92 -38.54  -12.16  -28.03 0.74 48.60 9.43 19.28
Holmes -1.03 -42.19  -16.770  -37.96  1.17 88.93 18.46 36.74
Humphreys -0-99 -41.46  -1623  -36.31 1.47 125.47  23.12 44.12
Leflore -1.02 -41.36  -13.24  -31.38  0.94 64.26 11.68 23.99

Quitman ~ -0.88 3558  -1024 -2500 095 6175 1074  22.68
Sunflower  -1.13 4042 -17.63  -4455 098 5972 1594  36.72
Tallahatchie -1.03  -40.59 989 2458 084 5398 7.5 16.37

Irrigated

Tunica 0.69 2996 -943 2222 056 3379 751 16.21
Washington -0.97  -41.16  -17.40 3833 118 9415 2074  40.56
Yazoo 092  -39.88 -18.65 -39.92 1.55 140.53 3070  57.74

Average -0.96 -39.11  -14.07 -32.84 1.05 77.32 15.55 31.51

Note: %Mean denotes percentage change in mean yield considering drought and wet impact respectively. % Variance
(Var) denotes percentage change in variance yield considering drought and wet impact respectively, %Upside (Up) and
%Downside (Down) denotes percentage change in the probability of upside and downside yield risk considering
drought and wet impact respectively.
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Table 4.5  Yield impact results, normal distribution (model 1)

System County Drought 15% Wet 85%
%Mean %Var %Up %Down %Mean %Var %Up %Down
Bolivar 1.15 56.17 7.74 21.75 -1.16 -3548  -7.35 -26.06
Coahoma 0.56 26.15 3.43 9.37 -0.92 -31.30  -5.52 -17.60
Holmes 1.11 60.93 9.97 24.61 -0.95 -3293  -8.38 -24.73
Humphreys 1.03 57.41 10.74 26.41 -1.04 -3595  -10.56  -30.46
~= Leflore 0.87 43.88 6.55 16.99 -0.99 -33.49 -7.32 -22.64
—i Quitman 1.01 46.35 4.59 13.62 -0.98 -30.55 424 -15.89
I
R  Sunflower 1.20 55.03 9.59 30.16 -1.25 -3551  -8.91 -35.01
Tallahatchie 0-89 41.07 3.70 10.79 -0.94 -30.23  -3.81 -13.61
Tunica 0.67 29.77 3.70 10.81 -0.83 2742 447 -15.39
Washington 1.18 69.94 13.07 31.48 -1.13 -38.93 -12.22  -34.83
Yazoo 1.14 68.09 14.45 34.00 -0.89 -32.77  -11.10  -29.92

Average 0.98 50.44 7.96 20.91 -1.01 -33.14  -7.63 -24.19

Bolivar 089 5608 1149 2528  -0.89  -3557 -11.68 -29.02
Coahoma 043 2615 559 1,72 -071 3132 -933  -21.27
Holmes 087  60.85 1391 2836 -0.75  -3299 -12.13 -27.39
Humphreys 0.82 5726 1315 2649  -083  -36.10 -1353 -30.15
Leflore 069 4382  8.62 18.09  -0.78  -3357 -10.09 -23.61
Quitman 075 4646 857 1841  -0.73 3056 -847  -20.48
Sunflower 092 5484 1489 3446  -096  -3572  -15.03  -37.99
Tallahatchie 0.68 4139 626 1342 -071 3027 -6.79  -16.46

Irrigated

Tunica 050 2978 674 1460 062  -2742 -848  -19.90
Washington 094 69.76 1666 3322 090  -39.09 -1625 -35.76
Yazoo 092 6792 1845 3646 -072  -32.87 -1457 -31.18

Average 0.76 50.39 11.30 23.68 -0.78 -33.22  -11.49  -26.66

Note: %Mean denotes percentage change in mean yield considering drought and wet impact respectively. % Variance
(Var) denotes percentage change in variance yield considering drought and wet impact respectively, %Upside (Up) and
%Downside (Down) denotes percentage change in the probability of upside and downside yield risk considering
drought and wet impact respectively

Revenue impact

To convert yield impacts into revenue impacts, the average for state level cotton

price data is estimated. The value obtained is then used to estimate mean revenue values
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by multiplying average price by the mean of the lognormal distribution. To estimate the
upper and lower revenues, we use the variance of the lognormal density. First we
estimate the standard deviation by taking the square root of the lognormal density
variance and construct upper revenue as average price by one standard deviation above
the mean. Similarly, we construct the lower revenue as average price by one standard
deviation below the mean. In other to examine how drought (wet) climate impact on
revenue ranges as we consider distribution from a severe drought (excessive moisture)
scenario to less drought (less moisture) scenario, we generate revenue impact for a range
of late precipitation values.

Figures 4.12 - 4.22 are revenue range plots with high and low revenues plotted on
the y-axis against drought and wet late precipitation values as the distribution moves
from less climate conditions toward excessive climate conditions. The climate condition
includes drought, mean and wet respectively. Drought climate ranges from the 1%
percentile, which is considered the severe drought scenario through the 25" percentile,
which is the less severe drought scenario. On the same graph, Wet climate ranges from
the 75™ percentile (less moisture) through the 99" percentile (excessive drought). Results
are compared to the mean revenue, which holds late precipitation variable for both
drought and wet climate at the 50 percentile. Graphs are presented for dryland and
irrigated acreage. We discuss results for all 11 counties in Mississippi used for the
studies.

Figures 4.12- 4.22 present revenue impact results across counties for model 1. We
observe that for all counties in model 1, there are less distributional differences in

revenue for drought percentiles 1, 5, 10, 15 and 20. However, we see a distributional
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difference moving from the 20" percentile to the 25" percentile. Comparing drought
revenues to mean revenues, we observe that revenue distribution under drought is slightly
lower to the mean revenue. However on the same graph for wet climate scenario, we
observe slight distributional differences moving from less moisture to excessive moisture
scenarios with obvious distributional difference seen from the 95" percentile to the 99
percentile. Similarly, for irrigated results placed side by side with dryland results, we see
a similar pattern of revenue distributions for drought and wet precipitation values. There
are less distributional differences in revenue range for drought late precipitation values
and observable distributional differences in revenue for wet climate. Although cotton
quality and cost associated with irrigation are not factored in the analysis, the presence of
irrigation causes revenue under irrigated acreage to increase when results are compared to

dryland acreage results
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Figure 4.12 Dry and irrigated land revenue impact for Bolivar, (modell)
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M1 Coahoma, Dryland
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Figure 4.13  Dry and irrigated land revenue impact for Coahoma, (modell)
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Figure 4.14 Dry and irrigated revenue impact for Holmes, (model 1)
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M1 Humphrey, Dryland

T T T T
0 20 40 60 80 100
Late Precip Percentiles

135+

-

w

o
|

Upper/Lower Revenue
o
[,
|

1204

115

140 4

135

N
w
o

Upper/Lower Revenue
Y
()]
|

M1 Humphrey, Irrigated

T
0

T T T T T
20 40 60 80 100
Late Precip Percentiles

Figure 4.15 Dry and irrigated land revenue impact for Humphrey, (model 1)
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Figure 4.16 Dry and irrigated land revenue impact for Leflore, (model 1)
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Figure 4.17 Dry and irrigated land revenue impact for Quitman, (model 1)
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Figure 4.18 Dry and irrigated land revenue impact for Sunflower (model 1)
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M1 Tallahatchie, Dryland
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Figure 4.19 Dry and irrigated land revenue impact for Tallahatchie (model 1)
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Figure 4.20 Dry and irrigated land revenue impact for Tunica (model 1)
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M1 Washington, Dryland
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Figure 4.21 Dry and irrigated land revenue impact for Washington (model 1)
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Figure 4.22  Dry and irrigated land revenue impact for Yazoo (model 1)
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Generally, the symmetric distribution renders normality as a poor assumption as
there is evidence of skewness when log normality is assumed. Additionally, some
counties (Bolivar, Quitman and Tallahatchie) generated densities that have some amount
of their probability massed over the negative real line. At severe drought and excessive
moisture percentile values, drought (wet) is associated with a reduction (increment) in
mean variance, upside and downside risk. Conversely at lower percentiles, the reverse
occurs. Revenue impacts results under irrigated acreage imply that excessive moisture

plays a significant role in revenue distribution.

