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In this dissertation, we study two important problems related to additive 

manufacturing (AM). In the first part, we investigate the economic feasibility of using 

AM to fabricate biomedical implants at the sites of hospitals AM versus traditional 

manufacturing (TM). We propose a cost model to quantify the supply-chain level costs 

associated with the production of biomedical implants using AM technology, and 

formulate the problem as a two-stage stochastic programming model, which determines 

the number of AM facilities to be established and volume of product flow between 

manufacturing facilities and hospitals at a minimum cost. We use the sample average 

approximation (SAA) approach to obtain solutions to the problem for a real-world case 

study of hospitals in the state of Mississippi. We find that the ratio between the unit 

production costs of AM and TM (ATR), demand and product lead time are key cost 

parameters that determine the economic feasibility of AM.  

In the second part, we investigate the AM facility deployment approaches which 

affect both the supply chain network cost and the extent of benefits derived from AM. 

We formulate the supply chain network cost as a continuous approximation model and 



 

 

use optimization algorithms to determine how centralized or distributed the AM facilities 

should be and how much raw materials these facilities should order so that the total 

network cost is minimized. We apply the cost model to a real-world case study of 

hospitals in 12 states of southeastern USA. We find that the demand for biomedical 

implants in the region, fixed investment cost of AM machines, personnel cost of 

operating the machines and transportation cost are the major factors that determine the 

optimal AM facility deployment configuration. 

In the last part, we propose an enhanced sample average approximation (eSAA) 

technique that improves the basic SAA method. The eSAA technique uses clustering and 

statistical techniques to overcome the sample size issue inherent in basic SAA. Our 

results from extensive numerical experiments indicate that the eSAA can perform up to 

699% faster than the basic SAA, thereby making it a competitive solution approach of 

choice in large scale stochastic optimization problems. 

Keywords: Additive manufacturing, biomedical implants, stochastic programming model, 
continuous approximation, large scale supply chain, deployment 
configuration, sample average approximation, enhanced sample average 
approximation, clustering 
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CHAPTER I 

INTRODUCTION 

The provision of on-demand personal care specifically tailored to the need of a 

patient is an important aspect of high-quality and efficient healthcare delivery. Due to the 

fact that the anatomy of every single patient is unique, there is a significant need to 

customize such biomedical implants as hip implants, knee implants dental crowns and 

braces, cardiovascular stents and other implants for surgical procedures. These patient-

specific customized implants usually possess complex features which are laborious to 

produce using the conventional traditional manufacturing (TM) methods which are 

subtractive in nature. However, advanced manufacturing techniques such as additive 

manufacturing (AM) provide the opportunity to fabricate the implants from the ground-

up, layer-by-layer using a variety of metallic, plastic or ceramic materials, on a patient-

by-patient basis. With additive manufacturing, one can employ computer tomography to 

obtain a patient’s anatomy data, from which a CAD model of the implant is generated 

and used to build a patient-specific customized implant.  Among the customized implants 

produced using AM technology include skull ([142], [158], [37], [141]),  knee  joint 

([59]), elbow ([151]), and hip joint ([116]). These devices possess a combination of 

relatively high value and small physical volume which is suitable for the applications of 

AM. Specifically, Kablooe Design has used AM to manufacture a device for the 

treatment of benign prostatic hyperplasia (BHP) [146] while Siemens has switched to 
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AM technology for the production of customized hearing aids. Moreover, Dental labs 

have used AM to produce customized dental crowns for patients.  The AM technology 

has enabled these companies to localize the manufacture and distribution of end products, 

shorten the production time of the customized devices by up to 80%, and significantly 

reduce labor cost [34]. The US military has identified the use of AM within the combat 

field whereby thousands of different surgical instrument designs, customized instruments 

and sterile surgical kits stored on digital media or remotely accessed via the Internet, 

could be printed and used in field surgical settings [74]. 

Instead of ordering traditionally-manufactured implants from suppliers who are 

usually located far away from the hospitals, adopting AM technologies for fabricating 

biomedical implants at the site of operational hospitals may lead to faster response, lower 

inventory level, and reduced delivery costs [59]. In the case of TM-supplied implants, 

there is a long waiting time between when an implant is ordered and when it is received 

for use in surgery due to the need of customization [148].  The customization requirement 

makes keeping safety stock of products at the warehouse of TM vendors either 

impossible or extremely expensive. In other words, a large portion of the products may 

stay in the warehouse for a long period thereby ting up capital in inventory, increasing 

obsolescence risk and reducing stored product quality due to oxidation. 

Despite the obvious benefits of AM, the decision to switch from TM to AM is not 

straightforward and requires a careful analysis. For one, the AM machines are expensive 

and require a significant initial investment outlay as well as maintenance and operating 

cost. Besides, implants manufactured via AM usually require expensive raw materials 

and may even undergo post-processing steps such as surface cleaning, smoothing or even 
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heat treatment after fabrication which could involve additional traditional manufacturing 

technologies and supply chain network. All these factors significantly drive up the 

production cost of AM in comparison to TM. Consequently, a decision support system is 

needed to help decision makers in making objective make-or-buy decisions. 

Costs associated with AM can be grouped into two categories: process-level or 

well-structured costs such as labor, material, and machine costs; and system-level or ill-

structured costs related to inventory, transportation, delivery, etc [162]. Most of the 

existing studies focus on the analysis of process-level costs, which are usually evaluated 

based on individual AM processes. For example, some researchers examined the costs 

associated with AM machines and materials ([122], [17], [8], [4], [83], [84]); while others 

considered the costs of energy consumption ([94], [98], [145]). Some studies provided 

qualitative and general discussion regarding the designs and management policies of AM 

supply chains ([95], [17], [60]). However, no studies, to the best of our knowledge, have 

performed a quantitative investigation of the supply chain’s integrated cost with AM 

facilities. Cost reduction arising from these system-level cost parameters could result in 

significant benefits in the production of biomedical implants in ways that have not yet 

been fully envisaged ([59], [65]). Therefore, quantifying the supply chain level costs of 

AM, benchmarked against its TM counterpart, is essential to better assess the feasibility 

of adopting AM supply chains for the biomedical implant application, identifying the 

system level barriers that hinder the adoption of AM technologies, and recommending the 

specific applications in which the adoption of AM technologies may be economically 

beneficial. In Chapter II, we propose a stochastic cost model to quantify the supply-chain 

level costs associated with the production of biomedical implants using AM techniques, 
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and investigate the economic feasibility of using such technologies to fabricate 

biomedical implants at the sites of hospitals. The problem is formulated in the form of a 

two-stage stochastic programming model, which minimizes the total cost of using TM 

and AM and determines the number of AM facilities to be established and volume of 

product flow between manufacturing facilities and hospitals. A customized Sample 

Average Approximation (SAA) approach is developed to obtain the solutions. We apply 

the cost model to a real-world case study that focuses on the use of biomedical implants 

for hospitals in the state of Mississippi (MS), and identify the conditions and cost 

parameters that have significant impact on the economic feasibility of AM. We find that 

the ratio between the unit production costs of AM and TM (ATR), as well as product lead 

time and demands, are key cost parameters that determine the economic feasibility of 

AM.  A manuscript based on the content of this chapter has been published in Additive 

Manufacturing in July, 2016. 

In a large network coverage area, an important factor that influences the extent of 

benefits reaped by the patient, hospital and the AM provider is the AM deployment 

configuration. AM deployment determines how close the manufacturing point is to a 

hospital and this can have a huge impact on the supply chain cost. This is particularly true 

when we extend the network beyond the state of Mississippi to cover the states in the 

southeastern region of the country or the entire country. The choice of deployment 

approach (central, distributed, or hybrid) remains an open question that requires a careful 

investigation due to the relatively high AM machine, raw material and personnel costs, as 

well as uncertainties in the demand of implants in the future ([60], [86]). A centralized 

deployment whereby the AM facility is centrally located will save on machine investment 
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cost and personnel cost but incur extra transportation cost since the manufacturing point 

will generally be located farther away from the hospitals. A distributed deployment on 

the other hand will result in lower transportation cost but higher initial investment in AM 

machines and personnel costs. Khajavi et al. [70] are among the few researchers that have 

conducted a quantitative study on AM deployment. However, the authors compare only 

two extreme ends of the AM deployment configuration spectrum: one centralized AM 

location; and an AM facility at all the customer locations, and apply their study to the 

AM of military aircraft spare parts. It is reasonable to observe that for expensive raw 

materials such as the ones used in the manufacture of biomedical implants and which are 

usually not available locally, their procurement and inventory decisions need to be 

incorporated in the AM deployment problem to enhance the realization of the full 

benefits of AM. In Chapter III, we propose a continuous approximation (CA) model that 

quantifies the supply chain network cost associated with AM-produced biomedical 

implants and incorporates raw material procurement quantities in the model. We present 

an optimization algorithm that calculates the locations of the AM machines and the 

hospitals that they serve (otherwise known as the AM facility’s influence area), and the 

quantity of raw materials to be kept in inventory at a central raw material warehouse 

(CRW) and distributed AM facilities to minimize the total network cost and achieve a 

satisfactory level of patient satisfaction. We apply the cost model to a real-world case 

study that focuses on the use of biomedical implants in hospitals in 12 states of 

southeastern USA, and identify the conditions and cost parameters that have significant 

impact on both the AM technology deployment methods and total network cost. We find 

that the demand for biomedical implants in the region, fixed investment cost of AM 
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machines, labor cost for operating the machines and transportation cost raw materials and 

implants are among the major factors that determine how distributed the AM facilities 

should be, and impact the AM supply chain network cost. A manuscript based on this 

chapter has been submitted to Additive Manufacturing in September, 2016. 

The continuous approximation approach in Chapter III provides a means of 

modeling a large scale problem where a large number of hospitals and demand points are 

distributed in a wide area and obey the slow-varying property. However, in Chapter IV, 

we present an enhanced sample average approximation (eSAA) technique which 

significantly improves the SAA approach utilized in Chapter II and yields solutions faster 

without assuming the slow-varying property of demand and hospital locations. In the 

basic SAA method, choosing an inappropriate sample size can lead to the generation of 

low quality solutions with high computational burden, and determining the right sample 

size can be quite challenging ([73], [61]). In order to overcome this challenge, our eSAA 

method utilizes clustering techniques to dynamically update the sample sizes and offers 

high quality solutions in a reasonable amount of time. We apply the proposed approach to 

three test problem types (facility location problem, single-sink transportation problem 

and supply transportation problem). A number of numerical experiments (e.g., impact of 

different clustering techniques, fixed vs. dynamic clusters) are performed for various 

problem instances to illustrate the effectiveness of the proposed method. Results indicate 

that on average, eSAA with fixed clustering size and dynamic clustering size solves our 

test facility location problem almost 631% and 699% faster than the basic SAA 

technique, respectively. The promising result shows that formulating our AM deployment 

problem of Chapter III as a mixed integer programming problem and applying the eSAA 
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could be a strong alternative to the continuous approximation approach utilized therein. A 

manuscript based on the content of this chapter has been accepted for publication in the 

International Journal of Production Economics in September, 2016. 

Thus, the proposed contributions of this dissertation are as follows: 

1. In this research, we formulate a more realistic model that captures both process-
level and system-level costs. This model is used to quantitatively study and 
analyze the economic feasibility of using AM technology in the fabrication of 
biomedical implants at various demand levels, and provide managerial insights on 
key cost parameters that affect AM initiatives. The hospitals in the state of 
Mississippi are used as a case study. Such a model can be modified to suit similar 
analysis in other application areas such as automotive, aviation and energy 
production. 

2. This research is the first to formulate a continuous approximation model that 
recommends the optimal configuration that minimizes the total network cost in 
the deployment of AM facilities for the manufacture of biomedical implants. This 
model takes into account that the expensive raw materials used in these implants 
are usually not locally available and must be ordered from remote sources, 
thereby necessitating the inclusion of reliable inventory decisions in the AM 
deployment problem. We apply our model to a large network involving the entire 
southeastern region of USA, and conduct sensitivity analysis on the factors that 
affect how centralized or distributed the AM facilities should be. 

3. This research proposes a novel algorithmic approach that enhances the sample 
average approximation technique with the aim of yielding fast solutions for large 
scale stochastic programming problems. We apply our proposed approach to three 
optimization problems and the performance of the technique shows a promising 
results that could make it applicable to solving  large scale AM facility 
deployment problems that involves all the hospitals in the entire USA. 
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CHAPTER II 

ADDITIVE MANUFACTURING OF BIOMEDICAL IMPLANTS: A FEASIBILITY 

ASSESSMENT VIA SUPPLY-CHAIN COST ANALYSIS 

2.1 Introduction  

Providing personal care tailored to the specific needs of patients is a promising 

approach for delivering high-quality and economically efficient healthcare in terms of on-

demand production and customization. Because the anatomy of every single patient is 

unique, there is a significant need for customizing products in the biomedical sector for 

replacing hip/joint implants, dental work, vessel stents, and other biomedical implants. 

Additive manufacturing (AM) provides the opportunity to fabricate customized 

biomedical implants from the ground-up using a variety of metallic, plastic or ceramic 

materials, and on a patient-by-patient basis (i.e. ‘on-demand’). With additive 

manufacturing, one can employ computer tomography to obtain patient anatomy data, 

from which a CAD model of the implant to-be-manufactured is generated and used to 

build a patient-specific customized implant.  Custom implants can possess truly complex 

features which are difficult to machine using conventional, subtractive methods.  Singare 

et al. [142] has demonstrated the superior functionality of AM biomedical implants, as 

well as the aesthetical appeal. Custom implants produced using AM technology have 

been used for a variety of applications including skull ( [142], [158], [37], [141]), knee  

joint [59], elbow [151], and hip joint [116]. 
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The adoption of AM technologies for fabricating biomedical implants at the site 

alongside of operational hospitals, instead of ordering from off-site suppliers of 

traditionally-manufactured (TM) implants, may lead to faster response, lower inventory 

level, and reduced delivery costs [59]. This is partially because of the fact that many TM 

suppliers tend to locate outside of the state, or even the country, of hospitals. For 

instance, major hospitals in the state of Mississippi (United States) procure biomedical 

implants from suppliers and manufacturers located outside of Mississippi that use TM 

technologies for production, as shown in Figures 2.1 and 2.2. For TM, products can be 

ordered when they are needed in surgeries, and usually require a long waiting time (up to 

months) due to the need of customization [148]. A safety stock of products is kept at the 

warehouse of TM vendors/suppliers to accelerate the service. Thus, a large portion of the 

batched products may stay in the warehouse for a long period, which tends to tie up a 

large amount of capital in the form of inventory, increase the obsolescence risk and 

reduce the surface quality of the stored products or parts due to susceptibility to 

oxidation. Hence, fabricating biomedical implants at the sites of hospitals using AM 

technologies, instead of ordering products from supplier of traditionally-manufactured 

parts out of the state, may have the potential to significantly improve the operational 

efficiency of healthcare delivery systems, ultimately lowering the costs of medical 

service and improving patient well-being and satisfaction. 
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Figure 2.1 Location of major hospitals (by county) in the state of Mississippi 

 

 

Figure 2.2 Current suppliers of biomedical implants in contiguous United States 
(mainland) via traditional manufacturing 
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Despite the potential benefits of using local AM technologies over outsourcing for 

TM parts, the “make-or-buy” decisions are not straightforward and require careful 

investigation because of the existence of conflicting cost parameters. On one hand, the 

transportation costs of product delivery using AM may be reduced because of the 

shortened distance between suppliers (i.e., third parties close to the hospitals) and users 

(i.e., hospitals). In addition, the inventory cost will be reduced since the raw materials for 

AM production are the only stock required when fabricating parts on demand. Moreover, 

the lead time of products fabricated via AM is significantly shortened [59]. However, the 

initial investment of AM machines is relatively high. According to a report by Thomas 

and Gilbert [148], the average costs of machines for metal printing can account for about 

60% of the total production cost related to AM over the machine lifetime. Besides, AM 

performed on site may require surface cleaning, smoothing or even heat treatment after 

fabrication. These possible post-processing steps usually require the use of certain 

traditional manufacturing technologies, which will add to the production cost as well as 

the total lead time of AM parts.  Therefore, the realization of a fully functional supply 

chain integrated with AM facilities requires comprehensive understanding and 

quantification of cost parameters associated with AM. 

Costs associated with AM can be categorized into two types: process-level costs 

associated with labor, materials, and machines; as well as system-level costs related to 

inventory, transportation, delivery, etc. Process- and system-level costs are also referred 

to as well- and ill-structured costs, respectively, by Young [162]. Most of the existing 

studies focus on the analysis of process-level costs, which are usually 

evaluated/calculated based on individual AM processes. For instance, some researchers 
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examined the costs associated with AM machines and materials ([122], [17], [8], [4], 

[83], [84]); while others considered the costs of energy consumption ([94], [98], [145]). 

However, very few researchers have investigated system-level costs, which depend on 

the supply chain configuration. Some studies provided qualitative, general discussion 

regarding the designs and management policies of AM supply chains ([95], [17], [60]). 

However, no studies, to the best of authors’ knowledge, have performed a quantitative 

investigation or analysis of the supply chain’s integrated cost with AM facilities, e.g., 

inventory cost, transportation cost, product lead time, etc. Cost reduction associated to 

these system-level cost parameters could be significant and result in tremendous benefits 

in the production of biomedical implants in ways that have not yet been fully realized 

([59], [65]). Therefore, quantifying the supply chain level costs of AM, benchmarked 

against its TM counterpart, is essential for truly assessing the feasibility of adopting AM 

supply chains for the biomedical implant application, identifying the system level barriers 

that hinder the adoption of AM technologies, and recommending the specific applications 

in which the adoption of AM technologies may be economically beneficial. 

Different from the existing studies that focus on process-level costs only, the 

objective of our study is to model how various cost parameters (e.g., inventory, 

transportation, demand, lead time, etc.) contribute to the system-level cost, and 

investigating the economic feasibility of using AM technologies to produce biomedical 

implants at the sites of hospitals. Due to the conflicting nature of cost parameters, 

existing conceptual cost analysis, as presented in the literature, may not be sufficient to 

characterize the overall manufacturing costs and recommend a more viable means of 

manufacturing. We propose a two-stage stochastic programming model to characterize 
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the impacts of various cost parameters on the overall manufacturing cost, which can be 

further used to provide a guideline of the buy-or-make decisions for decision makers. 

Specifically, the output of the stochastic cost model recommends the number of AM 

facilities to be built, which could be zero if AM is not economically feasible, as well as 

the amount of products to be ordered from either traditional suppliers or local AM 

centers, by minimizing the overall costs. It is worth noting that solving such a stochastic 

programming problem is usually NP-hard (non-deterministic polynomial-time hard), 

meaning that there are no known algorithms to solve the problem in polynomial time 

[90]. A sample averaging approximation (SAA) is implemented in an algorithm to obtain 

the corresponding solutions. Based on the developed cost model, we further identify the 

cost parameters that may significantly impact the economic feasibility of AM part 

production for biomedical applications, which is captured by the number of AM centers 

to be established in our example case study. 

The rest of this paper is organized as follows: Section 2.2 reviews the existing 

literature related to the cost analysis of AM technologies; Section 2.3 presents a 

manufacturing cost model based on stochastic programming that quantifies and compares 

the overall manufacturing costs of AM and TM technologies; Section 2.4 implements a 

SAA to obtain the number of AM facilities to be located and track the flow of products 

between manufacturing facilities and hospitals by solving the optimization model 

presented in Section 2.3; Section 2.5 applies this optimization model to the real-world 

case study of biomedical implants in the hospitals in the state of Mississippi; and Section 

2.6 provides concluding remarks and possible future work. 
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2.2 Literature review 

A large number of AM studies focus on the characterization of material properties 

and machine development ([135], [80], [161]), among which several papers have 

investigated the economic feasibility of applying AM for rapid tooling ([41], [72], [100]). 

Nevertheless, limited research efforts have been dedicated toward understanding the cost 

parameters of direct fabrication of metallic end-usable parts. In this section, we review 

papers related to the cost analysis of AM end products and categorize the related 

literature into two groups: process-level costs associated with labor, materials, and 

machines; and system-level costs related to inventory, transportation, delivery, etc. 

2.2.1 Literature related to process-level cost studies 

Several cost models have been developed to estimate the machine, material, and 

energy consumption costs of AM.  For example, Hopkinson and Dickens [63] developed 

an initial cost model based on Selective Laser Sintering (SLS), which estimates the 

production of identical parts. However, this model may not be used to estimate the cost of 

products that consist of a mixture of parts with different geometries. Ruffo et al. [130] 

added to this model the direct and indirect costs such as overhead costs and presented a 

saw-tooth like curve for the costs of the parts in dependency of their quantity, resulting 

from a significant increase of the processing time for new parts. Ruffo further advanced 

his model in Ruffo et al. [131], which allows for the calculation of production cost for the 

case of simultaneous production of different shapes in the same build job. A more 

comprehensive model was presented by Rickenbacher et al. [122], in which authors 

incorporate the costs of pre- and post-processing steps linked to a mixed build job.  
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Besides the machine, materials, and overhead costs, some researchers studied the 

energy consumption and environmental impacts of AM. Mognol et al. [94] investigated 

the optimal sets of AM process parameters (e.g., building orientation and patterns during 

fabrication) that minimize the electrical energy consumption of a build. Authors reported 

the absence of general guidelines for the minimization of electrical energy consumption, 

and suggested that each AM system needs to be tested individually to identify parameters 

that minimize energy consumption. Morrow et al. [98] studied the environmental 

emissions and energy consumption for the manufacture of molds and dies using Direct 

Metal Deposition, compared to TM technologies. It is shown that AM has great potential 

to reduce cost and environmental impact simultaneously. Kreiger and Pearce [75] 

performed a life cycle analysis on three plastic products to quantify the environmental 

impact of distributed manufacturing using 3D printers.  The authors compared the 

resulting energy and emissions with that from conventional large-scale production in 

low-labor cost countries, and found that distributed manufacturing using open-source 3D 

printers has a lower environmental impact than conventional manufacturing for the 

products considered.  Baumers et al. [17] estimated the process energy consumption and 

costs occurring during AM for Selective Laser Melting and reported that the average 

production costs, as well as energy consumption, increase as the production volume 

decreases. Le Bourhis et al. [82] proposed a predictive model for environmental 

assessment of AM which considers electric, fluid and raw material consumptions in a 

direct metal deposition process. The model evaluates many manufacturing strategies to 

produce a part, and selects the one that has the lowest environmental impact based on the 

amount of electricity, fluid and raw material consumed. Kellens et al. [68] proposed a 
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parametric model to estimate the environmental impact of selective laser sintering in the 

production phase considering energy and resource consumption as well as process 

emissions. Using the part’s build height and volume as parameters, the model is able to 

compare AM processes and conventional manufacturing and make manufacturing 

method decision from environmental point of view based on the amount of energy saved 

and amount of waste reduced.  

Wittbrodt et al. [159] studied the life-cycle economic analysis (LCEA) of self-

replicating rapid prototypers (RepRaps) technology for an average US household.  The 

authors found that using this distributed additive based manufacturing technology is 

already an economically attractive investment for the average US household that would 

save cost against commercial printing service. Pearce et al. [113] examined the 

capabilities and economic viability of open source 3-D printers and their use by local 

communities to create objects. The authors found that with improvements in local feed 

stock availability, size of printed parts, material properties, and the use of renewable 

energy systems, the technology has the potential to assist in driving sustainable 

development. Gebler et al. [54] provided a qualitative and quantitative assessment of 3-D 

printing from a global sustainability standpoint. The authors found that AM has the 

potential of inducing changes in labor structures and generating shifts towards more 

digital and localized supply chains. They showed that by 2025, the technology can reduce 

cost, total primary energy supply and CO2 emissions by up to USD 593 billion,  9.30 EJ 

and 525.5 Mt, respectively. An overview of the challenges and research opportunities 

related to the sustainability, especially energy consumption, of AM can be found in 

Sreenivasan et al. [145]. 
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2.2.2 Literature related to system-level cost studies 

Among the very few studies that have investigated system-level costs (e.g., 

inventory, transportation, lead time, etc.), some research groups have studied the potential 

impact of AM on the supply of spare parts in the commercial aircraft industry. 

Holmstrom et al. [60] provided qualitative analysis for the potential benefits of using AM 

in aircraft industry, by comparing the on-demand production of spare parts using both 

centralized AM, which requires few AM facilities, and distributed AM, which requires a 

larger number of AM facilities. Authors also took into account cost parameters such as 

materials and production, distribution and inventory obsolescence, and life-cycle. The 

benefits and advantages of both approaches were discussed. It is found that when the 

demand for spare parts is relatively low, centralized AM productions may be more 

beneficial to allocate the demand from multiple locations; however, requiring longer 

delivery time and high inventory cost. In situations, where the demand is relatively high 

and short lead time is essential, distributed AM production may be more advantageous. 

Similar findings were echoed by Khajavi et al. [70], in which the authors investigated the 

production of spare parts for the air-cooling ducts of the environment control system for 

the F-18 Super Hornet fighter jet. The authors reported in their case study that the 

expected total cost per year for centralized production using AM was $1 million, 

compared to $1.8 million for distributed production via AM. As a direct extension of 

Khajavi et al. [70], Mohajeri et al. [95] performed a conceptual cost-benefit analysis on 

various AM supply chain strategies in a spare parts industries, and proposed several 

supply chain management strategies that could potentially mitigate the obstacles of 

distributed AM implementation and reduce the relative operation cost, including building 
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hubs of AM production, postponing production, internet-based customization, and 

distribution.  

Thanks to the existing research efforts, the potential economic benefits of AM 

technologies, especially cost saving related to supply chains, have begun to be realized. 

To further understand how AM technologies may reshape the modern supply chain 

networks as well as the corresponding cost benefits, mathematical models are needed to 

quantify the benefits and shortcomings of AM technologies, compared with TM 

approaches. However, to the best of our knowledge, all of the existing studies for AM-

integrated supply chain are only presented at the ideation and conceptual level due to the 

lack of relevant data. We collect real-world data for the use of biomedical implants from 

major hospitals in the state of Mississippi and public databases, and propose a stochastic 

cost model to investigate the economic feasibility of manufacturing biomedical implants 

at the sites of hospitals.  The detailed stochastic programming model is presented in 

Section 2.3. 
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Table 2.1 Acronyms and mathematical notations used in the optimization model 

Notations & 
Acronyms 

Explanation 

𝑇𝑀𝑖 𝑖𝑡ℎ traditional manufacturing facility 
𝐴𝑀𝑗 𝑗𝑡ℎ additive manufacturing facility 
𝐻𝐿𝑘 𝑘𝑡ℎ hospital in Mississippi 
𝑃𝑇𝑝 𝑝𝑡ℎ product type 
Sets  
𝑃 set of  products (e.g., hip implants, dental braces, stents)       
𝐼 set of  TM facilities 
𝐽 set of  potential AM facilities 
𝐾 set of  hospitals 
𝐿 set of  AM center capacities  
Ω probability space  of  demand scenarios  
Parameters  
ℓ𝑗 fixed cost to locate an AM facility with capacity ℓ ∈ 𝐿 at  location  𝑗 ∈ 𝐽 
𝛽𝑝𝑗 unit production cost of producing product 𝑃𝑇𝑝 at 𝐴𝑀𝑗 
𝛽𝑝𝑖 unit production cost of producing product 𝑃𝑇𝑝 at 𝑇𝑀𝑖 
𝑐𝑝𝑗𝑘 unit transportation cost of transporting product 𝑃𝑇𝑝  from 𝐴𝑀𝑗to hospital 𝐻𝐿𝑘 
𝑐𝑝𝑖𝑘 unit transportation cost of transporting product 𝑃𝑇𝑝  from T𝑀𝑖to hospital 𝐻𝐿𝑘 
𝛾𝑝𝑘 monetary value per unit of lead-time of product 𝑃𝑇𝑝 at hospital 𝐻𝐿𝑘 
𝑡𝑝𝑗𝑘   lead time of product 𝑃𝑇𝑝 between  𝐴𝑀𝑗and hospital 𝐻𝐿𝑘 
𝑡𝑝𝑗𝑘 lead time of product 𝑃𝑇𝑝 between 𝑇𝑀𝑖and hospital 𝐻𝐿𝑘 
ℎ𝑝𝑗 unit inventory holding cost for product 𝑃𝑇𝑝at 𝐴𝑀𝑗 
ℎ𝑝𝑖 unit inventory holding cost for product 𝑃𝑇𝑝at 𝑇𝑀𝑖 
𝑓𝑝𝑗𝑘 service frequency for product 𝑃𝑇𝑝 between 𝐴𝑀𝑗and hospital 𝐻𝐿𝑘 
𝑓𝑝𝑖𝑘 service frequency for product 𝑃𝑇𝑝 between 𝑇𝑀𝑖and hospital 𝐻𝐿𝑘 
𝑑𝑝𝑘 deterministic demand of product 𝑃𝑇𝑝at hospital 𝐻𝐿𝑘 
𝜔 realization of demand scenarios 
 probability of scenario      
𝑑𝑝𝑘𝜔 demand of product 𝑃𝑇𝑝 at hospital 𝐻𝐿𝑘under scenario     
𝑠𝑝ℓ𝑗 supply capacity of product 𝑃𝑇𝑝at 𝐴𝑀𝑗of capacity level  ℓ ∈ 𝐿 
𝑠𝑝𝑖 supply capacity of 𝑇𝑀𝑖 of product  𝑃𝑇𝑝 
Variables  
𝑌ℓ𝑗  binary variable that takes the value 1 if an AM facility of size ℓ is established at 

location 𝐴𝑀𝑗,  0  otherwise 
𝑋𝑝𝑗𝑘 production volume of 𝑃𝑇𝑝 from 𝐴𝑀𝑗 to 𝐻𝐿𝑘 with deterministic demand 
𝑋𝑝𝑖𝑘 production volume of 𝑃𝑇𝑝 from 𝑇𝑀𝑖 to 𝐻𝐿𝑘 with deterministic demand 
𝑋𝑝𝑗𝑘𝜔 production volume of 𝑃𝑇𝑝 from 𝐴𝑀𝑗 to 𝐻𝐿𝑘  under demand scenario    
𝑋𝑝𝑖𝑘𝜔 production volume of 𝑃𝑇𝑝 from T𝑀𝑖 to 𝐻𝐿𝑘  under demand scenario    
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2.3 Cost models with deterministic and stochastic demands  

We propose a stochastic programming model to characterize the costs of 

biomedical implants from AM facilities and TM suppliers. Hospitals may choose to order 

products from TM suppliers or establish an AM facility, which may be shared by nearby 

hospitals and fabricates biomedical implants at the sites of hospitals. In what follows, we 

begin with a deterministic programming model to characterize the total costs of 

production using either TM or AM with deterministic demand in Section 2.3.1, which is 

further generalized in Section 2.3.2 to account for uncertain and dynamic demands. 

2.3.1 Cost model with deterministic demand 

The proposed supply chain network consists of hospitals, TM facilities (current 

suppliers), and possible AM facilities. We denote by 𝐴𝑀𝑗 the 𝑗𝑡ℎ location of possible AM 

facilities; 𝑇𝑀𝑖 the location of the 𝑖𝑡ℎ TM facility; and 𝐻𝐿𝑘 the location of the 𝑘𝑡ℎ 

hospital. Here, 𝐽, 𝐼, and 𝐾 represent the set of the indices of AM facilities, TM facilities, 

and hospitals, respectively, i.e., 𝑗 ∈ 𝐽, 𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾. Each manufacturing facility may 

produce multiple types of products, the 𝑝𝑡ℎ type of which is denoted by 𝑃𝑇𝑝. The 

mathematical optimization model for the total costs can be expressed as below. The 

notation is summarized in Table 2.1. 

  

min
𝒀,𝑿

∑ ∑ Ψℓ𝑗𝑌ℓ𝑗𝑗∈𝐽ℓ∈𝐿 + ∑ (𝛽𝑝𝑗 + 𝑐𝑝𝑗𝑘 + 𝛾𝑝𝑘𝑡𝑝𝑗𝑘 +
ℎ𝑝𝑗

2𝑓𝑝𝑗𝑘
)𝑘∈𝐾,𝑗∈𝐽,𝑝∈𝑃 𝑋𝑝𝑗𝑘 +

∑ (𝛽𝑝𝑖 + 𝑐𝑝𝑖𝑘 + 𝛾𝑝𝑘𝑡𝑝𝑖𝑘 +
ℎ𝑝𝑖

2𝑓𝑝𝑖𝑘
)𝑘∈𝐾,𝑖∈𝐼,𝑝∈𝑃 𝑋𝑝𝑖𝑘 (2.1) 

in which, we focus on the following two groups of decision variables: 
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i.  𝑌ℓ𝑗, binary variable that takes value 1 if an AM facility of capacity level ℓ 

is to be built at location 𝐴𝑀𝑗; 0 otherwise. If 𝑌ℓ𝑗 = 0 for all possible 

locations 𝐴𝑀𝑗 , no AM facility will be built, and all products are to be 

purchased from TM service providers. On the other hand, if 𝑌ℓ𝑗 ≠ 0, for a 

certain combination of ℓ and 𝑗 values, it suggests to build an AM facility 

of capacity level ℓ at 𝐴𝑀𝑗. 

ii. 𝑋𝑝𝑗𝑘 and 𝑋𝑝𝑖𝑘, are the volume of product flow for product 𝑃𝑇𝑝 from 

suppliers 𝐴𝑀𝑗  and 𝑇𝑀𝑖 to hospital 𝐻𝐿𝑘, respectively, with deterministic 

demand. Given product 𝑃𝑇𝑝 and hospital 𝐻𝐿𝑘, if 𝑋𝑝𝑖𝑘 = 0 for all TM 

locations, this means that hospital 𝐻𝐿𝑘 does not order from TM facilities. 

In other words, all products are manufactured using AM facilities. 

Similarly, 𝑋𝑝𝑗𝑘 = 0 for all AM locations, hospital 𝐻𝐿𝑘 only order from 

TM facilities. 

These two groups of decision variables suggest (a) whether AM facilities should 

be built at a certain location, (b) what types of products to be produced at AM facilities, 

and (c) which hospitals will use AM for biomedical part production. Values of these 

decision variables are chosen by minimizing the overall costs, including inventory, 

transportation, production, and initial investment of AM machines. We also take into 

account of potential costs/penalty resulting from product lead time because short 

response time is very essential to patients waiting for implants. The detailed cost 

parameters are summarized below: 
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i. We denote denote by Ψℓ𝑗 the initial investment of AM facilities with 

capacity level ℓ at location 𝑀𝑗 . The total initial investment across all 

possible AM locations is ∑ ∑ Ψℓ𝑗𝑌ℓ𝑗𝑗∈𝐽ℓ∈𝐿 . Ψℓ𝑗 mainly consists of the cost 

of AM machines. For example, in 2015 the market price of a Selective 

Laser Melting (SLM) system used for the production of biomedical 

implants ranges from USD400,000 to USD1,000,000, depending on the 

original equipment manufacturer, machine dimensions, effective build 

volume of the machine and its operational build speed. This data is from 

quotations received by the Department of Mechanical Engineering of the 

Mississippi State University on the price of SLM machines. Such a range 

in price due to similar factors is in line with the data from [63], [83], [7], 

[14] and [17]. We assume an average price of $500,000 which is 

reasonable for the price of the machine that can produce the identified bio-

medical implants. A similar example can be found in [14], in which the 

authors recorded an annual maintenance and investment cost of 

$110,320/year over 10 years for a similar machine with a purchase price 

of $700,000. We use the equivalent annual cost (EAC) model to calculate 

the average annualized investment and maintenance cost. There is a wide 

range of depreciation methods in literature. The simplest method is the 

straight line method which calculates the annual depreciation cost by 

dividing the machine purchase price by its expected life. The more 

complex methods such as the accelerated depreciation, equivalent annual 

cost (EAC) and remaining value percentage (RVP) methods, use models 
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that take into account factors like machine age, salvage value, size, usage, 

manufacturer, condition, interest rate and region of deployment to 

calculate annual depreciation cost. Jones and Smith [67] provided an 

overview and historical perspective of the EAC. The detailed discussion of 

multiple variations of RVP models can be found in Cross and Perry [36],  

Hansen and Lee [57], Unterschultz and Mumey [153], and Dumler et al. 

