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This dissertation develops new approaches for hyperspectral image visualization. 

Double and multiple layers are proposed to effectively convey the abundant information 

contained in the original high-dimensional data for practical decision-making support. 

The contributions of this dissertation are as follows. 

1. Development of new visualization algorithms for hyperspectral imagery. 

Double-layer technique can display mixed pixel composition and global material 

distribution simultaneously. The pie-chart layer, taking advantage of the properties of 

non-negativity and sum-to-one abundances from linear mixture analysis of hyperspectral 

pixels, can be fully integrated with the background layer. Such a synergy enhances the 

presentation at both macro and micro scales. 

2. Design of an effective visual exploration tool. The developed visualization 

techniques are implemented in a visualization system, which can automatically 

preprocess and visualize hyperspectral imagery. The interactive tool with a user-friendly 

interface will enable viewers to display an image with any desired level of details. 



  

            

            

        

            

            

            

             

             

  

3. Design of effective user studies to validate and improve visualization methods. 

The double-layer technique is evaluated by well designed user studies. The traditional 

approaches, including gray-scale side-by-side classification maps, color hard 

classification maps, and color soft classification maps, are compared with the proposed 

double-layer technique. The results of the user studies indicate that the double-layer 

algorithm provides the best performance in displaying mixed pixel composition in several 

aspects and that it has the competitive capability of displaying the global material 

distribution. Based on these results, a multi-layer algorithm is proposed to improve global 

information display. 



 
 

 

          

             

              

             

           

              

         

               

           

               

               

                 

              

  

ACKNOWLEDGMENTS 

I acknowledge with sincere gratitude the support, guidance, and assistance 

provided by my major advisor Dr. Robert Moorhead and my dissertation director Dr. 

Jenny Q. Du. Without their invaluable help, this dissertation could not be materialized. 

I thank my committee members, Dr. J. Edward Swan II, Dr. T.J. Jankun-Kelly, 

and Dr. James E. Fowler for their guidance and fruitful discussion. 

And also, I would like to thank all the participants in user studies. Their 

participation is important to the success of this research. 

I am grateful to my lab mates: Dr. Zhanping Liu, Dr. Phil Amburn, Derek Irby, 

Joel P. Martin, Mahnas Jean Mohammadi-Aragh, John van der Zwaag, Jibonananda 

Sanyal, Keqing Wu, Nareenart Raksuntorn, He Yang, and Wei Zhu. It is pleasure to work 

with them. I also want to thank my girlfriend, Hualu Zheng, and my roommate, Mingbo 

Luo, and many other friends. In the past years, they offered me great friendship and help. 

Finally, special gratitude goes to my parents and my family for their support and 

encouragement. 

ii 



   

   
 
 

 
 

   

   

 

  

  
   
     
   
      
     

   
    
    

     
       

    

   
    

       
 

       
    

      
    
     

      
 

TABLE OF CONTENTS 

Page 
ACKNOWLEDGMENTS .................................................................................................. ii 

LIST OF TABLES............................................................................................................. vi 

LIST OF FIGURES .......................................................................................................... vii 

CHAPTER 

I. INTRODUCTION .......................................................................................1 

II. BACKGROUND .........................................................................................4 
2.1 Hyperspectral Imagery.....................................................................5 
2.2 Remotely Sensed Imagery Visualization .........................................5 
2.3 Multivariate Visualization ...............................................................7 
2.4 Uncertainty and Accuracy in Visualization .....................................9 
2.5 Evaluation and User Study.............................................................10 

III. DATA PREPROCESSING........................................................................12 
3.1 Bad Band Removal ........................................................................12 
3.2 Bad Pixel Removal ........................................................................13 

3.2.1 Isolated Noisy Pixel Removal........................................... 14 
3.2.2 Dark or White Noisy Line Removal ................................. 15 

3.3 Linear Mixture Model....................................................................16 

IV. DBLY VISUALIZATION.........................................................................21 
4.1 Color Assignment Strategies..........................................................21 

4.1.1 Automatic Color Assignment with Class Similarity 
Constraint.............................................................. 23 

4.1.2 Automatic Color Assignment with Class Similarity 
and Color Consistency Constraints....................... 24 

4.2 Layer I − Background Layer..........................................................26 
4.2.1 Pixel Color Generation ..................................................... 26 
4.2.2 Mapping Pixels to Vertices............................................... 27 

4.3 Layer II − Detail Layer ..................................................................28 
4.4 Blending.........................................................................................29 

iii 



   

    
   

      
      
     

  

         
  

     
   
    
    
  
     

     
     
     

  

        
 

     
    
    
  
     

     
     
     

  

    
    

  
   

      
  
  

  

     
  
  

4.5 Visualization Exploration Tools ....................................................30 
4.6 Visualization Results .....................................................................32 

4.6.1 Sample I: AVIRIS Lunar Lake ......................................... 34 
4.6.2 Sample II: AVIRIS Low Altitude ..................................... 36 
4.6.3 Sample III: Hyperion Experiment..................................... 38 

4.7 Conclusion .....................................................................................40 

V. AN EMPERICAL VALIDATION OF DBLY VISUALIZATION ON 
SYNTHETIC DATASETS............................................................41 

5.1 Experimental Design and Settings .................................................41 
5.1.1 Domain Questions............................................................. 41 
5.1.2 Datasets and Colors........................................................... 43 
5.1.3 GUI and Software ............................................................. 44 
5.1.4 Participants........................................................................ 45 
5.1.5 Independent and dependent variables ............................... 47 

5.2 Experimental Tasks and Results ....................................................48 
5.2.1 Global Pattern Display Capability .................................... 49 
5.2.2 Local Information Conveying Capability ......................... 56 

5.3 Discussion ......................................................................................61 

VI. AN EVALUATION OF DBLY VISUALIZATOIN ON REAL 
DATASET .....................................................................................63 

6.1 Experimental Design and Settings .................................................63 
6.1.1 Datasets and Colors........................................................... 63 
6.1.2 GUI and Software ............................................................. 65 
6.1.3 Participants........................................................................ 68 
6.1.4 Independent and dependent variables ............................... 69 

6.2 Experimental Results and Discussions ..........................................70 
6.2.1 Global Pattern Display Capability .................................... 70 
6.2.2 Local Information Conveying Capability ......................... 76 

6.3 Conclusion .....................................................................................86 

VII. ANALYSIS AND DISCUSSION..............................................................88 
7.1 Discussions on Studies...................................................................88 

7.1.1 Hypotheses........................................................................ 88 
7.1.2 Further Considerations...................................................... 92 

7.2 Advantages and Limitations of DBLY ..........................................96 
7.2.1 Advantages........................................................................ 96 
7.2.2 Limitations ........................................................................ 96 

7.3 Conclusion .....................................................................................98 

VIII. CONCLUSION AND FUTURE WORK ..................................................99 
8.1 Conclusion .....................................................................................99 
8.2 Future Work .................................................................................101 

iv 



   

        
     
   
  
      

 
 

 

8.3 A Potential Solution — Multi-Layer Visualization Scheme .......102 
8.3.1 Functions of Five Layers ................................................ 102 
8.3.2 Material Categorization .................................................. 104 
8.3.3 Sampling ......................................................................... 105 
8.3.4 Results of Multi-layer Visualization Scheme ................. 107 

REFERENCE...................................................................................................................110 

v 



   

   
 
 

               
 

        
 

       
     

 
       

     
 

       
 

       
 

      
 

       
  

 

LIST OF TABLES 

TABLE Page 

3.1 NUMBER OF BANDS BEFORE AND AFTER SELECTION ....................13 

5.1 THE INDEPENDET VARIABLES AND DEPENDETN VARIABLES 
STUDIED IN THE POLIT STUDY...................................................48 

6.1 THE INDEPENDET VARIABLES AND DEPENDETN VARIABLES 
STUDIED IN THE MAIN STUDY ...................................................69 

6.2 OUTLIERS FOR PERCEPTUAL EDGE DETECTION TASK ...................71 

6.3 OUTLIERS FOR BLOCK VALUE ESTIMATION TASK ..........................74 

6.4 OUTLIERS FOR CLASS RECOGNITION TASK.......................................80 

6.5 OUTLIERS FOR TARGET VALUE ESTIMATION TASK ........................83 

vi 



   

   
 
 

               
 

          
 

              
       

 
              

        
 

          
 

          
   

               
                

     
 

        
 

        
 

       
 

        
 

             
 

            
 

             
       

  
           

 
          

LIST OF FIGURES 

FIGURE Page 

2.1 A hyperspectral image cube with 220 spectral bands [12]. ..............................4 

3.1 Band 173 in the AVIRIS Low Altitude data. (a) Before bad pixels are 
removed; (b) after bad pixels are removed. ........................................15 

3.2 Band 10 of Hyperion data with the line removal. (a) Original image; (b) 
detected stripes; and (c) after the stripes removed..............................15 

3.3 AVIRIS Lunar Lake scene of size 200 × 200.................................................20 

3.4 The abundance images of the AVIRIS Lunar Lake scene..............................20 

4.1 Color assignment results. (a) Six classes are assigned color according to 
their signature similarity; (b) Class 1 and Class 3 are pre-defined 
as blue and green, respectively. ..........................................................26 

4.2 The mapping scheme from pixels to vertices. ................................................28 

4.3 A fan-shaped superpixel with its mixture composition. .................................29 

4.4 The mapping from pixels to superpixels. .......................................................30 

4.5 The interface in the DBLY visualization system............................................31 

4.6 The abundance images of the AVIRIS Lunar Lake and the assigned colors. 33 

4.7 The composite image based on the color assigned in Figure 4.6. ..................35 

4.8 Visualization results for the AVIRIS Lunar Lake data (from left to right: 
Layer I, Layer II, and DBLY approach). ............................................35 

4.9 The AVIRIS Low Altitude scene of size 512 × 512.......................................37 

4.10 The abundance images of AVIRIS Low Altitude and their colors.................37 

vii 



   

                  
       

 
          

 
           

 
                 

    
 

                      
                      

          
 

                     
                

         
 

                             
        

              
             

     
 

               
                 

               
      

 
                

     
 

                
   

 
                    

   
 

                     
  

4.11 Visualization results for the AVIRIS Low Altitude data (from left to 
right: Layer I, Layer II, and DBLY). ..................................................38 

4.12 A Hyperion image scene of size 150 × 200. ...................................................39 

4.13 Five abundance images of the Hyperion data and their colors. ......................39 

4.14 Visualization results for the Hyperion data (from left to right: Layer I, 
Layer II, and DBLY). .........................................................................39 

5.1 Color ramps used for all the experiments. Each set of three parameters 
is the value of the left end of a color ramp in the L*a*b* color 
space; the right end of each is (62, 0, 0). ............................................44 

5.2 Samples of the GUI in training mode in pilot study. (a) The GUI with 
four gray-scale images; (b) the GUI with one SOFT image which 
is generated from the same dataset shown in (a). ...............................46 

5.3 A sample set of images for testing relative location with 4 cases of 
2-circle overlap. For the GRAY visualization, similarly-colored 
boxes indicate matching 2-endmember sets; there are a total of 4 
such sets for this example. During the actual experiment, the 
colored boxes were not shown............................................................50 

5.4 Results from locating the relative position for both dependent measures. 
For this and all figures, absent error bars indicate the standard 
error is smaller than the symbol size. The color-coded lines 
indicate the result of post-hoc comparisons........................................51 

5.5 An example of the perceptual edge detection task. The yellow lines 
indicate the ground truth positions. ....................................................52 

5.6 Result of the perceptual edge detection task. The lines indicate the results 
of post-hoc comparisons. ....................................................................54 

5.7 A sample of the block value estimation task. Figure 5.2 shows the GUI 
for this task. ........................................................................................55 

5.8 Result of the block value estimation task. The lines indicate the results 
of post-hoc comparisons. ....................................................................56 

viii 



   

                           
       

        
          

         
 

                 
        

 
              

    
 

              
    

 
         

 
             

      
 

              
           
              

              
        

 
 

                  
            

                  
                  

              
 

                
     

 
                

   
 

             
           

 
                

                   
 

5.9 A sample set of images for testing class recognition with 3 cases of 
2-endmember subpixels. For the GRAY visualization, similarly 
colored boxes indicate matching 2-endmember pixels; for other 
techniques, white boxes indicate the 2-endmember pixels. During 
the actual experiment, the colored boxes were not shown. ................57 

5.10 Result of the class recognition task for both dependent measures. The 
color-coded lines indicate the result of post-hoc comparisons. ..........58 

5.11 An example of the target value estimation task. The red/white boxes 
indicate the target position..................................................................59 

5.12 Result of estimating the target value. The color-coded lines indicate the 
result of post-hoc comparisons. ..........................................................60 

6.1 The Lunar Lake abundance images with embedded features. ........................64 

6.2 Sample images used in the main user study. (a) Original dataset, SOFT 
visualization; (b) x-axis flipped, HARD visualization. ......................64 

6.3 Sample images, which are indicated by the black box in Figure 6.2(a), are 
used to simulate the zooming-in operation in the main user study. 
From left to right and from top to bottom, the four images 
correspond to the four blocks in Figure 6.2(a), and represent the 
four visualization techniques, GRAY, HARD, SOFT, and DBLY, 
respectively.. .......................................................................................66 

6.4 Samples of the GUI in training mode in the main study. (a) The GUI with 
six gray-scale images to estimate the class number (class 
recognition task) at the pixel indicated by the red box in class 2; 
(b) the GUI with one SOFT image to estimate the average value 
of the class represented by the left most color bar in the white box...67 

6.5 An example of the perceptual edge detection task. The yellow lines 
indicate the ground truth positions. ....................................................71 

6.6 Result of the perceptual edge detection task. The lines indicate the results 
of post-hoc comparisons. ....................................................................72 

6.7 The distribution of ground truth for block value estimation task. The labels 
below the ground truth axis indicate the five ground truth subsets. ...73 

6.8 A sample of the block value estimation task. The red/white box indicates 
the position of target blocks. Figure 6.4(b) shows the GUI for 
this task. ..............................................................................................75 

ix 



   

                     
   

 
               

          
            

              
            

      
 

              
          

       
 

              
    

 
           

 
             

           
         

 
 

             
        

         
 

            
          

         
 

             
              
       

 
                      

              
           

 
            

                
                    

6.9 Result of the block value estimation task. The lines indicate the results 
of post-hoc comparisons. ....................................................................76 

6.10 A sample set of images for testing class recognition with 3 classes in the 
pixel under test. For the GRAY visualization, the testing pixel 
position is indicated by the red box in the right-bottom gray image. 
The co-existing classes are marked by the green box. During the 
real test, the green boxes are not displayed. Black box marks the 
testing position in other visualization techniques. ..............................77 

6.11 Result of the class recognition task. (a) Relative error with error bars; (b) 
response time and absolute error with error bars. The color-coded 
lines indicate the result of post-hoc comparisons. ..............................79 

6.12 An example of the target value estimation task. The red/white boxes 
indicate the target position..................................................................82 

6.13 The distribution of ground truth for target value estimation task. ..................83 

6.14 Result of estimating the target value estimation task. (a) Mean and interval 
plot for relative error; (b) absolute error and response time in 
seconds. The color-coded lines indicate the result of post-hoc 
comparisons. .......................................................................................84 

7.1 The result of displaying objects in one image vs. displaying objects in 
separate images. “GRAY” represents the techniques which display 
objects in separate images and “Others” in one image.......................88 

7.2 The comparison of SOFT and DBLY visualization. (a) Response time and 
normalized error for perceptual edge detection task; (b) response 

time and absolute error for block value estimation task. ...................90 

7.3 The comparison of results from two user studies. (a) Response time and 
absolute error for class recognition; (b) response time and 
absolute error for target value estimation task...................................91 

7.4 The z-score for each visualization algorithm calculated for each task. 
(a) Comparison of response time; (b) comparison of absolute error. 
“P” represents the pilot study and “M” represents the main study.....93 

7.5 The z-score comparison between experts and non-experts. (a) Comparison 
of response time for each task; (b) comparison of absolute error 

for each task. “E” represents 6 experts; “N” represents the 9 
non-experts. ........................................................................................95 

x 



   

                  
 

 
            

            
       

 
             

            
                   

       
  

7.6 An example showing a color blending process where a new color is 
created.................................................................................................97 

8.1 The results of two sampling methods. (a) Uniform sampling; (b) non-
uniform sampling; (c) uniform sampling after transparency 
control; (d) non-uniform sampling after opacity control. .................106 

8.2 The multi-layer visualization of AVIRIS Lunar Lake. (a) The overall 
display with five layers; (b) the ROI in the anomaly layer; (c-e) 
displays with the opacity of the pie-chart layer being 0.1, 0.5, 
and 1.0, respectively (without the anomaly layer)............................109 

xi 



   

   

   
 

 
 
 

          

            

              

           

          

            

               

            

               

       

           

        

           

          

            

            

        

 

CHAPTER I 

INTRODUCTION 

Hyperspectral imaging, also known as imaging spectrometry, is an emerging 

technology in remote sensing. It uses hundreds of co-registered spectral channels to 

acquire images of the same area on the earth. The resulting hyperspectral imagery has 

very high spectral resolution, providing better diagnostic capability for object detection, 

classification, and discrimination than the traditional multispectral imagery. However, it 

is challenging to display the useful information contained in such a huge three-

dimensional (3D) data cube. A common practice is to provide a presentation for a quick 

overview of a scene to support decision-making. Obviously, displaying a single image 

results in the loss of information. In this research, the objective is to maximize the 

information transfer in the display creation process. 

Hyperspectral imagery can be visualized after dimension reduction, such as a 

three-band Red-Green-Blue (RGB) combination, principal component analysis (PCA) 

[6][9][10], and band fusion [41][42][43]. However, these methods result in significant 

information loss. Moreover, our study shows that any transform-based preprocessing 

without class separability enhancement will yield a poor display where different objects 

cannot be visually separated. Therefore, to preserve the maximum amount of information, 

it is preferred to visualize the classification result. 
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The high dimensionality of a hyperspectral image enables spectral unmixing at 

the subpixel level (subpixel level unmixing refers to the classification of co-existing 

materials at a pixel by a classification algorithm). Linear mixture analysis (LMA) 

[17][20][35] is a well-known technique in remote sensing. It can estimate the abundances 

of pure materials in each pixel. An unmixing result provides a soft classification map, 

describing the material distributions in an image scene. Hyperspectral image visualization 

can be achieved by effectively displaying these classification maps. It is noteworthy that 

abundances in each pixel satisfy the non-negativity and sum-to-one constraints. This 

enables the use of a pie-chart to show the detailed pixel composition. As for the overall 

material distribution, an optimal or suboptimal color combination can be applied to fuse 

all the classification maps. The resulting double-layer technique (denoted as DBLY) can 

display the material distribution both locally and globally with a controlling parameter 

adjusting the desired level of visible details. 

The visualization of the classification result can be considered a multivariate 

visualization problem, where discrete and continuous visual elements are combined to 

visualize multiple fields on a surface. For instance, oriented slivers were employed to 

visualize multivariate data in [27][28]; dots with different sizes and distributions were 

used to represent different variables in [31]. All of these methods take the multiple 

variables as independent variables, and no relationship exists among them because they 

are different physical quantities. However, the concepts can be adopted after modification 

by considering the unique aspects of hyperspectral imagery. Thus, in addition to the 

aforementioned DBLY, a data-driven spot (DDS) layer can be introduced to further 

2 



   

   

              

             

          

           

   

           

          

           

            

          

            

            

             

             

          

    

            

          

               

              

             

manifest the widely distributed materials in an image scene, and an oriented sliver (OS) 

layer can be employed to emphasize the distribution of important anomalous objects. The 

resulting multi-layer visualization technique can display the overall material distribution, 

widely distributed materials, anomalous objects, and subpixel level composition within a 

unified interface. 

The DBLY visualization technique was evaluated via user studies. It was 

compared to traditional approaches, such as pseudo-color composites and gray-scale 

classification maps. In addition, the developed and refined techniques were implemented 

in a visualization system, which has the capability of automatically preprocessing and 

visualizing hyperspectral imagery. The interactive tools in a user-friendly interface 

enable the display with the details at the discretion of a viewer. 

The contribution of this research is the development of versatile methods to 

present the information contained in a hyperspectral image. It takes advantage of the 

LMA in the remote sensing area and the multivariate visualization techniques in the 

visualization area. Obviously, this synergy produces a new multidisciplinary research 

area full of promise. 

The dissertation is organized as follows. Chapter II reviews the current existing 

visualization techniques and their limitations. Hyperspectral data preprocessing steps are 

discussed in Chapter III. The DBLY technique is presented in Chapter IV. Chapter V and 

Chapter VI discuss the user studies on synthetic and real datasets. Chapter VII discusses 

the user studies and DBLY. Chapter VIII draws conclusions and presents future work. 

3 



   

   

   
 

 
 
 

           

            

           

     

 

 
 

           

CHAPTER II 

BACKGROUND 

This chapter briefly describes the features of hyperspectral data, the visualization 

techniques that have been used to visualize remotely sensed imagery, and their 

limitations. Other potential visualization techniques that can be used to visualize 

hyperspectral imagery are also introduced. 

Figure 2.1 A hyperspectral image cube with 220 spectral bands [12]. 

4 



   

   

   

            

           

               

         

       

     

          

              

             

               

              

             

            

                 

              

               

               

          

            

            

                  

2.1 Hyperspectral Imagery 

A hyperspectral sensor acquires images with hundreds of spectral bands. Its high 

spectral resolution provides the capability of more accurate material detection and 

classification. A hyperspectral image can be viewed as a 3D data cube. Figure 2.1 shows 

Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) hyperspectral imagery of the 

Leadville mining area in Colorado [12]. 

2.2 Remotely Sensed Imagery Visualization 

Visualization techniques were first introduced to display remotely sensed imagery 

soon after the first remote sensor was used to acquire data. The traditional gray-scale 

visualization technique is still used to display remotely sensed images. Since a gray-scale 

image can display only one band, true color composite images are created by using red, 

green, and blue-green bands for an RGB color display [3]. The color infrared (CIR) 

composite, an important approach to display the distribution of vegetation [1], maps the 

green, red, and near-infrared bands into the three RGB channels. Obviously, selecting 

only three bands to form a color image does not display all the information contained in a 

hyperspectal image. In [4], Robertson et al. employed a transform to project the original 

bands into three channels and then mapped the three channels to a perceptual color space 

to achieve a high contrast image. Durand et al. enhanced a color contrast display by 

balancing the Signal-to-Noise-Ratio (SNR) of the three bands [5]. 

For hyperspectral imagery, PCA is a widely used technique to reduce its 

dimension. It projects the original data into orthogonal principle components (PCs). Most 

of the energy is in the first several PCs; therefore it is assumed that the first several PCs 

5 



   

   

                

            

                

                 

              

             

              

            

       

              

             

              

              

             

      

            

             

              

           

               

               

            

include the most information in the original dataset and they can be used to display the 

hyperspectral images. Tyo et al. visualized the hyperspectral imagery by mapping the 

first three PCs to the HSV color space [6]; segmented PCA was employed by Vassilis et 

al. to fuse the hyperspectral images [7]. However, the rank of a PC may be affected by 

the noise level; thus a high-ranked PC may contain less information than a low-ranked 

PC if the noise contribution is significantly large. Moreover, only choosing the first 

several PCs may cause information loss because some objects may be present in lower 

ranked PCs than the first three PCs. Therefore, a noise-adjusted principal component 

analysis (NAPCA) and interference-and-noise-adjusted principal component analysis 

(INAPCA) [8] may be better choices. A PCA-class method for color display has been 

presented for hyperspectral image display in [9][10]. Instead of using a transform to 

compact the information, Jacobson et al. combined all the bands in a hyperspectral image 

using fixed linear spectral weights for each channel and visualized the result in a natural-

looking image [11]. This method can consistently display the same material in different 

datasets in a similar color. 

Hyperspectral image analysis is task-driven [12]. For most tasks, e.g. detection or 

classification, the materials need to be separated as clearly as possible. A visualized 

image cannot have high quality if a transform does not enhance the class separability. 

Therefore, visualizing the detection or classification result generally can maximize the 

information to be conveyed. In the hard classification, where a pixel is assigned to only 

one class, a color display is created by assigning different colors to different classes. An 

automatic color selection system was implemented by Campadelli et al. [13]. Marcal 
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presented an automatic color index algorithm to display the results of hierarchical 

classification [14]. Due to the low spatial resolution, pixels in multispectral or 

hyperspectral images are mixed [15]. This problem can be addressed by a linear mixture 

model (LMM) [16][17], which assumes a pixel vector is the linear combination of pure 

materials, called endmembers, in an image scene. LMM is used to classify mixed 

pixels [18][20][21]. In mixed pixel classification, a pixel is classified as a certain 

percentage (i.e., abundance) of each material. How to display the mixed classification 

results is a challenging problem. One of the traditional ways is to view each endmember 

abundance map (i.e., classification map) as a gray-scale image side-by-side. There are at 

least two drawbacks for viewing each endmember as a separate gray-scale image: first, it 

is difficult for viewers to understand the overall distribution of all the materials in the 

image scene [22]; second, it is difficult to show the spatial relationship among classes. 

Wessels et al. tried to conquer this problem by displaying abundance maps in one image, 

where a pixel was displayed in the color of the endmember with the largest abundance in 

this pixel [24]. This causes severe distortion because materials with smaller abundances 

were suppressed. 

2.3 Multivariate Visualization 

Visualizing classification results can be taken as a multivariate visualization 

problem. This problem has been studied for many years and it remains as one of the 

hottest research topics in visualization [2]. 

Texture is widely used to display information. Bair et al. studied the Gabor model 

and suggested the basic dimensions of textures, such as orientation, size, contrast, etc., 
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can be used to present information [38]. Crawfis used textured splats to visualize multiple 

scalar and vector fields [25]. Forsell et al. employed texture and 3D surface shape to 

display multivariate data simultaneously [26]. In Urness’s work multiple flow fields and 

scale variables were visualized by texture, glyph, embossing, and color [29]. Synthesized 

Cell Texture (SCT) was presented by Vickery to display multiple fields [32]. Interrante 

employed natural textures and successfully mapped multivariate data on the same map 

[36]. Oriented sliver texture was presented by Weigle et al. [27] and Healy [28][54] to 

visualize multiple collocated fields. 

Glyphs are another information display technique. In [30], Kirby et al. mapped 

multiple flow variables to different visual elements and multiple fields were effectively 

visualized on a surface. Bokinsky showed that different sizes and distributions of dots 

could successfully represent different variables [31]. Boxes and arrows were placed at 

regular intervals to display the uncertainties by Schmidt et al. [37]. Levkowitz harnessed 

color icons for visualization [40]. 

These existing techniques successfully visualize the collocated multiple vector or 

scale fields in one single image, but they only visualize the qualitative information and 

they still have the problem of how to represent quantitative information precisely. In 

addition, they take the multivariate data as independent variables. However, this 

assumption is not valid for hyperspectral image because the spectrums of endmembers 

are measuring the same area. Therefore, new approaches need to be developed to take the 

peculiarities of hyperspectral classification into consideration. 

8 



   

   

      

            

           

             

             

            

             

   

               

             

          

             

             

               

           

       

               

           

             

        

              

             

2.4 Uncertainty and Accuracy in Visualization 

Visualization is often utilized by researchers to explore datasets in order to 

support practical decisions. In general, visualization processing is based on two 

assumptions: the visualized data is accurate and the visualization processing is free from 

errors. However, these two assumptions may not be true for all cases. Uncertainties 

widely exist in data collection and in visualization processing. Many researchers have 

discussed how to visualize the uncertainties in data and its processing procedures in 

recent years. 

The uncertainties that exist in remote sensing data may cause users to make a 

wrong decision. Bastin et al. stated that an ideal visualization map should be 

accompanied with uncertain descriptions; fuzzy classification was employed to handle 

the potential uncertainties in satellite data [62]. An interactive map was created by 

Dungan et al. to visualize the uncertainties in remote sensing [63]. Digital Elevation 

Model Error Viewer (DEMEV) was introduced by Gouse et al. to assist the analysis and 

visualization of possible errors in Digital Elevation Models (DEMs) [64]. 

Large-scale uncertainties in astrophysical environments were effectively 

visualized by Li et al. [65]. Lodha et al. presented UFLOW—a system to visualize the 

uncertainties or errors caused during data acquirement, transformation, and rendering in 

fluid flow [66]. Probabilistic animation was introduced by Lundstrom et al. to visualize 

the uncertainties in medical volume data [67]. 

Inaccuracy is not caused during data collection only; it can be also introduced by 

visualization processing. In order to analyze the errors which are caused by interpolation 
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in visualization processing, both interpolation function errors and field data errors inside 

a tetrahedral cell were visualized by Doi et al. [68]. Grigoryan et al. presented an 

algorithm to visualize surfaces with uncertainties by using point-based rendering [69]. An 

interactive scheme was provided by Harzo et al. to compare the difference of cosmology 

simulations [70]. Lopes presented several algorithms to improve the accuracy of 

contouring, isosurfacing, and particle tracing [75]. In order to understand the errors in 

visualization, researchers began to utilize user studies to quantitatively measure the errors 

caused by visualization methods. 

2.5 Evaluation and User Study 

There is a long history of user studies being utilized to validate techniques. For 

instance, Bly and his colleagues employed a user study to compare tiled and overlapping 

windows in the 1980s [71]. Because a user study can evaluate the effectiveness and 

weaknesses of techniques, they have been widely used to quantitatively measure 

visualization algorithms in recent years. Laidlaw et al. compared six techniques for 

visualizing 2D flow fields and measured user performance on three flow-related tasks for 

each of the six algorithms [55]. Critical point classification and recognition, and 

symmetric pattern classification tasks were designed by Liu et al. to compare the existing 

flow visualization techniques [76]. Hagh-Shenas et al. compared two alternative 

algorithms for visualizing multiple discrete scalar datasets with color [58]. Azuma et al. 

evaluated the different label placement strategies for augmented reality view management 

by traditional statistical analysis and an empirical user study [61]. An empirical study was 

used to compare the performance of two techniques which visualized task relationships 
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and temporal uncertainties in software engineering project planning [72]. Pausch et al. 

conducted a user study to compare head-mounted and stationary displays [73]. 

A user study can not only validate visualization algorithms, but also provide 

guidelines of new visualization techniques. A well-conducted user study can significantly 

improve the research quality [57]. With a user study, Healey built several basic rules for 

choosing color effectively to visualize multivariate data [54]. Ward and Theroux 

conducted a user study to find the optimal viewing for layered texture surfaces [56]. 

Acevedo et al. investigated how the perceptual interactions among visual elements, such 

as brightness, icon size, etc., affect the efficiency of data exploration based on a set of 2D 

icon-based visualization methods [39]. Martin and his colleagues found that participants 

improved their performance as more objects were rendered in the scene when they 

conducted a hurricane related user study [74]. Bair et al. identified three phases of a user 

study: defining goals, creating datasets, and performing studies [38]. In this dissertation, 

we present two well designed user studies based on synthetic and real datasets to verify 

the efficacy of the proposed algorithms for hyperspectral image visualization. 
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CHAPTER III 

DATA PREPROCESSING 

Data preparation is necessary for the visualization process. A hyperspectral image 

may contain some bad bands, such as water absorption and low SNR bands, and bad 

pixels, such as white spots due to sensor saturation. In order to reduce the impact from 

bad bands and bad pixels, they need to be removed before classification. This chapter 

discusses the details of automated bad band and bad pixel removal. The linear mixture 

model-based classification will also be introduced. 