Model 1 results under log normality

Assuming lognormal distribution is necessary to relax the symmetry assumption
and serves as a source of robustness check of the normality assumption. Additionally,
crop yields are non-negative by definition, hence the use of lognormal distributional
assumption. Holding late precipitation variable for drought climate at the 1% percentile
(severe drought) and that for wet climate at the 99™ percentile (excessive moisture),
Figures 4.23 — 4.33 present lognormal densities for model 1. Lognormal densities
presented show evidence of skewness with extreme cases in Quitman and Tallahatchie
counties. Evidence of skewness is more pronounced on dryland acreage than can be
observed on an irrigated acreage. From the distributions we observe, there is not much

difference in the means of the average, drought, and wet precipitation distributions.
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Figure 4.23  Irrigated and dryland lognormal yield distribution for Bolivar, (model 1)
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Figure 4.24  Irrigated and dryland lognormal yield distribution for Coahoma, (model 1)
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Figure 4.33  Irrigated and dryland lognormal yield distribution for Yazoo, (model 1)

Yield impact results when lognormal distribution assumption is used follows the
same results pattern as when normal distribution is used. Drought (Wet) is associated
with reduction (increment) in mean, variance, upside and downside risk at higher
percentiles and the reverse occurs at lower percentiles. The values presented for
lognormal yield impact are slightly above the values presented for normal distribution.
Yield impacts presented for lognormal distributed are shown in Tables 4.6 - 4.9 below.
Revenue impact results are the same as the revenue impact results for normal distribution
and hence not reported. Therefore relaxing the skewness constraint by utilizing a log
normal distribution assumption is important to clearly bring out skewness in the cotton
yield densities. Since the use of normal distribution assumption appears to limit the entire
shape of the distribution, the rest of the within season precipitation effect focuses on the

lognormal distributional assumption.
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Table 4.6  Yield impact results, lognormal distribution (model 1)

System County Drought 1% Wet 99%
%Mean %Var  %Up %Down %Mean %Var  %Up %Down
Bolivar -2.47 -56.84 -14.15 -50.87 4.74 591.49 4631 47.37
Coahoma -2.25 -57.02  -13.61 -40.31 0.37 56598 46.33  30.36
Holmes -2.20 -56.74  -17.92 -52.80  3.81 394,17 4144 50.32
Humphrey -2.33 -59.05 -21.85 -60.78  3.95 716.03 64.54 62.44
~= Leflore -2.22 -56.69 -15.14 -44.72  2.59 571.61 4743  39.02
—i Quitman -2.45 -56.66 -10.71 -36.94 1.61 52290 39.11 25.27
Z
A Sunflower -2.59 -5534  -14.85 -59.71 5.77 650.07 54.65 67.42
Tallahatchie -2-31 -56.02 -10.16  -30.65 -2.61 44753 38.14 16.74
Tunica -2.40 -57.12  -11.95 -38.96 1.84 523.05 4046 2794
Washington ~ -2-23 -58.42 2238 -59.97  4.00 53486 56.01 61.83
Y azoo -2.19 -57.73  -26.10 -66.18  3.62 381.36 5429 7244
Average -2.33 -57.06 -16.26 -49.26 2.70 536.28 48.06 45.56
 Bolivar 039 3974 2413 2774 085 21096 50.10 4382
Coahoma -0.35 -39.18  -21.12  -23.02  0.64 246.68 4837 37.08
Holmes -0.35 -39.52  -2594 -29.31 0.64 14991 4487 41.29
Humphrey -0.38 -4196 -2748 -31.00 0.82 247.72 5850  49.63
:g Leflore -0.36 -39.09 -19.87 -2198  0.66 22234 4283 33.54
%D Quitman -0.37 -38.85 -19.54 -21.64 0.77 228.63 43.02 33.32
=

Sunflower  -041 3931 -27.00 -32.06 093 21504 5945 5551
Tallahatchie 036 -38.04 -1554 -1638 002  223.60 36.09 23.60

Tunica 037 3928 -2120 2388 077 22445 4563 37.29
Washington -036  -41.29 2879 3251 072 19167 5506  49.60
Yazoo 036 4110 -33.15 -3725 060 14334 5593 53.15
Average 037  -39.76 -23.98 -26.98 0.68 20948 49.08 41.62

Note: %Mean denotes percentage change in mean yield considering drought and wet impact respectively. % Variance
(Var) denotes percentage change in variance yield considering drought and wet impact respectively, %Upside (Up) and
%Downside (Down) denotes percentage change in the probability of upside and downside yield risk considering
drought and wet impact respectively.

58



Table 4.7  Yield impact results, lognormal distribution (model 1)

System County Drought 1% Wet 99%
%Mean %Var  %Up %Down %Mean %Var  %Up %Down

Bolivar -2.28 -5423 -1332  -46.71 2.82 179.53 2213  36.02
Coahoma -2.23 -56.72  -13.51 -39.90  3.06 361.28  32.62  30.81
Holmes -2.02 -53.94 -16.68 -48.34  2.56 182.60 25.81 39.89
Humphrey -2.10 -55.71  -20.03  -54.93 3.26 289.89 3857 52091

= Leflore -2.04 -53.96 -14.14 -40.87  2.30 149.64 1942 28.54

‘g Quitman -2.43 -56.36  -10.64 -36.57  3.37 265.44 2325 25.04

a

Sunflower 239 25296 -14.08 -55.40  2.82 164.80 23.88  46.81
Tallahatchie 3 25 25514 =996  -29.71  2.38 157.66 1547 17.03

Tunica 2235 5649 -11.78 -38.14  2.85 193.16  19.63  24.61
Washington 200  -5497 -2043 -5404 261 20380 3191 47.73
Yazoo -1.88  -53.04 -22.97 -57.85 280 23533 41.10 6231
Average 218 -54.87 -1523 -45.68  2.80  216.65 26.71 37.43
 Bolivar 036 3733 2225 2549 044 7872 2652 2601
Coahoma 035  -3891 2093 -22.80 0.1 150.03 3594  30.13
Holmes 033 -3698 -23.82 2682 041 7992 2933 28.66
Humphrey ~ 034  -3875 2476 2781 054 11605 3711 3475
E; Leflore 2033 -36.69 -1828 -20.12 037 6796 19.54 18.07
£ Quitman 2037 -3859 -1937 2144 057 11331 2790 2432
=

Sunflower 037 -37.00 2500 -29.61 044 7286 2922 3047
Tallahatchie -035  -37.30  -15.14 -1592 038 7356 1674 13.82

Tunica 036 -38.73  -20.80 -23.41 045 8532 2464 23.03
Washington -033  -3803 2590 2913 043 8733 3309 3230
Yazoo 031 -36.63 -2871 -32.12 046  97.81 4326 4248
Average 035 -37.72 -22.27 2497 046  92.99 2939  27.64

Note: %Mean denotes percentage change in mean yield considering drought and wet impact respectively. % Variance
(Var) denotes percentage change in variance yield considering drought and wet impact respectively, %Upside (Up) and
%Downside (Down) denotes percentage change in the probability of upside and downside yield risk considering
drought and wet impact respectively.
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Table 4.8  Yield impact results, lognormal distribution (model 1)

System County Drought 1% Wet 99%
%Mean %Var  %Up %Down %Mean %Var  %Up %Down

Bolivar -1.88 -4795 -11.40 -37.91 2.16 11993 16.60  30.07
Coahoma -1.70 -47.66  -10.72  -29.27 1.36 70.38 9.95 16.26
Holmes -1.87 -51.31  -15.57 -4444 212 13578 21.07 34.99
Humphrey -1.78 -50.36  -17.35 -46.51 2.64 199.43 30.63 46.54

= Leflore -1.85 -50.62  -1297 -36.57 1.69 95.12 13.93 2281

—;‘ Quitman -1.69 -44.37  -7.94 -23.95 1.82 90.78 10.51 16.68

a

Sunflower 11 49.03 -12.83 -4884 183 88.16 1490 33.70
Tallahatchie  _1 94 -50.04 -881 2477  1.55 77.86  8.82 12.33

Tunica 2132 -37.90  -7.18  -19.58  1.06 4793 661 1185
Washington 172 5012 -17.91 -4649  2.10 14475 2543  41.15
Yazoo -1.63  -48.52  -2025  -50.52 274 226.99 4020  61.47
Average -1.77 4799 -12.99  -37.17  1.92 117.92  18.06  29.80
 Bolivar 029 3196 -1831 -20.79 034 5606 2049 20.60
Coahoma 027  -3136 -1591 -17.07 021 3530 1231 11.79
Holmes 030  -34.69 -21.98 -24.68 034 6236 2434 2420
Humphrey ~ 029 -3401 -2099 -2341 043 85.76  30.10  28.98
?;3 Leflore 030  -3387 -1651 -18.06 0.27 46.01 1440 13.72
fr:” Quitman 026 2881 -13.40 -1452 028 4431  13.86 13.20
=

Sunflower ~ -033 3343 2204 2599 029 4271 1912 2056
Tallahatchie 030  -33.10 -1298 -1348 024 3893  10.09 8.87

Tunica 020 -2402 -11.57 -1266 0.6 2488 910 9.0
Washington -028  -33.78 2233 2497 034 6575 2680 26.69
Yazoo 027 -32.68 -2499 2785 045 9501 4237 4171
Average 028  -31.97 -18.27 -2032 031 5428 2027 19.96

Note: %Mean denotes percentage change in mean yield considering drought and wet impact respectively. % Variance
(Var) denotes percentage change in variance yield considering drought and wet impact respectively, %Upside (Up) and
%Downside (Down) denotes percentage change in the probability of upside and downside yield risk considering
drought and wet impact respectively.

