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Heat treatment for the purpose of material strengthening is accompanied by residual

stresses and distortion. During these processing steps, steel alloys experience a phase

change that in turn modify their overall mechanical response. To properly account for

the cumulative composite behavior, the mechanical response, transformation kinetics and

subsequent interaction of each phase have to be properly accounted for. Of interest to

material designers and fabricators is modeling and simulating the evolutionary process a

part undergoes for the sake of capturing the observable residual stress states and geometric

distortion accumulated after processing.

In an attempt to capture the aforementioned physical phenomena, this investigation is

premised upon a consistent thermodynamic framework. Following this, the single phase

Evolving Microstructural Model of Inelasticity state variable model is extended to accom-

modate the occurrence of multiphases, affrming that the interaction between coexisting



phases is through an interfacial stress. Since the effcacy of a multiphase model is de-

pendent on its ability to capture the behavior of constituents phases and their subsequent

interaction, we introduce a physically based self-consistent strain partitioning algorithm.

With synthesis of the aforementioned ideas, the additional transformation induced plas-

ticity is numerically accounted for by modifying each phase’s fowrule to accommodate an

interfacial stress. In addition, for simulating the cohabitation of two phases, the mechan-

ical multiphase model equations is coupled with a previously developed non-diffusional

phase transformation kinetics model. A qualitative assessment of the material response

based on a Taylor, Sachs and self-consistent polycrystalline approximation is carried out.

Further analysis of the multiphase model and its interaction with transformation kinetics is

evaluated.

Key words: Plasticity, Phase Transformation, Multiphase, Rate Kinetics, Polycrystalline
Approximation
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CHAPTER 1

INTRODUCTION

1.1 Literature Review 

Practitioners have been largely successful in developing heat treatment protocols based

on experience. A signifcant amount of steel parts are successfully heat treated to meet

product requirements. These heat treatment protocols can successfully reproduce the re-

quired hardness profles, carbon profles or microstructure of the part. Modeling, however,

still plays a vital role in dimensional control. It attempts to predict dimensional changes

that occur during heat treatment. Computational models can be used to determine how the

local thermal histories affect phase transformation. Dimensional changes can stem from

a combination of either thermal expansion or contraction, long term creep operating at

high temperatures, carborization, transformation plasticity, and transformation strains. For

reasons such as computational effciency, modeling the heat treatment process using a con-

tinuum mechanics framework is still an attractive option. It requires research into a broad

range of topics.

According to Truesdell [97, 98] research efforts in continuum mechanics are focused

mainly on three major areas. One area spans the development of constitutive equations

that represent material behavior derived based on experimentation, microscopic modeling

or experience. Another area encompasses employing a numerical analysis approach to
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deal with a selected constitutive formulation. Finally, other challenges include performing

a mathematical analysis involving the governing equations. Here the main focus is in

developing a multiphase inelasticity model that incorporates phase transformation kinetics.

Therefore, most of the research effort here is concentrated in the frst two aforementioned

subject areas. In general, the research effort in multiphase inelasticity includes a discussion

on several subtopics namely thermodynamics, kinematics, polycrystalline partitioning and

transformation kinetics models for coexisting phases.

The pioneering working of Truesdell and Noll [97, 98] on developing, composing and

documenting the nonlinear-feld theories of mechanics has fostered the extensive applica-

tion of continuum mathematics to modeling of engineering materials exhibiting non-linear

behavior. Subsequent works of Coleman and Noll [24,25] on fnding the restrictions placed

on the constitutive formulation designed to account for the dissipative effects expressed

through heat conduction and subsequent deformation helped propel the application of ther-

modynamics to continuum mechanics. Based on the approach taken by [24, 25], Coleman

and Gurtin [23] derived the thermodynamics restrictions necessary when applying Inter-

nal State Variables (ISVs) to modeling materials that exhibit nonlinear behavior using a

continuum mechanics framework

The works of Eshelby [29,30] on determination of the elastic feld in and around an el-

lipsoidal inclusion encouraged the development of view point of a framework for handling

materials with discontinuous properties. Further works of Ericksen [28], Ball [9] encour-

aged the development of an approach to mathematically model the existence of multiphases

in an elastic solid. A number of researchers [8, 101] through experimentation, theoretical

2



derivation and calculation have established the fact that martensite develops 24 possible

variants in the presence of an austenite phase with each variant showing a distinct lattice

orientation.

It has been well documented [22] that phase changes can be viewed as a forced re-

arrangement or reorganization of a lattice to accommodate an external driving function.

From this point of view, it is conceivable that there will be an associated straining due to

the appearance of a product phase or phases during heat treatment or quenching procedures.

The onset these product phases is preceded by additional plastic fow usually referred to

as Transformation Induced Plasticity (TRIP) known to be explained by two mechanisms

namely the Greenwood-Johnson [41] or accommodation process and the Magee [76] mech-

anism or orientation process. Following Leblond et al. [65], TRIP is the additional plas-

ticity due to the evolution of the constituent phase fractions of a transformation prone

material. Previous works on multiphase modeling using continuum theory have explicitly

included an additional strain to account for the TRIP [3]. This additional strain is simply a

numerical quantity introduced to account for the straining observed during a phase change.

A similar approach was taken in the early development of modeling techniques or for-

mulation to account for creep phenomena [84]. It became common practice to introduce

a creep strain in addition to the plastic strain, resulting in an expression for the inelastic

strain. Since creep is simply the rate or time dependent deformation observed in crystalline

material at elevated temperatures and constant stress boundary conditions, it is often the

same dislocation-based mechanism associated with plastic fow in tension tests constant

velocity boundary condition. To remedy this apparent inconsistency, several rate depen-
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dent plasticity models have been introduced. These models were capable of predicting both

rate dependent creep and classical plasticity without the introduction of a yield surface and

were commonly referred to as Unifed Creep Plasticity (UCP) model [20, 58, 81, 100].

In the past, several researchers have demonstrated the possibility of extending a con-

tinuum mechanics based formulation with ISVs to modeling of co-existing phases. Tanaka

and Nagaki [92] devised an approach for modeling engineering materials experiencing

phase transition. They introduce two ISVs, one that kept track of crystallographic struc-

ture evolution and the other that measures the extent of phase transition. To model the

interaction or effects of parent and product phases they introduce a TRIP strain quantity

to account for the additional plasticity experienced during phase transformation. In an at-

tempt to capture the plasticity induced as a result of phase transition, Leblond et al. [61,64]

used the Hill-Mandel [44,77] homogenization process to decompose the macroscopic plas-

tic strain into two contributing portions. They decompose the macroscopic plastic strain

into a contribution from classical plasticity and the other from transformation plasticity

without a priori assumption of a new microscopic plastic strain.

In a later work, Leblond et al. [62,63] experimented with previously proposed relation-

ships between the macroscopic TRIP stain-rate quantity and the stress deviator [37, 60].

Subsequently, neglecting the Magee mechanism, they pursued a numerical investigation of

the TRIP component with a consideration of both perfectly-plastic (negligible hardening)

and strain hardening effects. It is noteworthy to mention that based on experimental obser-

vations several other authors [1, 36, 41, 82] had derived constitutive relationships between

4



macroscopic TRIP stain or strain rate and stress analogous to the form of the fow law for

classical plasticity.

Bammann et al. [10,11,15,16] developed an ISV framework that enabled capturing the

temperature and stain rate dependent behavior observable in single phase materials, result-

ing in the Bammann-Chelsea-Johnson (BCJ) plasticity model. The kinematic hardening

phenomena was captured using a tensorial state variable with a cast in a hardening minus

recovery format following Frederick and Armstrong [34]. Similarly to the kinematic hard-

ening evolution, isotropic hardening evolution though a scalar state variable, was cast in

a similar hardening minus recovery format. In a subsequent work, Bammann et al. [12]

extend the BCJ single phase framework to capture the occurrence of coexisting phases in

an engineering material. The effort was directed toward capturing the residual stress and

distortion observable in the event of a welding, heat treatment or quenching procedures

performed on low alloy steels.

Several fnite deformation kinematic frameworks have been proposed to enable cap-

turing the phase transformation phenomena observed in crystalline materials. The more

common mathematical framework used to formulate the kinematics of fnite deformation

for a single phase is based on a multiplicative decomposition of the deformation gradient

(F) into an elastic and plastic component. Following Khan [52], the deformation gradient

can be decomposed into:

F = FeFp (1.1)

where Fe and Fp is the elastic and plastic part. In a similar manner, this approach has been

extended to a multiphase framework. Bock and Holzapfel [19], Kroner [59], and Lee and
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Liu [66] extended the small strain phase transition framework work earlier developed by

Leblond et al. [62,63] to a large strain framework. They accounted for the additional plas-

ticity relating to the orientation process (Magee Effect) [76]. The evolution law accounting

for the TRIP strains was chosen to be of a visco-plastic nature.

More recently, Hallberg et al. [43] using a large-strain plasticity framework proposed

a phase transition model to describe martensitic formation in austenitic steels. For the

thermodynamic formulation, their choice of state variable included the elastic strain, a

hardening variable, temperature and the phase volume fraction of martensite. Using a

Crystal plasticity framework, Tjahjanto et al. [96] modeled the Transformation plasticity

phenomenon. Based on a fnite strain framework they decompose the deformation gradient

into:

F = FeFpFtr (1.2)

where Fe, Fp and Ftr is the elastic, plastic and transformation deformation gradient com-

ponent. A similar model development approach as described above had been taken by

numerous authors [18, 67–69, 89–91] where the fundamental difference in the model ap-

proach may lie in either the TRIP strain formulation and or incorporation, the kinematic

assumption, the scale of interest, the choice of internal state variable or the phase evolution

kinetics model used.

In simulating multiphase, a decision has to be made on how the strain rate or velocity

gradient is partitioned into each phase. Several techniques have been developed in the past

to satisfy either equilibrium, compatibility or a combination of both. Assuming infnites-

imal strains and imposing a Taylor [93–95] approximation (compatibility), the strain rate

6



tensor decomposes uniform in the polycrystalline material. The magnitude of the far feld

strain rate will be imposed into all present phases uniformly. A Sachs [88] approximation,

however, requires proportional loading in all phases implying that the imposed bound-

ary condition is proportionally distributed into each phase. As documented by Kocks et

al. [54], Budiansky and Wu [21] and a host of others as have attempted to develop a poly-

crystalline model that combines the benefts of both the Sachs and the Taylor model. This

hybrid approach is commonly referred to as a self-consistent approximation, it satisfes

neither compatibility nor equilibrium but combines the physical features of both models.

According to Knocks et al. [54], “self-consistent polycrystal models aim at deducing the

overall response of the aggregate from the known properties of the constituent grains and

an assumption concerning the interaction of each grain with its environment.”

In the past, several researchers have developed phase transformation kinetics mod-

els that can be incorporated into a continuum framework. These models of transforma-

tion kinetics are classifed into two groups namely diffusional (Avarami [5, 6]), and non-

diffusional (Koistinen-Marberger [55]) models . Non-diffusional models are used to cap-

ture phase evolution from austenite to martensite while diffusional models help capture

austenite to ferrite, pearlite or banite transformations. A previous work worthy of note

is that of Kolmogorov [57] on metal crystallization. Similar to the arguments posed by

Avarami [5], but in this case for crystallization, Kolmogorov [57] derives a generalized

form for probabilistically determining the number of crystal centers combined to form

a crystal bulk within a crystal volume. Today several researchers are given credit for

the development of the models for capturing the kinetics of diffusional phase transfor-
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mation. These models are commonly referred to as JMAK after Johnson and Mehl [50],

Avarami [5–7] and Kolmogorov [57]. In recent years, Lusk et al. [72–74] developed a

model for both diffusional and non-diffusional phase transformation. They premised the

development of their model with balance principles and incorporate some of the underly-

ing physics of phase transformation. A two-phase system is considered here. These phases

are qualitatively associated with martensite and austenite where the transformation is a

non-diffusion type. The focus is on low to mild carbon steels.

The rapid development in computer architecture coupled with industrial demand for

high resolution and low cost computer simulations has led to the continuous develop-

ment of numerical tools for simulating heat treatment. Ferguson et al. [32, 33], devel-

oped DANTE R a heat treatment subroutine that interfaces with ABAQUS [78]. Using

DANTE R , several numerical studies have been conducted in an attempt to better under-

stand the physics of heat treatment and quenching. The development of DANTE R has

also fostered collaborative efforts [70, 71, 99, 102]. Other tools such as HEARTS [46, 47],

SYSWELD [48] and TRAST [83] have also been developed. The aforementioned tools

work as either stand-alone packages or in a plug-in type fashion into well know table-top

multi-physics packages like COMSOL [26], ABAQUS [78], SolidWorks [79] and so on.

8



CHAPTER 2

APPLICATION OF PHYSICALLY BASED PLASTICITY MODEL TO MATERIALS

UNDERGOING PHASE TRANSFORMATION

2.1 Abstract 

Heat treatment for the purpose of material strengthening is accompanied by residual

stresses and distortion. During these processing steps, steel alloys experience a phase

change that in turn modifes their mechanical response. To properly account for the cumu-

lative composite behavior, the properties of each phase and subsequent interactions have

to be properly accounted for.

In an attempt to capture the aforementioned physical phenomena, we extend the single

phase continuum based Evolving Microstructural Model of Inelasticity (EMMI) frame-

work to capture the occurrence of coexisting phases. Since the effcacy of a multiphase

model is dependent on its ability to capture the behavior of constituents phases and their

subsequent interaction, we introduce a physically based self-consistent partitioning algo-

rithm. A quantitative assessment of the material response based on a Taylor, Sachs and

self-consistent polycrystalline approximation is carried out.
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2.2 Introduction 

It is common practice in the material fabrication industry to attempt to improve upon

the service life of a part. Practitioners have been largely successful in developing heat treat-

ment recipes based on trial and error. A signifcant amount of steel parts are successfully

being heat treated to meet product requirements such as hardness profles, carbon profles

and microstructure. Modeling, however, still plays a vital role in dimensional control. It

attempts to predict dimensional changes that occur during heat treatment. It’s purpose

being computationally determine how the local thermal histories affect phase transforma-

tion. These dimensional changes stems from a combination of either thermal expansion or

contraction, long term creep operating at high temperatures, carborization, transformation

plasticity and transformation strains.

Several attempts have been made to capture the effects of this underlying physical phe-

nomena, however, often with limited success. Modeling phase transformation with the

observation that the lattice difference between coexisting phases indicates a discontinuity

in the yield strength does not capture the volume change or any resulting plasticity [27,38].

An attempt to capture the volume change by solely introducing large changes in thermal

expansion physically neglects any additional plasticity resulting from phase transforma-

tion and in addition may be purely phenomenological, completely missing the underlying

physics [38,39,89,90]. Models that attempt to numerically elucidate the physical phenom-

ena by explicitly accounting for the associated volume change many times do not correctly

capture the sign and magnitude of the apparent residual stresses [38, 40, 86].
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It has been well documented [22] that phase change can be viewed as a forced re-

arrangement or reorganization of a lattice to accommodate an external driving function.

From this point of view, it is conceivable that there will be an associated straining due to

the appearance of a product phase or phases during a heat treatment or quenching proce-

dure. Previous works on multi-phase modeling via continuum theory have explicitly in-

cluded an additional strain to account for the transformation induced plasticity (TRIP) [3]

as described by [41, 75]. This additional strain is simply a numerical quantity introduced

to account for the straining observed during a phase-change or a new phase-resurface. A

similar approach was taken in the early development of modeling techniques or formula-

tion for the creep phenomena [84]. It became common practice to introduce a creep strain

quantity that was added to the plastic strain, resulting in an expression for the inelastic

strain. Since creep is simply the rate or time dependent deformation observed in materi-

als at elevated temperatures and constant stress boundary conditions, it is often the same

dislocation based mechanism associated with plastic fow in tension tests at constant ve-

locity boundary condition. To remedy this apparent inconsistency, several rate dependent

plasticity models have been introduced. These models were capable of predicting both

rate dependent creep and classical plasticity without the introduction of a yield surface and

were commonly referred to as Unifed Creep Plasticity (UCP) models [20, 58, 81, 100].

Rather than introducing a phenomenological TRIP strain, a more physically meaning-

ful approach is to attempt to capture the effects of a naturally imposed interfacial stress

between discontinuous lattice structure types [49]. With the aforementioned point of view

on capturing creep, TRIP can be implicitly captured by observing that the product phase

11



only requires accounting for the interfacial stress resulting from the incompatibility be-

tween juxtaposed phases. Understanding that the inclusion of a new material in a matrix

is mathematically analogous specifying an interfacial stress with which both materials can

interact is key. In addition, since it is well understood [28] that phase transformation is

a shear induced process, there is an additional stipulation on the direction of the imposed

interfacial stresses.

Motivated by the need to develop a better understanding of heat treatment and quench-

ing of metal alloys, the continuum based EMMI [80] framework has being extended to

capture the occurrence of more than a single phase coexisting in an engineering material.

While a similar approach was taken in previous implementation [12–14, 16, 87], however,

with the Bammann-Chelsea-Johnson (BCJ) plasticity model, the purpose of this paper is

to extend the aforementioned ideas and give them a stronger physical and thermodynamic

foundation. Here, we use a two-phase system and qualitatively associate these phases with

austenite and martensite. Available to us is experimental data of 5120 steel over a limited

strain rate and temperature regime were. The goal of this is to eventually extend this work

to all fve phases in an attempt to modify and extend the approach taken by previously by

Bammann et al. [12–14, 16]. Of interest here are materials that undergo phase transforma-

tion that consequentially modifes the material macroscopic response. The belief is that a

proper continuum mechanics based formulation with internal state variables is suffcient to

capture the underlying physical phenomena and in turn recover the appropriate magnitude

and direction of the resulting residual stresses and distortion.The following mathematical

operations in direct notation are used in the remainder of this paper. They are defned

12



as follows. Given a second rank tensorial quantity A, it follows that kAk = (A : A)1/2 ,

Tr (A) = (A : I)1/2 and Á = A − 1
3 Tr (A) I.

2.3 Methodology 

2.3.1 Multiphase EMMI Constitutive Equations 

In order to extend the EMMI model to capture the effects of materials undergoing

phase transformation, while the dislocation based internal state variable (ISV) model is

developed for fnite strain, the assumption that each continuum point is occupied by both

a parent and a product phase had to be made. Using a volume fraction weighted rule of

mixtures the Cauchy stress in the current confguration is determined to be of the form:

nX 
φ(i)σ(i)σ = (2.1)

i=1 

where σ́(i) represents the Cauchy stress in each phase and the superscript indicate the ith 

phase. The subsequent volume fraction is given by: φ(i):

nX 
φ(i) φ(j)).= (1 − (2.2)

j 6=i 

The phases considered here are austenite and martensite and therefore the Cauchy stress

simply reduces to:

σ = φ(1)σ(1) + φ(2)σ(2) (2.3)

with φ(1) and φ(2) representing the austenite and martensite phases. Therefore the volume

fraction for martensite and austenite phases is simply represented by φ and 1 − φ , respec-

13



tively. From the assumption of linear elasticity, and for a homogeneous isotropic material

the hypoelastic relation for each phase is given by:

σ(i) 
◦ (i) dµ(i) 
σ = 

µ(i) ( dθ 
)(i)θ̇(i) + λ(i)tr(de 

(i))I + 2µ(i)de 
(i) (2.4)

where λ(i) and µ(i) represent the temperature dependent frst and second Lamé parameters

for each phase. θ(i) is the temperature in each phase, d( 
e
i) is the elastic part of the symmet-

rical portion of the velocity gradient in each phase and I is the three dimensional identity

tensor. The convective derivative of the Cauchy stress is of the form:

◦ (i) 
σ(i) − w(i)σ(i) + σ(i) (i)σ = ˙ e we (2.5)

where w( 
e
i) is the elastic part of the asymmetrical portion of the velocity gradient in each

phase. The elastic asymmetrical portion of the velocity gradient for each phase is:

(i) (i) − w(i) (i)w = w − w (2.6)e p θ 

where the total, plastic and thermal parts are w(i), w( 
p
i) and w( 

θ
i) , respectively. Similarly the

symmetrical portion of the velocity gradient is:

d(i) = d(i) − d(i) − d(i) 
e p θ (2.7)

where the total, plastic and thermal parts are d(i), d( 
p
i) and d( 

θ
i) , respectively. The parti-

tioning of the total velocity gradient based on it’s constituent spin and stretch is will be

dependent on the polycrystal model chosen. Numerically integrating the hypoelastic re-

lation Eqn. (2.4) requires decomposing the stress rate into it constituent deviatoric and

hydrostatic portions. The deviatoric stress rate is of the form:

s(i) dµ(i)
(i)(i) (i)´ (i) (i) (i) (i)ṡ = ( )θ̇(i) + 2µ d − w s + s w (2.8)e e e(i)µ dθ 
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while the pressure rate tensor is given by:

p(i) dK(i) � � 
(i) )θ̇(i) d(i) (i) (i) (i) (i)ṗ = 

K(i) ( + K(i)Tr I − w p + p w (2.9)e e edθ 

The form of the temperature dependent portion of each material property was chosen fol-

lowing the approach taken by Marin et al. [80]. The shear modulus for each phase µ(i) is

of the form:

(i) (i) (i)µ = µ0 µ̂ (θ) (2.10)

where µ(
0 
i) is the shear modulus at room temperature. Following Frost and Ashby [35],

µ̂ (θ)(i) is chosen to be the form of the temperature dependent portion of the shear modulus

at all temperatures:
(i)

θ(i) − θ(i) (i) 0 µ̂ (θ) = 1 + c (2.11)θµ (i)
θm 

where the temperature factor is:

θ(i)(i) dµ(i) 
cθµ = m 

(i) < 0 (2.12)
dθµ0 

θ(i) represents the temperature of the material, θ0
(i) represents the reference temperature and

θm the melt temperature for each phase. Similarly the bulk modulus K(i) for each phase is

chosen to be of the form:

(i) (i)K(i) ˆ= K0 K (θ) (2.13)

where K0
(i) is the bulk modulus at room temperature, K̂ (θ)(i) is chosen to be the form of

the temperature dependent portion of the bulk modulus at all temperatures. The form of the

temperature dependence of the bulk modulus is assumed following Frost and Ashby [35]:

(i)
θ(i) − θ(i) (i) 0K̂ (θ) = 1 + cθK (i) (2.14)
θm 
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where the temperature factor is:

θ(i)(i) m dK
(i) 

c = < 0 (2.15)θK (i) dθK0 

θ(i) represents the temperature of the material, θ0
(i) represents the reference temperature

and θm 
(i) the melt temperature for each phase. The evolution law for the 2nd rank tensorial

kinematic hardening state variable (α) cast in a hardening and recovery format following

Frederick and Armstrong [34] is given by: s 
◦ (i) dµ 3(i)h(i)C(i) d(i)α = 

α 
(

( 

i

i 

)

) 
( )(i)θ̇(i) + 2µ pµ dθ a 2 s 
(i)
r 2 

�̇(i) α(i) α(i)− d (2.16)
(i) p

2µ(i)Ca 3 

where the hardening and dynamic recovery parameters for each phase is represented by

(i) (i)
h(i) ˆ= h(θ, C) and rd = r̂d (θ). Here θ and C imply a dependence on temperature

and carbon content, respectively. The hat serves to distinguish the value of the hardening

variable from it functional dependence. �̇( p
i) is the scalar plastic strain rate while d( 

p
i) is the

plastic part of the 2nd rank tensorial velocity gradient. The convective derivative of the

kinematic state variable is of the form:

◦ (i) (i)α(i) + α(i) (i)α = α̇ (i) − we we (2.17)

The rate form of the scalar isotropic hardening state variable (κ(i)) in each phase deter-

mined by Kock and Mecking [53], Estrin and Mecking [31] and Nes [85] cast in a harden-

ing and recovery format is given by:

κ(i) 
dµ (i)H(i)C

(i)
�̇(i)˙ = 

κ(i) 
( )(i)θ̇(i) + 2µ p(i)µ dθ k " # 

(i) Q( 
s
i)κ(i) − Rd κ

(i)�̇p 
(i) − Rs 

(i)κ(i) sinh (2.18)
2µ k 

(i)(i)C 
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ˆ R(i)and similarly the H(i) = H(i)(θ, C) is the hardening parameter in each phase. s = 

(i) (i)
R̂(i) ˆ(θ) and R = R (θ) are the static and dynamic recovery parameter in each phase.s d d 

Ck 
(i) is the isotropic parameters in each phase. The constitutive equation governing plastic

fow is presumed to be of the form:

s 
3 (i)

d( 
p
i) = �̇( p

i)Ń (2.19)
2 

where Ń is the unit normal deviatoric 2(i) rank tensorial quantity in the direction of the net

effective deviatoric stress for each phase. The plastic fow rate (�̇( p
i)) for each phase is given

by: ⎤⎡ (i)nq
3 (i)´ ± π(i)ξ⎢⎢⎣ − 1 

⎥⎥⎦ 
2 

�̇( p
i) = f (i) sinh (2.20)

κ(i) + Y (i)(θ) 

where f (i) the transition material parameter for each phase. n(i) is the plastic exponent in

each phase. Y (i) and Ŷ (i)(θ) are the temperature dependent yield strength and the form of

(i)´the temperature dependence of the yield strength in each phase. is the net effectiveξ 

stress in each phase. The direction of plastic fow in each phase is given by:

(i)´ ξ´ (i)
N (2.21)= . 

(i)´ ξ 

σ 

The norm of the net effective stress is given by:

(i) 2´ ´ ά (i) 
3 

The temperature dependent yield strength in each phase given by:

Y (i) (i) (i) ˆ (i)= 2µ c Y (θ) 

(i) − (2.22)

(2.23)

ξ = 

0 8 
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where c8
(i) is the yield parameter in each phase ftted to experimental data. The form of the

temperature dependence of the yield strength is assumed to be:

(i) h �i 
(i) m1 1 � 

(i) (i)
Ŷ (θ) = � � 1 + tanh m (m − θ) . (2.24)(i) 4 5 

(i) −m 21 + m2 exp 
θ 
3 

The thermal part of the symmetric portion of the velocity gradient in each phase is given

by:

d(i) (i) 
θ = �̇θ I (2.25)

where �̇θ 
(i) represent the thermal strain rate as a result of thermal expansion or contraction

in each phase. The thermal strain rate is given by:

�̇θ 
(i) 

= fβ(θ)(i)θ̇ (2.26)

where fβ (θ)
(i) is the thermal expansion coeffcient in each phase given by:

(i) (i) 

fβ (θ)
(i) β(θ)(i) − β0 bθ (θ − θ0) 

= (2.27)
1 − β(θ)(i)(θ − θ0) 

where β0
(i) is a thermal parameter. The form of the temperature dependence of the thermal

expansion coeffcient β(θ)(i) in each phase given by:

(i) (i)
β(θ)(i) = β0 (1 − bθ (θ − θ0)) (2.28)

The interfacial stress is determined to act in a manner where prior to the appearance

of a second phase, the parent phase must experience a zero interfacial stress. Implying

that the interfacial stress evolution must vanish at a parent phase volume fraction of unity.

Following this idea, we make the assumption that interfacial stress rate is of the form:

h i 
π̇ = Cπ 

ΔV
φ̇ − 2φφ̇ (2.29)

V 
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whereCπ is the interfacial stress parameter. Δ 
V
V is the lattice change due to carbon addition.

The formulation of the interfacial stress evolution implemented here stipulates that

communication between each phase is through an interaction stress πi where each phase

imposes its presence on all others and vise versa. This representative form of commu-

nication between each phase stipulates that the interaction between each phase is strictly

through and resulting from each phases volume fraction, volume fraction rate and volume

change. In the absence of an evolving volume fraction the interfacial stress ceases to evolve

leading to a constant inter-phase interaction stress. The transformation from austenite into

martensite occurs via a shearing process. Here, we treat the interfacial stress in the same

manner as the scalar hardening internal state variable κ, as acting in a non-directional man-

ner. In a future work, we will utilize an orientation tensor to introduce the directionality of

the interfacial (π) stress into the model, naturally incorporating the shearing aspects of the

transformation process.

Noting the linear relationship between the interfacial stress rate π̇ and the phase volume

fraction rate φ̇ at constant volume, the interfacial stress rate equation Eqn. (2.29) can be

integrated to yield the interfacial stress experienced by either phase corresponding to a

specifc phase volume fraction. For a two phase model, at the onset of the appearance of

a product phase, the interfacial stress experienced by the austenite and martensite stress

yields: h i 
π = Cπ 

ΔV
φ − φ2 (2.30)

V 
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A useful check is to ensure that integrating equation Eqn. (2.29) for both phases at their

respective integral limits yield the same quantity for the interfacial stress relation. That is:

Z 1−φ Z 1 
π(φ(1))dφ(1) ≡ π(φ(2))dφ(2) (2.31)

1 φ 

2.3.2 Additional Considerations: Polycrystalline Approximation 

In an attempt to satisfy the requirements of a polycrystal model several techniques have

been developed in the past to satisfy either equilibrium, compatibility or a combination of

both. For the decomposition of the symmetric part of the velocity gradient assuming a

Taylor [93–95] approximation (compatibility) requires uniform straining in a multiphase

material. Following equation Eqn. (2.7) all phases experience the magnitude of the sym-

metric velocity gradient therefore the elastic symmetric portion of the velocity gradient in

each phase is of the form:

d(i) = d − d(i) − d(i) 
. (2.32)e p θ 

For the case where there is negligible plasticity and thermal straining, the upper bound on

the stress feld is proportional to the symmetric portion of the velocity gradient:

σ(i) ∝ d (2.33)

A Sachs [88] approximation requires proportional straining in all phases implying that the

far-feld forcing function is proportional to that experienced in each phase. For a two phase

model, the austenite phase experiences a stretch rate proportional to the far feld strain rate:

d(1) = (1 − φ)d (2.34)
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where 1 − φ represent the volume fraction of the austenite phase. Similarly, the martensite

phase experiences a stretch rate proportional to the far feld strain rate, therefore:

d(2) = (φ)d (2.35)

For the case where φ = 0 we recover a single phase model. When φ = 1 a complete

transformation in the material has occurred from austenite to martensite. Using a Sachs

[88] argument, the coeffcient of proportionality at the upper and lower bounds of the

volume fraction must satisfy the constraint:

(1 − φ)φ = 0 (2.36)

mathematically enforcing a bound for the martensitic volume fraction φ such as:

0 ≤ φ ≤ 1 (2.37)

Budiansky and Wu [21] and a host of others as documented by Kocks et al. [54] have

attempted to develop a polycrystalline model that combines the benefts of both the Sachs

and the Taylor model. Commonly referred to as a self-consistent approximation, it satisfes

neither compatibility nor equilibrium but combines the physical features of both models.

According to Knocks et al. [54], “self-consistent polycrystal models aim at deducing

the overall response of the aggregate from the known properties of the constituent grains

and an assumption concerning the interaction of each grain with its environment.” With

this in mind, we modify the requirements on the proportionality constants Eqn. (2.36) and

replace the scalar volume fraction with a functional constraint:

(1 − f (φ))f (φ) = 0 (2.38)
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therefore the response of a satisfactory function f (φ) must satisfy the Eqn. (2.37). There-

fore we can replace Eqn. (2.34) and Eqn. (2.35) with:

d(1) = (1 − f (φ)) d (2.39)

and

d(2) = (f (φ)) d (2.40)

The effcacy of the multiphase model is dependent on the ability of each constituent

part to capture the underlying physical behavior therefore implementing a physically based

portioning algorithm is important. We determine that a functional form that satisfes the

constraint Eqn. (2.38) is suffcient; such as those used in determining a self-consistent

approximation or as applied in percolation theory. We propose:

1 
f (φ) = (1 + tanh [C1 (φ − C2)]) (2.41)

2 

where C1 determines the profle of the partitioning function. Analogous to inclusion used

in material strengthening, further investigation will be directed towards determining the re-

lationship between the shape parameter C1 and martensitic spheroidal particles or platelets

and how they affect the partitioning profle. The parameter C2 is a transition parameter

that determines the volume faction at which the martensite phase starts to experience the

intensity of the strain feld upon yielding of the softer austenite phase.

Figure 2.1 is strain rate as appropriated to each phase based on a Sachs, Taylor and

a self-consistent polycrystalline approximation at a strain rate of �̇ = 1/s. The self-

consistent model the parameters C1 = 4, 6, 11 and C2 = 0.5. The Taylor model, repre-

sented by the horizontal line at �̇ = 1/s, shows each phase experiences the same strain rate
22



at all volume fractions of martensite. The Sachs model however, represented by a linear

line through the origin, requires that each phase experiences a strain rate proportional to

it’s respective volume fractions. The self-consistent polycrystalline approximation using

the constraint Eqn. (2.38) captures a more physical interaction between the mechanical

properties of constituent phases.
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Figure 2.1

Strain rate partitioning for Sachs, Taylor and a self-consistent (SCi) polycrystalline
approximation at �̇ = 1/s.

2.4 Results 

A quantitative assessment of the multiphase EMMI model was performed with the

help of a number of simplifying assumptions. We assumed isothermal conditions. For the

cases implemented here the material parameters were assumed to be a ft for a fxed carbon
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content, therefore Δ 
V
V = 1. Uniaxial tension tests for 5120 stainless steel were performed

at a range of temperatures and strain rates.

Collected data was used to determine the EMMI model parameters for respective phases.

A gradient based optimization routine was used to determine EMMI Model parameters as

listed on Table 2.1 following the approach taken by Marin et al. [80]. The material prop-

erties used here is that of stainless steel 304L (SS304L). Table 2.2 is a tabulation of the

material properties used in this study. Figure ?? is the EMMI model response ftted to ex-

perimental data of 5120 martensite steel for uniaxial tension for martenite. Experimental

data if for uniaxial tension at strain rate �̇ = 0.1/s and temperature θ1−3=296.15, 423.15,

598.15 (K). Figure ?? is the EMMI model response ftted to experimental data of 5120

martensite steel for uniaxial tension for austenite and martenite. Experimental data if for

uniaxial tension at strain rate �̇1−3 = 0.01,0.1,0.01 (1/s) and temperature θ1−3=1073, 1123,

1223 (K).

For an assessment of the material response based on a Taylor, Sachs and self-consistent

polycrystalline approximation three combinations of volume fraction for both phases were

tested. A combination of 90%A + 10%M , 50%A + 50%M and 10%A + 90%M were

used, where A and M stand for austenite and martensite. The resulting deviatoric stress

feld for all cases were determined using Eqn. (2.3). The parameter values chosen for the

self-consistent approximation are c1 = 3.68 and c2 = 0.5.

At 10% martensite Figure 2.4, the self -consistent and Sachs models are expected to

predict a similar deviatoric stress feld. This is because the value of the proportionality

functional in the self-consistent and Sachs are of very close. The result is physically mean-
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Table 2.1

Material parameters for 5120 austenite and martensite steel.

Parameter Symbol Magnitude Unit
Hardening H(1) 1.19E-3 -
Hardening H(2) 4.71E-2 -

Dynamic Recovery (1)
Rd 1.67E-3 -

Dynamic Recovery (2)
Rd 1.20E-1 -

Static Recovery R(1) 
s 9.81E-57 1/s

Static Recovery R(2) 
s 4.34E-55 1/s

Q(1) 
s 1 -

Q(2) 
s 1 -

C(1) 
κ 1 -

C(2) 
κ 1 -

Hardening h(1) 1.1E-1 -
Hardening h(2) 1.1E-1 -

Dynamic Recovery (1)
rd 629935 -

Dynamic Recovery (2)
rd 285457 -
C(1) 

a 1 -
C(2) 

a 1 -
Transition Constant f (1) 1.13E-4 1/s
Transition Constant f (2) 2.27E-6 1/s

Plastic Exponent (1)n 2.29 -
Plastic Exponent (2)n 15.16 -
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Table 2.2

Material properties for stainless steel 304L (SS304L).

Parameter Symbol Magnitude Unit
Yield m1 1.2854 -
Yield m2 2.6999 -
Yield m3 614.628 K
Yield m4 9.60774E-3 1/K
Yield m5 1139.68 K
Yield c8 5.5168E-3 -

Elastic E 210979 MPa
Lame I λ 121540 MPa
Bulk k 175645 MPa
Bulk cθk -0.36 -
Shear µ 81157.8 MPa
Shear cθµ -0.85 -
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Figure 2.2

EMMI model response ftted to experimental data of 5120 martensite steel.
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EMMI model response ftted to experimental data of 5120 austenite steel.
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σ́ 1 for Taylor, Sachs and self-consistent approximation at 90%A + 10%M .
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σ́ 1 for Taylor, Sachs and self-consistent approximation at 50%A + 50%M .
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ingful because the stress feld in general should not deviate much from a predominantly

austenitic feld irrespective of the material properties of the martensite. The disparity in

the resulting deviatoric stress feld from the Taylor model when compared with the Sachs

and self-consistent is because both phases experience the same straining; this is in most

cases non physical.

Similarly, at 50% martensite Figure 2.5, the self-consistent and Sachs approximations

are expected to predict exactly the same magnitude of deviatoric stress feld. This is be-

cause the transition parameter for the self-consistent approach was chosen to match exactly

exactly at φ = 0.5. The difference however with the Taylor assumption in emphasized by

the difference in the internal state variable material parameter.

At 90% martensite Figure 2.6, there is very little distinction between a Taylor, Sachs

or self-consistent approximation. For a self-consistent and Sachs approach the dominant

strain rate in carried by the martensite which is naturally imposed using a Taylor approxi-

mation.

2.5 Summary 

The EMMI single phase internal state variable model was extended to accommodate

the presence of product phases. We assumed a two-phase system where the mechanical

response and transformation kinetics model for austenite and martensite were qualitatively

associated with austenite and martensite. Available is experimental data of 5120 steel over

a limited strain rate and temperature regime.
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σ́ 1 for Taylor, Sachs and self-consistent approximation at 10%A + 90%M .
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The additional TRIP was accounted for through the introduction of a physically appro-

priate interfacial stress acting as a forward stress in the softer austenite, and a backward

stress in the martensite. Since the effcacy of a multiphase model is dependent on its ability

to capture the behavior of constituents phases and their subsequent interaction, we intro-

duce a physically based self-consistent partitioning algorithm. A quantitative assessment

of the material response and plastic fow based on the Taylor, Sachs and self-consistent

approximation was carried out.
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CHAPTER 3

A QUALITATIVE ASSESSMENT OF THE MULTIPHASE EMMI PLASTICITY

MODEL COUPLED WITH PHASE TRANSFORMATION KINETICS

3.1 Abstract 

Commonly implemented material processing routines not limited to quenching, weld-

ing or heat treatment requires exposure of a part to complex thermal and mechanical load-

ing histories that in turn manifest as residual stress and distortion. Of interest to material

designers and fabricators is modeling and simulating the evolutionary process a part under-

goes for the sake of capturing this observable residual stress states and geometric distortion

accumulated after processing.

In an attempt to move toward an overall consistent modeling approach, we premise this

investigation with a consistent thermodynamic framework. Following this, we extend the

single phase Evolving Microstructural Model of Inelasticity (EMMI) internal state variable

model to multiphase affrming that the interaction between coexisting phases is through

an interfacial stress. We then employ a self-consistent polycrystalline model in order to

partition each individual phase’s strain feld ensuring a hybrid between compatibility and

equilibrium. With a synthesis of the aforementioned ideas, the additional transformation

plasticity (TRIP) is numerically accounted for by modifying each phase’s fowrule to ac-

commodate an interfacial stress. In addition, for simulating the cohabitation of two phases
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we couple the mechanical multiphase model equations with a previously developed non-

diffusional phase transformation kinetic model.

3.2 Introduction 

The pioneering working of Truesdell and Noll [97, 98] on developing, composing and

documenting the nonlinear-feld theories of mechanics has fostered the extensive applica-

tion of continuum mathematics to modeling of engineering materials exhibiting non-linear

behavior. Subsequent works of Coleman and Noll [24,25] on fnding the restrictions placed

on the constitutive formulation designed to account for the dissipative effects expressed

through heat conduction and subsequent deformation helped propel the application of ther-

modynamics to continuum mechanics. Based on the approach taken by [24, 25], Coleman

and Gurtin [23] formulated a continuum thermodynamics framework for the application of

Internal State Variables (ISVs) to modeling the nonlinear behavior of engineering materi-

als.

The works of Eshelby [29,30] on determination of the elastic feld in and around an el-

lipsoidal inclusion encouraged the development of view point of a framework for handling

materials with discontinuous properties. Further works of Ericksen [28], Ball [9] encour-

aged the development of an approach to mathematically model the existence of multiphases

in an elastic solid. A number of researchers [8, 101] through experimentation, theoretical

derivation and calculation have established the fact that martensite develops 24 possible

variants in the presence of an austenite phase with each variant showing a distinct lattice

orientation.
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In the past, several researchers have demonstrated the possibility of extending a con-

tinuum mechanics based formulation with ISVs to modeling of co-existing phases. Tanaka

and Nagaki [92] devised an approach for modeling engineering materials experiencing

phase transition. They introduce two ISVs, one that kept track of crystallographic struc-

ture evolution and the other that measures the extent of phase transition. To model the

interaction or effects of parent and product phases they introduce a TRIP strain quantity

to account for the additional plasticity experienced during phase transformation. In an at-

tempt to capture the plasticity induced as a result of phase transition, Leblond et al. [61,64]

used the Hill-Mandel [44,77] homogenization process to decompose the macroscopic plas-

tic strain into two contributing portions. They decompose the macroscopic plastic strain

into a contribution from classical plasticity and the other from transformation plasticity

without a priori assumption of a new microscopic plastic strain.

In an attempt to capture the plasticity induced as a result of phase transition, Leblond

et al. [61, 64] via the Hill-Mandel [44, 77] homogenization process decompose the macro-

scopic plastic strain into two contributing portions. More notably, they decompose the

macroscopic plastic strain into a contribution from classical plasticity and the other from

transformation plasticity without a priori assumption of a new microscopic plastic strain.

In a later work, Leblond et al. [62,63] experimented with previously proposed relationship

between the macroscopic TRIP stain-rate quantity and the stress deviator [37, 60]. Sub-

sequently, neglecting the Magee mechanism [76], they pursued a numerical investigation

of the transformation induced plasticity component with a consideration of both perfectly-

plastic and strain hardening effects. It is noteworthy to mention that based on experimen-
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tal observations several other authors [1, 36, 41, 82] had derived constitutive relationships

between macroscopic TRIP strain or strain rate and stress analogous to the form of the

fow-law for classical plasticity.

Previously, Bammann et al. [10, 11, 15, 16] developed an ISV framework that enabled

capturing the temperature and strain rate dependent behavior observable in engineering

materials notably the Bammann-Chelsea-Johnson (BCJ) plasticity model. The well estab-

lished kinematic hardening phenomena was captured using a tensorial state variable where

it’s rate was cast in a hardening minus recovery format following Ashby [4].

Similarly to the format of the kinematic hardening rate state variable, isotropic hard-

ening rate though a scalar variable, was cast in a hardening minus recovery format. In a

subsequent work, Bammann et al. [12] extend the BCJ single phase framework to capture

the occurrence of coexisting phase in an engineering material. The effort was directed to-

ward capturing the residual stress and distortion observable in the event of a welding, heat

treatment or quenching procedure performed on low alloy steels.

Several fnite deformation kinematic frameworks have been proposed to enable cap-

turing the phase transformation phenomena observed in crystalline materials. The more

common mathematical framework used to formulate the kinematics of fnite deformation

for a single phase is based on a multiplicative decomposition of the deformation gradient

(F) into an elastic and plastic component. Following Khan [52], the deformation gradient

can be decomposed into:

F = FeFp (3.1)
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where Fe and Fp is the elastic and plastic part. In a similar manner, this approach has been

extended to a multiphase framework. Bock and Holzapfel [19], Kroner [59], and Lee and

Liu [66] extended the small strain phase transition framework work earlier developed by

Leblond et al. [62,63] to a large strain framework. They accounted for the additional plas-

ticity relating to the orientation process (Magee Effect) [76]. The evolution law accounting

for the TRIP strains was chosen to be of a visco-plastic nature.

More recently, Hallberg et al. [43] using a large-strain plasticity framework proposed

a phase transition model to describe martensitic formation in austenitic steels. For the

thermodynamic formulation, their choice of state variable included the elastic strain, a

hardening variable, temperature and the phase volume fraction of martensite. Using a

Crystal plasticity framework, Tjahjanto et al. [96] modeled the Transformation plasticity

phenomenon. Based on a fnite strain framework they decompose the deformation gradient

into:

F = FeFpFtr (3.2)

where Fe, Fp and Ftr is the elastic, plastic and transformation deformation gradient com-

ponent. A similar model development approach as described above had been taken by

numerous authors [18, 67–69, 89–91] where the fundamental difference in the model ap-

proach may lie in either the TRIP strain formulation and or incorporation, the kinematic

assumption, the scale of interest, the choice of internal state variable or the phase evolution

kinetics model used.

Continuum mechanics as an approach to modeling and simulating engineering material

behavior is attractive. Its mathematical framework enables scientist and engineers capture
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the behavior of a material in an average manner. Effectively coupling phase kinetics mod-

els to a continuum mechanics framework requires several consideration. One of which

includes homogeneity, that is, uniform without irregularities, have to be made in order to

deem a material point differentiable or continuous where in a numerical sense, the imposed

differentiability would allow for a discretizable subset space. It would only be reasonable

to assume that each continuum point can readily accommodate evolving new phases. With

this approach, phase transformation kinetics can be modeled. Similarly, conservation of en-

ergy or similar principles can be estimated as a cumulative sum of each cohabiting phase.

In addition, the cumulative stress may then be deduced using a volume fraction weighted

rule of mixtures.

Today several researchers are given credit for the development of the equation for mod-

eling the kinetics of phase transformation of a diffusional or non-diffusional type. Com-

mon diffusional models are commonly referred to as JMAK after Johnson and Mehl [50],

Avarami [5–7] and Kolmogorov [57]. For a non-diffusional transformation the Koistinen-

Marburger [56] model (KM) or some form of it is the most widely adopted model for

austenite to martensite transformation. In more recent years, Lusk et al. [72–74] have ex-

perimented with similar approaches to phase transformation kinetics where they premise

the development of their model with the balance principle for both diffusional and non-

diffusional types. Of consideration here are non-diffusion type models with a focus on low

to mild carbon steels.

The rapid development in computer architecture coupled with industrial demand for

high resolution and low cost computer simulations has led to the continuous develop-
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ment of numerical tools for simulating heat treatment. Ferguson et al. [32, 33], devel-

oped DANTE R a heat treatment subroutine that interfaces with ABAQUS [78]. Using

DANTE R , several numerical studies have been conducted in an attempt to better under-

stand the physics of heat treatment and quenching. The development of DANTE R has

also fostered collaborative efforts [70, 71, 99, 102]. Other tools such as HEARTS [46, 47],

SYSWELD [48] and TRAST [83] have also been developed. The aforementioned tools

work as either stand-alone packages or in a plug-in type fashion into well know table-top

multi-physics packages like COMSOL [26], ABAQUS [78], SolidWorks [79] and so on.

Motivated by the need to develop a better understanding of heat treatment and quench-

ing of metal alloys, the continuum based EMMI framework has being extended to capture

the occurrence of more than a single phase coexisting in an engineering material. Of in-

terest here are materials that undergo phase transformation that consequentially modifes

the material mechanical response. Here in we premise this investigation with a consistent

thermodynamic framework. Following this, we extend the single phase EMMI plasticity

state variable model to multiphase affrming that the interaction between coexisting phases

is through an interface stress. We then employ a self-consistent polycrystalline model to

help partition each individual phase’s strain feld, in a manner where a hybrid between

compatibility and equilibrium is satisfed. With a synthesis of the aforementioned ideas,

the additional TRIP is numerically accounted for by augmenting each fowrule with the

computed interfacial stress. We are using a two-phase system and qualitatively associat-

ing these phases with martensite and austenite. The transformation kinetics proposed by

Lusk [51, 72, 73], as well as some experimental data over a limited strain rate and tem-
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perature regime were available to us. The goal of this is to eventually extend this work

to all fve phases in an attempt to modify and extend the approach taken by Bammann et

al. [12–14,16]. The following mathematical operations in direct notation are used in the re-

mainder of this paper. They are defned as follows. Given a second rank tensorial quantity

A, it follows that kAk = (A : A)1/2 , Tr (A) = (A : I)1/2 and Á = A − 1
3 Tr (A) I.

3.3 Methodology 

3.3.1 On the Thermodynamics for Coexisting Phases 

The formulation of the model follows the general thermodynamic formulation pro-

posed by Bammann [17, 45]. The deformation or strain is decomposed into a lattice

strain (which is further decomposed into strains in each component if multiple phases

are present), the interface between phases, and the elastic strain associated with each de-

fect densities in each phases. Therefore, given a body consisting of n phases, the strain

components are: n o 
(i) (i) 
, �(i)� ⊃ � , � , �π (3.3)l ss β 

where �
(i) is the lattice strain in the each phase, �(i) is the strain resulting from statisticallyl ss 

stored dislocations (SSDs) in the each phase, �β 
(i) is the strain resulting from geometrically

necessary dislocations (GNDs) in the each phase, and �π is the interface strain between

phases. The symbol i ranges from 1 to the total number of phases n under consideration.
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Furthermore, each of these strains is decomposed into elastic and inelastic or plastic parts,

such that:

� � � � 
(i) (i) (i) 

�(i) �(i) + �(i)�l = �l,e + �l,p ss = ss,e ss,p (3.4)

� � 
(i) (i) (i)
�β = �β,e + �β,p �π = (�π,e + �π,p) (3.5)

From the second law of thermodynamics, the reduced entropy inequality is:

ψ̇ ≤ Wtotal (3.6)

where Wtotal represents the total work done. Similar to the thermodynamics proposed by

Gurtin [42], for a single phase material the right hand side of the inequality represents the

total work done comprising of macroscopic and microscopic:

ψ̇ ≤ Wmacro + Wmicro (3.7)

The composition of the macroscopic work is:

nX � � 
(i) 

�(i)
(i)

Wmacro = σ(i) : �̇l + ˙ ss + �̇β + �̇π (3.8)
i=1 

where σ(i) is the macroscopic Cauchy stress operating on each component of strain in a

multiphase body. The microscopic work comprises of:

n h � � �iX � 
κ(i) �(i) + α(i)Wmicro = π : �̇π + : ˙ ss : �̇β 

(i) (3.9)
i=1 

π is the tensorial interface stress between phases, κ(i) is the tensorial stress like internal

state variable serving as a work conjugate pair to the straining �(i) associated with the SSDsss 
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in each phase and α(i) is the tensorial stress like internal state variable serving as a work

conjugate pair to the straining �β 
(i) associated with the GNDs in each phase.

For now, we are going to assume at this time that �(i), the SSDs strain reduces to ass 

scalar measure of the elastic strain in a dislocation array, which for a polycrysaline material

averages to the same value in all directions, similar to the concept of isotropic hardening

in classical plasticity. Similarly, we treat the interfacial stress in the same manner as the as

acting in a non-directional manner. In a future work, we will utilize an orientation tensor

to introduce the directionality of the tensorial interfacial π stress into the model, naturally

incorporating the shearing aspects of the transformation process. In addition, we would

neglect cross terms between stresses and strain rates. With this assumption, a given a body

consisting of two phases, austenite and martensite, the macroscopic work simplifes to:

2 � �X 
σ(i)Wmacro = : �̇l 

(i) (3.10)
i=1 

and the microscopic work reduces to:

2 h � � �iX � 
κ(i)

(i)
�̇(i) + α(i)Wmicro = π�̇π + ss : �̇β (3.11)

i=1 

Following the approach introduced by Coleman and Noll [25] in an attempt to determine

the logical connection between the principles of conservation of energy, entropy inequality

and the general principles in mechanics, Coleman and Gurtin [23] determined the thermo-

dynamic restrictions necessary when introducing ISVs to a continuum mechanics frame-

work. In the same light we argue that, the Helmholtz free energy is of the form:

ψ = e − θη (3.12)
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where e is the internal energy, θ represents temperature and η the entropy. In rate form the

Helmholtz free energy is:

ψ̇ = ė − θη˙ − θη̇ (3.13)

If we assume isothermal conditions, the rate form of the Helmholtz free energy reduces to:

ψ̇ = ė − θη̇ (3.14)

Substituting Eqn. (3.10) and Eqn. (3.11) into Eqn. (3.7) gives:

2 � � 2 h � � � �iX X(i) (i)˙ σ(i) κ(i) �̇(i) + α(i)ψ ≤ : �̇l + π�̇π + ss : �̇β (3.15)
i=1 i=1 

Furthermore, decomposing each of these strains into elastic and inelastic or plastic parts,

Eqn. (3.15) becomes:

2 � �X (i) (i)˙ σ(i)ψ ≤ π (�̇π,e + �̇π,p) + : �̇l,e + �̇l,p 
i=1 

2 h � � �iX � 
(i) (i)

κ(i) �̇(i) + α(i)+ + �̇(i) : �̇ � (3.16)ss,e ss,p β,e + ˙β,p 
i=1 

Assuming that no inelastic deformation occurs, at the interface, Eqn. (3.16) becomes:

X2 � � 
(i) (i)˙ σ(i)ψ ≤ π (�̇π,e) + : �̇l,e + �̇l,p 

i=1 
2Xh � � � �i 

(i) (i)
κ(i) �̇(i) + α(i)+ + �̇(i) : �̇ � (3.17)ss,e ss,p β,e + ˙β,p 

i=1 

We assume that the Helmholtz free energy depends on a number of independent state vari-

ables namely the elastic portion of the lattice strain in each phase �l,e 
(i), the elastic strain like

(i)internal state variable due to SSD and GNDs �(i) and � and the elastic interfacial strainss,e β,e 

�π,e. We further represent each category of state variables in each phase as:

n o n o 
(1) (2) 

�(1) , �(2)Zl,e ⇒ �l,e , �l,e Zss,e ⇒ ss,e ss,e (3.18)
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n o 
(1) (2)Zβ,e ⇒ �β,e, �β,e �π,e (3.19)

Therefore the Helmholtz free energy is further expressed as dependent on:

ψ = ψ̂ (Zl,e, Zss,e, Zβ,e, �π,e) (3.20)

Applying the chain rule to Eqn. (3.20) yields:

2 2 2X ∂ψ (i) X ∂ψ X ∂ψ (i) ∂ψ ˙ �̇(i)ψ = : �̇ + : �̇ (3.21)
(i) l,e + 

(i) ss,e (i) β,e + �̇π,e 
i=1 ∂� i=1 ∂�ss,e i=1 ∂� ∂�π,e l,e β,e 

Substituting Eqn. (3.21) into Eqn. (3.17) and further expanding:

∂ψ ∂ψ ∂ψ ∂ψ (1) (2) 
�̇(1) �̇(2): �̇ + : �̇ + + +

(1) l,e (2) l,e (1) ss,e (2) ss,e 
l,e l,e ∂� ∂� ∂�ss,e ∂�ss,e 

∂ψ ∂ψ ∂ψ (1) (2) 
(1) : �̇β,e + 

(2) : �̇β,e + �̇π,e ≤ 
∂� ∂� ∂�π,e β,e β,e � � � � 

σ(1) (1) (1) 
+ σ(2) (2) (2)

: �̇ + �̇ : �̇ + �̇ +l,e l,p l,e l,p � � � � 
α(1) (1) (1) 

+ α(2) (2) (2)
: �̇β,e + �̇β,p : �̇β,e + �̇β,p + 

� � � � 
κ(1) �̇(1) + �̇(1) + κ(2) �̇(2) + �̇(2) ss,e ss,p ss,e ss,p + π (�̇π,e) (3.22)

Employing the Coleman and Noll [25] argument and grouping yields:

∂ψ − σ(1)) : ˙ (1) 
∂ψ − σ(2)) : ