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In this dissertation, we study two important problems related to additive
manufacturing (AM). In the first part, we investigate the economic feasibility of using
AM to fabricate biomedical implants at the sites of hospitals AM versus traditional
manufacturing (TM). We propose a cost model to quantify the supply-chain level costs
associated with the production of biomedical implants using AM technology, and
formulate the problem as a two-stage stochastic programming model, which determines
the number of AM facilities to be established and volume of product flow between
manufacturing facilities and hospitals at a minimum cost. We use the sample average
approximation (SAA) approach to obtain solutions to the problem for a real-world case
study of hospitals in the state of Mississippi. We find that the ratio between the unit
production costs of AM and TM (ATR), demand and product lead time are key cost
parameters that determine the economic feasibility of AM.

In the second part, we investigate the AM facility deployment approaches which
affect both the supply chain network cost and the extent of benefits derived from AM.

We formulate the supply chain network cost as a continuous approximation model and



use optimization algorithms to determine how centralized or distributed the AM facilities
should be and how much raw materials these facilities should order so that the total
network cost is minimized. We apply the cost model to a real-world case study of
hospitals in 12 states of southeastern USA. We find that the demand for biomedical
implants in the region, fixed investment cost of AM machines, personnel cost of
operating the machines and transportation cost are the major factors that determine the
optimal AM facility deployment configuration.

In the last part, we propose an enhanced sample average approximation (eSAA)
technique that improves the basic SAA method. The eSAA technique uses clustering and
statistical techniques to overcome the sample size issue inherent in basic SAA. Our
results from extensive numerical experiments indicate that the eSAA can perform up to
699% faster than the basic SAA, thereby making it a competitive solution approach of
choice in large scale stochastic optimization problems.

Keywords: Additive manufacturing, biomedical implants, stochastic programming model,
continuous approximation, large scale supply chain, deployment

configuration, sample average approximation, enhanced sample average
approximation, clustering
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CHAPTER I

INTRODUCTION

The provision of on-demand personal care specifically tailored to the need of a
patient is an important aspect of high-quality and efficient healthcare delivery. Due to the
fact that the anatomy of every single patient is unique, there is a significant need to
customize such biomedical implants as hip implants, knee implants dental crowns and
braces, cardiovascular stents and other implants for surgical procedures. These patient-
specific customized implants usually possess complex features which are laborious to
produce using the conventional traditional manufacturing (TM) methods which are
subtractive in nature. However, advanced manufacturing techniques such as additive
manufacturing (AM) provide the opportunity to fabricate the implants from the ground-
up, layer-by-layer using a variety of metallic, plastic or ceramic materials, on a patient-
by-patient basis. With additive manufacturing, one can employ computer tomography to
obtain a patient’s anatomy data, from which a CAD model of the implant is generated
and used to build a patient-specific customized implant. Among the customized implants
produced using AM technology include skull ([142], [158], [37], [141]), knee joint
([59]), elbow ([151]), and hip joint ([116]). These devices possess a combination of
relatively high value and small physical volume which is suitable for the applications of
AM. Specifically, Kablooe Design has used AM to manufacture a device for the
treatment of benign prostatic hyperplasia (BHP) [146] while Siemens has switched to
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AM technology for the production of customized hearing aids. Moreover, Dental labs
have used AM to produce customized dental crowns for patients. The AM technology
has enabled these companies to localize the manufacture and distribution of end products,
shorten the production time of the customized devices by up to 80%, and significantly
reduce labor cost [34]. The US military has identified the use of AM within the combat
field whereby thousands of different surgical instrument designs, customized instruments
and sterile surgical kits stored on digital media or remotely accessed via the Internet,
could be printed and used in field surgical settings [74].

Instead of ordering traditionally-manufactured implants from suppliers who are
usually located far away from the hospitals, adopting AM technologies for fabricating
biomedical implants at the site of operational hospitals may lead to faster response, lower
inventory level, and reduced delivery costs [59]. In the case of TM-supplied implants,
there is a long waiting time between when an implant is ordered and when it is received
for use in surgery due to the need of customization [148]. The customization requirement
makes keeping safety stock of products at the warehouse of TM vendors either
impossible or extremely expensive. In other words, a large portion of the products may
stay in the warehouse for a long period thereby ting up capital in inventory, increasing
obsolescence risk and reducing stored product quality due to oxidation.

Despite the obvious benefits of AM, the decision to switch from TM to AM is not
straightforward and requires a careful analysis. For one, the AM machines are expensive
and require a significant initial investment outlay as well as maintenance and operating
cost. Besides, implants manufactured via AM usually require expensive raw materials

and may even undergo post-processing steps such as surface cleaning, smoothing or even
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heat treatment after fabrication which could involve additional traditional manufacturing
technologies and supply chain network. All these factors significantly drive up the
production cost of AM in comparison to TM. Consequently, a decision support system is
needed to help decision makers in making objective make-or-buy decisions.

Costs associated with AM can be grouped into two categories: process-level or
well-structured costs such as labor, material, and machine costs; and system-level or ill-
structured costs related to inventory, transportation, delivery, etc [162]. Most of the
existing studies focus on the analysis of process-level costs, which are usually evaluated
based on individual AM processes. For example, some researchers examined the costs
associated with AM machines and materials ([122], [17], [8], [4], [83], [84]); while others
considered the costs of energy consumption ([94], [98], [145]). Some studies provided
qualitative and general discussion regarding the designs and management policies of AM
supply chains ([95], [17], [60]). However, no studies, to the best of our knowledge, have
performed a quantitative investigation of the supply chain’s integrated cost with AM
facilities. Cost reduction arising from these system-level cost parameters could result in
significant benefits in the production of biomedical implants in ways that have not yet
been fully envisaged ([59], [65]). Therefore, quantifying the supply chain level costs of
AM, benchmarked against its TM counterpart, is essential to better assess the feasibility
of adopting AM supply chains for the biomedical implant application, identifying the
system level barriers that hinder the adoption of AM technologies, and recommending the
specific applications in which the adoption of AM technologies may be economically
beneficial. In Chapter 11, we propose a stochastic cost model to quantify the supply-chain

level costs associated with the production of biomedical implants using AM techniques,
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and investigate the economic feasibility of using such technologies to fabricate
biomedical implants at the sites of hospitals. The problem is formulated in the form of a
two-stage stochastic programming model, which minimizes the total cost of using TM
and AM and determines the number of AM facilities to be established and volume of
product flow between manufacturing facilities and hospitals. A customized Sample
Average Approximation (SAA) approach is developed to obtain the solutions. We apply
the cost model to a real-world case study that focuses on the use of biomedical implants
for hospitals in the state of Mississippi (MS), and identify the conditions and cost
parameters that have significant impact on the economic feasibility of AM. We find that
the ratio between the unit production costs of AM and TM (ATR), as well as product lead
time and demands, are key cost parameters that determine the economic feasibility of
AM. A manuscript based on the content of this chapter has been published in Additive
Manufacturing in July, 2016.

In a large network coverage area, an important factor that influences the extent of
benefits reaped by the patient, hospital and the AM provider is the AM deployment
configuration. AM deployment determines how close the manufacturing point is to a
hospital and this can have a huge impact on the supply chain cost. This is particularly true
when we extend the network beyond the state of Mississippi to cover the states in the
southeastern region of the country or the entire country. The choice of deployment
approach (central, distributed, or hybrid) remains an open question that requires a careful
investigation due to the relatively high AM machine, raw material and personnel costs, as
well as uncertainties in the demand of implants in the future ([60], [86]). A centralized

deployment whereby the AM facility is centrally located will save on machine investment
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cost and personnel cost but incur extra transportation cost since the manufacturing point
will generally be located farther away from the hospitals. A distributed deployment on
the other hand will result in lower transportation cost but higher initial investment in AM
machines and personnel costs. Khajavi et al. [70] are among the few researchers that have
conducted a quantitative study on AM deployment. However, the authors compare only
two extreme ends of the AM deployment configuration spectrum: one centralized AM
location; and an AM facility at all the customer locations, and apply their study to the
AM of military aircraft spare parts. It is reasonable to observe that for expensive raw
materials such as the ones used in the manufacture of biomedical implants and which are
usually not available locally, their procurement and inventory decisions need to be
incorporated in the AM deployment problem to enhance the realization of the full
benefits of AM. In Chapter III, we propose a continuous approximation (CA) model that
quantifies the supply chain network cost associated with AM-produced biomedical
implants and incorporates raw material procurement quantities in the model. We present
an optimization algorithm that calculates the locations of the AM machines and the
hospitals that they serve (otherwise known as the AM facility’s influence area), and the
quantity of raw materials to be kept in inventory at a central raw material warehouse
(CRW) and distributed AM facilities to minimize the total network cost and achieve a
satisfactory level of patient satisfaction. We apply the cost model to a real-world case
study that focuses on the use of biomedical implants in hospitals in 12 states of
southeastern USA, and identify the conditions and cost parameters that have significant
impact on both the AM technology deployment methods and total network cost. We find
that the demand for biomedical implants in the region, fixed investment cost of AM
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machines, labor cost for operating the machines and transportation cost raw materials and
implants are among the major factors that determine how distributed the AM facilities
should be, and impact the AM supply chain network cost. A manuscript based on this
chapter has been submitted to Additive Manufacturing in September, 2016.

The continuous approximation approach in Chapter III provides a means of
modeling a large scale problem where a large number of hospitals and demand points are
distributed in a wide area and obey the slow-varying property. However, in Chapter IV,
we present an enhanced sample average approximation (eSAA) technique which
significantly improves the SAA approach utilized in Chapter Il and yields solutions faster
without assuming the slow-varying property of demand and hospital locations. In the
basic SAA method, choosing an inappropriate sample size can lead to the generation of
low quality solutions with high computational burden, and determining the right sample
size can be quite challenging ([73], [61]). In order to overcome this challenge, our eSAA
method utilizes clustering techniques to dynamically update the sample sizes and offers
high quality solutions in a reasonable amount of time. We apply the proposed approach to
three test problem types (facility location problem, single-sink transportation problem
and supply transportation problem). A number of numerical experiments (e.g., impact of
different clustering techniques, fixed vs. dynamic clusters) are performed for various
problem instances to illustrate the effectiveness of the proposed method. Results indicate
that on average, eSAA with fixed clustering size and dynamic clustering size solves our
test facility location problem almost 631% and 699% faster than the basic SAA
technique, respectively. The promising result shows that formulating our AM deployment
problem of Chapter III as a mixed integer programming problem and applying the eSAA
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could be a strong alternative to the continuous approximation approach utilized therein. A
manuscript based on the content of this chapter has been accepted for publication in the
International Journal of Production Economics in September, 2016.

Thus, the proposed contributions of this dissertation are as follows:

1. In this research, we formulate a more realistic model that captures both process-
level and system-level costs. This model is used to quantitatively study and
analyze the economic feasibility of using AM technology in the fabrication of
biomedical implants at various demand levels, and provide managerial insights on
key cost parameters that affect AM initiatives. The hospitals in the state of
Mississippi are used as a case study. Such a model can be modified to suit similar
analysis in other application areas such as automotive, aviation and energy
production.

2. This research is the first to formulate a continuous approximation model that
recommends the optimal configuration that minimizes the total network cost in
the deployment of AM facilities for the manufacture of biomedical implants. This
model takes into account that the expensive raw materials used in these implants
are usually not locally available and must be ordered from remote sources,
thereby necessitating the inclusion of reliable inventory decisions in the AM
deployment problem. We apply our model to a large network involving the entire
southeastern region of USA, and conduct sensitivity analysis on the factors that
affect how centralized or distributed the AM facilities should be.

3. This research proposes a novel algorithmic approach that enhances the sample
average approximation technique with the aim of yielding fast solutions for large
scale stochastic programming problems. We apply our proposed approach to three
optimization problems and the performance of the technique shows a promising
results that could make it applicable to solving large scale AM facility
deployment problems that involves all the hospitals in the entire USA.



CHAPTER 1II

ADDITIVE MANUFACTURING OF BIOMEDICAL IMPLANTS: A FEASIBILITY

ASSESSMENT VIA SUPPLY-CHAIN COST ANALYSIS

2.1 Introduction

Providing personal care tailored to the specific needs of patients is a promising
approach for delivering high-quality and economically efficient healthcare in terms of on-
demand production and customization. Because the anatomy of every single patient is
unique, there is a significant need for customizing products in the biomedical sector for
replacing hip/joint implants, dental work, vessel stents, and other biomedical implants.
Additive manufacturing (AM) provides the opportunity to fabricate customized
biomedical implants from the ground-up using a variety of metallic, plastic or ceramic
materials, and on a patient-by-patient basis (i.e. ‘on-demand’). With additive
manufacturing, one can employ computer tomography to obtain patient anatomy data,
from which a CAD model of the implant to-be-manufactured is generated and used to
build a patient-specific customized implant. Custom implants can possess truly complex
features which are difficult to machine using conventional, subtractive methods. Singare
et al. [142] has demonstrated the superior functionality of AM biomedical implants, as
well as the aesthetical appeal. Custom implants produced using AM technology have
been used for a variety of applications including skull ( [142], [158], [37], [141]), knee

joint [59], elbow [151], and hip joint [116].



The adoption of AM technologies for fabricating biomedical implants at the site
alongside of operational hospitals, instead of ordering from off-site suppliers of
traditionally-manufactured (TM) implants, may lead to faster response, lower inventory
level, and reduced delivery costs [59]. This is partially because of the fact that many TM
suppliers tend to locate outside of the state, or even the country, of hospitals. For
instance, major hospitals in the state of Mississippi (United States) procure biomedical
implants from suppliers and manufacturers located outside of Mississippi that use TM
technologies for production, as shown in Figures 2.1 and 2.2. For TM, products can be
ordered when they are needed in surgeries, and usually require a long waiting time (up to
months) due to the need of customization [148]. A safety stock of products is kept at the
warehouse of TM vendors/suppliers to accelerate the service. Thus, a large portion of the
batched products may stay in the warehouse for a long period, which tends to tie up a
large amount of capital in the form of inventory, increase the obsolescence risk and
reduce the surface quality of the stored products or parts due to susceptibility to
oxidation. Hence, fabricating biomedical implants at the sites of hospitals using AM
technologies, instead of ordering products from supplier of traditionally-manufactured
parts out of the state, may have the potential to significantly improve the operational
efficiency of healthcare delivery systems, ultimately lowering the costs of medical

service and improving patient well-being and satisfaction.
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Figure 2.1  Location of major hospitals (by county) in the state of Mississippi
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Figure 2.2 Current suppliers of biomedical implants in contiguous United States
(mainland) via traditional manufacturing
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Despite the potential benefits of using local AM technologies over outsourcing for
TM parts, the “make-or-buy” decisions are not straightforward and require careful
investigation because of the existence of conflicting cost parameters. On one hand, the
transportation costs of product delivery using AM may be reduced because of the
shortened distance between suppliers (i.e., third parties close to the hospitals) and users
(i.e., hospitals). In addition, the inventory cost will be reduced since the raw materials for
AM production are the only stock required when fabricating parts on demand. Moreover,
the lead time of products fabricated via AM is significantly shortened [59]. However, the
initial investment of AM machines is relatively high. According to a report by Thomas
and Gilbert [148], the average costs of machines for metal printing can account for about
60% of the total production cost related to AM over the machine lifetime. Besides, AM
performed on site may require surface cleaning, smoothing or even heat treatment after
fabrication. These possible post-processing steps usually require the use of certain
traditional manufacturing technologies, which will add to the production cost as well as
the total lead time of AM parts. Therefore, the realization of a fully functional supply
chain integrated with AM facilities requires comprehensive understanding and
quantification of cost parameters associated with AM.

Costs associated with AM can be categorized into two types: process-level costs
associated with labor, materials, and machines; as well as system-level costs related to
inventory, transportation, delivery, etc. Process- and system-level costs are also referred
to as well- and ill-structured costs, respectively, by Young [162]. Most of the existing
studies focus on the analysis of process-level costs, which are usually

evaluated/calculated based on individual AM processes. For instance, some researchers
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examined the costs associated with AM machines and materials ([122], [17], [8], [4],
[83], [84]); while others considered the costs of energy consumption ([94], [98], [145]).
However, very few researchers have investigated system-level costs, which depend on
the supply chain configuration. Some studies provided qualitative, general discussion
regarding the designs and management policies of AM supply chains ([95], [17], [60]).
However, no studies, to the best of authors’ knowledge, have performed a quantitative
investigation or analysis of the supply chain’s integrated cost with AM facilities, e.g.,
inventory cost, transportation cost, product lead time, etc. Cost reduction associated to
these system-level cost parameters could be significant and result in tremendous benefits
in the production of biomedical implants in ways that have not yet been fully realized
([59], [65]). Therefore, quantifying the supply chain level costs of AM, benchmarked
against its TM counterpart, is essential for truly assessing the feasibility of adopting AM
supply chains for the biomedical implant application, identifying the system level barriers
that hinder the adoption of AM technologies, and recommending the specific applications
in which the adoption of AM technologies may be economically beneficial.

Different from the existing studies that focus on process-level costs only, the
objective of our study is to model how various cost parameters (e.g., inventory,
transportation, demand, lead time, etc.) contribute to the system-level cost, and
investigating the economic feasibility of using AM technologies to produce biomedical
implants at the sites of hospitals. Due to the conflicting nature of cost parameters,
existing conceptual cost analysis, as presented in the literature, may not be sufficient to
characterize the overall manufacturing costs and recommend a more viable means of

manufacturing. We propose a two-stage stochastic programming model to characterize
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the impacts of various cost parameters on the overall manufacturing cost, which can be
further used to provide a guideline of the buy-or-make decisions for decision makers.
Specifically, the output of the stochastic cost model recommends the number of AM
facilities to be built, which could be zero if AM is not economically feasible, as well as
the amount of products to be ordered from either traditional suppliers or local AM
centers, by minimizing the overall costs. It is worth noting that solving such a stochastic
programming problem is usually NP-hard (non-deterministic polynomial-time hard),
meaning that there are no known algorithms to solve the problem in polynomial time
[90]. A sample averaging approximation (SAA) is implemented in an algorithm to obtain
the corresponding solutions. Based on the developed cost model, we further identify the
cost parameters that may significantly impact the economic feasibility of AM part
production for biomedical applications, which is captured by the number of AM centers
to be established in our example case study.

The rest of this paper is organized as follows: Section 2.2 reviews the existing
literature related to the cost analysis of AM technologies; Section 2.3 presents a
manufacturing cost model based on stochastic programming that quantifies and compares
the overall manufacturing costs of AM and TM technologies; Section 2.4 implements a
SAA to obtain the number of AM facilities to be located and track the flow of products
between manufacturing facilities and hospitals by solving the optimization model
presented in Section 2.3; Section 2.5 applies this optimization model to the real-world
case study of biomedical implants in the hospitals in the state of Mississippi; and Section

2.6 provides concluding remarks and possible future work.
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2.2 Literature review

A large number of AM studies focus on the characterization of material properties
and machine development ([135], [80], [161]), among which several papers have
investigated the economic feasibility of applying AM for rapid tooling ([41], [72], [100]).
Nevertheless, limited research efforts have been dedicated toward understanding the cost
parameters of direct fabrication of metallic end-usable parts. In this section, we review
papers related to the cost analysis of AM end products and categorize the related
literature into two groups: process-level costs associated with labor, materials, and

machines; and system-level costs related to inventory, transportation, delivery, etc.

2.2.1 Literature related to process-level cost studies

Several cost models have been developed to estimate the machine, material, and
energy consumption costs of AM. For example, Hopkinson and Dickens [63] developed
an initial cost model based on Selective Laser Sintering (SLS), which estimates the
production of identical parts. However, this model may not be used to estimate the cost of
products that consist of a mixture of parts with different geometries. Ruffo et al. [130]
added to this model the direct and indirect costs such as overhead costs and presented a
saw-tooth like curve for the costs of the parts in dependency of their quantity, resulting
from a significant increase of the processing time for new parts. Ruffo further advanced
his model in Ruffo et al. [131], which allows for the calculation of production cost for the
case of simultaneous production of different shapes in the same build job. A more
comprehensive model was presented by Rickenbacher et al. [122], in which authors

incorporate the costs of pre- and post-processing steps linked to a mixed build job.
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Besides the machine, materials, and overhead costs, some researchers studied the
energy consumption and environmental impacts of AM. Mognol et al. [94] investigated
the optimal sets of AM process parameters (e.g., building orientation and patterns during
fabrication) that minimize the electrical energy consumption of a build. Authors reported
the absence of general guidelines for the minimization of electrical energy consumption,
and suggested that each AM system needs to be tested individually to identify parameters
that minimize energy consumption. Morrow et al. [98] studied the environmental
emissions and energy consumption for the manufacture of molds and dies using Direct
Metal Deposition, compared to TM technologies. It is shown that AM has great potential
to reduce cost and environmental impact simultaneously. Kreiger and Pearce [75]
performed a life cycle analysis on three plastic products to quantify the environmental
impact of distributed manufacturing using 3D printers. The authors compared the
resulting energy and emissions with that from conventional large-scale production in
low-labor cost countries, and found that distributed manufacturing using open-source 3D
printers has a lower environmental impact than conventional manufacturing for the
products considered. Baumers et al. [17] estimated the process energy consumption and
costs occurring during AM for Selective Laser Melting and reported that the average
production costs, as well as energy consumption, increase as the production volume
decreases. Le Bourhis et al. [82] proposed a predictive model for environmental
assessment of AM which considers electric, fluid and raw material consumptions in a
direct metal deposition process. The model evaluates many manufacturing strategies to
produce a part, and selects the one that has the lowest environmental impact based on the

amount of electricity, fluid and raw material consumed. Kellens et al. [68] proposed a
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parametric model to estimate the environmental impact of selective laser sintering in the
production phase considering energy and resource consumption as well as process
emissions. Using the part’s build height and volume as parameters, the model is able to
compare AM processes and conventional manufacturing and make manufacturing
method decision from environmental point of view based on the amount of energy saved
and amount of waste reduced.

Wittbrodt et al. [159] studied the life-cycle economic analysis (LCEA) of self-
replicating rapid prototypers (RepRaps) technology for an average US household. The
authors found that using this distributed additive based manufacturing technology is
already an economically attractive investment for the average US household that would
save cost against commercial printing service. Pearce et al. [113] examined the
capabilities and economic viability of open source 3-D printers and their use by local
communities to create objects. The authors found that with improvements in local feed
stock availability, size of printed parts, material properties, and the use of renewable
energy systems, the technology has the potential to assist in driving sustainable
development. Gebler et al. [54] provided a qualitative and quantitative assessment of 3-D
printing from a global sustainability standpoint. The authors found that AM has the
potential of inducing changes in labor structures and generating shifts towards more
digital and localized supply chains. They showed that by 2025, the technology can reduce
cost, total primary energy supply and CO, emissions by up to USD 593 billion, 9.30 EJ
and 525.5 Mt, respectively. An overview of the challenges and research opportunities
related to the sustainability, especially energy consumption, of AM can be found in
Sreenivasan et al. [145].
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2.2.2 Literature related to system-level cost studies

Among the very few studies that have investigated system-level costs (e.g.,
inventory, transportation, lead time, etc.), some research groups have studied the potential
impact of AM on the supply of spare parts in the commercial aircraft industry.
Holmstrom et al. [60] provided qualitative analysis for the potential benefits of using AM
in aircraft industry, by comparing the on-demand production of spare parts using both
centralized AM, which requires few AM facilities, and distributed AM, which requires a
larger number of AM facilities. Authors also took into account cost parameters such as
materials and production, distribution and inventory obsolescence, and life-cycle. The
benefits and advantages of both approaches were discussed. It is found that when the
demand for spare parts is relatively low, centralized AM productions may be more
beneficial to allocate the demand from multiple locations; however, requiring longer
delivery time and high inventory cost. In situations, where the demand is relatively high
and short lead time is essential, distributed AM production may be more advantageous.
Similar findings were echoed by Khajavi et al. [70], in which the authors investigated the
production of spare parts for the air-cooling ducts of the environment control system for
the F-18 Super Hornet fighter jet. The authors reported in their case study that the
expected total cost per year for centralized production using AM was $1 million,
compared to $1.8 million for distributed production via AM. As a direct extension of
Khajavi et al. [70], Mohajeri et al. [95] performed a conceptual cost-benefit analysis on
various AM supply chain strategies in a spare parts industries, and proposed several
supply chain management strategies that could potentially mitigate the obstacles of
distributed AM implementation and reduce the relative operation cost, including building
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hubs of AM production, postponing production, internet-based customization, and
distribution.

Thanks to the existing research efforts, the potential economic benefits of AM
technologies, especially cost saving related to supply chains, have begun to be realized.
To further understand how AM technologies may reshape the modern supply chain
networks as well as the corresponding cost benefits, mathematical models are needed to
quantify the benefits and shortcomings of AM technologies, compared with TM
approaches. However, to the best of our knowledge, all of the existing studies for AM-
integrated supply chain are only presented at the ideation and conceptual level due to the
lack of relevant data. We collect real-world data for the use of biomedical implants from
major hospitals in the state of Mississippi and public databases, and propose a stochastic
cost model to investigate the economic feasibility of manufacturing biomedical implants
at the sites of hospitals. The detailed stochastic programming model is presented in

Section 2.3.
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Table 2.1

Acronyms and mathematical notations used in the optimization model

Notations & Explanation

Acronyms

TM; i*" traditional manufacturing facility

AM; j*" additive manufacturing facility

HL, k*" hospital in Mississippi

PT, p*" product type

Sets

P set of products (e.g., hip implants, dental braces, stents)

! set of TM facilities

Ji setof potential AM facilities

K set of hospitals

L set of AM center capacities

Q probability space of demand scenarios

Parameters

i fixed cost to locate an AM facility with capacity £ € L at location j € |

Bpj unit production cost of producing product PT, at AM;

Bri unit production cost of producing product PT, atT M;

Cpijk unit transportation cost of transporting product PT,, from AM;to hospital H Ly

Cpik unit transportation cost of transporting product PT,, fromTM;to hospital HL,

Yok monetary value per unit of lead-time of product PT,, athospital H L,

tpjk lead time of product PT,, between AM;and hospital H L,

tpjk lead time of product PT,, between T M;and hospital H L,

hyj unit inventory holding cost for product PT,at AM;

hyi unit inventory holding cost for product PT,atTM;

foik service frequency for product PT,, between AM;and hospital H L,

foik service frequency for product PT, between T M;and hospital H L,

dpy deterministic demand of product PT,,athospital H L

W realization of demand scenarios

Pw probability of scenario @ € Q

dpkew demand of product PT,, athospital H L under scenario @€ Q

Spej supply capacity of product PT,at AM;of capacity level £ € L

Spi supply capacity of T'M; of product PT,

Variables

Yy binary variable that takes the value 1 if an AM facility of size ¥ is established at
location AM;, O otherwise

Xpjk production volume of PT, from AM; to HL, with deterministic demand

Xpik production volume of PT, from TM; to HL, with deterministic demand

Xpjke production volume of PT, from AM; to H L, under demand scenario we Q

Xpike production volume of PT, from TM; to H L, under demand scenario @€ Q
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2.3 Cost models with deterministic and stochastic demands

We propose a stochastic programming model to characterize the costs of
biomedical implants from AM facilities and TM suppliers. Hospitals may choose to order
products from TM suppliers or establish an AM facility, which may be shared by nearby
hospitals and fabricates biomedical implants at the sites of hospitals. In what follows, we
begin with a deterministic programming model to characterize the total costs of
production using either TM or AM with deterministic demand in Section 2.3.1, which is

further generalized in Section 2.3.2 to account for uncertain and dynamic demands.

2.3.1 Cost model with deterministic demand

The proposed supply chain network consists of hospitals, TM facilities (current
suppliers), and possible AM facilities. We denote by AM; the j th Jocation of possible AM
facilities; T M; the location of the i*® TM facility; and HL,, the location of the k"
hospital. Here, J, I, and K represent the set of the indices of AM facilities, TM facilities,
and hospitals, respectively, i.e., j € J, i € I, k € K. Each manufacturing facility may
produce multiple types of products, the p** type of which is denoted by PT,. The
mathematical optimization model for the total costs can be expressed as below. The

notation is summarized in Table 2.1.

. h .
min Yeer Xjey PeiYej + Xkek jeypep (ﬁpj + Cpjk + Vprtpjk + ﬁ) Xpjk +
h .
ZkEK,iEI,pEP (,Bpi + Cpik + Vpktpik + TZ;{) Xpik (2~1)

in which, we focus on the following two groups of decision variables:
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ii.

Y,;, binary variable that takes value 1 if an AM facility of capacity level £
is to be built at location AM;; 0 otherwise. If Y,; = 0 for all possible
locations AM;, no AM facility will be built, and all products are to be
purchased from TM service providers. On the other hand, if Y,; # 0, for a
certain combination of £ and j values, it suggests to build an AM facility
of capacity level £ at AM,;.