60



Table 4.9  Yield impact results, normal distribution (model 1)

System County Drought 1% Wet 99%
%Mean %Var  %Up %Down %Mean %Var  %Up %Down
Bolivar 1.65 82.30 12.41 24.42 -1.66 -44.07  -10.27 -33.17
Coahoma 0.80 36.70  5.73 10.35 -1.31 -39.45 -845  -21.73
Holmes 1.58 89.82 1553  28.03 -1.35 -41.20  -11.69 -31.62
Humphrey 1.47 84.25 16.61 30.12 -1.48 -44.58  -14.74 -38.53
T Leflore 1.24 63.16 10.07 17.79 -1.41 -4196  -10.18 -27.07
—i Quitman 1.44 67.05  8.21 14.00 -1.40 -38.58  -6.73  -19.27
Z
A Sunflower 1.71 80.44 13.84  31.85 -1.79 -44.00 -11.26 -41.33

Tallahatchic 126 5898 699 1044  -134  -3827 -636 -15.95

Tunica 095 4199 580 1078  -1.18  -3489 652 -17.37
Washington  1.68 10423 20.10 3466  -1.61  -47.90 -16.84 -4332
Yazoo 162 10141 2319 4157  -127  -40.87 -16.14 -39.47

Average 140 7367 1154 2309 -1.44 4143 -10.84 -29.89

Bolivar 026 4040 1571 1609  -026  -28.85 -16.18 -1828
Coahoma  0.13 1942 728 715 021 2514 -1220 -12.92
Holmes 0.25 4366 1830 1857  -022 2662 -1596 -17.70
Humphrey ~ 0-24 4123 17.03  17.18 024 2929 -17.49 -19.37
Leflore 0.20 3196 1062 1033  -023  -27.07 -12.54 -13.52

Quitman 022 3380 11.06 1070  -021  -2451 -11.06 -11.87
Sunflower 027 3940 1787 1929  -028  -29.19 -1872 -21.95

Irrigated

Tallahatchie 0-19 3023 814 728  -021  -2422 -887 -9.00
Tunica 0.15 2202 816 828  -0.18  -21.89 -1039 -11.33
Washington 028 49.67 2149 2175  -026  -3194 2085 -23.26
Yazoo 027 4840 2523 2583  -021  -2654 -19.56 -21.66

Average 0.22 3638 14.63 14.77 -0.23 -26.84 -14.89 -16.44

Note: %Mean denotes percentage change in mean yield considering drought and wet impact respectively. % Variance
(Var) denotes percentage change in variance yield considering drought and wet impact respectively, %Upside (Up) and
%Downside (Down) denotes percentage change in the probability of upside and downside yield risk considering
drought and wet impact respectively.

Model 2 results under normal distribution

A more general approach to Model 1 is to break up the 5-month early season of

model linto two sub-seasons. That is, we divide the season from May to June as early,
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July to September as mid and October as late. Therefore, the regression model is
generalized to include early precipitation, mid precipitation and late precipitation.
Research estimates model 2 as a robustness check for model 1. As in the first model, we
hold late precipitation variable for drought climate at the 1% percentile (most severe
drought) and wet climate at 99" percentile (most severe moisture). Generated normal
densities results follow a similar pattern as in the first model 1 and hence are not
presented. Hence, for yield densities, additional complexity in regression specification is

unwarranted.

Model 2 results under lognormal distribution

Under lognormailty and still holding late precipitation variables at extreme
scenarios, generated yield impacts follow a similar pattern, and these are presented in
tables 4.10-4.13. Yield impacts are then converted into revenue impact and results are
presented in Figures 4.34-4.44. Although revenue impacts follow a similar pattern, there
exist slight distributional differences when compared to the revenue impact of model 1.
Once again from these graphs we see that under irrigated acreage, revenue impacts are
higher than dryland acreage. Thus the use of irrigation buffers the revenue distribution

because revenue impacts are shifted up when compared to dryland acreage.
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Table 4.10  Yield impact results, lognormal distribution (model 2)

System County Drought 1% Wet 99%
%Mean %Var  %Up %Down %Mean %Var %Up %Down
Bolivar 274 5653 -11.68 -5332 536 60437 4531 5021
Coahoma 250  -57.06 -1138 -40.57  0.13 54861 4398  29.29
Holmes 245 5639 -1574 -56.19 428  403.17 4095  55.10
Humphrey 258 -58.88 -1823 -61.16 419  711.61 60.51  60.78
g  Leflore 246 -56.69 -1241 -4483  2.63  561.61 4435  37.57
-; Quitman 272 -56.80 -8.63 -3570  0.81  486.19 3652  22.03
2 Sunflower 287  -5499 -11.11 -60.81 637  659.73 51.03  67.58
Tallahatchie 256 -56.03 -8.78  -32.50  -191 45873 37.55  18.50
Tunica 266  -57.00 -10.06 -41.51  2.60 53871 39.66  30.67
Washington 248 5750 2138 -67.34 474 561.72  60.64  77.68
Yazoo 242 -56.56 2543 -73.50  4.04  391.73  59.52  90.58
Average 259  -56.77 -14.08 -51.58  3.02  538.74 4728  49.09
Bolivar -1.06 2310 -296  -23.42 237 8687 11.17 4534
Coahoma 097 -23.00 -3.15 -17.55 246 9950 11.73  35.46
Holmes 098 2298 -4.02 2434  1.77 6530 1040  40.17
- Humphrey -1.05 2453 -450 2668 241  99.44 1555  53.72
gb Leflore 098 2289 -3.08 -1858 236 9167 11.03 3631
E: Quitman -1.02 -22.80 237 -1596 249 9249 926 3051
Sunflower 111 2256 215 2759 254 8940 1099  57.76
Tallahatchie 098 2233 234 -13.65 252 9624 933 2692
Tunica -1.01  -23.00 -290 -1876 239 9133 1062 3631
Washington -1.00 2394 559 3050 2.00 8091 1596  58.36
Yazoo -0.99 2361 -638 -3500 1.66 6382 1497  60.33
Average -1.01  -23.16  -3.59 2291 227  87.00 1191  43.74

Note: %Mean denotes percentage change in mean yield considering drought and wet impact respectively. % Variance
(Var) denotes percentage change in variance yield considering drought and wet impact respectively, %Upside (Up) and
%Downside (Down) denotes percentage change in the probability of upside and downside yield risk considering
drought and wet impact respectively.
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Table 4.11

Yield impact results, lognormal distribution (model 2)

System County Drought 1% Wet 99%
%Mean %Var  %Up %Down %Mean %Var %Up %Down
Bolivar 253 -54.00 -11.12  -49.03 3.13 18215 21.13  38.16
Coahoma 248 -56.76 -11.31  -40.16 322 35754 30.65  30.11
Holmes 224 -53.68 -1476  -51.57 284 18539 2516  43.55
Humphrey 233 -55.62 -16.85  -55.25 3.60 29347 3560  52.07
g Leflore 227 5399 -11.67  -40.94 255 151.13  17.66  28.01
-; Quitman 2.69 -5651  -8.58 -35.34 3.49 26007 2138 2278
2 Sunflower 2,66 -5270  -10.70  -56.45 3.13 167.18 21.58  47.35
Tallahatchie 249 5517  -8.63  -31.51 269 160.12 1487 1829
Tunica 261 -5639  -9.94  -40.64 3.19 19627 18.82  26.66
Washington 222 -5427  -19.69  -61.23 291 207.77 3395 5897
Yazoo 2.09  -5223  -22.62  -65.15 3.11 24034  44.63 7739
Average 242 -54.67 -13.26  -47.93 3.08 21831 2595  40.30
Bolivar -0.98 -2158 278  -21.58 121 3725 502 2480
Coahoma 096 -2282  -3.13  -17.38 1.79 6495 806  27.20
Holmes 090 -2137  -3.75 2234 1.14 3773 626  26.66
- Humphrey -0.94 2248 413 -24.03 1.48 5244 881 3492
gb Leflore 091 -2134 288  -17.08 1.03 3244 424 1743
E: Quitman -1.01  -22.63 236 -15.81 157 5086 534  20.71
Sunflower -1.03  -21.14 =205  -25.54 121 3504 432 2920
Tallahatchie 096 -21.84 229 -13.29 1.13 3493 363  13.55
Tunica -0.99 2265 -2.86 -18.41 124 3977 494 2052
Washington 090 -21.89  -5.11  -27.48 1.17 4105 866  35.40
Yazoo -0.85 -2087  -563  -30.38 127 4572 11.05  46.70
Average -0.95 -21.88 -336 -21.21 129 4293 639  27.01

Note: %Mean denotes percentage change in mean yield considering drought and wet impact respectively. % Variance
(Var) denotes percentage change in variance yield considering drought and wet impact respectively, %Upside (Up) and
%Downside (Down) denotes percentage change in the probability of upside and downside yield risk considering
drought and wet impact respectively.
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Table 4.12  Yield impact results, lognormal distribution (model 2)