[43]. We calculated the average annualized investment and maintenance 

cost based on a life-span of ten years, resulting in an average annualized 

investment and maintenance cost of $75,000 for a small capacity AM 

center. It is worth noting that for such a fast evolving technology, a faster 

replacement policy may be implemented (e.g., 5 year replacement), which 

will result in a higher annualized investment. The annualized investment 

and maintenance cost for medium and large capacity AM facilities could 

be $135,000 and $182,000, respectively.  
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ii. 𝛽𝑝𝑗 and 𝛽𝑝𝑖 represent the unit production cost of product 𝑃𝑇𝑝 from 𝐴𝑀𝑗  

and 𝑇𝑀𝑖, respectively. This term includes material, labor, energy 

consumption, pre- and post-processing costs, etc. The total production cost 

of product 𝑃𝑇𝑝 for hospital 𝐻𝐿𝑘 from all manufacturing facilities is 

represented by ∑ 𝛽𝑝𝑗𝑋𝑝𝑗𝑘𝑗∈𝐽 + ∑ 𝛽𝑝𝑖𝑋𝑝𝑖𝑘𝑖∈𝐼  . The exact values for the AM 

and TM unit production cost of biomedical implants are usually 

unavailable due to proprietary nature of the data. We estimate 𝛽𝑝𝑖 using 

the unit cost of implants obtained from hospital database, as shown in 

Table 2.2; for AM, we let 𝛽𝑝𝑗 represent the combination for costs of 

materials, energy consumption, and labor. To identify the conditions in 

which AM production of implants may be economically beneficial, we 

investigate various ratios of 
𝛽𝑝𝑗

𝛽𝑝𝑖
, referred to as ATR hereafter, and examine 

its impacts on the decision variables 𝑌ℓ𝑗, 𝑋𝑝𝑖𝑘, and 𝑋𝑝𝑗𝑘. 
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iii. 𝑐𝑝𝑗𝑘 and 𝑐𝑝𝑖𝑘 represent the unit transportation cost of delivering product 

𝑃𝑇𝑝 from 𝐴𝑀𝑗 and 𝑇𝑀𝑖 to hospital 𝐻𝐿𝑘, respectively. The transportation 

cost depends on the characteristics of product, such as shape, weight, 

fragility, etc., as well as the distance between the manufacturing facility 

and hospital. TM facilities are usually distant from hospitals. Actually, as 

shown in Figure 2.1, all TM facilities are outside of state of Mississippi. 

Also, a safety stock of biomedical implants is kept at the warehouse for 

TM. These parts can be ordered when they are needed in implant surgeries 

and usually require a short delivery time (e.g., overnight) to ensure fast 

service. Thus, the unit transportation cost from TM facilities 𝑐𝑝𝑖𝑘 tends to 

be much higher than 𝑐𝑝𝑗𝑘, the counterpart from AM facilities. 
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iv. ℎ𝑝𝑗 and ℎ𝑝𝑖 represent the daily average unit inventory holding cost for 

product 𝑃𝑇𝑝 at 𝐴𝑀𝑗  and 𝑇𝑀𝑖, respectively. TM requires a long time to 

produce parts on demand, which results in a high level of inventory of 

infrequently ordered parts. These unused products tie up capital and 

resources in the forms of space, warehouse, security, land, and rent, utility 

costs, insurance, taxes , respectively [148]. On the other hand, on demand 

production of these products using AM may reduce or even eliminate the 

need for maintaining the high inventory level and associated costs. The 

TM production of several types of medical implants requires batch 

production. As pointed out in the case study by Trotman [150], machining 

partners in TM of orthopedic implants using CNC machines require a 

minimum of two month’s supply of stock at all times. In this case, the 

warehouse is necessary for TM production. On the other hand, since AM’s 

operations generally stay closer to end-product point of use, AM is able to 

achieve a leaner and more cost-effective supply chain that relies less on 

safety stock and requires less inventory holding costs [143]. This is mainly 

because AM does not require multi-steps production operations or any 

additional tooling and minimizes the need for inventory. This leads to 

reduced costs and lead times, especially for small volumes and complex 

parts as in orthopedics. Similar evidence can be found in a report 

published by a medical manufacturing company, Conformis [32], which 

indicates that TM production of medical implants requires manufacturers 

to commit more money on the overhead for inventory and warehousing of 
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adequate levels of a range of fixed sizes of implants. As a summary, 

avoiding cost in excess inventory is one way that AM achieves a superior 

demand-based manufacturing advantage over TM in the production of 

metallic medical implants.  As pointed out in a NIST report [105], when 

only 50 to 100 of a particular implant are needed in a given year and the 

minimum order from a financial feasibility standpoint is 500, this creates a 

huge inefficiency.  AM offers the ability to make only the number that is 

needed, and thus helps to achieve a huge reduction in inventory holding 

cost. AM may significantly bring down the inventory level, which frees up 

capital and reduces expenses. Therefore, we assume that holding costs at 

AM facilities is much lower than TM facilities, i.e., ℎ𝑝𝑗 ≪ ℎ𝑝𝑖. 

v. 𝑓𝑝𝑗𝑘 and 𝑓𝑝𝑖𝑘 represent the ordering frequency of product 𝑃𝑇𝑝 by 𝐻𝐿𝑘 

from 𝐴𝑀𝑗 and 𝑇𝑀𝑖, respectively. Thus, the average inventory hold cost 

during the time horizon of interest is 
ℎ𝑝𝑗

2𝑓𝑝𝑗𝑘
,  for product 𝑃𝑇𝑝 between 𝐴𝑀𝑗  

and hospital 𝐻𝐿𝑘. Similarly, the average inventory hold cost between 𝑇𝑀𝑖 

and hospital 𝐻𝐿𝑘 is ℎ𝑝𝑖

2𝑓𝑝𝑖𝑘
. 
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vi. 𝑡𝑝𝑗𝑘 and 𝑡𝑝𝑖𝑘 represent the product lead/waiting time required for product 

𝑃𝑇𝑝 from 𝐴𝑀𝑗 and 𝑇𝑀𝑖 to hospital 𝐻𝐿𝑘, respectively. Even though AM 

products require some post-processing time, in general, AM may 

significantly shorten lead time when compared to TM [59]. Since post-

treatment varies significantly depending on the products, we do not model 

it explicitly. Instead, we incorporate it into the production lead time. In the 

biomedical/dental applications, a specific type of biomedical implant is 

infrequently ordered; however, when one is ordered, it is needed quite 

rapidly to ensure patient health and satisfaction. The TM orthopedic 

implant may need two to three months of lead time, including interpreting 

the CT scans, making rough prototypes of the component in clay or wax, 

shipping it to the surgeon, and awaiting approval or input [148] . In 

contrast, AM has the potential to rapidly manufacture parts on demand and 

may considerably reduce the waiting time to several weeks. Hence, we 

assume that 𝑡𝑝𝑗𝑘 ≪ 𝑡𝑝𝑖𝑘. For healthcare applications, the waiting time may 

be very crucial to the health of patients; and thus excessive waiting time 

incurs additional procedures and extra need of medical service. We model 

such penalty using a variable 𝛾𝑝𝑘 that represents the monetary value per 

unit of waiting time of product 𝑃𝑇𝑝 at hospital 𝐻𝐿𝑘. We assume that the 

monetary value per unit of lead-time of a biomedical implant is 10% of its 

market price. Hence, the total penalty for product type 𝑃𝑇𝑝 at hospital 𝐻𝐿𝑘 
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is 𝛾𝑝𝑘𝑡𝑝𝑗𝑘 and 𝛾𝑝𝑘𝑡𝑝𝑖𝑘 for products from a manufacturing facility 𝐴𝑀𝑗 and 

𝑇𝑀𝑖. 
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The solution to the optimization model, described by Equation (2.1), is subject to 

multiple constraints below: 

1. The demand for each product type should be met for any hospital, 𝐻𝐿𝑘, i.e., 

 ∑ 𝑋𝑝𝑗𝑘 +  ∑ 𝑋𝑝𝑖𝑘 ≥ 𝑑𝑝𝑘𝑖∈𝐼𝑗∈𝐽  ∀𝑝 ∈ 𝑃, 𝑘 ∈ 𝐾               (2.2) 

where 𝑑𝑝𝑘 represents the deterministic demand for product 𝑃𝑇𝑝 from hospital 

𝐻𝐿𝑘. We estimate the average annual demand of the biomedical implants in each 

MS county based on the average annual national demand of the implant. We also 

assume that patients from counties that do not have the capability to perform a 

certain procedure use hospitals from nearby counties. In other words, the demand 

of implants from counties that cannot perform a certain procedure is distributed to 

nearby counties. 

2. The product volume of product 𝑃𝑇𝑝, manufactured from any AM facility, 

should not exceed its total capacity of production, i.e., 

 ∑ 𝑋𝑝𝑗𝑘 ≤ ∑ 𝑠𝑝ℓ𝑗𝑌ℓ𝑗ℓ∈𝐿𝑘∈𝐾 , ∀𝑝 ∈ 𝑃, 𝑗 ∈ 𝐽   (2.3) 

where 𝑠𝑝ℓ𝑗 represents the supply capacity of product 𝑃𝑇𝑝 at 𝐴𝑀𝑗 of capacity 

level ℓ. 

3. Similar to Constraint (2.2), the production volume from TM facilities is also 

limited by their capacity, i.e., 

 ∑ 𝑋𝑝𝑖𝑘 ≤ 𝑠𝑝𝑖𝑘∈𝐾  ∀𝑝 ∈ 𝑃, 𝑖 ∈ 𝐼   (2.4) 
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where 𝑠𝑝𝑖 represents the supply capacity of product type 𝑝 at TM facility 𝑖. 

4. For each location, a maximum of one AM facility can be built. 

 ∑ 𝑌ℓ𝑗ℓ ≤ 1. ∀𝑗 ∈ 𝐽   (2.5) 

5. Decision variables of AM facility location are binary 

 𝑌ℓ𝑗 ∈ {0, 1} ∀𝑙 ∈ 𝐿, 𝑗 ∈ 𝐽   (2.6) 

6. Production volumes are non-negative 

 𝑋𝑝𝑗𝑘 ≥ 0, 𝑋𝑝𝑖𝑘 ≥ 0. ∀𝑝 ∈ 𝑃, 𝑗 ∈ 𝐽, 𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾   (2.7) 

 

The cost model described by Equations (2.1) – (2.7) characterize the overall costs 

of a product, including machine/system investment, production, transportation, inventory, 

and waiting penalty when the product demand in deterministic and known. However, in 

many situations, the product demand may be unknown or varying over time. For 

example, an increase in the aging population may potentially increase the number of 

cardiovascular and orthopedic cases that require the use of more stents and knee and hip 

implants for treatment. Conversely, it is also possible for the demand of some biomedical 

implants to decrease when people start to live healthier lifestyles that to some extent may 

reduce the need of surgeries. In the next subsection, we extend the deterministic cost 

model to account for the scenarios, in which demand may be unknown or vary over time. 

This situation can be found in many real-world medical applications. 

2.3.2 Stochastic model for uncertain demand 

We further extend the cost model with deterministic demand as described in 

Section 2.3.1 to account for the uncertainty in the demand variable 𝑑𝑝𝑘. The optimization 
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model in Equation (2.1) can be formulated as a two-stage stochastic program, where the 

first-stage decisions correspond to the location and capacity selection of the AM centers 

and the second stage decisions correspond to the optimal routing of the products 

considering a particular realization. We let Ω represent the probability space that consists 

of all possible scenarios of demand, and 𝜔 be a sample/realization of scenarios, the 

probability of which is 𝜌𝜔. In this context, for each product type 𝑃𝑇𝑝, 𝑑𝑝𝑘𝜔 is a random 

variable representing the future demand at hospital 𝐻𝐿𝑘, and 𝑋𝑝𝑗𝑘𝜔 the corresponding 

product flow under scenario 𝜔 ∈ Ω.  On the other hand, 𝑌ℓ𝑗, are long-term decisions that 

do not involve uncertainty since once AM centers are established the infrastructure does 

not change over time. As a result, we use the same set of decision variables 𝑌ℓ𝑗 as the 

deterministic demand model for the locations and size of AM facilities. Therefore, the 

corresponding two-stage stochastic programming model can be formulated as follows: 

  

min
𝑌,𝑋

∑ ∑ Ψℓ𝑗𝑌ℓ𝑗𝑗∈𝐽ℓ∈𝐿 + ∑ 𝜌𝜔𝐸(𝑌, 𝜔)𝜔∈Ω   (2.8) 

with 𝐸(𝑌, 𝜔) as the solution of the following second-stage problem: 

  

𝐸(𝑌, 𝜔) = min
𝒀,𝑿

 ∑ (𝛽𝑝𝑗 + 𝑐𝑝𝑗𝑘 + 𝛾𝑝𝑘𝑡𝑝𝑗𝑘 +
ℎ𝑝𝑗

2𝑝𝑗𝑘
)𝑘∈𝐾,𝑗∈𝐽,𝑝∈𝑃 𝑋𝑝𝑗𝑘𝜔 +  ∑ (𝛽𝑝𝑖 +𝑘∈𝐾,𝑖∈𝐼,𝑝∈𝑃

𝑐𝑝𝑖𝑘 + 𝛾𝑝𝑘𝑡𝑝𝑖𝑘 +
ℎ𝑝𝑖

2𝑝𝑖𝑘
) 𝑋𝑝𝑖𝑘𝜔 (2.9) 

subject to the constraints below, which are similar to constraints in the model of 

deterministic demand, except that 𝑋𝑝𝑗𝑘𝜔 and 𝑑𝑝𝑘𝜔 are defined for each possible 

realization of scenario 𝜔. 
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 ∑ 𝑌ℓ𝑗𝑙∈𝐿 ≤ 1, ∀𝑗 ∈ 𝐽   (2.10) 

 ∑ 𝑋𝑝𝑗𝑘𝜔𝑗∈𝐽 +  ∑ 𝑋𝑝𝑖𝑘𝜔𝑖∈𝐼 ≥ 𝑑𝑝𝑘𝜔 ∀𝑝 ∈ 𝑃, 𝑘 ∈ 𝐾, 𝜔 ∈ Ω        (2.11) 

 ∑ 𝑋𝑝𝑗𝑘𝜔𝑘∈𝐾 ≤ ∑ 𝑠𝑝ℓ𝑗𝑌ℓ𝑗𝑙∈𝐿  ∀𝑝 ∈ 𝑃, 𝑗 ∈ 𝐽, 𝜔 ∈ Ω   (2.12) 

 ∑ 𝑋𝑝𝑖𝑘𝜔𝑘∈𝐾 ≤ 𝑠𝑝𝑖 ∀𝑝 ∈ 𝑃, 𝑖 ∈ 𝐼, 𝜔 ∈ Ω   (2.13) 

 𝑌ℓ𝑗 ∈ {0.1}  ∀𝑙 ∈ 𝐿, 𝑗 ∈ 𝐽   (2.14) 

 𝑋𝑝𝑗𝑘𝜔 ≥ 0, 𝑋𝑝𝑖𝑘𝜔 ≥ 0 ∀𝑝 ∈ 𝑃, 𝑗 ∈ 𝐽, 𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾, 𝜔 ∈ Ω     (2.15) 

This stochastic programming model is a non-deterministic polynomial-time hard (NP-

hard) problem [90]. Hence, it is extremely challenging and expensive to solve this model 

directly. To address this issue, we propose in the next section a customized solution 

approach to efficiently solve this model. 

2.4 Sample average approximation 

We use the sample average approximation (SAA) to find solutions to the two-

stage stochastic programming problem as described by Equations (2.8) – (2.15). We also 

demonstrate the computational advantage of implementing SAA over using a general-

purpose commercial solver in Section 2.4.1. SAA is a sampling strategy that seeks to 

quickly compute high quality solutions to large-scale stochastic programming problems 

with a large number of scenarios. The idea of the SAA algorithm is to generate random 

sample 𝜔 and approximate the expected value function ∑ 𝜌𝜔𝐸(𝑌, 𝜔)𝜔∈Ω  by the 

corresponding sample average function. The SAA algorithm is renowned not only for 

providing high quality feasible solutions but also for providing a statistical estimation of 

their optimality gap. SAA algorithm was applied previously to solve large scale supply 

chain related problems ([29], [136]). Kleywegt et al. [73] conducted extensive analysis to 
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prove the convergence properties of the SAA algorithm. Other studies such as Mak et al. 

[91], Norkin et al. [106], Norkin et al. [107] evaluated the statistical performance of the 

SAA algorithm. 

2.4.1 Steps of SAA 

The main difficulty in solving the stochastic problem (2.8) – (2.15) lies in 

computing the expectation of the linear programming value function 𝐸(𝑌,). This is 

extremely difficult, if not impossible, for continuous distributions as they involve 

multiple integrals. For discrete distributions, it involves solving a large number of linear 

programs, one for each scenario of the uncertain parameter realization. The SAA method 

provides a means for dealing with this problem by approximating the expectation 𝐸(𝑌,) 

using the sample average function 1

|𝑁|
∑ 𝐸(𝑌, 𝑛)𝑁

𝑛=1  with a random sample of |𝑁| 

realizations of the random scenario parameter  . The problem. (2.8) – (2.15) is then 

approximated by the following SAA problem: 

  

min𝒀,𝑿 ∑ ∑ 𝛹ℓ𝑗𝑌ℓ𝑗𝑗∈𝐽ℓ∈𝐿 +  
1

|𝑁|
∑ ∑ (𝛽𝑝𝑗 + 𝑐𝑝𝑗𝑘 + 𝛾𝑝𝑘𝑡𝑝𝑗𝑘 +

ℎ𝑝𝑗

2𝑝𝑗𝑘
)𝑘∈𝐾,𝑗∈𝐽,𝑝∈𝑃 𝑋𝑝𝑗𝑘𝑛𝑛∈𝑁 +

 
1

|𝑁|
∑ ∑ (𝛽𝑝𝑖 + 𝑐𝑝𝑖𝑘 + 𝛾𝑝𝑘𝑡𝑝𝑖𝑘 +

ℎ𝑝𝑖

2𝑝𝑖𝑘
)𝑘∈𝐾,𝑖∈𝐼,𝑝∈𝑃 𝑋𝑝𝑖𝑘𝑛𝑛∈𝑁  (2.16) 

 Kleywegt et al. [73] showed that the optimal solution of problem. (2.16) 

eventually converges with probability of one to the solution obtained from the original 

problem. (2.8) – (2.15) as the size of |𝑁| increases. Below, we discuss the detailed steps 

of the SAA algorithm:  
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Step 1 (Sampling): Generate 𝑀 independent demand sample scenarios each of size 𝑁. 

Denote the 𝑚𝑡ℎ demand sample scenario by {𝒅1
𝑚, 𝒅2

𝑚, … , 𝒅|𝑁|
𝑚 } for 𝑚 = 1, … , 𝑀. Here, 

𝒅𝑛
𝑚 represents the set of demand realizations in each scenario, i.e., 𝒅𝑛

𝑚 =

{𝑑𝑝𝑘𝑛
𝑚 , ∀𝑝 𝜖 𝑃, 𝑘 𝜖 𝐾}, for 𝑚 = 1, … , 𝑀 and 𝑛 = 1, … , |𝑁|.  We solve the SAA problem as 

expressed in Equation (2.16) subject to constraints (2.17)-(2.22) below: 

 ∑ 𝑌ℓ𝑗𝑙∈𝐿 ≤ 1, ∀𝑗 ∈ 𝐽   (2.17) 

 ∑ 𝑋𝑝𝑗𝑘𝑛𝑗∈𝐽 +  ∑ 𝑋𝑝𝑖𝑘𝑛𝑖∈𝐼 ≥ 𝑑𝑝𝑘𝑛 ∀𝑝 ∈ 𝑃, 𝑘 ∈ 𝐾, 𝑛 ∈ 𝑁   (2.18) 

 ∑ 𝑋𝑝𝑗𝑘𝑛𝑘∈𝐾 ≤ ∑ 𝑠𝑝ℓ𝑗𝑌ℓ𝑗ℓ∈𝐿  ∀𝑝 ∈ 𝑃, 𝑗 ∈ 𝐽, 𝑛 ∈ 𝑁   (2.19) 

 ∑ 𝑋𝑝𝑖𝑘𝑛𝑘∈𝐾 ≤ 𝑠𝑝𝑖 ∀𝑝 ∈ 𝑃, 𝑖 ∈ 𝐼, 𝑛 ∈ 𝑁   (2.20) 

 𝑌ℓ𝑗 ∈ {0, 1} ∀𝑙 ∈ 𝐿, 𝑗 ∈ 𝐽   (2.21) 

 𝑋𝑝𝑗𝑘𝑛 ≥ 0, 𝑋𝑝𝑖𝑘𝑛 ≥ 0 ∀𝑝 ∈ 𝑃, 𝑗 ∈ 𝐽, 𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾, 𝑛 ∈ 𝑁   (2.22) 

Denote by 𝑣𝑁𝑚  and 𝒀̂𝑁𝑚  the objective value and optimal solution of the 𝑚𝑡ℎ problem, 

respectively. 

Step 2 (Estimating the lower bound):  Compute the average of all optimal objective 

function values from the SAA problems, 𝜇𝑀
𝑁  and its variance 𝜎

𝜇𝑀
𝑁

2 : 

𝜇𝑀
𝑁 =  

1

|𝑀|
∑ 𝑣𝑁𝑚

𝑚∈𝑀

 

𝜎
𝜇𝑀

𝑁
2 =  

1

(|𝑀| − 1)|𝑀|
∑ 𝑣𝑁𝑚 −

𝑚∈𝑀

𝜇𝑀
𝑁  
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The average objective function value 𝜇𝑀
𝑁  provides a valid statistical lower bound on the 

optimal objective function value of the original problem (2.8) – (2.15).  

Step 3 (Estimating the upper bound): Choose a feasible solution 𝒀̃ from the above 

computed solutions 𝒀̂𝑁𝑚 . We fix 𝒀̃ and estimate the optimal solution of the original 

problem (2.8) – (2.15) as follows: 

Min𝑿𝑣𝑁′(𝒀̃ ) ≔ ∑ ∑ 𝛹ℓ𝑗𝑌̃ℓ𝑗

𝑗∈𝐽ℓ∈𝐿

+ 

1

|𝑁′|
∑  ∑ (𝛽𝑝𝑗 + 𝑐𝑝𝑗𝑘 + 𝛾𝑝𝑘𝑡𝑝𝑗𝑘 +

ℎ𝑝𝑗

2𝑓𝑝𝑗𝑘
)

𝑘∈𝐾,𝑗∈𝐽,𝑝∈𝑃

𝑋𝑝𝑗𝑘𝑛

𝑛∈𝑁

+ 

 
1

|𝑁′|
∑  ∑ (𝛽𝑝𝑖 + 𝑐𝑝𝑖𝑘 + 𝛾𝑝𝑘𝑡𝑝𝑖𝑘 +

ℎ𝑝𝑖

2𝑓𝑝𝑖𝑘
)

𝑘∈𝐾,𝑖∈𝐼,𝑝∈𝑃

𝑋𝑝𝑖𝑘𝑛

𝑛∈𝑁

 

where 𝑁′ is another set of samples generated independently for the demand scenarios. 

Typically, the sample size |𝑁′| is chosen to be much larger than the sample size |𝑁| used 

in the SAA problems. Note that 𝑣𝑁′(𝒀̃ ) gives an estimate on the upper bound of the 

original problem defined in (2.8) – (2.15). We now estimate the variance of 𝑣𝑁′(𝒀̃ ) as 

follows:  
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𝜎𝜇𝑁′
2 (𝒀̃ ) =  

1

(|𝑁′| − 1)|𝑁′|
∑ {∑ ∑ 𝛹ℓ𝑗𝑌̃ℓ𝑗

𝑗∈𝐽ℓ∈𝐿𝑛∈𝑁′

+  
1

|𝑁′|
∑ ∑ ∑ (𝛽𝑝𝑗 + 𝑐𝑝𝑗𝑘 + 𝛾𝑝𝑘𝑡𝑝𝑗𝑘 +

ℎ𝑝𝑗

2𝑓𝑝𝑗𝑘
)

𝑘∈𝐾𝑗∈𝐽𝑝∈𝑃

𝑋𝑝𝑗𝑘𝑛

+
1

|𝑁′|
∑ ∑ ∑ (𝛽𝑝𝑖 + 𝑐𝑝𝑖𝑘 + 𝛾𝑝𝑘𝑡𝑝𝑖𝑘 +

ℎ𝑝𝑖

2𝑓𝑝𝑖𝑘
)

𝑘∈𝐾𝑖∈𝐼𝑝∈𝑃

𝑋𝑝𝑖𝑘𝑛 −  𝑣𝑁′(𝒀̃ )}

2

 

Step 4 (Estimating the optimality gap): Compute the optimality gap using the lower 

bound and upper bound estimates from Steps 2 and 3: 

𝑔𝑎𝑝𝑁,𝑀,𝑁′(𝒀̃ ) =  𝑣𝑁′(𝒀̃ ) − 𝜇𝑀
𝑁  

If 𝑔𝑎𝑝𝑁,𝑀,𝑁′(𝒀̃ ) < 𝜖, stop. The decision variables for the optimal solution are 𝒀̃. A 

common choice for the error threshold is 0.005𝑣𝑁′(𝒀̃ ). Otherwise go to Step 1. 

The most computationally expensive part of the SAA algorithm (described in Step 1) 

is to solve the two-stage stochastic integer programming problem (2.18) – (2.22) 

involving |𝑁| scenarios. Cutting plane algorithms such as Benders decomposition by 

Benders [20] and  dual decomposition by Rockafellar and Wets [124] can also be used to 

solve this class of problems. However, in our study since the size of |𝐿| and |𝐽| is 

relatively small, we use CPLEX, a mathematical optimization software provided by IBM 

to solve linear and integer programs, to solve this part of the SAA algorithm. 
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2.4.2 Computational efficiency of the proposed algorithms 

We study the computational efficiency of the proposed model and algorithm in 

this subsection. The dimensions of the deterministic equivalent problem are presented in 

Table 2.3 

Table 2.3 Problem size of the deterministic equivalent of the model 

|P| |I| |J| |K| |L| No. of Binary 
Variables 

No. of Continuous 
Variables 

No. of Total  
Variables 

No. of 
Constraints 

4 4 20 20 3 80 1920 2000 196 

 

We use the following criteria to terminate the SAA algorithm: (a) the gap 

between the upper and lower bounds falls below a threshold limit ε, i.e., 𝜀 =

|𝑈𝐵 − 𝐿𝐵| 𝑈𝐵⁄ = 0.005 (b) the maximum time limit is reached i.e., 𝑡𝑚𝑎𝑥 = 36,000 

seconds, and (c) the maximum iteration limit is reached i.e., 𝑛𝑚𝑎𝑥 = 100. We conduct 

two sets of experiments to evaluate the convergence behavior of the SAA algorithm. In 

the first set of experiments (shown in Table 2.4), we test the performance of the SAA 

algorithm by varying the size of the scenario set |𝑁′| =

50, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000 while fixing the sample size |N| to 

30. The second set of experiments tests the performance of the SAA algorithm by varying 

the sample size |𝑁| = 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 while fixing the scenario set 

size |𝑁′| to 1000. Furthermore, we present results to evaluate the efficiency of the SAA 

algorithm when the demand is generated randomly using a normal and a uniform 

distribution. In all experiments, the best running time between CPLEX and SAA 
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algorithm is identified by boldface letters; each can be solved with less than a 0.5% 

optimality gap; otherwise, the smallest optimality gap is highlighted. 

Table 2.4 compares the computational performance between CPLEX and SAA 

algorithm under different sample sizes and demand variation levels. We change the 

standard deviation of demand to obtain three different demand variation levels: (-5.0 to 

5.0)% for low demand, (-10.0 to 10.0)% for medium demand, and (-15.0 to 15.0)% for 

high demand variations. Our computational performance indicates that both CPLEX and 

SAA algorithm are capable of solving all the problem instances within the pre-specified 

optimality gap (0.5%). However, the running time of the SAA algorithm is significantly 

faster compared to CPLEX. On average, SAA algorithm is 245 times faster than CPLEX 

under low demand variations, 296 times faster under medium demand variations, and 256 

times faster under high demand variations. 

Table 2.4 Computational performance of the solution algorithm: Normal and 
Uniform distributions 

 Normal Distribution Uniform Distribution 
 CPLEX SAA CPLEX SAA 
|𝑁′| Avg. 

Gap 
(%) 

Avg. 
CPU 
(sec) 

Avg. 
Gap 
(%) 

Avg. 
CPU 
(sec) 

Avg. 
Gap 
(%) 

Avg. 
CPU 
(sec) 

Avg. 
Gap 
(%) 

Avg. 
CPU 
(sec) 

50 0.47 13.5 0.49 11.0 0.47 5.3 0.22 5.5 
100 0.25 25.9 0.15 11.5 0.01 28.1 0.08 7.0 
200 0.24 126.0 0.23 13.0 0.02 76.4 0.15 10.5 
300 0.23 256.5 0.15 14.5 0.48 109.3 0.13 12.5 
400 0.39 362.6 0.45 17.5 0.10 292.7 0.16 14.5 
500 0.29 668.9 0.22 19.0 0.15 432.5 0.15 16.5 
600 0.24 853.4 0.02 20.5 0.11 510.7 0.10 17.0 
700 0.18 2083.3 0.40 23.5 0.47 1076.5 0.23 21.0 
800 0.23 2392.9 0.31 25.5 0.18 1199.7 0.13 23.5 
900 0.14 3738.2 0.15 27.5 0.49 1852.1 0.14 25.5 
1000 0.46 4307.1 0.35 31.0 0.46 2220.2 0.04 29.5 

 



 

42 

Figure 2.3 (a) and (b) present the total CPU time required for the SAA algorithm 

under different sample sizes |N| for both the normal and uniform distributions, 

respectively. Additionally, Figure 2.3 evaluates the performance of the SAA algorithm 

under different sample sizes with three demand variation levels: low, medium and high. 

Computational results indicate that the running time of the algorithm increases as the 

variation in demand increases for both normal and uniform distributions. All 

computations are coded in GAMS 24.2.2 on a desktop with Intel Core i7 3.60 GHz 

processor and 16.0 GB RAM. The optimization solver used is ILOG CPLEX 12.6. 

 

Figure 2.3 Effect of sample size on CPU time 

 

2.5 Numerical study 

We apply the proposed stochastic cost model, as described by Equations (2.8) – 

(2.15), and the SAA algorithm to a real-world case study, in which we investigate the use 

of AM technologies to fabricate biomedical implants for hospitals in the state of 
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Mississippi (MS). In particular, we conduct a series of numerical studies to investigate 

the economic feasibility of using AM technologies for manufacturing biomedical 

implants, and identify the cost parameters that may pose significant impacts on the 

economic feasibility. (1) One key cost parameter to be considered is the ratio between 

unit production costs of AM and TM,  
𝛽𝑝𝑗

𝛽𝑝𝑖
, referred to as ATR, which describes how 

expensive it is to produce a unit using AM relative to TM (i.e. conventional methods). 

For example, if ATR = 2.0, it means that the unit production cost of an implant using AM 

is twice the unit production cost of the implant using TM. For a high ATR value, it is 

more expensive to produce a unit product using AM than TM, discouraging the initiation 

of AM facilities. One goal of this study is to identify the critical minimal ATR value that 

makes AM economically beneficial, by testing various levels of ATR values. (2) The 

initial investment of AM, mainly consisting of the cost of AM machines, is known to be 

another cost parameter that constitutes a large portion of the total AM costs. We 

investigate whether it is economically beneficial to use AM technologies for 

manufacturing of biomedical implants with the current level of the initial investment. If 

not, we identify to what extent the future improvement of manufacturing technologies, 

which may make AM systems more affordable, will affect the economic feasibility of 

AM production. (3) Another cost parameter is the demand of each biomedical implant. 

Considering the high costs of AM systems, it may not justify the initial investment when 

the overall demand level is very low. We study the effect of various demand levels (i.e., 

low, medium, and high) on the number of AM facilities to be located. Last but not least, 

(4) product lead time and product penalty cost for the biomedical implants could be 

essential for the adoption of AM. Shorter product lead time may result in faster response 
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and help with the recovery of patients. For different procedures, the urgency of a specific 

product, characterized by the lead time penalty coefficient, may vary. We will identify 

how much improvement of product lead time is needed, and how urgent the implants are 

desired to justify the costs of AM production. At last, the computational efficiency of the 

proposed algorithm is also reported. 

2.5.1 Case study for additive manufacture of biomedical implants 

We focus on four biomedical implants in which additive manufacturing has 

already been implemented for their manufacture: hip and knee joint implants, dental 

braces, and vessel stents. We collected data from major hospitals, as well as the nearby 

clinics, about the use of these four biomedical implants in the 20 most populous counties 

of MS, as shown in Figure 2.1. Most hospitals can perform procedures for all four 

implants of interest. However, select hospitals do not have the capacity to perform 

specific procedures. For example, the Oktibbeha County Hospital can only perform the 

implantation procedure of hip/knee joint implants and dental braces, but not stents. In this 

case, the demand in this county will be distributed to its neighborhood counties. The 

average demands of these four types of biomedical implants in Mississippi are estimated 

as the corresponding proportion of Mississippi–USA population in 2010, multiplied by 

the nationwide demands of these four biomedical implants, published by Centers for 

Disease Control and Prevention. The mean demands of all four types of biomedical 

implants for each county of Mississippi are demonstrated in Figure 2.4. 

We have also collected information about the suppliers of these four biomedical 

implants via TM, as demonstrated in Figure 2.2. The data related to the use of biomedical 

implants, as well as the data source, are summarized in Table 2.2. At present, MS 
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hospitals procure biomedical implants from suppliers and manufacturers located outside 

of MS who use TM methods to manufacture the parts, the prices of which are estimated 

based on the invoice of hospitals in Mississippi. We investigate whether it is beneficial to 

fabricate these biomedical implants at the sites of hospitals using AM technologies. The 

prices of AM systems are estimated based on the quotation of Selective Laser Melting 

(SLM) system in 2015. We choose the SLM system because of its widely documented 

use for the fabrication of biomedical implants. The build time for each part is estimated 

using the relative volume of parts using SLM state-of-the-art machines for year 2015. We 

assume that the biomedical implants are delivered using FedEx, and the costs of 

transportation are calculated using the online tool provided by FedEx Get Rates. 

2.5.1.1 ATR analysis 

We vary the ATR value and use it as input in the developed stochastic 

programming model, described by Equation (2.8)-(2.15), to examine the number of AM 

facilities to be established in each scenario and how much product to supply via AM 

and/or TM. Results are reported in Figure 2.5. We observe that these economic decisions 

largely depend on the ATR value. Lower ATR value tends to encourage the initiation of 

more AM centers, favoring the use of AM technology to produce more parts and 

decreases the average cost of production. 
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Figure 2.4 Estimated annual demands of biomedical implants for Mississippi 
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Figure 2.5 Effects of ATR on the economic decisions of production 

 

Figure 2.5(a) suggests that the ATR value should be no higher than 3.0 for any 

AM center to be established (point C in Figure 2.5(a)). At this point, the number of AM 

centers located is one. At points to the left of the critical point with lower ATR values, 

more AM centers would be recommended, whereas to the right of the critical point, 

where 𝐴𝑇𝑅 ≥ 3.5, no AM centers are recommended as shown by point D in Figure 

2.5(a). This can be explained by considerably high unit production cost of AM for 

𝐴𝑇𝑅 ≥ 3.5 which overshadows the benefits of AM, e.g., low inventory and short lead 

time. Accordingly, all of the products are economically beneficial to be supplied from 
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TM. Similar observations are made for the production volumes as shown in Figure 2.5(b). 