3.1 Bad Band Removal 

Two adjacent bands in a hyperspectral image tend to have very high correlation. 

The bands that are not similar to their neighbors may contain a high level of noise. Water 

molecules absorb portions of the spectrum while electromagnetic radiation transmits 

through a medium containing water molecules; therefore, water absorption bands have 

low reflectance and noise plays a key role in these bands. The correlation between 

adjacent water absorption bands is also very low. These facts are used to automatically 

remove all these unwanted bands. The detailed steps are as follows: 

1. Compute the correlation coefficient between each pair of adjacent bands, which 

is denoted as r for 0 < l < L , where L is the number of bands. l (l+1) 
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2. For the l-th band, compare the correlation coefficients r and r with a(l−1)l l (l +1) 

given threshold h. If both of them are greater than h, this band is kept; 

otherwise, it is removed as a bad band. 

Table 3.1 displays the bad band removal result for three data sets with the 

threshold h = 0.8 . The results are very close to the manually selected bands. The high 

quality of automatic band selection demonstrates that this approach is an effective bad 

band removal algorithm. 

Table 3.1 

NUMBER OF BANDS BEFORE AND AFTER SELECTION 

Dataset Original After Selection 
AVIRIS Lunar Lake 224 158 
AVIRIS Low Altitude 224 132 
Hyperion 220 152 

3.2 Bad Pixel Removal 

Due to sensor noise, some bad pixels may occur in a selected band. Two types of 

noise may exist: isolated pixels and stripes. Normally, the isolated pixels are caused by 

over saturation; and stripes are caused by dead detectors in push-broom sensors. An 

isolated noisy pixel is not spatially or spectrally correlated with neighboring pixels. The 

pixels in a noisy line are correlated. Thus different algorithms are used to remove isolated 

pixels and lines. 
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3.2.1 Isolated Noisy Pixel Removal 

A low pass filter is often used to smooth out isolated noisy pixels, but it will blur 

the normal pixels. An isolated noisy pixel removal method should keep the normal pixels 

when it is fixing or removing a bad pixel. 

Bad pixels are pixels whose value is drastically dissimilar to their neighbors. Bad 

pixels may be caused by a bad sensor detector or by sensor saturation. This implies that a 

bad pixel may be removed by a local relationship (i.e., spatial and spectral neighboring 

pixels). An algorithm with the following steps can be applied. 

1. Find the maximum pixel value in a band. 

2. Find the pixels whose values are greater than a percentage (�1) of the 

maximum value and add these pixels to the abnormal pixel candidate set. 

3. Check the value of abnormal pixel candidates with their adjacent bands. If the 

pixel value exceeds the maximum value of the same pixel (spatial position) in 

the adjacent bands by a percentage (�2), it is considered as a bad pixel. 

4. Conduct the signature interpolation and use the interpolated values to replace 

the bad pixels. 

In our experiments, �1 = 80% and �2 = 90% achieved good results. The spectral 

inspection in Step 3 is particularly important to avoid accidentally removing those normal 

pixels with large reflectance. Figure 3.1 displays Band 173 in the AVIRIS Low Altitude 

imagery before and after bad pixel removal. Figure 3.1(a) is dark because some isolated 

pixel values are so large that they suppress the brightness of other pixels. Figure 3.1(b) is 

the image after the bad pixels have been removed, where image content becomes visible. 
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(a) (b) 

Figure 3.1 Band 173 in the AVIRIS Low Altitude data. (a) Before bad pixels are 
removed; (b) after bad pixels are removed. 

(a) (b) (c) 

Figure 3.2 Band 10 of Hyperion data with the line removal. (a) Original image; (b) 
detected stripes; and (c) after the stripes removed. 

3.2.2 Dark or White Noisy Line Removal 

A stripe pattern is one of the common noise types in push-broom sensed images 

[45], and it is caused by bad sensor detectors. The algorithm is developed to 

automatically remove a dark line pattern with the Hough transform [46]. The algorithm is 

described as follows: 
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1. Compare each pixel with its four closest neighbors. If its value is less than e, 

say, 80%, of the neighborhood average, mark this pixel as a bad pixel 

candidate. 

2. Create a binary image where the pixels corresponding to the bad pixel 

candidates are set to 1 and others 0. 

3. Detect lines across the entire binary image using the Hough transform. The 

candidates that are located in the detected lines are considered as bad pixels. 

4. Interpolate and replace the bad pixels along the detected lines. 

This algorithm has been tested on a Hyperion dataset. The results show that all 

visible stripes can be automatically removed after applying this algorithm. Figure 3.2 

shows Band 10 with two dark lines. The line patterns can be effectively detected and 

removed. Because a white stripe pattern is similar to a dark pattern, this algorithm can be 

easily modified to detect white line noise by changing several parameters. 

3.3 Linear Mixture Model 

Detailed information about a pixel in a hyperspectral image is of great interest for 

both civilian and military purposes. The reflectance of pixels can be considered as the 

result of a linear combination of pure materials, called endmembers. So pixels are mixed. 

The linear mixture model (LMM) has been widely used to analyze hyperspectral imagery 

[18][20], [33][34]. 

Let a pixel vector in a hyperspectral image be represented as r = [r ,L, r ,L, r ],1 l L 

where L is the number of the bands. Assume p is the number of endmembers in the 
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scene and their signatures are denoted as M = [m ,L , m ,L , m ] , where mk is an L ×11 k p 

vector corresponding to the signature of the k-th endmember. The r can be represented 

as: 

r = M� + n (3.1) 

where � = (a1 Lak La p )
T 

is an p ×1 column abundance vector, whose k-th element 

represents the abundance of the k-th endmember material in the pixel r . Here, n 

represents system noise or sensor measurement error. 

Since � represents abundances, a k for 1 £ k £ p should satisfy two constraints 

[20]: all abundances should be non-negative (referred to as non-negativity constraint), 

and the sum of all abundances in a pixel should be one (referred to as sum-to-one 

constraint). These two constraints can be formed as: 

p 

�a k = 1 and 0 £ a k £ 1 (3.2) 
k =1 

The LMA can be divided into two cases: M is known and M is unknown. For 

the first case, we have the prior knowledge about the endmember signatures and want to 

estimate the � , which can be solved by a least squares approach. An unconstrained least 

squares problem can be formulated to minimize the reconstruction error: (r − M�̂ )2 , 

where �̂ is calculated by: 

T −1 T
�̂ = (M M) M r (3.3) 

The fully constrained least squares linear unmixing (FCLSLU) with the two constraints in 

Eq. (3.2) being relaxed can be solved by quadratic programming. The details of quadratic 

programming can be found in [19]. 
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For the second case, both M and � need to be estimated, where the unsupervised 

fully constrained least squares linear unmixing (UFCLSLU) can be applied [20]. The 

algorithm can be described as: 

1. Select the two pixels with the maximum and minimum norm from the 

ˆhyperspectral imagery and construct M = [m1,m2 ] . Then use the quadratic 

programming to solve �̂ = (â1 ,â 2 )
T . 

2. Calculate the reconstruction error, e, between the pixel vector r and its 

estimate, i.e., e = r − M̂ �̂ . 

3. Find the pixel that has the maximum error and take it as the third endmember, 

ˆi.e., M = [m ,m ,m ] . This pixel is selected because it is considered the most 1 2 3 

dissimilar pixel from m1 and m2. 

4. Repeat Steps 2 and 3 for additional endmembers and their abundances, until 

the error is less than a given threshold � or the maximum number of 

endmembers is reached. 

When the number of endmembers is unknown, a large number can be assumed 

initially to run the UFCLSLU algorithm. Then the similar endmember signatures can be 

combined after the similarity comparison using the spectral angle mapper (SAM) 

technique [43], and the endmember signatures corresponding to noisy abundance images 

with large entropies can be removed. The remaining signatures are used for the 

supervised FCLSLU to generate the final abundance images for visualization. 
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The AVIRIS Lunar Lake data shown in Figure 3.3 is classified by the UFCLSLU 

algorithm. After bad band removal, 158 out of 224 bands were left for LMA. Figure 3.4 

shows the six material abundances, named {Playa Lake, Rhyolite, Vegetation, Anomaly, 

Cinder, Shade} based on some prior knowledge [44]. In the gray-scale abundance 

images, a white pixel represents a high abundance of the corresponding endmember. 
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Figure 3.3 AVIRIS Lunar Lake scene of size 200 × 200. 

Playa Lake (m1) Rhyolite (m2) Vegetation (m3) 

Anomaly (m4) Cinder (m5) Shade (m6) 

Figure 3.4 The abundance images of the AVIRIS Lunar Lake scene. 
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CHAPTER IV 

DBLY VISUALIZATION 

Traditionally, the resulting abundance images from LMA are displayed as gray-

scale images. There are at least two drawbacks: 1) it is difficult for viewers to find the 

overall distribution of the p materials in the image scene; 2) it is difficult for viewers to 

know the material composition at any specific location in the image scene. 

In this chapter, a new approach is introduced to visualize the p abundance images 

in a single color image by employing DBLY. Layer I displays the general distribution of 

materials and Layer II displays the detailed composition of each pixel. The final image 

display is generated by overlaying Layer II on Layer I. 

4.1 Color Assignment Strategies 

Because color is intuitive, color is widely used in visualization to indicate 

different materials or values. Appropriate color selection helps viewers discriminate 

different materials easily and quickly. In this research, an automatic color selection 

approach was developed to label different endmembers. 

In the study of color representation, one of the first mathematically defined color 

spaces is the CIE XYZ color space, which was created by the International Commission 

on Illumination (CIE) in 1931 [79]. In CIE XYZ color space, colors can be represented 

by a linear combination of three basic spectral signatures (roughly red, green, and blue), 
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which are taken as the three coordinates X, Y, and Z. The CIE XYZ color system 

simplifies the color representation; but it does not give a direct way of estimating color 

differences. The color distance in the CIE XYZ color space does not correspond to the 

perceptual distance. It would be desirable if a distance on a chromaticity diagram is well 

correlated to the degree of difference between two colors. Two uniform color spaces 

provided by CIE are: CIE LAB and CIE LUV, where the perceptual distance 

approximately equals the Euclidean distance [47][48]. 

However, the difference and the appearance of color not only depend on the 

tristimulus, but also heavily depend on the adapted state of viewers, the constancy and 

contrast, and the temporal and spatial structure of the tristimulus. A real ideal uniform 

color space should involve these factors. Unfortunately, such an ideal color visual model 

is unavailable because these factors are very complex and the viewer’s environments are 

not predictable [48]. 

Healey addressed three criteria for color selection: color category, color distance, 

and linear separation [28]. If the color labels suits the three criteria, the colors can be 

easily separated. We chose the Hue-Saturation-Value (HSV) space because the color 

category suggested are very similar to the hue used in the HSV color space. Small color 

labels selected from the HSV space can belong to different color categories. Though the 

HSV color space is not uniform, the colors in the slice are very close to being uniform. 

The color selection from the HSV space does not theoretically satisfy the three criteria 

but it is very close. However, in some cases, even when distinctive colors have been 

assigned, the final color display result may not be as good as expected because color 
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perception is nonlinear. It is also suggested by other researchers that the color selection 

will have good performance if a luminance (or lightness) dimension is separated from the 

chromatic dimensions [49]. 

Therefore, we will conduct distinct color selection in the HSV color space with 

the goal that a color display should have the capability of conveying more information 

about the spatial relationship among objects or materials and make it easier to separate 

pixels into different classes [50]. In hyperspectral research, experienced analysts may 

have prior knowledge about the endmembers and want to assign a specific color to an 

endmember. For instance, one may want to use green to display healthy vegetation. In 

order to suit this case, we developed two automatic color assignment strategies for the 

visualization system: one with class similarity constraint only and one with class 

similarity and color consistency constraints. 

4.1.1 Automatic Color Assignment with Class Similarity Constraint 

The endmembers can be arranged in a sequence based on the signature similarity 

using a metric such as SAM. Without loss of generality, assume the endmembers are 

arranged according to signature similarity, i.e., m is more similar to m than to m .k k +1 k +2 

To relax the similarity constraint in color assignment, the color for the ith abundance 

image is less similar to the (k+1)-th image than to the (k+2)-th. 

In the HSV color space, hue is an angle between 0° and 360°, and each angle 

corresponds to a specific color tone. In order to choose the colors as distinctively as 

possible, the angle of hues are uniformly selected from [0°, 360°] for the p classes with 

the saturation and value being 1.0. The p color labels can be represented as: 
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o�H q = 360 q / p
� 

CL q = �Sq = 1.0 q = 0,L, p −1 (4.1) 
�
V = 1.0� q 

In order to separate similar classes as far as possible, the color labels are assigned 

in an interleaved way. Let hk be the color vector in the HSV space for the k-th class, for 

k = 1,L, p , and let the color labels assigned to hk be denoted as CLqk . The index qk 

can be determined by 

qk = (qk −1 + �p / 2 )mod p (4.2) 

if CLqk has not been assigned. Otherwise, 

q
k = ((qk −1 + �� p / 2 ) mod p) +1. (4.3) 

Here �p / 2  chooses the largest integer that is less than or equal to p / 2 . q1 can be any 

number between (0, p−1), but in general q1 = 0. Figure 4.1(a) shows the six color labels 

assigned to six classes using Eqs. (4.1-4.3) where the correspondences are h1 ¬CL0, 

h2 ¬CL3 , h3 ¬CL1, h4 ¬CL4, h5 ¬CL2, h6 ¬CL5. 

4.1.2 Automatic Color Assignment with Class Similarity and Color Consistency 

Constraints 

In this color assignment method, the viewer can define the colors of some 

abundance images for consistent rendering. For instance, green is an obvious choice for 

healthy vegetation. If a standard signature library is available, the identities of some 

endmembers may be recognized and then their abundance images may be assigned to 

consistent colors if desired. The colors for the rest of the abundance images can be 
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assigned with the similarity constraint. It should be noted that it may be impossible to 

satisfy both class similarity and color consistency constraints for the entire set of 

abundance images because these two constraints are contradictory in some cases. 

Assume q (0 < q < p) color labels have been predefined for q classes. The q color 

labels divide the 360° hue circle into q intervals (p Lp w Lp ) , where p is the 1 q w 

interval between [H , H ] . Those classes whose colors have not been pre-defined are w w+1 

determined by the following rules: 

1. Arrange the rest of classes in the order of similarity. 

2. Pick the next class to assign the color vector h. 

3. Find the maximum interval p and assign H = (H + H ) / 2 as the wmax wmax wmax+1 

hue component of h. If more than one interval has the maximum p, then 

choose the one that results in the H which is farthest from that for the previous 

class in the sequence. 

4. Redivide the 360° hue slice into q + 1 intervals. 

5. Repeat 2 to 4 until all the classes are assigned colors. 

Figure 4.1(b) shows the color labels assigned to six classes where Class 1 and 3 

are pre-defined as blue and green, respectively. After the colors have been assigned in the 

HSV color space, they are converted to the RGB color space so that they can be used in 

the next visualization steps and displayed on standard color monitors. 
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(a) (b) 

Figure 4.1 Color assignment results. (a) Six classes are assigned color according to their 
signature similarity; (b) Class 1 and Class 3 are pre-defined as blue and 
green, respectively. 

4.2 Layer I − Background Layer 

Layer I, referred to as the background layer, is formed by pre-assigning a color, 

which is discussed in Section 4.1, to each of the p abundance images and merging them 

using a linear transformation. This layer gives the viewers the overall spatial distribution 

of endmembers. 

4.2.1 Pixel Color Generation 

Each pixel in the abundance images can be presented as a vector 

� = (a1 Lak La p )
T 

constrained by Eq. (3.2). The color that is selected by the color 

assignment strategies for the ith endmember can be denoted as c = (r g b )
T in thek k k k 

RGB color space. Then a color matrix can be constructed as: 

�c 
T   r g b1 � 1 1 1   

� �
M M M M� � 
TC = �c = �r g b . (4.4)k k k k

� � 
M M M M� � 

�c 
T �r g b 
p p p p 
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The final color for the vector � in Layer I can be achieved by multiplying the 

pixel vector with the color matrix, i.e., 

c 
T = �T 

C . (4.5) 

Since � was constrained by the non-negativity and sum-to-one constraints, the final color 

will be within the normal range [0, 1] of color components. 

4.2.2 Mapping Pixels to Vertices 

OpenGL is a device-independent 3D graphics library [51]. Setting a series of 

primitives in OpenGL can easily render 2D or 3D images. One of these primitives 

displays an OpenGL point with a size and color, which is referred to as a vertex. A vertex 

can be considered a geometrical point with a given spatial position and color. A simple 

mapping function is formed from an image pixel to an OpenGL vertex as 

f : p ® v .(4.6) ij ij 

Figure 4.2 illustrates the mapping procedure. The vertical and horizontal distance 

between two adjacent vertices is u. Then the mapping functions between pij and vij are 

represented as: 

pij . position = (i, j) 
vij . position = (iu, ju) . (4.7) 

v . color = p . color ij ij 

Based on this mapping function, the color of vertices is determined by the color of 

the corresponding pixel, which is obtained by Eq. (4.5). The color of any point that is not 

a vertex will be determined by linearly interpolating the colors of the four closest 
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vertices. The color of any point in this layer, including vertices and the intervening space, 

is denoted as CI. 

Figure 4.2 The mapping scheme from pixels to vertices. 

4.3 Layer II − Detail Layer 

Layer II, referred to as the detail layer, introduces a “superpixel” to display the 

distribution detail of each endmember in a pixel at that position. Superpixel, also known 

as circle segments [52] and star-maps [53], is a method to visualize multi-variant data. 

In this layer, each endmember is represented by a fan-shaped region of a pie-

chart, as shown in Figure 4.3. Without prior knowledge about the classified endmembers, 

each member is considered as equally important. Therefore, an endmember is randomly 

assigned to the i-th fan region. In general, the first endmember is chosen to assign the 

first region, and so on. The area of a fan-shaped region for the k-th endmember is 

proportional to the angle qk, which is determined by its abundance ak, i.e., 

q k = a k ×360o . (4.8) 

28 



    

     

         

                  

            

              

   

 

 
 

         

               

                

                  

                  

                

  

              

              

Its starting and ending positions can be represented as 

k −1 k 
s eb = �q and b = �q (4.9) k d k d 

d =1 d =1 

e s b srespectively. They can be related byq = b − b and = 0° . Because � is constrained k k k 1 

by non-negativity and sum-to-one constraints, a superpixel will be shown as a full disk, 

i.e., b p

e = 360° . 

Figure 4.3 A fan-shaped superpixel with its mixture composition. 

Similar to the mapping in Layer I, Layer II maps a superpixel center to the 

corresponding vertex and the radius of a superpixel is u/2 as shown in Figure 4.4. The 

space in the pie chart will be filled by the color of the endmember that has been assigned 

to this wedge. The color of the points that are not covered by the superpixels is set to 

black, i.e., c=[0, 0, 0]T . A color in Layer II is referred to as CII . 

4.4 Blending 

After colors have been assigned to the two layers, Layer I, which gives the 

general distribution, and Layer II, which gives the details of the distribution, the final 
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display can be generated. In order to display the two layers on the same device 

simultaneously, the color in the final image is determined by blending CI and CII. The 

blending is achieved by linearly combining CI and CII, which can be described as: 

C = t C + (1 − t) C for 0 £ t £ 1. (4.10) final I II 

Therefore, the color of the final image is within [CI ,CII ] . When t, the blending 

parameter, approaches 1, the final color trends to CI, which means the final image 

displays the general distribution information; when t is close to 0, the final color trends to 

CII, which means the final color image gives the detail distribution information. 

Figure 4.4 The mapping from pixels to superpixels. 

4.5 Visualization Exploration Tools 

Visualization research has shown that interaction is an effective way to help 

viewers analyze data. In order to help dig into the details of endmember distribution, the 

developed visualization system provides several interactive exploration tools to provide 

additional information in the main visual interface. The main visual interface as shown in 

Figure 4.5 is divided into five linked view areas: main display area, navigation display 
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area, precise pixel information display area, signature information display area, and class 

labels and colors. 

Main Display Area 

Navigation Box 

Signature information 

Precise Distribution 

Labels and Colors 

Figure 4.5 The interface in the DBLY visualization system. 

In the main display area, viewers can easily manipulate the visual result, such as 

zooming-in, zooming-out, and panning to select the region of interest (ROI) area. By 

selecting an ROI, one can obtain the desired degree of details. For example, by selecting 

a large area, Layer I will dominate the display, whereas the mixing details of each pixel 

are more visible if a small ROI is chosen. If a very small area is selected, the precise 
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quantitative mixing information of each individual pixel can be seen. To avoid losing the 

spatial position when viewers select a very small ROI, a small navigation box is 

displayed to indicate the position of the ROI. Also, it can be used to change the ROI. 

Although the distribution details can be revealed by Layer II, it may still be 

difficult for viewers to figure out the very precise distribution of endmembers. Therefore, 

the precise pixel information can be displayed, which includes the pixel position and 

exact abundances. An endmember’s signature is a unique reflectance value in spectrum. 

Two endmembers that are indistinguishable in one spectral range may be very different in 

another portion of the spectrum. Therefore, signature is an essential property for 

identifying different endmembers in data analysis. Viewers can choose the spectral 

signatures to be shown and the color of the signature is the same as the pixels in Layer I, 

which is also presented in the class color label area. Other information can be easily 

added to the visual interface. 

4.6 Visualization Results 

Three examples demonstrate the performance of the developed visualization 

system in this section. They represent three different cases: the AVIRIS Lunar Lake data 

does not have noisy pixels, the AVIRIS Low Altitude data is contaminated by isolated 

noisy pixels, and the Hyperion data contains lines that are noise. The two AVIRIS data 

are free downloads from the AVIRIS website (aviris.jpl.nasa.gov). The AVIRIS Lunar 

Lake data is the area of the Lunar Crater Volcanic Field in Northern Nye County, 

Nevada. The Hyperion data was obtained from the Earth Resources Observation Systems 
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(EROS) Data Center of United States Geological Survey (USGS) and is an area south of 

Mississippi State University. 

The two color assignment strategies were used for these three examples. Because 

we have some prior knowledge about the AVIRIS Lunar Lake scene, the vegetation was 

pre-assigned to green. The rest of the class colors were automatically assigned based on 

signature similarity. The second and third datasets implemented automatic color 

assignment with the signature similarity constraint only, since no prior knowledge of 

endmember types was available. 

Figure 4.6 The abundance images of the AVIRIS Lunar Lake and the assigned colors. 
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4.6.1 Sample I: AVIRIS Lunar Lake 

The AVIRIS Lunar Lake data shown in Figure 3.4 was visualized by the DBLY 

algorithm. Figure 4.6 shows the gray-scale images of the six material abundances and 

their color labels. 

Figure 4.7 shows the Layer I and II images, in which each material was assigned 

the color indicated in Figure 4.6. The rightmost abundance image in the first row of 

Figure 4.6 is vegetation, so it is displayed in green. In Figure 4.7(a), the six endmembers 

can be easily distinguished by color, such as magenta, blue, green, yellow, red, and cyan. 

In particular, an anomaly highlighted in the circle is displayed in yellow. Such a color 

display shows the overall material distribution and the fuzzy memberships of a pixel, but 

it cannot represent precisely the percentage of materials within each pixel. By introducing 

a second layer as shown in Figure 4.7(b), more detailed information can be revealed. 

More details about the final color composite are shown in Figure 4.8. The first 

column is the result when only Layer I was used to visualize the six endmembers and the 

second column was generated when only Layer II was used. The third column is the 

result of blending the two layers with the specified values of t. On the other hand, the first 

row in Figure 4.8(a) shows the complete image using different values of t, while the 

second row in Figure 4.8(b) is an ROI, where individual superpixel disks are easily 

distinguished. Each disk represents a pixel, and the pie-chart indicates the abundance of 

each material. In Figure 4.8(b), we can easily see the anomaly pixel and its composition 

in the context of the neighborhood. This important information cannot be conveyed by 

viewing the original gray-scale abundance images one after the other. 
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(t = 1) (t = 0) (t = 0.8) 
(a) Overall images 

(t = 1) (t = 0) (t = 0.5) 
          

 
              

        

(a) Layer I (b) Layer II 

Figure 4.7 The composite image based on the color assigned in Figure 4.6. 

(b) Details of pixels (the anomaly and its neighboring pixels) 

Figure 4.8 Visualization results for the AVIRIS Lunar Lake data (from left to right: 
Layer I, Layer II, and DBLY approach). 
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4.6.2 Sample II: AVIRIS Low Altitude 

An AVIRIS Low Altitude subimage with size 512 × 512 as shown in Figure 4.9 was 

preprocessed before visualization. 132 bands were kept after water absorption and low 

SNR bands were removed. Isolated noisy pixels were removed using the algorithm in 

chapter III. Without prior knowledge about this image scene, thirty materials were 

generated first and seven meaningful material signatures were kept after abundance 

image selection and similar signature combination. Then seven abundance images were 

produced by applying the supervised FCLSLU. Figure 4.10 displays these images and the 

automatically assigned colors. 

Figure 4.11 shows the final visualized images, such as Layer I (first column), 

Layer II (second column), and DBLY (third column). The blending parameter t controls 

the amount of Layer I and Layer II in the final color display. The second row in Figure 

4.11 is an ROI, a yellow spot, which is located in the white circle in the first row. 

Without using the DBLY display, viewers may be able to tell this position contains some 

“yellow” material, but cannot gain a clear understanding of its distribution. Our 

visualization system shows the yellow spot not only contains this “yellow” material but 

also three other materials, and this yellow material is the major component. The viewer 

can easily know the percentage of each material by looking at the top-right window in the 

graphic user interface (GUI) as shown in Figure 4.5. 
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Figure 4.9 The AVIRIS Low Altitude scene of size 512 × 512. 

Figure 4.10 The abundance images of AVIRIS Low Altitude and their colors. 
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Figure 4.11 Visualization results for the AVIRIS Low Altitude data (from left to right: 
Layer I, Layer II, and DBLY). 

4.6.3 Sample III: Hyperion Experiment 

The Hyperion data shown in Figure 4.12 was used to test the system as well. After 

water absorption and low SNR bands were removed, 152 bands remained. As the first 

spaceborne hyperspectral sensor, the images it produces contain lots of sensor noise such 

as dark lines. These dark lines greatly affect the classification results, so the algorithm in 

Chapter III was employed to detect and remove these dark lines. After the dark lines were 

removed, twenty materials were extracted using the unsupervised FCLSLU. Then five 

signatures were kept after the selection of meaningful abundance images and 

combination of similar signatures. The five abundance images generated by the 

supervised FCLSLU and the automatically assigned colors are shown in Figure 4.13. 
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Figure 4.12 A Hyperion image scene of size 150 × 200. 

    

     

 
             

         
                

 

         
                         

(t = 1) (t = 0) (t = 0.7) 

(t = 1.0) (t = 0.0) (t = 0.4) 
 

               
    

Figure 4.13 Five abundance images of the Hyperion data and their colors. 

Figure 4.14 Visualization results for the Hyperion data (from left to right: Layer I, Layer 
II, and DBLY). 
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Figure 4.14 shows the color visualization comparison among the Layer I, Layer 

II, and DBLY. For example, the distribution of the material in purple corresponding to 

the buildings and roads is easily seen in the first row; the small purple area highlighted in 

the first row is displayed as the ROI in the second row where we can see that none of the 

pixels are pure and the largest abundance is about 90%. This experiment further 

demonstrates that using DBLY we can display both the general and detailed information 

as needed. 

4.7 Conclusion 

This chapter presents the approach of visualizing hyperspectral images by 

employing double color layers. It is an improvement from the conventional gray-scale 

display that needs to show several images one after another, and it also improves the 

results from other methods that display the general distribution of endmembers only. The 

DBLY visualization technique can simultaneously display the overall endmember spatial 

distribution and their composition at the subpixel level. 

In the following chapters, we validate the DBLY scheme by employing 

quantitative evaluation via user study, and compare it with existing algorithms. 
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CHAPTER V 

AN EMPERICAL VALIDATION OF DBLY VISUALIZATION 

ON SYNTHETIC DATASETS 

A user study can not only evaluate the effectiveness and weaknesses of 

visualization techniques, but also provide new findings and guidelines for further 

improvement. In this dissertation, we employ user studies to investigate the efficiency of 

the DBLY visualization technique. We mainly focus on its information conveying 

capability from both global and local aspects. We compare it with the existing 

algorithms: gray-scale side-by-side display (denoted as GRAY), colored hard 

classification (denoted as HARD), and colored soft classification (denoted as SOFT). In 

this chapter, we will describe the design, results, and findings of the study based on 

synthetic datasets. In Chapter VI, we will present a user study using a real hyperspectral 

dataset. 

5.1 Experimental Design and Settings 

5.1.1 Domain Questions 

Shippert stated that a project utilizing hyperspectral imagery usually has the 

purposes of target detection, material mapping, material identification, and/or mapping 

details of surface properties [12]. In military applications, hyperspectral imagery has been 
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used to detect military vehicles covered by vegetation canopy or to discriminate true 

objects from fake ones. Cochrane successfully identified vegetation species [77], and 

Coops et al. accessed vegetation stress and disease from hyperspectral images [78]. In 

general, the practical usage of hyperspectral imagery can be described by one or more of 

the following generic and domain questions: 

• Classification: What and how many endmembers are present in an image 

scene? (Practical domain questions may be “what are the different kinds of 

land use patterns present in this image?” or “is there any hidden military 

vehicle?”) 

• Relative Position: Where are those endmembers relative to each other? 

(“Where is the wheat field infested with bugs?” or “how far are the weeds 

from residential areas?”) 

• Perceptual Edge: How widely distributed are the endmembers in a region? 

(“Where is the edge of the contaminated water body?” or “how wide does the 

wheat disease spread?”) 

• Quantification: How much of an endmember is in a small region or the whole 

area? (“How many bugs are in this small area of the wheat field?” or “how 

serious is the stress in a citrus farm?”) 

In many cases, how useful a hyperspectral image is depends on how well these 

questions can be answered. The goals of this study are to investigate the performance of 

the four chosen visualization methods in answering these questions. However, designing 
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a user study to explicitly test these questions may not be feasible because exploring a 

dataset is a complex cognitive behavior. After consulting with remote sensing experts, we 

decided to investigate two important aspects of understanding hyperspectral images in 

this research: global pattern display and local information conveyance. We have three 

hypotheses in our user studies: 

H1: Displaying materials in one image is better than displaying them in several 

side-by-side images when trying to ascertain relative location of materials. 

H2: Adding a pie-chart layer does not degrade the background layer (SOFT)’s 

capability in displaying global patterns. 

H3: The Pie-chart layer increases DBLY’s efficiency in revealing local 

information. 

Based on the three hypotheses, we designed five study tasks, where three test the 

capability of global pattern display and two test the ability of local information display. 

5.1.2 Datasets and Colors 

Because of the availability of ground truth, synthetic datasets are widely used in 

measuring visual perception. Ward et al. addressed several advantages of using synthetic 

rather than real datasets [56]. Thus, we used synthetic rather than real datasets in the pilot 

study. 

Since the GRAY technique displays each endmember as a separate image, it is not 

easy for a user to switch from one image to another image quickly to find answers if we 

display GRAY as four full screen images. We found that four endmembers were an 

effective trade-off for this user study because we can maximize usage of the screen space 
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by displaying the grayscale images in a 2 × 2 square. The size of each gray image is 400 

× 400. The other visualization techniques display the image as 800 × 800. The size of 

datasets that were used to test the capability of global pattern display is 200 × 200. 20 × 

20 pixel blocks of the datasets were used to simulate the zooming-in function to validate 

the ability of conveying local information. 

62, 10, -32 
62, 33, -7 
62, 23, 25 
62, -10, 32 
62, -33, 7 
62, -23, -25 

Figure 5.1 Color ramps used for all the experiments. Each set of three parameters is the 
value of the left end of a color ramp in the L*a*b* color space; the right end 
of each is (62, 0, 0). 

Color is an important component in the selected techniques. Although we 

designed synthetic datasets that only contained four endmembers, we used six colors in 

order to study more complex color combinations. We used the six colors employed by 

*b* Hagh-Shenas et al. [58] from L*a color space in this study, but we kept the luminance 

constant. The color ramps are presented in Figure 5.1. Since all of the synthetic datasets 

only contain four endmembers, we randomly chose four colors from the six possible 

colors to represent each endmember. 

5.1.3 GUI and Software 

To implement the study, we developed a GUI for participants to perform the 

tasks; several scripts were written to generate the synthetic datasets and analyze the 
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results. The GUI is displayed in Figure 5.2. All of the test images were displayed in the 

view space and an external mouse was used to respond either within the control panel or 

directly onto the view space. For the GRAY images, the view space was split into a 2 × 2 

matrix as shown in Figure 5.2(a). If the test image had chrominance (HARD, SOFT, and 

DBLY), the image was displayed at the center of view space as in Figure 5.2(b). For each 

participant, a list of pre-determined tests was displayed by the GUI. Their answer and the 

time required to complete each test were recorded by the GUI and written to an output 

file for further analysis. 

The test list was generated programmatically. First, a sequential list of tests was 

generated by looping through all of the tasks, visualization techniques, and all the 

datasets. Then, the sequential list was randomly permuted to control for learning and 

fatigue effects. Finally, the permuted test list was written to a formatted file with other 

testing information, such as techniques and ground truth answers. The formatted file was 

loaded by the GUI for training and real testing. The same tests were presented to all 

participants, but the test order was randomized per participant. 

5.1.4 Participants 

At the beginning of this study, we planned to recruit participants with 

backgrounds in remote sensing. However, hyperspectral imagery is widely used in many 

applications and is not limited to remote sensing. Also, our tasks have a low cognitive 

level and do not require a strong background in remote sensing to complete. Ten 

university graduate students performed this study. Six of the participants were in remote 
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sensing, two in visualization, one in computational fluid dynamics, and one in agriculture 

economics. 

View Space 

Control Panel 

(a) 

View Space 

Control Panel 

(b) 

Figure 5.2 Samples of the GUI in training mode in pilot study. (a) The GUI with four 
gray-scale images; (b) the GUI with one SOFT image which is generated 
from the same dataset shown in (a). 

46 



    

    

               

             

               

           

             

              

             

               

            

              

             

               

            

               

            

     

            

            

                 

                 

      

We administered the test with a laptop computer, with its display profile set to the 

standard RGB color space. We removed distracting icons and screen clutter from the 

screen space. The study was run in a conference room with only the experimenters and 

the participant present. Before the study, participant completed necessary paperwork and 

answered a general questionnaire. We paid participants $10 for participating in the study 

To reduce any potential training bias, we wrote a training guide so that all 

participants received the same training. We used similar but different datasets for training 

and testing. Training consisted of 20 tests, which covered all 4 techniques and 5 tasks. 

During training, the experimenter walked the participant through each test in sequence. 

After this, the experimenter asked the participant to complete the same 20 tests and 

following random sequence tests. However, we did not require participants to finish all 

the training tests; we allowed them to start the experiment early if they desired. We 

encouraged participants to ask questions during the training. Testing lasted only 40 

minutes to avoid fatigue effects. Participants were not required to finish all the tests. The 

entire study took about an hour, including the paperwork and training. 

5.1.5 Independent and dependent variables 

Table 5.1 lists the independent and dependent variables measured in this user 

study. The independent variables included participant, technique, and the tuple (task × 

dataset). As specified in Table 5.1, each task was built upon either 9 or 10 datasets; there 

were a total of 48 task × dataset tuples. The experiment consisted of 4 techniques × 48 

tuples = 192 possible tests. 
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The quantified dependent variables were response time, relative error, absolute 

error, and normalized error. Standard error plots and one-way analysis of variance 

(ANOVA) was employed to analyze dependent variables. The detailed analysis is 

discussed in the following section. 

Table 5.1 

THE INDEPENDET VARIABLES AND DEPENDETN VARIABLES STUDIED IN 
THE POLIT STUDY. 

INDEPENDENT VARIABLES 

participant 10 (random variable) 

technique 4 GRAY (grayscale side by side) 
HARD (colored hard classification) 
SOFT (colored soft classification) 
DBLY (double-layer) 

task × 

num datasets 

48 relative location × 10 
perceptual edge location × 10 
block value estimation × 9 
class recognition × 10 
target value estimation × 9 

DEPENDENT VARIABLES 

response time measured for each test in seconds 
relative error user answer – ground truth 

absolute error | relative error | 

normalized error user answer − ground truth 
×100%. 

bar length 

(measured for perceptual edge detection task) 

5.2 Experimental Tasks and Results 

In this section, we present the five tasks and discuss the results for each task. 

ANOVA was used to analyze the data. For the ANOVA, we modeled our experiment as a 

repeated-measures design that considers participant a random variable and all other 
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independent variables as fixed. The ANOVA enables us to analyze the difference of the 

means among the four tested visualization techniques. The F-value and p-value are 

generated by the ANOVA. A large F-value (F>>1) indicates that the visualization 

techniques have a major effect on the mean of the measured variables and the lower the 

p-value, the more significant the difference of means among the measured variables for 

the tested visualization techniques. However, the ANOVA does not specifically indicate 

which pair of visualization techniques exhibits statistical difference. Post-hoc tests can be 

applied to determine which specific pair(s) of visualization techniques is differentially 

expressed. We utilized the Ryan procedure (REGWQ) for post-hoc multiple comparisons 

[59]. We processed outliers in the data with the procedure described by Barnett et al. 

[60]. We determined outliers by examining the tails of the distributions and noting values 

that appeared after conspicuous gaps in the histogram. Each outlier was replaced by the 

median of the remaining values in the experimental cell. Given that outliers are 

considered mistaken values, this procedure improves the calculation of means, standard 

errors, and the sums-of-squares terms used in ANOVA, which would otherwise be 

inappropriately influenced by the outlying values. 

5.2.1 Global Pattern Display Capability 

Patterns reveal important information to help humans understand the real world. 

One of the major advantages of visualization is that it can display the pattern directly to 

participants or give participants an opportunity to recognize patterns very quickly. There 

are many properties of a pattern that can be tested. This study investigates three aspects 
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of the pattern display capability of the visualization techniques: relative location of 

classes, perceptual edge detection, and block value estimation. 

Relative Location 

The goal of this task was to quantify the ability of each visualization technique to 

represent the relative location of variables. 

Figure 5.3 A sample set of images for testing relative location with 4 cases of 2-circle 
overlap. For the GRAY visualization, similarly-colored boxes indicate 
matching 2-endmember sets; there are a total of 4 such sets for this example. 
During the actual experiment, the colored boxes were not shown. 

Task: The datasets which were used in this task consisted of four co-located 

endmembers. Each endmember was presented by five solid circles. The location of the 

circles was determined by the following steps: 

• Evenly dividing the image scene into 3 × 3 blocks 

• Circles were randomly put into the center of blocks. 

• Small offset was added to each circle. 
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A circle in one endmember may overlap with circle(s) in other endmembers. The 

overlapped circles were used to simulate co-existing real-world materials. In this task, we 

asked participants to indicate the number of cases where exactly two endmembers 

overlapped. Participants completed a forced-choice decision by pressing one of 7 buttons, 

which indicated 0 to 6 cases. This was visually apparent when two circles overlapped. 

Since the overlaps of circles were determined by the relative locations of the circles, this 

task can be used to test the capability of visualizing relative location. 

One of the sample dataset is displayed in Figure 5.3, where the correct answer is “4”. 

Figure 5.3(a) is the GRAY visualization, where the white parts contain 100% of that 

endmember and no other endmember exists in the white parts. But there are more than 

one endmember that co-exist at the gray parts of circles. 

Figure 5.4 Results from locating the relative position for both dependent measures. For 
this and all figures, absent error bars indicate the standard error is smaller 
than the symbol size. The color-coded lines indicate the result of post-hoc 
comparisons. 
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(a) GRAY 

(b) HARD (c) SOFT (d) DBLY 
 

              
     

Results: The dependent measures were response time in seconds, and absolute error 

(Table 5.1). The absolute error ranged from 0 (no error) to 5 (maximum error). We 

recorded a total of 352 answers, including 90 answers for GRAY and HARD, 84 for 

SOFT, and 88 for DBLY. Of the 352 answers, 94 contained an absolute error > 0; in 

practice the recorded error ranged from 1 to 3. The means are displayed in Figure 5.4. We 

found a major effect of visualization technique on both absolute error (F(3, 27) = 12.59, 

p < .000) and response time (F(3, 27) = 42.44, p < .000). As shown in Figure 5.4, we 

used the color-coded lines to represent the REGWQ post-hoc comparison results for both 

measurements (i.e., the blue lines for response time, and the red lines for absolute error). 

The different line styles represented the different groups in the results of the post-hoc 

comparison. In this task, the post-hoc comparisons indicated that GRAY fell into one 

group, and HARD, SOFT, and DBLY fell into the other group in both measurements. 

This analysis shows that GRAY resulted in lower performance than the other techniques, 

and that the performance of HARD, SOFT, and DBLY was at the same level. 

Figure 5.5 An example of the perceptual edge detection task. The yellow lines indicate 
the ground truth positions. 
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Perceptual Edge Detection 

Here we define the perceptual edge as the position where a color can no longer be 

perceptually distinguished from the background. The perceptual edge is important 

because some endmembers may no longer be present at a certain position. This task was 

designed to test how well each visualization technique preserves the perceptual edge. 

Task: Three endmembers were generated by the Matlab interpolation function griddata 

to simulate a continuous distribution of materials over the image scene. We represented 

the fourth endmember by a bar whose value varied right-to-left from 1.0 to 0.0. We set 

the bar length to 150 pixels, and randomized the starting position within the square [0, 

50] × [50, 150]. We added a small offset to each vertical column to reduce the otherwise 

sharp horizontal edges. The sample images are shown in Figure 5.5. For the GRAY 

visualization, we used the constraints of sum-to-one to determine the values at matching 

pixels. For this task we asked the participants to click on the left perceptual edge of the 

fourth endmember. 

Results: We recorded the x-coordinate of the user’s mouse click for this task. The 

dependent measures were response time and normalized error. A total of 351 answers 

were recorded, including 91 for GRAY, 88 for HARD, 83 for SOFT, and 89 for DBLY. 

We eliminated 13 normalized error outliers. The means are displayed in Figure 5.6. We 

found a major effect of visualization technique on normalized error (F(3, 27) = 124, p < 

.000), but no effect of response time (F(3, 27) = 1.07, p = .375). The post-hoc 

comparisons indicated the differences shown in Figure 5.6. Although the post-hoc 

comparisons indicated a difference in response time and normalized error between 
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GRAY, SOFT and DBLY, the normalized error is less than 5% (shown in Figure 5.6). 

The normalized error of HARD is far larger at 28.8%. The high normalized error of 

HARD comes from the hard classification itself. Since there are four endmembers in the 

study, value less than 1/p (p is the number of the endmembers) will not be the largest 

value. 

Figure 5.6 Result of the perceptual edge detection task. The lines indicate the results of 
post-hoc comparisons. 

Block Value Estimation 

The block value estimation task was designed to assess participants’ ability to 

accurately determine the continuous value encoded by a color range. In each region, 

colors represent overlapped multiple scalars. 

Task: As with the perceptual edge detection task, three endmembers were generated by 

the Matlab interpolation function griddata to simulate a continuous distribution of 

materials over the image scene. The fourth endmember is represented by a 20 × 20 pixel 
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block. Unlike Hagh-Shenas et al. [58], where the color in the tested region was constant, 

the color in the block varies in the range [low, low + 0.2], where low varies in the range 

[0.0, 0.1, 0.2, …, 0.8]. The task was to match the block color using a slider that indicates 

a choice from the adjacent endmember color ramp (see Figure 5.2(b)). A sample dataset 

is displayed in Figure 5.7. In the sample images, the block in the fourth endmember is 

colored by white in the GRAY image, while it is colored by pink in other techniques. In 

Figure 5.7, the maximum value in each block is 1.0, the minimum value is 0.80, and the 

average value is 0.93. 

Figure 5.7 A sample of the block value estimation task. Figure 5.2 shows the GUI for 
this task. 

Results: The dependent measures were response time and absolute error. The absolute 

error ranged from 0 (no error) to 1.0 (maximum error). We recorded a total of 308 

answers, including 79 answers for GRAY, 73 for HARD, 77 for SOFT, and 79 for 

DBLY. We eliminated 12 absolute error outliers; after doing so the maximum absolute 

error for any participant was 0.46. To conduct the analysis for this task, we had to 
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remove the data for one participant, because that participant did not complete any DBLY 

tasks. We found a major effect of visualization technique on absolute error (F(3, 24) = 

11.05, p < .000), but no effect of response time (F(3, 24) = .96, p = .354). The post-hoc 

comparisons indicated the differences shown in Figure 5.8; the HARD technique was 

significantly worse than the other techniques. 

Figure 5.8 Result of the block value estimation task. The lines indicate the results of 
post-hoc comparisons. 

5.2.2 Local Information Conveying Capability 

Compared to its high spectral resolution, the spatial resolution of hyperspectral 

imagery is relatively low. For example, a pixel in the Hyperion dataset represents 30 × 30 

square meters. The high spectral resolution of hyperspectral imagery gives researchers 

the opportunity to classify and analyze landcover at the subpixel level. Interaction is 

indispensable for investigating the detailed information. 
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In this section, we designed two tasks to evaluate the capability of visualization 

techniques in conveying detailed information at the subpixel level. We synthesized 20 × 

20 pixel datasets to simulate the zooming-in operation, and set the blending parameter in 

DBLY to 0.8 to pop out the pie-chart layer. 

Class Recognition 

Recognizing the endmembers is the first step in understanding the dataset itself. 

The high spectral resolution of hyperspectral imagery may permit the exploration of 

detailed information in a small area, such as finding a hidden military target in the woods. 

This goal of this task was to assess participants’ ability to determine the number of the 

endmembers present when zooming into the images. 

Figure 5.9 A sample set of images for testing class recognition with 3 cases of 2-
endmember subpixels. For the GRAY visualization, similarly colored boxes 
indicate matching 2-endmember pixels; for other techniques, white boxes 
indicate the 2-endmember pixels. During the actual experiment, the colored 
boxes were not shown. 
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Task: Since the size of the dataset for this task was 20 × 20 pixels, each pixel is a square 

with GRAY, HARD, and SOFT, and a square covered by a pie-chart in DBLY. Each 

pixel may contain one or more materials to simulate the real-world situation where 

several endmembers co-exist at the same location. In this task, we asked participants to 

indicate the number of pixels that contain exactly two endmembers. Figure 5.9 displays a 

sample dataset. In Figure 5.9(a) (the GRAY visualization) the white pixel contains 100% 

of that endmember; otherwise, other endmembers co-exist in that pixel. 

Figure 5.10 Result of the class recognition task for both dependent measures. The color-
coded lines indicate the result of post-hoc comparisons. 

Results: The dependent measures were response time and absolute error. The absolute 

error ranged from 0 (no error) to 6 (maximum error). We recorded a total of 361 answers, 

including 93 answers for GRAY, 89 for HARD, 90 for SOFT, and 89 for DBLY. Of the 

361 answers, 218 contained an absolute error > 0. The means are displayed in Figure 

5.10. We found a major effect of visualization technique on both absolute error (F(3, 27) 
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= 43.34, p < .000) and response time (F(3, 27) = 13.10, p < .000). The post-hoc 

comparisons indicated the differences shown in Figure 5.10 for both dependent measures. 

The results show that DBLY can achieve a very low absolute error (0.2) compared to 

other techniques, and that participants were significantly faster with DBLY as well. With 

HARD the task is basically impossible, while with SOFT the task is possible but very 

difficult. Several participants indicated that they resorted to guessing, which explains the 

relatively low response times for these techniques. With GRAY the task was possible but 

time-consuming. 

Target Value Estimation 

This task was designed to evaluate the ability of the four techniques in conveying 

quantitative information. It is very similar to the block value estimation task. The 

difference is this task is done on an ROI, not the whole image. 

Figure 5.11 An example of the target value estimation task. The red/white boxes indicate 
the target position. 
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Task: Three endmembers were generated by the Matlab interpolation function griddata 

to simulate a continuous distribution of materials over the image scene. The fourth 

endmember was the target and only had a value in a 2 × 2 block of pixels. The color in 

the block varies in the range [low, low + 0.2], where low varies in the range [0.0, 0.1, 0.2, 

…, 0.8]. The task was to match the block color using a slider that indicates a choice from 

the adjacent color ramp (similar to the block value estimation task shown in Figure 5.7). 

Figure 5.11 displays an example dataset, where the value of the target is in the range [0.2, 

0.4], and the average value over the four pixels is 0.32. 

Figure 5.12 Result of estimating the target value. The color-coded lines indicate the 
result of post-hoc comparisons. 

Results: The dependent measures were response time and absolute error. The absolute 

error ranged from 0 (no error) to .52 (maximum error). We recorded a total of 317 

answers, including 79 answers for GRAY, 83 for HARD, 74 for SOFT, and 81 for 

DBLY. We eliminated 11 absolute error outliers. We found a major effect of 
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visualization technique on both absolute error (F(3, 27) = 22.54, p < .000) and response 

time (F(3, 27) = 10.24, p < .000). The post-hoc comparisons indicated the differences 

shown in Figure 5.12 for both dependent measures. An overlap of the red lines showed 

that GRAY and HARD are in different group and that SOFT can not be separated from 

GRAY and HARD. 

A regression line explains r 
2 = 75.0% of the observed variance as shown in Figure 

5.12, while a regression line only through GRAY, SOFT, and DBLY explains r 
2 = 95.8%. 

The range of r 
2 is [0.0, 1.0]. r 

2 = 100% means that the regression line perfectly fits the 

means of response time and absolute error across the visualization techniques and r 
2 = 

0.0 means that there is no linear relationship among the means of response time and 

absolute error across the visualization techniques. The regression line shows a clear 

response time/accuracy tradeoff for GRAY, SOFT, and DBLY. Participants were very 

accurate with DBLY, but it took them longer to study the individual pie charts. GRAY 

and SOFT require a mental combination of colors. The task was very difficult to perform 

with HARD, so participants adopted a strategy of answering quickly. 

5.3 Discussion 

This pilot study indicates that the GRAY approach is not sufficient to locate the 

relative location and visualize local detailed information; but the GRAY method is 

effective in displaying the perceptual edge and for participants to estimate block values. 

Since a pixel in the HARD algorithm is colored by only 1 of p colors, where p is the 

number of endmembers, most participants thought the images from the HARD were 

cleaner than those from any other algorithms. However, our user study found that the 
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HARD approach is less effective in perceptual edge detection, block value estimation, or 

local information display. 

Although the post-hoc comparisons indicated a difference between the GRAY and 

SOFT algorithms for perceptual edge detection task, their normalized errors were below 

5% (shown in Figure 5.6) implying they are comparable for revealing the perceptual 

edge. The SOFT approach is in the winning group for block value estimation, but it is 

less efficient in local information display. 

The DBLY technique is the most accurate method for local detail conveyance. 

Taking the advantages from the SOFT method, it is also effective in global pattern 

display. The user study attests that adding a pie-chart layer to the SOFT approach is 

necessary for conveying local information while the DBLY algorithm maintains the 

efficiency in global pattern display that is exhibited by the SOFT method. 

In summary, the results of the pilot study indicate that the HARD algorithm is less 

effective for either global pattern or local information display. The GRAY and SOFT 

methods are efficient and comparable for showing global patterns, but are less effective 

for revealing local details. Finally, the DBLY approach is efficient in conveying local 

detailed information and is as effective as the best traditional methods for global pattern 

depiction. 
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CHAPTER VI 

AN EVALUATION OF DBLY VISUALIZATOIN ON REAL DATASET 

In Chapter V, we described pilot study based on synthetic datasets. In this chapter, 

we present the details of the main study, which is based on a real hyperspectral dataset, 

i.e., AVIRIS Lunar Lake image. 

6.1 Experimental Design and Settings 

6.1.1 Datasets and Colors 

Since it is difficult to describe and quantitatively measure patterns in real datasets, 

we embedded features to facilitate the edge detection task in a user study. We rotated and 

flipped the image to inhibit learning by participants due to having seen the images with 

other visualization techniques. 

Embedding Features: 

Since it is difficult to get the ground truth for the perceptual edges in the Lunar 

Lake dataset, we embedded a gradient bar into the classified results as shown in Figure 

6.1. The image size is 200 × 200; the start position of the bar varies from 10 to 40 pixels 

from left to right. 

Rotating and Flipping Images: 

To inhibit learning the image pattern by the participants, seven more datasets 

were generated by flipping and rotating the Lunar Lake dataset. Figure 6.2(a) is the 
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sample image of SOFT visualization of original dataset, and Figure 6.2(b) is the x-axis 

flipped HARD visualization. 

Figure 6.1 The Lunar Lake abundance images with embedded features. 

(a) (b) 

1 2 

3 

4 

Figure 6.2 Sample images used in the main user study. (a) Original dataset, SOFT 
visualization; (b) x-axis flipped, HARD visualization. 
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Four 20 × 20 blocks, which are indicated by the black boxes in Figure 6.2(a), 

were selected to simulate the zooming-in operation in visualization. These four blocks 

were chosen because they are not dominated by one or two classes. Figure 6.3 shows the 

sample images of these four blocks. From left to right, and top to bottom, the four images 

correspond to the four blocks in Figure 6.2(a), and represent the four visualization 

techniques, GRAY, HARD, SOFT, and DBLY, respectively. 

The same colors as in the pilot study were used in this study (Figure 5.1). In order 

to maximize the discrimination of the neighboring classes, the colors are assigned to 

neighboring images in a way that perceptual distance is the largest. 

6.1.2 GUI and Software 

A similar GUI has been implemented to perform this study. As shown in Figure 

6.4(a), the view space was split into a 3 × 2 matrix to display the six classes of Lunar 

Lake. The image was displayed at the center of view space as Figure 6.4(b) when the test 

images are in color (HARD, SOFT, and DBLY). For each participant, a list of pre-

determined tests was displayed by the GUI. Answers and time spent in answering each 

question were recorded by the GUI and written to an output file for further analysis. 
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Figure  6.3  Sample  images,  which  are  indicated  by  the  black  box  in  Figure  6.2(a),  are  

used  to  simulate  the  zooming-in  operation  in  the  main  user  study.  From  left  
to  right  and  from  top  to  bottom,  the  four  images  correspond  to  the  four  
blocks  in  Figure  6.2(a),  and  represent  the  four  visualization  techniques,  
GRAY,  HARD,  SOFT,  and  DBLY,  respectively.   
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 Figure  6.4 Samples  of  the  GUI  in  training  mode  in  the  main  study.  (a)  The  GUI  with  six  
gray-scale  images  to  estimate  the  class  number  (class  recognition  task)  at  the  
pixel  indicated  by  the  red  box  in  class  2;  (b)  the  GUI  with  one  SOFT  image  
to  estimate  the  average  value  of  the  class  represented  by  the  left  most  color  
bar  in  the  white  box.  
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6.1.3 Participants 

A total of fifteen participants (i.e., four research associates, one professor, and ten 

graduate students) participated in this user study. The four research associates are remote 

sensing experts and two of the graduate students’ major research area is remote sensing. 

They are categorized as remote sensing specialists. One participant is a professor from 

Department of Computer Science. One graduate student is in visualization. The rest are in 

chemistry (3), agriculture economics (2), aerospace engineering (1), and industrial 

engineering (1) whose research is related to human factors. 

We administered the test with the same laptop computer used in the pilot study, 

with its display profile being set to the standard RGB color space. The study was run in a 

conference room with only the experimenters and the participant present. Before the 

study, participants completed necessary paperwork and answered a general questionnaire. 

We paid each participant $10 for completing the study. To reduce any potential training 

bias, we wrote a training guide so that all participants received the same training. 

Participants were not required to finish all the training tests; we allowed them to start the 

experiment early if they desired. We encouraged participants to ask questions during the 

training. Testing continued for 30~40 minutes. To avoid fatigue effects, participants 

could take a break after every 30 tests. Participants were not required to finish all the 

tests. The entire study took about an hour, including the paperwork and training. 
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Table 6.1 

THE INDEPENDET VARIABLES AND DEPENDETN VARIABLES STUDIED IN 
THE MAIN STUDY. 

INDEPENDENT VARIABLES 

participant 15 (random variable) 
technique 4 GRAY,HARD, SOFT, DBLY 

task × 

subtask × 

num datasets × 

repetition 

152 perceptual edge location × 1 × 8 × 3 
block value estimation × 5 × 8 × 1 
Class recognition × 6 × 4 × 2 
target value estimation × 5 × 4 × 2 

DEPENDENT VARIABLES 

response time measured for each test in seconds 
relative error user answer – ground truth 

absolute error | relative error | 
normalized error user answer − ground truth 

×100%. 
bar length 

(measured for perceptual edge detection task) 

6.1.4 Independent and dependent variables 

Similar dependent and independent variables as in the pilot study were measured 

as listed in Table 6.1. The independent variables included participant, technique, and the 

tuple (task × subtask × dataset × repetition). Each task was built upon either 4 or 8 

datasets; there were a total of 152 tuples. The experiment consisted of 4 techniques × 152 

tuples = 608 possible tests. 

The quantified dependent variables were response time, relative error, absolute 

error, and normalized error. Standard error plots, ANOVA, post-hoc analysis, and z-

score were employed to analyze dependent variables. The detailed analysis is discussed 

in the following section. 
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6.2 Experimental Results and Discussions 

In this section, we present the details of the four tasks and discuss the results from 

each task. We determine the outliers and analyze the results as in the pilot study. 

6.2.1 Global Pattern Display Capability 

After conducting the synthetic data study, we realized it is obviously easier to 

detect relative location if objects are in one image, so we did not repeat the relative 

position task using real data. We only conducted the perceptual edge detection and block 

value estimation task on the full image data. 

Perceptual Edge Detection 

This task was designed to test how well a participant can detect material edges 

using each visualization technique. 

Task: The sample images are shown as Figure 6.5. For all the images, the matching 

pixels still satisfy the non-negativity and sum-to-one constraints. The sample questions of 

this task are: 

GRAY: At what position along the line segment does the quantity of CLASS i go 

to zero as you move down/up/left/right from the point O? Please click at the position. 

Others: At what position along the line segment does the quantity of the material 

represented by the LEFT MOST color (in the color bars below) go to zero as you move 

down/up/left/right from the point O? Please click at the position. 
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(a) GRAY 

(b) HARD (c) SOFT (d) DBLY 

Figure 6.5 An example of the perceptual edge detection task. The yellow lines indicate 
the ground truth positions. 

Table 6.2 

OUTLIERS FOR PERCEPTUAL EDGE DETECTION TASK. 

GRAY HARD SOFT DBLY Total 
answers 104 101 131 116 452 
normalized error 9 7 12 6 34 
response time 9 4 8 6 27 
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Figure 6.6 Result of the perceptual edge detection task. The lines indicate the results of 
post-hoc comparisons. 

Results: We recorded the coordinate of the user’s mouse click for this task and measured 

the dependent variables: response time in seconds and normalized error. A total of 452 

answers were recorded, including 104 answers for GRAY, 101 for HARD, 131 for 

SOFT, and 116 for DBLY. The outliers were listed in the Table 6.2. The means displayed 

in Figure 6.6 indicate that participants have the best performance to recognize the 

perceptual edges for GRAY. SOFT and DBLY are in the second rank. HARD is once 

again at the highest error level as it was in the pilot study, but participants took the 

shortest time to figure out the answer. F-value and p-value analysis found a major effect 

of visualization technique on normalized error (F(3, 42) = 166.49, p < .000) and 

response time (F(3, 42) = 12.94, p < .000). The post-hoc comparisons indicated the 

differences as shown in Figure 6.6. The high normalized error of HARD comes from the 
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hard classification itself. Since there are six classes in the study, value less than 1/p (p is 

the number of the classes) will not be the largest. 
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GroundTruth Distribution in Block Value Estimation Task 

Figure 6.7 The distribution of ground truth for block value estimation task. The labels 
below the ground truth axis indicate the five ground truth subsets. 

Block Value Estimation 

Color mapping plus legends is widely used in visualization. This task was 

designed to assess participants’ ability to accurately read the continuous values encoded 

by a color. In each region, colors represent overlapped multiple scalars. 

Task: This task was generated by the following steps: 

1) Dividing the range of data value [0.0, 1.0] into five subsets: s ={ [0.0, 0.2], 

[0.2, 0.4], [0.4, 0.6], [0.6,0.8], [0.8, 1.0]}; 

2) Initialize the subset si as the first subset s1 = [0.0, 0.2]; 

3) Randomly generate a 20 × 20 pixel block B and Class index k; 
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4) If the average value v of the k-th class in B is in si ( v Î si ), then write the 

class index k and block B as an input task; otherwise, check the (k +1) -th 

class; 

5) If a task has written to the input file, assign i = i +1 and then go back to step 

2; otherwise, repeat step 3 until a task is written to the input file. 

6) Permute the task sequence in the input file. 

Figure 6.7 shows the distribution of the ground truth of the tasks which have been 

answered by the participants. The plot shows that the ground truth is well balanced for 

the five subsets. 

The task was to match the block color with a slider that contains the color of each 

of the six endmembers. A sample dataset is displayed in Figure 6.8. In the sample 

images, the participants were asked to estimate the average value in the red block in the 

sixth class (right-bottom in Figure 6.8 (a)). The sample questions of the task are: 

GRAY: Please estimate the average value of CLASS i in the red box in CLASS i. 

Others: Please estimate the average value of the class represented by the LEFT 

MOST color (in the color bars below) in the white box? 

Table 6.3 

OUTLIERS FOR BLOCK VALUE ESTIMATION TASK. 

GRAY HARD SOFT DBLY Total 
answers 178 183 167 182 710 
absolute error 11 14 7 20 52 
response time 5 18 4 10 37 
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(a) GRAY 

(b) HARD (c) SOFT (d) DBLY 

Figure 6.8 A sample of the block value estimation task. The red/white box indicates the 
position of target blocks. Figure 6.4(b) shows the GUI for this task. 

Results: We recorded a total of 710 answers, including 178 answers for GRAY, 183 for 

HARD, 167 for SOFT, and 182 for DBLY. A total of 52 absolute error outliers and 37 

response time outliers were replaced by the median of remaining answers. The detailed 

information of outliers is listed in Table 6.3. After the outliers have been removed, the 

maximum absolute error is 58.02%. 
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The F-value and p-value tests found a major effect of visualization technique on 

absolute error (F(3, 42) = 16.46, p < .000), and response time (F(3, 42) = 19.81, p < 

.000). The post-hoc comparisons indicated the differences as shown in Figure 6.9; the 

HARD technique was significantly worse than other techniques. 

Figure 6.9 Result of the block value estimation task. The lines indicate the results of 
post-hoc comparisons. 

6.2.2 Local Information Conveying Capability 

In this section, we designed two tasks, class recognition and target value 

estimation, to evaluate the capability of conveying detailed information at the subpixel 

level. Four blocks of size 20 × 20 pixels (shown in Figure 6.1(a)) were cut to simulate the 

zooming-in operation, and blending parameter was set to 0.8 in DBLY to pop out the pie-

chart layer. 
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(a) GRAY 

(b) HARD (c) SOFT (d) DBLY 

Figure 6.10 A sample set of images for testing class recognition with 3 classes in the 
pixel under test. For the GRAY visualization, the testing pixel position is 
indicated by the red box in the right-bottom gray image. The co-existing 
classes are marked by the green box. During the real test, the green boxes are 
not displayed. Black box marks the testing position in other visualization 
techniques. 
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Class Recognition 

Recognizing the number of classes is the first step in understanding the dataset. 

This goal of this task was to assess participants’ ability of determining the number of 

endmembers present when zooming into an image. 

Task: Four datasets with size of 20 × 20 pixels were cut to simulate the zooming-in 

operation. Each pixel may contain one or more classes. Each pixel is a square with 

GRAY, HARD, and SOFT, and a square covered by a pie-chart in DBLY. In this task, 

we asked participants to indicate the number of classes present in the given pixel. Figure 

6.10 displays a sample dataset. In the GRAY visualization (Figure 6.10 (a)), the white 

pixel contains 100% of that class; otherwise, other classes co-exist in that pixel. In the 

HARD visualization, the color of the pixel is represented by the color of the class whose 

value is the maximum in the pixel. In the SOFT visualization, the color of the pixel is the 

combined color of all the classes existing in the pixel. In DBLY visualization, the 

different colors in the fan-shape region represent different classes and an angle of fan-

shape represents the percentage of the corresponding class in the pixel. The sample 

questions for this task are: 

GRAY: How many classes are present in the area indicated by the red box in 

Class i? 

Others: How many classes are present in the white box? 
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Figure 6.11 Result of the class recognition task. (a) Relative error with error bars; (b) 
response time and absolute error with error bars. The color-coded lines 
indicate the result of post-hoc comparisons. 
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Results: The dependent variables of response time, relative error, and absolute error 

were measured for this task. The relative error ranged from −5 to 5. The negative 

relative error means the participants underestimate the class number; the positive relative 

error means that participants overestimate the class number; and zero means no error. 

Therefore, the range of absolute error is [0, 5]. We recorded a total of 834 answers, 

including 209 for SOFT, 207 for DBLY, 208 answers for GRAY and 209 for HARD. 

There were 5 relative error outliers in GRAY and a total of 32 response time outliers. All 

outliers were replaced by the median of remaining answers. Detailed information of the 

outliers is listed in Table 6.4. 

We found that participants trend to underestimate the number of classes in all the 

tested visualization techniques (Figure 6.11(a)). Because one color is displayed in the 

HARD visualization, it is basically impossible for participants to figure out the number of 

the co-existing classes. Hence HARD brings about the largest error in both relative error 

and absolute error (Figure 6.11(b)). Several participants indicated that they resorted to 

guessing, which explains the relatively low response time for this technique. 

Table 6.4 

OUTLIERS FOR CLASS RECOGNITION TASK 

GRAY HARD SOFT DBLY Total 
answers 209 209 209 207 825 
relative errors 5 0 0 0 5 
response time 4 9 9 10 32 

GRAY and SOFT provide some clues for participants to speculate the ground 

truth. Even these clues do not provide the precise information; participants can determine 
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the answer by estimating the pixel locations in other abundance images in GRAY and by 

considering the appearance of the mixed color in SOFT. These explain why GRAY and 

SOFT achieve better performance than HARD in both relative error and absolute error. 

However, participants took longer time to finish the class estimation from the GRAY 

images. When conducting the study, we found that some participants tried to accurately 

relocate the pixels in each image in order to align the side-by-side displayed images. This 

indicates that it is better to provide an automatic tool to align the pixels for side-by-side 

visualization. 

We found a major effect of visualization technique on relative error (F(3, 42) = 

73.49, p<.000), absolute error (F(3, 42) = 91.65, p < .000), and response time (F(3, 42) = 

101.93, p < .000). As shown in Figure 6.11(b), the post-hoc comparisons indicated the 

differences for both response time and absolute error. 

Since different colors in the pie-charts represent different classes, participants can 

get very precise information at subpixel level. The results show that DBLY can achieve 

smaller relative error (−0.2) and absolute error (0.2) compared to other techniques and 

the response from participants was significantly faster. 

Target Value Estimation 

Task: This task was designed to evaluate the ability of the four techniques to convey 

quantitative information. It is very similar to the block value estimation task. The size of 

the datasets is 20 × 20 and the target block is a 2 × 2 pixel block. The average value in 

the target block varies in the range si, where si belongs to the set {[0.0, 0.2], [0.2, 0.4], 

[0.4, 0.6], [0.6, 0.8], [0.8, 1.0]}. The process of generating the task tuple is the same as in 
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(a) GRAY 

(b) HARD (c) SOFT (d) DBLY 

Figure 6.12 An example of the target value estimation task. The red/white boxes indicate 
the target position. 

the block value estimation task. The task was to match the block color with a slider that 

contains the color of each of the 6 classes. Figure 6.12 displays an example dataset, 

where the average value of Class 2 in the target block is in the range [0.2, 0.4]. The 

distribution of the ground truth indicates that the ground truth is equally distributed over 

the range of [0.0, 1.0] with interval size of 0.2 (Figure 6.13). The sample questions for 

this task were: 
82 



    

    

                

             

           

 

     

 

            

   

      
 

      
      
       

       
 

            

              

           

GRAY: Please estimate the average value of CLASS i in the red box in CLASS i. 

Others: Please estimate the average value of the class represented by the LEFT 

MOST color (in the color bars below) in the white box? 
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GroundTruth Distribution in Target Value Estimation 

Figure 6.13 The distribution of ground truth for target value estimation task. 

Table 6.5 

OUTLIERS FOR TARGET VALUE ESTIMATION TASK 

GRAY HARD SOFT DBLY Total 
answers 187 195 188 189 759 
relative error 13 1 17 12 43 
response time 2 2 8 2 14 

Results: The dependent variables calculated for this task were response time, relative 

error, and absolute error. The relative error ranged from − 34.8% to 75%. The negative 

relative error means participants underestimate the value; the positive relative error 
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means participants overestimate the value; and zero means no errors. The absolute error 

ranged from 0 (no error) to 75% (maximum error). 
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Figure 6.14 Result of estimating the target value estimation task. (a) Mean and interval 
plot for relative error; (b) absolute error and response time in seconds. The 
color-coded lines indicate the result of post-hoc comparisons. 
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We recorded a total of 759 answers, including 187 answers for GRAY, 195 for 

HARD, 188 for SOFT, and 189 for DBLY. A total of 43 relative error outliers and 14 

response time outliers were corrected. The outliers’ number is listed in Table 6.5. 

The relative error plot (Figure 6.14(a)) indicates the participant trends to 

overestimate the target value in GRAY, HARD, and DBLY visualization techniques, but 

underestimate the value in SOFT visualization. The color of the pixel in HARD is chosen 

by the maximum likelihood theory. A class with value greater than 1/p (p is the number 

of classes) in a pixel has high potential to be chosen as the dominating class and its color 

will be assigned to the pixel. This results in the participants overestimating the value in 

the HARD visualization techniques. In GRAY visualization, the maximum value (1.0) is 

mapped to white and the minimum value (0.0) is mapped to black. The dark background 

increases the contrast of gray-scale images and makes participants overestimate the target 

value in GRAY visualization. This study did not provide the reason that participants 

overestimate the value in DBLY visualization. One possible reason may be that the size 

of the pie-chart is not big enough for participants to read detailed information. 

Comparing to the overestimation in the block value estimation task, participants 

trend to underestimate the value of SOFT. In the global display, the high value 

surrounding the target block may affect participants’ judgment. In the local zooming-in 

operation, participants lack the global view and trend to underestimate the value, as they 

did in the class recognition task. 

We found a major effect of visualization technique on relative error (F(3, 42) = 

38.15, p<.000), absolute error (F(3, 42) = 48.09, p < .000), and response time (F(3, 42) = 
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62.11, p < .000). The post-hoc comparisons indicated the differences shown in Figure 

6.14 for both absolute error and response time. 

Figure 6.14(b) shows a clear response time/accuracy (absolute error) tradeoff for 

GRAY, SOFT, HARD, and DBLY. Participants’ responses were very accurate with 

DBLY, but it took them longer to read the individual pie charts. GRAY and SOFT 

required consideration about color combination. The task was almost impossible with 

HARD, so participants provided the straightforward answer based on the average pixel 

color values. 

6.3 Conclusion 

The evaluation on the real dataset confirms that the GRAY approach is not 

sufficient to locate the relative location (high absolute error rate in class recognition task) 

or to visualize the local detailed information, the GRAY method is effective to display 

the perceptual edge and for participants to estimate the block value. As concluded in the 

pilot study, this main study also confirms that the HARD approach is less effective for 

perceptual edge detection, block value estimation, or local information display. The 

SOFT approach is the best for block value estimation as in the pilot study, but it is less 

efficient for displaying local information. 

Both the pilot study and the main study demonstrate that the DBLY technique is 

the most accurate method for showing local details. Taking the advantages of the SOFT 

method, the DBLY algorithm is also effective in displaying global patterns. Both studies 

validate that adding a pie-chart layer to the SOFT approach is necessary for conveying 
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local information while the DBLY algorithm maintains efficiency in displaying global 

patterns that was exhibited by the SOFT method. 
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CHAPTER VII 

ANALYSIS AND DISCUSSION 

In the previous two chapters, we described the details of two user studies and the 

results. In this chapter, we analyze and discuss those studies and the results. Later, we 

present the advantages and disadvantages of the DBLY algorithm. 
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Figure 7.1 The result of displaying objects in one image vs. displaying objects in 
separate images. “GRAY” represents the techniques which display objects in 
separate images and “Others” in one image. 

7.1 Discussions on Studies 

7.1.1 Hypotheses 

In Chapter V, we introduced three hypotheses which our user studies were to test. 

The task of relative location in the pilot user study was designed under H1; both 

perceptual edge detection and block value estimation tasks were designed under H2; and 
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class recognition task and target value estimation tasks were designed under H3. In this 

section, we fully discuss these hypotheses. 

H1: True. Displaying materials in one image is better than displaying them in 

several side-by-side images when trying to ascertain relative location of materials. 

Figure 5.4 indicated that the visualization techniques significantly impact the 

results. We combined the results of the HARD, SOFT, and DBLY techniques, which 

display objects in one image, into one group: Others. The comparison results are shown 

in Figure 7.1. Both response time and absolute error measurements indicate that 

displaying materials in one image has better performance than side-by-side when trying 

to ascertain relative location of two materials. The F-value and p-value analysis 

demonstrated that different visualization techniques have significantly different 

performance in determining the relative location of two objects (response time: F(1, 9) = 

42.27, p<.000, and absolute error: F(1, 9) = 14.73, p<.004). 

H2: True. Adding a pie-chart layer does not degrade the background layer 

(SOFT)’s capability in displaying global patterns. 

Figure 7.2 shows the comparison of perceptual edge detection and block value 

estimation tasks. It indicates that there is no significant difference between SOFT and 

DBLY visualization techniques for these tasks. The average time for participants to 

conduct perceptual edge detection is around 5 seconds. However the normalized error 

increased approximately 20% from the pilot study to the main study. This difference 

indicates that the number of classes or datasets may have significant impact on the 

performance in determining perceptual edges. Figure 7.2(b) indicates that participants’ 
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performance in estimating block value using DBLY is not worse than using SOFT. The 

average response time for DBLY and SOFT is 6.88 seconds and 8.24 seconds, 

respectively. The average mean of the absolute error is 12.25% for DBLY and 14.13% 

for SOFT. Therefore, adding a pie-chart layer to the SOFT visualization techniques to 

form the DBLY does not influence the display of global patterns. 
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Figure 7.2 The comparison of SOFT and DBLY visualization. (a) Response time and 
normalized error for perceptual edge detection task; (b) response time and 
absolute error for block value estimation task. 
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H3: True. The Pie-chart layer increases DBLY’s efficiency in revealing local 

information. 

Figure 7.3 shows the results of comparison of the two user studies on local 

information display. Both studies indicated that the DBLY is significant better than other 

techniques on precisely visualizing local information. Compared to the SOFT 

visualization techniques, the pie-chart layer meaningfully increases the capability of 

DBLY in more precisely visualizing local information. However, there is a tradeoff 

between the response time and accuracy on DBLY due to the mental calculations 

required for individual pie-charts. 
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Figure 7.3 The comparison of results from two user studies. (a) Response time and 
absolute error for class recognition; (b) response time and absolute error for 
target value estimation task. 
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7.1.2 Further Considerations 

Synthetic Datasets vs. Real Datasets 

It is still an open question whether a user study should use synthetic datasets or 

real datasets. Real datasets are from application domains. Thus the results based on real 

datasets are directly applicable. However, sometimes, it is not easy to find representative 

datasets. Moreover, it may be difficult to quantitatively describe and measure the features 

in real datasets. Compared to real datasets, synthetic datasets are easily accessed, where 

ground truth and features are easily controlled. A problem with a user study is if the 

results from synthetic datasets adequately measure the performance of visualization 

techniques. 

Figure 7.4 presents the z-score for each algorithm across tasks. The z-score 

transformation, also called standardization, normalizes a distribution by subtracting the 

mean and dividing by the standard deviation. Therefore, the z-score enables the 

performances of each method to be measured across tasks. In Figure 7.4, “P” represents 

the pilot study based on synthetic datasets; “M” represents the main study based on a real 

dataset. A value of z-score above zero means larger error or longer response time, and a 

value below zero means smaller error or faster response. 
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(a) 

(b) 

Figure 7.4 The z-score for each visualization algorithm calculated for each task. (a) 
Comparison of response time; (b) comparison of absolute error. “P” 
represents the pilot study and “M” represents the main study. 
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Figure 7.4 does not show any significant difference between each task across the 

visualization techniques except the jump on the errors of perceptual edge detection from 

the pilot study to the main study. However the jump on the errors of perceptual edge 

detection maintains the same order of the techniques in both studies. Based on the 

comparison of the z-score, the synthetic datasets are effective to validate the techniques 

in our user study. 

Expert vs. Non-expert 

In the main study, we employed four research associates and two graduate 

students whose research areas are related to remote sensing. We categorized these six 

participants as domain experts and the other nine participants as domain non-experts. 

Figure 7.5 displays the z-score comparison for experts and non-experts across all tasks in 

the main study. Comparing response time and absolute error indicates there is no 

significant impact of experts in this study. 

However, it does not mean that involving experts in user study is not meaningful. 

Compared to non-experts, they are domain specialists. They can be more easily trained 

during the training process. More important, they can propose meaningful requirements 

on visualizing hyperspectral imagery and provide useful suggestions to improve the 

techniques. 
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(a) 

(b) 

Figure 7.5 The z-score comparison between experts and non-experts. (a) Comparison of 
response time for each task; (b) comparison of absolute error for each task. 
“E” represents 6 experts; “N” represents the 9 non-experts. 
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7.2 Advantages and Limitations of DBLY 

7.2.1 Advantages 

The DBLY takes advantage of the non-negativity and sum-to-one constraints in a 

hyperspectral pixel and enhances the detailed local information display capability. The 

qualitative and quantitative comparisons indicate that adding the DBLY significantly 

improves the accuracy in visualizing the pixel level and subpixel level information and 

also has a competitive performance on displaying the global information. 

The DBLY is based on LMA, where noise and interference in the original image 

has been well pre-suppressed. It is particularly useful when the subpixel information is of 

interest. For example, using the developed visualization system it is easy to estimate the 

size of some special objects, such as military targets, by just looking at the detail layer. 

Additional information about an image scene is also provided with interactive exploration 

tools. Overall, this technique can create informative displays in a succinct form to support 

practical decision-making. 

7.2.2 Limitations 

The DBLY scheme blends the pie-chart layer and the background layer. However, 

the color blending process may create new colors for the image scene. Figure 7.6 displays 

a sample set of images where a new color is generated by color blending. Figure 7.6(a-b) 

simulate the two abundance images, where pure red/green column represents a value of 

1.0, black column represents 0.0, and mid-level red/green (middle columns in (a) and (b)) 

represents 0.5. Figure 7.6(c) is the color blending result of Figure 7.6(a) and (b). The 

middle column of Figure 7.6(c) is very different from red (left column) and green (right 
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column) and is read as a new color by most of observers except color experts. Actually, it 

is created by blending 50% pure red and 50% pure green. This “new” color may result in 

a wrong decision when this happens in real applications. 

+ = 

(a) (b) (c) 
Figure 7.6 An example showing a color blending process where a new color is created. 

Our user studies indicated that the absolute error of block value estimation is 

around 14%. The study conducted by Hagh-Shenas [58] indicated that the error of value 

estimation of blending colors is worse than that of a single color. It may improve the 

participants’ performance on value estimation if a single color is used to replace a 

blending color. Icon-based visualization methods may be a potential solution to avoid the 

color blending. Bokinsky states in her dissertation that icon-based visualization methods 

can visualize nine variables at most in one image [31]. 

On the other hand, it may be helpful if the visualized image can directly display 

the important mixed pixel information without the need of zooming into the subpixel 

level. For instance, an anomaly is a pixel whose spectral signature is very different from 

the surrounding pixels, has low probability to be noticed, and a high potential to be a 

target. If a visualization technique can assist in rapidly “popping out” an anomaly in the 

mixed pixel composition, it will greatly facilitate the decision-making. 
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7.3 Conclusion 

In summary, this chapter discussed the results of the two studies. The results of 

the studies demonstrate that our three hypotheses are true. The comparison of the pilot 

study and the main study shows that the well designed synthetic datasets are suitable for 

validating the algorithms for visualizing hyperspectral images. The performance of 

experts and non-experts shows that our studies have a low cognitive level and do not 

require a strong background to complete. The advantages and disadvantage of using 

DBLY is also discussed in this chapter. In the following chapter, we will draw the 

conclusion and present our future work. 
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CHAPTER VIII 

CONCLUSION AND FUTURE WORK 

“This is not the end. 

It is not even the beginning of the end. 

But it is, perhaps, the end of the beginning.” 

— Winston Leonard Spenser Churchill 

In this dissertation, we presented the DBLY visualization strategy and its 

validation experiments. In this Chapter, we make conclusions about the major aspects of 

our research and discuss future work. Specially, we introduce a new scheme, multi-layer 

visualization, which is expected to have better performance. 

8.1 Conclusion 

1. We have introduced new visualization strategies to visualize hyperspectral 

imagery. Hyperspectral imagery has many important applications, but how to display the 

huge amount of information is challenging. In this dissertation, we proposed a new 

visualization scheme, a double-layer technique, to improve the information rendering. 

The two user studies revealed that the developed DBLY scheme can display mixed pixel 

composition and global materials distribution simultaneously. 

2. We have designed and conducted two user studies to quantitatively measure the 

DBLY visualization scheme. We employed user studies to validate the efficiency and 

weakness of the DBLY visualization algorithm. We conducted a pilot user study based on 
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synthetic datasets and a main study based on a real dataset. We compared the DBLY 

visualization algorithm with traditional approaches, such as gray-scale side-by-side 

display, colored hard classification, and colored soft classification in the two studies. The 

results show that our scheme has the best performance in displaying local information 

and has comparable capability of visualizing global information and patterns. The results 

of the two user studies are consistent. 

3. We have added a pie-chart layer to provide high accuracy in conveying local 

information. The proposed algorithms are the first work that explicitly accounts for the 

non-negativity and sum-to-one constraints in LMA to visualize hyperspectral imagery. 

The pie-chart layer, taking advantage of these properties, enhances the detailed local 

information display capability. Both the pilot and main study prove that adding the pie-

chart layer significantly improves the accuracy in visualizing the pixel level and subpixel 

level information. The pie-chart layer does not degrade the background layer’s capability 

of displaying the global information if a proper blending parameter is used. Our user 

studies show that the DBLY visualization scheme is competitive to existing visualization 

techniques at displaying global information. 

4. We have implemented a visual exploration tool to visualize hyperspectral 

imagery. The proposed techniques are implemented in a visualization system. All 

visualized images presented in this dissertation are screenshots from this visualization 

system. The interactive tools in a user-friendly interface enable viewers to display an 

image with any desired level of details. 
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8.2 Future Work 

We do not expect that the proposed algorithms can solve all the problems in 

hyperspectral image visualization. There is room for further improvement. 

Most of the current research visualizes hyperspectral imagery as 2D images. 

However, compared to 2D visualization, 3D visualization can offer more degrees of 

freedom and provide more interactive operations. Moreover, the high-spectral-resolution 

signatures in hyperspectral imagery contain plenty of information. How to directly 

involve these signatures into the visualization system is a direction of our future work. 

The pie-chart layer which takes advantage of the two constrains, i.e., non-

negativity and sum-to-one, provides high accuracy in conveying local information. 

However, many applications may not contain these two constraints. How to extend the 

pie-chart layer and the developed visualization technique to other application domains 

needs to be investigated. 

Since the pie-charts do not cover the whole image area, the DBLY approach 

employs another layer to compensate uncovered area. It is relatively complex to control 

the opacity of the pie-chart layer for displaying proper information. Using a square 

shaped suppixel may overcome the limitation of the pie-chart. Introducing the other 

shaped suppixel and reducing the complexity of opacity controlling are the other 

directions of our future work. 

Though the preliminary results and the user studies show that the DBLY 

technique has the capability to visualize global patterns and local detailed information 

simultaneously, the DBLY algorithm still has limitations in visualizing hyperspectral 
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images as we discussed in the previous chapter. A multi-layer visualization technique 

which is presented in next section is expected to overcome the limitations. 

8.3 A Potential Solution — Multi-Layer Visualization Scheme 

The proposed multi-layer visualization scheme includes five layers. From bottom 

to top, they are the background layer, the non-uniformed data-driven spots (NUDDS) 

layers, the pie-chart layer, the oriented sliver layers, and the anomaly layer. In this section, 

we discuss the multi-layer visualization scheme in detail. 

8.3.1 Functions of Five Layers 

Five layers are employed to maximize the information that is visualized. Textures 

with special consideration are utilized to form the final display. Each layer has a specific 

purpose as described below. 

Background Layer: No information is presented by this layer. It is used to 

enhance the overall appearance of the display. Because it can be seen through the upper 

layers, the color in the background layer should be carefully chosen to make the final 

display more appealing. Neutral gray is chosen as suggested in [30][31]. 

NUDDS layer: This layer displays the statistical distributions of the endmember 

materials that are widely distributed in the scene (i.e., background materials most likely). 

For an image with � background materials, � NUDDS layers are needed with one for 

each background material. Gaussian-shaped spots were recommended in the original 

DDS technique [31]. To make it suitable for multiple layer representation, solid circles 

are used with the radius equal to half of a pixel extent. Moreover, the uniform sampling 
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in the original DDS technique is changed to non-uniform, which is more efficient in 

capturing subtle variations. We denote this layer as NUDDS. Hence, the fact that spots 

with the same color are densely packed in a unit area means the corresponding material is 

more concentrated in this area. The opacity of a spot is controlled by the corresponding 

abundance in the sampled pixel it represents. In other words, if pixel rij is the sampled 

pixel for the spot at (i, j) in the k-th NUDDS sublayer representing the kth endmember, 

the opacity ok (i, j) is determined as 

ok (i, j) = a k (i, j) (8.1) 

where a k (i, j) is the abundance of mk in pixel rij . 

Pie-chart layer: This layer is used to display the detailed composition of each 

sampled pixel. The opacity should be low when visualizing the overall distribution to 

reduce the line pattern artifacts. Middle or high opacity is more appropriate for the ROI 

visualization. In addition, the radius of the pie-charts has to be reduced from that used in 

[23] and distinct from that of the dots in the NUDDS layer to work effectively in the 

multiple layer situation. The overall opacity of the pie-chart layer is associated with a f 

parameter. 

Oriented Sliver Layer: This layer is to represent anomalous materials (associated 

with anomalies or targets), which are not spatially well distributed. These materials 

cannot be well represented by the NUDDS layer because of their low occurrence 

probability. Thus oriented slivers are used to emphasize these materials as long as they 

are present in a pixel. Different materials are distinguished by orientation. The opacity of 

a sliver is controlled by the abundance of the anomalous endmember in the pixel. 
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Anomaly layer: An anomaly is a potential target. The anomalous pixels should be 

significantly highlighted. A study by Acevedo et al. shows that increasing icon brightness 

provides better visibility than changing icon size when visualizing scalar values [39]. 

However, in a very large image scene, even a very bright color cannot make an anomaly 

spanning only one or two pixels noticeable due to its small size. Hence large 3D icons 

with bright colors are employed in this layer to represent anomalies. 

It should be noted that the colors assigned to endmembers in all layers (NUDDS, 

pie-chart, oriented slivers, and anomaly) are the same. Layer transparency/opacity can be 

automatically or manually adjusted. 

8.3.2 Material Categorization 

The anomalous endmembers are not widely distributed. Under an unsupervised 

situation, the category of endmember m k can be determined by calculating the overall 

distribution index, Ik, defined as 

I
k 

=
M k N 

2 
k (8.2) 

N 

where M k is the total distributed amount of endmember m k , i.e., 

M k = �a k (i, j) (8.3) 
i, j 

Nk is the total number of pixels whose maximum abundance is from m k , and N is the 

total number of pixels in the scene. If Ik is less than a threshold hm, m k is considered an 

anomalous endmember; otherwise, it is a non-anomalous endmember. hm is set to be 

1×10-3 in this study. An anomalous material will be emphasized by the oriented sliver 
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layer, which can be a foreground material. For a pixel to be considered an anomaly and 

thus be highlighted in the anomaly layer, the abundance value should be greater than a 

threshold hp. In this study, hp is set to be 0.8~0.9. A non-anomalous endmember is 

widely distributed and usually a background material. It will be displayed by the NUDSS 

layer. 

8.3.3 Sampling 

In Bokinsky’s DDS technique, spot density is independent of the scalar field 

because uniform sampling is used. This makes any subtle variation in distribution 

unnoticeable. Therefore, non-uniform sampling is proposed in this research. The 

sampling process for the k-th material represented by the k-th sublayer has the following 

steps: 

1. Set two controlling parameters D1 and D2. The initial sampled pixel set W = Æ . 

2. Randomly choose a pixel rij from the image scene. 

3. Calculate the threshold hD for rij as: 

h (i, j) = (1 −a (i, j))(D − D )+ D (8.4) D k 1 2 2 

4. Calculate the coordinate distance between rij and each pixel in W. If all the 

distances are greater than hD, rij is added to the sample set W. 

5. Repeat steps 2 through 4 until the number of iterations are sufficiently large, 

say, 0.5N. 

Here, D1 and D2 are the minimum distances allowed between two samples when 

a k (i, j) takes the smallest (i.e., a k (i, j) = 0) and the largest value (i.e., a k (i, j) = 1), 
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respectively. They together control the final spot density. In our experiments D1 = 5 and 

D2 = 1. Obviously, this sampling algorithm is well correlated with the local abundance of 

the k-th material. Because the threshold in Eq. (8.4) is smaller for pixels with larger 

abundance, these pixels have a greater chance of being selected. After the sample points 

are generated, the opacity of the sample points is set to the abundance value (a k (i, j) ). 

(a) (b) 

(c) (d) 

Figure 8.1 The results of two sampling methods. (a) Uniform sampling; (b) non-
uniform sampling; (c) uniform sampling after transparency control; (d) non-
uniform sampling after opacity control. 

Figure 8.1 shows the sampling results for Playa Lake (the 1st endmember material 

in Figure 3.4). It is concentrated at the lower-right corner. Figure 8.1 (a) is the (original) 
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uniform sampling result, and Figure 8.1(b) is the non-uniform sampling result where 

spots at the lower-right corner have higher density. After the opacity/transparency 

control, Figure 8.1(d) reflects the actual distribution variation of Playa Lake while Figure 

8.1(c) does not. 

8.3.4 Results of Multi-layer Visualization Scheme 

After each layer has been generated, the final display is formed by alpha-

blending, a standard computer graphics algorithm for the semi-transparent image display. 

By default, the blending parameter for the anomaly layer and background layer are 1.0, 

which means 100% opacity; those for the NUDDS layer and oriented sliver layer are 

determined by the abundance value in a pixel at (i, j); that for the pie-chart is associated 

with the zooming parameter. It should be noted that the sublayers in the NUDDS layer go 

through a similar blending process. 

The final multi-layer display for the AVIRIS Lunar Lake scene is shown in Figure 

8.2. The overall display in Figure 8.2(a) manifests the variations of the six endmember 

materials, and the anomaly is more visible. Figure 8.2(b) is the ROI with the anomaly 

layer; the precise location of the anomaly can be easily identified. Figure 8.2(c-e) are the 

images when the opacity of the pie-chart layer is varied to increase the visibility of the 

detailed pixel information. In Figure 8.2(c-e), the anomaly layer is deselected. We can 

also see the role of the oriented sliver layer, which is to make the pixels with the 

anomalous materials be more easily detected. 

Compared to other existing multivariate visualization techniques that cannot 

provide the precise distribution at subpixel level, the embedded pie-chart layer provides 
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the precise pixel composition. This is particularly useful when a small region is of great 

interest. For example, it is feasible to estimate the size of small objects, such as invasive 

species or military targets, based upon material abundance within a pixel. The anomaly 

layer highlights anomalous pixels, such as small targets, which can greatly facilitate 

target detection. The NUDDS layer displays the widely distributed endmembers, such as 

background materials. The NUDDS can reflect the subtle spatial variation in endmember 

distribution. The oriented silver layer further emphasizes the distribution of important 

target materials. 

108 



    

    

 
 

 

  
     

 

               
     

(a) 

(b) (c) 

(d) (e) 
 

             
              

            
   

Figure 8.2 The multi-layer visualization of AVIRIS Lunar Lake. (a) The overall display 
with five layers; (b) the ROI in the anomaly layer; (c-e) displays with the 
opacity of the pie-chart layer being 0.1, 0.5, and 1.0, respectively (without 
the anomaly layer). 
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