System County Drought 1% Wet 99%
%Mean %Var  %Up %Down %Mean %Var %Up %Down
Bolivar 2.08 -4786  -9.72  -39.90 240 12149 1571  31.86
Coahoma -1.89  -4778  -9.14  -29.42 151 7100  9.07 16.14
Holmes 207 -51.12 -13.86  -47.51 235 137.66 2043  38.17
Humphrey -1.97  -5035  -14.75  -46.75 292 20199 2810 4594
g Leflore 205  -50.69 -10.79  -36.61 187  96.08 1256  22.47
% Quitman -1.88  -4454  -6.61  -23.00 200 9129 946 1553
2 Sunflower 234  -4887 996  -49.80 204 8923 1326  34.19
Tallahatchie 215 -50.12  -7.73 2631 1.73 7874 838  13.20
Tunica -1.46  -37.99  -634  -20.98 1.18 4839  6.18 1279
Washington -191  -49.65 -1744  -53.23 234 14722 2688  50.60
Yazoo -1.81  -47.96 -20.11  -57.51 3.04 23177 43.62 7631
Average -1.96  -47.90 -11.49  -39.18 213 11953 17.60  32.47
Bolivar -0.80 -1824 238  -17.72 093 2736  3.71 19.28
Coahoma -0.73  -18.03  -248  -13.13 059 17.69  2.36 9.76
Holmes -0.83  -1994 350  -20.60 094 30.15 506 2221
- Humphrey -0.80 -1951  -3.59  -20.35 1.19 4019  6.89 2850
gb Leflore -0.82 -1956  -2.64  -15.40 075 2268  3.00 1295
E: Quitman 071  -1646  -1.74  -10.84 076 21.86 235  10.64
Sunflower 090 -1897  -190  -22.51 079 2138 260  19.23
Tallahatchie -0.82 -19.16  -2.02 -11.35 0.67 1940  2.05 8.35
Tunica -0.55 -13.54  -1.73  -10.14 045 1270  1.62 7.77
Washington -0.77  -1927  -448  -23.73 094 3177 681 2871
Yazoo -0.74 -18.48  -497  -26.50 124 4456 1079 4575
Average -0.77 -1829  -2.86 -17.48 0.84 2634 429 1938

Note: %Mean denotes percentage change in mean yield considering drought and wet impact respectively. % Variance
(Var) denotes percentage change in variance yield considering drought and wet impact respectively, %Upside (Up) and
%Downside (Down) denotes percentage change in the probability of upside and downside yield risk considering
drought and wet impact respectively.
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Table 4.13  Yield impact results, lognormal distribution (model 2)

System County Drought 1% Wet 99%
%Mean %Var  %Up %Down %Mean %Var %Up %Down
Bolivar 117 4736 722 1777 -175 -4255 851  -33.16
Coahoma 075 3047 435 8.86  -134 -3725 -680 -19.94
Holmes 1.64 8275 1388 2887  -131 -37.19 937 -29.38
Humphrey 129 6278 1175 2456  -146 -41.16 -1143  -34.32
g Leflore 125 5649 815 1621  -136 -37.88 -7.59 -23.14
-; Quitman 096  36.03 423 852  -1.54 3861 -564 -18.36
2 Sunflower 1.60 6518 10.18 2799  -185 -41.87 -848  -39.21
Tallahatchie 138  58.55 6.51 11.04  -136 -3597 -529  -15.40
Tunica 091 3531 467 1014 -125 3370  -5.54  -17.67
Washington 146 7560 1624 3453  -170 -4596 -15.75  -47.38
Yazoo 1.62  89.28 2216 4674  -139  -4024 -16.02  -45.04
Average 128 5816 994 2138  -148 -39.31 913  -29.36
Bolivar 071 2018 274 1485  -071 -1636 -2.15 -15.64
Coahoma 034 10.00 135 582  -056 -1423  -195  -10.02
Holmes 070 2169  3.68 1678  -0.60 -15.02 -2.64 -14.91
- Humphrey 0.66 2056  3.63 1627  -0.67 -1663 -3.05 -16.94
gb Leflore 055 1612 215 961  -0.63 -1537 -2.08 -11.65
E: Quitman 0.60 16.97 1.83 854  -0.58 -13.85 -147 -8.91
Sunflower 074 1982 240 1799  -0.77 -1643 -1.69  -19.10
Tallahatchie 0.54 1528 1.62 6.77  -057 -13.70 -145  -7.70
Tunica 0.40 1130 1.44 698  -0.50 -1227  -1.57 -9.09
Washington 0.75  24.54 533 2303  -0.72 -1815 -422  -22.17
Yazoo 0.74 2406 603 2720  -058 -1484 -3.97 -20.80
Average 061 1823 293  13.99  -0.63 -1517 -2.39  -14.27

Note: %Mean denotes percentage change in mean yield considering drought and wet impact respectively. % Variance
(Var) denotes percentage change in variance yield considering drought and wet impact respectively, %Upside (Up) and
%Downside (Down) denotes percentage change in the probability of upside and downside yield risk considering

drought and wet impact respectively.
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Figure 4.34 Dry and irrigated land revenue impact for Bolivar, (model 2)
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Figure 4.35 Dry and irrigated land revenue impact for Coahoma, (model 2)
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Figure 4.36  Dry and irrigated land revenue impact for Holmes, (model 2)
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Figure 4.37 Dry and irrigated land revenue impact for Humphrey, (model 2)
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Figure 4.38 Dry and irrigated land revenue impact for Leflore, (model 2)
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Figure 4.39 Dry and irrigated land revenue impacts for Quitman, (model 2)
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Figure 4.40 Dry and irrigated land revenue impact for Sunflower, (model 2)
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Figure 4.41 Dry and irrigated land revenue impact for Tallahatchie, (model 2)
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Figure 4.42 Dry and irrigated land revenue impact for Tunica, (model 2)
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Figure 4.43 Dry and irrigated land revenue impact for Washington, (model 2)
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M2 Yazoo, Dryland M2 Yazoo, Irrigated
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Figure 4.44 Dry and irrigated land revenue impact for Yazoo, (model 2)

It is possible from the revenue impacts presented that breaking early precipitation
into two sub-seasons gives way for the differences in graphs when model 2 revenue
impacts is compared to model 1 revenue impact. In short, normal distribution is not a
good distributional assumption because there exists positive skewness under
lognormality. Therefore evidence of positive skewness and negative yields in model 1
holds, and we can conclude that model 1 is robust to alternative definition of within-

precipitation effect.

Model 3

No studies investigating Mississippi climate impact on cotton yield have
accounted for existing moisture in the soil prior to production. Therefore, our third model
seeks to find if there exists any relationship between existing soil moisture and actual

growing period precipitation. This moves studies from a within season precipitation
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effect to a pre-season precipitation effect. We account for moisture existing in the soil
prior to the start of a new crop production season by isolating the last month (April)
before the start of a new cotton season as prior precipitation. Therefore in our third
model, precipitation variables are generalized to include prior precipitation and actual
precipitation. Actual precipitation is the summation of daily precipitation from May to
October while prior precipitation is the summation of daily precipitation in the month of
April. As with the within precipitation effect, we present and discuss results for normal
densities, yield and revenue impacts. As a robustness check, we consider and present

results for lognormal distribution by relaxing the skewness assumption.

Model 3 results under normality

Normal densities are estimated and results are presented in Figures 4.45- 4.55.
From these figures we observe that for all counties, there exist no differences in the
means of the average, drought, and wet precipitation densities. Additionally, there exist

negative yields.
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Figure 4.55 Trrigated and dryland normal yield distribution for Tunica, (model 3)

Model 3 yield impacts

Considering a pre-season precipitation effect scenario, prior precipitation is held
at 1t and 99" for drought and wet climates respectively and yield impact results are
discussed as follows. The acreage weighted average of the drought climate county level
impact on mean (variance) yields are -0.38% (-20.01%) for dryland acreage and -0.29 %
(-20.02%). An approximately equal reduction in variance (20%) causes reduction in
upside risk and downside risk across production methods with effects higher on irrigated
acreage as compared to dryland acreage. Thus, acreage weighted average of the drought
climate county level impact on upside risk (downside risk) yields are -5.37% (-11.10%)
and -8.10% (-14.01%) dryland and irrigated acreage respectively.

Conversely, for wet climate, the acreage weighted average impact on mean

(variance) yields are 1.05% (85.39%) and 0.81% (85.78%) while impact on upside risk
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(downside risk) yields are 13.68% (25.48%) and 20.99% (33.98%). A relatively small
increment in mean and subsequently a rather large increment in variance cause upside
and downside risk to increase with pronounced effect on irrigated acreage. The values for
upside risk (downside risk) include 13.68(25.48) and 20.99(33.98) respectively for

dryland and irrigated acreage.

