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Recently, there has been an increase in the deployment of Phasor Measurement 

Units (PMUs) which has enabled real time, wide area monitoring of power systems. 

PMUs can synchronously measure operating parameters across the grid at typically 30 

samples per second, compared to 1 sample per 2-5 seconds of a conventional Supervisory 

Control And Data Acquisition (SCADA) system. Such an explosion of data in power 

systems has provided an opportunity to make electrical grids more reliable. Additionally, 

it has brought a challenge to extract information from the massive amount of data. 

In this research, several data mining algorithms are used to extract information 

from synchrophasor data for improving situational awareness of power systems. The 

extracted information can be used for event detection, for reducing the dimension of data 

without losing information, and also to use it as heuristic to process future measurements. 

The methods proposed in this research work can be broadly classified into two 

parts: a) stream mining and b) dimension reduction. Stream mining algorithms provide 

solution utilizing state-of-the-art data stream mining algorithms such as Hoeffding Trees 

(HT). HT algorithm builds a decision tree by scanning the incoming data stream only 



 

 

once. The tree itself holds sufficient statistics in its leaves to grow the tree and also to 

make classification decisions of incoming data. Instead of using a large number of 

samples, which leads to a tree too large to accommodate in memory, the number of 

samples that are needed to split at each node is determined using Hoeffding bound (HB). 

HB keeps the size of the decision tree within bounds while also maintaining accuracies 

statistically competitive to traditional decision trees. 

Dimension reduction algorithms reduce dimension of the synchrophasor data by 

extracting maximum information from a huge data set without losing information. In this 

dissertation, both online and offline dimension reduction algorithms have been studied. 

The online dimension reduction uses an unsupervised method using principal components 

of the time series data. The offline method optimizes unique mutual information between 

the state of the power system and synchrophasor measurements. It optimizes the criteria 

by reducing redundant information while maximizing relevant information. 
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CHAPTER I 

INTRODUCTION 

Background 

The electric grid is considered by some to be the greatest engineering 

achievement of the 20th century [1]. However, even the 99.97% reliability of the present 

electrical system is not enough to prevent $150 billion in losses from outages and 

interruptions [2]. With the increasing dependence of human enterprises on electrical 

energy, grid reliability has emerged to be one of the most important factors in economic 

security. Unfailing reliability is a formidable challenge and is highly dependent upon the 

delicate balance of instantaneously matching generation to load. The facts that electrical 

energy cannot be stored in large scale, is dependent upon an indefinable real-time user 

demand profile, and is governed by laws of physics make it one of the most complicated 

systems to control. It is a formidable technological challenge to maintain a continuous 

supply of high quality energy from generation facilities to a consumer’s appliances. 

Very little has changed in the operation of a power system since it was invented in 

the 1880s [2]. Generation is still primarily fossil fueled with centralized plants, tariffs are 

still dominated by simplistic rate structures, and consumers still have little knowledge 

about the status of the grid [2]. With the enactment of the Energy Independence and 

Security Act of 2007 [3] there began a move toward making the future electric grid more 

efficient, environmental friendlier and more reliable by using modern technologies. The 
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electricity industry is on the verge of a major paradigm shift (smart grid) in its operations 

by the joint efforts of utilities, industry, universities and the government.  

The smart grid initiative envisions several goals for the future electric grid. First, 

the integration of renewable energy sources into the grid. Second, a two way exchange of 

information (e.g., real time tariffs) between utilities and consumers so that appliances can 

smartly shift their load to cheaper off-peak hours. Third, consumers not only consume 

energy, but also can produce and sell energy produced with photovoltaic (PV) cells 

mounted on their roofs or wind turbines on their property or even from an electric vehicle 

parked in their garage. All of these distributed sources of generation may help utilities to 

meet energy demand in peak hours [1]. The annual cost of meeting the demand of the 

highest 100 peak demand hours is about 10-20 percent of the entire electricity generation 

cost for the year. The measures to meet peak energy demand envisioned in the smart grid 

can save utilities billions of dollars in a single year in terms of transmission line 

congestion cost, savings in construction of new generation plants, etc [4]. The 

improvement of operation of the power system will have a profound impact on many 

areas of society; it has been viewed as having a similar impact as the interstate highway 

system had in the 1960s [5].  

Utilities need to maintain balance between load and generation to maintain 

reliable operation of the power system. The integration of renewable energy sources, de-

regularization, and two way communications between consumer and utilities make 

operation of the power system extremely complicated to handle. Currently, power system 

operations depend on preventive measures that would help the system sustain forecasted 

contingencies without losing synchronism of generators or voltage stability. The 
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contingency-based model of protection may not be reliable in a grid where a significant 

portion of energy is supplied by variable energy sources; such as wind and/or solar. A 

real time awareness of the system is required so that corrective actions could be taken if 

any condition, which may lead to instability, is detected [4]. 

Motivation 

Various control and protection schemes have been designed to control a wide 

range of dynamic phenomena of the power system. Some characteristics are of a very fast 

changing behavior and may last only a few milliseconds while others are slow moving 

characteristics [6]. In the case of fast moving phenomena, conventional control and 

protection mechanisms take over the decision making process without human 

intervention in the loop (reaction time is less than 100 milliseconds). For long term 

stability issues, operators usually have enough time to study historical data patterns, run 

simulations and consult their team before making any crucial decisions. But, there are 

times between these two extremes in which operators have to use their own judgment to 

act on certain conditions and this often happens when there is insufficient information 

available to support their decisions [7]. Figure 1 shows response timing requirements for 

different events in power systems. 
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Figure 1 Timing requirement for different events [7] 

 

Most of the control mechanisms are based on local measurements while most of 

the system’s dynamic behavior depends upon the broader status of the power system 

(regional or system-wide) [6]. The increasing trend in the deployment of Phasor 

Measurement Units (PMUs) has enabled the power industry to have a wide area 

monitoring capability consistent with the scope of the dynamic behavior drivers. PMUs 

can synchronously measure operating parameters across the grid typically at 30 samples 

per second, compared to 1 sample per 2-5 seconds of a conventional Supervisory Control 

and Data Acquisition (SCADA) system. The availability of time synchronized high speed 

data from a suitably placed network of PMUs can capture the dynamic performance of 

the power system, which is not possible with conventional SCADA systems. A Wide 

Area Monitoring System (WAMS) acquires Global Positioning System (GPS) 

synchronized current, voltage and frequency measurements via optimally placed PMUs 

for maximum observability [8] (see Figure 2). The measured quantities include both 

magnitudes and phase angles, and are time-synchronized via GPS receivers with an 

accuracy of one microsecond. The time aligned measurements from the WAMS gives a 
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snapshot of power system operations at any given time, so that both dynamic real time 

monitoring and post event analysis of the power system can accurately be done. 

 

Figure 2 Wide area monitoring of power systems 

 

In the past, Wide area monitoring parameters, such as phasor angles, could only 

be estimated after numerous iterations of power flow solutions, but they can now be 

directly measured with PMUs. The investigation of the August 14, 2003 blackout pointed 

out that the blackout could have been prevented if phasor data had been monitored. A 

number of clues surrounding the blackout were missed due to a lack of infrastructure to 

provide operators awareness of the severity of the situation. The phasor angle difference 

between Cleveland and Michigan, as shown in Figure 3, showed a significant divergence 

from normal. If this divergence had been detected in time, then proper actions may have 

prevented the entire blackout, or at least limited its spread to a smaller area [9]. 
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Figure 3 Angle separation between Cleveland and West Michigan on August 14 
2003 [9] 

 

PMUs have empowered industry with the capability of monitoring grid health 

parameters in real time. However, it is a challenge to extract information from a high 

speed data stream for situational awareness inside the control room. Typically, off-line 

mathematical calculations (e.g., power flow solution) are considered to be reliable for 

forecasting/predicting behavior of power system. However, the time required for 

mathematical calculations makes this approach infeasible for real time situational 

awareness applications. As an alternative to the accurate mathematical model, researchers 

have been studying different machine learning techniques that will help predict events on 

the grid within an actionable time frame. 

The use of machine learning techniques is not a recent development in power 

system research rather it has been studied since 1960s [10]. Several machine learning 

techniques such as Support Vector Machines (SVM) [11-15], Artificial Neural Network 

(ANN) [16-21], and Decision Trees (DT) [22-26] have been used for several applications 
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of static/dynamic security assessment and fault detection/classification. The accurate use 

of machine learning in predicting behavior of highly nonlinear, complex physical 

phenomena of large dynamic systems (such as power system) can have a significant 

contribution, particularly in the case of real time situational awareness applications where 

a compromise between accuracy and speed is needed. 

Objectives 

Phasor measurement units (PMUs) provide a continuous stream of time 

synchronized data about grid operating parameters. The synchronization of data enables 

operators to see a snapshot of the status of the power system in real time. It also helps in 

post event analysis to provide insights into exact cause of an event/outage which was not 

possible with traditional SCADA systems. 

As synchrophasor data is becoming more available, power system researchers are 

experimenting with new ways of utilizing the continuous stream of data to enable more 

reliable, efficient and green decisions. A number of publications can be found (See 

Chapter 2) on using machine learning and pattern recognition methods to speed up event 

detection and classification in power systems. In this dissertation work, information 

extraction methods for synchrophasor data using different machine learning and pattern 

recognition methods are studied.  

Traditional machine learning algorithms are designed to work on a small amount 

of data; predictive models are created with multiple scans of training data [27]. Models 

created using this approach can represent search space in available memory at an 

acceptable computational requirement for recall. The traditional algorithms for machine 
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learning may not be appropriate for continuous streams of synchrophasor data because of 

the following reasons 

 Massive Data: PMUs give a stream of data at 30 samples per second. 

Generally, the operation of the power system is considered in a period of 

24 hours, which comprises of more than two million daily samples of data 

for each monitored parameter for each PMU deployed. The amount of data 

increases exponentially as more PMUs are deployed. The models created 

by traditional data mining algorithms increase in size and computational 

efficiency of recall degrades, negating the advantage of using machine 

learning algorithms instead of analytical methods. 

 Dynamic Behavior of Power System: The power system is a very dynamic 

system. Operating Conditions (OC) of the power system change all the 

time. Even events such as opening of breakers change OC of power 

system. Traditional machine learning algorithms learn a model and make 

predictions. The learned knowledge is not easily updated without 

“forgetting” the previously learned knowledge and retraining the model. 

This approach would be impractical and very difficult to pursue in a 

dynamic system like the electric grid. An incremental learning method 

which can adapt to changing conditions without unlearning previously 

acquired knowledge is required. 

Stream mining algorithm is a new approach to real time data mining of 

continuous streams of data similar to the synchrophasor data stream. This method creates 

a model of the system being emulated that can fit into memory and be recalled within 
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acceptable latency criteria regardless of the number of training examples. In addition, this 

method also sought an incremental learning method to comprise the dynamicity of 

behavior of the system by updating the learned model frequently without forgetting 

previously learned knowledge.  

One of the major objectives of this work is to prove the effectiveness of data 

stream mining algorithms for event detection in power systems. Synchrophasor data from 

controlled simulations will be used to detect events such as single line ground faults 

(SLG), Line to Line (L-L) faults and three phase faults (3Φ) and classify events 

accurately.  

A typical PMU can measure about 18 parameters including phase voltage, phase 

current, frequency, sequence voltage, sequence currents, etc. Synchrophasor data are 

meant to be processed as a vector rather than as a scalar for synchronization purposes. 

The dimensionality of synchrophasor data exponentially increases as PMU deployment 

increases. The performance of machine learning algorithms can seriously be impaired 

because of “curse of dimensionality” associated with synchrophasor data. A number of 

dimensionality reduction algorithms are being used in a variety of applications, but most 

of them are applied on data already available. Very few dimensionality reduction 

algorithms are designed to work with data streams. Most algorithms are not designed to 

be run in real-time. Online dimension reduction will enable the processing of 

synchrophasor data in a less computationally extensive manner and to be more efficient 

with memory without the loss of much information. It is a real time compression of 

synchrophasor data. In this work, my objective is to use real time dimensional reduction 



 

10 

algorithms for synchrophasor data so that the storage, transfer and analysis of data 

become computationally efficient without trading off the underlying information. 

A variety of measurements, such as zero sequence current/voltage, positive 

sequence current/voltage, negative sequence current/voltage, phase (A, B and C) 

current/voltage, frequency, rate of change of frequency etc are available from each phasor 

measurement units. These parameters being measured by the PMU are the features for a 

classification problem. As the number of deployed PMUs increase, the number of 

features under consideration for a classification problem increases rapidly. All the 

measured parameters may not be equally important for a classification problem, 

depending upon the target classes (faults/contingencies).  

Contributions 

The following contributions result from this dissertation 

1. Ascertain effectiveness of data stream mining algorithms for event 

detection in power systems.  

2. Develop and quantify efficacy of an online feature reduction algorithm 

based on principal component analysis for real time compression of 

synchrophasor data.  

3. Develop methodology for using all data points from phasor measurement 

units for decision making without exceeding memory and computational 

limitation of computational resources.  

4. Identify and analyze correlation between measured synchrophasor 

parameters such as voltage, phase angle and current. 
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Dissertation Outline 

This dissertation is organized into the following parts: 

 Chapter I: This chapter introduces the problem and also discusses the 

basic properties of future smart grid perceived by the industry. It also 

discusses the motivation of this research and the specific problems that 

this dissertation aims to contribute to solve. This chapter outlines the 

objectives of the dissertation and points out the contributions of the 

research conducted. It concludes by listing summary of each chapter of 

this dissertation.  

 Chapter II: This chapter is the literature review of the dissertation. 

Basically it has three parts: use of synchrophasor data in power systems, 

use of machine learning algorithms in power system and different kinds of 

metrics used in evaluating the performance of artificial intelligence 

algorithms. The problem domain of electrical power system requires the 

application of machine learning algorithms on highly unbalanced classes. 

This chapter discusses the problem and solution in evaluating algorithms 

in unbalanced classification problems.  

 Chapter III: This chapter introduces the algorithm used to reduce 

dimension of synchrophasor data. It details the algorithm and discusses 

challenges of applying the algorithm in power system domain and 

proposes solution of working around the problem. Finally it presents the 

results and concludes with future works. This work has been published in 
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the proceedings of 2012 IEEE PES Transmission and Distribution 

Conference held in Orlando, FL from May 7 – 10 2012.     