The amount of products supplied from AM essentially decreases as ATR increases, while 

the amount of products supplied from TM increases as the ratio increases. At point D and 

beyond (i.e., 𝐴𝑇𝑅 ≥ 3.5), all products are supplied via TM because no AM center is 

suggested to be located based on these ATR values. When the ATR decreases, the 

amount of products supplied from AM increases, because more AM facilities are to be 

established to supply medical implants together with TM. The average unit cost, using 

either AM or TM production technologies, increases as ATR increases as shown in 

Figure 2.5(c). For 𝐴𝑇𝑅 < 3.5, AM is used to produce biomedical implants. On the other 

hand, for 𝐴𝑇𝑅 ≥ 3.5, no AM facilities are suggested to be established and the average 

unit production cost becomes stable since all products are manufactured from TM 

suppliers. 

2.5.1.2 Demand Analysis 

We conduct a set of experiments to further investigate the economic decisions 

with various scenarios of product demand, which could be varying and dynamic over 

time. We take the current demand data for medical implants at Mississippi hospitals as 

the medium/baseline demand level, and consider a low demand level (50% of baseline) 

and a high demand level (150% of baseline).  Similar to the previous ATR studies, we 

determine the number of AM facilities to be established and the number of products to be 

produced from each manufacturing facility, with various demand levels. The results of 

the experiments are demonstrated in Figure 2.6. 

Figure 2.6(a) shows the number of AM centers to be established for the three 

levels of demand. It may be observed that when AM is chosen to manufacture biomedical 
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implants, higher demand levels result in more AM centers. For example, when ATR = 

2.5, two, four and five AM centers are needed to satisfy the low, medium and high levels 

of demand, respectively. This is echoed in Figure 2.6(b), which plots the quantity of 

products shipped from AM and TM suppliers to hospitals. The average unit cost for each 

demand level tends to increase as ATR increases and remain at a constant level for 

𝐴𝑇𝑅 ≥ 3.5 is presented in Figure 2.6(c). When ATR < 3.5, the average unit production 

costs are very similar for various demand levels which may be explained by the fact that 

AM is mainly used for production at this regime and the production cost of AM is not 

sensitive to production volumes and demand levels. For 𝐴𝑇𝑅 ≥ 3.5, in which case only 

TM is chosen, the average unit production cost branches out for various demand levels 

and decreases as the demand level increases. This is because TM typically benefits from 

the scale of economics and batch production. 
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Figure 2.6 Number of AM centers, production volume, and average unit product cost 
for various demand levels 

 

Figure 2.7 Location of AM centers and routing of products when ATR < 3.5 
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When ATR < 3.5, i.e., AM production is feasible and our model recommends the 

potential optimal locations for AM facilities and the corresponding product flow lines, as 

depicted in Figure 2.7. When the demand level is low, one AM facility is sufficient to 

satisfy the need for production, as shown in Figure 2.7(a). This AM facility is 

recommended to be located in Forrest County, the southern part of Mississippi, to supply 

AM implants to all hospitals of the state. This location is chosen because of its physical 

proximity to about 80% of the major hospitals in MS, and thus may help to reduce 

transportation cost and product lead time. When the demand level increases to medium, 

this AM facility is sufficient to satisfy the need of production, and thus results in the 

same configuration of supply chain and location of AM centers. In other words, the 

increase in demand from low to medium is not enough to justify the cost to be incurred 

from locating an additional AM center.  However, when the demand level becomes high, 

another large capacity AM center is situated in the northeastern part of the state in 

Lowndes County, which is capable of supplying to nearby hospitals. Even though the 

additional AM facility incurs an extra investment cost, it increases responsiveness and 

provides the necessary capacity to meet high product demand while reducing both 

transportation cost and lead time cost. 

2.5.1.3 Result discussion 

Based on the ATR and demand analysis, AM would be economically feasible for 

the production of biomedical implants for the state of Mississippi under the critical 

condition that ATR < 3.5. However, when AM is more expensive (𝐴𝑇𝑅 ≥ 3.5), AM 

would not be an economically feasible option regardless of the demand, in which case,  

all hospitals of Mississippi are recommended to order biomedical implants from TM out 
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of the state as demonstrated in Figure 8. At the current stage of AM technologies, the AM 

unit production cost tends to be much higher than that of TM, i.e., ATR > 3.5 [148]. This 

may explain why AM is currently mainly used for the purpose of prototyping and product 

design for biomedical implants, instead of manufacturing of end products. In what 

follows, we will investigate and identify the cost parameters that may potentially affect 

the economic feasibility of AM via extensive sensitivity analysis of the proposed model. 

 

Figure 2.8 Routing of products when ATR > 3.5 

 

2.5.2 Cost parameters impacting economic decisions 

In this subsection, we will determine the cost parameters that can potentially 

make AM economically beneficial and recommend how much change/improvement is 

needed, via a series of numerical studies. We focus on the cases, in which ATR > 3.5 and 

AM is not readily feasible. We study the impacts of fixed initial machine cost, inventory 

holding cost, required lead time, and lead time penalty coefficient. To do so, we vary 
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each cost parameter when ATR > 3.5 and apply our proposed model to decide the number 

of AM centers to be located. The impacts of such changes of these cost parameters (in 

percentage) are reported in Table 2.5 

We first vary the cost of initial machine investment by reducing the machine cost 

by 0%, 10%, 20% … 100%. At each level of the initial machine cost, we examine one by 

one if the changes of each other cost parameter could affect the economic feasibility of 

AM production. We use the symbol of × to represent the case in which AM is infeasible 

at the specific level of machine cost, regardless how other parameters are varied. The 

symbol of ○ is used to represent the case in which AM may be economically feasible, 

given the reduction of the machine cost and the necessary changes in other parameters. 

For example, when the cost of AM machine is reduced by 60%, as shown in the 

highlighted row of Table 2.5, the changes in the inventory holding cost solely does not 

impact the feasibility of AM production. However, when the product lead time of AM is 

reduced by 60%, or the penalty of product waiting time is increased by 20%, it would be 

economically beneficial to use AM production. 

It can be observed that (1) the AM machine cost is essential for the feasibility of 

AM production. The metal-based machine cost of the considered implants needs to be 

reduced by at least 60% to make AM production profitable. This may be possible 

considering the trend exhibited in the cost of AM machines in the past two decades: the 

price of some plastic-based AM machines has decreased 51% between 2001 and 2011 

after adjusting for inflation [148]. It is not unlikely that metal-based AM machines will 

follow a similar trend in the future as research and technology advance. 
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Table 2.5 Combined effect of fixed cost and other costs on AM center location for 
ATR > 3.5 

Initial 
Machine 

Cost 

Inventory holding 
cost 

Lead time Lead time cost 

Change 
(%) 

Impact Change 
(%) 

Impact Change 
(%) 

Impact Change 
(%) 

0 × NA × NA  +270 
-10 × NA × NA  +240 
-20 × NA × NA  +210 
-30 × NA × NA  +180 
-40 × NA × NA  +130 
-50 × NA × NA  +70 
-60 × NA  -60  +20 
-70  0  0  0 
-80  0  0  0 
-90  0  0  0 
-100  0  0  0 

×:   Infeasible. No AM is located no matter the change given the decrease in fixed cost. 
:   Feasible and the given decrease in fixed cost is enough to locate.  
NA: Not Applicable. 
 

(2) The lead time cost penalty coefficient, related to the urgency of the product, is another 

important factor. Since the monetary value of a delayed procedure is uncertain and 

complicated to quantify, we have assumed the lead time cost as a percentage of the 

market price of the implants. For the health sectors, some medical procedures can be 

delayed without drastic consequences, in which case, we assume a low penalty of 10%. 

However, in other medical procedures, the delay of biomedical products may cause 

escalated injury; delaying the process of recovery. When it comes to life-or-death 

situations (e.g. 270% lead time penalty), AM may be a suitable tool for fast response 

regardless of the high production and machine cost. (3) It can be also observed that the 

impacts of AM inventory holding cost and product lead time tend to be secondary to the 
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feasibility of AM production. This may be because of the facts that the current inventory 

holding cost of AM is already at a reasonably low level, constituting only a relatively 

small portion of the overall production cost; and that the AM lead time is already much 

shorter as compared to its TM counterpart. Further improvements of these two 

parameters may not be of highest priority. 

2.6 Conclusions 

In this paper, we have developed a stochastic cost model to quantify the supply-chain 

level costs associated with the production of biomedical implants using Additive 

Manufacturing (AM) technologies, and investigate the economic feasibility of using these 

technologies to fabricate biomedical implants at the sites of hospitals within the state of 

Mississippi. Different from the existing studies that mainly focus on the process-level 

costs, such as machine, materials, labor, energy consumption, etc., our model mainly 

focused on modeling system-level costs such as inventory, transportation, etc. We also 

factor in the effects of product lead/waiting time on the overall transportation costs and 

account for the stochastic nature of product demands, resulting in a two-stage stochastic 

programming model. The developed cost model was then used to determine the number 

of AM facilities to be initiated and volume of product flow between manufacturing 

facilities and hospitals. Note that such a model is NP-hard and very expensive to solve. 

We develop a tailored SAA algorithm to efficiently obtain solutions. The resulting model 

and algorithm are applied to a real-world case study that focuses on investigating using 

AM for the on-demand production of biomedical implants for hospitals in the state of 

Mississippi.  
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1. This study mainly focused on the use of biomedical implants in the implants 

and hospitals that can perform similar procedures in the neighboring states. 

However, the proposed mathematical decision model can be applied to a 

larger supply chain network, such as the southeast region or the entire country 

of US, and account for other types of products, as long as the corresponding 

demand and supply data are collected. The solutions of the larger scale cost 

model (i.e., the locations of AM facilities) may still be obtained using the 

Sample Average Approximation algorithm by virtue of its scaling property. 

The model and algorithm proposed in this paper may be used as an initial 

analysis tool for decision makers to understand the supply chain cost 

parameters involved in the adoption of AM technologies for the purpose of 

infrastructure designing and planning. Once AM is identified to be feasible for 

production, a business case study may be followed up for a more thorough 

investigation. 
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2. Our analysis indeed recommended an AM facility with high capacity within 

the state of Mississippi when the demand is high. In other words, this facility 

can house multiple AM machines to satisfy the demands. Note that, in this 

study, we focus on identifying possible opportunities of establishing AM 

facilities in the state of Mississippi only. The transportation costs within the 

state may not be high. As a result, our analysis indicates that such a 

centralized AM supply chain layout may be more beneficial than having 

multiple AM facilities over the state of Mississippi, which will require much 

higher overhead costs. However, for a larger supply chain network (e.g., 

national supply chain network), it may be more profitable to establish multiple 

AM facilities to reduce the costs of transportation overall the country. 

3. Our study suggested a harmonious implementation of AM and TM 

production, given the current state of AM and TM technologies. Demands of 

biomedical implants may be filled using both AM and TM facilities 

depending on the required product lead time, locations of patients, capacity of 

the AM facilities, and other factors. This scenario may be subject to changes 

when the cost parameters vary. 
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4. We have identified the conditions and cost parameters that have significant 

impact on the economic feasibility of AM. A key cost parameter is the ratio 

between unit production costs of AM and TM (ATR), including material, 

labor, energy consumption, pre- and post-processing costs, etc. When ATR < 

3.5, hospitals would benefit from the use of AM technologies to fabricate 

biomedical implants, instead of ordering products from TM suppliers out of 

the region. Even though it may be more beneficial to use TM suppliers when 

ATR > 3.5, several cost parameters may still change the economic feasibility. 

For instance, our studies indicate that when the machine cost is reduced by 

60%, the AM may be feasible even when ATR > 3.5. Cheaper AM machines 

may be possible considering the decreasing trend in the price of AM machines 

during the past decade. 

5. Another key parameter is the urgency of the product. When a biomedical 

implant is needed in a short time window (e.g., in a life-or-death situation), 

TM suppliers may not have the parts with specific features (e.g., dimensions, 

shapes, etc.) in stock, and may require an additional lengthy customization 

process. In this case, AM may be a viable option because of the short response 

time and the capability of mass customization, irrespective of the high cost. 
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6. An advantageous feature of AM production is the capability of producing 

parts of complex geometries, which either may not be possible to fabricate 

using TM or requires multiple TM processing steps. Our model does not 

explicitly characterize the complexity of parts to be fabricated. However, the 

effect of part complexity is inexplicitly captured by the product lead time. 

Note that the production time needed by AM is generally insensitive to the 

complexity and shapes of parts by virtue of its layer-by-layer nature of 

fabrication. On the other hand, it may require a sequence of processes to 

fabricate a complex part using TM, if not impossible, and thus leads to much 

longer production time. Our study shows that the difference between the 

product lead times of AM and TM production could be a crucial parameter 

that affects the economic feasibility of AM production because AM has 

shorter lead time for complex parts even when post-treatment times are 

included. 
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7. Future work is needed to study the AM deployment approaches that can 

ensure that the full economic benefits of AM are realized. Especially, when 

the network of biomedical implants supply involves an area larger than the 

state of Mississippi such as the southeastern region of the country or the entire 

country of USA, such a study will guide decision makers on how centralized 

or distributed such a deployment should be. Moreover, future work may be 

needed to account for the cost analysis of assemblies. AM allows for the 

production of multiple parts simultaneously in the same build, making it 

possible to produce an entire product. TM often includes production of parts 

at multiple locations, where an inventory of each part might be stored. The 

parts are shipped to a facility where they are assembled into a product. AM 

has the potential to replace some of these steps for some products, as this 

process might allow for the production of the entire assembly. This would 

reduce the need to maintain large inventories for each part of one product. It 

also reduces the transportation of parts produced at varying locations and 

reduces the need for just-in-time delivery. 
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CHAPTER III 

DISTRIBUTED OR CENTRALIZED? HYBRID SUPPLY CHAIN CONFIGURATION 

OF ADDITIVELY MANUFACTURED BIOMEDICAL IMPLANTS FOR 

SOUTHEASTERN US STATES 

3.1 Introduction 

The affordability of medical care service is essential to the coverage and 

performance of healthcare systems. According a recent Commonwealth Fund ranking, 

Southern states in US (e.g., Mississippi, Louisiana, Oklahoma, and Arkansas) have 

lowest coverage and service quality in the nation [71]. A major issue is the high costs 

associated with medical care. There is an urgent need to provide affordable 

healthcare service while maintaining or even improving the service quality. The 

technology of Additive Manufacturing provides a potential solution in terms of bringing 

down the costs of biomedical implants while ensuring implant quality based on 

customized needs. The use of additive manufacturing (AM) in the fabrication of medical 

devices has been gaining popularity in the medical technology industry. In 2012, about 

16.4% of the total system-related revenue for the AM market was realized from medical 

applications [160]. (1) First, AM, unlike conventional manufacturing, provides a high 

level of customization which makes the technology very suitable for custom-fitting 

products to individual patients and enhances an economically efficient delivery of high-

quality personalized healthcare products. Customized biomedical implants can possess 
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complex features which are difficult to machine using conventional, subtractive methods.  

Singare et al. [142] has shown the superior functionality as well as the aesthetical appeal 

of AM biomedical implants compared to conventional manufactured biomedical 

products. (2) Second, the medical technology industry is well-funded and as such may 

provide for resources to invest in new AM technology initiatives.  In 2012, the industry’s 

estimated revenue, expected annual growth and 15-year total shareholder return (1998–

2012) was about USD121.6 billion, 5.4 %, and 7.8%, respectively [49]. The 15-year total 

shareholder return statistic surpasses Standard & Poor 500’s average of 5.2%. (3) Last 

but not least, there is a tremendous market of healthcare providers and consumers 

distributed across a broad geographic and population base, who need such medical 

devices as surgical implants, hearing aids, dental crowns, and more. Custom implants 

produced using AM technology have been used for a variety of applications including 

skull ([142], [158], [37], [141]),  knee  joint ([59]), elbow ([151]), and hip joint ([116]). 

These devices possess a combination of relatively high value and small physical volume 

which is suitable for the applications of AM. 

A major driving factor contributing to the possible cost reduction of additively 

manufactured biomedical implants is the promise of reduced logistic costs associated 

with compressed supply chains. There is a consensus that the greatest disruption that 

could emerge from widespread adoption AM technology would be restructured supply 

chains ([120], [33]). The supply chain would be more local as the product will be 

manufactured closer to the end customer. In particular, deploying AM facilities at 

locations close to operational hospitals generally leads to faster response, and reduced 

delivery costs [59]. However, the investment cost of establishing each facility has to be 
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taken into consideration. The impact of AM technology on the supply chain management 

is still unknown. Businesses need to understand such impacts to make supply chain 

decisions pertaining to the enhancement of their expansion and maintenance of their 

marketplace competitiveness. 

One key decision that an AM provider will make is the capacity of AM to be 

deployed and the configuration of deployment. In other words, how close should the 

AM be located to the customers? One approach that has been suggested in literature is 

centralized deployment ([60], [96]). Using a centralized approach, the AM facility is 

centrally located to serve all the hospitals. The products are manufactured on-demand at a 

central location and then delivered to the hospital that made the demand. A second 

approach suggested is the distributed AM. In this case, an AM facility is located locally 

to serve a hospital or group of hospitals in the same area. In the distributed AM approach, 

the digital models of the medical devices can be distributed from a central database via 

information network to the local AM facilities where the biomedical implants are 

manufactured.  This approach is recommended when the response time is critical and the 

risk of inventory stock out is high [60]. It is also suitable for isolated systems such as the 

space station in orbit or military equipment in battlefields where AM can be used to 

produce spare parts on site and on demand. These approaches represent two extremes 

of AM deployment spectrum. In reality, a more hybrid approach may be more 

suitable. However, there is no study, to the best of our knowledge, providing a 

quantitative method for analyzing the logistic costs associated with AM supply chain 

with the goal of determining its optimum deployment configuration. In this paper, we 

develop a continuous approximation cost model and implement an optimization 
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algorithm that helps to determine the best AM deployment configuration to minimize the 

total supply chain network cost for biomedical implants. A case study using hospital and 

biomedical implant demand data from Southern US states has been investigated to prove 

the concept of the proposed method and algorithm. 

The rest of this paper is organized as follows: Section 3.2 reviews the existing 

literature pertaining to the biomedical applications AM and cost analysis. The integrated 

facility location and inventory policy model for additively manufactured bio-medical 

implants Section 3.3 presents a mathematical optimization model based on continuous 

approximation that quantifies the supply chain network cost of additively manufactured 

bio-medical implants; Section 3.4 implements a two-phase approximation approach and a 

two-stage solution approach that solves the model presented in Section 3.3 to locate AM 

facilities and obtain their area of influence  and raw material ordering amount. Section 

3.5 applies the optimization model to the real-world case study of biomedical implants in 

the hospitals in the southeastern region of USA; and Section 6 provides concluding 

remarks and possible future work. 

3.2 Literature review 

We provide a literature review on the application of AM in the medical industry, 

as well as approaches to supply chain cost analysis. 

3.2.1 Biomedical applications of AM 

There are many examples of AM use in medical applications. ‘Kablooe Design’, 

an engineering firm that specializes in the creation of sophisticated medical devices has 

used AM to create a less invasive device for the treatment of benign prostatic hyperplasia 
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(BHP) [146]. Siemens has switched to AM technology for the production of customized 

hearing aids at several of its factories. The technology has enabled the company to 

localize the manufacture and distribution of end products, shorten the production time of 

the customized devices by up to 80%, and significantly reduce labor cost [34]. Dental 

labs have used AM to produce customized dental crowns for patients. Using scanned data 

and dental software to design a CAD model of a patient’s crown, technicians can produce 

up to 450 crowns and bridges per day compared with only 20 when using traditional 

methods. In the US military, the standard procedures for making surgical equipment 

available on the battlefield raise challenges in terms of time of delivery, quantity, cost 

and matching supply with demand. Consequently, it has identified the use of AM within 

its combat site surgical setting, and found that thousands of different surgical instrument 

designs, customized instruments and sterile surgical kits stored on digital media or 

remotely accessed via the Internet, could be printed and used in field surgical settings 

[74]. AM technology only requires electrical power, raw material and digital design file 

for military surgeons to be able to produce these devices in such a way that reduces the 

required inventory and bottlenecks surrounding supply levels on the battlefield. AM has 

also been used in customized visualization aids in preparation for surgical procedures on 

kidney, liver, bones and various body cavities [108]. Sols uses AM to produce custom 

insoles that help to reduce a patient’s foot pain and improve posture. The patient’s foot is 

scanned using a smartphone app and uploaded to the company’s database from where it is 

transferred to an AM machine for production. The technology has helped to streamline 

the production process, replace the need for error prone human touch-points and create a 

unique opportunity for mass-customization [123]. 
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3.2.2 Supply chain cost analysis - qualitative approaches 

The literature on AM supply chain can be divided into two broad categories: 

qualitative approaches to identify the factoring impacting of the supply chain of AM 

products and quantitative approaches to model these impacts 

Most works in the literature have focused on the qualitative approaches. For 

example, Fisher [51] developed a framework for supply chain strategy by categorizing 

products into two: functional products and innovative products. According to the author, 

while the supply chain design for functional products with relatively predictable demand 

should be mostly based on efficiency, that for innovative products like AM products 

which require shorter lead times, high level of variety, flexibility and customization 

should rely on responsiveness. According to Berman [21], AM favors on-demand and 

small production batches and achieves customization by layer manufacturing instead of 

modularization or postponement. By avoiding modularization as a means of attaining 

mass customization, AM is able to reduce the need for supply chain integration and the 

number of suppliers needed in the manufacturing process. Moreover, since there is no 

more need to produce separate parts for assembly, costs related to assembly and 

inspections are virtually eliminated. Cooke [33] suggested that contrary to traditional off-

shoring practices inherent in conventional manufacturing, AM requires a more regional 

supply chain network which can fundamentally impact total cost through reduced 

emissions, pipeline inventory and safety stock. However, for expensive raw materials 

which are not locally available such as in the manufacture of bio-medical devices, 

procurement and inventory decisions need to be made to ensure that the full benefits of 

AM are realized. According to Reeves, AM will result in a shift from the production-
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distribution-retail model to a model where the retailer is substituted by the end customer 

[121]. This is increasingly possible with the modern information and communication 

technologies and web-based retail transactions. In such a model, rather than the major 

transportation cost emanating from shipping the finished goods to the retailer, it will arise 

from transporting raw materials to the AM sites since these sites could be strategically 

scattered near customers in order to significantly decrease lead time. Holmstrom et al. 

[60] proposed two different deployment methods to integrate AM technology in the 

aircraft spare parts supply chain. The first approach called centralized AM uses capacity 

to replace inventory holding. In this approach, AM machines are deployed in centralized 

distribution centres to produce slow moving spare parts on demand. The authors found 

that the advantage of using centralized AM comes from the aggregation of demand from 

various regional service locations which ensures that the investment in AM capacity is 

well utilized as the parts are produced in a centralized location. However, the 

disadvantage is that the produced parts have to be shipped to distant service stations 

thereby increasing both transportation cost and response time. The second approach is the 

distributed or decentralized approach, in which AM technology is deployed at each 

service location. While this approach leads to a substantial fixed investment cost in the 

AM machines as well as personnel cost, it results in the drastic reduction in inventory 

holding and transportation cost. Mellor, Hao, and Zhang [92] suggested decentralized 

AM as a direct digital manufacturing (DDM) implementation approach that could reduce 

transportation impact and support local community involvement in the supply chain.  The 

authors based their analysis on a qualitative normative structural model that includes 

supply chain, operations, strategy and organization change. While the qualitative 
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approaches have subjective views to analyzing the AM deployment configurations, they 

do not provide numerical basis, on which this important long term decision should be 

made. 

3.2.3 Supply chain cost analysis - quantitative models 

Among the very few studies that have taken a quantitative route in investigating 

the impact of AM on supply chain,  Khajavi et al. [70] extended the work of Holmstrom 

et al. [60] where the authors evaluated the potential impact of AM improvements on the 

configuration of spare parts supply chains of military aircraft parts. They used scenario 

modeling method to analyze the impact of AM deployment configuration on supply chain 

cost. A total of four scenarios arising from two AM deployment alternatives and two time 

dimension are investigated. However, the scenario modeling proposed by the authors 

does not include inventory decisions such as the reorder quantity of AM raw materials or 

amount to keep in inventory. Similarly, Liu et al. [86] explored the potential of 

introducing AM technology into the aircraft spare parts supply chain, and quantitatively 

analyzed the impact on supply chain safety inventory, using a supply chain operation 

reference (SCOR) model. They found that centralized AM is suitable for spare parts with 

low average demand, longer manufacturing lead time and relatively high demand 

fluctuations while distributed AM is recommended for parts with high average demand 

and stable demand. Due to the on-demand capability of AM, the authors also found that 

distributed AM is more beneficial than centralized AM for parts with very short 

manufacturing lead time even if their demand is low and unpredictable. Chiu and Lin 

[31] used simulation based approach to study the benefits of integrating design for AM 

(DfAM) and design for supply chain (DfSC) in the production of personalized 
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lampshades of a lamp manufacturing company. The authors found that AM improves 

supply chain performance in terms of both lead time and total cost. In particular, their 

simulation results in the case study show that lead time can be shortened by up to 35%, 

while the total cost can be reduced by 10%, 6% and 3% for low, middle and high demand 

fluctuation levels, respectively. However, the authors have neither integrated facility 

location in their study nor considered the investment cost of AM machines in their cost 

model. Moreover, they did not consider raw material inventory cost which could affect 

supply chain decisions in situations where the raw materials used in AM were expensive.  

More recently, Augustsson and Becevic [9] has studied the impact of AM on the spare 

parts supply chain cost and customers service level of the automotive industry. Using a 

case study of a heavy truck manufacturing company, this study finds that adopting AM 

can reduce the lead time by up to 50% and increase profitability from reduced 

transportation cost to 23.3%. The author used a simple linear cost model that includes 

machine cost, labor cost and material cost to analyze the impact of AM on customer 

service level and supply chain cost. Achillas et al. [1] utilized a multi-criteria decision aid 

(MCDA) and data envelopment analysis (DEA) to study the inclusion of AM into the 

production portfolio of an electronics manufacturer. The authors consider production 

cost, lead time and quality from various manufacturing alternatives, and find that AM 

provides an efficient manufacturing solution for small production volumes of plastic 

housing units, with high demand fluctuations. Emelogu et al [45] developed a 

mathematical model that helps to quantitatively analyze the economic feasibility of 

integrating AM and TM in the supply chain network of biomedical implants. In this 

paper, we assume that only AM is utilized in the fabrication of the biomedical implants 
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and extend their work in two directions. We improved the optimization model to include 

inventory decisions which we realize are necessary in the case of biomedical implants 

with expensive raw materials. The authors applied their model to a case study of hospitals 

in Mississippi State. However, in this paper, we propose a solution approach that solves 

the problem for hospitals in the southeastern region of United States relatively faster. 

3.2.4 Scalability issue of supply chain models 

All the AM supply chain literature dedicated to quantitative methods uses linear 

models to formulate the problem. However, these models do not provide realistic 

solutions as the amount of data that can be added to the model is often limited. Increased 

amount of data in discrete models often leads to model inaccuracy and increased 

computational complexity. Continuous approximation (CA) approach can be used to 

overcome this problem. CA requires less data to generate near approximate solution. This 

approach defines decision variables in terms of continuous functions and in turn reduces 

the complexity of the model. Newell [104] demonstrated the idea of applying continuum 

techniques to finite-dimensional operational research problems. Blumenfeld and 

Beckmann [24] developed an analytical framework for estimating the cost of distributing 

freight from one origin to many destinations. This analysis used a continuous space 

modeling approach, which requires only the spatial density of destinations and the 

average and variance of demand. This approach allowed distribution costs to be 

determined analytically in terms of a few easily measured parameters. Langevin et al [81] 

presented an overview of continuous approximation models used for freight distribution 

problems. The authors provided taxonomy of six classes to differentiate the problem and 

a brief review of each paper is provided. Geoffrion [55] studied a continuous model for 
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warehouse location in which warehouse serves demand that is distributed uniformly over 

a plane. Erlenkotter [47] extended the work of Geoffrion [55] and Newell [104] where a 

general optimal market area (GOMA) was used to determine the optimal area served by a 

single production unit while demand was assumed to be distributed uniformly. A number 

of refinements of the GOMA model were discussed by Rutten et al. [132] to determine 

the optimal number of depots serving a set of uniformly distributed customers in a 

particular area. An analytic method was developed by Burns et al. [27] that used the 

spatial density of customers to minimize the transportation and inventory cost of freight. 

This study analyzed and compared two distribution strategies: direct shipping and 

peddling. Dasci and Verter [39] presented a framework that was based on the use of 

continuous functions to represent spatial distributions of cost and customer demand. 

However, their approach did not consider inventory works. This work was a 

generalization of the work done by Geoffrion [55] and Erlenkotter [47] as well as an 

extension of the CA model for the facility design problem proposed by Verter and Dincer 

[155]. A CA framework developed by Murat et al. [101] presented a methodology where 

the market demand was modeled as a continuous density function and the resulting 

formulation was solved by means of calculus. This methodology prioritized the allocation 

decisions rather than location decisions. 

No study, to the best of the authors’ knowledge, has carried out a 

quantitative investigation on AM deployment alternatives in the medical industry or 

considered an integrated approach where AM facility location and inventory 

allocation decisions are included in the problem. Moreover, this work is the first to 

apply a continuous approximation model to an AM supply chain problem. The 
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centralized and distributed approaches identified in literature belong to two opposite 

extremes of the deployment spectrum, either of which may not be optimal. Our 

continuous approximation deployment model presents a hybrid solution that is able to 

determine the optimal number of AM facilities to establish, the hospitals each facility 

serves and the amount of raw materials to order for on-demand manufacture of medical 

implants so that the total network cost including investment, production, inventory and 

transportation costs is minimized while maintaining a high customer service level. 

3.3 Model formulation 

In this section, we develop a mathematical model that solves the integrated 

facility location and inventory policy model for additively manufactured bio-medical 

implants. The logistics network that is represented by the mathematical model is a three 

level distribution network where at level 2, central raw material warehouses (CRW) 

that store the AM raw materials are established. At level 1 are the AM facilities where the 

fabrication of AM products takes place, and at level zero end customers which in our case 

are hospitals serving patients are situated. Note that an AM facility at level 1 could be 

situated in a hospital or very close to a hospital, but from this facility the AM bio-medical 

implants are supplied to other hospitals. 

Let us consider a continuous two dimensional space S⊆ 𝑅2 where an AM facility 

can be built at any location  𝑥 ∈ 𝑆 with a fixed operating cost, 𝐹𝑠. There are predefined 

location of CRW’s and hospitals in 𝑥 ∈ 𝑆. The decision variables are the number of AM 

facilities and ordering quantity for each CRW and AM facilities.  But before developing 

cost functions for this integrated facility location and inventory policy model, it is 

important to make a number of assumptions about the overall network structure, level of 
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customer demand, and inventory policies on the overall network. This integrated model is 

a complex model and these assumptions simplify the model and help solve this model 

comparatively easily. The assumptions made in this model are influenced by Ganeshan 

[53], Teo and Shu [147], Dasci and Verter [39], and Tsao et al. [152]. The assumptions 

are stated as follows: 

Assumption 1: Each AM facility can serve multiple hospitals but the opposite is not 

allowed. This type of network is termed as 'arborescence network'. 

Assumption 2: Demand at each AM facility is a Poisson process as it is generated by the 

demand originating from hospitals in its influential area. 

Assumption 3: Demand per unit time for hospitals in cluster 𝐶𝑖 is independent and 

identically distributed Poisson process with rate 𝜃𝑖. 

Assumption 4: Each unit of product is analyzed separately and independently. Demand 

for single unit of product is considered in this study. 

Assumption 5: Lateral shipment of products among distribution centers and customer 

demand points is not allowed in the model. All the shipments between distribution 

centers to the customer demand points are via direct shipment. 

Assumption 6: The location of CRW’s and hospitals is known beforehand. 

Assumption 7: Euclidean distance measure is used to calculate the distance between an 

AM facility and hospitals.  

Assumption 8: The influence area of each AM facility is assumed to be circular. 

Moreover, each AM facility is located at the center of the influence area. 

Assumption 9: Capacity limitation of facilities is not considered at any of the network 

levels. 
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Assumption 10: CRW’s and AM facilities operate under Type-1 service policy. 

Assumption 11: Continuous inventory review policy is maintained for both CRW and 

AM facilities. 

Assumption 12: Pipeline inventory cost is not considered. 

Assumption 13: There is no reorder cost at the hospitals. The demand at the hospitals 

gets passed over to the AM facilities on a per item basis. 

We modeled all the cost functions of the logistics network based on the above 

assumptions. Table 3.1 shows the notations and symbols used in the model. In continuous 

space S, let 𝛾𝑖(𝑥) denote the discrete hospital location in cluster 𝐶𝑖 which is expressed as 

a spatial density slow varying function and 𝐴𝑣𝑖
(𝑥) denote the influential area associated 

with each AM facility in cluster 𝐶𝑖. The customer demand at each point 𝑥 ∈ 𝑆 can now be 

expressed as a product of hospital density and demand at hospitals which can be 

expressed as 𝛾𝑖(𝑥)𝜃𝑖(𝑥), 𝑥 ∈ 𝑆. So, the expected demand per unit time experienced by 

each AM facility v in cluster 𝐶𝑖 can be expressed as 𝛾𝑖(𝑥)𝜃𝑖(𝑥)𝐴𝑣𝑖
(𝑥), 𝑥 ∈ 𝑆. 

Simultaneously, the total number of AM facilities can be estimated by 𝑁𝑣𝑖
(𝑥) =

𝑆

𝐴𝑣𝑖
(𝑥)

. 

A total of six cost components have been considered while modeling the logistics 

network i.e. total AM facility opening cost, inbound transportation cost for AM 

facility/outbound transportation cost for CRW’s, outbound transportation cost for AM 

facility, average inventory cost for AM facilities, production cost at AM facilities, and 

average inventory cost for CRW’s. All the cost functions in this section are modeled 

using continuous approximation technique. This essentially means that the entire logistics 

network can be expressed in terms of smooth continuous functions. We summarize the 
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notations used in the cost function in Table 3.1. Section 3.3.1 details the steps for 

calculating the cost components of the network and Section 3.3.2 presents the final 

model. 

Table 3.1 Acronyms and mathematical notations in the optimization model 

Parameters Explanation 
𝜃𝑖 Demand of product  per unit time for hospitals in cluster 𝐶𝑖  
Ci  Cluster i 
𝐹𝑟 Fixed opening cost for each AM facility 
𝛾𝑖 Discrete hospital locations in cluster  i   
𝐶𝑓 Fixed transportation cost per inbound shipment 
Cp Variable transportation cost per item for each inbound shipment 
𝜏 Planning horizon 
Cd Delivery cost per mile per item 
𝐾𝑣 Distance metric and shape constant for the service region 
𝑅𝑣 Reorder cost incurred by each AM facility  
𝑅𝑛 Reorder cost incurred by the CRW  
ℎ𝑣 AM facility inventory holding cost per item over 𝜏 
ℎ𝑛 CRW inventory holding cost per item over 𝜏 
𝛼𝑣𝑖

 Service level at each AM facility 
𝜇𝑣 Mean of lead time at each AM facility 
𝜎𝑣

2 Variance of lead time at each AM facility 
p Production cost per unit product excluding labor cost 
𝑙 Annual personnel salary  
𝛼𝑛  Service level at CRW 
𝜇𝑛 Mean of lead time at CRW 
𝜎𝑛

2  Variance of lead time at a CRW 
Variables  
𝐴𝑣𝑖

 Size of influence area associated with an AM facility in cluster 
i 

𝑄𝑣𝑖
 Ordering quantity for AM facility, v, in cluster i 

𝑄𝑛 Ordering quantity for CRW 
 

3.3.1 Total network cost function 

We present, in more details, the six cost components that make up the total cost 

function used to model the biomedical implant AM supply chain. 
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3.3.1.1 Total AM facility cost 

A fixed opening cost 𝐹𝑣 is incurred for opening and operating each AM facility, v. 

To calculate the total AM facility cost, opening and operating cost of each AM facility, 

𝑣 ∈ 𝑉, has to be multiplied by total number of AM facilities, 𝑁𝑣𝑖
(𝑥), and is given by 

 𝑇𝐴𝐶(𝑥) = 𝐹𝑣𝑁𝑣𝑖
(𝑥)  

3.3.1.2 Inbound transportation cost for AM facility 

The inbound transportation cost for AM facility and outbound transportation cost 

for CRW is the same. Inbound transportation cost component can be divided up into two 

parts i.e. fixed cost and variable cost. The fixed cost can be broken down into costs like 

managing the trucks, drivers etc. The variable cost is the cost per item. Let 𝐶𝑓 be the 

fixed cost per inbound shipment, 𝐶𝑝 be the variable cost per item for each inbound 

shipment, and 𝑄𝑣𝑖
(𝑥) be the ordering quantity for each AM facility, v, in cluster 𝐶𝑖. The 

transportation cost of a single inbound shipment to a single AM facility can be expressed 

as 

SC(x) = 𝐶𝑓+𝐶𝑝𝑄𝑣𝑖
(𝑥) 

Taking 𝜏 as the length of the planning horizon, the total inbound transportation 

cost can now be calculated as  

 𝑇𝐼𝐴𝐶(𝑥) = 𝑆𝐶(𝑥)
𝜏𝛾𝑖(𝑥)𝜃𝑖(𝑥)𝐴𝑣𝑖

(𝑥) 

𝑄𝑣𝑖
(𝑥)

𝑁𝑣𝑖
(𝑥), where 𝜏𝛾𝑖(𝑥)𝜃𝑖(𝑥)𝐴𝑣𝑖

(𝑥) 

𝑄𝑣𝑖
(𝑥)

  is viewed as the 

expected number of inbound shipment to a single AM facility, v, in cluster 𝐶𝑖 during 𝜏. 
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3.3.1.3 Outbound transportation cost for AM facility 

Let 𝐶𝑑 be the delivery cost per mile per item and 𝐾𝑣 be a constant that depends on 

the distance metric and the shape of the service region in S. Hence, the total outbound 

transportation cost for AM facility can be expressed as  

 𝑇𝑂𝐴𝐶(𝑥) =  𝐾𝑣𝐶𝑑𝐾𝑣 √𝐴𝑣𝑖(𝑥)𝜏𝛾𝑖(𝑥)𝜃𝑖(𝑥)𝐴𝑣𝑖
(𝑥)𝑁𝑣𝑖

(𝑥)  

= 𝐶𝑑𝐾𝑣√𝐴𝑣𝑖(𝑥)𝜏𝛾𝑖(x) 𝜃𝑖(𝑥)𝑆 

Note that, 𝐾𝑣√𝐴𝑣𝑖(𝑥) is the average distance from the AM facility v to a hospital in the 

influence area, provided that the AM facility v is at the center of the influence area (see 

[39]). 

3.3.1.4 Average inventory cost for AM facility 

Each inventory cost component consists of two costs, i.e. reorder cost and holding 

cost. Let, 𝑅𝑣 denote the reorder cost incurred by each AM facility while ordering each 

batch of raw materials that can be used to manufacture 𝑄𝑣𝑖
(𝑥) units. Then, the total 

reorder cost, for all the AM facilities over 𝜏 can be defined as  

𝑇𝑅𝐴𝐶𝑣(𝑥) = 𝑁𝑣𝑖
(𝑥)𝑅𝑣(𝑥)(

𝜏𝛾𝑖(𝑥) 𝜃𝑖(𝑥)𝐴𝑣𝑖(𝑥) 

𝑄𝑣𝑖
(𝑥)

) 

To calculate the inventory holding cost, let 𝜇𝑣 and 𝜎𝑣
2 be the mean and variance of 

lead time respectively and 𝛼𝑣 be the service level at each AM facility.  Note that, 

inventory holding cost itself consists of two unique costs, i.e. cycle inventory cost and 

safety stock cost.  Taking ℎ𝑣 as the single AM facility inventory holding cost per item 

over 𝜏, cycle inventory cost can be calculated as  

𝐶𝐼(𝑥) = ℎ𝑣

𝑄𝑣𝑖
(𝑥)

2
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Similarly, safety stock cost can be calculated by 

𝑆𝑆(𝑥) = ℎ𝑣𝑧𝛼𝑣√𝑉𝑎𝑟[𝐷𝑟𝑣,𝐿𝑇]  

where 𝑉𝑎𝑟[𝐷𝑟𝑣,𝐿𝑇] is the variance of demand over the lead time. Now, 𝑉𝑎𝑟[𝐷𝑟𝑣,𝐿𝑇] can 

also be reformulated as  

𝑉𝑎𝑟[𝐷𝑟𝑣,𝐿𝑇] = 𝜇𝑣𝛾𝑖(x)𝜃𝑖(𝑥)𝐴𝑣𝑖
(𝑥) + 𝜎𝑣

2(𝛾𝑖(x)𝜃𝑖(𝑥)𝐴𝑣𝑖
(𝑥))2  

Then, total average inventory cost for AM facilities’ can be illustrated by 

TI𝑣(𝑥)= TRAC𝑣(𝑥)+ CI𝑣(𝑥)𝑁𝑣𝑖
(x) + SS𝑣(𝑥) 𝑁𝑣𝑖

(x) 

3.3.1.5 Production cost at AM facilities 

One advantage of AM is that it facilitates on-demand production of personalized 

medical implants at faster rate than traditional manufacturing.  However, due to post 

processing operations required in AM, especially in the case of delicate bio-medical 

implants, significant lead time is required between when a hospital makes an order an 

when it receives it. The raw materials for bio-medical applications are usually chosen 

with care and are generally expensive. Moreover, AM machines are more sophisticated 

than their TM counterparts and as such require a more advanced skill set for operating 

them. Thus, the personnel/labor cost in AM is also significant in the operating cost of an 

AM facility. We include these factors in calculating the total production cost at the 

facilities. Let p be the production cost of each unit of product, cap be the capacity of each 

machine, and 𝑙 be the labor cost per machine per year. Then the production cost for each 

AM facility can be given by 

 TPC𝑣(𝑥) = 𝜏𝛾𝑖(𝑥)𝜃𝑖(𝑥)𝐴𝑣𝑖
(𝑥) ∗ 𝑝 ∗ 𝑁𝑣𝑖

(𝑥) +
 𝜏𝛾𝑖(x)𝜃𝑖(𝑥)𝐴𝑣𝑖

(𝑥)

𝑐𝑎𝑝
∗ 𝑙 ∗ 𝑁𝑣𝑖

(𝑥). 
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3.3.1.6 Average inventory cost for CRW 

The inbound cost for the CRW’s is not considered in the model; instead this cost 

in incorporated into the reorder cost. Let, 𝑅𝑛 be the reorder cost incurred by each CRW 

while ordering each batch of product with 𝑄𝑛(𝑥) unit equivalent of raw materials on it. 

Then the reorder cost for each CRW over 𝜏 can be expressed as  

𝑇𝑅𝑛(𝑥) = 𝑅𝑛(𝑥)(
𝜏𝛾(𝑥)𝜃(𝑥)𝑆

𝑄𝑛(𝑥)
) , where 𝜏𝛾(𝑥)𝜃(𝑥)𝑆 is the total expected demand at the 

CRW during 𝜏. Now, to calculate the inventory holding cost at each CRW, let ℎ𝑛 be the 

inventory holding cost per item during 𝜏, 𝜇𝑛 and 𝜎𝑛
2 be the mean and variance of lead 

time respectively, and 𝛼𝑛 be the service level at each CRW. Hence, total inventory 

holding cost for CRW can be expressed as  

𝑇𝐻𝑛 = ℎ𝑛(
𝑄𝑛(𝑥)

2
+ 𝑍𝜎𝑛

√𝑣𝑎𝑟[𝐷𝑛,𝐿𝑇] ) + 𝑇𝑅𝑛 where 𝑣𝑎𝑟[𝐷𝑛,𝐿𝑇] =
∑ 𝜇𝑛𝑆 𝛾𝑖(𝑥) 𝜃𝑖(𝑥)𝐴𝑣𝑖(𝑥)

𝑄𝑣𝑖
(𝑥)2 ). 

3.3.2 Final CA network cost model 

The cost expression derived in Section 3.2.1 are in terms of each point x in the 

service region S⊆ 𝑅2.  Each expression of the cost functions captures fine details of the 

logistics network model. Based on the above cost functions we can now define our 

logistics network as  

Minimize 

 ∫ (𝑇𝑁𝐶(𝑥))𝑑𝑥 = ∫ (𝑇𝐴𝐶(𝑥) + 𝑇𝐼𝐴𝐶(𝑥) + 𝑇𝑂𝐴𝐶(𝑥) + 𝑇𝐼𝑣(𝑥) +
𝑆

0

𝑆

0

𝑇𝑃𝐶𝑣(𝑥)  +   𝑇𝐻𝑛(𝑥)) (3.1) 

subject to  

 𝑁𝑉𝑖
(𝑥). 𝐴𝑉𝑖

(𝑥) = 𝑆 (3.2) 
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 𝑄𝑛(𝑥) ≥ 0 (3.3) 

 𝑄𝑣𝑖
(𝑥)  ≥ 0 (3.4) 

 𝐴𝑣𝑖
(𝑥) ≥ 0 (3.5) 

 𝑄𝑛(𝑥), 𝑄𝑣𝑖
(𝑥) ∈ 𝑍+ (3.6) 

where 𝑄𝑛(𝑥), 𝑄𝑣𝑖
(𝑥)  and 𝐴𝑣𝑖

(𝑥) are the decision variables. Constraints (3.2) are the area 

coverage constraints which ensure that the entire service region is covered by the sum of 

the distribution centers influence area. Constraints (3.3), Constraints (3.4), and 

Constraints (3.5) are non-negativity constraints for decision variables 𝑄𝑛(𝑥), 𝑄𝑣𝑖
(𝑥)  and 

𝐴𝑣𝑖
(𝑥). Constraints (3.6) are integer constraints. 

To get any feasible solution of the optimization problem, all the decision variables 

𝑄𝑛(𝑥), 𝑄𝑣𝑖
(𝑥)  and 𝐴𝑣𝑖

(𝑥)  should be strictly greater than zero. So, adding Constraints 

(3.3), Constraints (3.4), and Constraints (3.5) do not change the nature of the problem and 

solution. If the value of the decision variables is zero, the objective function value 

explodes and feasible solution cannot be obtained. So, adding these constraints in the 

model is justifiable. 

3.4 Solution methodology 

We have investigated the southeastern states of USA, shown in Figure 3.1, as 

potential test bed for the study. The logistics network that covers the hospitals and clinics 

in the region with distribution shown in Figure 3.2 contains discrete data which cannot be 

approximated and hence becomes extremely challenging to solve. To overcome this 

challenge, a two phase approximation approach developed in Tsao et al. [152] is used. 

This approximation approach is basically an extension of the work done by Daganzo [38] 
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where he demonstrated different ways to model complex logistics network using 

continuous approximation approach. 

With a close observation of the logistics network shown in Figure 3.2, it becomes 

clear that the hospitals location is not uniformly distributed, which necessarily means that 

hospital density does not follow a homogenous Poisson process. As a result, customer 

demand at each point cannot be declared as 𝛾𝑖(x) 𝜃𝑖(𝑥), x∈ 𝑆 that is slow varying. 

However, it can be stated that within a small sub-region, this function can be considered 

as slow varying. In Phase 1 of the two phase approximation approach, the whole 

distribution network is divided into smaller sub region such that the hospital density 

within that sub-region satisfies the slow varying property of input parameters of the 

model. Next, in Phase 2, the mathematical model is implemented over these sub-regions 

to get the optimal value of  𝑄𝑛, 𝑄𝑣𝑖
 and 𝐴𝑣𝑖

. 

3.4.1 CRW service region and grid cover-couple approach 

We have investigated the southeastern states of USA, shown in Figure 3.1, as 

potential test bed for the study. Let us suppose that there is only one CRW in the service 

region that we have investigated. The raw materials for manufacturing medical implants 

are generally not available locally. In some cases, they have to be sourced from overseas 

which makes storing them in one location or few regional central locations from where 

they could be delivered to the AM facilities a viable option. The next job is to divide this 

region in such a way that the slow varying property of the input functions hold. The grid 

cover approach can be an effective way to achieve that. To do that, a mesh of equal sized 

squares is created to cover the service region. The next step is to choose the feasible size 

of the grid. A trial and error method is used to choose the size of the grid where the 
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smallest level of detail is captured at the county level. Note that the county with the 

highest variability in demand is chosen as the size of the grid. A density can be assigned 

to each and every square grid as the hospital density in each county is known beforehand. 

 

Figure 3.1 The AM supply chain covers the southeastern region of USA 

 

 

Figure 3.2 Distribution of hospitals and clinics by counties in the southeastern states 
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The next step in the grid cover-couple approach is to create clusters within the 

created square grids. Grids with similar densities can be clustered together to define areas 

where the hospital density function is slow varying. To do so, a tolerance limit (𝜖) is 

specified which measures the level of similarity among grids. More specifically, if two 

grids density is at most 𝜖 apart, these two grids can be labelled as similar and clustered 

together. However, the choice of 𝜖 solely depends on the hospital density pattern at the 

logistics network under study. Hospital density considered in this study is fairly similar to 

one another in most of the counties; hence 𝜖 is taken to be very small. Using this 𝜖 value, 

the entire region is divided into smaller clusters. Within each of these clusters, the 

hospital density is slow varying. Figure 3.3 illustrates this procedure. 

 

Figure 3.3 Grid cover and coupling 

 

3.4.2 AM facility influence area using continuous approximation approach 

In this phase, the optimization model developed in Section 3.2 is used for 

modeling the total logistics cost in each cluster. Continuous approximation approach is 
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used to solve this optimization model and obtain the optimal size of the circular influence 

area (𝐴𝑣𝑖
) for AM facility, and ordering quantity for AM facility (𝑄𝑣𝑖

) and CRW (𝑄𝑛) 

respectively. By determining the size of the influence area for a particular cluster, one can 

easily determine the total number of AM facilities needed to serve the entire cluster. A 

sample influence area for an AM facility is shown in Figure 3.4. 

 

Figure 3.4 Influence area for an AM facility 

 

Note that, to develop the continuous approximation model, the dependence of all 

continuous functions on parameter x can be ignored as each cluster within a given CRW 

has slow varying property. For the remaining portion of this study, we use 

𝑄𝑣𝑖
, 𝐴𝑣𝑖

, 𝑄𝑛, 𝛾𝑖, and 𝜃𝑖 instead of 𝑄𝑣𝑖
(𝑥), 𝐴𝑣𝑖

(𝑥), 𝑄𝑛(𝑥), 𝛾𝑖(𝑥), and 𝜃𝑖(𝑥). Taking 

𝐶1, 𝐶2, … , 𝐶𝑁 as the number of clusters within the service region under the CRW, the 

logistics network model formulation shown in Equation (3.1) now becomes 
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 TNC(𝐴𝑣𝑖
, 𝑄𝑣𝑖

,𝑄𝑛 )=∑ 𝐹𝑣
𝐶𝑖

𝐴𝑣𝑖
 

𝑁
𝑖=1  + (𝐶𝑓+𝐶𝑝𝑄𝑣𝑖

) (𝜏𝛾𝑖 𝜃𝑖,

𝑄𝑣𝑖

) 𝐶𝑖 +∑ 𝐶𝑑(𝐾𝑣 √𝐴𝑣𝑖
𝜏𝛾𝑖 𝜃𝑖𝐶𝑖

𝑁
𝑖=1 ) 

+∑ 𝐶𝑖 𝑅𝑣  (
𝜏𝛾𝑖𝜃𝑖,

𝑄𝑣𝑖

𝑁
𝑖=1 )+ ∑ ℎ𝑣

𝑄𝑣𝑖
𝐶𝑖

2𝐴𝑣𝑖

  𝑁
𝑖=1 +∑ ℎ𝑣

𝐶𝑖𝑍𝛼𝑣𝑖

𝐴𝑣𝑖

√𝜇𝑣𝛾𝑖 𝜃𝑖𝐴𝑣𝑖
+ 𝜎𝑣

2(𝛾𝑖𝜃𝑖𝐴𝑣𝑖
)2   𝑁

𝑖=1 + 

 𝜏𝛾𝑖𝜃𝑖p𝐶𝑖+
 𝜏𝛾𝑖 𝜃𝑖

𝑐𝑎𝑝
𝑙𝐶𝑖+𝑅𝑛 ( 𝜏𝛾𝑖 𝜃𝑖𝐶𝑖

𝑄𝑛
) +ℎ𝑛(

𝑄𝑛(𝑥)

2
+ 𝑍𝛼𝑛√∑

𝜇𝑛𝜏𝛾𝑖 𝜃𝑖𝐶𝑖

𝑄𝑣𝑖
2

𝑁
𝑖=1 ) (3.7) 

subject to 

 𝑄𝑛(𝑥) ≥ 0 (3.8) 

 𝑄𝑣𝑖
(𝑥)  ≥ 0 (3.9) 

 𝐴𝑣𝑖
(𝑥) ≥ 0 (3.10) 

 𝑄𝑛(𝑥), 𝑄𝑣𝑖
(𝑥) ∈ 𝑍+ (3.11) 

3.4.3 Solution approach 

There are three decision variables in the model; 𝑄𝑛, 𝑄𝑣𝑖
 and 𝐴𝑣𝑖

. To solve the 

problem, first we solve the problem for 𝑄𝑛.  Let us assume that, 𝑄𝑣𝑖
 and 𝐴𝑣𝑖

 is known. 

Hence, we have  

𝒅𝟐𝑻𝑵𝑪(𝑄𝑛\𝐴𝑣𝑖
,𝑄𝑣𝑖

)

𝒅𝑸𝒏
𝟐 =𝟐𝑅𝑛 ∑ 𝜏𝛾𝑖 𝜃𝑖𝐶𝑖

𝑁
𝑖=1

𝑸𝒏
𝟑 > 0 

As the hessian of the function of TNC is greater than zero, we can say that the 

function is strictly convex with respect to 𝑄𝑛 and is positive definite. This means than we 

can calculate the optimal value of  𝑄𝑛 by equating the gradient of TNC function to zero. 

This means that 

 𝑄𝑛
∗ =√

𝟐𝑅𝑛 ∑ 𝜏𝛾𝑖 𝜃𝑖𝐶𝑖
𝑁
𝑖=1

ℎ𝑛
 (3.12) 

Substituting the value of 𝑄𝑛
∗  in Equation (3.7) we get 
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 𝑇𝑁𝐶(𝐴𝑣𝑖
, 𝑄𝑣𝑖

,𝑄𝑛 )=∑ 𝐹𝑣
𝐶𝑖

𝐴𝑣𝑖
 

𝑁
𝑖=1  + (𝐶𝑓+𝐶𝑝𝑄𝑣𝑖

) (𝜏𝛾𝑖 𝜃𝑖,

𝑄𝑣𝑖

) 𝐶𝑖 +∑ 𝐶𝑑(𝐾𝑣 √𝐴𝑣𝑖
𝜏𝛾𝑖 𝜃𝑖𝐶𝑖

𝑁
𝑖=1 ) 

+∑ 𝐶𝑖 𝑅𝑣  (
𝜏𝛾𝑖𝜃𝑖,

𝑄𝑣𝑖

𝑁
𝑖=1 ) + ∑ ℎ𝑣

𝑄𝑣𝑖
𝐶𝑖

2𝐴𝑣𝑖

  𝑁
𝑖=1 +∑ ℎ𝑣

𝐶𝑖𝑍𝛼𝑣𝑖

𝐴𝑣𝑖

√𝜇𝑣𝛾𝑖 𝜃𝑖𝐴𝑣𝑖
+ 𝜎𝑣

2(𝛾𝑖𝜃𝑖𝐴𝑣𝑖
)2   𝑁

𝑖=1  

+  𝜏𝛾𝑖𝜃𝑖p𝐶𝑖+
 𝜏𝛾𝑖 𝜃𝑖

𝑐𝑎𝑝
𝑙𝐶𝑖+√2ℎ𝑛𝑅𝑛 ∑  𝜏𝛾𝑖 𝜃𝑖𝐶𝑖

𝑁
𝑖=1  + ℎ𝑛(𝑍𝛼𝑛√∑

𝜇𝑛𝛾𝑖 𝜃𝑖𝐶𝑖

𝑄𝑣𝑖
2

𝑁
𝑖=1 ) (3.13) 

Now, this model becomes a non-linear function with two unknown variables 𝑄𝑣𝑖
 and 𝐴𝑣𝑖

. 

Note that in the last term of Equation (3.13), there is 𝑄𝑣𝑖

2 in the denominator which 

makes the evaluation of convexity very challenging. To overcome this exacting nature of 

the problem, a two stage solution approach developed in Tsao et al. [152] is proposed.  

The detail of the two stage solution approach is provided below: 

Stage 1: In stage 1 of the solution approach, we first eliminate the 𝑄𝑣𝑖

2 term from the last 

term of Equation (3.13). This makes the problem linear and makes it easy to evaluate the 

convexity property. So, Equation (3.13) can be rewritten as 

 𝑇𝑁𝐶𝐸(𝐴𝑣𝑖
, 𝑄𝑣𝑖

)=∑ 𝐹𝑣
𝐶𝑖

𝐴𝑣𝑖
 

𝑁
𝑖=1  + (𝐶𝑓+𝐶𝑝𝑄𝑣𝑖

) (𝜏𝛾𝑖 𝜃𝑖,

𝑄𝑣𝑖

) 𝐶𝑖 +∑ 𝐶𝑑(𝐾𝑣 √𝐴𝑣𝑖
𝜏𝛾𝑖 𝜃𝑖𝐶𝑖

𝑁
𝑖=1 ) 

+∑ 𝐶𝑖 𝑅𝑣  (
𝜏𝛾𝑖𝜃𝑖,

𝑄𝑣𝑖

𝑁
𝑖=1 )+ ∑ ℎ𝑣

𝑄𝑣𝑖
𝐶𝑖

2𝐴𝑣𝑖

  𝑁
𝑖=1 +∑ ℎ𝑣

𝐶𝑖𝑍𝛼𝑣𝑖

𝐴𝑣𝑖

√𝜇𝑣𝛾𝑖 𝜃𝑖𝐴𝑣𝑖
+ 𝜎𝑣

2(𝛾𝑖𝜃𝑖𝐴𝑣𝑖
)2   𝑁

𝑖=1 + 

𝜏𝛾𝑖𝜃𝑖p𝐶𝑖+
 𝜏𝛾𝑖 𝜃𝑖

𝑐𝑎𝑝
𝑙𝐶𝑖+√2ℎ𝑛𝑅𝑛 ∑  𝜏𝛾𝑖 𝜃𝑖𝐶𝑖

𝑁
𝑖=1  + ℎ𝑛(𝑍𝛼𝑛

√∑ 𝜇𝑛𝛾𝑖 𝜃𝑖𝐶𝑖
𝑁
𝑖=1 )                   (3.14) 

Note that, the optimal solution to 𝑇𝑁𝐶𝐸(𝐴𝑣𝑖
, 𝑄𝑣𝑖

) is the initial solution used in stage 2. To 

solve Equation (3.14), let us assume that 𝐴𝑣𝑖
 is given and so the hessian of 

𝑇𝑁𝐶𝐸(𝐴𝑣𝑖
, 𝑄𝑣𝑖

) with respect to 𝐴𝑣𝑖
 is given by  

 
𝒅𝟐TNC𝐸(𝑄𝑣𝑖

\𝐴𝑣𝑖
)

𝒅𝑸𝒏
𝟐 =

𝟐(𝐶𝑓+𝑅𝑣) 𝜏𝛾𝑖 𝜃𝑖𝐶𝑖

𝑸𝒗𝒊
𝟑 > 0, 𝑖 = 1,2, … , 𝑁  
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Since TNC𝐸(𝐴𝑣𝑖
, 𝑄𝑣𝑖

) is also a convex function of 𝑄𝑣𝑖
, the estimated value of  𝑄𝑣𝑖

𝐸  can be 

obtained by  

𝑑𝑇𝑁𝐶𝐸(𝑄𝑣𝑖
\𝐴𝑣𝑖

)

𝑑𝑄𝑣𝑖

= 0  

Hence, estimated value of 𝑄𝑣𝑖
 is  

 𝑄𝑣𝑖

𝐸(𝐴𝑣𝑖
) = √

2𝐴𝑣𝑖
(𝐶𝑓+𝑅𝑣) 𝜏𝛾𝑖 𝜃𝑖

ℎ𝑣
 (3.15) 

Substituting the value of 𝑄𝑣𝑖

𝐸 into Equation (3.14), we get 

𝑇𝑁𝐶𝐸(𝐴𝑣𝑖
)= ∑ 𝐹𝑣

𝐶𝑖

𝐴𝑣𝑖
 

𝑁
𝑖=1  +∑ 𝐶𝑝𝜏𝛾𝑖 𝜃𝑖𝐶𝑖

𝑁
𝑖=1 +∑ 𝐶𝑑(𝐾𝑣 √𝐴𝑣𝑖

𝜏𝛾𝑖 𝜃𝑖𝐶𝑖
𝑁
𝑖=1 )+

 ∑ ℎ𝑣

𝐶𝑖𝑍𝛼𝑣𝑖

𝐴𝑣𝑖

√𝜇𝑣𝛾𝑖 𝜃𝑖𝐴𝑣𝑖
+ 𝜎𝑣

2(𝛾𝑖𝜃𝑖𝐴𝑣𝑖
)2   𝑁

𝑖=1 +𝜏𝛾𝑖𝜃𝑖p𝐶𝑖+
 𝜏𝛾𝑖 𝜃𝑖

𝑐𝑎𝑝
𝑙𝐶𝑖 +

√2ℎ𝑛𝑅𝑛 ∑  𝜏𝛾𝑖 𝜃𝑖𝐶𝑖
𝑁
𝑖=1  +ℎ𝑛(𝑍𝛼𝑛

√∑ 𝜇𝑛𝛾𝑖 𝜃𝑖𝐶𝑖
𝑁
𝑖=1 )+∑ √

2ℎ𝑣(𝐶𝑓+𝑅𝑣)𝜏𝛾𝑖 𝜃𝑖

𝐴𝑣𝑖

𝑁
𝑖=1  𝐶𝑖. 

Now, Algorithm 1 determines the optimal estimated values for 𝑄𝑣𝑖

𝐸 and 𝐴𝑣𝑖

𝐸 . Algorithm 

3.1 is illustrated in detail below: 

Algorithm 3.1 

Step 1: verifying  
𝑑2𝑇𝑁𝐶𝐸(Ari

)

𝑑𝐴𝑟𝑖
2 > 0, local minimum points are determined by solving for 

 
𝑑𝑇𝑁𝐶𝐸(Avi

)

𝑑Avi

= 0   

Step 2: Choose the local minimum point that gives the smallest value of 𝑇𝑁𝐶𝐸(Avi
).  

Step 3: Determine the estimated value of  𝑄𝑣𝑖
 by Equation (3.15)  

Step 4: Adjust 𝑄𝑣𝑖

𝐸 , 𝑖 = 1~𝑁 and get the nearest integer values. 
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Stage 2: In Stage 2, a search-based algorithm is used to solve the original problem, 

starting with the initial estimated solution, 𝑄𝑣𝑖

𝐸  which we found in Algorithm 3.1. It is 

assumed that the optimal solution of 𝑇𝑁𝐶𝐸(Avi
, Qvi

)  is very close to the optimal 

solution of 𝑇𝑁𝐶(Avi
, Qvi

) since Equation (3.13) is similar to Equation (3.13) except for 

the safety stock term. This ensures that by applying Algorithm 3.2 we can efficiently find 

the optimal solution. 

Algorithm 3.2 

Step 1: Let 𝑄𝑣𝑖

𝑗=1
= 𝑄𝑣𝑖

𝐸 , find the value of 𝐴𝑣𝑖

𝑗=1 to minimize 𝑇𝑁𝐶(Avi
|𝑄𝑣𝑖

1 ) and compute 

𝑇𝑁𝐶(𝐴𝑣
1 , 𝑄𝑣𝑖

1 ) by Equation (3.13). 

Step 2:  Let 𝑄𝑣
𝑗+1

= 𝑄𝑣𝑖

𝑗
+ 1, find the value of 𝐴𝑣𝑖

𝑗+1to minimize 𝑇𝑁𝐶(𝐴𝑣𝑖

1 |𝑄𝑣𝑖

𝑗+1
) and 

compute 𝑇𝑁𝐶(𝐴𝑣𝑖

𝑗+1
, 𝑄𝑣𝑖

𝑗+1
) by Equation (3.12). 

Step 3: If 𝑇𝑁𝐶(𝐴𝑣𝑖

𝑗+1
, 𝑄𝑣𝑖

𝑗+1
) < 𝑇𝑁𝐶(𝐴𝑣𝑖

𝑗
, 𝑄𝑣𝑖

𝑗
), then let 𝑄𝑣𝑖

𝑗
= 𝑄𝑣𝑖

𝑗+1 and go to Step 2; 

otherwise, go to Step 4. 

Step 4: Let 𝑄𝑣𝑖

𝑗+1
= 𝑄𝑣𝑖

𝑗
− 1, find the value of 𝐴𝑣𝑖

𝑗+1to minimize 𝑇𝑁𝐶(𝐴𝑣𝑖

1 |𝑄𝑣𝑖

𝑗+1
) and 

compute 𝑇𝑁𝐶(𝐴𝑣𝑖

𝑗+1
, 𝑄𝑣𝑖

𝑗+1
) by Equation (3.13). 

Step 5: If 𝑇𝑁𝐶(𝐴𝑣𝑖

𝑗+1
, 𝑄𝑣𝑖

𝑗+1
) < 𝑇𝑁𝐶(𝐴𝑣𝑖

𝑗
, 𝑄𝑣𝑖

𝑗
), then let 𝑄𝑣𝑖

𝑗
= 𝑄𝑣𝑖

𝑗+1 and go to Step 4; 

otherwise, go to Step 6. 

Step 6: Compute Qn
∗  by Equation (3.12) and adjust Qn

∗  to get the nearest integer value. 

Step 7: Let 𝑇𝑁𝐶(𝐴𝑣𝑖

∗ , 𝑄𝑣𝑖

∗ , Qn
∗ ) = 𝑇𝑁𝐶(𝐴𝑣𝑖

𝑗
, 𝑄𝑣𝑖

𝑗
, Qn

∗ ). The optimal solution is 

(𝐴𝑣𝑖

∗ , 𝑄𝑣𝑖

∗ , Qn
∗ ).            
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3.5 Numerical study 

We apply the proposed network cost model, as described by Section 3.3, and the 

CA-based solution approach discussed in Section 3.3 to a real-world case study, in which 

we investigate the optimal deployment configuration of AM facilities and the raw 

material inventory policy of the CRW’s and AM facilities. Twelve states in the 

southeastern region of USA which include Alabama (AL), Arkansas (AR), Florida (FL), 

Georgia (GA), Kentucky (KY), Louisiana (LA), Mississippi (MS), North Carolina (NC), 

South Carolina (SC), Tennessee (TN), Virginia (VA), and West Virginia (WV) are 

adopted as test bed in this study.. 

In particular, we conduct a series of numerical studies to determine where AM 

facilities for the fabrication of medical implants should be located to serve the hospitals 

and clinics in this region at the minimum cost, and identify the cost parameters that may 

pose significant impacts on this decision.  

(1) One of the cost parameters to be considered is the unit transportation cost or 

delivery cost per mile per item, 𝐶𝑑. It is expected that if this cost is high, AM facilities 

should be sited closer to the hospitals to reduce the total transportation cost.  

(2) The initial investment cost of AM, mainly consisting of the cost of AM 

machines, constitutes a significant part of the total network cost. A high fixed cost means 

that less number of AM facilities should be opened to curtail the total fixed cost. This 

means that the manufacturing sites will be located further from the hospitals and results 

in higher transportation cost. We investigate how these types of conflicts impact the 

location decisions and total supply chain network cost. (3) Reorder cost and inventory 

holding cost are other cost parameters that can affect the reorder frequency and total 
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inventory cost. We investigate how various values of these parameters affect the AM 

facility distribution and total network cost in the region.  

(4) Personnel cost which contributes to the total production cost is another cost 

parameter that affects how many AM facilities are located. This cost can be tied to the 

automation level of AM machines where a high personnel cost is construed as a low level 

automation level where one staff is able to operate only fewer machines. In another light, 

it can be related to the level of availability of the skill sets required to operate AM 

machines which are usually sophisticated. We expect that a high personnel cost will 

discourage the location of many AM facilities.  

(5) The demand level of bio-medical implants is a parameter that affects the 

distribution of AM facilities. Due to the high cost of AM systems, it may not make 

economic sense in commercial applications to locate AM facilities if there is not enough 

demand to justify their utilization. It makes sense to visualize the demand of bio-medical 

implants in the region increasing or decreasing in the future. An increasing aging 

population will likely increase the demand for hip and knee implants as well as 

cardiovascular stents. However, improvements in personal lifestyles and other treatment 

alternatives may diminish the demand for procedures that require AM bio-medical 

products. We investigate how various demand levels impact AM deployment decisions.  

(6) Customer service level impacts any supply chain network cost. A high service 

level means increased responsiveness by the business which may be achieved by keeping 

lots of inventory to ensure there is no stock out or locating AM facilities very close to the 

customer. Any of these approaches results in a high supply chain cost. We conduct 
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experiments to study how different service levels affect the total network cost and the 

location of AM facilities.  

(7) The last but not the least of this study compares the benefits of our novel AM 

deployment model with other approaches in literature. The closest quantitative 

approaches of AM supply chain to our method consider centralized and distributed 

deployment which we understand to be at two ends of the deployment spectrum. Our 

opinion is that the best deployment approach lies between these two extremes which our 

model is able to determine. We investigate the status quo savings in total network cost 

when our model is used to select the best AM facility distributions in the southeastern 

region vis-a-vis the approaches in literature. Furthermore, we study what happens to the 

savings in various future scenarios of cost parameters. 

3.5.1 Data description 

We focus on four biomedical implants, which are known to have been 

manufactures using AM:  hip and knee joint implants, dental braces, and vessel stents. 

We collected data from major hospitals in the southeastern region, as well as the nearby 

clinics, about the use of the four biomedical implants. We confirm that for each state, the 

average demand matches with the estimate derived by multiplying the nationwide 

demand of the implants by the proportion of the state’s-USA population, published by the 

Centers for Disease Control and Prevention. We find that both the demand density for the 

products and hospital density are unique for each state and are slow varying, necessary 

conditions that justify the use of the CA model. Since the inventory at the CRW’s and 

AM facilities are mainly at the raw material level, we derive an equivalent amount for the 

raw materials used in producing these four products by consolidating them into an 
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aggregate unit. We use the ratio 0.4: 0.4: 0.12: 0.08  for weight of AM raw materials used 

to produce a unit hip implant, knee implant, dental implant and stent, respectively. This 

data is shown in Table 3.2. 

In order to estimate the fixed investment cost of an AM facility, we assume that 

the location cost mainly consists of the cost of AM machines. Consequently, we use the 

prices of AM systems based on the quotation of Selective Laser Melting (SLM) systems 

in 2015. We choose the SLM system because of its widely documented use for the 

fabrication of bio-medical implants. The build time for each part is estimated using the 

relative volume of parts using SLM state-of-the-art machines for year 2015. We take the 

build time and post processing time into consideration and set the lead time to two weeks. 

For example, depending on the original equipment manufacturer, machine dimensions, 

effective build volume of the machine and its operational build speed, the market price of 

an SLM system used for the production of biomedical implants ranged from USD 

400,000 to USD 1,000,000 in 2015. We obtained this data from quotations received by 

the Department of Mechanical Engineering of the Mississippi State University on the 

price of SLM machines. Such a range in prices from similar factors agree with the data 

from Hopkinson and Dickens [64], Atzeni et al. [7], Bartolo [14], Lindemann et al. [83], 

and Baumers et al. [17]. We assume an average price of $500,000 for one AM machine 

which is reasonable for the price of the machine that can produce the identified bio-

medical implants. A similar example can be found in Bartolo [14], in which the authors 

recorded an annual maintenance and investment cost of $110,320/year over 10 years for a 

similar machine with a purchase price of $700,000. Using the equivalent annual cost 

(EAC) model, we calculate the average annualized investment and maintenance cost. 
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There is a wide range of depreciation methods in literature. The simplest method is the 

straight line method which calculates the annual depreciation cost by dividing the 

machine purchase price by its expected life. The more complex methods such as the 

accelerated depreciation, equivalent annual cost (EAC) and remaining value percentage 

(RVP) methods, use models that take into account factors like machine age, salvage 

value, size, usage, manufacturer, condition, interest rate and region of deployment to 

calculate annual depreciation cost. Jones and Smith [67] provided an overview and 

historical perspective of the EAC. Cross and Perry [36], Hansen and Lee [57], 

Unterschultz and Mumey [153], and Dumler et al. [43] presented a detailed discussion of 

multiple variations of RVP models. We calculated the average annualized investment and 

maintenance cost based on a life-span of ten years, resulting in an average annualized 

investment and maintenance cost of $75,000 for a small capacity AM facility. It is worth 

noting that for such a fast evolving technology like AM, a faster replacement policy may 

be implemented (e.g., 5 year replacement), which will result in a higher annualized 

investment. The annualized investment and maintenance cost for medium and large 

capacity AM facilities could be $135,000 and $182,000, respectively.  We take the cost 

of the large capacity AM as the annual fixed cost since it is enough to meet the 

production capacity requirement of each AM facility influence region demand. 

We assume that the biomedical implants are delivered using FedEx, and the costs 

of transportation are calculated using the online tool provided by FedEx Get Rates. The 

fixed transportation cost for inbound shipment (Cf), variable transportation cost per item 

(Cp) and delivery cost per item per mile (Cd) are $80.00, $34.02 and $1.00, respectively. 

We assume a planning horizon of one year and an annual raw material inventory holding 
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cost per item at both AM facility and CRW of $40. The production cost per unit product 

(p) excluding labor cost is taken as $1000. This cost is mainly the cost of raw material 

and energy consumption which is usually high for biomedical implants. At $1000, the 

production cost results in an ATR ratio much less than 3.0 which is required to encourage 

investment in AM technology for biomedical implants [45]. The annual salary is $60,000 

per staff which is commensurate with the skill of an engineering graduate. One employee 

is able to operate three AM machines located at each facility which means an automation 

level of 1:3. The fixed reorder cost for raw material at each AM facility and CRW are 

$100 and $200, respectively. The mean lead time at each AM facility and CRW are one 

week and two weeks, respectively while the variance is 0.5 at both AM facility and 

CRW. We require a service level of at least 95% at both locations. We use a distance 

metric and shape constant factor of 0.4, a value that Dasci and Verter [39] recommend for 

use in circular areas of influence.  Table 3.2 gives a summary of the data used in the base 

case study of the hospitals and clinics in the southeastern part of USA. 
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3.5.2 Solution approach illustration 

We present the results obtained with base cost parameters after applying 

Algorithm 3.1 and Algorithm 3.2 of Section 3.3 to the network cost model developed in 

Section 3.2. A total of 27 AM facilities is needed in the region for the fabrication of 

medical implants, with Florida having the highest number of AM facilities established in 

it and Arkansas, Mississippi and West Virginia having the least. The model tends to 

establish more AM facilities if there are more hospitals and customers that need to be 

served. Figure 3.5(a) shows the distribution of these AM facilities in the region while 

Table 3.3 shows the size of their influence areas of the AM facilities and their order 

quantities. The total network cost is USD 177,138,273 which is essentially an 

aggregation of total inbound transportation cost for AM facility, total outbound 

transportation cost for CRW, total average inventory holding cost of AM facilities and 

CRW, and total production cost of AM facility. The contribution of these costs as a 

percentage of the total AM supply chain cost for biomedical implants is shown in Figure 

3.5(b). The production cost, making up 90.5% of the total network cost, is higher than 

any other cost component due to the high cost of raw materials for implants, labor cost 

and post-processing costs which may involve its own supply chain. Inventory cost, 

constituting 1.1% of the total cost, represents the least cost component in AM supply 

chain network for biomedical implants in the region. In the following subsections, we 

investigate the impact of changes in model parameters on these cost components and 

other supply chain decisions. 
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Table 3.3 AM supply chain decisions for the 12 states in the region 

 
State 𝐴𝑣𝑖

 𝑄𝑣𝑖
 No. of AM facilities 

AL 27062 2250 2 
AR 38496 2201 1 
FL 12431 2419 5 

GA 18018 2326 3 
KY 24324 2268 2 
LA 28429 2243 2 
MS 35780 2210 1 
NC 16907 2341 3 
SC 19939 2305 2 
TN 19032 2315 2 
VA 16642 2344 3 
WV 24230 2217 1 

 𝑄𝑛                  12590 
 TNC ($)                    177,138,273 

 

 

 

Figure 3.5 Recommended distribution of AM facilities and resulting supply chain cost 
in the region 
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3.5.3 Parameters affecting the optimal decision 

In this subsection, we will investigate how changing demand and cost parameters 

affect the optimal influence area for each AM facility Avi
, the ordering quantity for each 

AM facility 𝑄𝑣𝑖
, the ordering quantity for the CRW 𝑄𝑛, and the total network cost, TNC. 

Tables 3.4 - 3.7 and Figures 3.6 - 3.8 illustrate the result of varying parameters in the 

model and these results are summarized as follows: 

3.5.3.1 Demand analysis 

We conduct a set of experiments to investigate how the economic decisions will 

be affected by various demand levels of medical implant. We take the current demand 

data for medical implants at hospitals in southeastern USA as the medium/baseline 

demand level, and consider demand level from -75% to 100%  while keeping every other 

parameter constant. A -75% change in demand signifies a 75% decrease in demand which 

can be achieved by multiplying 𝜃𝑖 by 0.25 in our model whereas a 100% change is an 

increase in demand obtained by multiplying the parameter by 2.0.   The solution from our 

model gives the number of AM facilities to be established in each state of the region, as 

well as the contribution of each cost component to the total network cost for each demand 

level. We find that  

(1) The demand level has a significant effect on the number of AM facilities 

located in the region and the network cost components. At the current level 

of demand, a total of 27 AM facilities need to be deployed in the region. 

Florida has five AM facilities located in it which is higher than any other 
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state’s whereas Arkansas, Mississippi and West Virginia have one each, the 

least among all the states.  

(2) When the demand level doubles the number of AM facilities deployed in the 

region increases to 43, an increase of more than 59%. This results in a total 

network cost increase of 98%. When the demand level reduces by 50%, only 

18 AM facilities are required in the entire region, which represents a 

decrease of 33%.  

(3) The decrease in demand causes a 49% decrease in the total network cost.  

When the demand for the biomedical implants increases, the number of AM 

facilities established also increases due to more capacity being needed to satisfy the 

demand. The result is an increase in the investment cost in AM machines which adds to 

the total network cost. Moreover, both the production and transportation cost also 

increase with increase in demand because more raw materials are bought and shipped 

from one point to the other to manufacture implants needed to satisfy the additional 

demand. Obviously, the production cost dominates every other cost component due to the 

high cost of raw materials for medical implants, labor cost and energy consumption of 

AM technology. However, the total inventory cost decreases when the demand increases. 

As more implants are needed, the raw materials kept at both the AM facilities and CRW’s 

are depleted fast thereby reducing inventory holding cost. These results are portrayed in 

Figure 3.6. 
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Figure 3.6 Impact of demand levels on supply chain network cost and AM deployment 
configuration 

 

3.5.3.2 Effect of delivery cost, 𝑪𝒅 

In order to measure the effect of changes in the delivery cost per mile per item, 

(𝐶𝑑), on the supply chain decision, we vary the delivery cost per mile per item (𝐶𝑑) from 

$1 (base case) to $2, and finally to $3, while keeping all other parameters constant in our 

model.  At each level of the delivery cost per mile per item, we examine for each of the 

12 states what impact a change in 𝐶𝑑 has on Avi
, 𝑄𝑣𝑖

, 𝑄𝑛 𝑎𝑛𝑑 𝑇𝑁𝐶. We observe that  
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(4) Both 𝑨𝒗𝒊
 (the influence area size of each AM facility in a given state) 𝑸𝒗𝒊

 (the 

recommended order quantity at the AM facility) decrease, 𝑸𝒏 (the order 

quantity at the CRW) remains the same and the total network cost increases 

as 𝑪𝒅 increases. Specifically, when the delivery cost per mile per item 

increases from $1 to $2, the average influence area of each AM facility 

decreases by 36% which translates to an increase of 57% in the number of 

AM facilities established.  

(5) The average order quantity at the AM facilities decreases by 35% whereas 

the total network cost increases by about 4%.  

As 𝐶𝑑 increases, the model responds by locating AM facilities closer to customers 

in an attempt to minimize the delivery distance covered. The resulting decrease in an AM 

facility’s influence area implies that it attends to fewer customers which necessitates it to 

reduce its ordering quantity. However, as the influence area reduces with increase in 𝐶𝑑 , 

more AM facilities need to be established to satisfy the customer demands of hospitals 

within the service region. The additional cost from increased number of AM facilities 

established outweighs any decrease in transportation cost accrued by locating the AM’s 

closer to the customers, thus the increase in total network cost as 𝐶𝑑 increases. Since 

there is no change in demand level and the CRW still serves the same entire southeastern 

region, its order quantity does not need to change, hence, 𝑄𝑛 remains the same for all 

values of 𝐶𝑑. This result is shown in Table 3.4. 
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Table 3.4 Effect of  𝐶𝑑 

𝐶𝑑 = 1 𝐶𝑑 = 2 𝐶𝑑 = 3 

𝐴𝑣𝑖
 𝑄𝑣𝑖

 No. of AM 
facilities 𝐴𝑣𝑖

 𝑄𝑣𝑖
 

No. of 
AM 
facilities 

𝐴𝑣𝑖
 𝑄𝑣𝑖

 No. of AM 
facilities 

27062 2250 2 17046 1444 4 13007 1126 5 
38496 2201 1 24245 1392 3 18500 1084 3 
12431 2419 5 7831 1622 9 5976 1267 12 
18018 2326 3 11350 1524 6 8661 1189 7 
24324 2268 2 15321 1463 3 11692 1141 4 
28429 2243 2 17906 1436 3 13664 1119 4 
35780 2210 1 22536 1402 3 17196 1092 3 
16907 2341 3 10650 1539 6 8127 1201 7 
19939 2305 2 12560 1502 3 9585 1172 4 
19032 2315 2 11989 1512 4 9149 1180 5 
16642 2344 3 10484 1543 5 8000 1204 6 
24230 2217 1 19488 1399 2 14871 1109 2 

𝑄𝑛                  12590 𝑄𝑛                  12590 𝑄𝑛                   12590 

TNC ($)                 
177,138,273 TNC                

184,191,380 TNC                  
190,099,534 

 

3.5.3.3 Effect of ordering costs, 𝐑𝐯 𝐚𝐧𝐝 𝐑𝐧 

We measure the effect of changes in the ordering costs, (𝑅𝑣 and 𝑅𝑛) on the decision 

variables by varying their values in our models while keeping all other parameters 

unchanged. We increase 𝑅𝑣 and 𝑅𝑛 from their base values of $100 and $200 to $150 and 

$250 respectively in the first experimental instance. In the second experimental instance, 

the value of 𝑅𝑣 and 𝑅𝑛 are further increased to $200 and $300, respectively. We observe 

that  

(6)  𝑸𝒗𝒊
 (the recommended order quantity at the AM facility), 𝑸𝒏 (the order 

quantity at the CRW) and TNC increase with increase in the reorder costs of 

each AM facility and CRW whereas there is no significant effect on the 

influence area, 𝑨𝒗𝒊
. Specifically, in the second experimental instance, where 
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𝑹𝒗 𝐚𝐧𝐝 𝑹𝒏 were increased by 100% and 50%, respectively, 𝑸𝒗𝒊
, 𝑸𝒏 𝐚𝐧𝐝 𝑻𝑵𝑪 

increase by 26%, 22% and 0.1%, respectively. 

The result makes intuitive sense because if 𝑅𝑣 and 𝑅𝑛increase, the CRW and AM 

facilities will increase their respective ordering quantities to reduce ordering frequency, 

and minimize their total ordering cost. This decision generally should not affect the size 

of the influence area the AM facility controls, hence the number of AM facilities remain 

the same for all ordering cost values. The 0.1% increase in TNC by a 100% and 50% 

increase in 𝑅𝑣 and 𝑅𝑛 implies that the ordering cost is not a major cost factor in the AM 

supply chain decision. In other words, given an ordering cost, the model will choose an 

ordering quantity for the Am facilities and CRW so that the net effect on the total supply 

chain cost will be minimal. This result is shown in Table 3.5. 

Table 3.5 Effect of  𝑅𝑣 and 𝑅𝑛 

𝑅𝑣 = $100, 𝑅𝑛 = $200 𝑅𝑣 = 150, 𝑅𝑛 = $250 𝑅𝑣 = $200, 𝑅𝑛 = $300 
𝐴𝑣𝑖

 𝑄𝑣𝑖
 No. of AM 

facilities 
𝐴𝑣𝑖

 𝑄𝑣𝑖
 No. of 

AM 
facilities 

𝐴𝑣𝑖
 𝑄𝑣𝑖

 No. of AM 
facilities 

27062 2250 2 27072 2581 2 27079 2834 2 
38496 2201 1 38511 2540 1 38521 2769 1 
12431 2419 5 12434 2721 5 12438 3056 5 
18018 2326 3 18023 2644 3 18028 2934 3 
24324 2268 2 24332 2596 2 24338 2857 2 
28429 2243 2 28439 2575 2 28446 2824 2 
35780 2210 1 35794 2548 1 35803 2781 1 
16907 2341 3 16912 2656 3 16916 2953 3 
19939 2305 2 19945 2627 2 19950 2906 2 
19032 2315 2 19037 2635 2 19042 2919 2 
16642 2344 3 16647 2659 3 16651 2957 3 
24230 2217 1 24230 2565 1 24230 2778 1 

𝑄𝑛                   12590 𝑄𝑛                   14080 𝑄𝑛                   15420 

TNC ($)                 177,138,273 TNC                  
177,242,781 TNC                 

177,379,843 
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3.5.3.4 Effect of unit inventory holding costs, 𝒉𝒗 𝒂𝒏𝒅 𝒉𝒏 

In the next experiment, we investigate whether increasing inventory holding cost of 

AM facility, ℎ𝑣  and CRW, ℎ𝑛 has any effect on Avi
, 𝑄𝑣𝑖

, 𝑄𝑛 and 𝑇𝑁𝐶. Initially, the value 

of both ℎ𝑣 and ℎ𝑛 are taken as $40. In second and third experimental instances, we 

increase them to $60 and $80, respectively. We find that 

(7) 𝑸𝒗𝒊
 𝐚𝐧𝐝 𝑸𝒏 decrease with increase in inventory holding costs at the AM 

facilities and CRW whereas TNC increases. However, there is no significant 

effect on the size of the influence areas, 𝑨𝒗𝒊
, and the deployment 

configuration of the AM facilities. When the unit inventory holding cost 

increase by 50% to $60, the order quantities at the AM facilities and CRW 

reduce by 19% and 18%, respectively. The total network cost increases by 

only 0.6%.  

The rationale behind this is that, if inventory holding cost is high, both the CRW and 

AM facilities tend to order less to ensure that they have less items to keep in inventory. 

Holding less inventory will eventually result in less inventory holding cost.  While the 

models tries to maintain a balance between the unit inventory holding cost and the order 

quantities, most of the time a slight mismatch is unavoidable. In a situation where the unit 

holding cost is high, it results in a slight increase in total network cost, hence the 0.6% 

increase in TNC. The result is shown in Table 3.6. 
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Table 3.6 Effect of  ℎ𝑣 and ℎ𝑛 

ℎ𝑣= $40, ℎ𝑛 = $40 ℎ𝑣= $60, ℎ𝑛 = $60 ℎ𝑣 = $80, ℎ𝑛 = $80 

𝐴𝑣𝑖
 𝑄𝑣𝑖

 
No. of 
AM 

facilities 
𝐴𝑣𝑖

 𝑄𝑣𝑖
 No. of AM 

facilities 𝐴𝑣𝑖
 𝑄𝑣𝑖

 No. of AM 
facilities 

27062 2250 2 27082 1821 2 27095 1502 2 
38496 2201 1 38527 1778 3 38548 1465 2 
12431 2419 5 12438 1966 6 12443 1628 6 
18018 2326 3 18029 1886 4 18037 1559 4 
24324 2268 2 24341 1836 2 24352 1515 2 
28429 2243 2 28450 1814 2 28464 1496 2 
35780 2210 1 35809 1786 2 35828 1472 2 
16907 2341 3 16918 1899 4 16925 1570 4 
19939 2305 2 19952 1868 2 19961 1543 2 
19032 2315 2 19044 1876 3 19052 1550 3 
16642 2344 3 16652 1902 3 16659 1572 3 
24230 2217 1 24230 1784 1 24230 1470 1 

𝑄𝑛                     12590 𝑄𝑛                   10280 𝑄𝑛                   8900 

TNC ($)                 
177,138,273 TNC                  

178,215,731 TNC                   
179,871,313 

 

3.5.3.5 Effect of required customer service levels 

We investigate what impact various service levels will have on the decision variables 

and AM supply chain network cost. Initially, we assumed that demand at hospitals will be 

satisfied 95% of the time, (i. 𝐞., 𝛼𝑣 = 𝛼𝑛 = 5%). We reduced the service level to 90% in 

the first experimental instance and increased it to 99% in the second experimental 

instance. We find that for the service levels considered,  

(8) There is no significant change in the number of AM facilities located in the 

region.  However, there is a significant impact on the inventory cost, with 

higher service levels attracting higher inventory cost. Specifically, when the 

service level is increased from 95% to 99%, the total inventory cost increased 

by 63%. This means a 0.47% increase in total network cost.  
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(9) When the service level was reduced from 95% to 90%, total inventory cost 

reduced by 29.2%. This translates to 0.15% reduction in the total network 

cost.  

We note that the increase in inventory cost and total network cost as service level 

increases occurred despite that 𝑄𝑣𝑖
 significantly reduced. We attribute the resulting high 

cost to the fact that the AM facilities need to order more frequently to maintain high level 

of service. 𝑄𝑛 remains unchanged for all three experimental instances. Table 3.7 shows 

the effect of changes in service levels on Avi
, 𝑄𝑣𝑖

, 𝑄𝑛 𝑎𝑛𝑑 𝑇𝑁𝐶. 

 

Table 3.7 Effect of 𝛼𝑣 and 𝛼𝑛 

𝛼𝑣=10%, 𝛼𝑛 = 10% 𝛼𝑣=5%, 𝛼𝑛 = 5% 𝛼𝑣=1%, 𝛼𝑛 = 1% 

𝐴𝑣𝑖
 𝑄𝑣𝑖

 
No. of 
AM 

facilities 
𝐴𝑣𝑖

 𝑄𝑣𝑖
 No. of AM 

facilities 𝐴𝑣𝑖
 𝑄𝑣𝑖

 No. of AM 
facilities 

27053 2618 2 27062 2250 2 27081 1872 2 
38482 2601 2 38496 2201 3 38524 1820 2 
12427 2664 6 12431 2419 6 12439 2051 6 

18011 2641 4 18018 2326 4 18029 1953 4 
24315 2624 2 24324 2268 2 24340 1891 2 
28419 2616 2 28429 2243 2 28448 1864 2 
35768 2604 2 35780 2210 2 35806 1830 2 
16901 2645 4 16907 2341 4 16918 1967 4 
19932 2635 2 19939 2305 2 19952 1930 2 
19025 2638 3 19032 2315 3 19044 1940 3 
16636 2646 3 16642 2344 3 16652 1971 3 
24230 2587 1 24230 2217 1 24230 1827 1 

𝑄𝑛                  12590 𝑄𝑛                   12590 𝑄𝑛                   12590 

TNC               
176,873,230 TNC                177,138,273 TNC                    

177,969,031 
 



 

108 

3.5.3.6 Effect of fixed AM machine cost 

The high cost of AM machines is usually one of the inhibiting factors that 

discourage businesses from investing in AM technology. We conduct experiments to 

investigate the impact of various initial AM investment cost levels on AM deployment in 

the region. We vary 𝑭𝒓 in our model while keeping other parameters constant. The result 

shows that  

(10) As the cost of AM machines reduces, the number of AM facilities increases 

whereas at high fixed AM machine cost, few AM facilities are located. 

Specifically, when the annualized fixed investment cost of AM machines of 

USD 182,000 reduces by 50%, the number of AM facilities deployed in the 

region increases by 37%. If the investment cost increases by 100%, the number 

of AM facilities will decrease by 26%.   

(11) Moreover, fixed investment cost of AM machines impacts the total network 

cost. The total network cost decreases by 0.8% when the fixed investment cost 

reduces 50% from USD 177.1 million , and increases by 1.2%  when the fixed 

investment cost doubles. 

Having few AM facilities means that the manufacturing locations are further away 

from the hospitals and CRW which results in a higher transportation cost whereas more 

AM facilities brings manufacturing much closer to the customers and leads to a lower 

transportation cost as shown in Figure 3.7(c).  It is more likely that the price of AM 

machines will decrease in future as research in the AM technology leads to further 

improvements. Therefore, we show in Figure 3.7(b), the distribution of 37 AM facilities 

which the model recommends when the fixed cost of AM machine reduces by 50%. The 
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total inventory cost reduces as the fixed AM cost decreases. This means that establishing 

more AM facilities significantly reduces the amount of inventory in the network by 

ordering just the right amount of raw materials and producing only the number of 

implants needed on-demand. This result goes to support the claim that AM facilitates lean 

manufacturing concepts. We observe that the total production cost slightly increases as 

the fixed investment cost in AM decreases.  Since the same amount of raw material is 

utilized due to the fact that demand of the implants does not change, the slight increase in 

the production cost comes from the increased number of personnel required to operate the 

additional AM facilities located. Overall, the total network cost decreases as the fixed 

investment cost in AM decreases. This result means that as AM technology improves and 

the cost of AM machines decreases, the economic advantage from reduced transportation 

and inventory cost when bio-medical implant AM facilities are established much closer to 

the hospitals outweigh the personnel cost of operating the machines. 



 

110 

 

Figure 3.7 Effect of fixed AM machine cost on supply chain network cost and AM 
deployment configuration 

 

3.5.3.7 Effect of annual personnel salary 

We investigate the impact of changes in the cost of labor on the deployment of AM 

facilities and total network cost. Annual labor cost can take a positive or negative 

direction in future. It can increase as a result of change in national policies that increase 

the minimum wage or due to scarcity of the required manpower to operate the 

sophisticated AM machines. Apart from the possibility that more well-trained personnel 
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can be available in the future to give businesses a negotiating power for reduced 

personnel salary, we can also view a decrease in labor cost from high machine 

automation level that can arise due to future improvements in AM technology. In high 

automation, one employee can operate more machines thereby requiring few personnel in 

the AM workforce. We simulate changes in the annual salary by varying the value of 

l=$60,000 which contributes to the total production cost in the model. We find that  

(12) An increase in the annual personnel cost results in increase in total inventory 

cost, increase in total transportation cost, slight increase in production cost and 

a decrease in total fixed AM investment cost. Overall, an increase in personnel 

salary leads to a higher total supply chain cost while a decrease results in 

higher total network cost.  When the annual personnel salary decreases by 

50% from USD 60,000 to USD 30,000, TNC decreases by 0.3% from USD 177.1 

million. If personnel salary increases by 100%, TNC increases by 0.46%.   

(13) Moreover, decreasing the personnel salary by 50% leads to a 7.4% increase in 

the number of AM facilities established while a 100% increase results in 11.1% 

decrease in the number of AM facilities.   

This can be seen in Figure 3.8(a). The decrease in total fixed AM cost from high 

personnel cost is due to locating few AM facilities. The raw materials and medical 

implants have to travel a longer distance in the network. Besides, since one AM facility 

has to attend to more hospitals, it needs to keep more raw materials in safety stock to 

hedge against demand uncertainties. This explains the concomitant high transportation 

cost and inventory cost. According to Emelogu et al. [45], a low production cost in AM 

of biomedical implants results in a low ATR, which encourages investment in AM 
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technology. Therefore, it is not surprising that the model suggests locating more AM 

facilities as the personnel cost decreases. Figure 3.8(c) and Figure 3.8(d) show how the 

AM facilities are distributed in low ($30,000) and high ($120,000) annual personnel 

salaries, respectively. 

 

Figure 3.8 Effect of personnel cost on supply chain network cost and AM deployment 
configuration 
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3.5.4 Cost advantage of the CA model 

We now conduct experiments to investigate the cost savings achieved from using 

our CA model to determine the optimal AM deployment configuration versus other 

approaches. We call the optimum configuration chosen by our CA model CONFIGOPT.  

We describe six scenarios and three possible configurations that have been suggested in 

literature. The six scenarios include the present baseline values of the model parameters 

and five other conditions that can arise in future due to changes in the model parameters. 

The three possible configurations indicate how distributed or centralized the AM 

facilities are deployed. We describe the configurations as follows: 

CONFIG 1 Core centralized: One AM facility is located to serve the entire 12 

states. This can be viewed as extreme centralization in which minimal investment is made 

on AM machine procurement. Despite its huge saving in total fixed investment cost and 

personnel cost, this configuration, which Khajavi et al. [70] recommends for AM 

deployment in present  supply chain of military jet spare parts,  may not be optimal. This 

is due to the resulting high total transportation and inventory costs.  

CONFIG 2 Core distributed: This configuration, which can be conceived as 

extreme distributed deployment has an AM facility established in every county in every 

state in the southeastern region. While this configuration brings the manufacturing 

locations very close to the hospitals thereby having a high propensity of reducing the trio 

of lead time cost, inventory cost and transportation cost, the enormous capital required to 

invest in each AM machine may make it too expensive to be worthwhile. We investigate 

how this configuration measures with that identified by the CA model in the six 

scenarios. 
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CONFIG 3: One AM facility is located at each state in the region to serve all the 

hospitals in that state. This results in 12 AM facilities for the southeastern region of USA. 

Although this configuration is somewhere between the two extremes described above, it 

may still be a matter of luck for it to be optimal. 

We describe the scenarios that we use to investigate the performance of our CA 

model. Scenario SP represents the status quo base values of the bio-medical implant 

supply chain cost parameters. Scenarios S1-S5, described below, are five other situations 

which can arise in future due to changes in the supply chain cost parameters. 

SP: This is the present scenario where the annual personnel salary, 𝑙 = $60,000; annual 

fixed cost of AM investment, 𝐹𝑟 = $182,000; and the demand of the biomedical implants 

in the southeastern region is as presented in Table 3.2. 

S1: In this scenario, we model a future when the personnel salary decreases by 50%, the 

fixed cost of AM machine reduces by 50% and the demand for bio-medical implants in 

the region remains constant. 

S2: This scenario models a future when the personnel salary, AM machine fixed cost, and 

demand level all decrease by 50%. 

S3: In this scenario, both the personnel cost and fixed cost of AM machine decrease by 

50% while the demand for the implants increases by 100%. 

S4: Here, both the personnel salary and demand increase by 100% while the cost of AM 

machine investment decreases by 50%. 

S5: In this scenario, we model a future when both the fixed cost of AM machine and 

demand decrease by 50% whereas the annual personnel salary increases by 100%.  
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The results from our experiments show that CONFIGOPT, the AM deployment 

configuration decision provided by the CA model outperforms any other option for all the 

scenarios considered. As shown in Figure 3.9, the closest option to it is CONFIG3 which 

involves locating one AM facility in each to make total of 12 AM facilities in the region 

while the worst option is CONFIG2, locating an AM facility in every county.  Given the 

current cost parameters in the study, 59%, 7% and 6% of the total network cost is saved if 

CONFIGOPT is used instead of CONFIG2, CONFIG1, and CONFIG3, respectively. This 

is shown in Figure 3.10. Moreover, CONFIGOPT saves up to 14% of the total cost 

incurred from using CONFIG1. This occurs in scenario S3 where there is high demand 

level, low AM investment cost and low personnel cost. These are conditions that favor 

distributed AM deployment more than centralized option, and thus, justify why 

CONFIG3 performs poorly here and makes CONFIGOPT to have a significant saving of 

up to 14% over it. The least saving is achieved in S5 where 4% of the total is saved. This 

scenario contains two of the factors that encourage centralized AM deployment of AM:  

low demand level and high personnel cost. Thus, CONFIG1 performs better in S5 than in 

any other s scenario thereby making CONFIGOPT to have the least saving against it in 

this scenario.  

When CONFIGOPT is used as the deployment configuration instead of 

CONFIG2, the highest saving of 71% occurs in scenario S5 while the lowest saving of 

25% is achieved in S3. In S3 there is high demand level, low AM investment cost and 

low personnel cost all of which are factors that encourage the distributed deployment of 

AM  factors. Hence, CONFIG2 performs its best in that scenario thereby making the cost 

saving from CONFIGOPT lower than in any other scenario. Comparing CONFIGOPT 
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with CONFIG3, the most significant saving occurs in scenarios S1, S3, AND S4 where 

7% of the total network cost from using CONFIG3 is saved. The least saving is in 

scenario S5 where only 1% of the cost is saved. 

 

Figure 3.9 Comparing CONFIGOPT with other deployment configurations 

 

 

Figure 3.10 Cost savings from CONFIGOPT as a percentage of total network cost 
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Figure 3.11 shows CONFIGOPT, the optimal distribution of the AM facilities in 

the region as determined by our CA model to achieve the cost savings described above 

while Table 3.8 ranks the scenarios according to the number of AM facilities deployed in 

them. 

Table 3.8 Ranking the Scenarios in a non-decreasing order of number of AM facility 

Scenario Personnel 
salary 

Fixed AM 
cost 

Demand Number of 
AM facilities 

Rank 

S5 Increased Decreased Decreased 19 1 
S2 Decreased Decreased Decreased 27 2 
SP Constant Constant Constant 27 3 
S1 Decreased Decreased Constant 43 4 
S4 Increased Decreased Increased 47 5 
S3 Decreased Decreased Increased 68 6 

 

We observe that the demand level of the bio-medical implants is the major factor 

that drives the number of AM facilities in the region, and thus how distributed the 

deployment should be for the simulated scenarios. The higher the demand, the more AM 

facilities to be established and the more distributed the network should be. Conversely, 

the lower the demand the less number of AM facilities and the less distributed. This 

corroborates the finding by Holmstrom et al. [60], Khajavi et al. [70] and Emelogu et al. 

[45]. Holmstrom et al. [60] and Khajavi et al. [70] find that enough demand for military 

jet spare parts at the service locations is required for distributed AM to be considered. 

Emelogu et al. [45] find that at higher demand levels of bio-medical implants, more AM 

facilities are established in a hybrid AM/TM supply chain.  Given the present values of 

the supply chain cost parameters (Scenario SP), 27 AM facilities are located in the 



 

118 

southeastern region with the states of Arkansas, Mississippi and West Virginia having the 

minimum number of one AM facility each, and the state of Florida having the maximum 

number of five AM facilities. The number of AM facilities deployed more than doubles 

to 68 in Scenario S3 where the demand is increased and both annual personnel salary and 

fixed AM machine investment cost decrease.  In this case, the number of AM facilities 

located in West Virginia, Mississippi, Arkansas, and Florida increases to 2, 3, 4 and 13, 

respectively. We notice that the same number of AM facilities and configuration in SP is 

also used in Scenario S2 despite that the demand decreased. This is because both the 

annual personnel salary and the fixed AM investment cost decreased in S2 thereby 

compensating for the decrease in demand and making 27 AM facilities to be established 

as well. 
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Figure 3.11 Optimal AM facility deployment in the southeastern USA for various 
scenarios 

 

3.6 Conclusions 

In this paper, we have developed a continuous approximation cost model to quantify 

the supply-chain level costs associated with the production of biomedical implants using 

Additive Manufacturing (AM) technologies, and developed the optimal deployment 
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configuration of AM sites in the southeastern region of the United States for efficient and 

responsive fabrication of biomedical implants for use in hospitals and clinics in the 

region. Different from the existing studies that mainly focus on choosing between two 

extreme network configurations (one centralized location or many distributed locations) 

our hybrid approach is able to consider other configurations that are between the two 

ends of the spectrum where the optimal deployment decision usually lies. Unlike any 

other model in literature, ours is a two-stage formulation able to incorporate inventory 

decisions that inform the right amount of raw materials each location should order in the 

deployment configuration determination process. Given that the raw materials for the 

implants are expensive and not locally available, these inventory decisions are crucial and 

should be able to achieve a trade-off between having a large amount of raw materials 

which tie up capital and drives up cost but assure the on-demand promise of AM; and 

having few inventory which reduces inventory cost but risks increasing the lead time of 

AM and drastically reducing patient satisfaction. 

(1) This study assumes that localized AM production of biomedical implants used in 

hospitals in the southeastern region of USA is feasible, without taking into account 

the demands of biomedical implants and hospitals that can perform similar 

procedures in other regions. However, the proposed continuous approximation model 

can be applied to a larger supply chain network that encompasses the entire country 

or account for other types of products, as long as the requisite hospital density data 

and demand for the remaining states or the information on other products are 

collected. The solutions of the larger scale cost model (i.e., the locations of AM 

facilities and order quantities) may only take a longer time to obtain using the 
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suggested algorithms by virtue of its scaling property. The model and algorithm 

proposed in this paper may be used as an analysis tool for decision makers to simulate 

and understand various network configuration options for AM deployment and 

choose the option that best suits their organizational objectives in terms of efficiency 

and responsiveness. 

(2) We performed numerical experiments to analyze the effect of various network model 

parameters on the AM deployment and supply chain cost. We find that the demand 

level of the biomedical implants has the most significant effect on how many AM 

facilities should be located in the region and how distributed the deployment should 

be. Specifically, if other parameters are kept constant, doubling the demand, increases 

the number of AM facilities by more than 59%, thereby making the network more 

distributed, while the number reduces by up to 33% if the demand level is halved, 

making the network less distributed.  

(3) Other factors such as the price and maintenance cost of AM machines, the labor cost 

of operating the machines and the unit transportation cost of an item per mile all 

affect the total supply chain network cost and deployment configuration of AM 

facilities. Reducing the fixed AM investment cost by 50% can result in an increase of 

up to 37% in the number of AM facilities established and reduce the total network 

cost by about $1.4 million or 0.8%. 

(4) There is enormous cost saving in utilizing the proposed CA model to make the best 

AM deployment decision instead of using the extreme AM configuration options in 

literature. This cost saving advantage varies depending on the scenario of the supply 

chain parameters considered. Specifically, given the present demand data and supply 
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chain cost parameter values, we can achieve a saving of 7% of the total network cost 

by using the CA model instead of locating only one central AM facility to serve the 

entire region. The cost saving increases to 59% when compared with establishing an 

AM facility in every county in the region. The CA model records a ground-breaking 

saving of 71% of total network cost in a scenario where the demand of biomedical 

implants decrease by 50% and annual personnel cost doubles.  

Future work is needed to improve the algorithm so that applying it to a network 

that covers the entire United States can yield a quick solution. We can modify the cost 

model to include uncertainties in the supply of raw materials or production rate of the 

AM machines to check what impact they will have on the AM deployment configuration 

decisions. 
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CHAPTER IV 

AN ENHANCED SAMPLE AVERAGE APPROXIMATION METHOD 

FOR STOCHASTIC OPTIMIZATION 

4.1 Introduction 

Solving a large scale stochastic optimization problem is extremely challenging 

because of their inherent analytical complexities and high computational requirements 

([73], [61], [140]). Sample Average Approximation (SAA) is a popular approach which 

is frequently employed to solve large scale stochastic optimization problems. In this 

method, the objective function value of the stochastic problem is unknown and 

approximated using a sample average estimate derived from a random sample ([2], [23], 

[30], [62], [125], [139]).  SAA provides a straightforward framework which is amenable 

to parallel implementation and variance reduction techniques. Moreover, it possesses 

good convergence properties and well-developed statistical methods for validating 

solutions and conducting error analysis. 

SAA has been successfully utilized to serve a wide range of applications, some of 

which include: reliability-based optimal design of engineering systems where the failure 

probabilities of highway bridges are replaced by corresponding Monte Carlo sampling 

estimates [126]; speech recognition optimization problem [28]; investment problem with 

conditional value at risk (CVaR) constraints [25]; portfolio selection and blending 

problems with chance-constraints [157]; stochastic knapsack problem to determine an 
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optimum resource allocation strategy [73]; stochastic supply chain design problems with 

extremely large number of scenarios [136], and many others. The most significant 

challenge of using SAA confronted by the researchers in prior works is to choose the 

sample size for the algorithm. This is a critical step since it highly impacts the 

computational performance of the SAA algorithm. To address this challenge, a number of 

studies are conducted to determine the best scheme for choosing the sample size of the 

SAA algorithm. One stream of research focuses on keeping the sample size constant 

throughout the optimization process (e.g., [136], [156], [103]) . The major drawback of 

this  approach is that it may lead to a bad sample path [61]. Another stream of research 

focuses on variable sample approach in which a schedule of sample sizes is used to solve 

the SAA problem (e.g., [125], [28], [61], [11], [40]). The general idea employed by the 

authors in variable sample scheme is to start the early iteration of the optimization 

algorithm with a small sample size and then gradually increase the sample size as the 

algorithm progresses. Note that starting with a small sample size may save some 

computational time; however, a large sample size eventually needs to be investigated to 

obtain a solution that is close to the true solution [99]. Therefore, all the methods 

discussed above may not perform well to solve stochastic discrete optimization problems. 

Although there is a theoretical sample size that can be used to compute sample sizes for 

discrete optimization problems (as shown in [73] and [61]), this estimate is too 

conservative for practical applications. 

To address this challenge, this paper proposes a methodological approach to 

enhance the performance of the basic SAA by incorporating a dynamic clustering 

strategy within the algorithmic framework. In basic SAA, a small number of scenarios 
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are generated in each iteration and the objective function is evaluated iteratively until the 

optimality gap falls below a certain threshold value. In our approach, a larger number of 

scenarios are considered as an initial sample size (much larger than the one used in basic 

SAA) and then clustering methods are employed to reduce this large sample size into 

small number of clusters. We assume that the average of each cluster is the most 

representative of all the samples in each cluster. We then represent those clusters as 

scenarios and use them to solve the SAA problem. Unlike prior studies where the sample 

size is either kept fixed or increased monotonically, our enhanced SAA approach 

provides the flexibility to either increase or decrease the sample size based on the 

computational performance obtained from previous iterations. This approach is then 

experimentally validated in the context of a facility location problem ([FLP]) with 

stochastic demand. We create different variants of the enhanced SAA algorithm (i.e., 

different clustering strategy, fixed clusters vs. dynamic clusters) and compare the 

computational performance of those variants with the basic SAA algorithm. Finally, we 

employ five different clustering techniques (e.g., K-means, K-means++, K-means||, 

Fuzzy C-means, and Mixed Integer Programming (MIP) based clustering techniques) and 

check how these clustering techniques affect the solution quality of the SAA algorithm. 

The remainder of this paper is organized as follows. Section 4.2 provides the 

literature review on SAA. Section 4.3 introduces the enhanced SAA algorithm. Section 

4.4 conducts numerical experiments to verify the performance of the enhanced SAA 

algorithm. Section 4.5 concludes this paper and discusses future research directions. 
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4.2 Literature review 

We review the existing literatures related to SAA and categorize them into two 

major groups: (1) SAA with fixed sample size and (2) SAA with variable sample size. 

4.2.1 SAA with fixed sample size 

The first set of literature considers the basic SAA where the sample size remain 

fixed in all iterations. This approach is also referred to as sample-path approximation 

method ( [56], [114]) or stochastic counterpart method ([128], [129], [138]) exploit the 

parallel implementation capability of the SAA to solve various two-stage stochastic linear 

programming problems with recourse. Kenyon and Morton [69] embed branch-and-cut 

inside the SAA to solve a stochastic vehicle routing problem under random travel and 

service times. Morton [99] develops an SAA procedure to solve a stochastic knapsack 

problem (SKP). Schütz, Tomasgard, and Ahmed [137] embed dual decomposition inside 

the SAA to solve a meat packing supply chain network designing problem. The authors 

investigate the effect of sample size on solution quality and find that increasing the 

sample size improves the solution quality of the SAA algorithm. Wang and Ahmed [157] 

use SAA to solve a conditional value-at-risk (CVaR) problem and find that the SAA 

solution is acceptable to the true CVaR problem with a probability of at least 97.7%. 

Some other studies involving SAA implementations with fixed sample sizes are 

conducted by Kleywegt et al. [73], Verweij et al. [156], Santoso et al. [136] and 

Nemirovski et al. [103]. The major concurring theme among the studies in fixed sample 

SAA literature is that estimating the sample size in practice is not trivial and selecting the 

sample size involves two conflicting trade-offs: (i) larger sample sizes yield SAA 

solution comparable to the true solution and (ii) the computation effort required to solve 
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the SAA problem often increases exponentially as the sample size increases. Table 4.1 

provides a summary of literature based on SAA with fixed sample size. 

4.2.2  SAA with variable sample size  

Later studies use variable sample size in SAA to solve stochastic optimization 

problems. Homem-De-Mello [61] first provides a variable-sample framework to solve a 

discrete stochastic optimization problem. The author shows that the sample size must 

grow at a certain rate to ensure convergence. Royset [125] proposes a closed-loop 

feedback optimal-control model to adaptively select sample sizes in variable sample 

average approximation (VSAA) algorithm to solve smooth stochastic programs (SSP). 

Although the method results in a sample size selection policy that appears to be robust to 

changing problem instances, it is not applicable to stochastic optimization problems with 

integer restrictions. Optimization problems that require integer solutions in their decision 

variables involve non-smooth functions which are not easily convertible to smooth 

functions for the application of the SAA method. Pasupathy [112] determines a balance 

choice of sample sizes and error tolerances in variable samples method of SAA where 

sample size refers to a measure of problem-generation effort and error tolerance is a 

measure of solution quality. Note that all the literature discussed above investigated 

problems in which SAA occurs only in the objective function. 
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Another stream of research investigates problems in which SAA occurs in the 

constraints (e.g., [25], [163]). It is important to note that if the approximation occurs in 

the objective function then the major challenge relies on obtaining solutions that 

converge to the original problem. However, in cases where the approximation occurs in 

the constraints, i.e., in chance-constraints, one needs to ensure that the feasibility region 

of the approximating problem coincides with that of the original problem [25]. Branda 

[25] estimates the rate of convergence and sample size for lower bounds in SAA which 

ensures that the feasible solutions of the SAA are feasible for the original problem. Zhang 

et al. [163] develop a method for stochastic programs with complementary constraints 

where the equilibrium constraints can be replaced with smooth functions. Bastin et al. 

[16] implement variable sample size technique to estimate choice probabilities in solving 

unconstrained mixed logit models. Byrd et al. [28] develop a varying sample size based 

methodology to solve large scale machine learning problems. Similarly, a number of 

other related literatures such as Deng and Ferris [40],  Krejić and Krklec [77], Krejic 

andJerinkic [76], Bastin et al. [16], Byrd et al. [28], and Bastin [15] study SAA with 

variable sample size to tackle different optimization problems with or without constraints. 

The literature for SAA with variable sample sizes is summarized in Table 4.2. Note that 

all the methods discussed above are not suitable for problems that have computationally 

expensive limit-state functions as they involve a large number of evaluations of such 

functions and their gradients. 
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 To fill this gap in the literature, this paper utilizes different clustering techniques 

to dynamically adjust the scenario size of the SAA algorithm that generates a solution 

close to the true solution of the stochastic optimization problem. Until now, a limited 

number of studies consider scenario clustering to solve an optimization problem. Crainic, 

Hewitt, and Rei [35] propose a machine learning method to group scenarios of a 

progressive hedging algorithm and apply the approach in a stochastic network design 

problem. The authors further use clustering techniques inside a partial Benders 

decomposition algorithm to reduce the number of optimality and feasibility cuts 

generated by the algorithm.  Escudero et al. [48] use scenario clustering inside a 

Lagrangean decomposition algorithm to produce high quality lower bounds for large 

scale multi-stage stochastic 0-1 problems. Our approach although relevant differs from 

the prior studies in that we apply scenario clustering to solve a large scale SAA problem. 

Moreover, our approach provides a simple framework that can be used to dynamically 

adjust the sample size of the SAA problem based on the results obtained from 

preliminary computations. 

4.3 Methodology 

This section first provides a brief introduction of the Sample Average 

Approximation (SAA) method (Section 4.3.1). We then highlight some of the limitations 

of the basic SAA method which pave the way for us to develop an enhanced Sample 

Average Approximation (eSAA) method. The eSAA method utilizes clustering 

techniques (e.g., K-means, K-means++, K-means||, Fuzzy C-means, and Mixed Integer 

Programming (MIP) based clustering techniques) and then adaptively controls the size of 

the samples by performing some statistical tests based on the computational performance 
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from the previous iterations. The details of the eSAA method is discussed in Section 

4.3.2. Let us now discuss the basic SAA method. 

4.3.1 Sample average approximation (SAA) 

The SAA is a Monte Carlo simulation–based approach to solve stochastic 

programming problems. The basic idea is simple indeed - a random sample is generated 

and the expected value function is approximated by the corresponding sample average 

function. The procedure is repeated several times until a stopping criterion is satisfied. 

The idea of using sample average approximations for solving stochastic programs has 

been studied extensively by various authors over the years. For example, the method was 

used to solve stochastic knapsack problems (e.g.,  [73]), stochastic routing problems (e.g., 

[156]), supply chain problems (e.g., [136]), investment problems (e.g., [111]), reliability-

based problems (e.g., [126]), and many others. 

To illustrate the concept of SAA, let us first investigate a general stochastic 

program of the following form: 

  

min{𝔼[𝑓(𝑥, 𝜔)]: x ∈ 𝑿}  (4.1) 

where 𝜔 is a random vector with expectation 𝔼 and a known statistical distribution p. The 

expectation 𝔼 is with respect to p.  

Let X denote the first-stage feasible set where X = R ⋂ {0, 1}n for some polyhedron R of 

dimension n and Ω denote the set of scenarios. A special case of Equation (4.1) is the 

class of two-stage stochastic programming model which can be illustrated as follows: 
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𝒛∗ =  min
𝑥∈𝑿

𝑐𝑇𝑥 + 𝔼𝑝[𝒬(𝑥, 𝜉(𝜔))]  (4.2) 

where  

  

𝒬(𝑥, 𝜉(𝜔)) =  min
𝑦≥0

{𝑞(𝜔)𝑇𝑦 | 𝐷𝑦 ≥ ℎ(𝜔) − 𝑇(𝜔)𝑥} (4.3) 

and x denotes the first-stage decisions which are required to be made prior to the 

realization of a scenario, ω ∈ Ω, and which is known when the second-stage recourse 

decisions y are made. The quantity 𝒬(𝑥, 𝜉(𝜔)) represents the optimal value of the 

second-stage recourse problem and the parameters ξ(ω) = (q(ω), h(ω), T(ω)). Let, Ω 

contains a finite number of scenarios {ω1, ω2, ... , ω|Ω|}with associated probabilities 

{𝑝𝑛}; 𝑛 = 1,2, … , |𝛀|, then the expectation 𝔼[𝒬(𝑥, 𝜉(𝜔))] can be evaluated as follows: 

  

𝔼[𝒬(𝑥, 𝜉(𝜔))] =  ∑ 𝑝𝑛𝒬(𝑥, 𝜉(𝜔𝑛))
|𝛀|
𝑛=1   (4.4) 

From Equation (4.4), it is clear that the number of scenarios grows exponentially 

with the size of the problem. To overcome this issue, an exterior sampling method is used 

to solve the deterministic equivalent problem of the problem specified by (4.2). The SAA 

method is an exterior sampling method in which a sample ω1, ω2, . . . , ωN of N sample 

scenarios is generated from scenario set Ω according to the probability distribution P and 

then the expected value function 𝔼[𝒬(𝑥, 𝜉(𝜔))] is approximated by the sample average 

function ∑ 𝒬(𝑥, 𝜉(𝜔𝑛))/𝑵𝑵
𝑛=1 . The Sample Average Approximation problem then 

becomes: 
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𝒛𝑵 =  min
𝑥∈𝑿

𝑐𝑇𝑥 +
1

𝑵
∑ 𝒬(𝑥, 𝜉(𝜔𝑛))𝑵

𝑛=1   (4.5) 

where zN and 𝑥̂ estimate the optimal value and solution of their true counterparts in the 

original stochastic program defined by Equation (4.2).  

The steps involved in solving a stochastic problem using Sample Average Approximation 

(SAA) are given below: 

Step 1: Generate M independent samples each of size N and solve the corresponding 

SAA: 

  

𝒛𝑵 = min
𝑥∈𝑿

𝑐𝑇𝑥 +
1

𝑵
∑ 𝒬(𝑥, 𝜉(𝜔𝑛))𝑵

𝑛=1    (4.6) 

Let 𝒛𝑵
𝒎 and 𝑿𝑵

𝒎 be the corresponding optimal solutions and an optimal values, 

respectively; m=1, 2, 3,…, M. 

Step 2:  Compute: 

  

𝒛̅𝑴
𝑵 =  

1

𝑴
∑ 𝒛𝑵

𝒎𝑴
𝑚=1   (4.7) 

𝜎
𝒛𝑴

𝑵
2 =

1

(𝑴−1)𝑴
∑ (𝒛𝑵

𝒎 − 𝒛̅𝑴
𝑵 )

2𝑴
𝑚=1   (4.8) 

The expected value of zN is less than or equal to the optimal value z* of the true problem. 

Since 𝒛̅𝑴
𝑵  is an unbiased estimator of  𝔼[𝒛̅𝑴

𝑵 ] and  𝔼[𝒛̅𝑴
𝑵 ] ≤  𝒛∗,  we can say that 𝒛̅𝑴

𝑵  

provides a lower statistical bound for z* of the true problem and 𝜎
𝑽𝑴

𝑵
2  is an estimate of the 

variance of this estimator. 
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Step 3:  Choose a feasible first-stage solution 𝑥̂ ∈ 𝑿 of the true problem, e.g., one of the 

solutions from 𝑿𝑵
𝒎 and estimate the objective function value of the original problem (4.2) 

using a different sample N′. The true objective function value is now given as: 

  

𝒛𝑵′
(𝑥̂) = 𝑐𝑇𝑥̂ +

1

𝑵′
∑ 𝒬(𝑥̂, 𝜉(𝜔𝑛))𝑵′

𝑛=1    4.9) 

where {𝜔1, 𝜔2, … , 𝜔𝑵′} is a sample of size N′. Typically, 𝐍′ is chosen to be much larger 

than N i.e., 𝐍′ ≫ 𝐍. The estimator 𝒛𝑵′
(𝑥̂) is an unbiased estimator of 𝑐𝑇𝑥̂ +

𝔼[𝒬(𝑥̂, 𝜉(𝜔))] . Thus, for any feasible solution we have  𝔼[𝒛𝑵′
(𝑥̂)] ≥ 𝒛∗. The value of 

𝒛𝑵′
(𝑥̂) is updated in each iteration if the obtained value is less than the value of the 

previous iteration. The variance of this estimate can be expressed as: 

  

𝜎̂
𝒛𝑵′

(𝒙̂)

2 =
1

(𝑵′−1)𝑵′
∑ (𝑐𝑇𝑥̂ + 𝒬(𝑥̂, 𝜉(𝜔𝑛)) − 𝒛𝑵′

(𝑥̂))
2

 𝑵′

𝑛=1  (4.10) 

Step 4: Compute an estimate of the optimality gap of the solution 𝑥̂ using the lower 

bound estimate and upper estimates by using the estimators calculated in Steps 2 and 3, 

respectively, as follows: 

𝐺𝑎𝑝𝑵,𝑴,𝑵′(𝒙̂) = 𝒛𝑵′
(𝑥̂) − 𝒛̅𝑴

𝑵   (4.11) 

The estimated variance of the gap is given by: 

𝜎𝑔𝑎𝑝
2 = 𝜎̂

𝒛𝑵′
(𝒙̂)

2 + 𝜎
𝒛𝑴

𝑵
2   (4.12) 

The confidence interval for the optimality gap can be calculated as: 

 𝒛𝑵′
(𝑥̂) − 𝒛̅𝑴

𝑵 + 𝑧𝛼{𝜎̂
𝒛𝑵′

(𝒙̂)

2 + 𝜎
𝒛𝑴

𝑵
2 }0.5  (4.13) 
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with 𝑧𝛼: = Φ−1(1-𝛼), where Φ(𝒛) is the cumulative distribution of the standard normal 

distribution. 

Step 5:  We now choose 𝒙̂∗ as one optimal solution 𝒙̂𝟏, 𝒙̂𝟐, … , 𝒙̂𝑴 which has the smallest 

objective value, i.e., 

  

𝒙̂∗ ∈ arg min {𝒛𝑵′
(𝑥̂) ∶  𝑥̂ ∈  { 𝒙̂𝟏, 𝒙̂𝟐, … , 𝒙̂𝑴}} (4.14) 

As described in Step 1 of SAA,  𝒛𝑵
𝒎 and 𝑿𝑵

𝒎 are functions of the corresponding 

random sample. Under mild regularity conditions, it can be proved that as the sample size 

N increases, both 𝒛𝑵
𝒎 and 𝑿𝑵

𝒎 converge with probability one to their true counterparts. 

The convergence is captured in Proposition 4.1 as follows: 

Proposition 4.1: Let 𝜃𝑁 and 𝜃∗ be the objective value of the SAA and true problem, 

respectively. We prove that 𝜃𝑁 → 𝜃∗ and 𝐷( 𝑥̂𝑁 , 𝑥∗) → 0 with probability 1 as 𝑁 → ∞, 

where 𝐷( 𝑥̂𝑁 , 𝑥∗) is the difference between the optimal solution for the SAA problem and 

the optimal solution for the true problem. 

Proof: The proof of this proposition is given by Kleywegt et al. [73].        

The analysis regarding convergence suggests that a reasonable and good 

approximate solution to the true problem can be obtained by solving an SAA problem 

with a modest sample size. In particular, suppose that the SAA problem is solved to an 

absolute optimality gap of 𝛿 ≥ 0 and let 𝝐 > 𝛿 and 𝛼 ∈ (0,1). Then, a sample size of 

 N > 
3𝜎𝑚𝑎𝑥

2

( 𝝐− 𝛿)2 log (|𝑿|

𝛼
) (4.15) 

ensures that the SAA solution by XN is a solution with an absolute optimality gap of 𝝐 to 

the true problem with a probability of at least 1-𝛼. Here 𝜎𝑚𝑎𝑥
2  is a maximal variance of 
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certain function differences (see [1] for details). This estimate has interesting 

consequences in terms of complexity of the problem. One of the main characteristics of 

Equation (4.15) is that N depends only logarithmically on the size of the feasible set X as 

well as on the tolerance probability 𝛼.  

It appears that Equation (4.15) may be very conservative for practical estimates. Thus, 

one can choose the sample size N as a trade-off between the qualities of solution obtained 

from solving problem (4.6) and the computational complexity to solve it. Unfortunately, 

fixing a value of N is not very straightforward as it imposes complexity in solving Step 1 

of the SAA algorithm. Even though the introduction of SAA reduces the problem size 

considerably compared to the original problem (defined by (4.2)), we still have to solve a 

two-stage stochastic mixed integer problem with N scenarios which is computationally 

challenging as well as time-consuming. In particular, with large N the objective function 

of the SAA problem tends to be more accurate than the objective function of the true 

problem and thus expected to produce a tighter optimality gap. However, this increases 

computational complexity in solving the SAA problem which in some cases increases at 

least linearly and often exponentially as the size of N increases. On the other hand, a 

conservative N may lead to an 𝝐-optimal solution to the true problem though the solution 

can be obtained at a reasonable time. Thus, choosing the right sample size N requires 

further investigation which motivates us to develop an enhanced Sample Average 

Approximation (eSAA) algorithm that dynamically adjust the sample size N based on the 

results from preliminary computations.  It is noteworthy that the eSAA method can 

equally be applied when the stochastic programming problem requires all the decision 

variables to be continuous. In such a case, the problem becomes much easier to solve 
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since there is no integer restrictions to solve the subproblems of the eSAA algorithm. The 

details of the eSAA algorithm is discussed in the next subsection. 

4.3.2 Enhanced sample average approximation (eSAA) 

In this study, we take a novel approach to obtaining samples and establishing 

sample size to be used in the SAA that are better representatives of the scenarios in the 

stochastic optimization problem. Specifically, we use some clustering algorithms (e.g., 

K-means, K-means++, K-means||, Fuzzy C-means, and Mixed Integer Programming 

(MIP) based clustering techniques) to group similar scenarios and obtain a sample size 

equal to the number of clusters. We then use this clustered scenarios to obtain a lower 

bound for our SAA problem which is indeed a lower bound for the true problem. Unlike 

other approaches in literature where the sample size is either increased or kept constant, 

our eSAA approach provides the opportunity to adaptively control the size of the 

samples. Based on the solution obtained after each iteration, we perform a t-test which 

guides us to adaptively increase or decrease the size of the samples N until the quality of 

the solution falls below an acceptable tolerance level. Moreover, the eSAA approach 

enables us to work with a bigger sample size (NK) compared to basic SAA (N), thereby 

increasing the chance of the approximation converging to the solution of the true 

problem.  

To better illustrate our approach, let us consider a solution space Ω which 

contains all the possible scenarios ω1, ω2, . . . , ωN generated in a stochastic program 

(shown in Figure 4.1(a)). In basic SAA, from this scenario pool, a small number of 

scenarios is taken as samples (say N) and the objective function is calculated iteratively 

until the optimality gap falls below a certain threshold value. However, in eSAA we 
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group the scenarios in the form of a cluster where each cluster contains the scenarios that 

are most representative to that cluster (shown in Figure 4.1(b)).  The number of scenarios 

in each cluster will now be reduced down to the number of scenarios (say NK) for the 

eSAA algorithm (shown in Figure 4.1(c)). Let NL be the number of scenarios drawn 

from scenario space Ω where NL ≫ N. We then partition sample NL into a fixed number 

of clusters, say k clusters. Following the clustering, we take one sample from each cluster 

which represents  the best from that given cluster and eventually reduced down to NK 

number of clusters where NK ≪ N ≪ NL. The expected value function 𝔼[𝒬(𝑥, 𝜉(𝜔))] 

now can be approximated by the sample average function ∑ 𝒬(𝑥, 𝜉(𝜔𝑛))/𝑵𝑲
𝑵𝑲
𝑛=1 . The 

Sample Average Approximation problem then becomes: 

  

𝒛𝑵𝑲 =  min
𝑥∈𝑿

𝑐𝑇𝑥 +
1

𝑵𝑲
∑ 𝒬(𝑥, 𝜉(𝜔𝑛))

𝑵𝑲
𝑛=1   (4.16) 

where 𝒛𝑵𝑲 and 𝑥̂𝐾 estimate the optimal value and solution of their true counterparts in the 

original stochastic program defined by Equation (4.2).  

The steps involved in solving a stochastic problem using the enhanced Sample 

Average Approximation (eSAA) algorithm are illustrated below:  

Step 1: Initialize, cluster size k, step size q1 and q2 where q2 > q1 and counter g. Generate 

M independent samples each of size NL where NL ≫ N. Use one of the clustering 

technique (e.g., K-means, K-means++, K-means||, Fuzzy C-means, and Mixed Integer 

Programming (MIP) based clustering techniques) described in Section 4.3.2.1 to 4.3.2.4 

to cluster NL samples. The NL samples can now be partitioned into k number of clusters 
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and yields NK number of scenarios where NK ≪ N. With NK number of scenarios, we 

solve the following SAA problem: 

  

𝒛𝑵𝑲 =  min
𝑥∈𝑿

𝑐𝑇𝑥 +
1

𝑵𝑲
∑ 𝒬(𝑥, 𝜉(𝜔𝑛))

𝑵𝑲
𝑛=1   (4.17) 

Let 𝒛𝑵𝑲

𝒎  and 𝑿𝑵𝑲

𝒎  be the corresponding optimal solutions and an optimal values, 

respectively; m=1, 2, 3,…, M.  

Step 2:  Compute: 

  

𝒛̅𝑴
𝑵𝑲 =  

1

𝑴
∑ 𝒛𝑵𝑲

𝒎𝑴
𝑚=1   (4.18) 

𝜎
𝒛𝑴

𝑵𝑲
2 =

1

(𝑴−1)𝑴
∑ (𝒛𝑵𝑲

𝒎 − 𝒛̅𝑴
𝑵𝑲)

2
𝑴
𝑚=1   (4.19) 

The expected value of 𝒛𝑵𝑲 is less than or equal to the optimal value z* of the true 

problem. Since 𝒛̅𝑴
𝑵𝑲 is an unbiased estimator of  𝔼[𝒛̅𝑴

𝑵𝑲] and  𝔼[𝒛̅𝑴
𝑵𝑲] ≤  𝒛∗,  we can say 

that 𝒛̅𝑴
𝑵𝑲 provides a lower statistical bound for z* of the true problem and 𝜎

𝑽𝑴
𝑵𝑲

2  is an 

estimate of the variance of this estimator. 

Step 3:  Choose a feasible first-stage solution 𝑥̂ ∈ 𝑿 of the true problem, e.g., one of the 

solutions from 𝑿𝑵𝑲

𝒎  and estimate the objective function value of the original problem 

(4.2) using a different sample N′ where NK ≪ N ≪ NL ≪ N′. The true objective function 

value is now given as follows: 

  

𝒛𝑵′
(𝑥̂) = 𝑐𝑇𝑥̂ +

1

𝑵′
∑ 𝒬(𝑥̂, 𝜉(𝜔𝑛))𝑵′

𝑛=1    (4.20) 
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where {𝜔1, 𝜔2, … , 𝜔𝑵′} is a sample of size N′. Typically, 𝐍′ is chosen to be much larger 

than N i.e., 𝐍′ ≫ 𝐍. The estimator 𝒛𝑵′
(𝑥̂) is an unbiased estimator of 𝑐𝑇𝑥̂ +

𝔼[𝒬(𝑥̂, 𝜉(𝜔))] and thus for any feasible solution we have that 𝔼[𝒛𝑵′
(𝑥̂)] ≥ 𝒛∗. The value 

of 𝒛𝑵′
(𝑥̂) is updated in each iteration if the obtained value is less than the value of the 

previous iteration. The variance of this estimate can be expressed as: 

  

𝜎̂
𝒛𝑵′

(𝒙̂)

2 =
1

(𝑵′−1)𝑵′
∑ (𝑐𝑇𝑥̂ + 𝒬(𝑥̂, 𝜉(𝜔𝑛)) − 𝒛𝑵′

(𝑥̂))
2

 𝑵′

𝑛=1  (4.21) 

Step 4: Compute an estimate of the optimality gap of the solution 𝑥̂ using the lower 

bound estimate and upper estimates by using the estimators calculated in Steps 2 and 3, 

respectively, as follows: 

  

𝐺𝑎𝑝𝑵,𝑴,𝑵′(𝒙̂) = 𝒛𝑵′
(𝑥̂) − 𝒛̅𝑴

𝑵𝑲  (4.22) 

The estimated variance of the gap is given by: 

  

𝜎𝑔𝑎𝑝
2 = 𝜎̂

𝒛𝑵′
(𝒙̂)

2 + 𝜎
𝒛𝑴

𝑵𝑲
2   (4.23) 

The confidence interval for the optimality gap can be calculated as: 

 𝒛𝑵′
(𝑥̂) − 𝒛̅𝑴

𝑵𝑲+ 𝑧𝛼{𝜎̂
𝒛𝑵′

(𝒙̂)

2 + 𝜎
𝒛𝑴

𝑵𝑲
2 }0.5  (4.24) 

with 𝑧𝛼: = Φ−1(1-𝛼), where Φ(𝒛) is the cumulative distribution of the standard normal 

distribution. 
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Step 5:  If the optimality gap (𝒛𝑵′
(𝑥̂) − 𝒛̅𝑴

𝑵𝑲) is less than or equal to the tolerance limit 

(𝝐), the approximated solution is assumed to converge to the true solution 𝒛∗. Otherwise, 

do the following: 

 Perform a paired t-test between present solution obtained at iteration i and 

iteration i-1 to test the hypothesis 𝐻0: 𝒛i
𝑵′

(𝑥̂) = 𝒛i−1
𝑵′

(𝑥̂) 

 If the p-value of the test is large (say greater than or equal to 0.2), then set 𝒌 ← 𝒌 

and 𝒈 ← 𝒈 + 𝟏. If g > b (say b = 2) then set 𝒌 ← 𝒌 − 𝒒𝟏 and go to Step 1. 

 If the p-value of the test is sufficiently small (say smaller than 0.1) then set 𝒌 ←

𝒌 + 𝒒𝟐 and go to Step 1. 

Step 6:  We now choose 𝒙̂∗as one optimal solution 𝒙̂𝒌
𝟏, 𝒙̂𝒌

𝟐, … , 𝒙̂𝒌
𝑴 which has the smallest 

objective value, i.e., 

 

  

𝒙̂∗ ∈ arg min {𝒛𝑵′
(𝑥̂) ∶  𝑥̂ ∈  { 𝒙𝒌

𝟏, 𝒙̂𝒌
𝟐, … , 𝒙̂𝒌

𝑴 }} (4.25) 

One of the salient features of our eSAA algorithm is that unlike other studies 

where we either fix the scenario size (e.g., [136], [156], [103], [99], [85], [69], [137], 

[157]) or driving one way to determine whether the number of clusters should be 

increased or not (e.g., [61]), our approach guides the scenario size N by either increasing 

or decreasing them based on the computational performance obtained from prior 

iterations. We have revised Step 1 and Step 5 of the basic sample average approximation 

algorithm (described in Section 4.3.1) where we cluster a large sample size NL to start 

with an initial sample size NK (discussed in Step 1) and perform a paired t-test to check if 
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the objective function value at the current iteration is statistically different than the 

previous one (discussed in Step 5). Note that, a paired t-test is required in this case rather 

than an independent t-test, since the estimates 𝒛i
𝑵′

(𝑥̂) and 𝒛i−1
𝑵′

(𝑥̂) use the same random 

numbers. In what follows, we prove that:  

(i) The solution obtained using the eSAA algorithm converges to the solution of the true 

problem (shown in Proposition 4.2). 

(ii) The algorithm terminates in a finite number of iterations (shown in Proposition 4.3). 

Proposition 4.2: Let 𝜃𝑁𝑘
 and 𝜃∗ be the objective value of the eSAA and true problem, 

respectively. We further define𝐷(𝑥̂𝑁𝑘
, 𝑥∗) be the difference between the optimal solution 

for the eSAA problem and true problem. We then proof that 𝜃𝑁𝑘
→ 𝜃∗ and 𝐷(𝑥̂𝑁𝑘

, 𝑥∗) →

0 with probability 1 as 𝑁𝑘 → ∞. 

Proof: Step 5 of the eSAA algorithm ensures that if the value of 𝜃𝑁𝑘
 does not converge 

to the true problem, then the size of 𝒌′ increases through the expression 𝒌′ ← 𝒌 + 𝒒𝟐, 

where 𝒒𝟐 is a positive integer. In the worst case, if no improvements are found then the 

size of the cluster 𝒌′ approaches to infinity i.e., 𝒌′ ← ∞. At this point 𝜃𝑁𝑘
→ 𝜃∗, which is 

guaranteed through Proposition 4.1.  

Proposition 4.3: The eSAA algorithm terminates in a finite number of iterations. 

Proof: The sample sizes 𝑵𝑳, 𝑵, 𝑵𝒌 used in the eSAA algorithm are finite. Moreover, the 

feasibility region provided by x is finite. Since Proposition 4.2 holds, we can deduce that 

eSAA algorithm will terminate in a finite number of iterations.  

Some questions arise in the process of implementing our proposed eSAA 

algorithm such as: (a) Does clustering provide representative scenarios that yield 
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comparable lower bounds as basic SAA? (b) Is there a saving in computational time for 

using clustering algorithm and representative scenarios in our approach versus using all 

the scenarios in SAA without clustering? In other words, does the saving in computation 

time due to the reduced number of scenarios offset the clustering time in our approach? 

We investigate these issues using numerical experiments in Section 4.4. Meanwhile, our 

methodology for creating groups or clusters of similar scenarios are inspired by a set of 

clustering methods, i.e., K-means clustering, K-means++ clustering, K-means|| clustering, 

Fuzzy C-means clustering, and Mixed Integer Programming (MIP) clustering. We now 

present a brief description of all these clustering methodologies applied in our eSAA 

algorithm. 

4.3.2.1 K-means clustering 

K-means algorithm which is sometimes referred to as Lloyd’s algorithm was 

proposed in 1957 by Stuart Lloyd [87]. K-means method is one of the most popular 

unsupervised learning algorithms that follow a simple, easy and relatively efficient way 

to classify a given data set into a certain number of clusters fixed a priori. It works in two 

phases. In the first phase, initial k centers are chosen at random. In the second phase, each 

point in the data set is assigned to the cluster containing the center that is nearest to it. At 

the end of this phase, the center value of each cluster is calculated, and depending upon 

the new values of centers, the second phase is repeated until the values of centers 

converge to the same value. The complexity of this algorithm is O(nkl), where n is the 

number of data points, k is the number of clusters, and l is the number of iterations 

needed until convergence. 
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To explain K-means algorithm mathematically, let 𝐗 = {𝑥1,  𝑥2, … , 𝑥𝑛} be a set of 

points that has to be partitioned into k clusters. The objective is to assign a cluster to each 

data point in such a way that the positions  𝜇𝑖, 𝑖 = 1,2, … , 𝒌 of the clusters minimize the 

distance from the data points to the cluster.  Essentially, K-means clustering solves: 

  

 𝑎𝑟𝑔 𝑚𝑖𝑛𝑟 ∑ ∑ 𝑑(𝑥, 𝜇𝑖)𝑥∈𝒓𝒊

𝒌
𝑖=1   (4.26) 

Here,  𝒓𝒊 is the set of points that belongs to cluster i. The steps involved in K-means 

clustering algorithm are illustrated in Algorithm 4.1. 

Algorithm 4.1: K-means clustering algorithm 
1:   X ← Set of data points 
2:   k ← Total number of clusters 
3:   Randomly select k cluster centers from X 
4:   𝜇𝑖 ← 𝒌 cluster centers, where i=1,2,…,k 
5:   𝒓𝒊 ← set of points that belongs to cluster i, where i=1,2,…,k 
6:   Attribute the nearest cluster to each data point: 
                𝒓𝒊 =  {𝑗: 𝑑(𝑥𝑖, 𝜇𝑖)  ≤ 𝑑(𝑥𝑗 , 𝜇𝑚), 𝑚 ≠ 𝑖, 𝑗 = 1,2, … , 𝑛}  
7:   Fix the position of each cluster to the mean of all points belonging to that cluster: 
                𝜇𝑖 =

1

|𝒓𝒊|
∑ 𝑥𝑗,𝑗∈𝒓𝒊

∀𝑖 
8:   Repeat Steps 6 and 7 until convergence. 

 

 

Figure 4.1 Pictorial representation of scenario aggregation performed in eSSA 
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Figure 4.2 Comparison between SAA and eSAA algorithm 

 



 

148 

4.3.2.2 K-means++ clustering 

In practice, the speed and simplicity of K-means clustering algorithm cannot be 

beat. Therefore, recent works have mainly focused on improving the initialization 

procedure. Deciding on a better way to initialize the clusters changes the performance of 

the Lloyd’s iteration, both in terms of quality and convergence properties. Focusing on 

this direction, Ostrovsky et al. [109] and Arthur and Vassilvitskii [6] have proved that a 

simple procedure of selecting a good starting point can lead to good theoretical 

guarantees for the quality of the solution. They dubbed this method as K-means++ 

clustering algorithm.  K-means++ method enhances the basic K-means clustering 

algorithm by implementing a better initialization approach in selecting the first k centers. 

Instead of randomly selecting the k centers, only one is randomly selected while the 

remaining (k - 1) centers are systematically selected with a probability proportional to its 

contribution to the overall error, given the previous selections. On a variety of datasets, 

K-means++ initialization obtains order of magnitude improvements over the random 

initialization of K-means clustering algorithm. K-means++  has been implemented in a 

wide range of applications such as defect prediction [110]. The pseudo code of K-

means++ clustering method is shown in Algorithm 4.2. 
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Algorithm 4.2: K-means++ clustering algorithm 
1:   X ← Set of data points 
2:   k ← Total number of clusters 
3:    𝜇1 ← sample a point randomly from X 
4:   𝒓𝒊 ← set of points that belong to cluster i, where i=1,2,…,k 
5:   while |𝜇𝑖 |< 𝒌 do 

6:           sample x ∈ X with probability: 
arg min

𝑟
∑ ∑ 𝑑(𝑥,𝜇)𝑥∈𝒓𝒊

𝒌
𝑖=1

arg min
𝑟

∑ ∑ 𝑑(𝑿,𝜇)𝑥∈𝒓𝒊
𝒌
𝑖=1

   

7:    𝜇 ← 𝜇 ⋃  {𝑥} 
8:    end while 
9:    Attribute the nearest cluster to each data point: 
                𝒓𝒊 =  {𝑗: 𝑑(𝑥𝑖 , 𝜇𝑖)  ≤ 𝑑(𝑥𝑗 , 𝜇𝑚), 𝑚 ≠ 𝑖, 𝑗 = 1,2, … , 𝑛}  
10:  Fix the position of each cluster to the mean of all points belonging to that cluster: 
                𝜇𝑖 =

1

|𝒓𝒊|
∑ 𝑥𝑗,𝑗∈𝒓𝒊

∀𝑖 
11:   Repeat Steps 9 and 10 until convergence. 

 

4.3.2.3 K-means|| clustering 

K-means algorithm chooses k centers in a single iteration following a specific 

distribution e.g., uniform distribution. On the other hand, K-means++ completes k 

iterations and selects one point in each iteration according to a non-uniform distribution. 

The superiority of K-means++ over K- means algorithm is primarily in constantly 

updating the non-uniform selection process. K-means parallel (K-means||) algorithm, 

developed by Bahmani et al. [10]  combines the advantages of K-means and K-means++ 

in such a way that it takes fewer number of iterations and chooses more than one point in 

each iteration non-uniformly. In addition, K-means|| uses an oversampling factor l in its 

sampling points. This algorithm picks an initial center and computes Ψ as: Ψ ≔ 

arg min
𝑟

∑ ∑ 𝑑(𝑿, 𝜇)𝑥∈𝒓𝒊

𝒌
𝑖=1 . Given a set of 𝜇 centers, in each of O(𝑙𝑜𝑔𝜓) iterations this 

algorithm samples each x with a probability 𝜌 =
𝑙∗ arg min

𝑟
∑ ∑ 𝑑(𝑥,𝜇)𝑥∈𝒓𝒊

𝒌
𝑖=1

arg min
𝑟

∑ ∑ 𝑑(𝑿,𝜇)𝑥∈𝒓𝒊
𝒌
𝑖=1

 which is then 
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added to 𝜇. In order to reduce the number of centers, weights denoted by 𝒘𝒙 are assigned 

to points in 𝜇 . These weighted points are then clustered to obtain the desired number of 

clusters. The structure of the algorithm lends itself for possible implementation in parallel 

systems. Algorithm 4.3 demonstrates the steps of K-means|| clustering algorithm. 

 
Algorithm 4.3: K-means|| clustering algorithm 
1:   X ← Set of data points 
2:   k ← Total number of clusters; l ← oversampling factor 
3:    𝜇 ← sample a point randomly from X 
4:   𝒓𝒊 ← set of points that belong to cluster i, where i=1,2,…,k 
5:   Ψ ← arg min

𝑟
∑ ∑ 𝑑(𝑿, 𝜇)𝑥∈𝒓𝒊

𝒌
𝑖=1  

6:   for O(𝑙𝑜𝑔𝛹) times do 

7:           μ′ ← sample each point x ∈ X with probability: 𝜌 =
𝑙∗ arg min

𝑟
∑ ∑ 𝑑(𝑥,𝜇)𝑥∈𝒓𝒊

𝒌
𝑖=1

arg min
𝑟

∑ ∑ 𝑑(𝑿,𝜇)𝑥∈𝒓𝒊
𝒌
𝑖=1

   

8:   𝜇 ← 𝜇 + 𝜇′ 
9:   end for 
10: For 𝑥 ∈ 𝜇, set 𝒘𝒙 to be the number of points in X closer to x than any other point in 
𝜇  
11: Attribute the nearest cluster to each data point: 
                𝒓𝒊 =  {𝑗: 𝑑(𝑥𝑖 , 𝜇𝑖)  ≤ 𝑑(𝑥𝑗 , 𝜇𝑚), 𝑚 ≠ 𝑖, 𝑗 = 1,2, … , 𝑛}  
12: Fix the position of each cluster to the mean of all points belonging to that cluster: 
                𝜇𝑖 =

1

|𝒓𝒊|
∑ 𝑥𝑗,𝑗∈𝒓𝒊

∀𝑖 
13:   Repeat Steps 11 and 12 until convergence. 

 

4.3.2.4 Fuzzy C-means (FCM) clustering 

One of the most widely used fuzzy clustering algorithms is the Fuzzy C-means 

(FCM) algorithm which was developed by James Bezdek in 1984 [22]. Fuzzy C-means is 

a clustering method which allows a data point to belong to two or more clusters. This 

algorithm works by assigning membership to each data point corresponding to each 

cluster center on the basis of the distance between the cluster centers and the data points. 

The data point that is closest to a cluster center has its membership towards this particular 

cluster center higher than any other data point. The summation of membership of a 
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particular data point towards all the cluster centers is equal to one. The objective of the 

C-means algorithm is to minimize: 

 

𝑗𝑚 = ∑ ∑ 𝜇𝑖𝑗
𝑚𝒄

𝑗=1
𝑵
𝑖=1 ‖𝑥𝑖 − 𝒄𝒋𝒎‖

2
  (4.27) 

Here, the fuzziness component or index is denoted by m which is any real number greater 

than 1. The total number of data points are denoted by N and C is the number of clusters. 

{𝑥𝑖}𝑖∈𝑵 is the i-th measured data and 𝒄𝒋 is the center of the j-th cluster. The degree of 

membership of 𝑥𝑖 in cluster j is denoted by 𝜇𝑖𝑗. 

This algorithm is carried out iteratively with the membership function and cluster centers 

updated after each iteration. The iteration will stop and the algorithm will terminate if 

𝑚𝑎𝑥𝑖𝑗 ‖𝒖𝒊𝒋
(𝒌+1)

− 𝒖𝒊𝒋
𝒌 ‖ ≤ 𝝐 , where the value of 𝝐 may vary between 0 and 1. The pseudo 

code for Fuzzy C-means algorithm is outlined below in Algorithm 4.4: 
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Algorithm 4.4: Fuzzy C-means clustering algorithm 
1:   Randomly select cluster center 
2:   Initialize 𝑈 = [𝒖𝒊𝒋] matrix, 𝑈(0) 
3:   Calculate 𝒖𝒊𝒋 using: 

𝒖𝒊𝒋 =
1

∑  (
‖𝑥𝑖 − 𝒄𝒋‖
‖𝑥𝑖 − 𝒄𝒌‖

)

2
(𝑚−1)⁄

c
𝒌=1  

 

 
4:   Calculate centers vectors 𝐶(𝒌)=[𝒄𝒋] with 𝑈(𝒌): 

𝒄𝒋 =
∑ 𝜇𝑖𝑗

𝑚𝑁
𝑖=1 𝑥𝑗

∑ 𝜇𝑖𝑗
𝑚𝑁

𝑖=1

 

5:   Update 𝑈𝒌, 𝑈(𝒌+1): 

𝒖𝒊𝒋 =
1

∑  (
‖𝑥𝑖 − 𝒄𝒋‖
‖𝑥𝑖 − 𝒄𝒌‖

)

2
(𝑚−1)⁄

c
𝒌=1  

 

6:   If (||𝑈(𝒌+1) − 𝑈𝒌|| ≤ 𝝐) or minimum value of j is achieved, STOP the algorithm.  
 
Otherwise repeat from Step 2. 

 

Proposition 4.4 proves the validity of the lower bound provided by the clustering 

approach based on cluster size k. 

Proposition 4.4: Let 𝒛∗ be the optimal solution of a true problem defined by (4.2). Let an 

approximate solution (𝒙𝐍′
∗ , 𝒛𝐍′

∗ ) be obtained by solving N′ sampled realizations of 

problem (4.2)’s stochastic parameter. Moreover, let (𝒙𝐍
∗ , 𝒛𝐍

∗ ) be the solution obtained by 

solving problem (4.2) with N realizations where 𝐍 ≫ 𝐍′. Then, we prove the following: 

 The expectation of 𝒛𝑵′
∗  is a lower bound on 𝒛∗ and 𝒛𝑵

∗  provides an improved lower 

bound. 

 If we form C clusters from the samples in the 𝐍′ realizations, the solution (𝒙𝑪
∗ , 𝒛𝑪

∗ ) 

obtained by using the centroids of the C clusters also provides a valid lower 

bound on 𝒛∗ which improves as C increases. 
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Proof: Let  𝝃 = {𝜉1, 𝜉2, … 𝜉𝐍, 𝜉𝐍+1} be a set of data elements to be grouped into C 

clusters. Let, 𝒖𝒊𝒋, (𝑖 = 1,2, … , 𝐍 + 1; 𝑗 = 1,2, … , 𝐂) be the degree of membership of data 

𝜉𝑖 in cluster j evaluated in fuzzy C-means as: 𝒖𝒊𝒋 =
1

∑  (
‖𝜉𝑖−𝒄𝒋‖

‖𝜉𝑖−𝒄𝒌‖
)

2
(𝑚−1)⁄

𝐜
𝐤=1  

 , with 𝑚 > 1 

being the fuzziness exponent; 𝒄𝒋 =
∑ 𝜇𝑖𝑗

𝑚𝐍+1
𝑖=1 𝜉𝑖

∑ 𝜇𝑖𝑗
𝑚𝐍+1

𝑖=1

 the center of cluster j; ‖𝜉𝑖 − 𝒄𝒋‖ the distance 

from point i to current cluster j; and ‖𝜉𝑖 − 𝒄𝒌‖ the distance from point i to other clusters 

k. 

At the convergence of the clustering algorithm, it is obvious that 𝑝1 = ∑ 𝒖𝒊𝒋
𝑪
𝑗=1 =

1 ∀𝑖 ∈ 𝝃 and 𝑝2 = ∑ (𝒖𝒊𝒋)2𝑪
𝑗=1 ≤ 1 ∀𝑖 ∈ 𝝃. Without loss of generality, let us assume that 

the elements in 𝜉 are distinct, i.e.,  𝜉1 ≠ 𝜉2 ≠ 𝜉𝐍 ≠ 𝜉𝐍+1. If 𝑪 = 𝐍 + 1, in other words, 

we are required to group the data into N+1 clusters, it’s trivial to show that 𝒖𝒊𝒋 =

 {0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
1 𝑓𝑜𝑟  𝑗 = 𝒌

   ∀𝑖 ∈ 𝜉. This means that only one element occurs in each cluster k. 

Moreover, in this case 𝑝2 = 𝑝1 = 1.  

min
𝑥∈𝐗

𝔼𝑓(𝑥, 𝜉𝑖) = min
𝑥∈𝐗

(𝔼
1

𝐍 + 1
∑ 𝑓(𝑥,

𝐍+1

𝑖
𝜉𝑖)) 

 ≥ 𝔼 min
           𝑥∈𝑋

(
1

𝐍 + 1
∑ 𝑓(𝑥,

𝐍+1

𝑖
𝜉𝑖)) 

Thus,  

𝔼(𝒛𝑵+𝟏
∗ ) = 𝔼 min

𝑥∈𝐗
(

1

𝐍 + 1
∑ 𝑓(𝑥,

𝐍+1

𝑖
𝜉𝑖)) ≤ 𝒛∗ 

which is a valid lower bound. 

For a cluster size 𝑪 = 𝐍′ where 𝐍′ < 𝐍 + 1, 𝑝2 ≤ 1 ∀𝑖 ∈ 𝜉. Using 𝝃 =

{𝜉1, 𝜉2, … 𝜉𝐍′, 𝜉𝐍′+1} to define 𝒛𝐍′
∗  and 𝒛𝐍′+𝟏

∗ : 
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𝔼(𝒛𝑵′+𝟏
∗ ) = 𝔼 min

𝑥∈𝐗
(

1

𝐍′ + 1
∑ 𝑓(𝑥,

𝐍′+1

𝑖
𝜉𝑖)) 

= 𝔼 min
𝑥∈𝐗

(
1

𝐍′ + 1
∑

1

𝐍′
∑ 𝑓(𝑥,

𝐍′+1

𝑗≠𝑖
𝜉𝑗)

𝐍′+1

𝑖

) 

≥
1

𝐍′ + 1
∑ 𝔼 min

𝑥∈𝐗

1

𝐍′
∑ 𝑓(𝑥,

𝐍′+1

𝑗≠𝑖
𝜉𝑗)

𝐍′+1

𝑖

 

= 𝔼(𝒛𝑵′
∗ ) 

which implies a better lower bound.   

4.3.2.5 Mathematical programming-based clustering 

We now present a mathematical formulation of mixed integer programming 

(MIP) model for the clustering phenomenon. This formulation was proposed by Sağlam, 

Salman, Sayın, and Türkay [133] but similar type of formulations were developed 

previously by Brusco [26] and Rao [119]. 

Consider a data set of n points where n ∈ 𝐍 with m dimensions. We want to 

achieve k number of exclusive clusters where k ∈ 𝐊 and is known a priori. The main 

objective of this formulation is to find the optimal division or partition of this data set 

into k clusters. In this model, 𝐃 ≔ {𝐷𝑙}𝑙∈𝑲 and 𝐷𝑚𝑎𝑥 are defined as the diameter of 

cluster l and the maximum diameter among the desired clusters, respectively. The 

parameter 𝑑𝑖𝑗 denotes the distance between two data points i ∈ N and j ∈ N. 𝐗 ≔

{𝑥𝑖𝑙}𝑖∈𝐍,𝑙∈𝑲 is a binary variable that takes the value 1 if i is assigned to cluster l and 0 

otherwise. The objective of the model is to minimize 𝐷𝑚𝑎𝑥. With this, the clustering 

problem can be formulated as a MIP problem as shown below: 
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Minimize 𝐷𝑚𝑎𝑥  (4.28) 

  𝐷𝑙  ≥  𝑑𝑖𝑗𝑥𝑖𝑙𝑥𝑗𝑙   ∀𝑖 ∈ 𝐍, j ∈ 𝐍 , l ∈ 𝐊  (4.29) 

∑ 𝑥𝑖𝑙
𝑲
𝑙=1    =   1  ∀𝑖 ∈ 𝐍    (4.30) 

𝐷𝑚𝑎𝑥  ≥  𝐷𝑙  ∀𝑙 ∈ 𝐊     (4.31) 

𝑥𝑖𝑙  ∈  {0,1}  ∀𝑖 ∈ 𝐍, l ∈ 𝐊     (4.32) 

𝐷𝑙  ≥   0  ∀𝑙 ∈ 𝐊     (4.33) 

 

Constraints (4.29) indicate that the diameter of the cluster is at least equal to the 

maximum distance between any two arbitrary data points in the same cluster. Constraints 

(4.30) indicate the exclusivity of the clusters meaning each data point will only be 

assigned to only one cluster. Constraints (4.31) along with the objective function denote 

that 𝐷𝑚𝑎𝑥 is equal to the maximum diameter and greater than any other cluster diameters. 

Constraints (4.32) are binary constraints and constraints (4.33) are non-negativity 

constraints. 

The expression 𝑥𝑖𝑙𝑥𝑗𝑙 in constraints (4.29) is the product of two binary decision 

variables with the value of 0 or 1. This makes the above model a non-convex bi-linear 

mixed integer programming (MIP) model. Thus, even with a small set of data points the 

above model is hard to solve in a reasonable amount of time. The following technique 

linearizes constraints (4.29) without increasing the size of the formulation: 

             𝐷𝑙  ≥   𝑑𝑖𝑗(𝑥𝑖𝑙 + 𝑥𝑗𝑙 − 1)  ∀𝑖 ∈ 𝐍, j ∈ 𝐍 , l ∈ 𝐊   (4.34) 

Constraints (4.34) indicate that data points i and j are assigned to cluster l and the 

diameter of the cluster has to be at least as long as the distance between 𝑖 ∈ 𝐍 and j ∈ 𝐍. 

In constraints (4.34), if one or both of the decision variables i.e., 𝑥𝑖𝑙 and 𝑥𝑗𝑙 are equal to 
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zero, it will make the constraints redundant. If and only if both the decision variables are 

equal to 1, then constraints (4.34) will be active. 

4.4 Numerical study 

In this section, we investigate the performance of our proposed enhanced sample 

average approximation (eSAA) approach using (1) A classical facility location problem 

([FLP]) with stochastic demands (2) A single-sink transportation problem ([SSP]) and 

(3) A supply transportation problem ([STP]). [SSP] and [STP], formulated by Maggioni 

et al. [88] and Maggioni et al. [89], respectively. The purpose of these tests is to 

investigate the robustness of using the eSAA approach as well as study the effects of 

problem parameters, such as the number of scenarios and cluster size on the performance 

of the method. The result will also increase the prospect of using the approach as an 

alternative to the continuous approximation approach utilized in Chapter III in solving the 

AM deployment configuration problem. However, we first start by providing an 

overview of the [FLP] and then discuss the computational performance of solving [FLP] 

with our eSAA algorithm. 

4.4.1 Facility location problem 

The facility location problem ([FLP]) is a classical combinatorial optimization 

problem of determining the number and location of facilities (e.g., factories, warehouses, 

schools) and assigning customers to them (e.g., depots, retail outlets, students) so as to 

minimize the overall system cost. The facility location problem can be either capacitated 

or uncapacitated. In a capacitated facility location problem (CFLP), there is a limit on the 

number of customers each facility can serve or amount of products that it can produce. In 
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an uncapacitated facility location problem (UFLP), an arbitrary number of customers can 

be served by a facility since there is no limit to the amount of products that it can 

produce.  

Pioneering works on facility location problem can be attributed to Kuehn and Hamburger 

[79] and Balinski [12]. Since then, the problems have been extensively studied with many exact 

and heuristic solution approaches. For example,  Erlenkotter [46], Galvão and Raggi [52], 

Ardjmand et al. [5], Posta et al. [117], and Monabbati and Kakhki [97] discussed different 

solution approaches to solve UFLP. Similarly, new models and algorithms are developed (e.g., 

Akinc and Khumawala [3], Barceló and Casanovas [13], Jacobsen [66], Rahmaniani  and Ghaderi 

[118], and Küçükdeniz et al. [78]) to solve CFLP. The classical facility location problems are 

extended by many researchers over the years to consider economies of scale (e.g., Van Roy [154], 

Feldman et al. [50], and Trappey et al. [149]), increasing production costs (e.g., Harkness and 

ReVelle [58] and Dogan [42]) and concave costs (e.g., Soland [144], Dupont [44], and Saif and 

Elhedhli [134]) in the modeling formulation. These works are applied to determine the optimal 

location of facilities for manufacturing systems, energy production and distribution systems, 

servers for computer internet communication networks, ambulance locations for emergency 

services, hospitals for health-care services, and academic institutions. Facility location problems 

with stochastic demand are NP-hard problems ([93], [102]); therefore, solving large instances of 

the problem is a challenging task. This motivates us to use stochastic facility location problem as 

a test case to check and validate the performance of our enhanced sample average approximation 

(eSAA) algorithm. 

We now give a mathematical formulation of the capacitated [FLP]. The problem 

can be stated simply as follows.  We are given a set of candidate facility locations J with 

installing cost 𝜓𝑗 and supply capacity 𝑆𝑗 ∀j ∈ 𝐉. We are also given a set of warehouse 
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locations 𝑘 ∈ 𝐊 with stochastic demands 𝑑𝑘𝜔. The cost of shipping one unit of product 

from each plant location j ∈ 𝐉 to customer/warehouse location 𝑘 ∈ 𝐊 is denoted by 𝑐𝑗𝑘. 

There is a unit penalty cost associated with not meeting the demand at warehouse 

facilities which is denoted by 𝛽𝑘 . We assume that there are fixed number of scenarios |Ω| 

and the probability associated with each scenario is denoted by 𝜌𝜔. 

The first-stage decision variables 𝐘 ≔ {𝑌𝑗}𝑗∈𝐽 decide the location to open the 

facilities i.e.,     

𝑌𝑗 = {0  otherwise
1 if a palnt is opened at location 𝑗 

The second-stage decision variables 𝐗 ≔ {𝑋𝑗𝑘𝜔}𝑗∈𝐉,𝑘∈𝐊,𝜔∈𝛀 decide the amount of product 

shipped from plant j ∈ 𝐉 to warehouse 𝑘 ∈ 𝐊 under scenario 𝜔 ∈ 𝛀 and 𝒁 ≔

{𝑍𝑘𝜔}𝑘∈𝐊,𝜔∈𝛀 decide the unsatisfied demand at warehouse 𝑘 ∈ 𝐊 under scenario 𝜔 ∈ 𝛀. 

The aim is to minimize the first-stage and expected value of the second-stage costs. With 

this, we now formulate the following two-stage mixed-integer linear programming 

(MILP) formulation [FLP] as shown below: 

  

[𝐅𝐋𝐏] 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝜓𝑗𝑌𝑗𝑗∈𝐉 + ∑ 𝜌𝜔𝔼(𝑌, 𝜔)𝜔∈𝛀  (4.35) 

subject to 

  

𝑌𝑗  ∈  {0,1}  ∀  𝑗 ∈ 𝐉     (4.36) 

with 𝔼(𝑌, 𝜔) being the solution of the following second-stage problem: 

  

𝔼(𝑌, 𝜔) = 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ ∑ 𝑐𝑖𝑗𝑋𝑗𝑘𝜔𝑘∈𝐊𝑗∈𝐉 + ∑ 𝛽𝑘𝑍𝑘𝜔𝑘∈𝐊  (4.37) 
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∑ 𝑋𝑗𝑘𝜔𝑗∈𝐉 + 𝑍𝑘𝜔 = 𝑑𝑘𝜔 ∀𝑘 ∈ 𝐊, 𝜔 ∈ 𝛀    (4.38) 

∑ 𝑋𝑗𝑘𝜔𝑘∈𝐊 ≤ 𝑆𝑗𝑌𝑗  ∀𝑗 ∈ 𝐉, 𝜔 ∈ 𝛀     (4.39) 

𝑋𝑗𝑘𝜔 ≥ 0 ∀𝑗 ∈ 𝐉, 𝑘 ∈ 𝐊, 𝜔 ∈ 𝛀    (4.40) 

𝑍𝑘𝜔 ≥ 0 ∀𝑘 ∈ 𝐊, 𝜔 ∈ 𝛀    (4.41) 

 

The objective function minimizes total cost of the system including first-stage 

cost (e.g., investment cost of opening plants) and second-stage costs (e.g., transportation 

and shortage costs) under a set of possible scenarios.  More specifically, the first term of 

the objective function represents the total set-up cost of locating the plants. The second 

term is the total cost of transporting products from plants to warehouses and the last term 

in the objective function is the cost associated with not meeting demand at the 

warehouses. 

Constraints (4.38) indicate that the demand at warehouse 𝑘 ∈ 𝐊  is fulfilled in all 

scenarios either by the regular network or through external sources. Constraints (4.39) 

indicate that the amount of product transported from each plant 𝑗 ∈ 𝐉 is limited by the 

supply capacity Sj. Finally, Constraints (4.40) and (4.41) are the standard non-negativity 

constraints. 

4.4.2 Analyzing the performance of solution algorithms 

This section presents our computational experience in solving model [FLP] using the 

algorithms proposed in Section 4.3. To help the readers follow our approaches, we have 

used the following notations to represent the algorithms: 
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 [SAA]: Basic sample average approximation algorithm (described in Section 

4.3.1) 

 [eSAA(D)]: Enhanced sample average approximation algorithm (described in 

Section 4.3.2) 

 [eSAA(F)]: Enhanced sample average approximation algorithm with fixed cluster 

size (e.g., same as [eSAA(D)] but the cluster size is kept constant throughout all 

the iterations) 

The algorithms presented above are implemented in Python using GUROBI 

optimization solver (http://www.gurobi.com/) on a desktop with Intel Core i7 3.60 GHz 

processor and 16.0 GB RAM. The algorithms are terminated when at least one of the 

following condition is met: (a) the optimality gap (i.e., ϵ = |UB − LB|/UB) falls below a 

tolerance threshold value, 𝛜 = 0.001; or (b) the maximum time limit 𝑡𝑖𝑚𝑒𝑚𝑎𝑥= 10,800 

(in CPU seconds) is reached; or (c) the maximum number of iteration 𝑖𝑡𝑒𝑟𝑚𝑎𝑥 = 100 is 

reached. The size of the equivalent deterministic problem of model [FLP] is presented in 

Table 4.3. 

 

Table 4.3 Problem size of the test instances 

Instances  |J| |K| Binary  
Variables 

Continuous  
Variables 

Total  
Variables 

No. of  
Constraints 

S1 10 10 10 110 120 20 
S2 30 30 30 930 960 60 
S3 50 50 50 2550 2600 100 
S4 70 70 70 4970 5040 140 
S5 100 100 100 10,100 10,200 200 
S6 120 120 120 14,520 14,640 240 
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The first set of experiments (shown in Tables 4.4 – 4.9) show the computational 

performance in solving [eSAA(F)] and [eSAA(D)] against [SAA]. K-means++ clustering 

strategy is chosen to be implemented in both [eSAA(F)] and [eSAA(D)] for this first set 

of experiments. We consider 6 problem instances which is shown in Table 4.3. 

Additionally, we have tested the performance of the enhancement techniques under both 

normal and uniform distribution. Under each instance a total of 6 sample sizes are 

considered, i.e., N = {100, 200, 300, 400, 500}. For each sample, we experimented with 

two sets of replications, M = {5, 10}. Note that, we do not present the results obtained 

from GUROBI. This is because GUROBI takes more time than [SAA], [eSAA(F)], and  

[eSAA(D)] even for smaller instances and smaller sample sizes and goes out of memory 

if one or both of them increase. In all of our experimental results, if the algorithms are 

solved in less than the stopping criteria 𝝐 then we highlighted the algorithm which gave 

the smallest running time. Otherwise, if such a quality solution is not found within the 

maximum time or iteration limit then the algorithm with the smallest optimality gap is 

highlighted. For the first set of experiments with uniform distribution, the results indicate 

that both [eSAA(F)] and [eSAA(D)] perform significantly better than [SAA] for all 

instances. All the problems are solved within pre-specified optimality/tolerance gap 

within the specified time limit. More specifically, [eSAA(D)] is on average 8.4% faster 

than [eSAA(F)] and 688% faster than [SAA]. Simultaneously, computation time of 

[eSAA(F)] is on average 626% faster than [SAA]. Furthermore, [eSAA(D)] drops the 

average optimality gap to 0.018% compared to 0.02% and 0.033% of [eSAA(F)] and 

[SAA], respectively. We observe the same trend while performing the first set of 

experiments with normal distribution. [eSAA(D)] algorithm has found to be superior 
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compared to the other two counterparts in terms of computation time and solution quality. 

On average, [eSAA(D)] is 9.4% faster than [eSAA(F)] and 712% faster than [SAA]. 

Additionally, the quality of solution is found to be better with [eSAA(D)] having an 

average optimality gap of 0.016% compared to 0.025% and 0.036% in [eSAA(F)] and 

[SAA], respectively. 

 

Table 4.4 Performance comparison between [SAA], [eSAA(F)], and [eSAA(D)] 
(Instance S1) 

 
 
N 
 

 
 
M 

[SAA] [eSAA(F)] [eSAA(D)] 
ϵ 

(%) 
Time 
(sec) 

Iter ϵ 
(%) 

Time 
(sec) 

Iter ϵ 
(%) 

Time 
(sec) 

Iter 

                                   Uniform distribution 
100 5 0.00 2.7 3.6 0.06 1.4 1.0 0.00 1.1 1.3 

10 0.02 3.3 2.5 0.04 3.0 1.2 0.01 2.7 1.6 
200 5 0.00 4.4 1.9 0.00 1.9 1.2 0.02 2.1 1.2 

10 0.01 5.4 1.2 0.01 4.2 1.0 0.00 3.4 1.1 
300 5 0.00 6.6 2.6 0.07 3.1 1.6 0.01 2.9 1.0 

10 0.02 8.1 2.1 0.02 6.5 1.0 0.01 5.9 1.2 
400 5 0.02 9.3 2.5 0.02 2.5 1.0 0.01 2.0 1.2 

10 0.01 11.0 1.6 0.01 4.8 1.0 0.02 4.1 1.0 
500 5 0.04 12.0 1.3 0.01 4.7 1.4 0.02 5.1 1.1 

10 0.03 15.0 1.8 0.04 10.0 1.3 0.01 8.1 1.3 
Avg.  0.02 7.7 2.1 0.03 4.2 1.1 0.01 3.7 1.2 

Normal distribution 
100 5 0.01 2.7 2.3 0.02 1.3 1.6 0.02 1.3 1.6 

10 0.02 3.3 2.1 0.04 3.1 2.1 0.01 2.6 1.1 
200 5 0.00 4.4 2.9 0.03 1.8 1.6 0.01 2.2 1.3 

10 0.04 5.4 1.5 0.02 4.4 1.1 0.02 3.5 1.2 
300 5 0.01 6.6 2.5 0.00 3.2 1.9 0.00 2.7 1.5 

10 0.00 8.1 1.6 0.02 6.7 1.1 0.00 5.8 1.4 
400 5 0.02 9.3 2.9 0.00 2.3 1.5 0.01 2.2 1.1 

10 0.02 11.0 1.7 0.01 4.6 1.1 0.01 4.3 1.0 
500 5 0.01 12.0 1.6 0.01 4.9 1.3 0.00 5.2 1.0 

10 0.00 16.0 1.6 0.02 8.8 1.2 0.01 7.7 1.0 
Avg.  0.01 7.9 2.07 0.02 4.1 1.4 0.01 3.8 1.2 
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Table 4.5 Performance comparison between [SAA], [eSAA(F)], and [eSAA(D) 
(Instance S2) 

 
 
N 
 

 
 
M 

[SAA] [eSAA(F)] [eSAA(D)] 
ϵ 

(%) 
Time 
(sec) 

Iter ϵ 
(%) 

Time 
(sec) 

Iter ϵ 
(%) 

Time 
(sec) 

Iter 

            Uniform distribution 
100 5 0.05 41.0 4.2 0.05 14.0 1.0 0.00 11.0 1.1 

10 0.02 52.0 3.5 0.02 27.0 1.6 0.05 25.0 1.0 
200 5 0.02 83.0 4.1 0.09 25.0 1.4 0.01 20.0 1.2 

10 0.05 104 3.0 0.00 52.0 1.2 0.02 44.0 1.0 
300 5 0.03 140 4.2 0.01 36.0 1.6 0.02 32.0 1.5 

10 0.04 169 4.1 0.01 68.0 1.2 0.01 58.0 1.0 
400 5 0.05 212 2.9 0.07 43.0 1.4 0.02 46.0 1.3 

10 0.04 259 2.1 0.01 77.0 1.6 0.01 81.0 1.3 
500 5 0.03 294 2.5 0.06 75.0 1.8 0.02 66.0 1.1 

10 0.06 362 2.0 0.01 165 1.5 0.01 163 1.0 
Avg.  0.04 171 3.2 0.03 58 1.4 0.02 55 1.1 
    Normal distribution 
100 5 0.02 44.0 4.1 0.01 15.0 1.6 0.02 10.0 1.0 

10 0.01 55.0 4.2 0.01 26.0 1.2 0.01 25.0 1.0 
200 5 0.05 78.0 3.2 0.03 26.0 2.1 0.02 21.0 1.1 

10 0.03 97.0 2.0 0.05 55.0 1.3 0.01 41.0 1.2 
300 5 0.02 154 2.3 0.02 35.0 2.5 0.02 33.0 1.0 

10 0.04 179 1.6 0.02 73.0 1.4 0.04 53.0 1.2 
400 5 0.08 200 1.5 0.01 45.0 1.6 0.00 49.0 1.3 

10 0.07 280 2.2 0.03 83.0 1.0 0.01 79.0 1.2 
500 5 0.06 306 1.6 0.01 70.0 1.9 0.00 69.0 1.0 

10 0.01 369 1.1 0.02 166 1.0 0.01 178 1.3 
Avg.  0.04 176 2.3 0.02 59 1.5 0.01 56 1.1 
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Table 4.6 Performance comparison between [SAA], [eSAA(F)], and [eSAA(D)] 
(Instance S3) 

 
 
N 
 

 
 
M 

[SAA] [eSAA(F)] [eSAA(D)] 
ϵ 

(%) 
Time 
(sec) 

Iter ϵ 
(%) 

Time 
(sec) 

Iter ϵ 
(%) 

Time 
(sec) 

Iter 

                                 Uniform distribution 
100 5 0.03 165 4.1 0.09 44.0 3.5 0.00 47.0 2.2 

10 0.04 208 3.2 0.02 75.0 3.4 0.00 60.0 2.1 
200 5 0.03 349 5.9 0.07 68.0 3.6 0.04 55.0 1.6 

10 0.05 426 2.1 0.00 114 2.9 0.01 103 1.1 
300 5 0.03 613 1.9 0.06 82.0 3.5 0.02 90.0 1.0 

10 0.03 742 2.3 0.02 139 2.5 0.04 113 1.2 
400 5 0.02 899 1.5 0.01 78.0 3.4 0.02 74.0 1.5 

10 0.06 1124 1.2 0.01 133 2.4 0.03 120 1.2 
500 5 0.00 1340 2.9 0.01 164 1.0 0.01 133 1.1 

10 0.05 1635 2.1 0 .00 271 1.0 0.00 233 1.3 
Avg.  0.03 750 2.7 0.03 117 2.7 0.02 103 1.4 

       Normal distribution 
100 5 0.05 151 3.4 0.05 41.0 2.5 0.02 45.0 1.2 

10 0.08 205 3.3 0.02 68.0 2.1 0.00 66.0 1.4 
200 5 0.01 377 3.3 0.04 70.0 4.2 0.04 53.0 1.5 

10 0.02 397 3.1 0.02 122 2.2 0.02 97.0 1.1 
300 5 0.05 592 2.6 0.00 81.0 4.6 0.01 83.0 1.2 

10 0.04 753 2.4 0.02 145 4.3 0.00 107 1.5 
400 5 0.02 913 3.2 0.01 72.0 2.2 0.01 79.0 1.2 

10 0.06 1212 3.2 0.02 144 4.1 0.02 118 1.6 
500 5 0.04 1287 2.6 0.02 177 1.2 0.04 123 1.4 

10 0.02 1668 2.4 0.03 248 1.2 0.00 214 1.2 
Avg.  0.04 756 2.9 0.02 117 2.8 0.02 99.0 1.3 
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Table 4.7 Performance comparison between [SAA], [eSAA(F)], and [eSAA(D)] 
(Instance S4) 

 
 
N 
 

 
 
M 

[SAA] [eSAA(F)] [eSAA(D)] 
ϵ 

(%) 
Time 
(sec) 

Iter ϵ 
(%) 

Time 
(sec) 

Iter ϵ 
(%) 

Time 
(sec) 

Iter 

                                  Uniform distribution 
100 5 0.02 410 5.1 0.02 76.0 7.2 0.00 82.0 1.6 

10 0.06 774 4.7 0.02 137 6.4 0.00 111 1.2 
200 5 0.02 928 5.2 0.01 67.0 6.0 0.03 54.0 2.2 

10 0.02 1935 3.0 0.00 115 6.2 0.02 104 1.9 
300 5 0.03 1799 3.6 0.03 112 6.1 0.02 123 2.6 

10 0.00 3561 3.8 0.00 194 5.7 0.00 157 2.1 
400 5 0.02 3153 4.1 0.02 131 5.0 0.02 124 2.2 

10 0.05 5893 2.4 0.03 250 5.1 0.01 225 2.0 
500 5 0.02 4246 2.2 0.01 164 5.2 0.02 133 1.4 

10 0.02 9146 2.0 0.01 287 4.0 0.01 247 1.5 
Avg.  0.03 3185 3.6 0.02 153 5.7 0.01 136 1.8 

      Normal distribution 
100 5 0.05 397 4.2 0.05 76.0 3.2 0.02 85.0 1.5 

10 0.02 787 2.1 0.04 141 2.8 0.01 116 1.6 
200 5 0.06 910 4.3 0.04 67.0 3.6 0.03 58.0 2.3 

10 0.04 1969 4.2 0.02 114 2.0 0.01 106 1.1 
300 5 0.05 1805 2.0 0.06 121 2.6 0.06 131 1.2 

10 0.04 3738 2.6 0.01 189 2.4 0.01 147 1.6 
400 5 0.02 3430 1.8 0.00 123 1.6 0.03 114 1.5 

10 0.06 6073 2.1 0.05 231 1.2 0.02 221 1.4 
500 5 0.04 4353 2.0 0.03 178 2.5 0.01 145 1.9 

10 0.01 9036 1.2 0.01 291 2.1 0.03 226 2.0 
Avg.  0.04 3250 2.6 0.03 153 2.4 0.02 135 1.6 
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Table 4.8 Performance comparison between [SAA], [eSAA(F)], and [eSAA(D)] 
(Instance S5) 

 
 
N 
 

 
 
M 

[SAA] [eSAA(F)] [eSAA(D)] 
ϵ 

(%) 
Time 
(sec) 

Iter ϵ 
(%) 

Time 
(sec) 

Iter ϵ 
(%) 

Time 
(sec) 

Iter 

                                      Uniform distribution 
100 5 0.04 881 4.2 0.03 204 3.3 0.01 188 1.9 

10 0.06 1749 4.1 0.04 386 2.9 0.05 309 1.0 
200 5 0.04 2190 3.8 0.01 292 5.2 0.01 248 1.6 

10 0.02 4857 3.3 0.06 555 4.8 0.03 500 1.6 
300 5 0.09 4084 3.9 0.02 433 3.2 0.01 372 2.1 

10 0.04 8475 3.5 0 .02 823 1.5 0.06 889 1.1 
400 5 0.08 7031 3.6 0.03 449 2.2 0.02 471 1.3 

10 0.09 14615 3.1 0.06 858 1.9 0.02 755 2.0 
500 5 0.04 9299 3.0 0.05 452 2.0 0.01 366 1.6 

10 0.02 22865 2.2 0 .01 814 1.9 0.02 806 1.7 
Avg.  0.05 7605 3.4 0.03 527 2.9 0.02 490 1.6 
                                                            Normal distribution 
100 5 0.00 890 4.0 0.05 211 3.2 0.02 198 1.6 

10 0.08 1724 4.3 0.04 351 2.2 0.05 327 2.1 
200 5 0.06 1973 4.0 0.05 288 3.6 0.04 228 1.3 

10 0.07 4506 3.6 0.06 557 3.1 0.02 460 1.0 
300 5 0.03 3845 4.1 0.01 423 2.9 0.01 405 1.5 

10 0.05 9124 4.3 0.02 815 2.5 0.01 967 1.4 
400 5 0.06 7327 3.1 0.03 492 2.6 0.01 508 1.9 

10 0.08 13826 2.5 0.05 820 2.5 0.03 698 1.4 
500 5 0.09 9736 2.3 0.04 472 2.6 0.01 384 1.5 

10 0.07 24789 2.1 0.07 755 3.2 0.02 864 1.1 
Avg.  0.06 7774 3.4 0.04 518 2.8 0.02 504 1.5 
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Table 4.9 Performance comparison between [SAA], [eSAA(F)], and [eSAA(D)] 
(Instance S6) 

 
 
N 
 

 
 
M 

[SAA] [eSAA(F)] [eSAA(D)] 
ϵ 

(%) 
Time 
(sec) 

Iter ϵ 
(%) 

Time 
(sec) 

Iter ϵ 
(%) 

Time 
(sec) 

Iter 

                                     Uniform distribution 
100 5 0.06 2978 4.1 0.01 2464 7.2 0.01 1996 1.6 

10 0.03 5720 5.7 0.03 5691 6.4 0.02 4610 1.2 
200 5 0.02 7556 5.2 0.01 2548 6.0 0.03 2293 2.2 

10 0.01 16902 3.0 0.03 5859 6.2 0.04 6445 1.9 
300 5 0.04 14252 3.6 0.02 2541 6.1 0.05 2058 2.6 

10 0.03 26782 3.8 0.04 5894 5.7 0.01 5599 2.1 
400 5 0.02 23554 4.1 0.02 2618 5.0 0.02 2356 2.2 

10 0.02 50274 2.4 0.03 6041 5.1 0.05 4893 2.0 
500 5 0.01 30779 2.2 0.00 2674 5.2 0.03 2300 1.4 

10 0.06 75226 2.0 0.02 6202 4.0 0.05 6698 1.5 
Avg.  0.03 25402 3.6 0.02 4253 5.7 0.03 3925 1.8 
      Normal distribution 
100 5 0.01 2742 4.3 0.01 2682 2.0 0.00 2046 1.9 

10 0.02 6083 5.1 0.03 6065 1.6 0.01 4303 1.4 
200 5 0.03 6928 5.4 0.01 2678 2.2 0.03 2317 2.3 

10 0.04 18282 4.1 0.03 6020 1.6 0.01 6975 1.5 
300 5 0.05 15030 3.9 0.02 2627 2.9 0.04 1857 1.9 

10 0.01 26420 3.1 0.04 6442 1.1 0.03 5680 2.0 
400 5 0.02 21894 3.8 0.02 2513 2.3 0.02 2309 1.2 

10 0.05 53615 2.4 0.03 5686 1.2 0.02 4637 1.0 
500 5 0.03 31021 2.3 0.00 2735 1.6 0.01 2091 1.5 

10 0.05 79285 2.0 0.02 5689 1.5 0.06 6725 1.1 
Avg.  0.03 26130 3.6 0.02 4314 1.8 0.02 3894 1.5 

 

The second set of experiments (Table 4.10 – 4.15) report the impact of 

introducing dynamicity in [eSAA(D)] over [eSAA(F)] under different clustering 

techniques such as, K-means, K-means++, K-means||, and C-means clustering. To 

perform these tests, we kept the sample size fixed for all experiments i.e., N′ = 1,000. 

The results indicate that incorporating dynamicity substantially improves the 

performance of the enhanced sample average approximation algorithm. Furthermore, it is 

observed that both algorithms are capable of solving all the problem instances within pre-

specified optimality gap and time limit. It has been proven to be true under both normal 

and uniform distribution. Under uniform distribution, algorithm [eSAA(D)] is on average 
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12.7% faster than algorithm [eSAA(F)] whereas the number increases to 21.1% for 

normal distribution. For all instances, [eSAA(D)] has given faster solution than 

[eSAA(F)]. More specifically, for smaller instances (instances S1-S4) both [eSAA(F)] 

and [eSAA(D)] algorithms with k-means clustering have given better result in terms of 

computational time; however, for larger instances (instance S5 and S6) [eSAA(F)] and 

[eSAA(D)] with K-means|| clustering have given better results. Although, both 

[eSAA(D)] and [eSAA(F)] terminate with an 𝜺-optimal solution, the quality of solution 

produced by [eSAA(D)] is constantly higher for all instances. Note that the experimental 

results show same trends for both the uniform and normal distribution. 
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Our computational experiences with experimental sets 1 and 2 indicate that as the 

sample size increases it adds more complexity in solving algorithm [SAA] compared to 

[eSAA(F)] and [eSAA(D)]. For instances, as the sample size (N) increases from 100 to 

500 the average computational time in solving [SAA] increases up to 1546% compared to 

443% and 397% in [eSAA(F)] and [eSAA(D)], respectively. Note that this computation 

benefits are achieved in both [eSAA(F)] and [eSAA(D)] algorithms without sacrificing 

any solution qualities. 

To better illustrate the effect of sample size N and replication number M on 

computation time, we solve our stochastic [FLP] instance S4 by varying the sample size 

N (shown in Figure 4.3) and M (shown in Figure 4.4) in [SAA] and [eSAA(D)]. The 

results in Figure 4.3 show that while the solution time increases steadily with N in 

[SAA], the increase is not steady in [eSAA(D)]. Fuzzy C-means provides the lowest 

savings while K-means++ and K-means produce the highest savings in computation time 

for the instance we considered. The poor computational performance from fuzzy C-

means may be due to the time it takes in computing the degree of membership of every 

data in multiple clusters. In Figure 4.4 we vary the number of replications from 10 to 50 

and observe that the solution time increases with the number of replications. Note that in 

both experiments an MIP clustering technique is employed to solve [eSAA(F)]. The poor 

performance of the MIP clustering technique may be attributed due to the enormous time 

taken to solve the NP-hard formulation of the clustering problem and thus may not be 

worthy to use for relatively large sample size scenarios. 
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Figure 4.3 Effect of sample size on computation time 

 

Figure 4.4 Effect of number of replications on computation time 
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Figure 4.5 Effect of cluster size on computation time 

 

4.4.3 Single-sink transportation problem ([SSP]) 

Maggioni et al. [88] propose a single-sink transportation problem ([SSP]) where 

the authors investigate the production capacity of the suppliers under uncertain customer 

demand. Details about the problem description along with the formulation can be 

obtained from Maggioni et al. [88]; however, we now introduce the formulation along 

with a short description of the problem. In this problem, the authors assume that a single 

warehouse is the only destination location. An external source is assumed to be 

responsible for leasing the vehicles. The supply capacity of this external source is 

assumed to be enough to supply any number of vehicles required. However, the vehicles 

must be booked in advance before the realization of demand at the warehouse. After the 

realization of demand, booking of vehicles can be cancelled with a cancellation fee which 

denoted by α. If the demand at warehouse exceeds the supply capacity of the supply 
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plants, the residual amount is purchased from another source at a higher price, β. The 

objective of this problem is to determine for each supplier the number of vehicles to book 

in advance to minimize the total costs, given by the sum of the transportation costs and 

penalty costs. Table 4.16 introduces the notations used in this formulation. 

Table 4.16 Notations and symbols in [SSP] formulation 

Notation Explanation 
Sets  

I Set of suppliers 
Ω Set of scenarios 

Parameters  
𝑐𝑖 Unit transportation cost of supplier 𝑖 ∈ 𝐼 
𝑝𝑖 Unit production cost of supplier 𝑖 ∈ 𝐼 
β Penalty cost 
q Vehicle capacity 
𝑔 Maximum capacity that can be booked 
h Initial inventory level at the customer 

𝑙𝑚𝑎𝑥 Storage capacity at the customer 
𝑝𝜔 Probability of scenario 𝜔 ∈ Ω 
𝑎𝑖 Supply capacity of supplier 𝑖 ∈ 𝐼 in scenario 𝜔 ∈ Ω 
𝑑𝜔 Customer demand at scenario 𝜔 ∈ Ω 
Α Cancellation fee 

Decision variables  
𝑥𝑖 Number of vehicles booked from supplier 𝑖 ∈ 𝐼 
𝑧𝑖

𝜔 Number of vehicles actually used from supplier 𝑖 ∈ 𝐼 in 
scenario  𝜔 ∈ Ω 

𝑟𝜔 Penalty amount in scenario  𝜔 ∈ Ω 
 

Now, the two-stage stochastic model becomes 

[𝑺𝑺𝑷]: 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒  𝑞 ∑ 𝑐𝑖𝑥𝑖 +

𝐼

𝑖=1

∑ 𝑝𝜔 [β𝑟𝜔 − (1 − α)𝑞 ∑ 𝑐𝑖(𝑥𝑖 − 𝑧𝑖
𝜔)

𝐼

𝑖=1

]

Ω

𝜔=1

 

subject to 

𝑞 ∑ 𝑥𝑖
𝐼
𝑖=1  ≤  𝑔        (4.42) 
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ℎ +  𝑞 ∑ 𝑧𝑖
𝜔𝐼

𝑖=1 + 𝑟𝜔 − 𝑑𝜔   ≥   0  ∀𝜔 ∈ Ω    (4.43) 

ℎ +  𝑞 ∑ 𝑧𝑖
𝜔𝐼

𝑖=1 + 𝑟𝜔 − 𝑑𝜔  ≤  𝑙𝑚𝑎𝑥  ∀𝜔 ∈ Ω      (4.44) 

𝑧𝑖
𝜔  ≤  𝑥𝑖  ∀𝑖 ∈ 𝐼, 𝜔 ∈ Ω     (4.45) 

𝑞𝑧𝑖
𝜔  ≤   𝑎𝑖  ∀𝑖 ∈ 𝐼, 𝜔 ∈ Ω     (4.46) 

𝑟𝜔  ≥   0  ∀𝜔 ∈ Ω     (4.47) 

𝑥𝑖  ∈  ℤ+  ∀𝑖 ∈ 𝐼, 𝜔 ∈ Ω     (4.48) 

𝑧𝑖
𝜔  ∈  ℤ+  ∀𝑖 ∈ 𝐼, 𝜔 ∈ Ω     (4.49) 

 

Constraint (4.42) ensures that the total number of booked vehicles from supplier 

𝑖 ∈ 𝐼 to the customer is not greater than 𝑔

𝑞
. Constraints (4.43) and (4.44) ensure that 

second-stage storage level is between 0 and 𝑙𝑚𝑎𝑥. Constraints (4.45) guarantee that the 

total number of vehicles serving supplier 𝑖 ∈ 𝐼 is at most equal to the number of vehicles 

booked in advance under scenario ∈ Ω ,  Constraints (4.46) indicate that the quantity of 

product delivered from supplier 𝑖 ∈ 𝐼 does not exceed production capacity 𝑎𝑖 under 

scenario 𝜔 ∈ Ω . Constraints (4.47) are continuous variables whereas constraints (4.48) 

and (4.49) are integer variables. 

We now use the data provided by Maggioni et al. [88] to generate three instances 

(reported in Table 4.17) to solve problem [SSP] using the algorithms proposed in 

Section 4.3.2. 
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Table 4.17 Deterministic equivalent of test instances for problem [SSP] 

 

 

 

 

Table 4.18 presents the experimental results in solving problem [SSP] using 

algorithms [SAA], [eSAA(F)] and [eSAA(D)] on the three problem instances  reported in 

Table 4.17. The results are in alignment with the results discussed previously for [FLP] 

and it is observed that all the problems are solved within a pre-specified tolerance gap 

under the specified time limit. Results indicate that both [eSAA(F)] and [eSAA(D)] 

outperform [SAA] in terms of solution quality and running time for all the test instances 

reported in Table 4.17. On average, [eSAA(D)] and [eSAA(F)] are approximately 217% 

and 205% faster than [SAA] algorithm, respectively. 

 

 

 

 

 

 

 

 

 

 

Instance  |I| Integer  
Variables 

Continuous  
Variables 

Total  
Variables 

No. of  
Constraints 

SSP1 50 100 1 101 104 
SSP2 100 200 1 201 204 
SSP3 200 400 1 401 404 
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Table 4.18 Results for [SAA], [eSAA(F)], and [eSAA(D)] in problem [SSP] 

  
 
N 
 

 
 
M 

[SAA] [eSAA(F)] [eSAA(D)] 
Problem 
Instance 

ϵ 
(%) 

Time 
(sec) 

Iter ϵ 
(%) 

Time 
(sec) 

Iter ϵ 
(%) 

Time 
(sec) 

Iter 

 100 5 0.05 3.8 2.1 0.02 2.6 1.4 0.03 2.7 1.0 
 10 0.01 5.1 5.0 0.04 2.8 2.0 0.01 2.8 1.0 
 200 5 0.01 5.3 3.3 0.02 2.8 2.2 0.02 2.8 1.0 
 10 0.03 8.0 5.2 0.03 3.0 3.0 0.01 2.9 1.0 
 300 5 0.02 6.9 2.7 0.01 2.9 1.6 0.02 3.1 1.0 

SSP1 10 0.02 11.4 1.4 0.02 3.7 2.2 0.07 3.2 1.0 
 400 5 0.01 8.8 1.1 0.01 3.1 1.6 0.01 3.2 1.0 
 10 0.02 14.9 1.3 0.05 6.5 1.2 0.03 3.7 1.0 
 500 5 0.06 9.0 2.0 0.02 3.4 3.4 0.01 4.0 1.0 
 10 0.01 15.5 1.8 0.01 8.3 3.0 0.02 5.6 1.0 
 Avg.  0.02 8.9 2.6 0.02 3.9 2.2  0.02 3.4 1.0 
 100 5 0.08 7.7 2.0 0.07 5.2 1.4 0.04 5.2 1.0 
 10 0.03 10.8 1.6 0.02 7.1 1.1 0.05 6.9 1.0 
 200 5 0.01 10.7 1.3 0.09 5.4 1.2 0.02 5.4 1.0 
 10 0.05 18.1 1.4 0.03 7.6 1.7 0.01 7.5 1.0 
 300 5 0.03 14.2 1.9 0.01 5.7 3.0 0.07 5.6 1.0 

SSP2 10 0.06 25.3 1.3 0.01 8.0 1.5 0.01 7.9 1.0 
 400 5 0.01 18.0 2.7 0.07 5.9 1.8 0.08 5.8 1.0 
 10 0.09 34.0 1.2 0.02 8.5 1.2 0.01 8.5 1.0 
 500 5 0.03 21.5 1.5 0.06 6.6 3.0 0.06 6.2 1.0 
 10 0.06 40.7 1.4 0.01 9.1 1.6 0.02 9.0 1.0 
 Avg.  0.05 20.1 1.6 0.04 6.9 1.8 0.04  6.8 1.0 
 
 
 
 
 

SSP3 

100 5 0.04 15.1 1.2 0.09 10.8 2.0 0.01 10.1 1.0 
 10 0.05 20.7 2.6 0.01 11.1 1.4 0.07 10.7 1.0 
200 5 0.02 21.9 2.4 0.06 10.8 1.8 0.04 10.8 1.0 
 10 0.06 33.7 3.1 0.01 11.2 1.2 0.02 11.0 1.0 
300 5 0.01 29.2 3.3 0.06 10.9 1.2 0.01 10.9 1.0 
 10 0.04 48.1 1.6 0.03 11.6 1.1 0.04 11.5 1.0 
400 5 0.01 36.5 1.9 0.01 11.2 2.2 0.08 11.1 1.0 
 10 0.06 62.8 1.3 0.04 12.3 1.0 0.03 12.1 1.0 
500 5 0.08 43.5 1.8 0.05 11.4 1.0 0.05 11.4 1.0 
 10 0.05 76.5 1.2 0.01 12.7 1.0 0.01 12.6 1.0 

 Avg.  0.04 38.8 2.0 0.04 11.4 1.4  0.04 11.2 1.0 
 

 

4.4.4 Supply transportation problem ([STP]) 

Maggioni et al. [89] propose a supply transportation problem ([STP]) where the 

authors investigate a transportation problem related to gypsum replenishment for a 

cement producer under customer demand uncertainty. The details of the problem 
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description along with the formulation can be obtained from Maggioni et al. [89]; 

however, we now introduce the formulation along with a short description of the 

problem. In this problem, a total of 24 suppliers, each having several plants serve the 

need of 15 warehouses of the same customer.  Shipments are performed by capacitated 

vehicles whereas the booking of these vehicles has to be done in advance prior to a 

realization of a customer demand. Similar to the single-sink transportation problem 

([SSP]), booking of vehicles can be cancelled after the realization of demand. Thus, a 

penalty cost will be imposed for not fulfilling the customer demand by the suppliers. The 

objective is to determine the number of vehicles to book at the beginning of each week to 

replenish gypsum at all cement factories of the producer to minimize the total cost, given 

by the sum of the transportation costs and penalty cost incurred due to purchasing from 

external suppliers in extreme situations. Table 4.19 introduces the notations used in the 

formulation of [STP]. 
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Table 4.19 Notations and symbols in [STP] formulation 

Notation Explanation 
Sets  

S Set of suppliers 
𝐼𝑠 Set of plant locations of supplier 𝑠 ∈ 𝑆 
D Set of warehouse locations 
𝛺 Set of scenarios 

Parameters  
𝑡𝑖𝑑 Unit transportation cost of plant 𝑖 ∈ 𝐼𝑠, 𝑠 ∈ 𝑆 

to warehouse 𝑑 ∈ 𝐷 
𝑏𝑑 Penalty cost for assigning a vehicle to warehouse 𝑑 ∈ 𝐷 
Q Vehicle capacity 
𝑔𝑑 Maximum capacity that can be booked for warehouse 𝑑 ∈ 𝐷 
𝑔𝑠 Maximum requirement capacity of supplier 𝑠 ∈ 𝑆 
𝑎𝑠 Minimum requirement capacity of supplier 𝑠 ∈ 𝑆 

𝑙𝑚𝑎𝑥 Storage capacity at the warehouses 
𝛼 Discount  

𝑝𝜔 Probability of scenario 𝜔 ∈ Ω 
𝑑𝑑

𝜔 Customer demand at warehouse 𝑑 ∈ 𝐷 in scenario 𝜔 ∈ Ω 
Decision variables  

𝑥𝑖𝑑 Number of vehicles booked from supplier 𝑖 ∈ 𝐼𝑠 to warehouse 
𝑑 ∈ 𝐷 

𝑧𝑖𝑑
𝜔  Number of vehicles actually used from supplier 𝑖 ∈ 𝐼𝑠 to 

warehouse 𝑑 ∈ 𝐷 in scenario  𝜔 ∈ Ω 
𝑟𝑑

𝜔 Number of extra vehicles used from external sources for 
warehouse 𝑑 ∈ 𝐷 in scenario  𝜔 ∈ Ω 

 

Now, the two-stage stochastic model becomes 

[𝐒𝐓𝐏] Minimize 𝑞 ∑ ∑ ∑ 𝑡𝑖𝑑𝑥𝑖𝑑

𝐷

𝑑=1

𝐼𝑠

𝑖=1

𝑆

𝑠=1

+ ∑ 𝑝𝜔[∑ 𝑞

𝐷

𝑑=1

𝑏𝑑𝑟𝑑
𝜔 − 𝛼𝑞 ∑ ∑ ∑ 𝑡𝑖𝑑(𝑥𝑖𝑑 − 𝑧𝑖𝑑

𝜔 )

𝐷

𝑑=1

𝐼𝑠

𝑖=1

𝑆

𝑠=1

]

Ω

𝜔=1

 

subject to 
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𝑞 ∑ ∑ 𝑥𝑖𝑑
𝐼𝑠
𝑖=1

𝑆
𝑠=1  ≤  𝑔𝑑      ∀  𝑑 ∈ 𝐷     (4.50) 

 0 ≤ 𝑙𝑑
0 + 𝑞(∑ ∑ 𝑧𝑖𝑑

𝜔 𝑟𝑑
𝜔𝐼𝑠

𝑖=1
𝑆
𝑠=1 ) − 𝑑𝑑

𝜔 ≤ 𝑙𝑚𝑎𝑥    ≥   0  ∀ 𝑑 ∈ 𝐷, 𝜔 ∈ Ω      (4.51) 

 𝑧𝑖𝑑
𝜔  ≤  𝑥𝑖𝑑  ∀ 𝑖 ∈ 𝐼𝑠, 𝑠 ∈ S, d ∈ 𝐷, 𝜔 ∈ Ω                (4.52) 

 𝑎𝑠 ≤ 𝑙𝑑
0 + 𝑞(∑ ∑ 𝑧𝑖𝑑

𝜔𝐷
𝑑=1

𝐼𝑠
𝑖=1 ) ≤ 𝑔𝑠   ∀  𝑠 ∈ 𝑆, 𝜔 ∈ Ω      (4.53) 

 𝑧𝑖𝑑
𝜔  ∈   ℤ+  ∀ 𝑖 ∈ 𝐼𝑠, 𝑑 ∈ 𝐷, 𝜔 ∈ 𝛺                          (4.54) 

 𝑟𝑑
𝜔  ∈  ℤ+  ∀ 𝑖 ∈ 𝐼𝑠, 𝑑 ∈ 𝐷, 𝜔 ∈ 𝛺                          (4.55) 

 𝑥𝑖𝑑  ∈  ℤ+  ∀ 𝑖 ∈ 𝐼𝑠, 𝑑 ∈ 𝐷, 𝜔 ∈ 𝛺                          (4.56) 

 

Constraints (4.50) ensure that for each warehouse 𝑑 ∈ 𝐷, the total number of 

booked vehicles from the suppliers to the warehouses does not exceed (𝑔𝑑

q
). Constraints 

(4.51) indicate that the storage level of warehouses 𝑑 ∈ 𝐷 is between 0 and 𝑙𝑚𝑎𝑥. 

Constraints (4.52) guarantee that the number of vehicles used by the suppliers is at most 

equal to the number of vehicles booked in advance.  Constraints (4.53) indicate that for 

all suppliers 𝑠 ∈ S, the volume of products transported to warehouses 𝑑 ∈ 𝐷 by the used 

vehicles is at least 𝑎𝑠 and at most 𝑔𝑠.  Constraints (4.54), (4.55), and (4.56) are integer 

constraints.  

We now use the data provided by Maggioni et al. [89] to generate three instances 

(reported Table 4.20) to solve [STP] using the algorithms proposed in Section 4.3.2. 
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Table 4.20 Deterministic equivalent of test instances for problem [STP] 

 

 

 

 

Table 4.21 presents the experimental results obtained from solving problem [STP] using 

algorithms [SAA], [eSAA(F)], and [eSAA(D)] on the three problem instances reported in 

Table 4.20. Yet again, the results are consistent with the results discussed previously for 

[FLP] and [STP]. It is observed that on average, [eSAA(D)] and [eSAA(F)] are 2235% 

and 1655% faster than [SAA], respectively. Moreover, the average optimality gap 

produced by [eSAA(D)] and [eSAA(F)] are 33.0% and 9.1% better than that from [SAA], 

respectively. In summary, the results obtained by using [eSAA(F)] and [eSAA(D)] to 

solve [SSP] and [STP] repeat the promising trends observed from solving [FLP] within 

our experimental range. 

 

 

 

 

 

 

 

 

 

Instance |𝑰𝒔| Integer 
Variables 

No. of 
Constraints 

STP1 5 165 774 
STP2 10 315 1494 
STP3 15 455 2214 
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Table 4.21 Results for [SAA], [eSAA(F)], and [eSAA(D)] in problem [STP] 

  
 
N 
 

 
 
M 

[SAA] [eSAA(F)] [eSAA(D)] 
Problem 
instance 

ϵ 
(%) 

Time 
(sec) 

Iter ϵ 
(%) 

Time 
(sec) 

Iter ϵ 
(%) 

Time 
(sec) 

Iter 

 100 5 0.03 148 4.2 0.03 21 3.3 0.01 24 1.5 
 10 0.06 279 3.5 0.08 35 2.9 0.01 36 1.6 
 200 5 0.03 334 4.1 0.02 29 3.7 0.04 31 2.3 
 10 0.07 697 2.1 0.01 39 2.1 0.03 42 1.2 
 300 5 0.04 648 2.6 0.04 39 2.7 0.03 38 1.3 

STP1 10 0.01 1282 2.8 0.01 61 2.5 0.01 49 1.4 
 400 5 0.03 1135 3.2 0.03 41 1.7 0.07 39 1.6 
 10 0.06 2121 1.3 0.04 78 1.3 0.02 70 1.4 
 500 5 0.03 1529 1.1 0.02 51 2.6 0.03 41 1.8 
 10 0.03 3293 1.0 0.07 90 2.2 0.02 77 2.1 
 Avg.  0.04 1147 2.6 0.04 48 2.5 0.03 45 1.6 
 100 5 0.08 393 4.3 0.02 74 3.4 0.01 71 2 
 10 0.05 741 4.2 0.04 123 3.1 0.04 111 1.1 
 200 5 0.03 889 3.9 0.01 102 5.3 0.01 97 1.7 
 10 0.01 1853 3.4 0.05 137 4.9 0.08 131 1.6 
 300 5 0.08 1723 4.1 0.02 140 3.3 0.01 119 2.2 

STP2 10 0.03 3410 3.6 0.09 215 1.6 0.05 152 1.1 
 400 5 0.07 3019 3.7 0.08 145 2.3 0.03 120 1.4 
 10 0.08 5643 3.2 0.05 277 2 0.03 218 2.1 
 500 5 0.03 4066 3.1 0.04 182 2.1 0.01 129 1.7 
 10 0.01 8758 2.3 0.01 318 2 0.02 239 1.8 
 Avg.  0.05 3050 3.6 0.04 171 3 0.03 139 1.7 
 
 
 
 
 

STP3 

100 5 0.05 942 4.2 0.02 189 6.1 0.02 154 1.4 
 10 0.02 1779 5.8 0.03 314 5.4 0.01 234 1.1 
200 5 0.01 2133 5.3 0.01 261 5.0 0.04 203 2.0 
 10 0.01 4447 3.1 0.02 350 5.1 0.06 274 1.8 
300 5 0.03 4135 3.7 0.01 356 5.3 0.05 250 2.4 
 10 0.02 8184 3.9 0.04 548 4.7 0.01 319 1.9 
400 5 0.02 7246 4.2 0.07 370 4.0 0.03 252 2.1 
 10 0.08 13544 2.5 0.03 706 4.1 0.04 457 1.8 
500 5 0.01 9758 2.3 0.01 463 4.3 0.02 270 1.2 
 10 0.05 21020 2.1 0.03 811 3.2 0.04 502 1.3 

 Avg.  0.03 7319 3.7 0.03 437 4.7 0.03 292 1.7 
 

 

4.5 Conclusions 

This study proposes a methodological approach to enhance the performance of the 

basic SAA by incorporating dynamic clustering strategy within the algorithmic 

framework. This approach is then experimentally validated in the context of a stochastic 
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facility location problem. We created different variants of the enhanced sample average 

approximation algorithm (i.e., different clustering strategy, fixed clusters vs. dynamic 

clusters) and the compare the computational performance of those variants with the basic 

SAA algorithm. Computational performance indicates that both enhanced SAA with 

fixed clustering size and dynamic clustering size are capable of tackling large scenario 

sets and offers high quality solutions constantly in a reasonable amount of time. It is 

observed that on average enhanced SAA with fixed clustering size and dynamic 

clustering size solves [FLP] almost 631% and 699% faster than the basic SAA algorithm. 

Moreover, we observe that there is no single winner among the clustering techniques to 

solve all the problem instances of the enhanced SAA algorithm. For instance, k-means 

has outperformed others in solving instances from S1 to S4 whereas k-means|| has 

provided superior results in solving large scale problem instances, i.e., S5 and S6. 

Enhanced SAA incorporating fuzzy C-means gives the worst result among all the 

clustering techniques; however, the integration still outperforms the basic SAA algorithm 

in terms of computation time and solution quality. 

In summary, the contributions of this paper to the literature are manifold. First, 

our method provides the flexibility to start with any sample size and then dynamically 

adjusting the size based on prior computational performances to ensure convergence of 

the algorithm. Second, we incorporated different clustering strategies inside SAA to 

obtain a valid lower bound and improves the performance of basic SAA algorithm. 

Finally, we tested our algorithm in a classical facility location problem to determine the 

effectiveness of using our approach in a stochastic network framework. 
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This work can be extended in several directions. First of all, we can apply the technique 

to the AM feasibility problem in Chapter II as well as the AM deployment problem in 

Chapter III formulated as a mixed integer programming problem.  Our method can also 

be used to solve other optimization problems such as two-stage chance-constrained 

problems and progressive hedging based optimization problems. Additionally, efforts are 

required to develop advanced clustering strategies inside our proposed methodology to 

further improve the performance of the algorithm. These issues will be addressed in 

future studies. 
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CHAPTER V 

CONCLUSIONS AND FUTURE WORK 

5.1 Conclusions 

The adoption of additive manufacturing for fabricating biomedical implants at 

hospitals provides many potential benefits which include opportunity to receive more 

patient-specific, customized parts with faster response, a lower inventory level, and 

reduced delivery costs. Our study shows that a mathematical model that captures both 

process-level and system-level costs helps to make better economic decisions on the 

feasibility of AM technology in the manufacture of biomedical implants. A key cost 

parameter, the ratio between unit production costs of AM and TM (ATR) indicates the 

point at which the adoption of AM makes an economic sense in the fabrication of 

biomedical implants. Using the state of Mississippi as a test bed, when ATR < 3.5, our 

study suggest a harmonious implementation of AM and TM production in which case the 

demand of biomedical implants may be filled using both AM and TM facilities 

depending on the required product lead time, locations of patients, capacity of the AM 

facilities. Another key parameter is the urgency of the product. When a biomedical 

implant is needed in a short time window (e.g., in a life-or-death situation), TM suppliers 

may not have the parts with specific features (e.g., dimensions, shapes, etc.) in stock, and 

may require an additional lengthy customization process. In this case, AM may be a 
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viable option because of the short response time and the capability of mass 

customization, irrespective of the high cost. 

In order to reap the full benefits of AM technology, the deployment configuration 

of AM facilities is an important issue that one needs to take into consideration given the 

high cost of AM machines. Moreover, a model that recognizes the high cost of raw 

materials used in manufacturing biomedical implants while making inventory decisions 

in solving the AM deployment problem provides a more realistic solution. Our proposed 

continuous approximation (CA) cost model quantifies the supply-chain network costs 

associated with the production of biomedical implants using AM technologies, and 

provides the optimal deployment configuration of AM sites in the southeastern region of 

the United States for efficient and responsive fabrication of biomedical implants for use 

in hospitals and clinics in the region. Utilizing the proposed CA model in making AM 

deployment decision instead of the extreme AM configuration options in literature results 

in enormous saving in cost. We can achieve a saving of 7% of the total network cost by 

using the CA model instead of locating only one central AM facility to serve the entire 

region. The saving increases to 59% when compared with establishing an AM facility in 

every county in the region. The CA model records a ground-breaking saving of 71% of 

total network cost in a scenario where the demand of biomedical implants decrease by 

50% and annual personnel cost doubles.  

Results from our extensive numerical experiments show the demand level of the 

biomedical implants has the most significant effect on how many AM facilities should be 

located in the region and how distributed the deployment should be. Specifically, if other 

parameters are kept constant, doubling the demand, increases the number of AM facilities 
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by more than 59%, thereby making the network more distributed, while the number 

reduces by up to 33% if the demand level is halved, making the network less distributed. 

Other factors such as the price and maintenance cost of AM machines, the labor cost of 

operating the machines and the unit transportation cost of an item per mile all affect the 

total supply chain network cost and deployment configuration of AM facilities. Reducing 

the fixed AM investment cost by 50% can result in an increase of up to 37% in the 

number of AM facilities established and reduce the total network cost by about $1.4 

million or 0.8%. 

Our proposed enhanced sample average approximation (eSAA) technique 

provides a methodological approach that incorporates clustering and statistical tests in an 

optimization procedure to achieve faster solution convergence time than the basic sample 

average approximation approach.  The eSAA with fixed clustering size and dynamic 

clustering size solves our test stochastic facility location problem up to 631% and 699% 

faster than the basic SAA technique.  

5.2 Future work 

It will be interesting to see the application of our models and techniques beyond 

healthcare to solve AM- related decision problems in other areas such as automobile, 

aviation and energy production equipment. In such a study, one can account for the cost 

analysis of assemblies. AM allows for the production of multiple parts simultaneously in 

the same build, making it possible to produce an entire product. TM often includes 

production of parts at multiple locations, where an inventory of each part might be stored. 

The parts are shipped to a facility where they are assembled into a product. AM has the 

potential to replace some of these steps for some products, as this process might allow for 
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the production of the entire assembly. This would reduce the need to maintain large 

inventories for each part of one product. It also reduces the transportation of parts 

produced at varying locations and reduces the need for just-in-time delivery. 

We can extend our proposed eSAA technique of Chapter IV to solve the AM 

feasibility problem in Chapter II as well as the AM deployment problem in Chapter III 

formulated as a mixed integer programming problem, especially when the network is 

scaled up to include the entire USA. We can also apply the method to solve other 

optimization problems such as two-stage chance-constrained problems and progressive 

hedging based optimization problems. Additionally, efforts are required to develop 

advanced clustering strategies inside our proposed methodology to further improve the 

performance of the algorithm. 
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