Table 4.14  Yield impact results, normal distribution (model 3)

System County Drought 1% Wet 99%
%Mean %Var %Up %Down %Mean %Var %Up %Down
Bolivar -0.40 -19.73 -4.65 -10.16 1.13 87.66 12.48 23.93
Coahoma -0.35 -19.02 -4.43 -9.16 1.13 97.03 13.13 23.98
Holmes -0.38 -21.10 -6.89 -13.65 0.94 79.26 15.99 28.79
Humphrey -0.39 -22.01 -7.39 -14.52 0.94 81.50 16.65 29.78
2 Leflore -0.39 -20.94 -5.31 -10.82 0.97 80.45 12.42 22.60
% Quitman -0.38 -18.86 -3.50 -7.92 1.28 99.57 10.71 21.04
2 Sunflower -0.44 -20.67 -5.80 -13.49 1.12 80.01 14.15 29.02
Tallahatchie -0.41 -20.47 -3.27 -7.24 1.16 88.42 8.12 16.58
Tunica -0.35 -17.75 -3.49 -7.62 1.15 91.95 10.81 20.72
Washington -0.35 -20.32 -6.21 -12.16 0.76 64.10 12.76 23.01
Yazoo -0.33 -19.24 -8.14 -15.41 0.96 89.32 23.23 40.84
Average -0.38 -20.01 -5.37 -11.10 1.05 85.39 13.68 25.48
. ~ Bolivar 030  -1973 714  -1292 087 8772 1906 3189
Coahoma -0.27 -19.02 -7.58 -12.88 0.87 97.26 22.69 35.80
Holmes -0.30 -21.10 -10.18 -17.29 0.74 79.25 23.93 38.60
Humphrey -0.31 -22.02 -9.41 -15.93 0.75 81.42 21.12 33.64
% Leflore -0.31 -20.95 -7.29 -12.67 0.77 80.46 16.93 27.30
E.n Quitman -0.29 -18.86 -6.80 -11.98 0.95 100.58 20.94 33.84
Sunflower -0.34 -20.68 -9.06 -16.67 0.85 79.95 21.99 37.89
Tallahatchie -0.31 -20.49 -5.67 -10.07 0.87 91.08 14.53 23.50
Tunica -0.26 -17.74 -6.62 -11.53 0.87 92.52 20.65 33.34
Washington -0.28 -20.33 -8.30 -14.01 0.61 64.07 17.06 27.33
Yazoo -0.26 -19.25 -11.01 -18.14 0.78 89.25 31.97 50.65
Average -0.29 -20.02 -8.10 -14.01 0.81 85.78 20.99 33.98

Note: %Mean denotes percentage change in mean yield considering drought and wet impact respectively. % Variance
(Var) denotes percentage change in variance yield considering drought and wet impact respectively, %Upside (Up) and
%Downside (Down) denotes percentage change in the probability of upside and downside yield risk considering

drought and wet impact respectively.

80



In Tables 4.15 - 4.17, yield impacts are reported for the less severe drought and
excessive rain scenarios. Similar to the results pattern for within season precipitation
effects (model 1 and 2), we see a trend of drought (wet) being associated with reduction
(increment) in mean, variance, upside and downside risk and these results are presented
in tables 4.15 and 4.16 for model 3. However, when prior precipitation variable is held at
the 85" and the 15™ percentiles for drought and wet climates respectively, we see a
reverse of drought and wet impact on the mean, variance, upside and downside yield risk.
Results are presented in Table 4.17 and we observe from the table that, acreage weighted
average of the drought climate county level impact on mean (variance) yields are 0.20%
(12.58%) for dryland and 0.15% (12.58) for irrigated land. Thus indicating drought
increment for dryland and irrigated land. It is interesting to note that an equal increment
in variance for the two production methods causes a relatively small increment in upside
and downside risk, and this effect is higher on irrigated acreage. Conversely, excessive
moisture causes a very small reduction in mean and relatively high reduction in variance
across tables, and this reduction subsequently causes a reduction in upside and downside
risks. Excessive moisture generates acreage weighted average impact on mean (variance)
yields as -0.25% (-13.75%) and -0.19% (-13.76%) and impact on upside (downside)

yields as -3.53% (-7.23%) and -5.35 % (-9.21%).
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Table 4.15 Yield impact results, normal distribution (model 3)

System County Drought 1% Wet 99%
%Mean %Var  %Up %Down %Mean %Var  %Up %Down

Bolivar -0.33 -16.68  -3.85 -8.36 0.52 33.46 5.88 11.90
Coahoma -0.29 -15.75  -3.58 -7.38 0.48 33.03 5.74 11.08
Holmes -0.35 -19.56  -6.32 -12.50  0.56 41.59 9.71 18.03
Humphrey -0.37 -20.72  -6.89 -13.53  0.50 37.09 9.01 16.70

T Leflore -0.36 -19.29 -4.84 -9.82 0.41 27.92 5.35 10.22

—i Quitman -0.32 -15.85 -2.88 -6.48 0.42 25.78 3.72 7.80

Z

A Sunflower -0.37 -17.59  -4.84 -11.20 047 28.04 6.06 13.15

Tallahatchie -0.32 -16.54  -2.57 -5.65 0.52 33.91 3.96 8.14

Tunica 033 -1722 -338  -736  0.60 4093 586  11.74
Washington -034  -1973 600  -11.75 042 3165 722 13.39
Yazoo 033 -1924 -8.14  -1540 0.5 43.63 1341 2430
Average 034  -18.01 -484 995  0.50 3428 690 1331
 Bolivar 025  -16.68 -591  -10.67 040 3346 901 1562
Coahoma  -022  -1574 -6.14  -1041 037 33.04 988  16.19
Holmes 028  -19.56 934  -15.86  0.44 4158 1449  23.85
Humphrey ~ 029 2073 878  -1486  0.40 37.06 1146 18.71
Ig Leflore 028  -1929 663 -11.52  0.32 2792 731 1221
fr:” Quitman 024  -1584 -560 984 031 2582 722 1225
=

Sunflower -0.28 -17.60  -7.56 -13.89  0.36 28.03 9.45 16.84
Tallahatchie -0-24 -16.56  -4.46 -7.88 0.40 34.23 6.88 11.58

Tunica -0.25 -17.21  -6.40 -11.14  0.46 40.99 11.15 18.58
Washington -0.27 -19.74  -8.03 -13.54 034 31.64  9.66 15.78
Y azoo -0.26 -19.24  -11.01 -18.13 044 43.61 18.38  29.72
Average -0.26 -18.02 -7.26 -12.52  0.38 34.31 1044 17.39

Note: %Mean denotes percentage change in mean yield considering drought and wet impact respectively. % Variance
(Var) denotes percentage change in variance yield considering drought and wet impact respectively, %Upside (Up) and
%Downside (Down) denotes percentage change in the probability of upside and downside yield risk considering
drought and wet impact respectively.
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Table 4.16 Yield impact results, normal distribution (model 3)

System County Drought 1% Wet 99%
%Mean %Var  %Up %Down %Mean %Var  %Up %Down

Bolivar -0.29 -15.05 -3.44 -7.45 0.29 17.87 3.38 6.98
Coahoma -0.27 -1490 -3.37 -6.93 0.35 23.60  4.29 8.37
Holmes -0.33 -18.48 -5.93 -11.71 0.36 25.40 6.38 12.02
Humphrey -0.31 -17.84 -5.82 -11.39 035 24.78 6.37 11.94

T Leflore -0.32 -17.80  -4.42 -8.96 0.32 2124 420 8.09

—i Quitman -0.30 -15.16  -2.75 -6.16 0.35 21.09 3.11 6.57

Z

A Sunflower -0.35 -16.62  -4.55 -10.50  0.32 18.49 4.18 9.17

Tallahatchic -031  -1598 247  -543 032 1939 244 507

Tunica -0.28  -1449 279 605 028 1706 274  5.64
Washington  -023  -13.97 409 794 035 2514 592 1103
Yazoo 030 -17.90 -7.51  -1421 036 27.08 894 1638
Average 030 <1620 428 879 033 2192 472 921
© Boliyar 023 1505 528 951 023  17.87 519 910
Coahoma  -021  -1490 -578 979 027 2361 738 1217
Holmes 026 -1848 -877  -1488 029 2540 951 1579
Humphrey ~ 025  -17.85 741  -1253 028 2477 810 1333
E; Leflore 026 -17.81 -6.06  -10.51 025 2124 575  9.65
£ Quitman 023 -1516 -533 936 026 2112 604 1029
=

Sunflower -0.27 -16.63  -7.10 -13.03  0.25 18.48 6.51 11.68
Tallahatchie -0-24 -16.01  -4.29 -7.58 0.24 19.51 4.22 7.19

Tunica 2021 -1449 529 919 021 1707 519 881

Washington <019 -13.97 -547 919 028 2514 792 1298
Yazoo 024 -1791 -1016 -1674 029 2707 1222 19.90
Average 023 -1620 -645 -11.12 026 2193 7.09 1190

Note: %Mean denotes percentage change in mean yield considering drought and wet impact respectively. % Variance
(Var) denotes percentage change in variance yield considering drought and wet impact respectively, %Upside (Up) and
%Downside (Down) denotes percentage change in the probability of upside and downside yield risk considering
drought and wet impact respectively.
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Table 4.17 Yield impact results, normal distribution (model 3)

System County Drought 1% Wet 99%
%Mean %Var  %Up %Down %Mean %Var  %Up  %Down
Bolivar 0.22 12.84 249 5.18 -0.26 -13.55  -3.06  -6.62
Coahoma 0.10 6.14 1.22 2.44 -0.24 -13.54  -3.04  -6.23
Holmes 0.28 18.61  4.83 9.16 -0.24 -13.97 -435  -8.55
Humphrey 0.19 13.16  3.58 6.79 -0.24 -1426 -454  -8.86
= Leflore 0.27 17.70  3.57 6.89 -0.23 -13.21  -3.18  -6.40
i Quitman 0.11 6.24 0.99 2.14 -0.26 -1342 240 -537
£
A  Sunflower 0.24 13.67 3.16 6.98 -0.26 -12.80 -342  -7.85
Tallahatchie 0-18 1044  1.38 2.89 -0.29 -14.88 -2.29  -5.01
Tunica 0.13 7.39 1.25 2.61 -0.27 -14.00 -2.69 -5.82
Washington ~ 0.21 14.53  3.61 6.80 -0.21 -12.62  -3.66  -7.10
Y azoo 0.25 17.63  6.08 11.23 -0.25 -15.03  -6.19 -11.70
Average 0.20 1258 292 5.74 -0.25 -13.75 353 -7.23
Bolivar 0.17 12.84 3.83 6.74 -0.20  -1355 471 -8.47
Coahoma 0.08 6.14 2.10 3.51 -0.19 -13.54  -5.21 -8.81
Holmes 0.22 18.60 7.19 11.98 -0.19  -1397 -644  -10.91
- Humphrey 0.16 13.15 4.56 7.56 -0.19  -1427 -5.79 -9.76
gb Leflore 0.21 17.70 4.88 8.21 -0.19  -1321 -4.36 -7.53
E: Quitman 0.08 6.24 1.93 3.33 -0.20 -1342  -4.67 -8.18
Sunflower 0.19 13.67 493 8.88 -0.20 -12.81 -5.34 -9.78
Tallahatchie 013 1049 238 409  -022 -1490 -3.96  -6.99
Tunica 0.09 7.39 2.37 4.05 -0.20  -13.99  -5.09 -8.84
Washington 0.17 14.53 4.83 7.96 -0.17  -12.62  -4.90 -8.22
Yazoo 0.20 17.63 8.30 13.57 -020  -15.04 -839  -13.82
Average 0.15 12.58 4.30 7.26 -0.19  -13.76  -5.35 -9.21

Note: %Mean denotes percentage change in mean yield considering drought and wet impact respectively. % Variance
(Var) denotes percentage change in variance yield considering drought and wet impact respectively, %Upside (Up) and
%Downside (Down) denotes percentage change in the probability of upside and downside yield risk considering
drought and wet impact respectively.

Model 3 revenue impact

Following the same revenue estimation procedure as discussed for model 1 under

normality, yield impacts are converted into revenue impacts and results discussed as
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follows for all counties used in the study. Figures 4.55 — 4.65 show plots of revenue
impacts for model 3. On each plot region, there are separate graphs for dryland acreage
and irrigated acreage. On the y-axis for each graph are upper and lower revenue ranges,
and on the x- axis is a range of prior precipitation values. For each of the graphs, the first
six bars indicate drought percentiles, the middle single bar denotes mean percentile and
the last six bars denote the wet percentiles. The first six bars move from severe drought
(1% percentile) to less severe drought (25" percentile) while the last six bars move from
less excessive moisture to excessive moisture. The mean bar is at the 50 percentile, and
we compare severe drought and excessive moisture impact to it. It can be seen that there
is not much distributional difference from severe drought percentiles to less drought
percentiles, and drought impacts on revenue ranges are below the mean revenue
distributions for dryland acreage. On the other hand, there exist observable distributional
differences as wet climate moves from less moisture to excessive moisture plus revenue
ranges are either equal or above the mean revenue for dryland acreage. Results for
irrigated acreage follow the same pattern with major differences across production
systems lying in the upper and lower revenue boundaries. Thus for irrigated acreage,

irrigation provides a buffer for the revenue impact.
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Figure 4.56 Dry and irrigated land revenue impact for Bolivar, (model 3)
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Figure 4.57 Dry and irrigated land revenue impact for Coahoma, (model 3)
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M3 Holmes, Dryland M3 Holmes, Irrigated
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Figure 4.58 Dry and irrigated land revenue impact for Holmes, (model 3)
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Figure 4.59 Dry and irrigated land revenue impact for Humphrey, (model 3)
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Figure 4.60 Dry and irrigated land revenue impact for Leflore, (model 3)
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Figure 4.61 Dry and irrigated land revenue impact for Quitman, (model 3)
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M3 Sunflower, Dryland M3 Sunflower, Irrigated
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Figure 4.62 Dry and irrigated land revenue impact for Sunflower, (model 3)
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Figure 4.63 Dry and irrigated land revenue impact for Tallahatchie, (model 3)
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M3 Tunica, Dryland M3 Tunica, Irrigated
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Figure 4.64 Dry and irrigated land revenue impact for Tunica, (model 3)

M3 Washington, Dryland M3 Washington, Irrigated
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Figure 4.65 Dry and irrigated land revenue impact for Washington, (model 3)
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M3 Yazoo, Dryland M3 Yazoo, Irrigated
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Figure 4.66 Dry and irrigated land revenue impact for Yazoo, (model 3)

Model 3 results under lognormality

Here again, we relax the normality assumption as a robustness check by holding
prior precipitation variables at the 1 and the 99" percentiles for drought and wet climate
respectively. Under lognormality assumption, generated densities show positive skewness
and some distributional differences in the variance of dryland acreage average, drought,

and wet precipitation density results.
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Irrigated and dryland lognormal yield distribution for Bolivar, (model 3)
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Figure 4.69
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Figure 4.71

.04+

Log-Normal Density
o o

N w

1 1

o
=
|

o -

T T T T
50 100 150 200

Cotton Yield,10Ibunits

Avgprecip—Wetprecip
Droughtprecip

M3 Quitman, Irrigated

Figure 4.72
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Irrigated and dryland lognormal yield distribution for Leflore, (model 3)
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M3 Sunflower, Irrigated
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Figure 4.73  Trrigated and dryland lognormal yield distribution for Sunflower, (model 3)
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Figure 4.74 TIrrigated and dryland lognormal yield distribution for Tallahatchie, (model 3)
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Figure 4.77 TIrrigated and dryland lognormal yield distribution for Yazoo, (model 3)

For yield impact, acreage weighted average of the drought climate county level
impact on mean (variance) yields are 0.32% (-11.84%) for dryland and -1.23 % (-26.5%)
for irrigated land. Surprisingly, we see that severe drought is associated with a small
increment of about (0.32%) in mean yield and excessive moisture is associated with a
small reduction of (0.89) in mean yield for dryland result but the sign reverts under
irrigated land, a deviation from the within season models already discussed when holding
precipitation variable at range of late precipitation percentiles. The acreage weighted
average of the drought climate county level impact on upside (downside) yields are -
7.84% (-1.62%) for dryland and -3.32 % (-25.39%) for irrigated acreage. From Table
4.18, acreage weighted average of wet climate impact on the mean (variance) yields are -
0.89% (41.88%) and 3.37% (146.53%) while impact on upside (downside) yields are

20% (4.15%) and 17 % (55.6%) for dryland and wet climate respectively. It is interesting
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to note for dryland results that wet is associated with a small reduction of approximately

0.9 percent in mean yields.

Table 4.18 Yield impact results, lognormal distribution (model 3)

System County Drought 1% Wet 99%
%Mean %Var  %Up %Down %Mean %Var  %Up %Down
Bolivar 0.33 -11.66  -7.22 -1.27 -0.95 42.78 18.94 341
Coahoma 0.30 -11.21 -7.27 -1.51 -0.96 46.85 2145 454
Holmes 0.32 -12.52  -841 -1.92 -0.79 39.06 19.15 443
Humphrey 0.33 -13.08 -9.70 -2.38 -0.79 40.07 21.64 541
= Leflore 0.33 -1241  -7.17 -1.38 -0.82 39.60 16.51  3.18
—i Quitman 0.33 -11.12  -6.05 -0.82 -1.08 48.19 18.21 247
Z
A Sunflower 0.37 -12.25  -8.82 -1.47 -0.94 39.43 20.64  3.65
Tallahatchie 0-35 -12.13  -5.35 -0.50 -0.98 44.04 13.69 1.09
Tunica 0.29 -1043  -5.66 -0.85 -0.98 44.77 17.30  2.57
Washington ~ 0.30 -12.03  -8.47 -2.13 -0.64 32.30 17.35 441
Y azoo 0.28 -11.35  -12.17  -3.60 -0.81 43.61 35,51 10.54
Average 0.32 -11.84 -7.84 -1.62 -0.89 41.88 20.04 4.15
" Bolivar  -127 2615 247 2376 362 15060 1511 5138
Coahoma -1.14 -2522  -3.51 -25.57  3.63 169.96 20.39 64.21
Holmes -1.27 -27.82  -3.97 -27.48  3.09 134.09 16.75 53.74
Humphrey -1.32 -2894 -4.15 -2830 3.14 138.06 17.06 53.19
:g Leflore -1.29 -27.83  -3.10 -22.28  3.19 13432 13.80 41.27
%D Quitman -1.20 -25.10  -2.53 -22.52 395 175.56 17.47  55.05
=

Sunflower  -142  -27.03 -1.63  -2885 358 13732 1331 5874
Tallahatchie -130 2740 239  -1801 344  149.14 1286 3435

Tunica 2109 -2376  -2.61  -2067 3.6l 159.08 1639  51.85
Washington -118 2695 -428 2543 255 10548 1427 4527
Yazoo .10 22502 -5.85 3642 327 15821 2951 10245
Average 123 -2648 332 2539 337 14653 1699 5559

Note: %Mean denotes percentage change in mean yield considering drought and wet impact respectively. % Variance
(Var) denotes percentage change in variance yield considering drought and wet impact respectively, %Upside (Up) and
%Downside (Down) denotes percentage change in the probability of upside and downside yield risk considering
drought and wet impact respectively.
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Tables 4.20 - 4.22 below report yield impact results for the less severe drought
and excessive rain scenarios. Contrary to the earlier discussed model 3 normal yield
impact results, in Figure 4.22 when prior precipitation is held at the 15 and the 85"
percentiles for drought and irrigated acreage, drought generates extremely small
reduction in mean yields (0.17), a small increment in variance (6.90), which causes
upside risk to increase by 4.17 percent and downside risk to increase by 0.91 percent. On
the other hand, wet generates an extremely small increment in mean yield of about 0.21
and rather a relatively large reduction in variance (-8.01), which causes a reduction in
upside and downside risk of about -5.18 percent and -1.07 percent respectively for
dryland acreage. On irrigated acreage however, drought causes a small increment in mean
(0.64%) and a relatively large increment in variance (18.67%), which causes a slight
increment in upside risk (2.56) and an increment in downside risk of about 12.89 percent.
Conversely, wet causes a reduction in mean yields by 0.82% percent and a rather large
reduction in the variance of about 18.66 percent, which subsequently causes a small

reduction in upside risk (-16.76) and a rather large reduction in downside risk.
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Table 4.19  Yield impact results, lognormal distribution (model 3)

System County Drought 1% Wet 99%
%Mean %Var  %Up %Down %Mean %Var %Up %Down
Bolivar 0.28 978  -597  -1.05 044 1770 9.00 1.6l
Coahoma 0.24 921 -58% -122  -040 1750 938 198
Holmes 0.30 -11.56 =771 =176 -047 2169  11.68  2.69
Humphrey (.31 -1227  -9.05 -222  -042 1950 1175 2.92
g Leflore 0.30 -1138 =652 -1.26 034 1491 714 138
-; Quitman 0.27 927  -497  -0.68 036 1384 633  0.87
2 Sunflower 3] -1034 734 -1.23 -0.40 1498 899 1.6
Tallahatchie (27 970 420  -0.39 -0.44 18.05 647  0.56
Tunica 0.28 21011 =547 -0.82 -0.51 2140 939 141
Washington 29 -11.66  -8.19  -2.06 -0.36 1680 9.83 249
Yazoo 0.28 -1134 -12.17  -3.60 046 2274 2039  6.03
Average 0.28 -10.60  -7.04  -148  -042 1810  10.03 2.14
Bolivar -1.05 2239 =219 -19.61  1.66 5205 569  27.13
Coahoma 092 2117 298 2071 153 5145 714 3125
Holmes -1.16  -2596 373 -25.19 185 6577  9.00  35.07
- Humphrey 124 2740 -394 -2639 1.67 58.04 8.00 3138
gb Leflore -1.18  -2579 290 2023 135 4265 487  20.03
E: Quitman 099 2135 -221  -1847 131 39.44 445 2203
Sunflower  _119 2334 -1.55 -24.04 151 4333 425  27.99
Tallahatchie .1 02 2244 201  -14.00 1.65 5261 491  18.70
Tunica -1.05  -23.10 =255 -1997  1.90 64.66 738  31.03
Washington  _1 14 2622 -4.17 2458 142 4891 721  27.28
Yazoo 2110 2501 -5.85  -3641  1.86 7072 14.83  62.15
Average -1.10 -24.01 -3.10 22,69 1.61 53.60  7.07 3037

Note: %Mean denotes percentage change in mean yield considering drought and wet impact respectively. % Variance
(Var) denotes percentage change in variance yield considering drought and wet impact respectively, %Upside (Up) and

%Downside (Down) denotes percentage change in the probability of upside and downside yield risk considering
drought and wet impact respectively.
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Table 4.20 Yield impact results, lognormal distribution (model 3)

System County Drought 1% Wet 99%
%Mean %Var  %Up %Down %Mean %Var  %Up %Down
Bolivar 0.25 -8.79 -5.33 -0.94 -0.25 9.73 5.20 0.93
Coahoma 0.23 -8.69 -5.53 -1.15 -0.30 12.71 7.01 1.48
Holmes 0.28 -10.89  -7.23 -1.65 -0.31 13.63 7.69 1.77
Humphrey 0.26 -10.49  -7.63 -1.88 -0.29 13.31 8.31 2.06
= Leflore 0.27 -1047  -5.95 -1.15 -0.27 11.48 5.62 1.09
—i Quitman 0.26 -8.85 -4.73 -0.65 -0.30 11.42 5.30 0.73
Z
A Sunflower 0.29 -9.75 -6.89 -1.16 -0.27 10.05 6.21 1.07
Tallahatchie 0-26 -9.37 -4.04 -0.38 -0.27 10.57 3.97 0.35
Tunica 0.23 -8.45 -4.52 -0.68 -0.24 9.30 4.40 0.66
Washington 020 -8.13 -5.57 -1.41 -0.29 13.50 8.05 2.04
Y azoo 0.25 -10.52  -11.23  -3.32 -0.31 14.51 13.55 4.00
Average 0.25 -9.49 -6.24 -1.30 -0.28 11.84 6.85 1.47
 Bolivar 094 2033 2.02 -1747 095 2678 295 1615
Coahoma -0.87 -20.10  -2.84 -19.48 1.14 35.94 5.07 23.73
Holmes -1.09 -24.64 -3.55 -23.62 1.20 38.76 5.49 23.78
Humphrey -1.05 -23.87 -3.47 -22.24 1.17 37.73 5.34 22.74
:g Leflore -1.08 2394 271 -18.43 1.05 31.96 3.69 16.00
%D Quitman -0.94 -20.48  -2.13 -17.58 1.09 31.89 3.60 18.62
=

Sunflower  -1.12 2216 -1.51  -22.57 104 2786 268  19.66
Tallahatchie 099 2173 -195  -1346 100 2913 276  11.95

Tunica -0.87 -19.64 -2.20 -16.45  0.87 2549 299 15.23
Washington -0.78 -18.98  -3.03 -16.67 1.16 38.29 5.74 22.63
Y azoo -1.02 -23.45  -5.49 -33.76 1.23 42.09  9.20 41.89
Average -0.98 -21.76  -2.81 -20.16  1.08 3326  4.50 21.12

Note: %Mean denotes percentage change in mean yield considering drought and wet impact respectively. % Variance
(Var) denotes percentage change in variance yield considering drought and wet impact respectively, %Upside (Up) and
%Downside (Down) denotes percentage change in the probability of upside and downside yield risk considering
drought and wet impact respectively.
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Table 4.21 Yield impact results, lognormal distribution (model 3)

System County Drought 1% Wet 99%
%Mean %Var  %Up %Down %Mean %Var  %Up  %Down
Bolivar -0.18 7.06 3.83 0.68 0.22 -7.88 -475 -0.84
Coahoma -0.08 3.42 2.00 0.42 0.21 -7.88 -498  -1.04
Holmes -0.23 10.11 5.83 1.34 0.21 -8.14 -530 -1.21
Humphrey -0.16 7.23 4.68 1.16 0.21 -8.31 -596  -1.47
= Leflore -0.23 9.63 4.77 0.92 0.20 -7.68 -4.28  -0.83
—i Quitman -0.09 3.47 1.70 0.23 0.22 -7.81 -4.14  -0.57
£
R Sunflower -0.21 7.50 4.71 0.81 0.22 -7.44 -5.17  -0.87
Tallahatchie -0-15 5.78 2.24 0.20 0.24 -8.70 -3.73  -0.35
Tunica -0.11 4.11 2.01 0.30 0.23 -8.15 -4.35  -0.65
Washington ~ -0-18 7.96 491 1.24 0.18 -7.32 -4.99  -1.26
Y azoo -0.21 9.61 9.20 2.71 0.21 -8.78 -9.28  -2.74
Average -0.17 6.90 4.17 0.91 0.21 -8.01 -5.18  -1.07
© Bolivar 070 1899 208 1204  -0.84  -1841 -1.85 -1554
Coahoma 0.32 8.91 1.28 6.94 -0.78 -1837 -2.60 -17.54
Holmes 0.91 2791  4.01 18.23 -0.80 -1895 276 -17.28
Humphrey 0.66 1946  2.81 13.08 -0.82 -19.35  -2.83  -17.32
:g Leflore 0.89 26.41 3.06 13.69 -0.78 -18.05 -2.08 -13.14
%D Quitman 0.35 9.05 1.02 6.13 -0.83 -1825  -1.92  -15.35
-
Sunflower 0.78 20.32 1.92 15.02 -0.84 -17.35  -1.28  -16.93
Tallahatchie 0.56 1534 146 6.92 -0.91 -20.31  -1.83  -12.40
Tunica 0.40 10.76  1.27 7.08 -0.84 -19.01  -2.13  -15.83
Washington 0.70 21.56  3.31 14.08 -0.70 -17.23 275 -14.90
Y azoo 0.83 26.66  5.96 28.59 -0.84 -20.00 -4.69  -28.11

Average 0.64 18.67  2.56 12.89 -0.82 -18.66 -2.43  -16.76

Note: %Mean denotes percentage change in mean yield considering drought and wet impact respectively. % Variance
(Var) denotes percentage change in variance yield considering drought and wet impact respectively, %Upside (Up) and
%Downside (Down) denotes percentage change in the probability of upside and downside yield risk considering
drought and wet impact respectively.

For a pre-season precipitation effect, normality was still a poor distributional
assumption as there is evidence of positive skewness when symmetry assumption was

relaxed by assuming a lognormal distribution. Generally it can be observed that severe
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drought generates extremely small increment in mean and relatively high reduction in
variance, which causes a reduction in upside risk and very small reduction in downside
risk for dryland acreage. Excessive moisture on the other hand causes a small reduction
in mean and a rather high increment in variance, which causes a very small impact on the
downside risk for dryland acreage. On irrigated acreage, however, severe drought causes
a small reduction in mean and a high reduction in variance, and this reduction causes
approximately the same reduction in downside risk. Excessive moisture causes an
increment in mean and very high increment in variance, which causes a relatively high
increment in downside risk. Generalizations from model 3 show that relaxing the
skewness constraint affects density results. For yield impacts, results show that with the
exception of mean, drought (wet) is associated with a reduction (increment) in variance,
upside and downside risk for higher percentiles but at lower percentiles the reverse

occurs.
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CHAPTER V

CONCLUSIONS

With recent declination in cotton production as a result of changing climate and
other economic forces, this study generally uses regression analysis to examine the effect
of late season precipitation on cotton yield distribution. The study is motivated by the fact
that rainfall occurring near anticipated harvest dates might cause substantial reductions in
realized yields.

The empirical model used in this research extends regression models of previous
studies Antle (1983, 2010) and Tack et al., (2012) by using Antle’s Linear Moment
Model (LMM) and Schlenker and Roberts’ (2006 2009a) weather data. Differently from
these studies, the precipitation variable is split into early and late season in order to
isolate late-season effect. County level upland cotton yield data is obtained from NASS
that spans 1972-2005 from 11 counties in Mississippi. The relatively short time series
yield data is because NASS began distinguishing between irrigated and non-irrigated
acreage in 1972, and the differences allow us to measure irrigation effects across the two
production methods. The modeling process establishes a relationship between yield,
weather, irrigation variables and trend. In order to estimate the variation in yield caused
by late precipitation, the impact of the trend was eliminated from the data by including

the trend variable in the regression model.
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Utilizing a normal distribution assumption and a lognormal distribution as a
robustness check, we estimate the first two moments and use these moments as
constraints in a maximum entropy framework to generate densities. Late season drought
and late season wet climates are generated by holding all estimated parameters at their
means except the late precipitation variable (for within season precipitation effect) and
prior precipitation (pre-season precipitation effect) variable at specific percentiles for a
range of precipitation values. Normality is not a good distributional assumption for
generated densities as there was evidence of skewness under lognormality.

This research estimates the impact of late season drought and excessive rain on
the yield distribution considering mean, variance, upside, and downside risk and report
effects on only dry and irrigated acreage.

In general for both within season and pre-season precipitation effect, we find that
late season drought reduces mean yields fairly homogenously across counties for both
dryland and irrigated acreage, with the effect on dryland percent higher than the effect on
irrigated. Interestingly, drought is associated with an overall reduction in variance, which
implies that there is a shrinking of the uncertainty surrounding the negative mean
impacts. This effect is significantly dampened by the use of irrigation, as the dryland
variance impacts are roughly larger on average. For both production types, the shift in
variance is coupled with an exchange of upside risk for downside risk, thus implying that
the variance reduction alone masks an important effect of the absence of late season
precipitation. Surprisingly, this shift is much more pronounced for irrigated acreage.

In contrast to the drought findings, late-season excessive rain has the exact

opposite effect on the yield distribution. Our results for the wet climate scenario suggest
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increased mean yields across counties for both production types, with the effect being
higher on dryland acreage compared to irrigated acreage. This is at odds with previous
research that found that excessive late-season precipitation reduced yields due to induced
harvesting inefficiencies. It is possible that we are inappropriately measuring the late
season (i.e., one full month might be too big of a window) or that the LMM model is
inappropriately specified. Future work will address this issue by considering

1. alternative measurements of precipitation e.g. biweekly

2. alternative distributional assumptions e.g. beta distribution

3. the agronomy and morphology of the cotton plant

Additionally we find that the values at which late precipitation variable is held in
order to create the drought and wet scenarios influence their impact on mean variance
upside and downside risk. At severe drought (1) and excessive moisture (99") percentile
drought (wet) is associated with a reduction (increment) in mean variance upside and
downside risk. However, at the 15" (85™) percentile for drought (wet), drought impact
were positive while wet impacts were negative on mean, variance, upside and downside
yield risk; although generally drought (wet) is associated with a reduction (increment) in
mean, variance, upside and downside yield risk.

Yield impacts are converted to revenue impacts using the mean and variance of
lognormal distribution. We find that there are no distributional differences moving from
severe drought to less drought and slight distributional differences moving from less
moisture to excessive moisture. Revenue impact on irrigated acreage is higher than
revenue impact on dryland acreage. It is interesting to note that this study did not

consider yield quality and cost of irrigation in the modeling process. In any case, this
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analysis makes no claim to finality but is intended to direct some attention to some
promising lines of further research.

The findings from this research have important empirical and policy implications
for accurate modeling of yield distributions for risk management purposes. First, the
framework of this research will help guide future studies that seek to link late
precipitation events to cotton and other agricultural crop production. This research also
adds to the existing body of literature that asserts that it is not enough to solely rely on the
variance for estimating insurance policy as we demonstrate in yield impact estimation

that reduction in variance affect upside and downside risks values.
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APPENDIX A

EFFECTS OF WEATHER AND IRRIGATION ON COTTON YIELD MOMENTS
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Dependent Variable: Yield Log(Errors)
Early Precipitation -0.0191 0.0329%**
[0.0706] [0.0102]
Mid Precipitation -0.0823 -0.00102
[0.0841] [0.0134]
Late Precipitation 0.190 0.0985%**
[0.119] [0.0167]
Irrigation* Early Precipitation 0.0193 -0.0212
[0.109] [0.0200]
Irrigation* Mid Precipitation -0.255% -0.00135
[0.135] [0.0245]
Irrigation* Late Precipitation -0.0941 -0.0687**
[0.166] [0.0322]
Low Temperature -0.0435 -0.0329%***
[0.0443] [0.00556]
Medium Temperature 0.0840%** 0.00347*
[0.0122] [0.00197]
High Temperature -0.678*** -0.0171%*
[0.0642] [0.00813]
Irrigation* Low Temperature 0.0369%** 0.000188
[0.00977] [0.00165]
Irrigation* Medium Temperature -0.0483%** 0.000372
[0.0153] [0.00267]
Irrigation* High Temperature 0.260%** 0.00214
[0.0840] [0.0141]
Trend 0.523%** 0.0137
[0.0568] [0.0105]
County Fixed Effects Y Y
Mean of Dependent Variable 73.983 3.781
Number of observations 612 612
R-squared values 0.5740 0.1051

Notes: Tables shows results of regressing yield and Inyield on weather, trend and irrigation variables
clustered at the county level are in brackets. *, ** and *** denotes significance at the 10% 5% and 1%

levels.
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