 Chapter VI: This chapter introduces data stream mining algorithm for 

situational awareness in power systems. It introduces hoeffding tree (aka 

Very fast decision tree) and adaptive hoeffding tree to process 

synchrophasor data for fast event detection. This chapter focuses on 

application of decision tree for quickly detecting events such as line to 

ground faults, by processing massive amount of synchrophasor data within 

reasonable time and statistically competitive accuracy. This chapter 

introduces details of the algorithms, experimental approach and evaluates 

the algorithm based on several meticulously selected experiments to prove 

the usefulness of the algorithm in power system domain. This work has 

been submitted for publication in IEEE Transactions on Smart Grid.  

 Chapter V: This chapter introduces an offline dimension reduction 

algorithm that utilizes optimization of mutual information between state of 

power system and synchrophasor measurements. It proposes an 

optimization criterion that is useful for extraction of information from 

synchrophasor measurements. It finally presents results based on 

clustering of data, an unsupervised method to avoid biases of the 

information extraction method. This work has been submitted for 

publication in the proceedings of the 2012 IEEE International Conference 

on Data Mining.     
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 Chapter VI: This chapter is the final conclusion and discussion of future 

works that can be done to extend the work of this dissertation. It 

summarizes the results obtained from the methodologies used and 

discusses the applications of the algorithms to process the synchrophasor 

data for situational awareness in reasonable amount of time without 

compromising the accuracy of machine learning algorithms to be used in 

next generation smart grid. 
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 CHAPTER II

LITERATURE REVIEW 

Synchrophasor technology can portray the dynamic behavior of a power system in 

real time providing situational awareness information for operators. It can have an impact 

both on online operations and offline network analysis [9]. The spectacular growth in 

technologies in terms of computational power and communication technologies has  

supported the realistic feasibility of real time, wide area monitoring of a power system 

[28]. 

As synchrophasor technology is maturing and getting ready for wide scale 

deployment in North American power grid, a number of researchers have been working 

towards application of synchrophasor data for improving real time operations; post event 

forensic investigation, stability monitoring applications etc. Synchrophasor technology 

provides valuable information about the stability of the grid in time aligned vectors. This 

information is not available with traditional SCADA systems depriving operators wide 

area visibility [9]. 

Phasor data can have several applications which can be broadly classified into 

following categories [9] 

 Decision Support System for real time grid operations 

 Applications for system planning, event analysis and model validation 
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 Control applications for automated control actions based on wide area 

information in addition to local measurements 

Phasor Data Use for Real-Time Operations 

Synchrophasor measurement units provide a wide visibility of the power system 

which was not available with SCADA system, thus, opening new doors for numerous 

opportunities to use phasor data to improve operations of the power system. “It improve 

operators’ ability to see and understand what is happening on the bulk power system, 

anticipate or identify potential problems, and identify, evaluate, implement and assess 

remedial measures” [9] . The conversion of phasor data into actionable intelligence 

without information overload is a huge area of research in the power system research 

community [9, 29]. 

Phase angle differences between two points provide a measure of power flow. 

Instability cannot be measured by simple threshold mechanisms as voltage magnitude 

because it varies widely depending upon system topology. Reference [28] proposes an 

algorithm to detect fast separation of phase angles among critical areas. The proposed 

algorithm works only using synchrophasor data without knowledge of relay status. 

Reference [30] discusses a scheme that can use synchrophasor angle difference as a key 

signal to increase allowable power stability margins. 

At Washington State University, researchers have developed a real time 

oscillation monitoring system (OMS) for detecting the emergence of small-signal 

instability related events in large electric power systems [31, 32]. OMS is designed to 

work on a specific set of rules without any human intervention during analysis. The 
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monitor will thus issue operator alerts or control triggers whenever the damping levels of 

the electromechanical modes of oscillation go below preset thresholds [31]. 

In [33] a synchrophasor based online voltage stability index (VSI) has been 

proposed that predicts steady-state voltage stability limit. The proposed method 

simplifies a large system behind a load bus into a single source and a single transmission 

line using time-synchronized phasor measurements and network parameters. It provides 

voltage stability margin of each individual load bus in an informative format and 

identifies the load bus that is most vulnerable to voltage collapse [33]. This method 

requires a lot of “offline” manipulation of system topology before it can be used in real 

time. In [32], a real time estimation of static system stress margin is provided purely by 

monitoring the PMU measurements. The system stress is classified as normal, alert and 

alarm condition based on calculated stability margin. This method creates a library of 

critical states and their stress levels as training data for a support vector machine (SVM) 

in limited numbers using the generalization capability of SVM to identify stress levels of 

unseen critical states [32].  

In [23], synchrophasor data is used for voltage security assessment using decision 

trees. Generator VARs and angular differences are considered in a decision tree model as 

both are considered as good indicators of voltage security status. A stressed power system 

is characterized by widening angular separation of bus voltage angles as it moves towards 

voltage insecurity [23]. In [34], synchrophasor data are used to detect long term voltage 

stability. Simulation of plausible raw PMU or state estimator outputs data are used by 

adding noise to bus voltages provided by snapshots of detailed time simulation. Each 
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snapshot is fitted into an extended set of equilibrium equations from which efficient 

sensitivity analysis is performed [34]. 

Real Time Dynamics Monitoring Systems (RTDMS) have been developed as a 

framework for phasor based applications that can be used by operators, reliability 

coordinators and engineers to simulate dynamic performance of power system in real 

time. It provides a suite of applications ranging from post event analysis to real time 

monitoring of system metrics related to grid stress, dynamics, and the power systems 

proximity to instability such as to enable utilization of time-synchronized phasor 

measurements for reliability management with overall objective of accelerating the 

adoption and fostering greater use of the technology within North America [35]. 

Several applications of synchrophasor data for monitoring real time operations of 

power system has been proposed and is a very active area of research around the world. 

In this section, a few techniques have been discussed to illustrate the state-of-the-art. 

Many applications of synchrophasor include machine learning algorithms as a part of 

decision making process. Some applications use a machine learning algorithm as a sole 

decision maker while several of them use it in conjunction with analytical methods. In 

this research work, the main focus is to use machine learning algorithms. The next 

section will discuss machine learning algorithms being used in power systems. It is not 

limited to synchrophasor data rather a wide variety of applications are included. 

Machine Learning in Power system 

Machine learning is a branch of artificial intelligence which seeks to imitate 

human learning processes using inductive inference methods through observed examples. 

The main objective of machine learning algorithms is to extend knowledge learned from 
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training samples to make prediction on unforeseen inputs [36] (i.e., generalization). 

Machine learning algorithms learn a function, often non-linear and complicated, mapping 

inputs to output as shown in Figure 4. The training samples of any machine learning 

algorithm are assumed to be an inclusive set of general properties, so that a general 

representative model of a system could be built. 

 

Figure 4 Mapping of input to output by machine learning 

 

Machine learning application in power system have been explored by the research 

community since the 1960s [10]. Artificial intelligence (AI) techniques in conjunction 

with traditional analytical methods comprise a significant number of publications in 

power system community. Artificial Neural Networks (ANN), Support Vector Machines 

(SVM), Expert System (ES), Fuzzy System (FS), Genetic Algorithms (GA) have been 

used on a wide variety of applications in power system such as planning, security 

assessment, power generation optimization, Unit Commitment and Economic Dispatch 

[21, 37-40]. 

The power system has always relied on mathematical calculations/simulations and 

historical data for accurate prediction and forecasting. The industry still heavily relies on 
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preventive model of operation. Generally, the power system operates at a point where it 

can sustain predicted contingencies without any undesired outcome. The safe point of 

operation is generally more expensive to operate on than a relatively “unsafe” point of 

operation [41]. With the integration of renewable energy sources such as wind, solar etc, 

the grid is destined to be pushed towards instability as per current standards [42].  

The deployment of Phasor Measurement Units (PMU) has made real time wide 

area surveillance of power system possible. Instead of existing preventive model of 

operation, the energy industry is exploring possibilities of corrective model of operation 

in which corrective actions are initiated when system is detected heading towards 

instability. In this model, power system can operate closer to its capacity; utilizing 

existing infrastructure such as transmission lines, generators etc, instead of building new 

ones, thus, saving billions of dollars. 

Real time monitoring of power system requires fast event detection technology, 

which can process synchrophasor data in real time to predict events. The traditional 

analytical methods do not provide enough speed in detection of events; though they 

provide excellent accuracy. Machine learning techniques are designed to emulate 

complex mathematical systems, such as power system, within reasonable latency times 

between input and output. Many researchers have used machine learning algorithms to 

replace simulations for fast decision making. 

Power Quality Assessment 

Power quality is a major concern for electrical utilities. It affects efficiency and 

life of consumer electronics. With more and more electronics device becoming part of 

customers day to day life, many utilities have started to have a dedicated power engineer 
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to tackle issues of quality of power delivered to customers [43]. Electric Power Research 

Institute (EPRI) estimates that the US economy is annually losing between $15-$24 

billion dollars to power quality issues [44]. Researchers have used several Artificial 

intelligence techniques to identify disturbances to help utilities to improve power quality 

issues such as voltage sag, voltage swell, voltage interruption, frequency deviation etc 

[11, 43-46]. 

The automatic classification of Power Quality (PQ) disturbances has been 

accomplished with several types of machine learning techniques. In [43] Artificial Neural 

Network (ANN) classifier is used to identify disturbances such as high/low frequency 

capacitor switching, impulsive transients etc. The feature extraction of a disturbance is 

done with the help of wavelet transform (Figure 5) before it is processed via a classifier 

[11, 44, 45]. In [46], Scales 1-5 of wavelet coefficients are used as input to three teams of 

five ANNs each. The final decision on classification of the power quality disturbance is a 

combination of decisions made by each team [46]. Neural network classified events such 

as high frequency capacitor switching, low frequency capacitor switching, impulsive 

transients etc with high accuracy in frequency domain [46]. In [18], ANN in conjunction 

with wavelet transform classifies transient phenomena to distinguish between internal 

fault and magnetizing inrush current in power transformer. The spectral characteristics of 

the waveform are obtained with wavelet transform and a trained ANN is used to help in 

power transformer protection [18]. Most of the techniques described for power quality 

classification seem to have used wavelets as the feature extractor before processing it 

using machine learning technique. As transients are very difficult to be analyzed in time 

domain (default domain of waveforms), the disturbance waveforms are converted into 
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frequency domain using wavelet transform for easy classification of the transient 

phenomena [11]. 

 

Figure 5 Pre-processing of phasor data via wavelets 

 

In [11, 45] a different approach of using Support Vector Machine (SVM) for 

power quality disturbance classification is used. In [11], a SVM trained with 250 

synthetic data patterns is used to classify the patterns of power quality disturbances such 

as voltage sag, swell, interruption, harmonics, and transients. A set of [m (m-1)]/2 binary 

SVM classifiers are used to solve the multiclass classification problem. The final decision 

is based on the vote of each of the classifiers [11]. It is a very simple approach to solve 

problem of multiclass classification which is more complex to achieve using SVMs. 

Reference [45] uses a combination of fast fourier transform and wavelet transform for 

solving multiclass classification of power quality disturbance. It uses features extracted 

from both preprocessing methods (e.g., fundamental component, phase angle deviation, 

total harmonic distortion, low-frequency harmonic distortion rate are extracted using 

Fourier transform while energy of wavelet coefficient using two scale wavelet transform). 

The learning methods such as SVM and ANN require extensive training before 

they are ready to classify power quality disturbances. The methods will be able to classify 

disturbances that they are trained on [47]. Knowledge Based Expert System (KBES) is 
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another method of embedding the domain knowledge in terms of rules that system can 

infer from. KBES seeks to emulate a power engineer problem-solving process based on 

embedded set of rules [47]. 

The supervised learning approaches require an extensive knowledge base to be 

embedded inside the algorithm. These methods need human experts to encode knowledge 

known to humans in the form of training data or an experiential knowledge base. These 

systems are not likely to discover information that humans are not already aware of. The 

supervised learning methods learn non linear relationships between input and output 

parameters and generalize the relationship to predict to unforeseen samples. In [44] a new 

unsupervised learning method of Self Organized Learning ARray (SOLAR) has been 

proposed for classification of power quality. The multi resolution features of disturbance 

are extracted using wavelet transform. The features are then fed to a SOLAR for 

classification. SOLAR is a data driven learning method rather than knowledge driven 

method [44].  

Fault Detection and Classification 

Fault detection and classification is another of several applications of machine 

learning techniques applied in power system. Fault diagnosis is a way of determination of 

system failure depending upon measured parameters of the power system [48]. Noise, 

missing parameters etc. complicates mathematical system failure prediction. Machine 

learning algorithms can make an “acceptable” guess of output variable (fault 

detection/classification) even in adverse conditions such as missing data and/or noisy 

data. The fast decision making capability of AI techniques make them extremely 

desirable in real time applications.  
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In [49] Artificial Neural Network (ANN) has been used for classifying faults after 

differentiating normal maintenance operations from faults. It is a two step process of 

detecting and classifying faults. The detection step uses Discrete Wavelet Transform 

(DWT) using current wavelet coefficient energy. If no fault is detected, then no 

classification is performed. If a fault is detected, then voltage and current samples related 

to fault clearing time are analyzed for classification of the fault. The moving window of 

five consecutive voltage and current samples are fed as input to ANN for classification of 

fault [49]. Various architectures, such as radial basis neural network, are used to identify 

patterns in voltage and currents for classification of faults (e.g., Single Line to Ground 

(SLG) faults, line to line (LLG)) and has been utilized and proven to be useful [19].  

Self Organizing Map (SOM) is an unsupervised alternative for fault classification. 

SLG, LLG, three phase bolted faults are classified correctly in [48] [20] using SOM. The 

requirement of large training set is eliminated using unsupervised learning method. A 

wide variety of operating conditions can be emulated in training learning methods rather 

than overtraining on the same set of operating conditions. The variation of load, 

incidence angle for faults, location of fault, load angles, fault resistance source 

impendence can be used for training [20]. If the supervised learning is used, then each of 

these set of data has to be hand labeled before training which may be not be practical to 

achieve in dynamic systems. However, unsupervised learning methods such as SOM can 

learn patterns in data by itself when implemented in real world [20]. 

Stability Assessment 

Stability prediction of power system is one of the most useful features that power 

engineers may desire to have. There are several machine learning techniques used for 
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predicting stability in power systems. Stability is ability of power system to remain under 

equilibrium under normal condition and to regain state of equilibrium after being 

subjected to severe disturbance [41]. Traditionally, stability means ability of maintaining 

synchronous operation of synchronous machines for generation of electrical power. 

Instability may also be encountered without losing synchronism, such as in Voltage 

Instability [41]. Voltage stability is ability to provide an acceptable voltage on all buses 

of power system after a disturbance [41]. A number of machine learning techniques have 

been studied for real time stability analysis of power system [14-16, 24, 50, 51].  

Real time security assessment had not been feasible because of latency 

encountered in mathematical calculations [14, 15]. Support Vector Machines (SVM) has 

been studied in [14, 15] to predict transient stability of power system. Single line 

attributes such as machine angle, machine speed, machine terminal voltage, electrical 

active output power, electrical reactive power output, derivatives of machine angle and 

speed to time has been used as input parameters. SVM is used to differentiate between 

fault and post-fault measurements [14]. In [15], a comparison between neural network 

method and SVM is studied for transient stability analysis. SVM is more appropriate for 

using in a large power system where number of parameters to be monitored is 

exponentially large. SVM performs better when dimension of input parameters is large 

[15]. In addition, interpretability of the SVM results is better than that of weights of 

neural networks [15].  

Selection of machine learning method depends upon properties of a method that 

best suits a problem. Decision trees are one of the most popular methods for stability 

assessment in power system. In [24], a single decision tree is used to predict all fault 
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locations in network of New England 39 bus test system. Bus faults and line faults 

ranging between 1-8 cycles are studied. Sensitivity of machine learning techniques 

towards variation of operating conditions is one of the issues while using machine 

learning algorithms in power system. In [24], a range of fault durations from 1 to 10 

cycles are simulated for transmission line faults in different operating conditions is used 

to increase robustness of decision trees. The operating points in [25] are varied by 

changing total load of system. In [22, 26], decision trees are used to identify critical 

attributes (CAs) from a set of system parameters from Phasor Measurement Units 

(PMUs) which are important for dynamic security assessment of power system. As 

shown in Figure 6, critical attributes are identified as A, B and C. The more important 

they are for classification, the more closely they are to the root of the tree. An insecurity 

score can be calculated for each path from root to leaf, if the score exceeds a limit and if 

the path associates with a probable contingency then a corrective measure can be taken 

by the operators [22]. In order to incorporate changing operating conditions in power 

system, periodic update of decision tree (DT) has been proposed in [22].   

 

Figure 6 Example of a decision tree 
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A single decision tree explores more of a limited search space than that done by 

other methods of machine learning [52]. Decision Trees are also prone to variability in 

data; if the first splitting variable is chosen incorrectly, then the entire structure of the tree 

could be fallible to make correct predictions [52]. In order to integrate easy 

interpretability of decision trees (DT) and make it more robust, [52] proposes a new 

method of using an ensemble of decision trees (random forest) by randomizing the split at 

each node of a tree as a committee of experts. The random forest also allows ranking 

security levels of the classified instances based on sample probability estimation [52]. 

Decision Trees (DT) only can provide a classification of operating point as secure 

or insecure. Instead of providing just classification of security, Regression Trees (RT) has 

been proposed in [53] to provide severity of classification result by improving on 

algorithm proposed in [22]. In [53], RTs are used for assessment of Voltage Magnitude 

Violation (VMV) and Thermal limit Violation (TV) caused by N-1 contingencies. Each 

RTs maintains a severity score on the terminal nodes, a larger score denotes a larger 

elements and a more severe VMV/TV [53]. 

Critical clearing time (CCT) is the maximum time that a system can withstand a 

fault before the fault is cleared. If a fault is cleared within CCT, then system remains 

stable; otherwise it slides towards instability. The estimation of CCT is very important for 

protection and control of power systems. CCT is a complex function of operating 

conditions, fault structures and post fault conditions requiring complicated integration of 

variables for estimation [54]. In [30], a feed forward neural network has been designed to 

estimate CCT to replace complicated mathematical methods, which would be helpful for 

real time security assessment. Reference [55] takes a different approach in employing 
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neural networks (ANN) for predicting dynamic stability by using angle of instability as 

predictive measure. The algorithm divides a power system into critical areas. A center of 

angle for the entire system is calculated based on phase angle measurements by PMUs at 

each generator bus. A neural network is designed to predict the angular instability of 

entire system based on the divergence of individual phase angles measured at each 

generator from center of angle of entire system (See Figure 7) [55]. 

 

Figure 7 On-line determination of angle of instability [55] 

 

 Voltage Instability may be caused by large disturbance, increase in load demand 

or change in system conditions [41]. An operator needs to monitor voltage profile of 

system to prevent a voltage collapse. Although voltage instability is a local phenomenon, 

it may be a consequence of series of events accompanying voltage instability over a wide 

area. A possible blackout can be averted if a corrective action could be taken to prevent 

the cascading of the events [41, 56]. A real time monitoring of the voltage stability of 

power system is an important aspect of wide area monitoring of system. In [56], a real 

time estimation of voltage stability using PMU data has been proposed using decision 

trees. An operating point can be classified as Secure or Insecure in terms of voltage 



 

28 

stability margins. Even if a system is classified as secure for an operating point, an 

operator may be interested in determining how secure a system is or distance to voltage 

instability. The stability margin may be additional real power that can be carried by the 

system before entering instability. In [56], a number of scenarios such as single line 

outages, double line transmission outages and generator losses, are tested on different 

loading conditions to emulate a real power system operation to construct a robust 

decision tree (DT) that is less prone to dynamicity in power systems. PMU measurements 

such as Active power flow/injections, reactive power flow/injections, voltage magnitudes 

and phase angles are used as input for determination of voltage stability [56]. 

It would be impractical to cover all possible operating points even for a trivial 

system. If a new operating condition arises, then decision tree/neural networks have to be 

retrained forgetting most of the knowledge acquired in prevision training. This process is 

both time consuming and inefficient for dynamic systems such as power system. In [57], 

a new method of incremental learning based neural network is proposed for transient 

stability analysis which can learn new operating conditions without forgetting  previously 

learned knowledge. The neural network is trained offline to learn characteristics of a 

system, but unlike conventional neural network, the incremental neural network can learn 

knowledge of new training samples while predicting based on previously acquired 

knowledge as shown in Figure 8 [57].  



 

29 

  

Figure 8 Incremental learning method 

 

In [51], Kohonen map has been introduced for dynamic security assessment of 

power system. Voltage and power (Active/Reactive) are used for clustering operating 

points to estimate stability index of system. In [17], a Kohonen map is used to classify an 

operating condition as safe, critical and unsafe based on active and reactive power of 

power transmission lines. 

Evaluation Metrics  

Traditional data mining algorithms are widely based on the assumption that 

classes in a problem are uniformly balanced [58]. Unbalanced class distribution is 

characterized by there being many more instances of some classes than others. In 

traditional data mining algorithms, balance in classes is maintained during training phase 

of an algorithm. Appropriate number of training samples assigned to each class is 

identified. However, the balance between classes cannot be maintained in a data stream 

because of lack of knowledge about the data stream ahead of time. In power system 

operations, disturbance data is a very small percentage of normal operation data, even a 

naïve majority classifier can produce large accuracy if assumption of balanced classes is 

used [27]. This approach is not able to correctly measure the actual performance of data 

mining algorithms [58]. It is not possible to maintain balance in classes in stream 
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classifiers. In this section evaluation measures of classification performance to handle 

class unbalance problem will be explored. 

Some of the evaluation measures, such as recall, precision, F-measure, G-mean 

and Receiver Operation Characteristic (ROC) Curve Analysis, for unbalanced data 

problem. F-measure is used when only the detection of minority class is important. It 

considers both the precision and recall of the algorithm as shown in the following [58, 

59]. 

G-Mean is used when the performance on both classes are important. G-mean as 

the geometric means of recall values of every classes [58, 59]. It is calculated using 

Equation 1. 

 G	mean ∏ recall   Equation 1 

Receiver Operating Characteristic (ROC) is another popular method to evaluate 

learners of the unbalanced matrix. It is a plot of true positives and false positives of 

classified examples evaluating the pros and cons of the classifier under study [59]. The 

area under a ROC curve (AUC) provides a single measure of a classifier’s performance 

for evaluating which model is better on average [59]. 

In [60], Kappa Statistics has been proposed as a new measure for evaluating the 

performance of data mining on unbalanced classes. Kappa statistics normalize the 

classifier’s accuracy with the chance accuracy because there may be a possibility of being 

accurate solely by chance when predicting on unbalanced data. It can also comprehend 

potential drift in class distribution [60]. The calculation is based on the difference 

between how much agreement is actually present (“observed” agreement) compared to 
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how much agreement would be expected to be present by chance alone (“expected” 

agreement) [61]. According to [60], kappa statistics can be defined as  

“Consider a classifier h, a data set containing m examples and L classes, and a 

contingency table where cell Cij contains the number of examples for which h(x) = i and 

the class is j. If h(x) correctly predicts all the data, then all non-zero counts will appear 

along the diagonal. If h misclassifies some examples, then some off-diagonal elements 

will be non-zero,  

 ρ
∑ 	

 Equation 2 

 ρ ∑ ∑ 	∑  Equation 3 

In problems where one class is much more common than the others, any classifier 

can easily yield a correct prediction by chance, and it will hence obtain a high value for 

p0 (See Equation 2). To correct for this, the κ statistic is defined as follows” [60]. Table 1 

illustrates a basis for interpreting kappa statistics. 

Table 1 Interpretation of Kappa Statistics [61] 

 Poor Slight Fair Moderate Substantial Almost Perfect 
kappa 0 0.2 0.4 0.6 0.8 1 

 

 κ   Equation 4 

Summary 

This chapter covered a different application of synchrophasor data for real 

monitoring the real-time operations of power system. A variety of applications such as 
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power oscillation monitoring, frequency stability, voltage security assessment, have been 

studied utilizing just synchrophasor data for a wide area monitoring of power system. 

Similarly, a few applications have been designed to improve state estimation using 

synchrophasor data.  

The deployment of phasor measurement units (PMU) can help describe the 

dynamic behavior of power system because of high data acquisition rate, but the major 

advantage of synchrophasor technology is time synchronized data which can give a 

snapshot of power system at any given time. Synchrophasor technology also brings the 

challenge to visualize the dynamic character of power system inside control room so that 

correct information is delivered without information overload. It also brings on the 

challenge of information extraction from continuous stream of synchrophasor data. 

Several machine learning and pattern recognition algorithms such as support 

vector machine, artificial neural network, knowledge based expert system, etc have been 

studied for information extraction in power system since 1960s. There are several 

applications of Decision Trees (DT) that has been specifically designed for security 

assessment using synchrophasor data.  

The main problem with the machine learning algorithms is that they have been 

designed to operate in a scarcity of data. They make multiple scans of the same training 

data, build a model and finally start making predictions. If the same algorithms are used 

for continuous data streams, such as synchrophasor data stream, the model created would 

be too large to accommodate in memory and the latency in predicting using the model 

would not be suitable for real time applications [27]. Data mining algorithms have to be 

adapted towards handling possibly never ending data without exceeding memory and 
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latency requirements for real time operations. In this research work, stream mining data 

algorithms will be studied for real time application, which would be a contribution in 

research community.  

I found no publication/articles that explore correlation between parameters of 

synchrophasor data. Most of the literature explores the possibilities of using a few 

parameters such as angular divergence, active/reactive power etc individually to monitor 

power system operations. The work proposed in this document explores correlation 

between individual synchrophasor parameters, which will be a contribution towards a 

new dimension in synchrophasor data analysis that has not been investigated yet. 
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 CHAPTER III

ONLINE DIMENSION REDUCTION OF SYNCHROPHASOR DATA 

The electric power industry is going through the greatest paradigm shift since the 

discovery of electricity itself in the late 1800s [2]. The massive modernization of the 

industry is fueled by state of the art information technologies, an exponential increase in 

computational power, and power system monitoring advancements, such as 

synchrophasor technologies [2].  A principal component of the smart grid initiative is the 

utilization of massive data sets to make future grids more efficient, reliable and 

environmentally friendly with minimal financial burden to the utilities and their 

stakeholders. 

Electrical systems are much interconnected systems via tie lines and control areas. 

Thus, a disturbance in one utility can propagate to other interconnected systems. A Wide 

Area Monitoring (WAM) of a power system is necessary to help ensure that a disturbance 

in a utility does not disrupt the operation of another [42]. A WAM system is one of the 

key requirements for future smart grids. GPS synchronized synchrophasor data at a high 

speed has made the vision of WAM attainable. PMUs can sense parameters such as 

voltage, current, frequency etc. of a power system typically at 30 samples per second 

compared to one sample per 2-4 seconds in SCADA system. 

The Tennessee Valley Authority (TVA) presently handles 120 online PMUs with 

3.6 billion measurements archived per day with a storage size of 36GB [62]. The amount 
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of data is set to increase exponentially as more PMUs are brought online. The explosion 

of time synchronized data has brought a tremendous opportunity for researchers to view 

the electric grid in a never before seen before perspective. It has also brought a challenge 

to transmit, store, analyze and retrieve massive data efficiently. 

In addition to a continuous data stream from a PMU, synchrophasor data also 

tends to have a large dimensionality. Table 2 shows measurement types provided by a 

typical industry grade PMU at any given time stamp. 

Table 2 Parameters measured by two PMUs 

N60 

Phase A Voltage 
Positive Sequence Current 
Negative Sequence Current 
Zero Sequence Current 
Ground Current 
Phase B Voltage 
Phase C Voltage 
Phase A Current 
Phase B Current 
Phase C Current 
Positive Sequence Voltage 
Negative Sequence Voltage 
Zero Sequence Voltage 
Rate of Change of Frequency (dF/dt) 
Frequency 

SEL421 

Phase A Voltage 
Positive Sequence Current 
Phase B Voltage 
Phase C Voltage 
Phase A Current 
Phase B Current 
Phase C Current 
Positive Sequence Voltage 
Rate of Change of Frequency (dF/dt) 
Frequency 
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The electric grid requires timely information to effect control actions to minimize 

outages. A corrective action not taken within some critical time period cannot mitigate an 

escalating situation. Operators need to a situational awareness of the grid in real time, so 

that coordinated corrective actions can be taken. The high dimensionality of PMU data 

can disrupt expedient extraction of information from the high speed synchrophasor data 

stream.   

In this chapter, we will discuss a method of dimensionality reduction of 

synchrophasor data utilizing principal component analysis (PCA). This method will 

extract correlations between measurements summarizing trends in PMU data. 

Transmission, storage and computation of data become less expensive after 

dimensionality reduction of the synchrophasor data. The algorithm discussed in this paper 

is an online algorithm; it can summarize data in a single scan and adapt to both abrupt 

and gradual changes automatically [63].   

Dimension Reduction Techniques 

Dimension reduction is a process of reducing the amount of data with minimal 

loss of the information content of the data. With advancements in data collection 

techniques, most areas of science and engineering are overwhelmed with the amount of 

data waiting to be analyzed. Dimension reduction is not a new area of study. It has been 

studied for a long time by researchers in statistics, computer science, machine learning, 

signal processing etc. There are two major areas of study in dimension reduction. 
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Feature Selection 

The complete feature set describing a data set carries all of the information of the 

data.  However, a subset of features can often be used to describe certain underlying 

trends within the data. . The feature selection technique chooses a subset of “important 

features” from the total set of features without altering the original data. 

There are several strategies to find an optimal set of “important features”. Feature 

selection techniques can be broadly classified into feature ranking and subset selection 

categories. Feature ranking methods rank available features based on parameters such as 

information gain or distance [64]. A subset of highly ranked features is selected as a 

representative set of the original data set. A decision tree is an example of the feature 

ranking method. Subset selection techniques evaluate a subset of data against a model 

and modify the model until a satisfactory subset is obtained [64]. Genetic algorithms fall 

in this category of subset selection. 

The feature selection technique may be supervised or unsupervised. Evolutionary 

algorithms, such as genetic algorithms, encode domain knowledge as a fitness function 

[65]. Decision trees require a supervised training approach to select features. Feature 

selection using clustering algorithms do not require any training[66]. 

Feature Extraction 

Feature extraction is a method of reducing dimension that extracts relevant and 

unique information from the data set. In this method, the original signal is mathematically 

modified and a new set of data with smaller dimensionality is generated as shown in 

Figure 9. 
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Figure 9 Illustration of dimension reduction process 

 

The importance of a feature may depend on the application. Most Artificial 

Intelligence (AI) techniques, such as Back Propagation Neural Networks [67], feed 

forward neural networks [68], Kohonen maps [69], etc are examples of feature extraction. 

There are several other mathematical feature extraction processes such as Principal 

Component Analysis (PCA), wavelet methods, Singular Value Decomposition (SVD), etc 

[70]. 

Feature extraction processes may be either supervised or unsupervised. 

Supervised methods, such as neural networks, learn from training data. The 

characteristics of sample data are used by feature extraction methods to generalize the 

importance of features, while unsupervised mathematical models, such as Principal 

Component Analysis, wavelets, etc. use mathematical tools to extract energy representing 

the importance of the features. 

Online Dimension Reduction 

In applications where a data stream arrives at a high rate, the processing of a data 

set has to be done before the next set of data arrives. This property of data streams limits 

traditional dimension reduction techniques that require multiple scans of data. In time 

critical applications, such as synchrophasor data processing for situational awareness, a 
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new approach is required to meet the latency requirement. This section will discuss 

online dimensional reduction techniques that can satisfy this requirement. 

Reference [71] introduces a supervised dimension reduction technique known as 

Linear Discriminate Analysis (LDA). It uses a sliding window method in the data stream 

to update within class and between class scatter matrices [71]. The dimension reduction is 

a function of learning the mapping from higher dimensional space to a lower dimensional 

space. A radial basis function (RBF) has been used in [72] for the mapping. The 

supervised method proposes two modules. The first module generalizes the sample data 

using geodesic distance in data space.  The dimension reduction module then uses this 

information to approximate the radial basis function from higher to lower dimensional 

feature space [72]. 

Principal Component Analysis 

The electric grid is a dynamic system for which an infinite number of operating 

conditions may exist. If a supervised algorithm is used, it needs to be trained for many 

operating points and be able to generalize solutions for the total suite of operating points.  

However, tracking system operating points is itself a research problem while generating a 

set of training samples for these operating conditions is almost impossible to achieve. The 

dimensional reduction algorithm for the streaming data from the grid would be practical 

to use if it is unsupervised and can incrementally adapted to both abrupt and gradual 

changes. The memory and computation requirements also need to be minimized while 

processing the high speed synchrophasor data stream.  

Principal components can be thought of as representing the energy of the original 

data and are used to help explain the variance in the data. The number of principal 
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components representing the original data depends upon the amount of energy that has to 

be conserved and the first principal component explains the majority of the variance in 

the data with following components explaining lesser amounts of the variance  

To illustrate an online dimension reduction via a PCA approach assume at time t, 

synchrophasor data arrives as a n-dimensional vector Xt = [xt,1, xt,2, xt,3, …… xt,n]. 

The synchrophasor vector is comprised of electrical parameters (features) such as 

frequency, voltage, current etc. There may be some correlation between these parameters 

in a steady state operating condition. However, the correlation gets changed during 

disturbances and evolves to a new correlation when the system evolves to a new 

operating condition. In the proposed method of dimensional reduction, correlation of 

electrical features will be tracked using principal component analysis. It does not require 

buffering of past measurements, which can be discarded as soon as new set of 

synchrophasor data arrives [63]. 

Let wi = [wi,1….wi,n] be the  participation weight vector for the ith principal 

direction. The hidden variables yt= [yt,1…yt,k] and the projections of xt onto each wi, 

over time is defined as Equation 5 

 yt,i =  wi,1xt,1+ wi,2xt,2+….+wi,n xt,n  Equation 5 

Let x’t = [w1,j yt,…..wn,j yt,n] be the reconstruction of xt using weights and 

principal components defined as Equation 6 

 x ‘t ,j =  w1,jyt,1+ w2,jyt,2+….+wk,jyt,k Equation 6 
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This algorithm monitors and adapts the number of hidden variables (k) to achieve 

a desired reconstruction error ||xt-x’t||
2. It also adapts the participation weight (w) to 

correctly summarize the original data. 

Energy thresholding is the deciding factor for the number of hidden values (k). 

The algorithm for determining k is given as follows [63]. 

 Estimate the full energy Et+1, incrementally, from the sum of squares of 

xt,i. 

 Estimate the energy E’(k) of the k hidden variables. 

 Introduce a new hidden variable if the energy represented is smaller than 

the threshold and drop a hidden variable if the energy represented is 

greater than the threshold. 

The participation weights wi 1≤i≤k are also updated incrementally to minimize 

reconstruction error. If we consider xt+1 = [x(t+1),1….. x(t+1),n] as n-dimensional 

synchrophasor data at time t+1, the following algorithm incrementally updates w [63]. 

 Compute the hidden variables y’t+1,i ,1≤i≤k, based on the current weights 

wi, 1 ≤ i < k by projecting xt+1 onto these. 

 Estimate the reconstruction error and the energy based on  y’t+1,i. 

 Update the estimates of wi, 1≤i≤k and output the actual hidden variables 

yt+1,i for time t+1.  

wi already maintains information about the data stream up to time t, changing wi 

entirely based just on data at time t+1 can make the algorithm prone to noise. If the 

update of the estimate of wi is inversely proportional to the current energy Et,i (defined by 

Equation 7) of the ith hidden variable [63], then algorithm becomes less prone to noises. 
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 E , y ,  Equation 7 

Data Scaling Problem 

Synchrophasor data are of different scales. Frequencies, currents and voltages 

vary greatly in magnitudes. The standard deviations of synchrophasor measurements 

obtained in our experiment illustrate this problem (see Table 3). 

Table 3 Standard deviation of measurements 

Measurement Std. Deviation 
Phase A Voltage Magnitude (SEL421) 1297KV 
Phase A Voltage Magnitude (N60) 3758.6KV 
Frequency (N60) 4.6mHz 
Frequency (SEL421) 3.5mHz 
Phase A Current Magnitude (SEL421) 41.67A 
Phase A Current Magnitude (N60) 166.78A 

 

PCA is sensitive to scaling of variables. The information content in features is 

measured in terms of variation in measurements. PCA tends to retain more information 

about variables having higher standard deviation than that with smaller standard 

deviation. Normalization of this data using the per-unit system, typically used in power 

system analysis, did not work.  Normalization of data by calculating data parameters such 

as, standard score etc, overcomes this problem. The characteristics of data such as mean, 

standard deviations, etc. are not known beforehand in case of data stream processing thus, 

making the normalization of data not feasible. 

The data of similar type are grouped together and processed separately for 

dimensionality reduction. Voltages, currents and frequencies are processed as three 

groups so that maximum information is retained. 
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Results 

In this experiment, we simulated single line to ground (SLG) faults on phase A 

for a 4-Bus, 3-Generator system to measure the performance of the dimensional reduction 

technique. In order to make the experiment symmetrical to both PMUs used, the inputs to 

the dimension reduction have been reduced to 18 measurements as shown in Table 4. 

Table 4 Inputs to the dimension reduction method 

N60 

Positive Sequence Current Magnitude 
Positive Sequence Voltage Magnitude 
Phase A Voltage Magnitude 
Phase B Voltage Magnitude 
Phase C Voltage Magnitude 
Phase A Current Magnitude 
Phase B Current Magnitude 
Phase C Current Magnitude 
Frequency 

SEL421 

Positive Sequence Current Magnitude 
Positive Sequence Voltage Magnitude 
Phase A Voltage Magnitude 
Phase B Voltage Magnitude 
Phase C Voltage Magnitude 
Phase A Current Magnitude 
Phase B Current Magnitude 
Phase C Current Magnitude 
Frequency 

 

The plot of phase A voltage and positive sequence voltage from both PMUs is 

shown in Figure 10. The plot shows visually significant correlation at all times. 
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Figure 10 Phase A voltage and positive sequence voltage plot 

 

Figure 11 shows phase A currents and positive sequence currents from both the 

PMUs. The currents measured by N60 are significantly higher than that measured by 

SEL421. Figure 12 is the plot of frequencies from both PMUs. 

 

Figure 11 Phase A current and positive sequence current plot 
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Figure 12 Frequencies plot 

 

In order to address the data scaling issue in synchrophasor measurements, 

parameters with a similar scale are grouped together and dimension reduction is applied. 

Three groups were formed for currents, voltages and frequencies as shown in Table 5. 

Each group consists of measurements from both PMUs. So group 1 and group 2 contain 8 

measurements each, while group 3 contains 2 measurements. 

Table 5 Division of group for dimension reduction 

Group 1 Group 2 Group 3 

Positive Sequence Voltage 
Magnitude (2) 

Positive Sequence Current Magnitude 
(2) 

Frequency(2)

Phase A Voltage Magnitude (2) Phase A Current Magnitude(2)  

Phase B Voltage Magnitude (2) Phase B Current Magnitude(2)  

Phase C Voltage Magnitude (2) Phase C Current Magnitude(2)  

 

In this experiment, 8 voltage measurements were represented by 1 principal 

component as shown in Figure 13 when 95%-98% of energy was retained. The 

performance of the dimensionality reduction algorithm was measured by analyzing the 
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reconstructed signal as shown in Figure 14. The reconstructed signal was similar to that 

of original signal illustrated in Figure 10. In addition to the visual comparison Table 6 

tabulates correlation coefficient and root mean square error (RMSE) of reconstructed 

synchrophasor data and original data for result comparison. 

 

Figure 13 Principal components of voltages 

 

Figure 14 Reconstructed phase A and positive sequence voltages plot 
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Figure 15 illustrates two principal components extracted out of 8 current signals 

of group 2. Most of the time the first PCA was enough to capture the information, except 

for a few instances where the fluctuation of current was higher. The reconstructed signals 

of currents are shown in Figure 16 . (see Table 6 for more comparison results) 

 

Figure 15 Principal components of currents 

 

Figure 16 Reconstructed phase A and positive sequence currents plot 
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Figure 17 illustrates principal components of frequencies from in group 3. One 

principal component turned out to be enough for representing the frequencies measured 

by both PMUs. Figure 18 shows the reconstructed frequencies from just the first principal 

component. (See Table 6 for more comparison results) 

 

Figure 17 Principal components of frequencies 

 

Figure 18 Reconstructed frequencies 
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Table 6 Correlation coefficients and root mean square error of reconstructed signal 
and original signal 

PMU Parameter Corr. Coeff. RMSE 

N60 

Positive Sequence Voltage Magnitude 0.9998 169.44V 
Positive Sequence Current Magnitude 0.9991 6.84A 

Phase A Voltage Magnitude 0.9986 34.56V 
Phase B Voltage Magnitude 0.9998 24.77V 
Phase C Voltage Magnitude 0.9999 41.82V 
Phase A Current Magnitude 0.9978 11.20A 
Phase B Current Magnitude 0.9994 6.54A 
Phase C Current Magnitude 0.9995 4.33A 

Frequency 0.9956 0.44mhz 

SEL421 

Positive Sequence Voltage Magnitude 0.9993 34.37V 
Positive Sequence Current Magnitude 0.9991 1.42A 

Phase A Voltage Magnitude 0.9999 19.66V 
Phase B Voltage Magnitude 0.9979 52.62V 
Phase C Voltage Magnitude 0.9972 59.46V 
Phase A Current Magnitude 0.9985 2.27A 
Phase B Current Magnitude 0.9993 1.21A 
Phase C Current Magnitude 0.9992 1.29A 

Frequency 0.9917 0.44mhz 
 

The similarity index of the reconstructed signal and the original signal is 

measured in terms of root mean squared error (RMSE) and coefficient of correlation 

between original signal and reconstructed signal. The synchrophasor data reconstructed 

from principal components showed strong correlation with the original data, while mean 

square error looks acceptable in terms of the magnitude of original data.  

Conclusion and Future Work 

In this chapter, an online dimension reduction method for synchrophasor data was 

discussed. We experimented with real PMU data generated by SEL421 and GE N60 

PMUs deployed on a RTDS simulation of a 4-bus, 3-generator system. The results 

obtained from the experiments proved that the method can be used for addressing the 
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“curse of dimensionality” problem that machine learning algorithms may suffer when 

used with synchrophasor data. Though it is not a lossless method, it may be used as a 

preprocessing method in data analysis and data storage where absolute accuracy is not 

required. 

Principal component analysis is a linear method of dimension reduction. The 

method discussed here shows a unique approach to use it in a stream of data. In the 

future, we plan to work towards other non linear feature reduction techniques for data 

streams and compare results and develop a criterion for selecting a dimension reduction 

scheme for synchrophasor data. 
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 CHAPTER IV

DATA STREAM MINING OF SYNCRHOPHASOR DATA 

Background 

Electrical system is considered by some to be the greatest engineering 

achievement of the 20th century [73]. However, even 99.97% reliability of current 

electrical system is not enough to prevent $150 billion in losses from outages and 

interruptions [74]. With the increasing dependence of human enterprises on electrical 

energy, grid reliability has emerged to be one of the most important factors in power 

system operations. However, 100% reliability is a formidable challenge and is highly 

dependent upon the delicate balance of matching generation to load. The facts that 

electrical energy cannot be stored in large scale and is governed by the laws of physics 

makes power systems one of the most complicated systems. It is a technological 

challenge to maintain a continuous supply of high quality power from a generation 

facility to a consumer appliance.  

With electric utilities responding to the nation’s environmental concerns, more 

renewable sources, whose generation is often difficult to control, are being integrated into 

the grid. Revolutionary concepts such as two way flow of energy and information 

between grid and consumer has added a new perspective to reliability. Reliability of grid 

depends on constant monitoring of grid health parameters such as frequency, voltage and 
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phase angles, and ability to make real-time decisions based on trends in monitored 

parameters. 

Recently, there has been an increase in the deployment of Phasor Measurement 

Units (PMUs) which enable real time wide area monitoring of the power system. PMUs 

can synchronously measure operating parameters across the grid at typically 30 samples 

per second, compared to 1 sample per 2-5 seconds of a conventional SCADA system 

[75]. Such an explosion of time-stamped data in power systems has provided an 

opportunity to make electrical grids more reliable. Additionally, it has also brought a 

challenge to extract information from continuous high speed data streams. In this paper, 

we propose a new methodology to process PMU data based on event stream mining 

techniques for enhanced situational awareness in smart grids. 

Introduction 

Generally, power systems are designed to withstand a host of pre-determined 

contingencies with automatic protection and control algorithms. In the case of a rare 

combination of contingencies, such as the North American Blackout on August 14 2003, 

automatic protection systems can fail resulting a wide spread outage affecting millions of 

customers [76]. In transient events, reaction time is at most 100 milliseconds and 

therefore, automatic control equipment takes over the decision making with no human 

intervention in the loop. For long term stability, operators usually have enough time to 

run simulations and consult other operators, for making informed decisions [77]. 

However, there are times in between those two extremes in which operators have to use 

their own judgment to act on certain conditions and this often happens when there is 

insufficient information available to support their decision [77].  
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In the past, various Wide area monitoring parameters, such as phasor angles, were 

estimated after numerous iterations of power flow solutions, but they can now be directly 

measured with PMUs [78]. GPS synchronized phasor data can give operators a wide area 

situational awareness of the power system, which was not possible with conventional 

SCADA systems. The investigation of August 14, 2003 blackout pointed out that the 

blackout could have been prevented, if phasor data had been monitored. A number of 

clues surrounding the blackout were missed due to lack of situational awareness 

infrastructure.  

With the deployment of PMUs, industry now has capability of monitoring grid 

health parameters in real time. However, if underlying information in high speed data 

stream cannot be extracted, then it is not possible for operators to make informed 

decisions. Typically, mathematical calculations such as power flow solution are used in 

power systems. However, time required for mathematical calculations to run makes it 

infeasible for real time situational awareness. Machine-learning algorithms, such as, 

Artificial Neural Networks (ANN) [79] and decision trees (DT) [24, 80-83], are being 

extensively studied for online prediction of power system stability based on phasor data 

in an actionable period of time. Conventional machine learning techniques such as ANN 

and DT are designed to work with a limited amount of sample data. They make multiple 

scans of data to build a model before making predictions.  

Decision trees look promising in modeling of power systems based on phasor data 

[24, 80-83]. Decision trees can work with continuous data equally well as with discrete 

data and the results of decision trees can be interpreted by humans, which make them an 

ideal choice for power systems.  However, the number of samples from a PMU increases 
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exponentially as parameters being considered or number of deployed PMUs increases. 

For example, in a 24 hour period a single PMU produces (24x60x60x30) 2,592,000 

samples for a single parameter. With the limited computational time and memory 

available in computer resources, this can limit the size of decision trees built using 

traditional machine learning algorithms. Therefore, it may be hard to accommodate a 

huge decision tree in limited computer memory without losing information.  

One of the easiest methods to handle huge amount of data is to downsample to 

appropriate level. This approach is not appropriate for synchrophasor data because 

dynamic behavior of power system is not properly represented in downsampled data, 

which may even undermine the advantage of using high speed synchrophasor data. 

Figure 19 illustrates the disadvantage of downsampling data phasor data. Left half of the 

figure is PMU data at 30 samples per second (typical PMU data rate), while right half is 

downsampled version of same data at 0.2 samples per second (typical SCADA data rate). 

The details captured by PMU are lost when it is down sampled. The lost details of the 

synchrophasor data may be pivotal in making time critical decisions. Therefore, an 

algorithm which can use all data points from PMU is important to portray dynamic 

behavior of power systems and detect events.    
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Figure 19 Illustration of dynamic behavior representation by a PMU at 30 samples 
per second vs. 0.2 samples per second 

 

A new method known as data stream mining [52, 84] can extract information 

from high speed data streams facilitating decision-making within constraints of limited 

resources and time. Reference  [52] builds a decision tree for data stream in limited 

memory using hoeffding bound to guarantee that the result obtained is as good as that of 

conventional decision tree. Data stream mining is a good approach for the extraction of 

information from PMU data stream. 

Online Predictive Models for Situational Awareness 

In this section, an overview of on-going research on predictive algorithms that are 

being used in the power system is discussed. Real time prediction algorithms, their 

usability and their application based on application in high speed PMU data stream is 

focused. 

Generally, robust mathematical techniques such as power flow analysis [85] and 

probabilistic approaches [86] provide a reliable way to predict stability of a power 

system. However, in a real time grid surveillance scenario, it may not be possible to 
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afford time lag of solutions provided by these models. As an alternative to the accurate 

mathematical model, researchers have been studying different machine learning 

techniques that will help predict events on grid in an actionable time frame.  

Traditional Batch Processing of Phasor Data  

Machine learning techniques learn from examples. They generalize the 

relationship between measured data and the state of system to predict future states of the 

system based on new inputs. They formulate a generalization from new data that will be 

applicable to most of the problem space. For example, in a handwriting detection 

application, a set of handwritten alphabets can be used as training data to train a system 

to digitize handwritten documents. Traditional batch processing machine learning 

techniques assume that all training data are available simultaneously. They make multiple 

passes on the training data and adjust themselves to create a general predictive model. 

As previously stated, decision trees have been extensively used for situational 

awareness using phasor data. The predictor decision trees are created offline using 

historical phasor data, identifying critical attributes (CA) and their thresholds among 

several measurements from PMUs. In Figure 20, attributes A, B & C are identified as 

critical. The more important they are for classification, the more closely they are to the 

root of the tree. The path from the root of a decision tree to the leaves determines the 

classification of the event where leaves store the classification. Reference [82] goes one 

step further and uses a committee of 210 decision trees (Random Forest) to predict the 

dynamic system stability.    
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Figure 20 Example of a decision tree 

 

When input to conventional machine learning algorithms is a data stream, it has to 

be stored (e.g., in a database) before an algorithm is applied. This is done to ensure 

simultaneous availability of training samples, as shown in Figure 21. In case of the 

phasor data stream, it may be possible to store data, but it may not be practical to go 

through massive stored data in order to predict a result in the time available for making a 

decision. The model created for continuous synchrophasor data continuously grow in size 

making it impossible to store in available memory without losing information. 

 

Figure 21 Batch processing algorithms for data streams 

 

Event Stream Mining of Phasor Data 

Since PMUs generate continuous streams of data, decisions have to be made 

before a new set of data arrives (see Figure 22). The typical data rate of PMUs is 30 



 

58 

samples per second which results in any parameter having more than 2 million daily 

samples. Parameters such as, phasor angle, reactive power, voltage magnitude etc, must 

be monitored from multiple PMUs to facilitate situational awareness. Therefore, a new 

approach is needed to handle such a massive amount of data in a limited memory and 

with limited computational power. 

 

Figure 22 Event stream processing 

 

Stationary Data Stream Mining 

Stationary data stream mining algorithms assume that data streams are not 

evolving. The distribution of data on stream is same all the time. Data Stream mining is a 

relatively new field of study. It is useful in systems such as, Cyber Security [84], 

financial monitoring [85], homeland security [86] etc., which generate huge amounts of 

data in short periods of time, like PMUs. 

Hoeffding Trees 

Domigos and Hulten introduced Hoeffding trees in [87], which is one of the 

pioneer works in the area of massive data stream mining. The Hoeffding tree induction 

algorithm builds a decision tree by scanning the incoming data stream only once. There is 

no need of storing the data as in traditional decision trees. The tree itself holds sufficient 
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statistics in its leaves to grow the tree and also to make classification decisions of 

incoming data. 

Each node in a decision tree contains a test for an attribute, and the branch to 

follow after the node depends upon outcome of the test. Each leaf contains a class 

prediction. Classification problem works depending upon a series of such tests at each 

node from root to leaf. A decision tree is learnt by continuous replacement of leaves and 

selection of thresholds and test attribute at each node. A heuristic is needed to select 

attribute to be tested at each node. The most common heuristic is the information gain 

(G), which is a measure of discriminative power of each attribute [87]. The number of 

samples (λ) to be used at each node to be scanned before calculating information gain is 

determined using hoeffding bound (see next section).  

If Xa and Xb be the two PMU measurements with two highest G calculated after 

seeing λ examples at a node. Let ΔG = G(Xa) – G(Xb) ≥ 0 be the difference between 

information gains, then given a desired δ the hoeffding bound guarantees that Xa is the 

correct choice for the split with probability 1-δ if λ samples have been seen at this node 

and ΔG > ε2. An algorithm for splitting a node l is as follows. 

1. Create synchrophasor vector (X: C) from measurements from each time-stamped 

data. 

2. For all training examples 

a. Update sufficient statistics in leaf node (l) 

b. Increase n, counter that tracks number of examples seen. 

c. If n == λ, then 
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i. Compute G for each parameter and let Xa and Xb be two attributes 

with highest Gs. 

ii. If G(Xa) – G(Xb) > ε, then replace l with an internal node that splits 

on Xa  

iii. Initialize all branches of the split with sufficient statistics. 

There are several strategies that are used to prevent the size of tree from getting 

out of bounds as explained in [87]. 

Hoeffding Bound 

The single most important feature of decision trees is to split a node. The 

effectiveness of attribute selection to split node determines the accuracy of the decision 

tree. Criteria such as Gini index and information gain are used for selecting attributes and 

in determining the “Goodness” of a resulting tree [87]. The calculation of information 

gain is slightly more complicated in data stream mining than in traditional data stream 

mining because of the unavailability of simultaneous training data to the algorithms.  

Domigos and Hulten proposed a criteria known as Hoeffding bound which guarantees 

statistically the same decision for stream mining as that with traditional batch processing 

algorithms [87]. 

The Hoeffding bound states that with probability 1-∂, the true mean of a random 

variable of range R will not differ from the estimated mean after n independent 

observations by more than: 

 ∈  Equation 8 
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This bound is useful because it holds true regardless of the distribution generating 

the values, and depends only on the range of values, number of observations, and desired 

confidence. A disadvantage of this approach being so general is that it is more 

conservative than distribution-dependent bounds [52]. 

Evolving Data Stream Mining 

Generally, data streams change over time, which diminishes the relevancy of built 

model to make future decisions. Most of real time applications are dynamic; stream 

mining algorithms has to constantly be adapting itself to changing distribution of data to 

make relevant decisions as shown in Figure 23. Thousands of customers switching their 

electrical appliances on and off, opening and closing of relays, and breaker operations in 

response to contingencies make power system a very dynamic system. Adaptability of 

data mining algorithms ensures that the information extracted from data is accurate for 

the current situation. In this section, we will discuss data mining techniques that are being 

researched for the evolving data stream.  

 

Figure 23 Adaptive algorithm for evolving stream 
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Hoeffding Window Trees using ADWIN 

Hoeffding Window Tree is any decision tree that uses Hoeffding bounds and 

maintains a sliding window of instances. The algorithm maintains detectors at every node 

that will flag changes. It creates, manages, switches and deletes alternate trees. A change 

detection algorithm ADWIN has been proposed in [88] which has been used in automatic 

detection of change and adapts the Hoeffding tree to the current rate of change. ADWIN 

is a parameter free and assumption free algorithm which makes it easier for users to 

implement without needing a priori knowledge of characteristics of data stream.  

Hoeffding Window Tree is any decision tree that uses Hoeffding bounds and 

maintains a sliding window of instances. The algorithm maintains detectors at every node 

that will flag changes. It creates, manages, switches and deletes alternate trees. A change 

detection algorithm ADWIN has been proposed in [88] which has been used in automatic 

detection of change and adapts the Hoeffding tree to the current rate of change. ADWIN 

is a parameter free and assumption free algorithm which makes it easier for users to 

implement without needing a priori knowledge of characteristics of data stream.  

Hoeffding Adaptive Trees 

Hoeffding Adaptive Tree (HAT) is an algorithm that adapts to changes in the data 

stream without requiring users to estimate the size of a sliding window to deal with the 

concept drift in the data stream  [52]. It automatically detects the rate of change of data 

streams to adapt to the change of data. It places instances of estimators of frequency 

statistics at every node. There are several variants of HAT depending upon the estimator 

used.  

 HAT-INC: It uses a linear incremental estimator 
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 HAT-EWMA: It uses an Exponential Weight Moving Average (EWMA) 

 HAT-ADWIN: It uses an ADWIN estimator. As the ADWIN instances are 

also change detectors, they will give an alarm when a change in the 

attribute class statistics at that node are detected, which indicates also a 

possible concept change. 

Experimental Approach 

In this research work, stream data mining approach for detection of events in 

power systems is studied. Data stream mining is a new approach of artificial intelligence 

technique in power system application. Several experiments are performed to substantiate 

our proposed methods are efficient and capable of handling huge amount of data within 

limited resources of memory. The algorithms can predict events within reasonable time 

so that it can be used in real time situational awareness application in power systems. 

Experimental evidences will be presented to show that adaptive variant of hoeffding tree 

can incrementally learn changing conditions of power system, making predictions 

relevant to new operating point of power system. We utilize load change to simulate 

changing operating condition. We believe that experimental evidences support our 

proposal that data stream mining algorithm possess enough prospect to solve problem of 

mining high speed synchrophasor data to support decisions in real time. 

Experimental Settings 

In order to demonstrate the usefulness of event stream mining algorithms for 

situational awareness in power systems, we used simulations of a power system from a 

Real Time Digital Simulator (RTDS). RTDS is a real-time power system simulator that 
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performs digital electromagnetic transient simulation of electric power circuits using a 

time step as small as 2 microseconds [89]. The real-time operation of the RTDS makes it 

suitable for development and testing of protection and control techniques for power 

systems. RSCAD is used to design the power system circuits which can be fetched to 

RTDS. The RTDS at Mississippi State University consists of a cubicle with two 

processor racks, containing eight Triple Processor Cards and two Giga Processor Cards 

(GPCs) [89]. 

 

Figure 24 Data flow in experimental setup 

 

We used a hardware-in-the-loop approach in order to make the experiment close 

to a real world scenario. We used two Phasor Measurement Units (PMUs): SEL421 from 

Schweitzer Engineering Laboratory (SEL) and N60 from General Electric. Both PMUs 

were synchronized with a GPS clock as shown in Figure 24 and configured at a data rate 

of 30 samples per second. Table 7 shows the parameters obtained from each PMU. 
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Table 7 Parameters measured by two PMUS 

N60 

Phase A Voltage 
Positive Sequence Current 
Negative Sequence Current 

Zero Sequence Current 
Ground Current 
Phase B Voltage 
Phase C Voltage 
Phase A Current 
Phase B Current 
Phase C Current 

Positive Sequence Voltage 
Negative Sequence Voltage 

Zero Sequence Voltage 
Rate of Change of Frequency (dF/dt) 

Frequency 

SEL421 

Phase A Voltage 
Positive Sequence Current 

Phase B Voltage 
Phase C Voltage 
Phase A Current 
Phase B Current 
Phase C Current 

Positive Sequence Voltage 
Rate of Change of Frequency (dF/dt) 

Frequency 
 

Time synchronization enables measurements from multiple PMUs to be 

temporally aligned as a vector {x1,x2,x3…,xn}, where ‘n’ is number of total parameters 

measured by all deployed PMUs. We define a synchrophasor vector (X, C), where X is a 

vector of n PMU measurements and C is discrete class indicating status of power system. 

The synchrophasor vector can be fetched into stream mining algorithm to identify events 

of power system based on signatures and trends of the measurements[90].  
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System Model 

RTDS model of a power system is based on data provided in [91]. The power 

system is a four bus, three generator power system. Two phasor measurement units 

(PMU) are connected on Bus 1 and Bus 2 to measure electrical parameters shown in 

Table 7. A GE N60 is connected to Bus 1 while SEL421 is connected to Bus 2. Figure 25 

shows the single line diagram (SLD) of power system model. 

 

Figure 25 Single line diagram of power system under study 

 

Result Evaluation Methods 

The results of a learning process have to be evaluated on some basis to compare 

effectiveness of algorithms. The batch learning algorithms use the following evaluation 

processes. 

Holdout Method 

In this method of evaluation, a set of random samples are held out from training 

process as an independent evaluation set. An independent set is used to test the 

effectiveness of the algorithm on unseen samples. It is generally used when there are 

abundant samples in training examples [52]. 
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Cross-Fold Method 

In this method of evaluation, training set is divided into K folds. The training is 

repeated K times using each set as an evaluative “independent” set. The final result is 

average performance of the algorithm for each train/test set. It is useful when training 

samples are limited [52]. 

In order to evaluate algorithms for event data stream mining, the following 

method has been used in this dissertation.  

Interleaved Test-Then-Train 

In this method of evaluation, a sample is used for testing before it is used for 

training the model. The accuracy is incrementally updated. Also, the algorithm is tested 

on samples it has never seen before. It makes very effective use of training samples for 

testing. The downside of this approach is that there is no distinction between training and 

testing time [52].  

Evaluation Measures 

Several parameters can be defined to measure the performance of algorithm. 

Basically there are three areas of performance that we are interested in processing 

synchrophasor data: how accurate is the classification, how fast algorithm runs (latency) 

and how efficiently memory resource is utilized by algorithm. The following points give 

an insight on details for performance measure that have been considered for 

synchrophasor data processing.   
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Accuracy Measure 

In power systems, normal data are more common than events. Events (such as 

single line to ground faults) get cleared in a very short time (milliseconds). One of the 

most common measures of performance of a learning algorithm is accuracy. But, the 

accuracy measure only draws an effective measure when the classes to be detected are in 

the same ratio, which is not the case in our domain of study. If 98% of instances are 

normal and 2% percent are faults, then any “dumb” classifier can achieve 98% accuracy 

by just labeling each incoming instance as normal. A different evaluation measure has to 

be used that can evaluate the algorithm regardless of the imbalance in classes. 

Kappa Statistics, introduced by Cohen in 1960, is a more appropriate measure to 

represent the performance of stream classifiers [60]. It normalizes the accuracy by that of 

the chance predictors which is more credible in our domain of application. The kappa 

statistic is defined as Equation 9 [60] 

 	 	–	

	
  Equation 9 

where, 0 and  are prequential accuracy and chance accuracy [20] respectively. If a 

classifier is always correct, then 1. If the accuracy coincided with chance classifier 

then	 0. 

A demonstration of calculation of Kappa statistics will make more clear point on 

its use. Confusion matrix for a hypothetical classifier, which classifies a highly 

unbalanced classification problem, is shown in Table 8. 
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Table 8 Confusion matrix for kappa calculation 

 Predicted Class 
R

ea
l 

C
la

ss
  A B Total 

A 438 12 450 
B 20 30 50 

Total 458 42 500 
 

Prequential accuracy 0  is 93.6%, which is not a good representation 

of performance of classifier because 40% of class B is not correctly classified. Kappa 

statistics gives a better representation as shown below. Chance accuracy is calculated 

using Equation 10, where, C is confusion matrix, N is number of classes and m is total 

number of instances. 

 ∑ ∑  Equation 10 

In our example, 0.8244 

Therefore,  

 	 . 	– .

	 .
	 	0.63553 Equation 11 

Kappa statistics punishes algorithms that fail to accurately classify minority class 

instead of treating both the majority and minority class equally. 

Evaluation Time 

Evaluation time is time (seconds) required for algorithm to run. Interleaved test 

then train method of model evaluation does not have clear separation between training 

and testing phase of an algorithm. A new sample is tested first then model is trained on, 

so evaluation time consist of both testing time and training time as illustrated Figure 26. 
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Figure 26 Evaluation time for interleaved-test-then-train 

 

Model Cost (Ram hours) 

Ram hours will used as an evaluation measure of the algorithms used for 

synchrophasor data mining. Every GB of RAM deployed for 1 hour equals one RAM-

Hour. Commercial cloud services such as GoGrid which handle huge amount of data 

charge their customers based on RAM hours for memory usage [92]. 

Simulation and Results 

Experiment I 

In this experiment, we focus on testing the ability of stream mining to adapt to 

changing conditions of power systems. A machine learning algorithm has to constantly 

update its learned knowledge to stay relevant in predicting behavior of a dynamic system. 

This is very important feature for an algorithm in order to incorporate dynamic behavior 

of power systems. In this experiment, we have emulated dynamic behavior by changing 

loading condition. We generated synchrophasor data with solid three phase faults in 

various loading conditions. In order to simulate concept drift in the system, Real Power 

(P) and Reactive Power (Q) are changed at regular intervals. Three phase faults are 

introduced at regular interval. The simulation is run for about 41 minutes with 74,245 

data samples generated.  
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The magnitudes of parameters shown in table 7 are organized in a row. All 

magnitudes, frequency, rate of change of frequency and angle difference between phase 

A Voltages of both PMUs for a timestamp are organized as shown in Table 9. Each of the 

rows was manually labeled to be normal or fault. A new column named “class” was 

added after manual classification of each row. 

Table 9 Organization of samples as training data 

Time PhaseA Mag Seq1 Mag … AngDiff 
 

The data stream mining framework Massive Online Analysis (MOA) [52] is 

utilized for performing experiments described here. Comma Separated Values (CSV) are 

converted to an ARFF file format [93], to be fed into MOA. Hoeffding Adaptive Tree 

(with Naïve Bayes classifier as leaf predictor) and Non-adaptive Hoeffding tree (with 

Gauss10 numeric estimator) were used to demonstrate the ability of adaptive hoeffding 

tree to adapt to changing environment. Figure 27 illustrates the performance of both 

Hoeffding trees (adaptive and non-adaptive) on same set of data based on Kappa 

Statistics. Non adaptive algorithms always outperformed adaptive algorithm in terms of 

computation time and memory requirement. This experiment shows that adaptive 

hoeffding tree achieved better accuracy at expense of runtime and memory. We have 

used Interleaved-Test-Then-Train approach for model evaluation, so runtime consists of 

both training and testing, which makes testing time less than reported in these 

experiments. 
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Figure 27 Kappa statistics plot for experiment I 

 

Figure 28 shows a comparison in terms of RAM hours of adaptive and non 

adaptive hoeffding tree algorithm. Figure 29 shows evaluation time (in seconds) of both 

algorithms. Non adaptive algorithms always outperformed adaptive algorithm in terms of 

computation time and memory requirement. This experiment shows that adaptive 

hoeffding tree achieved better accuracy at expense of runtime and memory. We have 

used Interleaved-Test-Then-Train approach for model evaluation, so runtime consists of 

both training and testing, which makes testing time less than reported in these 

experiments.  
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Figure 28 Model cost in ram hours for experiment I 

 

Figure 29 Evaluation time in CPU second for experiment I 

 

Experiment II 

In this experiment, 26 Single Line to Ground (SLG) faults were introduced at 

regular intervals. Phase A to Ground, Phase B to Ground and Phase C to Ground faults 

are introduced on Bus 1, Bus 4 and Bus 7 each with 100 Ω fault impedance. All other 

factors such as load (P) and (Q) remained constant throughout the experiment. The 

simulation was run for about an hour to generate 107,117 data samples. The training data 
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was generated using similar measures as in Experiment I. All kinds of SLG faults were 

classified into a single category called “FAULT” for binary classification. 

In this experiment, loading condition remains constant throughout the experiment. 

As with experiment I, we tested results of both adaptive and non-adaptive Hoeffding tree. 

Kappa statistics plot for this experiment is illustrated Figure 30, where accuracy level was 

fairly constant in mid 90s for adaptive algorithm. As the stream is not evolving in this 

experiment, non-adaptive Hoeffding tree performed fairly well compared to evolving 

data stream in Experiment I.   

 

Figure 30 Kappa statistics plot of adaptive and non adaptive hoeffding trees 

 

Although loading condition in this experiment is kept constant, three different 

types of faults (A-G, B-G and C-G) are categorized in a single class. Unlike batch 

processing algorithms, stream mining algorithm does not have access to training data at 

once, so adaptive algorithm seem to be adapting well to different type of faults presented 

to it as a single class in a stream. The non-adaptive algorithm also seem to be performing 

better than that in experiment I because variation in data distribution is not as radical as 
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that in experiment I, where loading condition is changing. Also, the performance of non-

adaptive algorithm is not as good as the experiment I because different fault types are 

presented in a stream instead of a batch, so the algorithm could not adapt well to identify 

different kind of faults categorized as a single class.   

Similar to Experiment I, adaptive algorithm was more accurate than non-adaptive 

algorithm at expense of runtime and memory requirements as shown in Figure 31 and 

Figure 32. 

 

Figure 31 Model cost in ram hours for experiment II 

 

Figure 32 Evaluation time in seconds for experiment II 
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Experiment III 

In this experiment, we fixed the size of hoeffding tree (in bytes) to see effect on 

accuracy of classification. For the purpose of illustration, we choose non-adaptive 

hoeffding tree for this experiment. We studied four cases of fixing memory to unbounded 

memory (memory of host computer), 25K bytes, 50K bytes and 75K bytes. The 

performances of algorithm for each memory limitation are exactly same, while the 

unbounded memory performance is better after 140K samples as shown in Figure 33. 

 

Figure 33 Kappa statistics plot for algorithm with fixed memory 

 

The performance deteriorated when for 25K, 50K, and 75K when the size of tree 

hit their maximum allocated memory as shown in Figure 34. 
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Figure 34 Number of instances vs. tree size vs. kappa statistics for tree size of 50k 
bytes 

 

This experiment supported our argument that data stream mining algorithms can 

adapt to lower memory bounds without deteriorating much accuracy.  

With number of data samples for a typical power system operation period of 24 

hours reaching more than 2 million, the algorithms that process synchrophasor data has to 

be able to process data in limited memory without affecting much degrading the 

predictive accuracy. The ability of an algorithm to limit memory use also helps in 

meeting the latency requirement of real time applications. In this experiment, we have 

used a small data set to prove that the stream mining algorithm can optimize the tradeoff 

between memory requirement and accuracy. The impact of this property of stream 

mining algorithm will be profound when number of data samples is in millions [90]. 
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Experiment IV 

In this experiment, we compared the performance of non-adaptive hoeffding tree 

with traditional decision tree algorithms such as J48 and REPTree available in WEKA 

[94]. We choose non-adaptive hoeffding tree (unbounded memory) because from 

Experiments I and II we know that adaptive algorithms are less efficient in terms of 

memory and runtime, so we did not want to put hoeffding tree in disadvantage for 

adapting to changes that traditional data mining are not capable of. Figure 35 illustrates 

performance comparison based on runtime, size of tree and accuracy. The hoeffding tree 

algorithm significantly outperformed others even when runtime of hoeffding tree contains 

both testing phase and training phase while run time of J48 and REPTree algorithms is 

the time to just build model.  

Hoeffding tree algorithm was also found better than in terms of efficiency in 

memory as shown in Figure 35. We used Tree size as a measure of memory resource 

used by the algorithm because it was the only parameter available for all algorithms 

under study. The accuracy measure of hoeffding tree is found to be slightly lower than 

that of J48 and REPTree. It may be because of the fact that hoeffding tree is over pruned 

version of a tree [87]. If the number of samples is increased then hoeffding tree may even 

catch up with the accuracy other decision tree algorithms [87]. Nevertheless the 

performance of hoeffding tree is found to support our proposed method of handing huge 

amount of synchrophasor data within limited memory resource and latency required by 

situational awareness applications.  
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Figure 35 Performance comparison of three algorithms based on runtime, accuracy 
and memory requirements 

 

Conclusion 

Currently, operators do not have a decision support about system wide area status 

of power systems; they have to rely on local measurements backed by their conscience to 

intervene an imminent threat to the power system, which may not always be correct. With 

the deployment of synchrophasors, a huge amount of wide area measurements is 

available but actionable intelligence inside control room is still lacking. The stream 

mining algorithm presented in this paper can be used to fill in the information scarcity in 

situations where operators have to act on system to prevent cascading failures. We 

presented a new accurate event detection method utilizing massive synchrophasor data 

while limiting computation and memory requirements. Unlike, conventional machine 

learning algorithms, data stream mining algorithm is capable of handling stream of data 

in real time. In addition, the incremental learning method adopted by stream mining 

algorithms makes it very desirable for application in power system, whose behavior 

changes very often. 
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The algorithm presented in this paper can be used to process synchrophasor data 

within acceptable time while remaining within memory requirements and accuracy for 

classifying events in power systems. The operators can be alerted quickly about issues to 

be addressed improving the situational awareness inside control room to improve the 

reliability of future power systems 
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 CHAPTER V

DIMENSION REDUCTION USING MUTUAL INFORMATION OPTIMIZATION 

Background 

Synchrophasor technology has been widely regarded as a one of the most 

important data acquisition technologies for wide area monitoring of power system [95]. 

Higher data acquisition rate and time synchronization of acquired data have enabled 

industry to observe a never seen before perspective of dynamic behavior power system. 

Synchrophasor technology has been termed as MRI scan of power system in comparison 

to X-Ray for SCADA based monitoring system [96]. 

Time synchronization enables measurements from multiple PMUs to be 

temporally aligned as a vector ,where ‘n’ depends upon number of 

PMUs and number of parameters measured by each PMU. The dimension of 

synchrophasor vector is destined to rise exponentially with increase in number of 

deployed PMUs. The dimension of synchrophasor data handled by the Tennessee Valley 

Authority (TVA) is currently 1850 [62].   

 The high data acquisition rate and high dimensionality can pose challenge in 

processing, storing and transferring synchrophasor data efficiently. As machine learning 

algorithms are finding new applications in supporting decision in power systems [10, 14, 

49, 97-99], high dimensionality of synchrophasor data also can impair their performance 

due to “curse of dimensionality” [100]. 
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Introduction 

The infamous northeast blackout of August 14 2003 could have been prevented 

with adequate level of situational awareness for unforeseen contingencies [101]. 

Synchrophasor technology provides high speed time-synchronized data for real-time 

surveillance of power systems. One of the most intriguing areas of research in power 

systems is to translate massive synchrophasor data into actionable intelligence inside a 

control room. 

The massive amount of synchrophasor data poses a challenge to meet time 

requirement and accuracy requirement of real-time applications in power systems. Robust 

pattern recognition and machine learning algorithms are required to identify unforeseen 

contingencies in real-time to alert stakeholders, so that timely corrective could be taken to 

prevent cascading failures [102]. 

A naive way of speeding up data processing is to downsample. But, this method is 

inappropriate for synchrophasor measurements because it eliminates the essence of using 

high sampled synchrophasor data. The details of dynamic behavior of power systems are 

lost. Figure 36 shows plots of 30 samples per second (left) and downsampled version of 

same signal. It can be observed that much of detail information is lost in downsampled 

signal. Synchrophasor data should be processed without losing information about 

dynamic behavior of power systems. 
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Figure 36 Voltage measurements sampled at 30 samples/second and 0.2 samples/ 
second 

 

In this paper, we propose a feature selection method based on mutual information 

content of measurements from PMUs. This method will exploit the fact that each 

synchrophasor measurement does not carry equal/unique information for classification of 

an event in power systems. The proposed method will reduce redundancies in 

measurements while increasing relevance of measurements for event detection.  A subset 

of best measurements is selected thus reducing computation complexity without losing 

much information. 

There are several advantages discarding less informative measurements using 

information theory based criteria:  

 Computational cost is reduced without losing information  

 Effect of “curse of dimensionality” is reduced  

 Interpretability of PMU measurements are increased because the proposed 

method quantifies importance of measurements and  

 Noisy measurements can be discarded thus improving performance of 

classification algorithms. 
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Dimension Reduction Techniques 

Dimension reduction is a process of reducing the amount of data with minimal 

loss of information content. With advancements in data collection techniques, most areas 

of science and engineering are overwhelmed with the amount of data waiting to be 

analyzed. Dimension reduction is not a new area of study. It has been studied for a long 

time by researchers in statistics, computer science, machine learning, signal processing 

etc. There are two major areas of study in dimension reduction. 

Feature Extraction 

Feature extraction is a method of reducing dimension that extracts relevant and 

unique information from the data set. In this method, the original signal is mathematically 

modified and a new set of data with smaller dimensionality is generated as shown in 

Figure 37. 

The importance of a feature may depend on the application. Most Artificial 

Intelligence (AI) techniques, such as Back Propagation Neural Networks [67], feed 

forward neural networks [68], Kohonen maps [69], etc are examples of feature extraction. 

There are several other mathematical feature extraction processes such as Principal 

Component Analysis (PCA), wavelet methods, Singular Value Decomposition (SVD), etc 

[70].  
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Figure 37 Illustration of dimension reduction process 

 

Feature extraction processes may be either supervised or unsupervised. 

Supervised methods, such as neural networks, learn from training data. The 

characteristics of sample data are used by feature extraction methods to generalize the 

importance of features, while unsupervised mathematical models, such as Principal 

Component Analysis (PCA), wavelets transform, etc. use mathematical tools to extract 

energy representing the importance of the features. 

Feature Selection 

The complete feature set describing a data set carries all of the information of the 

data.  However, a subset of features can often be used to describe certain underlying 

trends within the data. The feature selection technique chooses a subset of “important 

features” from the total set of features without altering the original data.  

There are several strategies to find an optimal set of “important features”. Feature 

selection techniques can be broadly classified into feature ranking and subset selection 

categories. Feature ranking methods rank available features based on parameters such as 

information gain or distance[64]. A subset of highly ranked features is selected as a 

representative set of the original data set. A decision tree is an example of the feature 

ranking method. Subset selection techniques evaluate a subset of data against a model and 
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modify the model until a satisfactory subset is obtained [64]. Optimization algorithms 

such as Genetic algorithms fall in this category of subset selection.  

The feature selection technique may be supervised or unsupervised. Evolutionary 

algorithms, such as genetic algorithms, encode domain knowledge as a fitness function 

[65]. Decision trees require a supervised training approach to select features [103]. 

Feature selection using clustering algorithms do not require any training [66]. 

Feature selection methods can be widely classified into two categories: Filters, 

wrappers and embedded methods. 

Filters select a set of best features based on a scoring criterion function f(i). The 

features yielding largest value of f(i) are generally considered best and the features will 

be sorted in descending order of f(i) for selecting n number of features. This method is 

independent of specific choice of predictors and is explicitly a pre-processing step [64].  

Wrappers select a set of best features based on their usefulness to a given 

predictor. The final problem is solved with various subsets and subset yielding best 

results is selected. It is a time consuming method but assures the best result [64]. 

Embedded methods incorporate feature selection during training phase. Decision 

Tree is an example of embedded feature selection method. 

 In this paper, we will use mutual information based feature selection method for 

selecting most informative features.  This method is a filter with optimum mutual 

information as the criterion function. 

Mutual Information Based Feature Selection 

Mutual information is the measure of information carried by one random variable 

about another random variable. It is a measurement of reduction of uncertainty about one 
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variable after knowing value of another variable [104]. If X and Y are two random 

variables, then mutual information is given by Equation 12. 

 I X; Y H X 	H X|Y  Equation 12 

Where, H(X) and H(Y) are the marginal entropies, H (X|Y) and is the conditional 

entropy. 

Entropy is a measure of uncertainty of a random variable. The entropy H(X) of a 

discrete random variable X is defined by Equation 13. 

 	 ∑ 	  Equation 13 

Where, p(x) is the probability mass density function of random variable x. The log 

is to the base 2 and entropy is expressed in bits [104]. 

Conditional entropy is the measure of remaining uncertainty of a random variable 

when another random variable is known. The formula for conditional entropy is given by 

Equation 14. 

 | 	∑ , log
,,      Equation 14 

Where, p(x,y) is joint probability distribution function of random variable x and y. 

The log is to the base 2 and conditional entropy is also expressed in bits [104]. 

If {x1, x2, x3, x4, x5,.. x6 ; c} is a synchrophasor vector with c as class label (or 

state of power system) of the vector, then mutual information I(C;X) can be quantitative 

measure of helpfulness of the measurement to correctly classify state of power systems 

[105]. The measurements can be simply ranked in descending order to obtain the best set 

of measurements. A simple ranking method just ensures that the best measurements 
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individually. It does not necessarily ensure the best performance as a group [106, 107]. In 

other words, “the best m features are not m best features” [64, 107]. 

The highly informative measurements generally tend to have high correlation. 

High correlative features do not provide unique information for a classification problem. 

If redundancy is not eliminated then computational resources are wasted for processing 

multiple measurements for extracting same information [64, 106]. The method presented 

in this paper selects the synchrophasor measurements that are most relevant to a state of 

power system while minimizing information redundancy among selected measurements.  

Mutual Information of Synchrophasor Data 

The phasor measurements are continuous values while class labels are discrete 

values. It is computationally expensive to calculate mutual information for continuous 

variables. The probability density functions are required for calculating mutual 

information which involves integrations [107-110]. A formulation has been used in [108-

110] to calculate mutual information between continuous variable and discrete class 

labels using parzen window to estimate probability density of continuous variables. We 

use this criterion to quantify the relevance of synchrophasor measurement to a state of 

power system.  

Maximizing Relevance 

If C is classification array of status of power system and X be a synchrophasor 

measurement array, then the information content can be calculated using Equation 15. 

 ; 	 |  Equation 15 
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Where H(C) and H(C|X) are marginal entropy and conditional entropy. 

As C is a discrete variable, H(C) can be easily calculated, but H(C|X) is 

computationally expensive to calculate [108-110] using Equation 16 because 

synchrophasor measurements are continuous variables. 

 | 	 ∑ | log 	 |  Equation 16 

where, N is the number of classes 

The conditional entropy H(C|X) of synchrophasor measurements can be estimated 

using parzen window method. By the Bayesian rule (Equation 17), 

 | |
 Equation 17 

If the class has N values, we get estimate of conditional pdf  ̂ |  of each class 

using parzen window as Equation 18 [109].  

 | ∑ ∅ ,  Equation 18 

Where ∅ (.) is the window function and h is the window of width parameter. If ∅ 

and h are selected properly, then ̂ converges to true probability density [110]. The 

widow must be normalized to 1 (See Equation 19). 

 ∅ , 1  Equation 19 

and the width of window should be the function of n such that 

 lim → 	 0 	 lim
→

	 ∞     Equation 20 

If Gaussian window function is used then for one dimensional Gaussian window 

then  
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 ∅ ,
√

 Equation 21 

   
Where, σ is the standard deviation of the window. We will use σ = 1/log n as 

suggested in [110]. 

The conditional entropy with n training samples by replacing integration with 

summation of the sample points and each sample has the same probability [109], we get  

 | 	 ∑ ∑ ̂ log ̂     Equation 22 

where, xj is the jth sample of the training data. 

In this paper, we will use ; 	to maximize the relevancy of measurements to 

state of power system. If S be a subset of synchrophasor measurements, then the 

condition for maximizing total relevance of all measurements in S is given as [107]. 

 maxV ,				V
| |
∑ I C, X∈  Equation 23 

Minimizing Redundancy 

Equation 23 ensures that the synchrophasor measurements that can individually 

provide maximum discriminative power for class differentiation. But, it tends to select 

similar information, increasing redundant information [106, 107]. If the redundancy is 

minimized in the selected set, then a set of measurements with unique discriminative 

powers can be obtained, thus optimizing usage of computational resources. If S be a set 

of synchrophasor measurements and |S| be size of S then 

 min , 				
| |

∑ ,, ∈  Equation 24 
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The estimation of mutual information I (x,y) can be done using the Equation 25 

[64] 

 p , y log ,
 Equation 25 

where p(x) and p(y) are the probability densities of x and y and p(x,y) is joint density.  

In this paper, we are trying to minimize redundancy between two synchrophasor 

measurements which are both continuous variables. Estimation of p(x) and p(y) are 

computationally expensive for continuous variables. The measurements selected by 

Equation 21 tend to have higher correlation [106]. So in order to minimize the 

redundancy, we use Pearson correlation coefficient as a measure of I(X,Y) [106].   

As both positive and negative correlation coefficients are considered as 

redundancy in information, so we will take absolute value of correlation coefficient. The 

Equation 25 can be re-expressed as  

 min , 				
| |

∑ | ,, ∈ 	&	 |     Equation 26 

Where, γ(i,j)  is Pearson correlation coefficient calculated as Equation 27 [111]. 

 ,
∑

 Equation 27 

Maximum Relevance-Minimum Redundancy 

In order to optimize the minimum redundancy and maximum relevancy of 

synchrophasor data, we need to optimize the results provided by Equation 24 and 27 

simultaneously. [106, 107] proposed two methods for combining the two conditions as 

Equation 28. 
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 Max (α*V-β*W) Equation 28 

Where, α and β are the tuning variables, which can be used to weigh importance 

of V and W depending upon specific problem requirements. 

Optimization Problem 

Let us consider that λ be the number of features to be selected from available set 

of N measurements. The value of V-W has to be maximized for the selected subset of 

measurements for optimum information. This essentially converts entire feature selection 

procedure to an optimization problem of V-W. The exhaustive search of optimum subset 

may quickly turn into a NP hard problem because the possible combinations of subsets 

are λCN =
!

! !
 . For example: If 5 features are to be selected from 25 features then 

possible combinations of features are 53130, making exhaustive search practically 

infeasible. 

As the number of phasor measurement units increases, the number of candidate 

features increases exponentially for the feature selection method. The exhaustive search 

may not also be possible because of computational cost of probability density function 

estimation of continuous variables. It may not be possible to find the optimal solution for 

the problem, but a near optimal solution can be obtained using several optimization 

algorithms such as genetic algorithms, random mutation hill climbing, ant colony 

optimization etc.  

Optimization using Random Mutation Hill Climbing 

In this paper, we will use Random Mutation Hill Climbing (RMHC) method for 

information optimization of synchrophasor measurement [112]. The computational cost 
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of genetic algorithm (GA) is significantly larger than that of RHMC because it typically 

maintains a population size of 100 in contrast to RHMC which has only one individual 

[113].  It is a waste of computational resources if genetic algorithm is used where less 

extensive random mutation hill climbing can be used. 

The specifications of random mutation hill climbing algorithm be described as 

following 

Chromosome: We will use a chromosome of length λ, where λ is number of 

measurements to be selected. Each gene can take an index of candidate measurement 

matrix.  

Fitness Function: The objective of the RMHC algorithm is to maximize value of 

(α V-β W). 

The basic random mutation hill climbing algorithm is as follows [112]. A 

flowchart of the algorithm is illustrated in Figure 38. 

 Randomly initialize chromosome. Save the chromosome in a separately as 

best_chromosome. 

 If number of iterations is less than 90% of maximum number of iterations, 

mutate all genes and evaluate its fitness. 

 Otherwise mutate one randomly selected gene and evaluate its fitness. 

 If fitness of mutated chromosome is better than best_chromosome, replace 

it with new chromosome. 

 If maximum number of iterations is reached stop else go to step 2. 
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Figure 38 Flowchart of optimization of mutual information 

 

Experimental Settings 

Hardware Setup for Data Generation 

The data required for the proof of concept proposed in this paper is generated by 

using a power system modeled in Real Time Digital Simulator (RTDS) with hardware-in-

the-loop using two phasor measurements units (PMU), Phasor Data Concentrator (PDC). 

It can simulate a variety of operating conditions [114]. The simulation test-bed is 

illustrated in Figure 39. A detailed description of test-bed development and hardware 

setup can be obtained in [114]. 

n = number of iterations 
f = number of gross search iterations 
n-f = fine tuning iterations 
Nmax = maximum iterations 
Obest = Optimization criteria of best yet found 
Onew = Optimization criteria of new chromosome  
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Figure 39 Simulation setup [114] 

 

The test-bed includes two PMUs GE N60 and SEL421. Both PMUs are 

configured to send data to PDC at 30 samples per second. The PDC concentrates data and 

sends data to OpenPDC for processing. We have written a custom output adapter on 

OpenPDC to format data as shown in Figure 40, so that it can be processed by our 

algorithm. 

 

Figure 40 Flow of data from simulation to algorithm 

 

Scenarios 

In this paper, we study two scenarios to demonstrate effectiveness of the proposed 

method of dimension reduction. We focus on being able to predict operating condition of 
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power system with minimum number of synchrophasor measurements instead of all 

available measurements.  

Change of Load 

Load change is a normal phenomenon in electrical power system. Load can 

change with very simple operation as turning on/off of a light. Each change of load 

changes the operating condition of power system. Change of load may be important for 

predicting voltage stability, predicting topology  changes, fault detection, outage 

detection etc [115].  

Loss of a generator 

Loss of a generator is usually not a normal phenomenon. The effect of a generator 

loss on power system depends upon the contribution of the generator to maintain the 

load-generation balance. If the generator contributes huge chunk of power being 

delivered it may push electrical system towards instability while if the generator 

contributes smaller amount of energy and other generators can pick-up then it will have 

almost no effect in operation of power system. 

Experimental Results 

Experiment I 

In this experiment, we apply the proposed dimension reduction algorithm on 

measurement from scenario of different loading conditions in a power system. The initial 

load on is 84MW, and then the load was changed twice at step of 12 MW. The other two 

loading conditions were 96MW and 108 MW. The plots of phase A voltage magnitude, 

phase A current magnitude and phase angle measurements from one the PMUs is 
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illustrated in Figure 41. It can be observed that there are two changes in load where 

voltage and current have clear fluctuation where as it can hardly be distinguished with 

just angle. 

 

Figure 41 Plot of phase A voltage, phase A current and angle 

 

For this experiment, we have used two Phasor Measurement Units which give 21 

different measurements as shown in Table 10. The zero and negative sequence currents 

and voltage had to be discarded because they were 0 for entire experiment. 

Table 10 Synchrophasor measurements used in experiment I 
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Figure 42 illustrates the loading condition discriminative power of each 

measurement using probability density function of each synchrophasor measurement. It is 

observed that voltage has the most definitive discriminative power, while current has 

some overlapping in measurements while most of the measurements in angle are 

overlapped. This property of synchrophasor measurement is measured by maximum 

relevancy. The voltage seems to be the most relevant to loading condition while angle 

seem to be the least relevant.  

 

Figure 42 Probability density function of each loading condition 

 

Table 11 shows a sub-matrix of correlation matrix of the synchrophasor 

measurements. It is observed that the correlation between voltages is very high; the 

frequency has low correlation with other measurements while correlations between 

current and other measurements are not consistent. After observing the correlation 

matrix, we can conclude that a significant correlation exists in synchrophasor 
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measurements and the approach we have taken in this paper to reduce redundancy is 

relevant to power system domain. 

Table 11 Correlation coefficients of synchrophasor measurements 

V V I I f V I θ
V 1 0.96 0.2 -0.2 0.17 0.85 -0.9 -0.5
V 0.96 1 0.2 -0.2 0.16 0.85 -1 -0.5
I 0.16 0.23 1 0.6 0.01 0.28 -0.3 -0.1
I -0.2 -0.2 0.6 1 0.05 -0.1 0.1 0.14
f 0.17 0.16 0 0 1 0.12 -0.1 -0
V 0.85 0.85 0.3 -0.1 0.12 1 -0.9 -0.4
I -0.9 -1 -0.3 0.1 -0.1 -0.9 1 0.48
θ -0.5 -0.5 -0.1 0.1 -0 -0.4 0.48 1  

 

Now, we use Random Mutation Hill Climbing (RMHC) algorithm to select 5 

measurements with maximum non redundant mutual information: 

 Length of Chromosome = 5 

 α=β=1 

 Fitness Function    = max(V-W) 

 Iterations     =200 

The selected features were fed into self organizing feature map using sequential 

training [116]. Figure 43 shows Self Organizing Map (SOM) created using five most 

informative measurements selected by proposed algorithm at top while figure at bottom 

shows SOM created using all synchrophasor measurements available. Visual inspection 

of the SOMs proves that the clusters are compact and well spaced in top SOM than 

bottom SOM. More importantly, the structure and relative spatial placement of each 
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cluster is same in both SOM indicating much information is retained in the selected 

features. 

 

Figure 43 Self organizing map with 5 most informative measurements (top) and with 
all measurements available (bottom) 

 

In Table 12, we demonstrate performance evaluation of self organizing map 

algorithm on clustering synchrophasor data. We use CPU time required for creating 

SOM, size of data and error in classification of supervised self organizing map [116]. We 

achieved a significant reduction in CPU time and data size also the accuracy of 

supervised SOM is improved.    

Table 12 Performance evaluation of feature selection method 

 5 Features21 Features
CPU Time (Sec) 6.6144 9.7412 
Data Size (KB) 66.1 261 

Error (%) 2.90 2.96 

−10 −8 −6 −4 −2 0 2 4 6 8
−0.4

−0.2

0

0.2

0.4

0.6
Self Organizing Map with 5 most informative measurements

 

 

−150 −100 −50 0 50 100 150
−30

−20

−10

0

10

20

30

40
Self Organizing Map with all measurements

Load3

Load2

Load1

Load1

Load2

Load3



 

101 

Experiment II 

In this experiment, synchrophasor measurements from a generator loss situation 

are used to illustrate effectiveness of proposed dimension reduction algorithm. In this 

experiment, there are 17 synchrophasor measurements from two PMUs, where plot of 

phase A voltage, phase A current and phase Angle from one of the PMUs is shown in 

Figure 44. The system is operating at normal condition first then a generator is lost at a 

point where there is fluctuation in measurements.  

 

Figure 44 Plot of phase A voltage, phase A current and angle 

 

This experiment is provided a greater fluctuation of measurements than that 

provided by the experiment I. We considered the transient measurements as outliers for 

this experiment and filtered out measurement collected within 1 second (30 samples) of 

the generator loss, to maintain the relevancy of the probability density function to the 
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new operating condition. Table 13 illustrates the properties of data for experiment I, 

experiment II (before and after transients removed). 

Table 13 Properties of synchrophasor data collected 

 Exp I Exp II Exp II (No Transients)
Phase A Voltage 17.002 KV 528.01KV 232.5037 KV 
Phase A Current 0.205 A 24.676 A 24.302 A 

Angle 0.0864 Deg 0.156 Deg 0.116 Deg 
 

Now, we use Random Mutation Hill Climbing (RMHC) algorithm to select 3 

measurements with maximum non redundant mutual information: 

 Length of Chromosome    = 3 

 α =β=1 

 Fitness Function    = max(V-W) 

 Iterations     = 200 

Figure 45 shows SOM created using five most informative measurements selected 

by proposed algorithm at top while figure at bottom shows SOM created using all the 

available synchrophasor measurements. The space and spacing of clusters visually are 

identical with similar relative position of the clusters. The relative spatial spacing of 

clusters in both SOM is similar as we observed in experiment I.   
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Figure 45 Self organizing map with 3 most informative measurements (top) and with 
all measurements available (bottom) 

 

Table 14 shows performance measures of the feature reduction technique. CPU 

time is the time required for creating self organizing map (Figure 45), size of data and 

percentage of error in classification of supervised self organizing as described in [116]. 

We achieved significant improvements in all three performance measures using the 

features selected by our algorithm. 

Table 14 Performance evaluation of feature selection method 

 3 Features17 Features
CPU Time (Sec) 1.849670 3.060350
Data Size (KB) 8.06 59.8 

Error (%) 0.1024 0.2047 
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Discussions and Conclusions 

In this study, we proposed an algorithm for reducing dimension of synchrophasor 

measurements based on optimization of underlying information to classify events in 

power system. The algorithm selects measurements that are more relevant for the 

classification problem while reducing redundancy in information, thus a set of features 

carrying unique information.  

We performed two experiments to prove the features selected by our algorithm 

discards irrelevant information to a classification problem and/or redundant to a selected 

feature. The problem of feature selection is essentially reduced to information 

optimization of synchrophasor measurements. The computational complexity to 

exhaustively search the optimum set of features may not practically feasible when the 

number of available measurements is large, so we used random mutation hill climbing 

(RMHC) algorithm that can search for a “good enough” set of features. 

We used self organizing maps (SOM), an unsupervised learning method to form 

clusters out of all available measurements and out of measurements selected by our 

algorithm. The results obtained by measurements selected by our algorithm are evenly 

matched or even better than the result obtained by using all the measurements. The 

relative position of clusters are similar in both cases indicating minimal loss of 

information [117]. The use of the unsupervised learning method to test the information 

content decouples the supervised learning method that we have used for the feature 

selection indicating the effectiveness of the algorithm proposed in this chapter. 
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Limitations and Future Works 

The greatest limitation of this method is the computational complexity of 

estimation of mutual information content of continuous synchrophasor measurements. In 

future, we can investigate the methods to speed up pdf estimation process with use of 

modern distributed computation frameworks such as Graphical processors, Hadoop etc. 
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 CHAPTER VI

CONCLUSION AND FUTURE WORKS 

Conclusion 

Managing and extracting information from large scale data will be a major 

problem as we move into the future. The massive amount of data collected by a variety of 

sensors has to be transferred, stored and analyzed efficiently to avoid bottlenecks. The 

future smart grid will be no exception in generating a massive amount of data. The new 

sensory equipment (e.g., PMUs, smart meters, frequency disturbance recorders etc) have 

already started generating a huge amount of data. As the industry is rapidly moving 

towards achieving a wide area situational awareness system in the near future, rapid data 

mining algorithms have to be developed to ease certain bottlenecks created by the scale 

of the data. 

As more data is generated, the importance of individual data points will decrease 

and the importance of analysis of trends of data will increase. The identification of 

important measurements for event detection will help in discarding “less important” 

measurements thus, providing savings on processing, storage and transmission cost of the 

data. In addition, it also adds value on meeting the aggressive latency requirements of the 

real time situational awareness applications. 

In this dissertation, we have proposed various algorithms that contribute towards 

solving the massive data problem that future smart grid applications will have. The 
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algorithms proposed in this work can be broadly classified into two areas i) Dimension 

reduction algorithms ii) stream mining algorithms. 

Time aligned synchrophasor data enables us to capture a snapshot of the state of 

the power system at any given point of time. In addition, it also enables comparison of 

the state of the power system at different geographical locations, thus providing an 

important forensic tool for post event analysis. The synchrophasor data can be time 

aligned and treated as a vector of measurements. The dimension of the vector largely 

depends upon the number of measurements that each PMU can measure. As the number 

of deployed PMUs increase, the dimension of synchrophasor data increases 

exponentially. More importantly, each measurement added because of the addition of a 

PMU will not carry an equal amount of additional information about the state of the 

power system. If a mechanism of selecting the most informative set of measurements can 

be devised, then a significant amount of irrelevant and redundant measurements can be 

removed without compromising much on the information content. 

 In this dissertation, an online dimension reduction algorithm is proposed that 

extracts principal components of the signal, so that a predefined fraction of information is 

retained in the principal components. The number of principal components to be retained 

is calculated in real time, so that the algorithm can incrementally adapt to abrupt and 

gradual changes to maintain the information content. The algorithm first decomposes the 

synchrophasor measurements into principal components (PCs), and then reconstructs the 

original signal based on the PCs. If the difference between the reconstructed signal and 

original signal is not within the user defined limit then the algorithm readjusts itself until 

the condition is met.  
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Another method proposed in this work is based on a feature selection algorithm 

that optimizes the mutual information between synchrophasor measurements and state of 

the power system. It exploits the fact that each measurement does not carry equal 

amounts of information to identify the state of the power system, so it devises an 

algorithm that maximizes the relevancy of measurements for classifying status of the 

power system while it minimizes information redundancy between measurements. An 

optimization criterion is proposed which can be optimized using various optimization 

algorithms to find a subset of features that contains unique information. 

Synchrophasor data can be viewed as a never ending stream of data flowing to 

control centers. As long as the communication channels are not disrupted, PMUs 

continuously send data at a very fast rate. At control centers, the data has to be constantly 

monitored and operators have to be alerted if any undesired phenomenon is detected. 

Data at hand has to be processed before a new set of data arrives to prevent the data 

accumulation, otherwise, ultimately the system will run out of memory. This is also 

important in satisfying the latency requirement of the real time applications. Data mining 

algorithms have been studied and applied for emulating the behavior of the power system 

to meet quick decision requirement of online applications. However, the continuous 

stream of data challenges the traditional machine learning algorithms designed to address 

the data scarcity problem. Instead of data scarcity, abundance of data is the major 

hindrance in applying machine learning algorithms in synchrophasor data. The model 

grows too large over time to accommodate in memory thus, affecting the recall time. 

In order to address the problem, a stream mining algorithm is proposed to process 

synchrophasor data. Unlike traditional data mining algorithms, stream mining algorithms 
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scan the incoming data only once. Instead of data, it stores the sufficient statistics and it 

also employs several methods to prevent the model from using too much memory. In 

addition, the model created by the stream mining algorithm is based on decision trees, so 

it is easier to prune and re-grow a branch of the tree to incorporate the incremental 

learning. The incremental learning strategy is very useful in a dynamic system (such as 

power systems) where the state of the system changes frequently. 

Stream mining algorithms can prove a very important tool for supporting 

decisions of future smart grid because of their efficient memory usage, statistically 

competitive accuracy, incremental learning strategy and most importantly ability to 

handle data as soon as it arrives.  

  In summary, various information mining algorithms are studied in this 

dissertation to extract information from large amounts of synchrophasor measurements to 

support real time decision making in situational awareness applications of future smart 

grid. This dissertation envisions a data processing layer for synchrophasor data utilizing 

machine learning techniques and information theory to reduce data, but retaining 

information.     

Future Work 

In this dissertation, I have mostly focused on utilization of information and a 

loose comparison of algorithms’ performance with traditional data mining algorithms. 

This work can be extended with benchmarking the performance of the algorithms. Also, 

this dissertation does not include the architecture specific performance of the algorithms. 

Massive amount of synchrophasor data processing can be parallelized for information 

extraction using parallel architectures such as Hadoop 
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