Xpjk and Xp;, are the volume of product flow for product PT;, from
suppliers AM; and T'M; to hospital H Ly, respectively, with deterministic
demand. Given product PT, and hospital HLy, if X,,; = 0 for all TM

locations, this means that hospital HL; does not order from TM facilities.
In other words, all products are manufactured using AM facilities.
Similarly, X, j; = 0 for all AM locations, hospital HL; only order from

TM facilities.

These two groups of decision variables suggest (a) whether AM facilities should

be built at a certain location, (b) what types of products to be produced at AM facilities,
and (c) which hospitals will use AM for biomedical part production. Values of these
decision variables are chosen by minimizing the overall costs, including inventory,
transportation, production, and initial investment of AM machines. We also take into
account of potential costs/penalty resulting from product lead time because short
response time is very essential to patients waiting for implants. The detailed cost

parameters are summarized below:
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We denote denote by W,; the initial investment of AM facilities with
capacity level £ at location M; . The total initial investment across all
possible AM locations is Y. pe;, X je; Wp;Yej. Wpj mainly consists of the cost
of AM machines. For example, in 2015 the market price of a Selective
Laser Melting (SLM) system used for the production of biomedical
implants ranges from USD400,000 to USD1,000,000, depending on the
original equipment manufacturer, machine dimensions, effective build
volume of the machine and its operational build speed. This data is from
quotations received by the Department of Mechanical Engineering of the
Mississippi State University on the price of SLM machines. Such a range
in price due to similar factors is in line with the data from [63], [83], [7],
[14] and [17]. We assume an average price of $500,000 which is
reasonable for the price of the machine that can produce the identified bio-
medical implants. A similar example can be found in [14], in which the
authors recorded an annual maintenance and investment cost of
$110,320/year over 10 years for a similar machine with a purchase price
of $700,000. We use the equivalent annual cost (EAC) model to calculate
the average annualized investment and maintenance cost. There is a wide
range of depreciation methods in literature. The simplest method is the
straight line method which calculates the annual depreciation cost by
dividing the machine purchase price by its expected life. The more
complex methods such as the accelerated depreciation, equivalent annual

cost (EAC) and remaining value percentage (RVP) methods, use models
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that take into account factors like machine age, salvage value, size, usage,
manufacturer, condition, interest rate and region of deployment to
calculate annual depreciation cost. Jones and Smith [67] provided an
overview and historical perspective of the EAC. The detailed discussion of
multiple variations of RVP models can be found in Cross and Perry [36],
Hansen and Lee [57], Unterschultz and Mumey [153], and Dumler et al.
[43]. We calculated the average annualized investment and maintenance
cost based on a life-span of ten years, resulting in an average annualized
investment and maintenance cost of $75,000 for a small capacity AM
center. It is worth noting that for such a fast evolving technology, a faster
replacement policy may be implemented (e.g., 5 year replacement), which
will result in a higher annualized investment. The annualized investment
and maintenance cost for medium and large capacity AM facilities could

be $135,000 and $182,000, respectively.
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ii.

Bp; and B,; represent the unit production cost of product PT,, from AM;
and T M;, respectively. This term includes material, labor, energy
consumption, pre- and post-processing costs, etc. The total production cost
of product PT, for hospital HLj from all manufacturing facilities is
represented by Y. je; BpjXpjk + Qier BpiXpik - The exact values for the AM
and TM unit production cost of biomedical implants are usually
unavailable due to proprietary nature of the data. We estimate f8,,; using
the unit cost of implants obtained from hospital database, as shown in
Table 2.2; for AM, we let 8,,; represent the combination for costs of
materials, energy consumption, and labor. To identify the conditions in

which AM production of implants may be economically beneficial, we

investigate various ratios of %, referred to as ATR hereafter, and examine
pi

its impacts on the decision variables Y;;, Xk, and Xy, ..
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1il.

Cpjk and ¢y represent the unit transportation cost of delivering product
PT, from AM; and T M; to hospital HL, respectively. The transportation
cost depends on the characteristics of product, such as shape, weight,
fragility, etc., as well as the distance between the manufacturing facility
and hospital. TM facilities are usually distant from hospitals. Actually, as
shown in Figure 2.1, all TM facilities are outside of state of Mississippi.
Also, a safety stock of biomedical implants is kept at the warehouse for
TM. These parts can be ordered when they are needed in implant surgeries
and usually require a short delivery time (e.g., overnight) to ensure fast

service. Thus, the unit transportation cost from TM facilities ¢, tends to

be much higher than ¢, j, the counterpart from AM facilities.
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1v.

hy; and hy,; represent the daily average unit inventory holding cost for
product PT,, at AM; and T M;, respectively. TM requires a long time to
produce parts on demand, which results in a high level of inventory of
infrequently ordered parts. These unused products tie up capital and
resources in the forms of space, warehouse, security, land, and rent, utility
costs, insurance, taxes , respectively [148]. On the other hand, on demand
production of these products using AM may reduce or even eliminate the
need for maintaining the high inventory level and associated costs. The
TM production of several types of medical implants requires batch
production. As pointed out in the case study by Trotman [150], machining
partners in TM of orthopedic implants using CNC machines require a
minimum of two month’s supply of stock at all times. In this case, the
warehouse is necessary for TM production. On the other hand, since AM’s
operations generally stay closer to end-product point of use, AM is able to
achieve a leaner and more cost-effective supply chain that relies less on
safety stock and requires less inventory holding costs [143]. This is mainly
because AM does not require multi-steps production operations or any
additional tooling and minimizes the need for inventory. This leads to
reduced costs and lead times, especially for small volumes and complex
parts as in orthopedics. Similar evidence can be found in a report
published by a medical manufacturing company, Conformis [32], which
indicates that TM production of medical implants requires manufacturers

to commit more money on the overhead for inventory and warehousing of
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adequate levels of a range of fixed sizes of implants. As a summary,
avoiding cost in excess inventory is one way that AM achieves a superior
demand-based manufacturing advantage over TM in the production of
metallic medical implants. As pointed out in a NIST report [105], when
only 50 to 100 of a particular implant are needed in a given year and the
minimum order from a financial feasibility standpoint is 500, this creates a
huge inefficiency. AM offers the ability to make only the number that is
needed, and thus helps to achieve a huge reduction in inventory holding
cost. AM may significantly bring down the inventory level, which frees up
capital and reduces expenses. Therefore, we assume that holding costs at
AM facilities is much lower than TM facilities, i.e., h,; < hy;.

fpjk and fpix represent the ordering frequency of product PT, by HLy

from AM; and T M;, respectively. Thus, the average inventory hold cost

. . . . . hyj
during the time horizon of interest is pr’ for product PT, between AM;

pjk’
and hospital HL;. Similarly, the average inventory hold cost between T M;

. . hy;
and hospital HL, is ——.
2fpik
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Vi.

tpjk and tp; represent the product lead/waiting time required for product
PT, from AM; and T M; to hospital HL;, respectively. Even though AM
products require some post-processing time, in general, AM may
significantly shorten lead time when compared to TM [59]. Since post-
treatment varies significantly depending on the products, we do not model
it explicitly. Instead, we incorporate it into the production lead time. In the
biomedical/dental applications, a specific type of biomedical implant is
infrequently ordered; however, when one is ordered, it is needed quite
rapidly to ensure patient health and satisfaction. The TM orthopedic
implant may need two to three months of lead time, including interpreting
the CT scans, making rough prototypes of the component in clay or wax,
shipping it to the surgeon, and awaiting approval or input [148] . In
contrast, AM has the potential to rapidly manufacture parts on demand and
may considerably reduce the waiting time to several weeks. Hence, we
assume that t,,j, < t,;x. For healthcare applications, the waiting time may
be very crucial to the health of patients; and thus excessive waiting time
incurs additional procedures and extra need of medical service. We model
such penalty using a variable y, that represents the monetary value per
unit of waiting time of product PT, at hospital HL;. We assume that the
monetary value per unit of lead-time of a biomedical implant is 10% of its

market price. Hence, the total penalty for product type PT, at hospital HLj
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1S Ypitpjk and Ypi by for products from a manufacturing facility AM; and

TM;.
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The solution to the optimization model, described by Equation (2.1), is subject to
multiple constraints below:

1.  The demand for each product type should be met for any hospital, HL,, i.¢.,

Zje]ijk + ZiEIXpik = dpk Vp € P,k EK (22)

where d, represents the deterministic demand for product PT, from hospital

HL,. We estimate the average annual demand of the biomedical implants in each
MS county based on the average annual national demand of the implant. We also
assume that patients from counties that do not have the capability to perform a
certain procedure use hospitals from nearby counties. In other words, the demand
of implants from counties that cannot perform a certain procedure is distributed to

nearby counties.

2. The product volume of product PT,, manufactured from any AM facility,

should not exceed its total capacity of production, i.e.,

Ykek Xpjk < XeeL SpejYej YD EP,j €] (2.3)
where s,,,; represents the supply capacity of product PT, at AM; of capacity

level £.

3. Similar to Constraint (2.2), the production volume from TM facilities is also

limited by their capacity, i.e.,

ZkEKXpik < Spi Vp € P,l el (24)
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where s,; represents the supply capacity of product type p at TM facility i.

4.  For each location, a maximum of one AM facility can be built.
YoV <1VjE] (2.5)
5. Decision variables of AM facility location are binary
Y,; €{0,1}VIEL,j€E] (2.6)
6.  Production volumes are non-negative

Xk 20,X, =0.VpEP,jEJi€LkEK 2.7)

The cost model described by Equations (2.1) — (2.7) characterize the overall costs
of a product, including machine/system investment, production, transportation, inventory,
and waiting penalty when the product demand in deterministic and known. However, in
many situations, the product demand may be unknown or varying over time. For
example, an increase in the aging population may potentially increase the number of
cardiovascular and orthopedic cases that require the use of more stents and knee and hip
implants for treatment. Conversely, it is also possible for the demand of some biomedical
implants to decrease when people start to live healthier lifestyles that to some extent may
reduce the need of surgeries. In the next subsection, we extend the deterministic cost
model to account for the scenarios, in which demand may be unknown or vary over time.

This situation can be found in many real-world medical applications.

2.3.2 Stochastic model for uncertain demand

We further extend the cost model with deterministic demand as described in

Section 2.3.1 to account for the uncertainty in the demand variable d,,,. The optimization
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model in Equation (2.1) can be formulated as a two-stage stochastic program, where the
first-stage decisions correspond to the location and capacity selection of the AM centers
and the second stage decisions correspond to the optimal routing of the products
considering a particular realization. We let £ represent the probability space that consists
of all possible scenarios of demand, and w be a sample/realization of scenarios, the
probability of which is p,. In this context, for each product type PT}, dy,, is a random
variable representing the future demand at hospital HLy, and X, i, the corresponding
product flow under scenario w € (. On the other hand, Y,;, are long-term decisions that
do not involve uncertainty since once AM centers are established the infrastructure does
not change over time. As a result, we use the same set of decision variables Y; as the

deterministic demand model for the locations and size of AM facilities. Therefore, the

corresponding two-stage stochastic programming model can be formulated as follows:

min YeerXjey PeiYej + Xwea PuE(Y, w) (2.8)

with E (Y, w) as the solution of the following second-stage problem:

. hypj
E(Y; (U) = r{}g‘,n ZkeK,jE},peP (ﬁpj + ijk + ypktpjk + ﬁ) ijkw + ZkEK,iEI,pEP (ﬁpi +
F Yo + 225) X 2.9
Cpik ka pik 2pik pikw ( . )

subject to the constraints below, which are similar to constraints in the model of

deterministic demand, except that X, jx,, and d,,, are defined for each possible

realization of scenario w.
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YLV < LVj€E] (2.10)

Yiej Xpikw T Zier Xpikw = dpkw VP E P,k EK,w € Q (2.11)
Ykek Xpjkw < Zier SpejYej VP EP,jJ EJ,w € Q (2.12)
Ykek Xpikw < Spi VP EP,i €EL,w EQ (2.13)

Y,; €{0.1} VIEL,j€E] (2.14)

Xpjko = 0,Xpik =0VpEP,jEJi€ELLkEK wEQ (2.15)

This stochastic programming model is a non-deterministic polynomial-time hard (NP-
hard) problem [90]. Hence, it is extremely challenging and expensive to solve this model
directly. To address this issue, we propose in the next section a customized solution

approach to efficiently solve this model.

2.4  Sample average approximation

We use the sample average approximation (SAA) to find solutions to the two-
stage stochastic programming problem as described by Equations (2.8) — (2.15). We also
demonstrate the computational advantage of implementing SAA over using a general-
purpose commercial solver in Section 2.4.1. SAA is a sampling strategy that seeks to
quickly compute high quality solutions to large-scale stochastic programming problems
with a large number of scenarios. The idea of the SAA algorithm is to generate random
sample w and approximate the expected value function ), cq po E (Y, @) by the
corresponding sample average function. The SAA algorithm is renowned not only for
providing high quality feasible solutions but also for providing a statistical estimation of
their optimality gap. SAA algorithm was applied previously to solve large scale supply

chain related problems ([29], [136]). Kleywegt et al. [73] conducted extensive analysis to
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prove the convergence properties of the SAA algorithm. Other studies such as Mak et al.
[91], Norkin et al. [106], Norkin et al. [107] evaluated the statistical performance of the

SAA algorithm.

2.4.1 Steps of SAA

The main difficulty in solving the stochastic problem (2.8) — (2.15) lies in
computing the expectation of the linear programming value function E (Y, ). This is
extremely difficult, if not impossible, for continuous distributions as they involve
multiple integrals. For discrete distributions, it involves solving a large number of linear
programs, one for each scenario of the uncertain parameter realization. The SAA method

provides a means for dealing with this problem by approximating the expectation E (Y, w)

1

T N_,E(Y,n) with a random sample of |N|

using the sample average function

realizations of the random scenario parameter @ . The problem. (2.8) — (2.15) is then

approximated by the following SAA problem:

. 1 hy;
miny x Y.per X jey YeiYej + WZnEN Y keK,je) peP (ﬁpj + Cpjk + Vprtpjk + ﬁ) Xpjin +

1 R,
WZnEN ZkEK,iEI,pEP (:Bpi + Cpik + Vpktpik + ﬁ) Xpikn (2-16)

Kleywegt et al. [73] showed that the optimal solution of problem. (2.16)
eventually converges with probability of one to the solution obtained from the original
problem. (2.8) — (2.15) as the size of |N| increases. Below, we discuss the detailed steps

of the SAA algorithm:
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Step 1 (Sampling): Generate M independent demand sample scenarios each of size N.
Denote the m*" demand sample scenario by {dT, L d%} form =1, ..., M. Here,
d;! represents the set of demand realizations in each scenario, i.e., djt =

{d;’}m, VpeP, ke K}, form=1,..,Mandn =1, ...,|N|. We solve the SAA problem as

expressed in Equation (2.16) subject to constraints (2.17)-(2.22) below:

YieLYej S 1,V €] 2.17)

Yje Xpjkn t Dier Xpikn = dpkn VP EP, K EK,n EN (2.18)
Ykek Xpjkn < Leer SpejYej VD EP,jJEJ,NEN (2.19)
Ykek Xpikn < Spi VD EP,i€ELLnNEN (2.20)

Y, €{0,1}VIEL,j€E] (2.21)

Xpjtn = 0, Xpiyn =0VpEP,jEJi€Lk€EKnEN (2.22)

Denote by v¥m and Y™ the objective value and optimal solution of the m*" problem,

respectively.

Step 2 (Estimating the lower bound): Compute the average of all optimal objective

function values from the SAA problems, uly and its variance 0;% :

1
N N.
'u = —_— v'm
M |M|Z

meM

T 2
2 N. N
ON = = vim—u
wi — (IM - DIM| L4 "

37



The average objective function value uly provides a valid statistical lower bound on the

optimal objective function value of the original problem (2.8) — (2.15).

Step 3 (Estimating the upper bound): Choose a feasible solution ¥ from the above

computed solutions ¥¥m, We fix ¥ and estimate the optimal solution of the original

problem (2.8) — (2.15) as follows:

MianNl(?) = ZZ IIU{,]?[] +

t€L jeJ

1
m Z Z <13p1 + Cpjk + Vprtpjk + 2f,; )ijkn +

neN keK,jej,peP

hy;
|N | Z z <.Bpl + Cplk + Vpktplk + prl >Xpikn

NEN keK,iel,peP

where N’ is another set of samples generated independently for the demand scenarios.
Typically, the sample size |N’| is chosen to be much larger than the sample size |N| used
in the SAA problems. Note that vy (7 ) gives an estimate on the upper bound of the
original problem defined in (2.8) — (2.15). We now estimate the variance of v (7 ) as

follows:
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v (V) = Gy = 1>|N|Z Zz%fﬁ’f

neN’ \ PeL jej

h
|NI ZZZ<BPJ+CPJ’<+Vpkt Jk+2f )X]kn

PEP jE]J kEK

2

1 hy; -
+ IN'| Z Z Z <Bm + Cpik T Vorlpix T 2f e )Xpikn - VN’(Y)

pEP i€l keK

Step 4 (Estimating the optimality gap): Compute the optimality gap using the lower

bound and upper bound estimates from Steps 2 and 3:
gapN,M,Nl(?) = VN’(7 ) — My
If gapN,M,N,(7) < €, stop. The decision variables for the optimal solution are ¥. A

common choice for the error threshold is 0.005v (17 ) Otherwise go to Step 1.

The most computationally expensive part of the SAA algorithm (described in Step 1)
is to solve the two-stage stochastic integer programming problem (2.18) — (2.22)
involving |N| scenarios. Cutting plane algorithms such as Benders decomposition by
Benders [20] and dual decomposition by Rockafellar and Wets [124] can also be used to
solve this class of problems. However, in our study since the size of |L| and |]] is
relatively small, we use CPLEX, a mathematical optimization software provided by IBM

to solve linear and integer programs, to solve this part of the SAA algorithm.
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2.4.2 Computational efficiency of the proposed algorithms

We study the computational efficiency of the proposed model and algorithm in
this subsection. The dimensions of the deterministic equivalent problem are presented in

Table 2.3

Table 2.3 Problem size of the deterministic equivalent of the model

1P| | | |/l | IK|] | |L| | No. of Binary | No. of Continuous | No. of Total | No. of
Variables Variables Variables Constraints
4 4 20 |20 |3 80 1920 2000 196

We use the following criteria to terminate the SAA algorithm: (a) the gap
between the upper and lower bounds falls below a threshold limit ¢, i.e., € =
|UB — LB|/UB = 0.005 (b) the maximum time limit is reached i.e., t,;4,, = 36,000
seconds, and (¢) the maximum iteration limit is reached i.e., n,,4, = 100. We conduct
two sets of experiments to evaluate the convergence behavior of the SAA algorithm. In
the first set of experiments (shown in Table 2.4), we test the performance of the SAA
algorithm by varying the size of the scenario set |N'| =
50,100, 200, 300,400,500, 600, 700,800,900, 1000 while fixing the sample size |N| to
30. The second set of experiments tests the performance of the SAA algorithm by varying
the sample size |[N| = 10, 20, 30, 40, 50, 60, 70, 80,90, 100 while fixing the scenario set
size |N'| to 1000. Furthermore, we present results to evaluate the efficiency of the SAA
algorithm when the demand is generated randomly using a normal and a uniform

distribution. In all experiments, the best running time between CPLEX and SAA
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algorithm is identified by boldface letters; each can be solved with less than a 0.5%
optimality gap; otherwise, the smallest optimality gap is highlighted.

Table 2.4 compares the computational performance between CPLEX and SAA
algorithm under different sample sizes and demand variation levels. We change the
standard deviation of demand to obtain three different demand variation levels: (-5.0 to
5.0)% for low demand, (-10.0 to 10.0)% for medium demand, and (-15.0 to 15.0)% for
high demand variations. Our computational performance indicates that both CPLEX and
SAA algorithm are capable of solving all the problem instances within the pre-specified
optimality gap (0.5%). However, the running time of the SAA algorithm is significantly
faster compared to CPLEX. On average, SAA algorithm is 245 times faster than CPLEX
under low demand variations, 296 times faster under medium demand variations, and 256

times faster under high demand variations.

Table 2.4 Computational performance of the solution algorithm: Normal and
Uniform distributions

Normal Distribution Uniform Distribution
CPLEX SAA CPLEX SAA

IN'| | Avg. | Avg. Avg. | Avg. | Avg. Avg. Avg. Avg.
Gap CpPU Gap CPU | Gap CpPU Gap CPU
(%) |(sec) | (%) | (sec) | (%) (sec) | (%) (sec)
50 0.47 13.5 0.49 11.0 | 047 5.3 0.22 5.5
100 | 0.25 25.9 0.15 11.5 |0.01 28.1 0.08 7.0
200 |0.24 126.0 0.23 13.0 | 0.02 76.4 0.15 10.5
300 |0.23 256.5 0.15 145 048 109.3 0.13 12.5
400 |0.39 362.6 0.45 17.5 ]0.10 292.7 0.16 14.5
500 |0.29 668.9 0.22 19.0 |0.15 432.5 0.15 16.5
600 |0.24 853.4 0.02 20,5 |0.11 510.7 0.10 17.0
700 | 0.18 |2083.3 040 |23.5 |047 1076.5 |0.23 21.0
800 |0.23 23929 |0.31 255 |0.18 1199.7 10.13 23.5
900 |0.14 |3738.2 |0.15 275 10.49 1852.1 |0.14 25.5
1000 | 0.46 |4307.1 |0.35 31.0 | 0.46 2220.2 |0.04 29.5
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Figure 2.3 (a) and (b) present the total CPU time required for the SAA algorithm
under different sample sizes |N| for both the normal and uniform distributions,
respectively. Additionally, Figure 2.3 evaluates the performance of the SAA algorithm
under different sample sizes with three demand variation levels: low, medium and high.
Computational results indicate that the running time of the algorithm increases as the
variation in demand increases for both normal and uniform distributions. All
computations are coded in GAMS 24.2.2 on a desktop with Intel Core 17 3.60 GHz

processor and 16.0 GB RAM. The optimization solver used is ILOG CPLEX 12.6.
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Figure 2.3  Effect of sample size on CPU time

2.5  Numerical study

We apply the proposed stochastic cost model, as described by Equations (2.8) —
(2.15), and the SAA algorithm to a real-world case study, in which we investigate the use

of AM technologies to fabricate biomedical implants for hospitals in the state of
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Mississippi (MS). In particular, we conduct a series of numerical studies to investigate
the economic feasibility of using AM technologies for manufacturing biomedical
implants, and identify the cost parameters that may pose significant impacts on the

economic feasibility. (1) One key cost parameter to be considered is the ratio between

unit production costs of AM and TM, %, referred to as ATR, which describes how
pi

expensive it is to produce a unit using AM relative to TM (i.e. conventional methods).
For example, if ATR = 2.0, it means that the unit production cost of an implant using AM
is twice the unit production cost of the implant using TM. For a high ATR value, it is
more expensive to produce a unit product using AM than TM, discouraging the initiation
of AM facilities. One goal of this study is to identify the critical minimal ATR value that
makes AM economically beneficial, by testing various levels of ATR values. (2) The
initial investment of AM, mainly consisting of the cost of AM machines, is known to be
another cost parameter that constitutes a large portion of the total AM costs. We
investigate whether it is economically beneficial to use AM technologies for
manufacturing of biomedical implants with the current level of the initial investment. If
not, we identify to what extent the future improvement of manufacturing technologies,
which may make AM systems more affordable, will affect the economic feasibility of
AM production. (3) Another cost parameter is the demand of each biomedical implant.
Considering the high costs of AM systems, it may not justify the initial investment when
the overall demand level is very low. We study the effect of various demand levels (i.e.,
low, medium, and high) on the number of AM facilities to be located. Last but not least,
(4) product lead time and product penalty cost for the biomedical implants could be

essential for the adoption of AM. Shorter product lead time may result in faster response
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and help with the recovery of patients. For different procedures, the urgency of a specific
product, characterized by the lead time penalty coefficient, may vary. We will identify

how much improvement of product lead time is needed, and how urgent the implants are
desired to justify the costs of AM production. At last, the computational efficiency of the

proposed algorithm is also reported.

2.5.1 Case study for additive manufacture of biomedical implants

We focus on four biomedical implants in which additive manufacturing has
already been implemented for their manufacture: hip and knee joint implants, dental
braces, and vessel stents. We collected data from major hospitals, as well as the nearby
clinics, about the use of these four biomedical implants in the 20 most populous counties
of MS, as shown in Figure 2.1. Most hospitals can perform procedures for all four
implants of interest. However, select hospitals do not have the capacity to perform
specific procedures. For example, the Oktibbeha County Hospital can only perform the
implantation procedure of hip/knee joint implants and dental braces, but not stents. In this
case, the demand in this county will be distributed to its neighborhood counties. The
average demands of these four types of biomedical implants in Mississippi are estimated
as the corresponding proportion of Mississippi—USA population in 2010, multiplied by
the nationwide demands of these four biomedical implants, published by Centers for
Disease Control and Prevention. The mean demands of all four types of biomedical
implants for each county of Mississippi are demonstrated in Figure 2.4.

We have also collected information about the suppliers of these four biomedical
implants via TM, as demonstrated in Figure 2.2. The data related to the use of biomedical

implants, as well as the data source, are summarized in Table 2.2. At present, MS
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hospitals procure biomedical implants from suppliers and manufacturers located outside
of MS who use TM methods to manufacture the parts, the prices of which are estimated
based on the invoice of hospitals in Mississippi. We investigate whether it is beneficial to
fabricate these biomedical implants at the sites of hospitals using AM technologies. The
prices of AM systems are estimated based on the quotation of Selective Laser Melting
(SLM) system in 2015. We choose the SLM system because of its widely documented
use for the fabrication of biomedical implants. The build time for each part is estimated
using the relative volume of parts using SLM state-of-the-art machines for year 2015. We
assume that the biomedical implants are delivered using FedEx, and the costs of

transportation are calculated using the online tool provided by FedEx Get Rates.

2.5.1.1 ATR analysis

We vary the ATR value and use it as input in the developed stochastic
programming model, described by Equation (2.8)-(2.15), to examine the number of AM
facilities to be established in each scenario and how much product to supply via AM
and/or TM. Results are reported in Figure 2.5. We observe that these economic decisions
largely depend on the ATR value. Lower ATR value tends to encourage the initiation of
more AM centers, favoring the use of AM technology to produce more parts and

decreases the average cost of production.
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Figure 2.5  Effects of ATR on the economic decisions of production

Figure 2.5(a) suggests that the ATR value should be no higher than 3.0 for any
AM center to be established (point C in Figure 2.5(a)). At this point, the number of AM
centers located is one. At points to the left of the critical point with lower ATR values,
more AM centers would be recommended, whereas to the right of the critical point,
where ATR > 3.5, no AM centers are recommended as shown by point D in Figure
2.5(a). This can be explained by considerably high unit production cost of AM for
ATR = 3.5 which overshadows the benefits of AM, e.g., low inventory and short lead

time. Accordingly, all of the products are economically beneficial to be supplied from
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TM. Similar observations are made for the production volumes as shown in Figure 2.5(b).
The amount of products supplied from AM essentially decreases as ATR increases, while
the amount of products supplied from TM increases as the ratio increases. At point D and
beyond (i.e., ATR > 3.5), all products are supplied via TM because no AM center is
suggested to be located based on these ATR values. When the ATR decreases, the
amount of products supplied from AM increases, because more AM facilities are to be
established to supply medical implants together with TM. The average unit cost, using
either AM or TM production technologies, increases as ATR increases as shown in
Figure 2.5(c). For ATR < 3.5, AM is used to produce biomedical implants. On the other
hand, for ATR = 3.5, no AM facilities are suggested to be established and the average
unit production cost becomes stable since all products are manufactured from TM

suppliers.

2.5.1.2 Demand Analysis

We conduct a set of experiments to further investigate the economic decisions
with various scenarios of product demand, which could be varying and dynamic over
time. We take the current demand data for medical implants at Mississippi hospitals as
the medium/baseline demand level, and consider a low demand level (50% of baseline)
and a high demand level (150% of baseline). Similar to the previous ATR studies, we
determine the number of AM facilities to be established and the number of products to be
produced from each manufacturing facility, with various demand levels. The results of
the experiments are demonstrated in Figure 2.6.

Figure 2.6(a) shows the number of AM centers to be established for the three

levels of demand. It may be observed that when AM is chosen to manufacture biomedical
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implants, higher demand levels result in more AM centers. For example, when ATR =
2.5, two, four and five AM centers are needed to satisfy the low, medium and high levels
of demand, respectively. This is echoed in Figure 2.6(b), which plots the quantity of
products shipped from AM and TM suppliers to hospitals. The average unit cost for each
demand level tends to increase as ATR increases and remain at a constant level for

ATR = 3.5 is presented in Figure 2.6(c). When ATR < 3.5, the average unit production
costs are very similar for various demand levels which may be explained by the fact that
AM is mainly used for production at this regime and the production cost of AM is not
sensitive to production volumes and demand levels. For ATR > 3.5, in which case only
TM is chosen, the average unit production cost branches out for various demand levels
and decreases as the demand level increases. This is because TM typically benefits from

the scale of economics and batch production.
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When ATR < 3.5, i.e., AM production is feasible and our model recommends the
potential optimal locations for AM facilities and the corresponding product flow lines, as
depicted in Figure 2.7. When the demand level is low, one AM facility is sufficient to
satisfy the need for production, as shown in Figure 2.7(a). This AM facility is
recommended to be located in Forrest County, the southern part of Mississippi, to supply
AM implants to all hospitals of the state. This location is chosen because of its physical
proximity to about 80% of the major hospitals in MS, and thus may help to reduce
transportation cost and product lead time. When the demand level increases to medium,
this AM facility is sufficient to satisfy the need of production, and thus results in the
same configuration of supply chain and location of AM centers. In other words, the
increase in demand from low to medium is not enough to justify the cost to be incurred
from locating an additional AM center. However, when the demand level becomes high,
another large capacity AM center is situated in the northeastern part of the state in
Lowndes County, which is capable of supplying to nearby hospitals. Even though the
additional AM facility incurs an extra investment cost, it increases responsiveness and
provides the necessary capacity to meet high product demand while reducing both

transportation cost and lead time cost.

2.5.1.3 Result discussion

Based on the ATR and demand analysis, AM would be economically feasible for
the production of biomedical implants for the state of Mississippi under the critical
condition that ATR < 3.5. However, when AM is more expensive (ATR = 3.5), AM
would not be an economically feasible option regardless of the demand, in which case,

all hospitals of Mississippi are recommended to order biomedical implants from TM out
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of the state as demonstrated in Figure 8. At the current stage of AM technologies, the AM
unit production cost tends to be much higher than that of TM, i.e., ATR > 3.5 [148]. This
may explain why AM is currently mainly used for the purpose of prototyping and product
design for biomedical implants, instead of manufacturing of end products. In what
follows, we will investigate and identify the cost parameters that may potentially affect

the economic feasibility of AM via extensive sensitivity analysis of the proposed model.
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Figure 2.8  Routing of products when ATR > 3.5
2.5.2 Cost parameters impacting economic decisions

In this subsection, we will determine the cost parameters that can potentially
make AM economically beneficial and recommend how much change/improvement is
needed, via a series of numerical studies. We focus on the cases, in which ATR > 3.5 and
AM is not readily feasible. We study the impacts of fixed initial machine cost, inventory

holding cost, required lead time, and lead time penalty coefficient. To do so, we vary
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each cost parameter when ATR > 3.5 and apply our proposed model to decide the number
of AM centers to be located. The impacts of such changes of these cost parameters (in
percentage) are reported in Table 2.5

We first vary the cost of initial machine investment by reducing the machine cost
by 0%, 10%, 20% ... 100%. At each level of the initial machine cost, we examine one by
one if the changes of each other cost parameter could affect the economic feasibility of
AM production. We use the symbol of x to represent the case in which AM is infeasible
at the specific level of machine cost, regardless how other parameters are varied. The
symbol of o is used to represent the case in which AM may be economically feasible,
given the reduction of the machine cost and the necessary changes in other parameters.
For example, when the cost of AM machine is reduced by 60%, as shown in the
highlighted row of Table 2.5, the changes in the inventory holding cost solely does not
impact the feasibility of AM production. However, when the product lead time of AM is
reduced by 60%, or the penalty of product waiting time is increased by 20%, it would be
economically beneficial to use AM production.

It can be observed that (1) the AM machine cost is essential for the feasibility of
AM production. The metal-based machine cost of the considered implants needs to be
reduced by at least 60% to make AM production profitable. This may be possible
considering the trend exhibited in the cost of AM machines in the past two decades: the
price of some plastic-based AM machines has decreased 51% between 2001 and 2011
after adjusting for inflation [148]. It is not unlikely that metal-based AM machines will

follow a similar trend in the future as research and technology advance.

53



Table 2.5 Combined effect of fixed cost and other costs on AM center location for

ATR>3.5
Initial Inventory holding Lead time Lead time cost
Machine cost
Cost
Change Impact | Change | Impact | Change | Impact | Change
(o) (%) (o) (o)
0 X NA X NA 4 +270
-10 X NA X NA v +240
-20 X NA X NA v +210
-30 X NA X NA 4 +180
-40 X NA X NA 4 +130
-50 X NA X NA v +70
-60 X NA v -60 4 +20
-70 v 0 v 0 v 0
-80 v 0 v 0 v 0
-90 v 0 v 0 4 0
-100 v 0 v 0 v 0

x: Infeasible. No AM is located no matter the change given the decrease in fixed cost.
v': Feasible and the given decrease in fixed cost is enough to locate.
NA: Not Applicable.

(2) The lead time cost penalty coefficient, related to the urgency of the product, is another
important factor. Since the monetary value of a delayed procedure is uncertain and
complicated to quantify, we have assumed the lead time cost as a percentage of the
market price of the implants. For the health sectors, some medical procedures can be
delayed without drastic consequences, in which case, we assume a low penalty of 10%.
However, in other medical procedures, the delay of biomedical products may cause
escalated injury; delaying the process of recovery. When it comes to life-or-death
situations (e.g. 270% lead time penalty), AM may be a suitable tool for fast response
regardless of the high production and machine cost. (3) It can be also observed that the

impacts of AM inventory holding cost and product lead time tend to be secondary to the
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feasibility of AM production. This may be because of the facts that the current inventory
holding cost of AM is already at a reasonably low level, constituting only a relatively
small portion of the overall production cost; and that the AM lead time is already much
shorter as compared to its TM counterpart. Further improvements of these two

parameters may not be of highest priority.

2.6 Conclusions

In this paper, we have developed a stochastic cost model to quantify the supply-chain
level costs associated with the production of biomedical implants using Additive
Manufacturing (AM) technologies, and investigate the economic feasibility of using these
technologies to fabricate biomedical implants at the sites of hospitals within the state of
Mississippi. Different from the existing studies that mainly focus on the process-level
costs, such as machine, materials, labor, energy consumption, etc., our model mainly
focused on modeling system-level costs such as inventory, transportation, etc. We also
factor in the effects of product lead/waiting time on the overall transportation costs and
account for the stochastic nature of product demands, resulting in a two-stage stochastic
programming model. The developed cost model was then used to determine the number
of AM facilities to be initiated and volume of product flow between manufacturing
facilities and hospitals. Note that such a model is NP-hard and very expensive to solve.
We develop a tailored SAA algorithm to efficiently obtain solutions. The resulting model
and algorithm are applied to a real-world case study that focuses on investigating using
AM for the on-demand production of biomedical implants for hospitals in the state of

Mississippi.
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This study mainly focused on the use of biomedical implants in the implants
and hospitals that can perform similar procedures in the neighboring states.
However, the proposed mathematical decision model can be applied to a
larger supply chain network, such as the southeast region or the entire country
of US, and account for other types of products, as long as the corresponding
demand and supply data are collected. The solutions of the larger scale cost
model (i.e., the locations of AM facilities) may still be obtained using the
Sample Average Approximation algorithm by virtue of its scaling property.
The model and algorithm proposed in this paper may be used as an initial
analysis tool for decision makers to understand the supply chain cost
parameters involved in the adoption of AM technologies for the purpose of
infrastructure designing and planning. Once AM is identified to be feasible for
production, a business case study may be followed up for a more thorough

investigation.
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Our analysis indeed recommended an AM facility with high capacity within
the state of Mississippi when the demand is high. In other words, this facility
can house multiple AM machines to satisfy the demands. Note that, in this
study, we focus on identifying possible opportunities of establishing AM
facilities in the state of Mississippi only. The transportation costs within the
state may not be high. As a result, our analysis indicates that such a
centralized AM supply chain layout may be more beneficial than having
multiple AM facilities over the state of Mississippi, which will require much
higher overhead costs. However, for a larger supply chain network (e.g.,
national supply chain network), it may be more profitable to establish multiple

AM facilities to reduce the costs of transportation overall the country.

Our study suggested a harmonious implementation of AM and TM
production, given the current state of AM and TM technologies. Demands of
biomedical implants may be filled using both AM and TM facilities
depending on the required product lead time, locations of patients, capacity of
the AM facilities, and other factors. This scenario may be subject to changes

when the cost parameters vary.
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We have identified the conditions and cost parameters that have significant
impact on the economic feasibility of AM. A key cost parameter is the ratio
between unit production costs of AM and TM (ATR), including material,
labor, energy consumption, pre- and post-processing costs, etc. When ATR <
3.5, hospitals would benefit from the use of AM technologies to fabricate
biomedical implants, instead of ordering products from TM suppliers out of
the region. Even though it may be more beneficial to use TM suppliers when
ATR > 3.5, several cost parameters may still change the economic feasibility.
For instance, our studies indicate that when the machine cost is reduced by
60%, the AM may be feasible even when ATR > 3.5. Cheaper AM machines
may be possible considering the decreasing trend in the price of AM machines

during the past decade.

Another key parameter is the urgency of the product. When a biomedical
implant is needed in a short time window (e.g., in a life-or-death situation),
TM suppliers may not have the parts with specific features (e.g., dimensions,
shapes, etc.) in stock, and may require an additional lengthy customization
process. In this case, AM may be a viable option because of the short response

time and the capability of mass customization, irrespective of the high cost.
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An advantageous feature of AM production is the capability of producing
parts of complex geometries, which either may not be possible to fabricate
using TM or requires multiple TM processing steps. Our model does not
explicitly characterize the complexity of parts to be fabricated. However, the
effect of part complexity is inexplicitly captured by the product lead time.
Note that the production time needed by AM is generally insensitive to the
complexity and shapes of parts by virtue of its layer-by-layer nature of
fabrication. On the other hand, it may require a sequence of processes to
fabricate a complex part using TM, if not impossible, and thus leads to much
longer production time. Our study shows that the difference between the
product lead times of AM and TM production could be a crucial parameter
that affects the economic feasibility of AM production because AM has
shorter lead time for complex parts even when post-treatment times are

included.
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Future work is needed to study the AM deployment approaches that can
ensure that the full economic benefits of AM are realized. Especially, when
the network of biomedical implants supply involves an area larger than the
state of Mississippi such as the southeastern region of the country or the entire
country of USA, such a study will guide decision makers on how centralized
or distributed such a deployment should be. Moreover, future work may be
needed to account for the cost analysis of assemblies. AM allows for the
production of multiple parts simultaneously in the same build, making it
possible to produce an entire product. TM often includes production of parts
at multiple locations, where an inventory of each part might be stored. The
parts are shipped to a facility where they are assembled into a product. AM
has the potential to replace some of these steps for some products, as this
process might allow for the production of the entire assembly. This would
reduce the need to maintain large inventories for each part of one product. It
also reduces the transportation of parts produced at varying locations and

reduces the need for just-in-time delivery.

60



CHAPTER III

DISTRIBUTED OR CENTRALIZED? HYBRID SUPPLY CHAIN CONFIGURATION
OF ADDITIVELY MANUFACTURED BIOMEDICAL IMPLANTS FOR

SOUTHEASTERN US STATES

3.1 Introduction

The affordability of medical care service is essential to the coverage and
performance of healthcare systems. According a recent Commonwealth Fund ranking,
Southern states in US (e.g., Mississippi, Louisiana, Oklahoma, and Arkansas) have
lowest coverage and service quality in the nation [71]. A major issue is the high costs
associated with medical care. There is an urgent need to provide affordable
healthcare service while maintaining or even improving the service quality. The
technology of Additive Manufacturing provides a potential solution in terms of bringing
down the costs of biomedical implants while ensuring implant quality based on
customized needs. The use of additive manufacturing (AM) in the fabrication of medical
devices has been gaining popularity in the medical technology industry. In 2012, about
16.4% of the total system-related revenue for the AM market was realized from medical
applications [160]. (1) First, AM, unlike conventional manufacturing, provides a high
level of customization which makes the technology very suitable for custom-fitting
products to individual patients and enhances an economically efficient delivery of high-

quality personalized healthcare products. Customized biomedical implants can possess
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complex features which are difficult to machine using conventional, subtractive methods.
Singare et al. [142] has shown the superior functionality as well as the aesthetical appeal
of AM biomedical implants compared to conventional manufactured biomedical
products. (2) Second, the medical technology industry is well-funded and as such may
provide for resources to invest in new AM technology initiatives. In 2012, the industry’s
estimated revenue, expected annual growth and 15-year total shareholder return (1998—
2012) was about USD121.6 billion, 5.4 %, and 7.8%, respectively [49]. The 15-year total
shareholder return statistic surpasses Standard & Poor 500’s average of 5.2%. (3) Last
but not least, there is a tremendous market of healthcare providers and consumers
distributed across a broad geographic and population base, who need such medical
devices as surgical implants, hearing aids, dental crowns, and more. Custom implants
produced using AM technology have been used for a variety of applications including
skull ([142], [158], [37], [141]), knee joint ([59]), elbow ([151]), and hip joint ([116]).
These devices possess a combination of relatively high value and small physical volume
which is suitable for the applications of AM.

A major driving factor contributing to the possible cost reduction of additively
manufactured biomedical implants is the promise of reduced logistic costs associated
with compressed supply chains. There is a consensus that the greatest disruption that
could emerge from widespread adoption AM technology would be restructured supply
chains ([120], [33]). The supply chain would be more local as the product will be
manufactured closer to the end customer. In particular, deploying AM facilities at
locations close to operational hospitals generally leads to faster response, and reduced

delivery costs [59]. However, the investment cost of establishing each facility has to be
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taken into consideration. The impact of AM technology on the supply chain management
is still unknown. Businesses need to understand such impacts to make supply chain
decisions pertaining to the enhancement of their expansion and maintenance of their
marketplace competitiveness.

One key decision that an AM provider will make is the capacity of AM to be
deployed and the configuration of deployment. In other words, how close should the
AM be located to the customers? One approach that has been suggested in literature is
centralized deployment ([60], [96]). Using a centralized approach, the AM facility is
centrally located to serve all the hospitals. The products are manufactured on-demand at a
central location and then delivered to the hospital that made the demand. A second
approach suggested is the distributed AM. In this case, an AM facility is located locally
to serve a hospital or group of hospitals in the same area. In the distributed AM approach,
the digital models of the medical devices can be distributed from a central database via
information network to the local AM facilities where the biomedical implants are
manufactured. This approach is recommended when the response time is critical and the
risk of inventory stock out is high [60]. It is also suitable for isolated systems such as the
space station in orbit or military equipment in battlefields where AM can be used to
produce spare parts on site and on demand. These approaches represent two extremes
of AM deployment spectrum. In reality, a more hybrid approach may be more
suitable. However, there is no study, to the best of our knowledge, providing a
quantitative method for analyzing the logistic costs associated with AM supply chain
with the goal of determining its optimum deployment configuration. In this paper, we

develop a continuous approximation cost model and implement an optimization
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algorithm that helps to determine the best AM deployment configuration to minimize the
total supply chain network cost for biomedical implants. A case study using hospital and
biomedical implant demand data from Southern US states has been investigated to prove
the concept of the proposed method and algorithm.

The rest of this paper is organized as follows: Section 3.2 reviews the existing
literature pertaining to the biomedical applications AM and cost analysis. The integrated
facility location and inventory policy model for additively manufactured bio-medical
implants Section 3.3 presents a mathematical optimization model based on continuous
approximation that quantifies the supply chain network cost of additively manufactured
bio-medical implants; Section 3.4 implements a two-phase approximation approach and a
two-stage solution approach that solves the model presented in Section 3.3 to locate AM
facilities and obtain their area of influence and raw material ordering amount. Section
3.5 applies the optimization model to the real-world case study of biomedical implants in
the hospitals in the southeastern region of USA; and Section 6 provides concluding

remarks and possible future work.

3.2 Literature review

We provide a literature review on the application of AM in the medical industry,

as well as approaches to supply chain cost analysis.

3.2.1 Biomedical applications of AM

There are many examples of AM use in medical applications. ‘Kablooe Design’,
an engineering firm that specializes in the creation of sophisticated medical devices has

used AM to create a less invasive device for the treatment of benign prostatic hyperplasia
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(BHP) [146]. Siemens has switched to AM technology for the production of customized
hearing aids at several of its factories. The technology has enabled the company to
localize the manufacture and distribution of end products, shorten the production time of
the customized devices by up to 80%, and significantly reduce labor cost [34]. Dental
labs have used AM to produce customized dental crowns for patients. Using scanned data
and dental software to design a CAD model of a patient’s crown, technicians can produce
up to 450 crowns and bridges per day compared with only 20 when using traditional
methods. In the US military, the standard procedures for making surgical equipment
available on the battlefield raise challenges in terms of time of delivery, quantity, cost
and matching supply with demand. Consequently, it has identified the use of AM within
its combat site surgical setting, and found that thousands of different surgical instrument
designs, customized instruments and sterile surgical kits stored on digital media or
remotely accessed via the Internet, could be printed and used in field surgical settings
[74]. AM technology only requires electrical power, raw material and digital design file
for military surgeons to be able to produce these devices in such a way that reduces the
required inventory and bottlenecks surrounding supply levels on the battlefield. AM has
also been used in customized visualization aids in preparation for surgical procedures on
kidney, liver, bones and various body cavities [108]. Sols uses AM to produce custom
insoles that help to reduce a patient’s foot pain and improve posture. The patient’s foot is
scanned using a smartphone app and uploaded to the company’s database from where it is
transferred to an AM machine for production. The technology has helped to streamline
the production process, replace the need for error prone human touch-points and create a
unique opportunity for mass-customization [123].
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3.2.2 Supply chain cost analysis - qualitative approaches

The literature on AM supply chain can be divided into two broad categories:
qualitative approaches to identify the factoring impacting of the supply chain of AM
products and quantitative approaches to model these impacts

Most works in the literature have focused on the qualitative approaches. For
example, Fisher [51] developed a framework for supply chain strategy by categorizing
products into two: functional products and innovative products. According to the author,
while the supply chain design for functional products with relatively predictable demand
should be mostly based on efficiency, that for innovative products like AM products
which require shorter lead times, high level of variety, flexibility and customization
should rely on responsiveness. According to Berman [21], AM favors on-demand and
small production batches and achieves customization by layer manufacturing instead of
modularization or postponement. By avoiding modularization as a means of attaining
mass customization, AM is able to reduce the need for supply chain integration and the
number of suppliers needed in the manufacturing process. Moreover, since there is no
more need to produce separate parts for assembly, costs related to assembly and
inspections are virtually eliminated. Cooke [33] suggested that contrary to traditional off-
shoring practices inherent in conventional manufacturing, AM requires a more regional
supply chain network which can fundamentally impact total cost through reduced
emissions, pipeline inventory and safety stock. However, for expensive raw materials
which are not locally available such as in the manufacture of bio-medical devices,
procurement and inventory decisions need to be made to ensure that the full benefits of
AM are realized. According to Reeves, AM will result in a shift from the production-
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distribution-retail model to a model where the retailer is substituted by the end customer
[121]. This is increasingly possible with the modern information and communication
technologies and web-based retail transactions. In such a model, rather than the major
transportation cost emanating from shipping the finished goods to the retailer, it will arise
from transporting raw materials to the AM sites since these sites could be strategically
scattered near customers in order to significantly decrease lead time. Holmstrom et al.
[60] proposed two different deployment methods to integrate AM technology in the
aircraft spare parts supply chain. The first approach called centralized AM uses capacity
to replace inventory holding. In this approach, AM machines are deployed in centralized
distribution centres to produce slow moving spare parts on demand. The authors found
that the advantage of using centralized AM comes from the aggregation of demand from
various regional service locations which ensures that the investment in AM capacity is
well utilized as the parts are produced in a centralized location. However, the
disadvantage is that the produced parts have to be shipped to distant service stations
thereby increasing both transportation cost and response time. The second approach is the
distributed or decentralized approach, in which AM technology is deployed at each
service location. While this approach leads to a substantial fixed investment cost in the
AM machines as well as personnel cost, it results in the drastic reduction in inventory
holding and transportation cost. Mellor, Hao, and Zhang [92] suggested decentralized
AM as a direct digital manufacturing (DDM) implementation approach that could reduce
transportation impact and support local community involvement in the supply chain. The
authors based their analysis on a qualitative normative structural model that includes
supply chain, operations, strategy and organization change. While the qualitative
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approaches have subjective views to analyzing the AM deployment configurations, they
do not provide numerical basis, on which this important long term decision should be

made.

3.2.3 Supply chain cost analysis - quantitative models

Among the very few studies that have taken a quantitative route in investigating
the impact of AM on supply chain, Khajavi et al. [70] extended the work of Holmstrom
et al. [60] where the authors evaluated the potential impact of AM improvements on the
configuration of spare parts supply chains of military aircraft parts. They used scenario
modeling method to analyze the impact of AM deployment configuration on supply chain
cost. A total of four scenarios arising from two AM deployment alternatives and two time
dimension are investigated. However, the scenario modeling proposed by the authors
does not include inventory decisions such as the reorder quantity of AM raw materials or
amount to keep in inventory. Similarly, Liu et al. [86] explored the potential of
introducing AM technology into the aircraft spare parts supply chain, and quantitatively
analyzed the impact on supply chain safety inventory, using a supply chain operation
reference (SCOR) model. They found that centralized AM is suitable for spare parts with
low average demand, longer manufacturing lead time and relatively high demand
fluctuations while distributed AM is recommended for parts with high average demand
and stable demand. Due to the on-demand capability of AM, the authors also found that
distributed AM is more beneficial than centralized AM for parts with very short
manufacturing lead time even if their demand is low and unpredictable. Chiu and Lin
[31] used simulation based approach to study the benefits of integrating design for AM

(DfAM) and design for supply chain (DfSC) in the production of personalized
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lampshades of a lamp manufacturing company. The authors found that AM improves
supply chain performance in terms of both lead time and total cost. In particular, their
simulation results in the case study show that lead time can be shortened by up to 35%,
while the total cost can be reduced by 10%, 6% and 3% for low, middle and high demand
fluctuation levels, respectively. However, the authors have neither integrated facility
location in their study nor considered the investment cost of AM machines in their cost
model. Moreover, they did not consider raw material inventory cost which could affect
supply chain decisions in situations where the raw materials used in AM were expensive.
More recently, Augustsson and Becevic [9] has studied the impact of AM on the spare
parts supply chain cost and customers service level of the automotive industry. Using a
case study of a heavy truck manufacturing company, this study finds that adopting AM
can reduce the lead time by up to 50% and increase profitability from reduced
transportation cost to 23.3%. The author used a simple linear cost model that includes
machine cost, labor cost and material cost to analyze the impact of AM on customer
service level and supply chain cost. Achillas et al. [ 1] utilized a multi-criteria decision aid
(MCDA) and data envelopment analysis (DEA) to study the inclusion of AM into the
production portfolio of an electronics manufacturer. The authors consider production
cost, lead time and quality from various manufacturing alternatives, and find that AM
provides an efficient manufacturing solution for small production volumes of plastic
housing units, with high demand fluctuations. Emelogu et al [45] developed a
mathematical model that helps to quantitatively analyze the economic feasibility of
integrating AM and TM in the supply chain network of biomedical implants. In this
paper, we assume that only AM is utilized in the fabrication of the biomedical implants
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and extend their work in two directions. We improved the optimization model to include
inventory decisions which we realize are necessary in the case of biomedical implants
with expensive raw materials. The authors applied their model to a case study of hospitals
in Mississippi State. However, in this paper, we propose a solution approach that solves

the problem for hospitals in the southeastern region of United States relatively faster.

3.24 Scalability issue of supply chain models

All the AM supply chain literature dedicated to quantitative methods uses linear
models to formulate the problem. However, these models do not provide realistic
solutions as the amount of data that can be added to the model is often limited. Increased
amount of data in discrete models often leads to model inaccuracy and increased
computational complexity. Continuous approximation (CA) approach can be used to
overcome this problem. CA requires less data to generate near approximate solution. This
approach defines decision variables in terms of continuous functions and in turn reduces
the complexity of the model. Newell [104] demonstrated the idea of applying continuum
techniques to finite-dimensional operational research problems. Blumenfeld and
Beckmann [24] developed an analytical framework for estimating the cost of distributing
freight from one origin to many destinations. This analysis used a continuous space
modeling approach, which requires only the spatial density of destinations and the
average and variance of demand. This approach allowed distribution costs to be
determined analytically in terms of a few easily measured parameters. Langevin et al [81]
presented an overview of continuous approximation models used for freight distribution
problems. The authors provided taxonomy of six classes to differentiate the problem and

a brief review of each paper is provided. Geoffrion [55] studied a continuous model for
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warehouse location in which warehouse serves demand that is distributed uniformly over
a plane. Erlenkotter [47] extended the work of Geoffrion [55] and Newell [104] where a
general optimal market area (GOMA) was used to determine the optimal area served by a
single production unit while demand was assumed to be distributed uniformly. A number
of refinements of the GOMA model were discussed by Rutten et al. [132] to determine
the optimal number of depots serving a set of uniformly distributed customers in a
particular area. An analytic method was developed by Burns et al. [27] that used the
spatial density of customers to minimize the transportation and inventory cost of freight.
This study analyzed and compared two distribution strategies: direct shipping and
peddling. Dasci and Verter [39] presented a framework that was based on the use of
continuous functions to represent spatial distributions of cost and customer demand.
However, their approach did not consider inventory works. This work was a
generalization of the work done by Geoffrion [55] and Erlenkotter [47] as well as an
extension of the CA model for the facility design problem proposed by Verter and Dincer
[155]. A CA framework developed by Murat et al. [101] presented a methodology where
the market demand was modeled as a continuous density function and the resulting
formulation was solved by means of calculus. This methodology prioritized the allocation
decisions rather than location decisions.

No study, to the best of the authors’ knowledge, has carried out a
quantitative investigation on AM deployment alternatives in the medical industry or
considered an integrated approach where AM facility location and inventory
allocation decisions are included in the problem. Moreover, this work is the first to

apply a continuous approximation model to an AM supply chain problem. The
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centralized and distributed approaches identified in literature belong to two opposite
extremes of the deployment spectrum, either of which may not be optimal. Our
continuous approximation deployment model presents a hybrid solution that is able to
determine the optimal number of AM facilities to establish, the hospitals each facility
serves and the amount of raw materials to order for on-demand manufacture of medical
implants so that the total network cost including investment, production, inventory and

transportation costs is minimized while maintaining a high customer service level.

3.3 Model formulation

In this section, we develop a mathematical model that solves the integrated
facility location and inventory policy model for additively manufactured bio-medical
implants. The logistics network that is represented by the mathematical model is a three
level distribution network where at level 2, central raw material warehouses (CRW)
that store the AM raw materials are established. At level 1 are the AM facilities where the
fabrication of AM products takes place, and at level zero end customers which in our case
are hospitals serving patients are situated. Note that an AM facility at level 1 could be
situated in a hospital or very close to a hospital, but from this facility the AM bio-medical
implants are supplied to other hospitals.

Let us consider a continuous two dimensional space SC R? where an AM facility
can be built at any location x € S with a fixed operating cost, F;. There are predefined
location of CRW’s and hospitals in x € S. The decision variables are the number of AM
facilities and ordering quantity for each CRW and AM facilities. But before developing
cost functions for this integrated facility location and inventory policy model, it is

important to make a number of assumptions about the overall network structure, level of
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customer demand, and inventory policies on the overall network. This integrated model is

a complex model and these assumptions simplify the model and help solve this model

comparatively easily. The assumptions made in this model are influenced by Ganeshan

[53], Teo and Shu [147], Dasci and Verter [39], and Tsao et al. [152]. The assumptions

are stated as follows:

Assumption 1: Each AM facility can serve multiple hospitals but the opposite is not
allowed. This type of network is termed as 'arborescence network'.

Assumption 2: Demand at each AM facility is a Poisson process as it is generated by the
demand originating from hospitals in its influential area.

Assumption 3: Demand per unit time for hospitals in cluster C; is independent and
identically distributed Poisson process with rate 6;.

Assumption 4: Each unit of product is analyzed separately and independently. Demand
for single unit of product is considered in this study.

Assumption 5: Lateral shipment of products among distribution centers and customer
demand points is not allowed in the model. All the shipments between distribution
centers to the customer demand points are via direct shipment.

Assumption 6: The location of CRW’s and hospitals is known beforehand.

Assumption 7: Euclidean distance measure is used to calculate the distance between an
AM facility and hospitals.

Assumption 8: The influence area of each AM facility is assumed to be circular.
Moreover, each AM facility is located at the center of the influence area.

Assumption 9: Capacity limitation of facilities is not considered at any of the network

levels.
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Assumption 10: CRW’s and AM facilities operate under Type-1 service policy.

Assumption 11: Continuous inventory review policy is maintained for both CRW and
AM facilities.

Assumption 12: Pipeline inventory cost is not considered.

Assumption 13: There is no reorder cost at the hospitals. The demand at the hospitals
gets passed over to the AM facilities on a per item basis.

We modeled all the cost functions of the logistics network based on the above
assumptions. Table 3.1 shows the notations and symbols used in the model. In continuous
space S, let y;(x) denote the discrete hospital location in cluster C; which is expressed as
a spatial density slow varying function and A4, (x) denote the influential area associated
with each AM facility in cluster C;. The customer demand at each point x € S can now be
expressed as a product of hospital density and demand at hospitals which can be
expressed as y;(x)6;(x), x € S. So, the expected demand per unit time experienced by

each AM facility v in cluster C; can be expressed as y;(x)8;(x)4,,(x), x € S.

S
Avi(x).

Simultaneously, the total number of AM facilities can be estimated by Nvi(x) =

A total of six cost components have been considered while modeling the logistics
network i.e. total AM facility opening cost, inbound transportation cost for AM
facility/outbound transportation cost for CRW’s, outbound transportation cost for AM
facility, average inventory cost for AM facilities, production cost at AM facilities, and
average inventory cost for CRW’s. All the cost functions in this section are modeled
using continuous approximation technique. This essentially means that the entire logistics

network can be expressed in terms of smooth continuous functions. We summarize the
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notations used in the cost function in Table 3.1. Section 3.3.1 details the steps for

calculating the cost components of the network and Section 3.3.2 presents the final

model.

Table 3.1 Acronyms and mathematical notations in the optimization model

Parameters | Explanation

0; Demand of product per unit time for hospitals in cluster C;

Ci Cluster i

E, Fixed opening cost for each AM facility

Vi Discrete hospital locations in cluster i

Cr Fixed transportation cost per inbound shipment

Cp Variable transportation cost per item for each inbound shipment

T Planning horizon

Cq Delivery cost per mile per item

K, Distance metric and shape constant for the service region

R, Reorder cost incurred by each AM facility

R, Reorder cost incurred by the CRW

h, AM facility inventory holding cost per item over T

h, CRW inventory holding cost per item over t

Ay, Service level at each AM facility

Uy Mean of lead time at each AM facility

o} Variance of lead time at each AM facility

)4 Production cost per unit product excluding labor cost

l Annual personnel salary

a, Service level at CRW

Up Mean of lead time at CRW

o} Variance of lead time at a CRW

Variables

Ay, Size of influence area associated with an AM facility in cluster
i

Qy, Ordering quantity for AM facility, v, in cluster i

Q, Ordering quantity for CRW

3.3.1 Total network cost function

We present, in more details, the six cost components that make up the total cost

function used to model the biomedical implant AM supply chain.
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3.3.1.1 Total AM facility cost
A fixed opening cost F, is incurred for opening and operating each AM facility, v.
To calculate the total AM facility cost, opening and operating cost of each AM facility,

v € V, has to be multiplied by total number of AM facilities, N, (x), and is given by

TAC(x) = F,N,,(x)

3.3.1.2 Inbound transportation cost for AM facility

The inbound transportation cost for AM facility and outbound transportation cost
for CRW is the same. Inbound transportation cost component can be divided up into two
parts i.e. fixed cost and variable cost. The fixed cost can be broken down into costs like
managing the trucks, drivers etc. The variable cost is the cost per item. Let Cr be the
fixed cost per inbound shipment, C,, be the variable cost per item for each inbound
shipment, and @, (x) be the ordering quantity for each AM facility, v, in cluster C;. The
transportation cost of a single inbound shipment to a single AM facility can be expressed
as

SC(x) = Cs+CpQy, (x)

Taking 7 as the length of the planning horizon, the total inbound transportation

cost can now be calculated as

Ty (x)0;(x)Ay; (x)

TYi(x)ei(x)Avi(x)

is viewed as the
Qvi(x)

TIAC(x) = SC(x) N, (x), where

expected number of inbound shipment to a single AM facility, v, in cluster C; during t.
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3.3.1.3 Outbound transportation cost for AM facility

Let C, be the delivery cost per mile per item and K, be a constant that depends on
the distance metric and the shape of the service region in S. Hence, the total outbound
transportation cost for AM facility can be expressed as

TOAC(x) = KyCaKy \Aucotri(2)6: () Ay (X)Ny, (x)
= CqKy /A,y TYi (%) 0;(x)S
Note that, K,/ Ay, (x) 1s the average distance from the AM facility v to a hospital in the

influence area, provided that the AM facility v is at the center of the influence area (see

[39)).

3.3.14 Average inventory cost for AM facility

Each inventory cost component consists of two costs, i.e. reorder cost and holding
cost. Let, R, denote the reorder cost incurred by each AM facility while ordering each
batch of raw materials that can be used to manufacture Q,, (x) units. Then, the total

reorder cost, for all the AM facilities over T can be defined as

7yi(x) 0i(x)Av; (%)
Qvi (x)

TRAC, (%) = Ny, (X)Ry (x)( )

To calculate the inventory holding cost, let u,, and 62 be the mean and variance of
lead time respectively and «a,, be the service level at each AM facility. Note that,
inventory holding cost itself consists of two unique costs, i.e. cycle inventory cost and
safety stock cost. Taking h,, as the single AM facility inventory holding cost per item

over T, cycle inventory cost can be calculated as

Qlii (x)
2

Cl(x) = h,
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Similarly, safety stock cost can be calculated by

S5(x) = hyzg,\/Var[Dy, 7]

where Var[D, ,r] is the variance of demand over the lead time. Now, Var[D,, ,r] can
also be reformulated as

Var[Dr, 7] = mvi()6;(x) Ay, (x) + 0 (r; () 6;(x) A, (x))*

Then, total average inventory cost for AM facilities’ can be illustrated by

TI, (x)= TRAC, (x)+ CI, (x) Ny, (x) + S5, (x) Ny, (x)

3.3.1.5 Production cost at AM facilities

One advantage of AM is that it facilitates on-demand production of personalized
medical implants at faster rate than traditional manufacturing. However, due to post
processing operations required in AM, especially in the case of delicate bio-medical
implants, significant lead time is required between when a hospital makes an order an
when it receives it. The raw materials for bio-medical applications are usually chosen
with care and are generally expensive. Moreover, AM machines are more sophisticated
than their TM counterparts and as such require a more advanced skill set for operating
them. Thus, the personnel/labor cost in AM is also significant in the operating cost of an
AM facility. We include these factors in calculating the total production cost at the
facilities. Let p be the production cost of each unit of product, cap be the capacity of each
machine, and [ be the labor cost per machine per year. Then the production cost for each

AM facility can be given by

77 (x)6;(x) A4, (x)
cap

TPC, (x) = 7y (%)6;(x) Ay (x) * p * Ny, (x) + * Lx Ny, (x).
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3.3.1.6 Average inventory cost for CRW

The inbound cost for the CRW’s is not considered in the model; instead this cost
in incorporated into the reorder cost. Let, R,, be the reorder cost incurred by each CRW
while ordering each batch of product with Q,,(x) unit equivalent of raw materials on it.

Then the reorder cost for each CRW over t can be expressed as

TR, (x) = R, (x) (W(g)#) , where ty(x)0(x)S is the total expected demand at the

CRW during 7. Now, to calculate the inventory holding cost at each CRW, let h,, be the
inventory holding cost per item during 7, u,, and 62 be the mean and variance of lead
time respectively, and a,, be the service level at each CRW. Hence, total inventory

holding cost for CRW can be expressed as

nx. nlti 0; vi
TH, = h, (—Q 2( L+ Z,, /var [Dnir]) + TR, where var|[D,, 7| = =k Vlé?(,;)(: z l(x)).

3.3.2 Final CA network cost model

The cost expression derived in Section 3.2.1 are in terms of each point x in the
service region SC R2. Each expression of the cost functions captures fine details of the
logistics network model. Based on the above cost functions we can now define our

logistics network as

Minimize
[ (TNC(x))dx = [ (TAC(x) + TIAC(x) + TOAC(x) + Tl,(x) +

TPC,(x) + THy(x)) 3.1)

subject to

Ny, (x).Ay,(x) =S (3.2)
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Qn(x) 20 (3.3)

Qv () 20 (3.4)
Ay (X) 20 (3.5)
Qn(x), @y () € Z* (3.6)

where @, (x), @y, (x) and A,, (x) are the decision variables. Constraints (3.2) are the area
coverage constraints which ensure that the entire service region is covered by the sum of
the distribution centers influence area. Constraints (3.3), Constraints (3.4), and
Constraints (3.5) are non-negativity constraints for decision variables @y, (x), @y, (x) and
Ay, (x). Constraints (3.6) are integer constraints.

To get any feasible solution of the optimization problem, all the decision variables
Qn(x), @y, (x) and A, (x) should be strictly greater than zero. So, adding Constraints
(3.3), Constraints (3.4), and Constraints (3.5) do not change the nature of the problem and
solution. If the value of the decision variables is zero, the objective function value
explodes and feasible solution cannot be obtained. So, adding these constraints in the

model is justifiable.

34 Solution methodology

We have investigated the southeastern states of USA, shown in Figure 3.1, as
potential test bed for the study. The logistics network that covers the hospitals and clinics
in the region with distribution shown in Figure 3.2 contains discrete data which cannot be
approximated and hence becomes extremely challenging to solve. To overcome this
challenge, a two phase approximation approach developed in Tsao et al. [152] is used.
This approximation approach is basically an extension of the work done by Daganzo [38]
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where he demonstrated different ways to model complex logistics network using
continuous approximation approach.

With a close observation of the logistics network shown in Figure 3.2, it becomes
clear that the hospitals location is not uniformly distributed, which necessarily means that
hospital density does not follow a homogenous Poisson process. As a result, customer
demand at each point cannot be declared as y;(x) 8;(x), x€ S that is slow varying.
However, it can be stated that within a small sub-region, this function can be considered
as slow varying. In Phase 1 of the two phase approximation approach, the whole
distribution network is divided into smaller sub region such that the hospital density
within that sub-region satisfies the slow varying property of input parameters of the
model. Next, in Phase 2, the mathematical model is implemented over these sub-regions

to get the optimal value of @, @y, and A,,.

34.1 CRW service region and grid cover-couple approach

We have investigated the southeastern states of USA, shown in Figure 3.1, as
potential test bed for the study. Let us suppose that there is only one CRW in the service
region that we have investigated. The raw materials for manufacturing medical implants
are generally not available locally. In some cases, they have to be sourced from overseas
which makes storing them in one location or few regional central locations from where
they could be delivered to the AM facilities a viable option. The next job is to divide this
region in such a way that the slow varying property of the input functions hold. The grid
cover approach can be an effective way to achieve that. To do that, a mesh of equal sized
squares is created to cover the service region. The next step is to choose the feasible size

of the grid. A trial and error method is used to choose the size of the grid where the
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smallest level of detail is captured at the county level. Note that the county with the
highest variability in demand is chosen as the size of the grid. A density can be assigned

to each and every square grid as the hospital density in each county is known beforehand.

Figure 3.1  The AM supply chain covers the southeastern region of USA

e Hospital demandpoints

P
B

Figure 3.2  Distribution of hospitals and clinics by counties in the southeastern states
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The next step in the grid cover-couple approach is to create clusters within the
created square grids. Grids with similar densities can be clustered together to define areas
where the hospital density function is slow varying. To do so, a tolerance limit (¢) is
specified which measures the level of similarity among grids. More specifically, if two
grids density is at most € apart, these two grids can be labelled as similar and clustered
together. However, the choice of € solely depends on the hospital density pattern at the
logistics network under study. Hospital density considered in this study is fairly similar to
one another in most of the counties; hence € is taken to be very small. Using this € value,
the entire region is divided into smaller clusters. Within each of these clusters, the

hospital density is slow varying. Figure 3.3 illustrates this procedure.
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Figure 3.3(a): Grid cover for the southeastern region with one Figure 3.3(b): Coupling grids into clusters
CRW

Figure 3.3  Grid cover and coupling

3.4.2 AM facility influence area using continuous approximation approach

In this phase, the optimization model developed in Section 3.2 is used for

modeling the total logistics cost in each cluster. Continuous approximation approach is
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used to solve this optimization model and obtain the optimal size of the circular influence
area (A,,) for AM facility, and ordering quantity for AM facility (@y,) and CRW (Qy,)
respectively. By determining the size of the influence area for a particular cluster, one can
easily determine the total number of AM facilities needed to serve the entire cluster. A

sample influence area for an AM facility is shown in Figure 3.4.

/@ AM facility
" @ Hospital demand locations

Figure 3.4  Influence area for an AM facility

Note that, to develop the continuous approximation model, the dependence of all
continuous functions on parameter x can be ignored as each cluster within a given CRW
has slow varying property. For the remaining portion of this study, we use
Qu;» Ay, Qn, Vi, and 6; instead of @y, (x), Ay, (), Qn(x), ¥i(x), and 6;(x). Taking
Cy, C5, ..., Cy as the number of clusters within the service region under the CRW, the

logistics network model formulation shown in Equation (3.1) now becomes
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TNC(Ay,y QuysQn V=20 Fy - A Qv)(”‘ Y) C; +20y Ca(Ky JAy,Ty: 6;C)

Q‘l]l i

“ZiLy G Ry (e Tl byt 42

CiZay,
\/.uv)/i 0;A,; + 05 (vi6;4,,)* +

Vi

TYOPCAT LG Ry (L) (B0 4 7, [ B @7

subject to
Qn(x) =0 (3.8)
Qu;(x) 20 (3.9)
Ay, () =0 (3.10)
Qn(x), Qy,(x) € Z¥ (3.11)

343 Solution approach

There are three decision variables in the model; @, @y, and A,,. To solve the
problem, first we solve the problem for @,. Let us assume that, Q,, and 4,, is known.

Hence, we have

dZTNC(QTL\Avivai)_ZRn Z?Ll TY; 0;C;

>0
dQ3 Qo

As the hessian of the function of TNC is greater than zero, we can say that the
function is strictly convex with respect to Q,, and is positive definite. This means than we
can calculate the optimal value of Q,, by equating the gradient of 7NC function to zero.

This means that

N - 09:C:
0= /ZRnZizhl‘f)’l 6iCi (3.12)

Substituting the value of Q,, in Equation (3.7) we get
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TNC (A QunQn )=S0 Fy - A Qv)(”‘ Y) C; +20y Ca(Ky /Ay, Ty 6;C)

QTJL i

CiZay,
VR G Ry (B + B, iy Jum 0.y, + 02 (160 Ay)?

"i

+ 7yi0;pCit— i ‘lC +\/2h Ry I, ¥ 6,Ci + hy(Za, /ZN “ngi) (3.13)

Now, this model becomes a non-linear function with two unknown variables @, and A,,.

Note that in the last term of Equation (3.13), there is Qvi2 in the denominator which

makes the evaluation of convexity very challenging. To overcome this exacting nature of
the problem, a two stage solution approach developed in Tsao et al. [152] is proposed.

The detail of the two stage solution approach is provided below:
Stage 1: In stage 1 of the solution approach, we first eliminate the Qvi2 term from the last

term of Equation (3.13). This makes the problem linear and makes it easy to evaluate the

convexity property. So, Equation (3.13) can be rewritten as

TNCE(Ay, Qu =21 F, ‘+(cf+c Qﬂ(’“ T8y ¢ +3N ) Ca(Ky /Ay Ty 6,C)

Q‘Ui Cl

+¥V CiR, (’“ Ty v +3N

\/MLHA + 02 (yi0;4,)* +

”L

7¥;0;pC; +Ty’ LIC; +\/2h Ry XMy mvi 60,Ci + hy(Zg, f M1 tny: 6;C) (3.14)

Note that, the optimal solution to TNC*(A,,, Qy,) is the initial solution used in stage 2. To

solve Equation (3.14), let us assume that A, is given and so the hessian of
TNCE(A,,, Qy,) with respect to A, is given by

d?TNCP(Qu\Av,) _ 2(Cf+Ry) Ty; 0iC;
dez Q3

>0,i=12,..,N
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Since TNCE (Ay,, Qy,) is also a convex function of Q,,, the estimated value of Q,’fl. can be

obtained by

dTNCE (Qy;\4y,)

=0
dQvi

Hence, estimated value of @, is

24y (Cf-l-Rv) TY; 6

QviE(Avi):\/ — : (3.15)

Substituting the value of Q,,,” into Equation (3.14), we get

Cl
TNCE(A)= Tt Fo i+ 21 Gty 0,6 DI Calo Aty B.C)

A TV‘B‘ZC +

JumeA + 02 (i0:Ay,)? +TVi0,pCi+

vi

2hy,(Cr+Ry)TY; 0}
\/Zhan YLy v 6iC +hn(Zan1/ L1 Vi 60;,CH+RI, + C;.

Now, Algorithm 1 determines the optimal estimated values for QviE and AviE . Algorithm

3.1 is illustrated in detail below:
Algorithm 3.1

d?TNCE (Ar )

Step 1: verifying > 0, local minimum points are determined by solving for

’"i

dTNCE (Avi)

=0
dAy,

Step 2: Choose the local minimum point that gives the smallest value of TNCE (Avi).
Step 3: Determine the estimated value of @, by Equation (3.15)

Step 4: Adjust Q,’fi, i = 1~N and get the nearest integer values.
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Stage 2: In Stage 2, a search-based algorithm is used to solve the original problem,

starting with the initial estimated solution, in which we found in Algorithm 3.1. It is
assumed that the optimal solution of TNCE (Avi, Qvi) is very close to the optimal
solution of TNC(Ay,, Qy,) since Equation (3.13) is similar to Equation (3.13) except for

the safety stock term. This ensures that by applying Algorithm 3.2 we can efficiently find
the optimal solution.

Algorithm 3.2

Step 1: Let Q{,'izl = Qy,, find the value of A{:l to minimize TNC (A, |Q5,) and compute
TNC (A3, Qy,) by Equation (3.13).

Step 2: Let Q,{H = Q{,'l, + 1, find the value of A{,;tho minimize TNC (A},JQ{,;LI) and
compute TNC (A{:l, ,{jl) by Equation (3.12).

Step 3: If TNC(A{;:A, {,:rl) < TNC(A{;L,, Q,fi), then let Qii = Q,{;fl and go to Step 2;
otherwise, go to Step 4.

Step 4: Let Q{,';Ll = Q,{i — 1, find the value of A{:lto minimize TNC (A,l,l. |Q,{;'1) and
compute TNC (A{,jl, {,lﬂ) by Equation (3.13).

Step 5: If TNC(A,];?'l, ,],:'1) < TNC(A{,i, Qii), then let Qii = 11;1+1 and go to Step 4;
otherwise, go to Step 6.

Step 6: Compute Qj, by Equation (3.12) and adjust Qj, to get the nearest integer value.
Step 7: Let TNC(Af,i, Q,ﬁi, Q’{l) = TNC(A,J;l,, Q{,'i, Qpn)- The optimal solution is

(Av; Qv Qu)-
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3.5  Numerical study

We apply the proposed network cost model, as described by Section 3.3, and the
CA-based solution approach discussed in Section 3.3 to a real-world case study, in which
we investigate the optimal deployment configuration of AM facilities and the raw
material inventory policy of the CRW’s and AM facilities. Twelve states in the
southeastern region of USA which include Alabama (AL), Arkansas (AR), Florida (FL),
Georgia (GA), Kentucky (KY), Louisiana (LA), Mississippi (MS), North Carolina (NC),
South Carolina (SC), Tennessee (TN), Virginia (VA), and West Virginia (WV) are
adopted as test bed in this study..

In particular, we conduct a series of numerical studies to determine where AM
facilities for the fabrication of medical implants should be located to serve the hospitals
and clinics in this region at the minimum cost, and identify the cost parameters that may
pose significant impacts on this decision.

(1) One of the cost parameters to be considered is the unit transportation cost or
delivery cost per mile per item, C,. It is expected that if this cost is high, AM facilities
should be sited closer to the hospitals to reduce the total transportation cost.

(2) The initial investment cost of AM, mainly consisting of the cost of AM
machines, constitutes a significant part of the total network cost. A high fixed cost means
that less number of AM facilities should be opened to curtail the total fixed cost. This
means that the manufacturing sites will be located further from the hospitals and results
in higher transportation cost. We investigate how these types of conflicts impact the
location decisions and total supply chain network cost. (3) Reorder cost and inventory
holding cost are other cost parameters that can affect the reorder frequency and total
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inventory cost. We investigate how various values of these parameters affect the AM
facility distribution and total network cost in the region.

(4) Personnel cost which contributes to the total production cost is another cost
parameter that affects how many AM facilities are located. This cost can be tied to the
automation level of AM machines where a high personnel cost is construed as a low level
automation level where one staff is able to operate only fewer machines. In another light,
it can be related to the level of availability of the skill sets required to operate AM
machines which are usually sophisticated. We expect that a high personnel cost will
discourage the location of many AM facilities.

(5) The demand level of bio-medical implants is a parameter that affects the
distribution of AM facilities. Due to the high cost of AM systems, it may not make
economic sense in commercial applications to locate AM facilities if there is not enough
demand to justify their utilization. It makes sense to visualize the demand of bio-medical
implants in the region increasing or decreasing in the future. An increasing aging
population will likely increase the demand for hip and knee implants as well as
cardiovascular stents. However, improvements in personal lifestyles and other treatment
alternatives may diminish the demand for procedures that require AM bio-medical
products. We investigate how various demand levels impact AM deployment decisions.

(6) Customer service level impacts any supply chain network cost. A high service
level means increased responsiveness by the business which may be achieved by keeping
lots of inventory to ensure there is no stock out or locating AM facilities very close to the

customer. Any of these approaches results in a high supply chain cost. We conduct

90



experiments to study how different service levels affect the total network cost and the
location of AM facilities.

(7) The last but not the least of this study compares the benefits of our novel AM
deployment model with other approaches in literature. The closest quantitative
approaches of AM supply chain to our method consider centralized and distributed
deployment which we understand to be at two ends of the deployment spectrum. Our
opinion is that the best deployment approach lies between these two extremes which our
model is able to determine. We investigate the status quo savings in total network cost
when our model is used to select the best AM facility distributions in the southeastern
region vis-a-vis the approaches in literature. Furthermore, we study what happens to the

savings in various future scenarios of cost parameters.

3.5.1 Data description

We focus on four biomedical implants, which are known to have been
manufactures using AM: hip and knee joint implants, dental braces, and vessel stents.
We collected data from major hospitals in the southeastern region, as well as the nearby
clinics, about the use of the four biomedical implants. We confirm that for each state, the
average demand matches with the estimate derived by multiplying the nationwide
demand of the implants by the proportion of the state’s-USA population, published by the
Centers for Disease Control and Prevention. We find that both the demand density for the
products and hospital density are unique for each state and are slow varying, necessary
conditions that justify the use of the CA model. Since the inventory at the CRW’s and
AM facilities are mainly at the raw material level, we derive an equivalent amount for the

raw materials used in producing these four products by consolidating them into an
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aggregate unit. We use the ratio 0.4:0.4: 0.12: 0.08 for weight of AM raw materials used
to produce a unit hip implant, knee implant, dental implant and stent, respectively. This
data is shown in Table 3.2.

In order to estimate the fixed investment cost of an AM facility, we assume that
the location cost mainly consists of the cost of AM machines. Consequently, we use the
prices of AM systems based on the quotation of Selective Laser Melting (SLM) systems
in 2015. We choose the SLM system because of its widely documented use for the
fabrication of bio-medical implants. The build time for each part is estimated using the
relative volume of parts using SLM state-of-the-art machines for year 2015. We take the
build time and post processing time into consideration and set the lead time to two weeks.
For example, depending on the original equipment manufacturer, machine dimensions,
effective build volume of the machine and its operational build speed, the market price of
an SLM system used for the production of biomedical implants ranged from USD
400,000 to USD 1,000,000 in 2015. We obtained this data from quotations received by
the Department of Mechanical Engineering of the Mississippi State University on the
price of SLM machines. Such a range in prices from similar factors agree with the data
from Hopkinson and Dickens [64], Atzeni et al. [7], Bartolo [14], Lindemann et al. [83],
and Baumers et al. [17]. We assume an average price of $500,000 for one AM machine
which is reasonable for the price of the machine that can produce the identified bio-
medical implants. A similar example can be found in Bartolo [14], in which the authors
recorded an annual maintenance and investment cost of $110,320/year over 10 years for a
similar machine with a purchase price of $700,000. Using the equivalent annual cost

(EAC) model, we calculate the average annualized investment and maintenance cost.
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There is a wide range of depreciation methods in literature. The simplest method is the
straight line method which calculates the annual depreciation cost by dividing the
machine purchase price by its expected life. The more complex methods such as the
accelerated depreciation, equivalent annual cost (EAC) and remaining value percentage
(RVP) methods, use models that take into account factors like machine age, salvage
value, size, usage, manufacturer, condition, interest rate and region of deployment to
calculate annual depreciation cost. Jones and Smith [67] provided an overview and
historical perspective of the EAC. Cross and Perry [36], Hansen and Lee [57],
Unterschultz and Mumey [153], and Dumler et al. [43] presented a detailed discussion of
multiple variations of RVP models. We calculated the average annualized investment and
maintenance cost based on a life-span of ten years, resulting in an average annualized
investment and maintenance cost of $75,000 for a small capacity AM facility. It is worth
noting that for such a fast evolving technology like AM, a faster replacement policy may
be implemented (e.g., 5 year replacement), which will result in a higher annualized
investment. The annualized investment and maintenance cost for medium and large
capacity AM facilities could be $135,000 and $182,000, respectively. We take the cost
of the large capacity AM as the annual fixed cost since it is enough to meet the
production capacity requirement of each AM facility influence region demand.

We assume that the biomedical implants are delivered using FedEx, and the costs
of transportation are calculated using the online tool provided by FedEx Get Rates. The
fixed transportation cost for inbound shipment (Cy), variable transportation cost per item
(Cp) and delivery cost per item per mile (Cyq) are $80.00, $34.02 and $1.00, respectively.
We assume a planning horizon of one year and an annual raw material inventory holding
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cost per item at both AM facility and CRW of $40. The production cost per unit product
(p) excluding labor cost is taken as $1000. This cost is mainly the cost of raw material
and energy consumption which is usually high for biomedical implants. At $1000, the
production cost results in an ATR ratio much less than 3.0 which is required to encourage
investment in AM technology for biomedical implants [45]. The annual salary is $60,000
per staff which is commensurate with the skill of an engineering graduate. One employee
is able to operate three AM machines located at each facility which means an automation
level of 1:3. The fixed reorder cost for raw material at each AM facility and CRW are
$100 and $200, respectively. The mean lead time at each AM facility and CRW are one
week and two weeks, respectively while the variance is 0.5 at both AM facility and
CRW. We require a service level of at least 95% at both locations. We use a distance
metric and shape constant factor of 0.4, a value that Dasci and Verter [39] recommend for
use in circular areas of influence. Table 3.2 gives a summary of the data used in the base

case study of the hospitals and clinics in the southeastern part of USA.

94



Aioey NV e
uey) AAYD Ik paambar

[BLIJeW MBI QIO mun/§ 00Z :"Y¥ 00T ™Y 1500 12p102Y
[eLIdJeW MBI JO }S0D 1505
U0 e JSAIANUL 9,67 nun/g§ 0% Y 0% :*y  Supjoy L1oyusauy
o[iwytun/g 1§ :(PD) d1qelA 1509
1P IOLLIBD WOLJ PIIBWIISH nun/§ 20°7€$ (D) 91qeLre A (00°08$ (D) paxIg uonyvyiodsun.j
Ayryroey
NV Anoeded o31e[ 105
1S0J 9oUBU)UIBW PUB +q 1500
uonerdddap renuuy TedK/§ 1un/sInoy L000°781  Iudu4IS2aUl paX1,]
[eLI9)EW MBI o . P
WO 40:67°0: 1 1:71 JO Onex n . 000 ﬂ .Hosﬁwa 91832133y d ‘(1500
awn pring uo paseq jonpoid 61 C -SIUAIS 001 -S938Iq [eIUs( 10qv] Sulpnjoxa)
a1ega133E JO 1800 UOHONPOI Jun/sInoy €981 :syuedwr douy (,80¢C :swuerdwr dig 1500 uonyonposq
Ieok/syoom
¢S pue Moog\m%mﬁvﬂog
G ‘Aep/sIy(z uo paseq Jedk/syun 14! dno
1un/sInoy 1% :3onpoad 01832133y
jun/sInoy 70 :SIuAS
puewop [euoIjEU L.
pue owm pimq yueduwr 1Iun/sInoy .ST 0 :S908Iq [BIURQ
[ENPIAIPUL UO Paseq S} jrun/smoy L11 :sjuerdur oous
piing Jonpod 21832133y Jiun,/smoy o1 :syuepdur dig auly pying
Teak /syrun £000°000°T :$1U1S
Ieak/syrun .000°000°T :S90®Iq [BIUR
sjuedwi [earpaw 10§ sy Teak /s)run 2000°61L :swejdur souyy  M9p vivp puvmiop
PUBWISP [BUOKEU [ENUUY Teak/syun .000°Z¢€ syuepdur diyg uDIW [PUOPDN]
STETHTT) yun AAD Ae] WV

sonjeA 1930wered ul pasn vleq

¢ 9lqel

95



(9107) 'Te 10 n3o[oWy WOl PIAANNY ,

eiep Jeydsoy
pue BJEp pUBWIAP
UBdW [BUOIIEU UO PIseq

Noam/
rendsoy/syrun

YTl

JAM COVET VA S6LS T INL “1S6°€ :DS-8TLE
DN SGSET SN *60L°T *VT -689€T AN
S8ET VD NIET T VI *pLY' T AV T69'T TV

‘o ‘omy
yun 4od puvwaq

€200°0 *AM “1€00°0
'VA “€200°0 :N.L -¥100°0 DS ‘61000 DN

9JB]S Yok Ul SuUoneso| L100°0 *SIN *T100°0 *VT :0€00°0 A *LT00°0 4

[eydsoy jo eleg  ofiui arenbs, VD 0100°0 YT “¥100°0 MV ‘€100°0 "1V “Dusuap pppdsoy
sauryoew NV ¢ d1erddo TedA

ued dAo[dwd dau  /Pokordwd/g 000°09$ 1 “Auvyvs jpuuosiag

. ()

mw 1 “1opnf

="7'591= "7 %S %S 1242] 2214408

S[eLIdJBW MBI
SULIOPIO UM oW} pea| skep G'0:(30) uUBLIBA © b  G0:(50) UBLIBA * ./ a ‘Qwmn-pvay

(ponunuod) 7'¢ 91qe].

96



3.5.2 Solution approach illustration

We present the results obtained with base cost parameters after applying
Algorithm 3.1 and Algorithm 3.2 of Section 3.3 to the network cost model developed in
Section 3.2. A total of 27 AM facilities is needed in the region for the fabrication of
medical implants, with Florida having the highest number of AM facilities established in
it and Arkansas, Mississippi and West Virginia having the least. The model tends to
establish more AM facilities if there are more hospitals and customers that need to be
served. Figure 3.5(a) shows the distribution of these AM facilities in the region while
Table 3.3 shows the size of their influence areas of the AM facilities and their order
quantities. The total network cost is USD 177,138,273 which is essentially an
aggregation of total inbound transportation cost for AM facility, total outbound
transportation cost for CRW, total average inventory holding cost of AM facilities and
CRW, and total production cost of AM facility. The contribution of these costs as a
percentage of the total AM supply chain cost for biomedical implants is shown in Figure
3.5(b). The production cost, making up 90.5% of the total network cost, is higher than
any other cost component due to the high cost of raw materials for implants, labor cost
and post-processing costs which may involve its own supply chain. Inventory cost,
constituting 1.1% of the total cost, represents the least cost component in AM supply
chain network for biomedical implants in the region. In the following subsections, we
investigate the impact of changes in model parameters on these cost components and

other supply chain decisions.

97



Table 3.3 AM supply chain decisions for the 12 states in the region

State Ay, Qy, No. of AM facilities
AL 27062 2250 2
AR 38496 2201 1
FL 12431 2419 5
GA 18018 2326 3
KY 24324 2268 2
LA 28429 2243 2
MS 35780 2210 1
NC 16907 2341 3
SC 19939 2305 2
TN 19032 2315 2
VA 16642 2344 3
WV 24230 2217 1
Qn 12590
TNC ($) 177,138,273
28% 5 5%
’ — 11%

= Fixedcost

® Transportation cost
® Inventory cost

® Production cost

5(a): Distribution of AM fadlities 5(b): Contribution of cost components to total network cost

Figure 3.5 Recommended distribution of AM facilities and resulting supply chain cost
in the region
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353 Parameters affecting the optimal decision

In this subsection, we will investigate how changing demand and cost parameters

affect the optimal influence area for each AM facility Ay, the ordering quantity for each
AM facility Q,,,, the ordering quantity for the CRW @, and the total network cost, TNC.

Tables 3.4 - 3.7 and Figures 3.6 - 3.8 illustrate the result of varying parameters in the

model and these results are summarized as follows:

3.5.3.1 Demand analysis

We conduct a set of experiments to investigate how the economic decisions will
be affected by various demand levels of medical implant. We take the current demand
data for medical implants at hospitals in southeastern USA as the medium/baseline
demand level, and consider demand level from -75% to 100% while keeping every other
parameter constant. A -75% change in demand signifies a 75% decrease in demand which
can be achieved by multiplying 8; by 0.25 in our model whereas a 100% change is an
increase in demand obtained by multiplying the parameter by 2.0. The solution from our
model gives the number of AM facilities to be established in each state of the region, as
well as the contribution of each cost component to the total network cost for each demand
level. We find that

(1) The demand level has a significant effect on the number of AM facilities
located in the region and the network cost components. At the current level
of demand, a total of 27 AM facilities need to be deployed in the region.

Florida has five AM facilities located in it which is higher than any other
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state’s whereas Arkansas, Mississippi and West Virginia have one each, the
least among all the states.

(2) When the demand level doubles the number of AM facilities deployed in the
region increases to 43, an increase of more than 59%. This results in a total
network cost increase of 98%. When the demand level reduces by 50%, only
18 AM facilities are required in the entire region, which represents a
decrease of 33%.

(3) The decrease in demand causes a 49% decrease in the total network cost.

When the demand for the biomedical implants increases, the number of AM
facilities established also increases due to more capacity being needed to satisfy the
demand. The result is an increase in the investment cost in AM machines which adds to
the total network cost. Moreover, both the production and transportation cost also
increase with increase in demand because more raw materials are bought and shipped
from one point to the other to manufacture implants needed to satisfy the additional
demand. Obviously, the production cost dominates every other cost component due to the
high cost of raw materials for medical implants, labor cost and energy consumption of
AM technology. However, the total inventory cost decreases when the demand increases.
As more implants are needed, the raw materials kept at both the AM facilities and CRW’s
are depleted fast thereby reducing inventory holding cost. These results are portrayed in

Figure 3.6.
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6(c): Deployment of AM facilities when demand 6(d): Deplovment of AM facilities when demand level
level decreasesby 50% increases by 100%

Figure 3.6  Impact of demand levels on supply chain network cost and AM deployment
configuration

3.5.3.2 Effect of delivery cost, C;

In order to measure the effect of changes in the delivery cost per mile per item,
(C4), on the supply chain decision, we vary the delivery cost per mile per item (Cy) from
$1 (base case) to $2, and finally to $3, while keeping all other parameters constant in our
model. At each level of the delivery cost per mile per item, we examine for each of the

12 states what impact a change in Cy4 has on Ay, Qy,, @, and TNC. We observe that
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(4) Both A,, (the influence area size of each AM facility in a given state) Q,,, (the
recommended order quantity at the AM facility) decrease, Q,, (the order
quantity at the CRW) remains the same and the total network cost increases
as C, increases. Specifically, when the delivery cost per mile per item
increases from $1 to $2, the average influence area of each AM facility
decreases by 36% which translates to an increase of 57% in the number of
AM facilities established.

(5) The average order quantity at the AM facilities decreases by 35% whereas

the total network cost increases by about 4%.

As C,4 increases, the model responds by locating AM facilities closer to customers
in an attempt to minimize the delivery distance covered. The resulting decrease in an AM
facility’s influence area implies that it attends to fewer customers which necessitates it to
reduce its ordering quantity. However, as the influence area reduces with increase in Cy,
more AM facilities need to be established to satisfy the customer demands of hospitals
within the service region. The additional cost from increased number of AM facilities
established outweighs any decrease in transportation cost accrued by locating the AM’s
closer to the customers, thus the increase in total network cost as €4 increases. Since
there is no change in demand level and the CRW still serves the same entire southeastern
region, its order quantity does not need to change, hence, @Q,, remains the same for all

values of C;. This result is shown in Table 3.4.
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Table 3.4 Effect of Cy

Cd = 1 Cd = 2 Cd = 3
No. of
No. of AM No. of AM
Ay, Qi facilities Ay, Qo AM - A Qo plities
facilities
27062 2250 2 17046 1444 4 13007 1126 5
38496 2201 1 24245 1392 3 18500 1084 3
12431 2419 5 7831 1622 9 5976 1267 12
18018 2326 3 11350 1524 6 8661 1189 7
24324 2268 2 15321 1463 3 11692 1141 4
28429 2243 2 17906 1436 3 13664 1119 4
35780 2210 1 22536 1402 3 17196 1092 3
16907 2341 3 10650 1539 6 8127 1201 7
19939 2305 2 12560 1502 3 9585 1172 4
19032 2315 2 11989 1512 4 9149 1180 5
16642 2344 3 10484 1543 5 8000 1204 6
24230 2217 1 19488 1399 2 14871 1109 2
Q. 12590 Q, 12590 Q, 12590
INC($) 177,138,273 INC 184,191,380 INC 190,099,534

3.5.33 Effect of ordering costs, R, and R,,

We measure the effect of changes in the ordering costs, (R,, and R,) on the decision
variables by varying their values in our models while keeping all other parameters
unchanged. We increase R, and R,, from their base values of $100 and $200 to $150 and
$250 respectively in the first experimental instance. In the second experimental instance,
the value of R, and R,, are further increased to $200 and $300, respectively. We observe
that

(6) Q,, (the recommended order quantity at the AM facility), Q,, (the order

quantity at the CRW) and TNC increase with increase in the reorder costs of
each AM facility and CRW whereas there is no significant effect on the

influence area, A4, . Specifically, in the second experimental instance, where
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R, and R, were increased by 100% and 50%, respectively, @, , @, and TNC

increase by 26%, 22% and 0.1%, respectively.

The result makes intuitive sense because if R, and R, increase, the CRW and AM
facilities will increase their respective ordering quantities to reduce ordering frequency,
and minimize their total ordering cost. This decision generally should not affect the size
of the influence area the AM facility controls, hence the number of AM facilities remain
the same for all ordering cost values. The 0.1% increase in TNC by a 100% and 50%
increase in R, and R,, implies that the ordering cost is not a major cost factor in the AM
supply chain decision. In other words, given an ordering cost, the model will choose an
ordering quantity for the Am facilities and CRW so that the net effect on the total supply

chain cost will be minimal. This result is shown in Table 3.5.

Table 3.5 Effect of R, and R,

R, = $100,R,, = $200 R, = 150,R, = $250 R, = $200,R, = $300
Ay, Qy, No. of AM Ay, Qu, No. of Ay, Q, No. of AM
facilities AM facilities
facilities
27062 2250 2 27072 2581 2 27079 2834 2
38496 2201 1 38511 2540 1 38521 2769 1
12431 2419 5 12434 2721 5 12438 3056 5
18018 2326 3 18023 2644 3 18028 2934 3
24324 2268 2 24332 2596 2 24338 2857 2
28429 2243 2 28439 2575 2 28446 2824 2
35780 2210 1 35794 2548 1 35803 2781 1
16907 2341 3 16912 2656 3 16916 2953 3
19939 2305 2 19945 2627 2 19950 2906 2
19032 2315 2 19037 2635 2 19042 2919 2
16642 2344 3 16647 2659 3 16651 2957 3
24230 2217 1 24230 2565 1 24230 2778 1
Qn 12590 Qn 14080 Qn 15420
INC (%) 177,138,273 TNC 177.242.781 TNC 177.379.843
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3.5.34 Effect of unit inventory holding costs, h,, and h,,

In the next experiment, we investigate whether increasing inventory holding cost of

AM facility, h,, and CRW, h;, has any effect on Ay, @y, @, and TNC. Initially, the value

of both h, and h,, are taken as $40. In second and third experimental instances, we
increase them to $60 and $80, respectively. We find that

(7) @y, and Q,, decrease with increase in inventory holding costs at the AM

facilities and CRW whereas TNC increases. However, there is no significant

effect on the size of the influence areas, 4, , and the deployment

configuration of the AM facilities. When the unit inventory holding cost
increase by 50% to $60, the order quantities at the AM facilities and CRW
reduce by 19% and 18%, respectively. The total network cost increases by
only 0.6%.

The rationale behind this is that, if inventory holding cost is high, both the CRW and
AM facilities tend to order less to ensure that they have less items to keep in inventory.
Holding less inventory will eventually result in less inventory holding cost. While the
models tries to maintain a balance between the unit inventory holding cost and the order
quantities, most of the time a slight mismatch is unavoidable. In a situation where the unit
holding cost is high, it results in a slight increase in total network cost, hence the 0.6%

increase in TNC. The result is shown in Table 3.6.
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Table 3.6 Effect of h, and h,,

h,= $40, h,, = $40 h,=$60, h,, = $60 h, = $80, h,, = $80
No. of
No. of AM No. of AM
Ay, Qv AM Ao Qi pheiliies 0 @0 pacilities
facilities
27062 2250 2 27082 1821 2 27095 1502 2
38496 2201 1 38527 1778 3 38548 1465 2
12431 2419 5 12438 1966 6 12443 1628 6
18018 2326 3 18029 1886 4 18037 1559 4
24324 2268 2 24341 1836 2 24352 1515 2
28429 2243 2 28450 1814 2 28464 1496 2
35780 2210 1 35809 1786 2 35828 1472 2
16907 2341 3 16918 1899 4 16925 1570 4
19939 2305 2 19952 1868 2 19961 1543 2
19032 2315 2 19044 1876 3 19052 1550 3
16642 2344 3 16652 1902 3 16659 1572 3
24230 2217 1 24230 1784 1 24230 1470 1
Q, 12590 Q, 10280 Q, 8900
INC($) 177,138,273 INC 178,215,731 INC 179,871,313
3.5.3.5 Effect of required customer service levels

We investigate what impact various service levels will have on the decision variables
and AM supply chain network cost. Initially, we assumed that demand at hospitals will be
satisfied 95% of the time, (i.e., a, = @, = 5%). We reduced the service level to 90% in
the first experimental instance and increased it to 99% in the second experimental
instance. We find that for the service levels considered,

(8) There is no significant change in the number of AM facilities located in the
region. However, there is a significant impact on the inventory cost, with
higher service levels attracting higher inventory cost. Specifically, when the
service level is increased from 95% to 99%, the total inventory cost increased

by 63%. This means a 0.47% increase in total network cost.
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(9) When the service level was reduced from 95% to 90%, total inventory cost
reduced by 29.2%. This translates to 0.15% reduction in the total network

cost.

We note that the increase in inventory cost and total network cost as service level
increases occurred despite that Q,, significantly reduced. We attribute the resulting high
cost to the fact that the AM facilities need to order more frequently to maintain high level
of service. ,, remains unchanged for all three experimental instances. Table 3.7 shows

the effect of changes in service levels on Ay, @, @, and TNC.

Table 3.7 Effect of a;, and a,

a,=10%, a, = 10% a,=5%, a, = 5% a,=1%, a, = 1%
No. of
. R R O R
facilities
27053 2618 2 27062 2250 2 27081 1872 2
38482 2601 2 38496 2201 3 38524 1820 2
12427 2664 6 12431 2419 6 12439 2051 6
18011 2641 4 18018 2326 4 18029 1953 4
24315 2624 2 24324 2268 2 24340 1891 2
28419 2616 2 28429 2243 2 28448 1864 2
35768 2604 2 35780 2210 2 35806 1830 2
16901 2645 4 16907 2341 4 16918 1967 4
19932 2635 2 19939 2305 2 19952 1930 2
19025 2638 3 19032 2315 3 19044 1940 3
16636 2646 3 16642 2344 3 16652 1971 3
24230 2587 1 24230 2217 1 24230 1827 1
Qn 12590 Qn 12590 Q, 12590
TNC 176,873,230 TNC 177,138,273 TNC 177,969,031
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3.5.3.6 Effect of fixed AM machine cost

The high cost of AM machines is usually one of the inhibiting factors that
discourage businesses from investing in AM technology. We conduct experiments to
investigate the impact of various initial AM investment cost levels on AM deployment in
the region. We vary F,. in our model while keeping other parameters constant. The result
shows that
(10) As the cost of AM machines reduces, the number of AM facilities increases

whereas at high fixed AM machine cost, few AM facilities are located.

Specifically, when the annualized fixed investment cost of AM machines of

USD 182,000 reduces by 50%, the number of AM facilities deployed in the

region increases by 37%. If the investment cost increases by 100%, the number

of AM facilities will decrease by 26%.

(11) Moreover, fixed investment cost of AM machines impacts the total network
cost. The total network cost decreases by 0.8% when the fixed investment cost
reduces 50% from USD 177.1 million , and increases by 1.2% when the fixed
investment cost doubles.

Having few AM facilities means that the manufacturing locations are further away
from the hospitals and CRW which results in a higher transportation cost whereas more
AM facilities brings manufacturing much closer to the customers and leads to a lower
transportation cost as shown in Figure 3.7(c). It is more likely that the price of AM
machines will decrease in future as research in the AM technology leads to further
improvements. Therefore, we show in Figure 3.7(b), the distribution of 37 AM facilities
which the model recommends when the fixed cost of AM machine reduces by 50%. The
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total inventory cost reduces as the fixed AM cost decreases. This means that establishing
more AM facilities significantly reduces the amount of inventory in the network by
ordering just the right amount of raw materials and producing only the number of
implants needed on-demand. This result goes to support the claim that AM facilitates lean
manufacturing concepts. We observe that the total production cost slightly increases as
the fixed investment cost in AM decreases. Since the same amount of raw material is
utilized due to the fact that demand of the implants does not change, the slight increase in
the production cost comes from the increased number of personnel required to operate the
additional AM facilities located. Overall, the total network cost decreases as the fixed
investment cost in AM decreases. This result means that as AM technology improves and
the cost of AM machines decreases, the economic advantage from reduced transportation
and inventory cost when bio-medical implant AM facilities are established much closer to

the hospitals outweigh the personnel cost of operating the machines.
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Figure 3.7  Effect of fixed AM machine cost on supply chain network cost and AM
deployment configuration

3.5.3.7 Effect of annual personnel salary

We investigate the impact of changes in the cost of labor on the deployment of AM
facilities and total network cost. Annual labor cost can take a positive or negative
direction in future. It can increase as a result of change in national policies that increase
the minimum wage or due to scarcity of the required manpower to operate the

sophisticated AM machines. Apart from the possibility that more well-trained personnel
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can be available in the future to give businesses a negotiating power for reduced

personnel salary, we can also view a decrease in labor cost from high machine

automation level that can arise due to future improvements in AM technology. In high

automation, one employee can operate more machines thereby requiring few personnel in

the AM workforce. We simulate changes in the annual salary by varying the value of

[=$60,000 which contributes to the total production cost in the model. We find that

(12) An increase in the annual personnel cost results in increase in total inventory
cost, increase in total transportation cost, slight increase in production cost and
a decrease in total fixed AM investment cost. Overall, an increase in personnel
salary leads to a higher total supply chain cost while a decrease results in
higher total network cost. When the annual personnel salary decreases by
50% from USD 60,000 to USD 30,000, T7NC decreases by 0.3% from USD 177.1
million. If personnel salary increases by 100%, TNC increases by 0.46%.

(13) Moreover, decreasing the personnel salary by 50% leads to a 7.4% increase in
the number of AM facilities established while a 100% increase results in 11.1%

decrease in the number of AM facilities.

This can be seen in Figure 3.8(a). The decrease in total fixed AM cost from high
personnel cost is due to locating few AM facilities. The raw materials and medical
implants have to travel a longer distance in the network. Besides, since one AM facility
has to attend to more hospitals, it needs to keep more raw materials in safety stock to
hedge against demand uncertainties. This explains the concomitant high transportation
cost and inventory cost. According to Emelogu et al. [45], a low production cost in AM

of biomedical implants results in a low ATR, which encourages investment in AM
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technology. Therefore, it is not surprising that the model suggests locating more AM

facilities as the personnel cost decreases. Figure 3.8(c) and Figure 3.8(d) show how the

AM facilities are distributed in low ($30,000) and high ($120,000) annual personnel

salaries, respectively.

Numberof AM centers establshed

Effect of personnel salary on the deployment of
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329
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8(c): Deployment of AM facilities wﬁen labor cost

Figure 3.8
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Effect of personnel cost on supply chain network cost and AM deployment
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3.54 Cost advantage of the CA model

We now conduct experiments to investigate the cost savings achieved from using
our CA model to determine the optimal AM deployment configuration versus other
approaches. We call the optimum configuration chosen by our CA model CONFIGOPT.
We describe six scenarios and three possible configurations that have been suggested in
literature. The six scenarios include the present baseline values of the model parameters
and five other conditions that can arise in future due to changes in the model parameters.
The three possible configurations indicate how distributed or centralized the AM
facilities are deployed. We describe the configurations as follows:

CONFIG 1 Core centralized: One AM facility is located to serve the entire 12
states. This can be viewed as extreme centralization in which minimal investment is made
on AM machine procurement. Despite its huge saving in total fixed investment cost and
personnel cost, this configuration, which Khajavi et al. [70] recommends for AM
deployment in present supply chain of military jet spare parts, may not be optimal. This
is due to the resulting high total transportation and inventory costs.

CONFIG 2 Core distributed: This configuration, which can be conceived as
extreme distributed deployment has an AM facility established in every county in every
state in the southeastern region. While this configuration brings the manufacturing
locations very close to the hospitals thereby having a high propensity of reducing the trio
of lead time cost, inventory cost and transportation cost, the enormous capital required to
invest in each AM machine may make it too expensive to be worthwhile. We investigate
how this configuration measures with that identified by the CA model in the six

scenarios.
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CONFIG 3: One AM facility is located at each state in the region to serve all the
hospitals in that state. This results in 12 AM facilities for the southeastern region of USA.
Although this configuration is somewhere between the two extremes described above, it
may still be a matter of luck for it to be optimal.

We describe the scenarios that we use to investigate the performance of our CA
model. Scenario SP represents the status quo base values of the bio-medical implant
supply chain cost parameters. Scenarios S1-S5, described below, are five other situations
which can arise in future due to changes in the supply chain cost parameters.

SP: This is the present scenario where the annual personnel salary, [ = $60,000; annual
fixed cost of AM investment, F. = $182,000; and the demand of the biomedical implants
in the southeastern region is as presented in Table 3.2.

S1: In this scenario, we model a future when the personnel salary decreases by 50%, the
fixed cost of AM machine reduces by 50% and the demand for bio-medical implants in
the region remains constant.

S2: This scenario models a future when the personnel salary, AM machine fixed cost, and
demand level all decrease by 50%.

S3: In this scenario, both the personnel cost and fixed cost of AM machine decrease by
50% while the demand for the implants increases by 100%.

S4: Here, both the personnel salary and demand increase by 100% while the cost of AM
machine investment decreases by 50%.

S5: In this scenario, we model a future when both the fixed cost of AM machine and

demand decrease by 50% whereas the annual personnel salary increases by 100%.
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The results from our experiments show that CONFIGOPT, the AM deployment
configuration decision provided by the CA model outperforms any other option for all the
scenarios considered. As shown in Figure 3.9, the closest option to it is CONFIG3 which
involves locating one AM facility in each to make total of 12 AM facilities in the region
while the worst option is CONFIG2, locating an AM facility in every county. Given the
current cost parameters in the study, 59%, 7% and 6% of the total network cost is saved if
CONFIGOPT is used instead of CONFIG2, CONFIG1, and CONFIG3, respectively. This
is shown in Figure 3.10. Moreover, CONFIGOPT saves up to 14% of the total cost
incurred from using CONFIG1. This occurs in scenario S3 where there is high demand
level, low AM investment cost and low personnel cost. These are conditions that favor
distributed AM deployment more than centralized option, and thus, justify why
CONFIG3 performs poorly here and makes CONFIGOPT to have a significant saving of
up to 14% over it. The least saving is achieved in S5 where 4% of the total is saved. This
scenario contains two of the factors that encourage centralized AM deployment of AM:
low demand level and high personnel cost. Thus, CONFIG1 performs better in S5 than in
any other s scenario thereby making CONFIGOPT to have the least saving against it in
this scenario.

When CONFIGOPT is used as the deployment configuration instead of
CONFIG2, the highest saving of 71% occurs in scenario S5 while the lowest saving of
25% 1is achieved in S3. In S3 there is high demand level, low AM investment cost and
low personnel cost all of which are factors that encourage the distributed deployment of
AM factors. Hence, CONFIG?2 performs its best in that scenario thereby making the cost
saving from CONFIGOPT lower than in any other scenario. Comparing CONFIGOPT
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with CONFIG3, the most significant saving occurs in scenarios S1, S3, AND S4 where
7% of the total network cost from using CONFIG3 is saved. The least saving is in

scenario S5 where only 1% of the cost is saved.

Comparison of total supply chain cost from various AM deployment
configurations

6.0E+08
5.0E+08 B CONFIGOPT
W CONFIG3
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Figure 3.9  Comparing CONFIGOPT with other deployment configurations

Cost savings from using optimized AM deployment configuration from CA
model
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Figure 3.10 Cost savings from CONFIGOPT as a percentage of total network cost
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Figure 3.11 shows CONFIGOPT, the optimal distribution of the AM facilities in

the region as determined by our CA model to achieve the cost savings described above

while Table 3.8 ranks the scenarios according to the number of AM facilities deployed in

them.
Table 3.8 Ranking the Scenarios in a non-decreasing order of number of AM facility
Scenario  Personnel Fixed AM Demand Number of Rank
salary cost AM facilities
S5 Increased Decreased Decreased 19 1
S2 Decreased  Decreased Decreased 27 2
SP Constant Constant Constant 27 3
S1 Decreased  Decreased Constant 43 4
S4 Increased Decreased Increased 47 5
S3 Decreased  Decreased Increased 68 6

We observe that the demand level of the bio-medical implants is the major factor
that drives the number of AM facilities in the region, and thus how distributed the
deployment should be for the simulated scenarios. The higher the demand, the more AM
facilities to be established and the more distributed the network should be. Conversely,
the lower the demand the less number of AM facilities and the less distributed. This
corroborates the finding by Holmstrom et al. [60], Khajavi et al. [70] and Emelogu et al.
[45]. Holmstrom et al. [60] and Khajavi et al. [70] find that enough demand for military
jet spare parts at the service locations is required for distributed AM to be considered.
Emelogu et al. [45] find that at higher demand levels of bio-medical implants, more AM
facilities are established in a hybrid AM/TM supply chain. Given the present values of

the supply chain cost parameters (Scenario SP), 27 AM facilities are located in the
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southeastern region with the states of Arkansas, Mississippi and West Virginia having the
minimum number of one AM facility each, and the state of Florida having the maximum
number of five AM facilities. The number of AM facilities deployed more than doubles
to 68 in Scenario S3 where the demand is increased and both annual personnel salary and
fixed AM machine investment cost decrease. In this case, the number of AM facilities
located in West Virginia, Mississippi, Arkansas, and Florida increases to 2, 3,4 and 13,
respectively. We notice that the same number of AM facilities and configuration in SP is
also used in Scenario S2 despite that the demand decreased. This is because both the
annual personnel salary and the fixed AM investment cost decreased in S2 thereby
compensating for the decrease in demand and making 27 AM facilities to be established

as well.
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11(e) Scenario S4 11(f) Scenario S5

Figure 3.11 Optimal AM facility deployment in the southeastern USA for various
scenarios

3.6 Conclusions

In this paper, we have developed a continuous approximation cost model to quantify
the supply-chain level costs associated with the production of biomedical implants using

Additive Manufacturing (AM) technologies, and developed the optimal deployment
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configuration of AM sites in the southeastern region of the United States for efficient and

responsive fabrication of biomedical implants for use in hospitals and clinics in the

region. Different from the existing studies that mainly focus on choosing between two
extreme network configurations (one centralized location or many distributed locations)
our hybrid approach is able to consider other configurations that are between the two
ends of the spectrum where the optimal deployment decision usually lies. Unlike any
other model in literature, ours is a two-stage formulation able to incorporate inventory
decisions that inform the right amount of raw materials each location should order in the
deployment configuration determination process. Given that the raw materials for the
implants are expensive and not locally available, these inventory decisions are crucial and
should be able to achieve a trade-off between having a large amount of raw materials
which tie up capital and drives up cost but assure the on-demand promise of AM; and
having few inventory which reduces inventory cost but risks increasing the lead time of

AM and drastically reducing patient satisfaction.

(1) This study assumes that localized AM production of biomedical implants used in
hospitals in the southeastern region of USA is feasible, without taking into account
the demands of biomedical implants and hospitals that can perform similar
procedures in other regions. However, the proposed continuous approximation model
can be applied to a larger supply chain network that encompasses the entire country
or account for other types of products, as long as the requisite hospital density data
and demand for the remaining states or the information on other products are
collected. The solutions of the larger scale cost model (i.e., the locations of AM

facilities and order quantities) may only take a longer time to obtain using the

120



suggested algorithms by virtue of its scaling property. The model and algorithm
proposed in this paper may be used as an analysis tool for decision makers to simulate
and understand various network configuration options for AM deployment and
choose the option that best suits their organizational objectives in terms of efficiency
and responsiveness.

(2) We performed numerical experiments to analyze the effect of various network model
parameters on the AM deployment and supply chain cost. We find that the demand
level of the biomedical implants has the most significant effect on how many AM
facilities should be located in the region and how distributed the deployment should
be. Specifically, if other parameters are kept constant, doubling the demand, increases
the number of AM facilities by more than 59%, thereby making the network more
distributed, while the number reduces by up to 33% if the demand level is halved,
making the network less distributed.

(3) Other factors such as the price and maintenance cost of AM machines, the labor cost
of operating the machines and the unit transportation cost of an item per mile all
affect the total supply chain network cost and deployment configuration of AM
facilities. Reducing the fixed AM investment cost by 50% can result in an increase of
up to 37% in the number of AM facilities established and reduce the total network
cost by about $1.4 million or 0.8%.

(4) There is enormous cost saving in utilizing the proposed CA model to make the best
AM deployment decision instead of using the extreme AM configuration options in
literature. This cost saving advantage varies depending on the scenario of the supply

chain parameters considered. Specifically, given the present demand data and supply
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chain cost parameter values, we can achieve a saving of 7% of the total network cost
by using the CA model instead of locating only one central AM facility to serve the
entire region. The cost saving increases to 59% when compared with establishing an
AM facility in every county in the region. The CA model records a ground-breaking
saving of 71% of total network cost in a scenario where the demand of biomedical

implants decrease by 50% and annual personnel cost doubles.

Future work is needed to improve the algorithm so that applying it to a network
that covers the entire United States can yield a quick solution. We can modify the cost
model to include uncertainties in the supply of raw materials or production rate of the
AM machines to check what impact they will have on the AM deployment configuration

decisions.
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CHAPTER IV

AN ENHANCED SAMPLE AVERAGE APPROXIMATION METHOD

FOR STOCHASTIC OPTIMIZATION

4.1 Introduction

Solving a large scale stochastic optimization problem is extremely challenging
because of their inherent analytical complexities and high computational requirements
([73], [61], [140]). Sample Average Approximation (SAA) is a popular approach which
is frequently employed to solve large scale stochastic optimization problems. In this
method, the objective function value of the stochastic problem is unknown and
approximated using a sample average estimate derived from a random sample ([2], [23],
[30], [62], [125], [139]). SAA provides a straightforward framework which is amenable
to parallel implementation and variance reduction techniques. Moreover, it possesses
good convergence properties and well-developed statistical methods for validating
solutions and conducting error analysis.

SAA has been successfully utilized to serve a wide range of applications, some of
which include: reliability-based optimal design of engineering systems where the failure
probabilities of highway bridges are replaced by corresponding Monte Carlo sampling
estimates [126]; speech recognition optimization problem [28]; investment problem with
conditional value at risk (CVaR) constraints [25]; portfolio selection and blending

problems with chance-constraints [157]; stochastic knapsack problem to determine an
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optimum resource allocation strategy [73]; stochastic supply chain design problems with
extremely large number of scenarios [136], and many others. The most significant
challenge of using SAA confronted by the researchers in prior works is to choose the
sample size for the algorithm. This is a critical step since it highly impacts the
computational performance of the SAA algorithm. To address this challenge, a number of
studies are conducted to determine the best scheme for choosing the sample size of the
SAA algorithm. One stream of research focuses on keeping the sample size constant
throughout the optimization process (e.g., [136], [156], [103]) . The major drawback of
this approach is that it may lead to a bad sample path [61]. Another stream of research
focuses on variable sample approach in which a schedule of sample sizes is used to solve
the SAA problem (e.g., [125], [28], [61], [11], [40]). The general idea employed by the
authors in variable sample scheme is to start the early iteration of the optimization
algorithm with a small sample size and then gradually increase the sample size as the
algorithm progresses. Note that starting with a small sample size may save some
computational time; however, a large sample size eventually needs to be investigated to
obtain a solution that is close to the true solution [99]. Therefore, all the methods
discussed above may not perform well to solve stochastic discrete optimization problems.
Although there is a theoretical sample size that can be used to compute sample sizes for
discrete optimization problems (as shown in [73] and [61]), this estimate is too
conservative for practical applications.

To address this challenge, this paper proposes a methodological approach to
enhance the performance of the basic SAA by incorporating a dynamic clustering

strategy within the algorithmic framework. In basic SAA, a small number of scenarios
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are generated in each iteration and the objective function is evaluated iteratively until the
optimality gap falls below a certain threshold value. In our approach, a larger number of
scenarios are considered as an initial sample size (much larger than the one used in basic
SAA) and then clustering methods are employed to reduce this large sample size into
small number of clusters. We assume that the average of each cluster is the most
representative of all the samples in each cluster. We then represent those clusters as
scenarios and use them to solve the SAA problem. Unlike prior studies where the sample
size is either kept fixed or increased monotonically, our enhanced SAA approach
provides the flexibility to either increase or decrease the sample size based on the
computational performance obtained from previous iterations. This approach is then
experimentally validated in the context of a facility location problem ([FLP]) with
stochastic demand. We create different variants of the enhanced SAA algorithm (i.e.,
different clustering strategy, fixed clusters vs. dynamic clusters) and compare the
computational performance of those variants with the basic SAA algorithm. Finally, we
employ five different clustering techniques (e.g., K-means, K-means++, K-means||,
Fuzzy C-means, and Mixed Integer Programming (MIP) based clustering techniques) and
check how these clustering techniques affect the solution quality of the SAA algorithm.

The remainder of this paper is organized as follows. Section 4.2 provides the
literature review on SAA. Section 4.3 introduces the enhanced SAA algorithm. Section
4.4 conducts numerical experiments to verify the performance of the enhanced SAA

algorithm. Section 4.5 concludes this paper and discusses future research directions.
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4.2 Literature review

We review the existing literatures related to SAA and categorize them into two

major groups: (1) SAA with fixed sample size and (2) SAA with variable sample size.

4.2.1 SAA with fixed sample size

The first set of literature considers the basic SAA where the sample size remain
fixed in all iterations. This approach is also referred to as sample-path approximation
method ( [56], [114]) or stochastic counterpart method ([128], [129], [138]) exploit the
parallel implementation capability of the SAA to solve various two-stage stochastic linear
programming problems with recourse. Kenyon and Morton [69] embed branch-and-cut
inside the SAA to solve a stochastic vehicle routing problem under random travel and
service times. Morton [99] develops an SAA procedure to solve a stochastic knapsack
problem (SKP). Schiitz, Tomasgard, and Ahmed [137] embed dual decomposition inside
the SAA to solve a meat packing supply chain network designing problem. The authors
investigate the effect of sample size on solution quality and find that increasing the
sample size improves the solution quality of the SAA algorithm. Wang and Ahmed [157]
use SAA to solve a conditional value-at-risk (CVaR) problem and find that the SAA
solution is acceptable to the true CVaR problem with a probability of at least 97.7%.

Some other studies involving SAA implementations with fixed sample sizes are
conducted by Kleywegt et al. [73], Verweij et al. [156], Santoso et al. [136] and
Nemirovski et al. [103]. The major concurring theme among the studies in fixed sample
SAA literature is that estimating the sample size in practice is not trivial and selecting the
sample size involves two conflicting trade-offs: (i) larger sample sizes yield SAA

solution comparable to the true solution and (ii) the computation effort required to solve
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the SAA problem often increases exponentially as the sample size increases. Table 4.1

provides a summary of literature based on SAA with fixed sample size.

4.2.2 SAA with variable sample size

Later studies use variable sample size in SAA to solve stochastic optimization
problems. Homem-De-Mello [61] first provides a variable-sample framework to solve a
discrete stochastic optimization problem. The author shows that the sample size must
grow at a certain rate to ensure convergence. Royset [125] proposes a closed-loop
feedback optimal-control model to adaptively select sample sizes in variable sample
average approximation (VSAA) algorithm to solve smooth stochastic programs (SSP).
Although the method results in a sample size selection policy that appears to be robust to
changing problem instances, it is not applicable to stochastic optimization problems with
integer restrictions. Optimization problems that require integer solutions in their decision
variables involve non-smooth functions which are not easily convertible to smooth
functions for the application of the SAA method. Pasupathy [112] determines a balance
choice of sample sizes and error tolerances in variable samples method of SAA where
sample size refers to a measure of problem-generation effort and error tolerance is a
measure of solution quality. Note that all the literature discussed above investigated

problems in which SAA occurs only in the objective function.
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Another stream of research investigates problems in which SAA occurs in the
constraints (e.g., [25], [163]). It is important to note that if the approximation occurs in
the objective function then the major challenge relies on obtaining solutions that
converge to the original problem. However, in cases where the approximation occurs in
the constraints, i.e., in chance-constraints, one needs to ensure that the feasibility region
of the approximating problem coincides with that of the original problem [25]. Branda
[25] estimates the rate of convergence and sample size for lower bounds in SAA which
ensures that the feasible solutions of the SAA are feasible for the original problem. Zhang
et al. [163] develop a method for stochastic programs with complementary constraints
where the equilibrium constraints can be replaced with smooth functions. Bastin et al.
[16] implement variable sample size technique to estimate choice probabilities in solving
unconstrained mixed logit models. Byrd et al. [28] develop a varying sample size based
methodology to solve large scale machine learning problems. Similarly, a number of
other related literatures such as Deng and Ferris [40], Kreji¢ and Krklec [77], Krejic
andJerinkic [76], Bastin et al. [16], Byrd et al. [28], and Bastin [15] study SAA with
variable sample size to tackle different optimization problems with or without constraints.
The literature for SAA with variable sample sizes is summarized in Table 4.2. Note that
all the methods discussed above are not suitable for problems that have computationally
expensive limit-state functions as they involve a large number of evaluations of such

functions and their gradients.
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To fill this gap in the literature, this paper utilizes different clustering techniques
to dynamically adjust the scenario size of the SAA algorithm that generates a solution
close to the true solution of the stochastic optimization problem. Until now, a limited
number of studies consider scenario clustering to solve an optimization problem. Crainic,
Hewitt, and Rei [35] propose a machine learning method to group scenarios of a
progressive hedging algorithm and apply the approach in a stochastic network design
problem. The authors further use clustering techniques inside a partial Benders
decomposition algorithm to reduce the number of optimality and feasibility cuts
generated by the algorithm. Escudero et al. [48] use scenario clustering inside a
Lagrangean decomposition algorithm to produce high quality lower bounds for large
scale multi-stage stochastic 0-1 problems. Our approach although relevant differs from
the prior studies in that we apply scenario clustering to solve a large scale SAA problem.
Moreover, our approach provides a simple framework that can be used to dynamically
adjust the sample size of the SAA problem based on the results obtained from

preliminary computations.

4.3 Methodology

This section first provides a brief introduction of the Sample Average
Approximation (SAA) method (Section 4.3.1). We then highlight some of the limitations
of the basic SAA method which pave the way for us to develop an enhanced Sample
Average Approximation (eSAA) method. The eSAA method utilizes clustering
techniques (e.g., K-means, K-means++, K-means||, Fuzzy C-means, and Mixed Integer
Programming (MIP) based clustering techniques) and then adaptively controls the size of

the samples by performing some statistical tests based on the computational performance
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from the previous iterations. The details of the eSAA method is discussed in Section

4.3.2. Let us now discuss the basic SAA method.

4.3.1 Sample average approximation (SAA)

The SAA is a Monte Carlo simulation—based approach to solve stochastic
programming problems. The basic idea is simple indeed - a random sample is generated
and the expected value function is approximated by the corresponding sample average
function. The procedure is repeated several times until a stopping criterion is satisfied.
The idea of using sample average approximations for solving stochastic programs has
been studied extensively by various authors over the years. For example, the method was
used to solve stochastic knapsack problems (e.g., [73]), stochastic routing problems (e.g.,
[156]), supply chain problems (e.g., [136]), investment problems (e.g., [111]), reliability-
based problems (e.g., [126]), and many others.

To illustrate the concept of SAA, let us first investigate a general stochastic

program of the following form:

min{E[f (x, w)]:x € X} 4.1)
where w is a random vector with expectation E and a known statistical distribution p. The
expectation E is with respect to p.

Let X denote the first-stage feasible set where X =R 1 {0, 1}" for some polyhedron R of
dimension n and € denote the set of scenarios. A special case of Equation (4.1) is the

class of two-stage stochastic programming model which can be illustrated as follows:
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z' = mincTx + E,[Q(x, §(w))] (4.2)

where

9(x,¢(w)) = r;lzigl{q(w)Ty | Dy = h(w) — T (w)x} (4.3)

and x denotes the first-stage decisions which are required to be made prior to the
realization of a scenario, ® € €, and which is known when the second-stage recourse
decisions y are made. The quantity Q(x, & (w)) represents the optimal value of the
second-stage recourse problem and the parameters {(w) = (¢(w), M(w), T(w)). Let, Q
contains a finite number of scenarios {®1, w2, ... , ®} with associated probabilities

{pn};n = 1,2,...,|Q], then the expectation E[Q (x, £ (w))] can be evaluated as follows:

E[Q(x, ()] = Zhl; prQ(x £ (@p)) (44)
From Equation (4.4), it is clear that the number of scenarios grows exponentially

with the size of the problem. To overcome this issue, an exterior sampling method is used
to solve the deterministic equivalent problem of the problem specified by (4.2). The SAA
method is an exterior sampling method in which a sample w1, @2, . . ., ®on of N sample
scenarios is generated from scenario set € according to the probability distribution P and
then the expected value function E[Q(x, {(w))] is approximated by the sample average
function Y¥_, Q(x, §(w™))/N. The Sample Average Approximation problem then

becomes:
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zV = mincTx +~YN_, 0(x, £ (™)) 4.5)
x€X N
where zN and X estimate the optimal value and solution of their true counterparts in the

original stochastic program defined by Equation (4.2).

The steps involved in solving a stochastic problem using Sample Average Approximation
(SAA) are given below:

Step 1: Generate M independent samples each of size N and solve the corresponding

SAA:

z¥ = minc"x + < ¥V_, 0(x, £ (0™) (4.6)
xeX N

Let zy and X be the corresponding optimal solutions and an optimal values,

respectively; m=1, 2, 3,..., M.

Step 2: Compute:

=N _ 1gm

Zy = E m=1 le (4-7)
2 _ 1 M =N\2
O = m-Om m=1(ZZl —Zy (4.8)

The expected value of zN is less than or equal to the optimal value z* of the true problem.
Since Z} is an unbiased estimator of [E[Zm and ]E[Zﬁ] < z*, we can say that Z}

provides a lower statistical bound for z* of the true problem and 05"’ is an estimate of the
M

variance of this estimator.
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Step 3: Choose a feasible first-stage solution X € X of the true problem, e.g., one of the
solutions from X} and estimate the objective function value of the original problem (4.2)

using a different sample N'. The true objective function value is now given as:

2V (%) = TR+ TN 0%, (0™) 4.9)
where {w1, w5, ..., Wy} is a sample of size N'. Typically, N’ is chosen to be much larger
than N i.e., N’ > N. The estimator zV' (%) is an unbiased estimator of c” £ +

E[Q(%, &(w))] . Thus, for any feasible solution we have E[z" (2)] = z*. The value of

zV' (%) is updated in each iteration if the obtained value is less than the value of the

previous iteration. The variance of this estimate can be expressed as:

6 LI (TR + 0(R M) 2 @) (410

NE T (NN A
Step 4: Compute an estimate of the optimality gap of the solution X using the lower
bound estimate and upper estimates by using the estimators calculated in Steps 2 and 3,
respectively, as follows:
Gapyun (®) = 2V (%) — 2z (4.11)
The estimated variance of the gap is given by:

02up = 5ZZN'® + aj% 4.12)

The confidence interval for the optimality gap can be calculated as:

V' (%) —zZN+ z, 6% .+ aj% 305 (4.13)

(€9
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with z,: = ®71(1-a), where ®(z) is the cumulative distribution of the standard normal
distribution.
Step 5: We now choose X* as one optimal solution 1, 2, ..., ¥ which has the smallest

objective value, i.e.,

X* € argmin {ZN'(J?) : ¥ € {x1,%%, ...,QM}} (4.14)
As described in Step 1 of SAA, z} and X} are functions of the corresponding
random sample. Under mild regularity conditions, it can be proved that as the sample size
N increases, both zj and X} converge with probability one to their true counterparts.
The convergence is captured in Proposition 4.1 as follows:
Proposition 4.1: Let 8, and 8* be the objective value of the SAA and true problem,
respectively. We prove that 8y — 0* and D( Xy, x*) — 0 with probability 1 as N — oo,
where D( Xy, x*) is the difference between the optimal solution for the SAA problem and
the optimal solution for the true problem.
Proof: The proof of this proposition is given by Kleywegt et al. [73]. [ ]
The analysis regarding convergence suggests that a reasonable and good
approximate solution to the true problem can be obtained by solving an SAA problem
with a modest sample size. In particular, suppose that the SAA problem is solved to an

absolute optimality gap of § > 0 and let € > § and @ € (0,1). Then, a sample size of

3Umax |X|
N>(€ 6)21 (

(4.15)
ensures that the SAA solution by X is a solution with an absolute optimality gap of € to

the true problem with a probability of at least 1-a. Here 02, is a maximal variance of
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certain function differences (see [1] for details). This estimate has interesting
consequences in terms of complexity of the problem. One of the main characteristics of
Equation (4.15) is that N depends only logarithmically on the size of the feasible set X as
well as on the tolerance probability a.

It appears that Equation (4.15) may be very conservative for practical estimates. Thus,
one can choose the sample size N as a trade-off between the qualities of solution obtained
from solving problem (4.6) and the computational complexity to solve it. Unfortunately,
fixing a value of N is not very straightforward as it imposes complexity in solving Step 1
of the SAA algorithm. Even though the introduction of SAA reduces the problem size
considerably compared to the original problem (defined by (4.2)), we still have to solve a
two-stage stochastic mixed integer problem with N scenarios which is computationally
challenging as well as time-consuming. In particular, with large N the objective function
of the SAA problem tends to be more accurate than the objective function of the true
problem and thus expected to produce a tighter optimality gap. However, this increases
computational complexity in solving the SAA problem which in some cases increases at
least linearly and often exponentially as the size of N increases. On the other hand, a
conservative N may lead to an e-optimal solution to the true problem though the solution
can be obtained at a reasonable time. Thus, choosing the right sample size N requires
further investigation which motivates us to develop an enhanced Sample Average
Approximation (eSAA) algorithm that dynamically adjust the sample size N based on the
results from preliminary computations. It is noteworthy that the eSAA method can
equally be applied when the stochastic programming problem requires all the decision

variables to be continuous. In such a case, the problem becomes much easier to solve
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since there is no integer restrictions to solve the subproblems of the eSAA algorithm. The

details of the eSAA algorithm is discussed in the next subsection.

4.3.2 Enhanced sample average approximation (eSAA)

In this study, we take a novel approach to obtaining samples and establishing
sample size to be used in the SAA that are better representatives of the scenarios in the
stochastic optimization problem. Specifically, we use some clustering algorithms (e.g.,
K-means, K-means++, K-means||, Fuzzy C-means, and Mixed Integer Programming
(MIP) based clustering techniques) to group similar scenarios and obtain a sample size
equal to the number of clusters. We then use this clustered scenarios to obtain a lower
bound for our SAA problem which is indeed a lower bound for the true problem. Unlike
other approaches in literature where the sample size is either increased or kept constant,
our eSAA approach provides the opportunity to adaptively control the size of the
samples. Based on the solution obtained after each iteration, we perform a #-test which
guides us to adaptively increase or decrease the size of the samples N until the quality of
the solution falls below an acceptable tolerance level. Moreover, the eSAA approach
enables us to work with a bigger sample size (Nk) compared to basic SAA (N), thereby
increasing the chance of the approximation converging to the solution of the true
problem.

To better illustrate our approach, let us consider a solution space  which
contains all the possible scenarios w1, @2, . . . , ®N generated in a stochastic program
(shown in Figure 4.1(a)). In basic SAA, from this scenario pool, a small number of
scenarios is taken as samples (say N) and the objective function is calculated iteratively

until the optimality gap falls below a certain threshold value. However, in eSAA we
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group the scenarios in the form of a cluster where each cluster contains the scenarios that
are most representative to that cluster (shown in Figure 4.1(b)). The number of scenarios
in each cluster will now be reduced down to the number of scenarios (say Nk) for the
eSAA algorithm (shown in Figure 4.1(c)). Let N1 be the number of scenarios drawn
from scenario space € where NL >> N. We then partition sample Nv into a fixed number
of clusters, say k clusters. Following the clustering, we take one sample from each cluster
which represents the best from that given cluster and eventually reduced down to Nk

number of clusters where Nk << N << NvL. The expected value function E[Q(x, & (w))]

now can be approximated by the sample average function zﬁgl Q(x,&(w™))/Ng. The

Sample Average Approximation problem then becomes:

ZV¢ = mincx + NLK YNK Q(x, E(w™)) (4.16)

where zV¥ and £K estimate the optimal value and solution of their true counterparts in the
original stochastic program defined by Equation (4.2).

The steps involved in solving a stochastic problem using the enhanced Sample
Average Approximation (eSAA) algorithm are illustrated below:
Step 1: Initialize, cluster size k, step size g7 and g2 where g2 > g7 and counter g. Generate
M independent samples each of size NL where NL >> N. Use one of the clustering
technique (e.g., K-means, K-means++, K-means||, Fuzzy C-means, and Mixed Integer
Programming (MIP) based clustering techniques) described in Section 4.3.2.1 to 4.3.2.4

to cluster Nr samples. The NL samples can now be partitioned into A number of clusters
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and yields Nk number of scenarios where Nk <« N. With Nk number of scenarios, we

solve the following SAA problem:

Ng — : T i Nk n
z min ctx + =3, 5 Q(x, §(@0™) (4.17)
Let zy, and X}y be the corresponding optimal solutions and an optimal values,

respectively; m=1, 2, 3,..., M.

Step 2: Compute:

_N 1
Zy = 5 Xm=12ZNy (4.18)

2 _ 1 M ( m _—NK)Z 4.19
e = G St 28 — 2 (419

The expected value of zV¥ is less than or equal to the optimal value z* of the true
. —Ng - . . —Ng —Ng *
problem. Since Z,," is an unbiased estimator of [E[ZM ] and IE[ZM ] < z", we can say

that ZZ" provides a lower statistical bound for z* of the true problem and a;NK is an
M

estimate of the variance of this estimator.

Step 3: Choose a feasible first-stage solution X € X of the true problem, e.g., one of the
solutions from Xy and estimate the objective function value of the original problem
(4.2) using a different sample N’ where Nk < N « NL « N'. The true objective function

value is now given as follows:

2V (%) = TR+ TN 0%, (0™) (4.20)
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where {w1, w5, ..., wy} is a sample of size N'. Typically, N’ is chosen to be much larger
than N i.e., N’ > N. The estimator zV' (%) is an unbiased estimator of ¢ £ +
E[Q(Z, §(w))] and thus for any feasible solution we have that E[z" (2)] = z*. The value

of zV' (%) is updated in each iteration if the obtained value is less than the value of the

previous iteration. The variance of this estimate can be expressed as:

A2 _ 1 N’ To o n) _ N (s 2
GZN,@) = VDN Zn=1 (c x+Q(x,€(a) )) z (x)) (4.21)

Step 4: Compute an estimate of the optimality gap of the solution X using the lower
bound estimate and upper estimates by using the estimators calculated in Steps 2 and 3,

respectively, as follows:

Gapyyn ® =2V (%) — 2, (4.22)

The estimated variance of the gap is given by:

0lap = aZZN, ot ajﬁ,( (4.23)

The confidence interval for the optimality gap can be calculated as:

2V (R) = Zyf+ 24 (8% + 0y} (4.24)
M

®
with z,: = ®~1(1-a), where ®(z) is the cumulative distribution of the standard normal

distribution.
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Step 5: If the optimality gap (2" ’ x) - 22’,," ) is less than or equal to the tolerance limit

(€), the approximated solution is assumed to converge to the true solution z*. Otherwise,
do the following:
e Perform a paired z-test between present solution obtained at iteration i and
iteration i-1 to test the hypothesis Hy: z¥ ’ %) = Z{V_’ 1 (%)
e If the p-value of the test is large (say greater than or equal to 0.2), then set k « k
and g « g+ 1. If g>Db (say b =2) then set k « k — q4 and go to Step 1.
o If the p-value of the test is sufficiently small (say smaller than 0.1) then set k «
k + q, and go to Step 1.
Step 6: We now choose X*as one optimal solution 5(‘,1(, ii, . iff which has the smallest

objective value, i.e.,

X* € argmin {ZN’ ®): %€ {52,1(, x2, .., x }} (4.25)
One of the salient features of our eSAA algorithm is that unlike other studies
where we either fix the scenario size (e.g., [136], [156], [103], [99], [85], [69], [137],
[157]) or driving one way to determine whether the number of clusters should be
increased or not (e.g., [61]), our approach guides the scenario size N by either increasing
or decreasing them based on the computational performance obtained from prior
iterations. We have revised Step 1 and Step 5 of the basic sample average approximation
algorithm (described in Section 4.3.1) where we cluster a large sample size Nv to start

with an initial sample size Nk (discussed in Step 1) and perform a paired #-test to check if
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the objective function value at the current iteration is statistically different than the
previous one (discussed in Step 5). Note that, a paired #-test is required in this case rather
than an independent #-test, since the estimates z¥ ' (%) and zf‘f 1 (%) use the same random
numbers. In what follows, we prove that:
(1) The solution obtained using the eSAA algorithm converges to the solution of the true
problem (shown in Proposition 4.2).
(i1) The algorithm terminates in a finite number of iterations (shown in Proposition 4.3).
Proposition 4.2: Let ézvk and 6” be the objective value of the eSAA and true problem,
respectively. We further defineD (J?Nk, x*) be the difference between the optimal solution
for the eSAA problem and true problem. We then proof that @Nk - 6" and D(f,vk, x*) -
0 with probability 1 as N;, — oo.
Proof: Step 5 of the eSAA algorithm ensures that if the value of @Nk does not converge
to the true problem, then the size of k' increases through the expression k' « k + q,
where q, is a positive integer. In the worst case, if no improvements are found then the
size of the cluster k' approaches to infinity i.e., k' « co. At this point éNk — 6%, which is
guaranteed through Proposition 4.1. H
Proposition 4.3: The eSAA algorithm terminates in a finite number of iterations.
Proof: The sample sizes N, N, N, used in the eSAA algorithm are finite. Moreover, the
feasibility region provided by x is finite. Since Proposition 4.2 holds, we can deduce that
eSAA algorithm will terminate in a finite number of iterations. W

Some questions arise in the process of implementing our proposed eSAA

algorithm such as: (a) Does clustering provide representative scenarios that yield
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comparable lower bounds as basic SAA? (b) Is there a saving in computational time for
using clustering algorithm and representative scenarios in our approach versus using all
the scenarios in SAA without clustering? In other words, does the saving in computation
time due to the reduced number of scenarios offset the clustering time in our approach?
We investigate these issues using numerical experiments in Section 4.4. Meanwhile, our
methodology for creating groups or clusters of similar scenarios are inspired by a set of
clustering methods, i.e., K-means clustering, K-means++ clustering, K-means|| clustering,
Fuzzy C-means clustering, and Mixed Integer Programming (MIP) clustering. We now
present a brief description of all these clustering methodologies applied in our eSAA

algorithm.

4.3.2.1 K-means clustering

K-means algorithm which is sometimes referred to as Lloyd’s algorithm was
proposed in 1957 by Stuart Lloyd [87]. K-means method is one of the most popular
unsupervised learning algorithms that follow a simple, easy and relatively efficient way
to classify a given data set into a certain number of clusters fixed a priori. It works in two
phases. In the first phase, initial k centers are chosen at random. In the second phase, each
point in the data set is assigned to the cluster containing the center that is nearest to it. At
the end of this phase, the center value of each cluster is calculated, and depending upon

the new values of centers, the second phase is repeated until the values of centers
converge to the same value. The complexity of this algorithm is O(nkl), where n is the

number of data points, k is the number of clusters, and / is the number of iterations

needed until convergence.
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To explain K-means algorithm mathematically, let X = {x;, x5, ..., x,} be a set of

points that has to be partitioned into k clusters. The objective is to assign a cluster to each

data point in such a way that the positions y;,i = 1,2, ..., k of the clusters minimize the

distance from the data points to the cluster. Essentially, K-means clustering solves:

arg min, Z?:l erri d(x, p;)

(4.26)

Here, r; is the set of points that belongs to cluster i. The steps involved in K-means

clustering algorithm are illustrated in Algorithm 4.1.

Algorithm 4.1: K-means clustering algorithm

AR A T

X « Set of data points
k < Total number of clusters
Randomly select & cluster centers from X
Wi < k cluster centers, where i=1,2,....,k
T; < set of points that belongs to cluster i, where i=1,2, ...,k
Attribute the nearest cluster to each data point:
ri= {j: d(x;, u) < d(xj,um), m=*1i,j=1.2, ...,n}
Fix the position of each cluster to the mean of all points belonging to that cluster:

1 .
Wi == Xjer; X, Vi

rl
Repeat Steps 6 and 7 until convergence.

Figure 4.1

1(a): Sample space of
scenarios

1(b): Cluster similar
scenarios

1(c): Take the best
representative cluster

Pictorial representation of scenario aggregation performed in eSSA
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Figure 4.2  Comparison between SAA and eSAA algorithm
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4.3.2.2 K-means++ clustering

In practice, the speed and simplicity of K-means clustering algorithm cannot be
beat. Therefore, recent works have mainly focused on improving the initialization
procedure. Deciding on a better way to initialize the clusters changes the performance of
the Lloyd’s iteration, both in terms of quality and convergence properties. Focusing on
this direction, Ostrovsky et al. [109] and Arthur and Vassilvitskii [6] have proved that a
simple procedure of selecting a good starting point can lead to good theoretical
guarantees for the quality of the solution. They dubbed this method as K-means++
clustering algorithm. K-means++ method enhances the basic K-means clustering
algorithm by implementing a better initialization approach in selecting the first k centers.
Instead of randomly selecting the k centers, only one is randomly selected while the
remaining (k - 1) centers are systematically selected with a probability proportional to its
contribution to the overall error, given the previous selections. On a variety of datasets,
K-means++ initialization obtains order of magnitude improvements over the random
initialization of K-means clustering algorithm. K-means++ has been implemented in a
wide range of applications such as defect prediction [110]. The pseudo code of K-

means++ clustering method is shown in Algorithm 4.2.
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Algorithm 4.2: K-means++ clustering algorithm

I: X « Set of data points
2: k < Total number of clusters
3: uq < sample a point randomly from X
4: r; « set of points that belong to cluster i, where i=1,2,....k
5: while |y;|< k do

, . argminZE, Teer, dCop)
6: sample x € X with probability: AN T Trer, 4K
7o pepu U {x}
8: end while
9:

Attribute the nearest cluster to each data point:

ri= {] d(xi,ﬂi) < d(x],ﬂm), m # l,] = 1,2, ,Tl}
10: Fix the position of each cluster to the mean of all points belonging to that cluster:

1 ,
Wi = HZjEri Xj, Vi
11: Repeat Steps 9 and 10 until convergence.

4.3.2.3 K-means|| clustering

K-means algorithm chooses k centers in a single iteration following a specific
distribution e.g., uniform distribution. On the other hand, K-means++ completes k
iterations and selects one point in each iteration according to a non-uniform distribution.
The superiority of K-means++ over K- means algorithm is primarily in constantly
updating the non-uniform selection process. K-means parallel (K-means||) algorithm,
developed by Bahmani et al. [10] combines the advantages of K-means and K-means++
in such a way that it takes fewer number of iterations and chooses more than one point in
each iteration non-uniformly. In addition, K-means|| uses an oversampling factor / in its

sampling points. This algorithm picks an initial center and computes W as: ¥ :=

arg mrin Zﬁ‘zl Yxer; d(X, ). Given a set of u centers, in each of O(logy) iterations this

I+ arg mrin 2?:1 er"i d(x,u)

- which is then
argmin T, Srer; d(X,1)

algorithm samples each x with a probability p =
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added to p. In order to reduce the number of centers, weights denoted by w, are assigned
to points in u . These weighted points are then clustered to obtain the desired number of
clusters. The structure of the algorithm lends itself for possible implementation in parallel

systems. Algorithm 4.3 demonstrates the steps of K-means|| clustering algorithm.

Algorithm 4.3: K-means|| clustering algorithm

I: X « Set of data points
2: k < Total number of clusters; / «<— oversampling factor
3: u < sample a point randomly from X
4: 1; < set of points that belong to cluster i, where i=1,2,....,k
5: W argmin ¥, Yo, d(X, )

T
6: for O(log¥) times do

, . , . 1+ argmin B, Srer, d(x,1)

7: ' < sample each point x € X with probability: p = AN L ery 4000
8: pep+p
9: end for

10: For x € u, set w, to be the number of points in X closer to x than any other point in

U
11: Attribute the nearest cluster to each data point:

ri= {j: d(x;, u) < d(xj,/,tm), m=*1i,j=1.2, ...,n}
12: Fix the position of each cluster to the mean of all points belonging to that cluster:
1 .
K = ﬁZjeri xj, Vi

13: Repeat Steps 11 and 12 until convergence.

4.3.24 Fuzzy C-means (FCM) clustering

One of the most widely used fuzzy clustering algorithms is the Fuzzy C-means
(FCM) algorithm which was developed by James Bezdek in 1984 [22]. Fuzzy C-means is
a clustering method which allows a data point to belong to two or more clusters. This
algorithm works by assigning membership to each data point corresponding to each
cluster center on the basis of the distance between the cluster centers and the data points.
The data point that is closest to a cluster center has its membership towards this particular

cluster center higher than any other data point. The summation of membership of a
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particular data point towards all the cluster centers is equal to one. The objective of the

C-means algorithm is to minimize:

jm = B T8y 1} [l = €’ (4.27)
Here, the fuzziness component or index is denoted by m which is any real number greater
than 1. The total number of data points are denoted by N and C is the number of clusters.
{xi}ien is the i-th measured data and c; is the center of the j-th cluster. The degree of
membership of x; in cluster j is denoted by ;.

This algorithm is carried out iteratively with the membership function and cluster centers

updated after each iteration. The iteration will stop and the algorithm will terminate if

(k+1) _ K

u;; u;;|| < €, where the value of € may vary between 0 and 1. The pseudo

maxij |

code for Fuzzy C-means algorithm is outlined below in Algorithm 4.4:
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Algorithm 4.4: Fuzzy C-means clustering algorithm
1: Randomly select cluster center

2: Initialize U = [u;;] matrix, U(©®

3: Calculate u;j using:

1
ui. = 2
ge  (lr=gll)
k=1 A\l — el
4: Calculate centers vectors C (k):[c]_] with U®;
c: = Iiv=1 l’t:;l xj
g M1 :“Z‘l
5: Update Uk, y*+1).
1
ul.. = 2
ge  (lr=gll)
k=1l — cell

6: If (|JUD — U¥|| < €) or minimum value of j is achieved, STOP the algorithm.

Otherwise repeat from Step 2.

Proposition 4.4 proves the validity of the lower bound provided by the clustering
approach based on cluster size k.
Proposition 4.4: Let z* be the optimal solution of a true problem defined by (4.2). Let an
approximate solution (xy,, Zy,) be obtained by solving N’ sampled realizations of
problem (4.2)’s stochastic parameter. Moreover, let (xy, zy) be the solution obtained by
solving problem (4.2) with N realizations where N > N'. Then, we prove the following:
e The expectation of zy, is a lower bound on z* and zy, provides an improved lower
bound.
e Ifwe form C clusters from the samples in the N’ realizations, the solution (xg, Z¢)
obtained by using the centroids of the C clusters also provides a valid lower

bound on z* which improves as C increases.
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Proof: Let & = {&;,&,, ... &N, Ens1) be a set of data elements to be grouped into C

clusters. Let, u;j, (i=12,..,N+1;j=1,2,..,C) be the degree of membership of data

1

§; in cluster j evaluated in fuzzy C-means as: u;; = 7 ,withm > 1
i <||fi—fi||> (m=1)
k=1 \ ;e
I Ul
being the fuzziness exponent; ¢; = El_’\'i—lul]m the center of cluster j; ||§; — ¢;|| the distance
i=1 Hij

from point i to current cluster j; and ||; — ¢ || the distance from point i to other clusters
k.

At the convergence of the clustering algorithm, it is obvious that p; = Z]C-=1 w;j =
1Vvie&andp, = Z]C-=1(u,-]-)2 < 1Vi € & Without loss of generality, let us assume that
the elements in ¢ are distinct, i.e., & # &, # &y # Enyq1- If € = N + 1, in other words,

we are required to group the data into N+7 clusters, it’s trivial to show that u;; =

1for j=k

o otherwise V1 € €. This means that only one element occurs in each cluster .

Moreover, in this case p, = p; = 1.

1 N+1
mpere) = mp (Big, )

1 N+1
> i .
= E%?(N+1 ; f(x’fl)>

Thus,

) 1 N+1
E(zy+1) = E min <N n 1zi fx, &)) =z

which is a valid lower bound.

For a cluster size C = N’ where N' <N+ 1,p, < 1Vi € é. Using § =

{1, &2, - Enn Enr1 ) to define zy, and zyr 4
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. _ 1 N'+1
]E(ZN’+1) =E 1};161)12 (Nl + 121 f(x, El))

N'+1 ,
_ 1 1 N'+1
=Emin{ 57 Z Wz}_# f(x,§5)
l
1 N'+1 1 N1
> in— ;
2T D B, | f)
l
= ]E(Z;V/)
which implies a better lower bound. [ |
4.3.2.5 Mathematical programming-based clustering

We now present a mathematical formulation of mixed integer programming
(MIP) model for the clustering phenomenon. This formulation was proposed by Saglam,
Salman, Sayin, and Tiirkay [133] but similar type of formulations were developed
previously by Brusco [26] and Rao [119].

Consider a data set of n points where n € N with m dimensions. We want to
achieve k number of exclusive clusters where k € K and is known a priori. The main
objective of this formulation is to find the optimal division or partition of this data set
into k clusters. In this model, D := {D;},cx and D, are defined as the diameter of
cluster / and the maximum diameter among the desired clusters, respectively. The
parameter d;; denotes the distance between two data points i €N andj €N. X :=
{xi1}ien ek 18 a binary variable that takes the value 1 if i is assigned to cluster / and 0

otherwise. The objective of the model is to minimize D,,,,,. With this, the clustering

problem can be formulated as a MIP problem as shown below:
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Minimize D, (4.28)

D, = dyxyx; VieN,jEN,IeK (4.29)
YK x4y = 1VieN (4.30)
Dpmax = D, VIEK 4.31)
x; € {0,1} VieN,/eK (4.32)
D, > 0 VIEK (4.33)

Constraints (4.29) indicate that the diameter of the cluster is at least equal to the
maximum distance between any two arbitrary data points in the same cluster. Constraints
(4.30) indicate the exclusivity of the clusters meaning each data point will only be
assigned to only one cluster. Constraints (4.31) along with the objective function denote
that Dy, 1s equal to the maximum diameter and greater than any other cluster diameters.
Constraints (4.32) are binary constraints and constraints (4.33) are non-negativity
constraints.

The expression x;X;j; in constraints (4.29) is the product of two binary decision
variables with the value of 0 or 1. This makes the above model a non-convex bi-linear
mixed integer programming (MIP) model. Thus, even with a small set of data points the
above model is hard to solve in a reasonable amount of time. The following technique
linearizes constraints (4.29) without increasing the size of the formulation:

D, = djj(xy+x;—1) VieN,jEN,/€EK (4.34)
Constraints (4.34) indicate that data points 7 and j are assigned to cluster / and the
diameter of the cluster has to be at least as long as the distance between i € N and j € N.

In constraints (4.34), if one or both of the decision variables i.e., x;; and x;; are equal to
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zero, it will make the constraints redundant. If and only if both the decision variables are

equal to 1, then constraints (4.34) will be active.

4.4  Numerical study

In this section, we investigate the performance of our proposed enhanced sample
average approximation (eSAA) approach using (1) A classical facility location problem
([FLP]) with stochastic demands (2) A single-sink transportation problem ([SSP]) and
(3) A supply transportation problem ([STP]). [SSP] and [STP], formulated by Maggioni
et al. [88] and Maggioni et al. [89], respectively. The purpose of these tests is to
investigate the robustness of using the eSAA approach as well as study the effects of
problem parameters, such as the number of scenarios and cluster size on the performance
of the method. The result will also increase the prospect of using the approach as an
alternative to the continuous approximation approach utilized in Chapter III in solving the
AM deployment configuration problem. However, we first start by providing an
overview of the [FLP] and then discuss the computational performance of solving [FLP]

with our eSAA algorithm.

4.4.1 Facility location problem

The facility location problem ([FLP]) is a classical combinatorial optimization
problem of determining the number and location of facilities (e.g., factories, warehouses,
schools) and assigning customers to them (e.g., depots, retail outlets, students) so as to
minimize the overall system cost. The facility location problem can be either capacitated
or uncapacitated. In a capacitated facility location problem (CFLP), there is a limit on the

number of customers each facility can serve or amount of products that it can produce. In
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an uncapacitated facility location problem (UFLP), an arbitrary number of customers can
be served by a facility since there is no limit to the amount of products that it can
produce.

Pioneering works on facility location problem can be attributed to Kuehn and Hamburger
[79] and Balinski [12]. Since then, the problems have been extensively studied with many exact
and heuristic solution approaches. For example, Erlenkotter [46], Galvao and Raggi [52],
Ardjmand et al. [5], Posta et al. [117], and Monabbati and Kakhki [97] discussed different
solution approaches to solve UFLP. Similarly, new models and algorithms are developed (e.g.,
Akinc and Khumawala [3], Barcel6 and Casanovas [13], Jacobsen [66], Rahmaniani and Ghaderi
[118], and Kiigiikdeniz et al. [78]) to solve CFLP. The classical facility location problems are
extended by many researchers over the years to consider economies of scale (e.g., Van Roy [154],
Feldman et al. [50], and Trappey et al. [149]), increasing production costs (e.g., Harkness and
ReVelle [58] and Dogan [42]) and concave costs (e.g., Soland [144], Dupont [44], and Saif and
Elhedhli [134]) in the modeling formulation. These works are applied to determine the optimal
location of facilities for manufacturing systems, energy production and distribution systems,
servers for computer internet communication networks, ambulance locations for emergency
services, hospitals for health-care services, and academic institutions. Facility location problems
with stochastic demand are NP-hard problems ([93], [102]); therefore, solving large instances of
the problem is a challenging task. This motivates us to use stochastic facility location problem as
a test case to check and validate the performance of our enhanced sample average approximation
(eSAA) algorithm.

We now give a mathematical formulation of the capacitated [FLP]. The problem

can be stated simply as follows. We are given a set of candidate facility locations J with

installing cost ¥; and supply capacity S; Vj € J. We are also given a set of warehouse
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locations k € K with stochastic demands dj,,. The cost of shipping one unit of product
from each plant location j € J to customer/warehouse location k € K is denoted by cjy.
There is a unit penalty cost associated with not meeting the demand at warehouse
facilities which is denoted by . We assume that there are fixed number of scenarios |Q|
and the probability associated with each scenario is denoted by p,,.

The first-stage decision variables Y := {Y}} ¢, decide the location to open the

facilities i.e.,

Y, = {1 if a palnt is opened at location j
J = L0 otherwise

The second-stage decision variables X := {Xjk, } jej kek wea decide the amount of product
shipped from plant j € J to warehouse k € K under scenario w € Q and Z :=

{Z1w} ek weq decide the unsatisfied demand at warehouse k € K under scenario w € €.
The aim is to minimize the first-stage and expected value of the second-stage costs. With
this, we now formulate the following two-stage mixed-integer linear programming

(MILP) formulation [FLP] as shown below:

[FLP] Minimize Y, ¥;Y; + Y wea P E(Y, w) (4.35)
subject to
Y, € {01} V j€] (4.36)

with E(Y, w) being the solution of the following second-stage problem:

E(Y,w) = Minimize Y. jej Xkek CijXjkw T 2kek BxZkw (4.37)
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ZjE]Xjka) + ka = dkw vk € K,(A) eEQ (438)

Xitw Z0Vj €Lk €K w € Q (4.40)
Zrw 2 0VkEK w € Q (4.41)

The objective function minimizes total cost of the system including first-stage
cost (e.g., investment cost of opening plants) and second-stage costs (e.g., transportation
and shortage costs) under a set of possible scenarios. More specifically, the first term of
the objective function represents the total set-up cost of locating the plants. The second
term is the total cost of transporting products from plants to warehouses and the last term
in the objective function is the cost associated with not meeting demand at the
warehouses.

Constraints (4.38) indicate that the demand at warehouse k € K is fulfilled in all
scenarios either by the regular network or through external sources. Constraints (4.39)
indicate that the amount of product transported from each plant j € J is limited by the
supply capacity §;. Finally, Constraints (4.40) and (4.41) are the standard non-negativity

constraints.

4.4.2 Analyzing the performance of solution algorithms

This section presents our computational experience in solving model [FLP] using the
algorithms proposed in Section 4.3. To help the readers follow our approaches, we have

used the following notations to represent the algorithms:
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e [SAA]: Basic sample average approximation algorithm (described in Section

4.3.1)

e [eSAA(D)]: Enhanced sample average approximation algorithm (described in

Section 4.3.2)

e [eSAA(F)]: Enhanced sample average approximation algorithm with fixed cluster

size (e.g., same as [eSAA(D)] but the cluster size is kept constant throughout all

the iterations)

The algorithms presented above are implemented in Python using GUROBI

optimization solver (http://www.gurobi.com/) on a desktop with Intel Core 17 3.60 GHz

processor and 16.0 GB RAM. The algorithms are terminated when at least one of the

following condition is met: (a) the optimality gap (i.e., € = [UB — LB|/UB) falls below a

tolerance threshold value, € = 0.001; or (b) the maximum time limit time™%*= 10,800

(in CPU seconds) is reached; or (c¢) the maximum number of iteration iter™** = 100 is

reached. The size of the equivalent deterministic problem of model [FLP] is presented in

Table 4.3.
Table 4.3 Problem size of the test instances
Instances ] K] Binary Continuous | Total No. of
Variables Variables Variables Constraints

S1 10 10 10 110 120 20
S2 30 30 30 930 960 60
S3 50 50 50 2550 2600 100
S4 70 70 70 4970 5040 140
S5 100 100 100 10,100 10,200 200
S6 120 120 120 14,520 14,640 240
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The first set of experiments (shown in Tables 4.4 — 4.9) show the computational
performance in solving [eSAA(F)] and [eSAA(D)] against [SAA]. K-means++ clustering
strategy is chosen to be implemented in both [eSAA(F)] and [eSAA(D)] for this first set
of experiments. We consider 6 problem instances which is shown in Table 4.3.
Additionally, we have tested the performance of the enhancement techniques under both
normal and uniform distribution. Under each instance a total of 6 sample sizes are
considered, i.e., N = {100, 200, 300, 400, 500}. For each sample, we experimented with
two sets of replications, M = {5, 10}. Note that, we do not present the results obtained
from GUROBI. This is because GUROBI takes more time than [SAA], [eSAA(F)], and
[eSAA(D)] even for smaller instances and smaller sample sizes and goes out of memory
if one or both of them increase. In all of our experimental results, if the algorithms are
solved in less than the stopping criteria € then we highlighted the algorithm which gave
the smallest running time. Otherwise, if such a quality solution is not found within the
maximum time or iteration limit then the algorithm with the smallest optimality gap is
highlighted. For the first set of experiments with uniform distribution, the results indicate
that both [eSAA(F)] and [eSAA(D)] perform significantly better than [SAA] for all
instances. All the problems are solved within pre-specified optimality/tolerance gap
within the specified time limit. More specifically, [eSAA(D)] is on average 8.4% faster
than [eSAA(F)] and 688% faster than [SAA]. Simultaneously, computation time of
[eSAA(F)] is on average 626% faster than [SAA]. Furthermore, [eSAA(D)] drops the
average optimality gap to 0.018% compared to 0.02% and 0.033% of [eSAA(F)] and
[SAA], respectively. We observe the same trend while performing the first set of

experiments with normal distribution. [eSAA(D)] algorithm has found to be superior

161



compared to the other two counterparts in terms of computation time and solution quality.
On average, [eSAA(D)] is 9.4% faster than [eSAA(F)] and 712% faster than [SAA].
Additionally, the quality of solution is found to be better with [eSAA(D)] having an
average optimality gap of 0.016% compared to 0.025% and 0.036% in [eSAA(F)] and

[SAA], respectively.

Table 4.4 Performance comparison between [SAA], [eSAA(F)], and [eSAA(D)]
(Instance S1)

[SAA] [eSAA(F)] [eSAA(D)]
€ Time Iter € Time Iter € Time Iter
N M (%) (sec) (%) (sec) (%) (sec)

Uniform distribution
100 5 0.00 2.7 3.6 0.06 1.4 1.0 0.00 1.1 1.3
10 0.02 33 2.5 0.04 3.0 1.2 0.01 2.7 1.6
200 5 0.00 4.4 1.9 0.00 1.9 1.2 0.02 2.1 1.2
10 0.01 5.4 1.2 0.01 4.2 1.0 0.00 34 1.1
300 5 0.00 6.6 2.6 0.07 3.1 1.6 0.01 2.9 1.0
10 0.02 8.1 2.1 0.02 6.5 1.0 0.01 5.9 1.2
400 5 0.02 9.3 2.5 0.02 2.5 1.0 0.01 2.0 1.2
10 0.01 11.0 1.6 0.01 4.8 1.0 0.02 4.1 1.0
500 5 0.04 12.0 1.3 0.01 4.7 1.4 0.02 5.1 1.1
10 0.03 15.0 1.8 0.04 10.0 1.3 0.01 8.1 1.3
Avg. 0.02 7.7 2.1 0.03 4.2 1.1 0.01 3.7 1.2
Normal distribution
100 5 0.01 2.7 2.3 0.02 1.3 1.6 0.02 1.3 1.6
10 0.02 33 2.1 0.04 3.1 2.1 0.01 2.6 1.1
200 5 0.00 44 2.9 0.03 1.8 1.6 0.01 2.2 1.3
10 0.04 5.4 1.5 0.02 4.4 1.1 0.02 3.5 1.2
300 5 0.01 6.6 2.5 0.00 32 1.9 0.00 2.7 1.5
10 0.00 8.1 1.6 0.02 6.7 1.1 0.00 5.8 1.4
400 5 0.02 9.3 2.9 0.00 2.3 1.5 0.01 2.2 1.1
10 0.02 11.0 1.7 0.01 4.6 1.1 0.01 4.3 1.0
500 5 0.01 12.0 1.6 0.01 4.9 1.3 0.00 5.2 1.0
10 0.00 16.0 1.6 0.02 8.8 1.2 0.01 7.7 1.0
Avg. 0.01 7.9 2.07 0.02 4.1 1.4 0.01 3.8 1.2
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Table 4.5 Performance comparison between [SAA], [eSAA(F)], and [eSAA(D)
(Instance S2)

[SAA] [eSAA(F)] [eSAA(D)]
€ Time Iter € Time  Iter € Time Iter
N M (%) (sec) (%) (sec) (%)  (sec)
Uniform distribution
100 5 0.05 41.0 42 0.05 14.0 1.0 | 0.00 11.0 1.1
10 0.02 520 35 0.02 27.0 1.6 | 0.05 25.0 1.0
200 5 0.02 83.0 4.1 0.09 25.0 1.4 ] 0.01 20.0 1.2
10 0.05 104 3.0 0.00 52.0 1.2 | 0.02 44.0 1.0
300 5 0.03 140 42 0.01 36.0 1.6 | 0.02 32.0 1.5
10 0.04 169 4.1 0.01 68.0 1.2 | 0.01 58.0 1.0
400 5 0.05 212 29 0.07 43.0 1.4 ] 0.02 46.0 1.3
10 0.04 259 2.1 0.01 77.0 1.6 | 0.01 81.0 1.3
500 5 0.03 294 2.5 0.06 75.0 1.8 | 0.02 66.0 1.1
10 0.06 362 2.0 0.01 165 1.5 ] 0.01 163 1.0
Avg. 0.04 171 32 0.03 58 1.4 ] 0.02 55 1.1
Normal distribution
100 5 0.02 440 4.1 0.01 15.0 1.6 | 0.02 10.0 1.0
10 0.01 550 42 0.01 26.0 1.2 ] 0.01 25.0 1.0
200 5 0.05 780 3.2 0.03 26.0 2.1 0.02 21.0 1.1
10 0.03 97.0 2.0 0.05 55.0 1.3 ] 0.01 41.0 1.2
300 5 0.02 154 2.3 0.02 35.0 2.5 0.02 33.0 1.0
10 0.04 179 1.6 0.02 73.0 1.4 | 0.04 53.0 1.2
400 5 0.08 200 1.5 0.01 45.0 1.6 | 0.00 49.0 1.3
10 0.07 280 2.2 0.03 83.0 1.0 | 0.01 79.0 1.2
500 5 0.06 306 1.6 0.01 70.0 1.9 | 0.00 69.0 1.0
10 0.01 369 1.1 0.02 166 1.0 | 0.01 178 1.3
Avg. 0.04 176 2.3 0.02 59 1.5 ] 0.01 56 1.1
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Table 4.6 Performance comparison between [SAA], [eSAA(F)], and [eSAA(D)]
(Instance S3)

[SAA] [eSAA(F)] [eSAA(D)]
€ Time Iter € Time Iter € Time Iter
N M (%) (sec) (%) (sec) (%) (sec)
Uniform distribution
100 5 0.03 165 4.1 0.09 44.0 3.5 0.00 47.0 2.2
10 0.04 208 3.2 0.02 750 34 0.00 60.0 2.1
200 5 0.03 349 59 0.07 680 3.6 0.04 55.0 1.6
10 0.05 426 2.1 0.00 114 29 0.01 103 1.1
300 5 0.03 613 1.9 0.06 82.0 35 0.02 90.0 1.0
10 0.03 742 2.3 0.02 139 2.5 0.04 113 1.2
400 5 0.02 899 1.5 0.01 780 3.4 0.02 74.0 1.5
10 0.06 1124 1.2 0.01 133 24 0.03 120 1.2
500 5 0.00 1340 29 0.01 164 1.0 0.01 133 1.1
10 0.05 1635 2.1 | 0.00 271 1.0 0.00 233 1.3
Avg. 0.03 750 2.7 0.03 117 2.7 0.02 103 1.4
Normal distribution
100 5 0.05 151 34 0.05 41.0 2.5 0.02 45.0 1.2
10 0.08 205 3.3 0.02 680 2.1 0.00 66.0 1.4
200 5 0.01 377 33 0.04 70.0 4.2 0.04 53.0 1.5
10 0.02 397 3.1 0.02 122 22 0.02 97.0 1.1
300 5 0.05 592 2.6 0.00 81.0 46 0.01 83.0 1.2
10 0.04 753 2.4 0.02 145 43 0.00 107 1.5
400 5 0.02 913 32 0.01 720 22 0.01 79.0 1.2
10 0.06 1212 3.2 0.02 144 4.1 0.02 118 1.6
500 5 0.04 1287 26 0.02 177 1.2 0.04 123 1.4
10 0.02 1668 24 0.03 248 1.2 0.00 214 1.2
Avg. 0.04 756 2.9 0.02 117 2.8 0.02 99.0 1.3
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Table 4.7 Performance comparison between [SAA], [eSAA(F)], and [eSAA(D)]
(Instance S4)

[SAA] [eSAA(F)] [eSAA(D)]
€ Time Iter € Time Iter € Time Iter
N M (%) (sec) (%) (sec) (%) (sec)
Uniform distribution
100 5 0.02 410 5.1 0.02 76.0 7.2 0.00 82.0 1.6
10 0.06 774 4.7 0.02 137 64 0.00 111 1.2
200 5 0.02 928 5.2 0.01 67.0 6.0 0.03 54.0 2.2
10 0.02 1935 3.0 0.00 115 6.2 0.02 104 1.9
300 5 0.03 1799 3.6 0.03 112 6.1 0.02 123 2.6
10 0.00 3561 3.8 0.00 194 5.7 0.00 157 2.1
400 5 0.02 3153 4.1 0.02 131 5.0 0.02 124 2.2
10 0.05 5893 24 0.03 250 5.1 0.01 225 2.0
500 5 0.02 4246 2.2 0.01 164 52 0.02 133 1.4
10 0.02 9146 2.0 0.01 287 4.0 0.01 247 1.5
Avg. 0.03 3185 3.6 0.02 153 57 0.01 136 1.8
Normal distribution
100 5 0.05 397 42 0.05 76.0 32 0.02 85.0 1.5
10 0.02 787 2.1 0.04 141 2.8 0.01 116 1.6
200 5 0.06 910 43 0.04 67.0 3.6 0.03 58.0 2.3
10 0.04 1969 42 0.02 114 2.0 0.01 106 1.1
300 5 0.05 1805 2.0 0.06 121 2.6 0.06 131 1.2
10 0.04 3738 2.6 0.01 189 24 0.01 147 1.6
400 5 0.02 3430 1.8 0.00 123 1.6 0.03 114 1.5
10 0.06 6073 2.1 0.05 231 1.2 0.02 221 1.4
500 5 0.04 4353 2.0 0.03 178 2.5 0.01 145 1.9
10 0.01 9036 1.2 0.01 291 2.1 0.03 226 2.0
Avg. 0.04 3250 2.6 0.03 153 24 0.02 135 1.6
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Table 4.8 Performance comparison between [SAA], [eSAA(F)], and [eSAA(D)]
(Instance SS)

[SAA] [eSAA(F)] [eSAA(D)]
€ Time Iter € Time Iter € Time Iter
N M (%) (sec) (%) (sec) (%) (sec)

Uniform distribution
100 5 0.04 881 4.2 0.03 204 3.3 0.01 188 1.9
10 0.06 1749 4.1 0.04 386 2.9 0.05 309 1.0
200 5 0.04 2190 3.8 0.01 292 5.2 0.01 248 1.6
10 0.02 4857 33 0.06 555 4.8 0.03 500 1.6
300 5 0.09 4084 3.9 0.02 433 3.2 0.01 372 2.1
10 0.04 8475 351 0.02 823 1.5 0.06 889 1.1
400 5 0.08 7031 3.6 0.03 449 22 0.02 471 1.3
10 0.09 14615 3.1 0.06 858 1.9 0.02 755 2.0
500 5 0.04 9299 3.0 0.05 452 2.0 0.01 366 1.6
10 0.02 22865 22| 0.01 814 19 0.02 806 1.7
Avg. 0.05 7605 34 0.03 527 29 0.02 490 1.6
Normal distribution
100 5 0.00 890 4.0 0.05 211 3.2 0.02 198 1.6
10 0.08 1724 4.3 0.04 351 22 0.05 327 2.1
200 5 0.06 1973 4.0 0.05 288 3.6 0.04 228 1.3
10 0.07 4506 3.6 0.06 557 3.1 0.02 460 1.0
300 5 0.03 3845 4.1 0.01 423 29 0.01 405 1.5
10 0.05 9124 4.3 0.02 815 25 0.01 967 1.4
400 5 0.06 7327 3.1 0.03 492 2.6 0.01 508 1.9
10 0.08 13826 2.5 0.05 820 2.5 0.03 698 1.4
500 5 0.09 9736 2.3 0.04 472 2.6 0.01 384 1.5
10 0.07 | 24789 2.1 0.07 755 3.2 0.02 864 1.1
Avg. 0.06 7774 34 0.04 518 2.8 0.02 504 1.5
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Table 4.9 Performance comparison between [SAA], [eSAA(F)], and [eSAA(D)]
(Instance S6)

[SAA] [eSAA(F)] [eSAA(D)]
€ Time Iter € Time  Iter € Time Iter
N M (%) (sec) (%) (sec) (%) (sec)

Uniform distribution
100 5 0.06 2978 4.1 0.01 2464 72 0.01 1996 1.6
10 0.03 5720 5.7 0.03 5691 64 0.02 4610 1.2
200 5 0.02 7556 5.2 0.01 2548 6.0 0.03 2293 2.2
10 0.01 16902 3.0 0.03 5859 6.2 0.04 6445 1.9
300 5 0.04 14252 3.6 0.02 2541 6.1 0.05 2058 2.6
10 0.03 26782 3.8 0.04 5894 5.7 0.01 5599 2.1
400 5 0.02 23554 4.1 0.02 2618 5.0 0.02 2356 2.2
10 0.02 50274 2.4 0.03 6041 5.1 0.05 4893 2.0
500 5 0.01 30779 2.2 0.00 2674 5.2 0.03 2300 1.4
10 0.06 75226 2.0 0.02 6202 4.0 0.05 6698 1.5
Avg. 0.03 25402 3.6 0.02 4253 57 0.03 3925 1.8
Normal distribution
100 5 0.01 2742 43 0.01 2682 2.0 0.00 2046 1.9
10 0.02 6083 5.1 0.03 6065 1.6 0.01 4303 1.4
200 5 0.03 6928 5.4 0.01 2678 2.2 0.03 2317 2.3
10 0.04 18282 4.1 0.03 6020 1.6 0.01 6975 1.5
300 5 0.05 15030 3.9 0.02 2627 29 0.04 1857 1.9
10 0.01 26420 3.1 0.04 6442 1.1 0.03 5680 2.0
400 5 0.02 21894 3.8 0.02 2513 23 0.02 2309 1.2
10 0.05 53615 2.4 0.03 5686 1.2 0.02 4637 1.0
500 5 0.03 31021 2.3 0.00 2735 1.6 0.01 2091 1.5
10 0.05 79285 2.0 0.02 5689 1.5 0.06 6725 1.1
Avg. 0.03 26130 3.6 0.02 4314 1.8 0.02 3894 1.5

The second set of experiments (Table 4.10 — 4.15) report the impact of
introducing dynamicity in [eSAA(D)] over [eSAA(F)] under different clustering
techniques such as, K-means, K-means++, K-means||, and C-means clustering. To
perform these tests, we kept the sample size fixed for all experiments i.e., N’ = 1,000.
The results indicate that incorporating dynamicity substantially improves the
performance of the enhanced sample average approximation algorithm. Furthermore, it is
observed that both algorithms are capable of solving all the problem instances within pre-
specified optimality gap and time limit. It has been proven to be true under both normal

and uniform distribution. Under uniform distribution, algorithm [eSAA(D)] is on average
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12.7% faster than algorithm [eSAA(F)] whereas the number increases to 21.1% for
normal distribution. For all instances, [eSAA(D)] has given faster solution than
[eSAA(F)]. More specifically, for smaller instances (instances S1-S4) both [eSAA(F)]
and [eSAA(D)] algorithms with k-means clustering have given better result in terms of
computational time; however, for larger instances (instance S5 and S6) [eSAA(F)] and
[eSAA(D)] with K-means|| clustering have given better results. Although, both
[eSAA(D)] and [eSAA(F)] terminate with an g-optimal solution, the quality of solution
produced by [eSAA(D)] is constantly higher for all instances. Note that the experimental

results show same trends for both the uniform and normal distribution.
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Performance comparison between [eSAA(F)] and [eSAA(D)] (Instance S1)

Table 4.10
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Performance comparison between [eSAA(F)] and [eSAA(D)] (Instance S2)
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Performance comparison between [eSAA(F)] and [eSAA(D)] (Instance S3)

Table 4.12
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Performance comparison between [eSAA(F)] and [eSAA(D)] (Instance S4)

Table 4.13
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Our computational experiences with experimental sets 1 and 2 indicate that as the
sample size increases it adds more complexity in solving algorithm [SAA] compared to
[eSAA(F)] and [eSAA(D)]. For instances, as the sample size (N) increases from 100 to
500 the average computational time in solving [SAA] increases up to 1546% compared to
443% and 397% in [eSAA(F)] and [eSAA(D)], respectively. Note that this computation
benefits are achieved in both [eSAA(F)] and [eSAA(D)] algorithms without sacrificing
any solution qualities.

To better illustrate the effect of sample size N and replication number M on
computation time, we solve our stochastic [FLP] instance S4 by varying the sample size
N (shown in Figure 4.3) and M (shown in Figure 4.4) in [SAA] and [eSAA(D)]. The
results in Figure 4.3 show that while the solution time increases steadily with N in
[SAA], the increase is not steady in [eSAA(D)]. Fuzzy C-means provides the lowest
savings while K-means++ and K-means produce the highest savings in computation time
for the instance we considered. The poor computational performance from fuzzy C-
means may be due to the time it takes in computing the degree of membership of every
data in multiple clusters. In Figure 4.4 we vary the number of replications from 10 to 50
and observe that the solution time increases with the number of replications. Note that in
both experiments an MIP clustering technique is employed to solve [eSAA(F)]. The poor
performance of the MIP clustering technique may be attributed due to the enormous time
taken to solve the NP-hard formulation of the clustering problem and thus may not be

worthy to use for relatively large sample size scenarios.
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4.4.3 Single-sink transportation problem ([SSP])

Maggioni et al. [88] propose a single-sink transportation problem (|[SSP]) where
the authors investigate the production capacity of the suppliers under uncertain customer
demand. Details about the problem description along with the formulation can be
obtained from Maggioni et al. [88]; however, we now introduce the formulation along
with a short description of the problem. In this problem, the authors assume that a single
warehouse is the only destination location. An external source is assumed to be
responsible for leasing the vehicles. The supply capacity of this external source is
assumed to be enough to supply any number of vehicles required. However, the vehicles
must be booked in advance before the realization of demand at the warehouse. After the
realization of demand, booking of vehicles can be cancelled with a cancellation fee which
denoted by a. If the demand at warehouse exceeds the supply capacity of the supply

177



plants, the residual amount is purchased from another source at a higher price, . The

objective of this problem is to determine for each supplier the number of vehicles to book

in advance to minimize the total costs, given by the sum of the transportation costs and

penalty costs. Table 4.16 introduces the notations used in this formulation.

Table 4.16  Notations and symbols in [SSP] formulation
Notation Explanation
Sets
1 Set of suppliers
Q Set of scenarios
Parameters
C; Unit transportation cost of supplier i € [
Di Unit production cost of supplier i € 1
B Penalty cost
q Vehicle capacity
g Maximum capacity that can be booked
h Initial inventory level at the customer
lnax Storage capacity at the customer
p? Probability of scenario w € ()
a; Supply capacity of supplier i € I in scenario w € ()
d® Customer demand at scenario w € ()
A Cancellation fee

Decision variables

X
w

Zi

Number of vehicles booked from supplier i € [
Number of vehicles actually used from supplier i € I in
scenario w € ()

Penalty amount in scenario w € ()

Now, the two-stage stochastic model becomes

i Q i
[SSP]: Minimize q Z cix; + Z p® [Br“’ —(1-a)q Z ci(x; — Zl-‘")]
i=1 w=1 i=1

subject to

ng:lxi =g

(4.42)
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l
qz” < a; Viel,w €Q

r® > 0 Vw€EQ

x; EZT Viel,we€Q

z¥» e Zt Vviel,w e

l

(4.43)
(4.44)
(4.45)
(4.46)
(4.47)
(4.48)

(4.49)

Constraint (4.42) ensures that the total number of booked vehicles from supplier

i € I to the customer is not greater than Z. Constraints (4.43) and (4.44) ensure that
g q

second-stage storage level is between 0 and L,,,,,.. Constraints (4.45) guarantee that the

total number of vehicles serving supplier i € I is at most equal to the number of vehicles

booked in advance under scenario € (1, Constraints (4.46) indicate that the quantity of

product delivered from supplier i € I does not exceed production capacity a; under

scenario w € () . Constraints (4.47) are continuous variables whereas constraints (4.48)

and (4.49) are integer variables.

We now use the data provided by Maggioni et al. [88] to generate three instances

(reported in Table 4.17) to solve problem [SSP] using the algorithms proposed in

Section 4.3.2.
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Table 4.17  Deterministic equivalent of test instances for problem [SSP]

Instance  |/] Integer Continuous Total No. of
Variables Variables Variables Constraints
SSP1 50 100 1 101 104
SSP2 100 200 1 201 204
SSP3 200 400 1 401 404

Table 4.18 presents the experimental results in solving problem [SSP] using
algorithms [SAA], [eSAA(F)] and [eSAA(D)] on the three problem instances reported in
Table 4.17. The results are in alignment with the results discussed previously for [FLP]
and it is observed that all the problems are solved within a pre-specified tolerance gap
under the specified time limit. Results indicate that both [eSAA(F)] and [eSAA(D)]
outperform [SAA] in terms of solution quality and running time for all the test instances
reported in Table 4.17. On average, [eSAA(D)] and [eSAA(F)] are approximately 217%

and 205% faster than [SAA] algorithm, respectively.
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Table 4.18  Results for [SAA], [eSAA(F)], and [eSAA(D)] in problem [SSP]

[SAA] [eSAA(F)] [eSAA(D)]
Problem € Time  Iter € Time Iter € Time Iter
Instance | N M (%) (sec) (%) (sec) (%)  (sec)

100 5 0.05 3.8 2.1 0.02 2.6 14| 0.03 2.7 1.0

10 0.01 51 5.0 0.04 2.8 2.0 | 0.01 2.8 1.0

200 5 0.01 53 33 0.02 2.8 221 0.02 2.8 1.0

10 0.03 8.0 52 0.03 3.0 3.0 0.01 29 1.0

300 5 0.02 6.9 2.7 0.01 2.9 1.6 | 0.02 3.1 1.0

SSP1 10 0.02 11.4 1.4 0.02 3.7 221 0.07 3.2 1.0
400 5 0.01 8.8 1.1 0.01 3.1 1.6 | 0.01 3.2 1.0

10 0.02 14.9 1.3 0.05 6.5 1.2 | 0.03 3.7 1.0

500 5 0.06 9.0 20 0.02 3.4 34| 0.01 4.0 1.0

10 0.01 155 1.8 0.01 8.3 3.0 0.02 5.6 1.0

Avg. 0.02 89 26 0.02 3.9 22| 0.02 3.4 1.0

100 5 0.08 7.7 20 0.07 5.2 14| 0.04 5.2 1.0

10 0.03 108 1.6 0.02 7.1 1.1 | 0.05 6.9 1.0

200 5 0.01 107 1.3 0.09 5.4 1.2 | 0.02 5.4 1.0

10 0.05 181 14 0.03 7.6 1.7 | 0.01 7.5 1.0

300 5 0.03 142 19 0.01 5.7 3.0 0.07 5.6 1.0

SSP2 10 0.06 253 1.3 0.01 8.0 1.5 | 0.01 7.9 1.0
400 5 0.01 18.0 2.7 0.07 5.9 1.8 | 0.08 5.8 1.0

10 0.09 34.0 1.2 0.02 8.5 1.2 | 0.01 8.5 1.0

500 5 0.03 21.5 1.5 0.06 6.6 3.0 0.06 6.2 1.0

10 0.06 40.7 1.4 0.01 9.1 1.6 | 0.02 9.0 1.0

Avg. 0.05 20.1 1.6 0.04 6.9 1.8 | 0.04 6.8 1.0

100 5 0.04 15.1 1.2 0.09 10.8 2.0 0.01 10.1 1.0

10 0.05 20.7 2.6 0.01 11.1 1.4 | 0.07 10.7 1.0

200 5 0.02 21.9 2.4 0.06 10.8 1.8 | 0.04 10.8 1.0

10 0.06 337 3.1 0.01 11.2 1.2 | 0.02 11.0 1.0

300 5 0.01 29.2 33 0.06 10.9 1.2 | 0.01 10.9 1.0

SSP3 10 004 481 16| 003 11.6 1.1 | 004 115 1.0
400 5 0.01 36.5 1.9 0.01 11.2 221 0.08 11.1 1.0

10 0.06 62.8 1.3 0.04 12.3 1.0 | 0.03 12.1 1.0

500 5 0.08 43.5 1.8 0.05 11.4 1.0 | 0.05 114 1.0

10 0.05 76.5 1.2 0.01 12.7 1.0 | 0.01 12.6 1.0

Avg. 0.04 38.8 2.0 0.04 11.4 1.4 | 0.04 11.2 1.0

4.4.4 Supply transportation problem ([STP])
Maggioni et al. [89] propose a supply transportation problem ([STP]) where the
authors investigate a transportation problem related to gypsum replenishment for a

cement producer under customer demand uncertainty. The details of the problem
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description along with the formulation can be obtained from Maggioni et al. [89];
however, we now introduce the formulation along with a short description of the
problem. In this problem, a total of 24 suppliers, each having several plants serve the
need of 15 warehouses of the same customer. Shipments are performed by capacitated
vehicles whereas the booking of these vehicles has to be done in advance prior to a
realization of a customer demand. Similar to the single-sink transportation problem
([SSP)), booking of vehicles can be cancelled after the realization of demand. Thus, a
penalty cost will be imposed for not fulfilling the customer demand by the suppliers. The
objective is to determine the number of vehicles to book at the beginning of each week to
replenish gypsum at all cement factories of the producer to minimize the total cost, given
by the sum of the transportation costs and penalty cost incurred due to purchasing from
external suppliers in extreme situations. Table 4.19 introduces the notations used in the

formulation of [STP].
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Table 4.19  Notations and symbols in [STP] formulation
Notation Explanation
Sets
S Set of suppliers
I Set of plant locations of supplier s € S
D Set of warehouse locations
0 Set of scenarios
Parameters
tia Unit transportation cost of planti € I;, s € S
to warehouse d € D
b, Penalty cost for assigning a vehicle to warehouse d € D
Q Vehicle capacity
Ja Maximum capacity that can be booked for warehouse d € D
Is Maximum requirement capacity of supplier s € S
a Minimum requirement capacity of supplier s € S
lmax Storage capacity at the warehouses
a Discount
p® Probability of scenario w € £
dg Customer demand at warehouse d € D in scenario w € ()
Decision variables
Xid Number of vehicles booked from supplier i € I to warehouse
deD
z{ Number of vehicles actually used from supplier i € I, to
warehouse d € D in scenario w € ()
ry Number of extra vehicles used from external sources for

warehouse d € D in scenario w € ()

Now, the two-stage stochastic model becomes

Is

s D
[STP] Minimize q z z z tiaXiq

subject to

1i=1d=1
Q D s Is p
+ Z Pw[z qbgry —aq Z Z Z tia(Xiq — zig)]
w=1 d=1 s=1i=1d=1
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QZ§=12§S=1xid < ga VdED
0<1+q(X5_, 0, 2878) —dS <lpax = 0VdED,wEQ
7z < xiq Vi €El;,s€S,dED,w EQ
as <19 +q(XE, 38-128)<gs VSESwEQ
z¥ € Z* Vi €lg,deD,w €N
ry € Z* Vi €l,d€D,w €N

Xiqg ELT Vi €l,,deED,w€eN

(4.50)
(4.51)
(4.52)
(4.53)
(4.54)

(4.55)

(4.56)

Constraints (4.50) ensure that for each warehouse d € D, the total number of

booked vehicles from the suppliers to the warehouses does not exceed (‘%d). Constraints

(4.51) indicate that the storage level of warehouses d € D is between 0 and L,

Constraints (4.52) guarantee that the number of vehicles used by the suppliers is at most

equal to the number of vehicles booked in advance. Constraints (4.53) indicate that for

all suppliers s € S, the volume of products transported to warehouses d € D by the used

vehicles is at least ag and at most g;. Constraints (4.54), (4.55), and (4.56) are integer

constraints.

We now use the data provided by Maggioni et al. [89] to generate three instances

(reported Table 4.20) to solve [STP] using the algorithms proposed in Section 4.3.2.
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Table 4.20  Deterministic equivalent of test instances for problem [STP]

Instance || Integer No. of
Variables  Constraints
STP1 5 165 774
STP2 10 315 1494
STP3 15 455 2214

Table 4.21 presents the experimental results obtained from solving problem [STP] using
algorithms [SAA], [eSAA(F)], and [eSAA(D)] on the three problem instances reported in
Table 4.20. Yet again, the results are consistent with the results discussed previously for
[FLP] and [STP]. It is observed that on average, [eSAA(D)] and [eSAA(F)] are 2235%
and 1655% faster than [SAA], respectively. Moreover, the average optimality gap
produced by [eSAA(D)] and [eSAA(F)] are 33.0% and 9.1% better than that from [SAA],
respectively. In summary, the results obtained by using [eSAA(F)] and [eSAA(D)] to
solve [SSP] and [STP] repeat the promising trends observed from solving [FLP] within

our experimental range.
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Table 4.21  Results for [SAA], [eSAA(F)], and [eSAA(D)] in problem [STP]

[SAA] [eSAA(F)] [eSAA(D)]
Problem € Time Iter € Time Iter € Time Iter
instance | N M (%) (sec) (%)  (sec) (%)  (sec)

100 5 0.03 148 4.2 | 0.03 21 33| 0.01 24 1.5

10 0.06 279 3.5 0.08 35 29| 0.01 36 1.6

200 5 0.03 334 4.1 | 0.02 29 37| 0.04 31 2.3

10 0.07 697 2.1 | 0.01 39 2.1 0.03 42 1.2

300 5 0.04 648 2.6 | 0.04 39 2.7 1 0.03 38 1.3

STP1 10 0.01 1282 2.8 | 0.01 61 2.5 0.01 49 1.4
400 5 0.03 1135 321 0.03 41 1.7 | 0.07 39 1.6

10 0.06 2121 1.3 | 0.04 78 1.3 0.02 70 1.4

500 5 0.03 1529 1.1 | 0.02 51 2.6 | 0.03 41 1.8

10 0.03 3293 1.0 | 0.07 90 2.2 | 0.02 77 2.1

Avg. 0.04 1147 2.6 | 0.04 48 2.5 | 0.03 45 1.6

100 5 0.08 393 43 0.02 74 34| 0.01 71 2

10 0.05 741 42 0.04 123 3.1 | 0.04 111 1.1

200 5 0.03 889 3.9 0.01 102 53| 0.01 97 1.7

10 0.01 1853 34| 0.05 137 49| 0.08 131 1.6

300 5 0.08 1723 4.1 | 0.02 140 33| 0.01 119 2.2

STP2 10 0.03 3410 3.6 | 0.09 215 1.6 | 0.05 152 1.1
400 5 0.07 3019 3.7 0.08 145 23| 0.03 120 1.4

10 0.08 5643 321 0.05 277 21 0.03 218 2.1

500 5 0.03 4066 3.1 | 0.04 182 2.1 ] 0.01 129 1.7

10 0.01 8758 2.3 | 0.01 318 2] 0.02 239 1.8

Avg. 0.05 3050 3.6 | 0.04 171 31 0.03 139 1.7

100 5 0.05 942 4.2 | 0.02 189 6.1 | 0.02 154 1.4

10 0.02 1779 5.8 1 0.03 314 54| 0.01 234 1.1

200 5 0.01 2133 531 0.01 261 50 0.04 203 2.0

10 0.01 4447 3.1 0.02 350 5.1 0.06 274 1.8

300 5 0.03 4135 3.7 0.01 356 53| 0.05 250 2.4

STP3 10 002 8184 39| 004 548 47| 001 319 1.9
400 5 0.02 7246 4.2 | 0.07 370 4.0 | 0.03 252 2.1

10 0.08 13544 2.5 1 0.03 706 4.1 | 0.04 457 1.8

500 5 0.01 9758 2.3 | 0.01 463 43| 0.02 270 1.2

10 0.05 21020 2.1 | 0.03 811 32| 0.04 502 1.3

Avg. 0.03 7319 3.7 1 0.03 437 4.7 | 0.03 292 1.7

4.5 Conclusions

This study proposes a methodological approach to enhance the performance of the
basic SAA by incorporating dynamic clustering strategy within the algorithmic

framework. This approach is then experimentally validated in the context of a stochastic
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facility location problem. We created different variants of the enhanced sample average
approximation algorithm (i.e., different clustering strategy, fixed clusters vs. dynamic
clusters) and the compare the computational performance of those variants with the basic
SAA algorithm. Computational performance indicates that both enhanced SAA with
fixed clustering size and dynamic clustering size are capable of tackling large scenario
sets and offers high quality solutions constantly in a reasonable amount of time. It is
observed that on average enhanced SAA with fixed clustering size and dynamic
clustering size solves [FLP] almost 631% and 699% faster than the basic SAA algorithm.
Moreover, we observe that there is no single winner among the clustering techniques to
solve all the problem instances of the enhanced SAA algorithm. For instance, k&~-means
has outperformed others in solving instances from S1 to S4 whereas k-means|| has
provided superior results in solving large scale problem instances, i.e., S5 and S6.
Enhanced SAA incorporating fuzzy C-means gives the worst result among all the
clustering techniques; however, the integration still outperforms the basic SAA algorithm
in terms of computation time and solution quality.

In summary, the contributions of this paper to the literature are manifold. First,
our method provides the flexibility to start with any sample size and then dynamically
adjusting the size based on prior computational performances to ensure convergence of
the algorithm. Second, we incorporated different clustering strategies inside SAA to
obtain a valid lower bound and improves the performance of basic SAA algorithm.
Finally, we tested our algorithm in a classical facility location problem to determine the

effectiveness of using our approach in a stochastic network framework.
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This work can be extended in several directions. First of all, we can apply the technique
to the AM feasibility problem in Chapter II as well as the AM deployment problem in
Chapter III formulated as a mixed integer programming problem. Our method can also
be used to solve other optimization problems such as two-stage chance-constrained
problems and progressive hedging based optimization problems. Additionally, efforts are
required to develop advanced clustering strategies inside our proposed methodology to
further improve the performance of the algorithm. These issues will be addressed in

future studies.
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CHAPTER V

CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

The adoption of additive manufacturing for fabricating biomedical implants at
hospitals provides many potential benefits which include opportunity to receive more
patient-specific, customized parts with faster response, a lower inventory level, and
reduced delivery costs. Our study shows that a mathematical model that captures both
process-level and system-level costs helps to make better economic decisions on the
feasibility of AM technology in the manufacture of biomedical implants. A key cost
parameter, the ratio between unit production costs of AM and TM (ATR) indicates the
point at which the adoption of AM makes an economic sense in the fabrication of
biomedical implants. Using the state of Mississippi as a test bed, when ATR < 3.5, our
study suggest a harmonious implementation of AM and TM production in which case the
demand of biomedical implants may be filled using both AM and TM facilities
depending on the required product lead time, locations of patients, capacity of the AM
facilities. Another key parameter is the urgency of the product. When a biomedical
implant is needed in a short time window (e.g., in a life-or-death situation), TM suppliers
may not have the parts with specific features (e.g., dimensions, shapes, etc.) in stock, and

may require an additional lengthy customization process. In this case, AM may be a
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viable option because of the short response time and the capability of mass
customization, irrespective of the high cost.

In order to reap the full benefits of AM technology, the deployment configuration
of AM facilities is an important issue that one needs to take into consideration given the
high cost of AM machines. Moreover, a model that recognizes the high cost of raw
materials used in manufacturing biomedical implants while making inventory decisions
in solving the AM deployment problem provides a more realistic solution. Our proposed
continuous approximation (CA) cost model quantifies the supply-chain network costs
associated with the production of biomedical implants using AM technologies, and
provides the optimal deployment configuration of AM sites in the southeastern region of
the United States for efficient and responsive fabrication of biomedical implants for use
in hospitals and clinics in the region. Utilizing the proposed CA model in making AM
deployment decision instead of the extreme AM configuration options in literature results
in enormous saving in cost. We can achieve a saving of 7% of the total network cost by
using the CA model instead of locating only one central AM facility to serve the entire
region. The saving increases to 59% when compared with establishing an AM facility in
every county in the region. The CA model records a ground-breaking saving of 71% of
total network cost in a scenario where the demand of biomedical implants decrease by
50% and annual personnel cost doubles.

Results from our extensive numerical experiments show the demand level of the
biomedical implants has the most significant effect on how many AM facilities should be
located in the region and how distributed the deployment should be. Specifically, if other
parameters are kept constant, doubling the demand, increases the number of AM facilities
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by more than 59%, thereby making the network more distributed, while the number
reduces by up to 33% if the demand level is halved, making the network less distributed.
Other factors such as the price and maintenance cost of AM machines, the labor cost of
operating the machines and the unit transportation cost of an item per mile all affect the
total supply chain network cost and deployment configuration of AM facilities. Reducing
the fixed AM investment cost by 50% can result in an increase of up to 37% in the
number of AM facilities established and reduce the total network cost by about $1.4
million or 0.8%.

Our proposed enhanced sample average approximation (eSAA) technique
provides a methodological approach that incorporates clustering and statistical tests in an
optimization procedure to achieve faster solution convergence time than the basic sample
average approximation approach. The eSAA with fixed clustering size and dynamic
clustering size solves our test stochastic facility location problem up to 631% and 699%

faster than the basic SAA technique.

5.2 Future work

It will be interesting to see the application of our models and techniques beyond
healthcare to solve AM- related decision problems in other areas such as automobile,
aviation and energy production equipment. In such a study, one can account for the cost
analysis of assemblies. AM allows for the production of multiple parts simultaneously in
the same build, making it possible to produce an entire product. TM often includes
production of parts at multiple locations, where an inventory of each part might be stored.
The parts are shipped to a facility where they are assembled into a product. AM has the

potential to replace some of these steps for some products, as this process might allow for
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the production of the entire assembly. This would reduce the need to maintain large
inventories for each part of one product. It also reduces the transportation of parts
produced at varying locations and reduces the need for just-in-time delivery.

We can extend our proposed eSAA technique of Chapter IV to solve the AM
feasibility problem in Chapter II as well as the AM deployment problem in Chapter 111
formulated as a mixed integer programming problem, especially when the network is
scaled up to include the entire USA. We can also apply the method to solve other
optimization problems such as two-stage chance-constrained problems and progressive
hedging based optimization problems. Additionally, efforts are required to develop
advanced clustering strategies inside our proposed methodology to further improve the

performance of the algorithm.
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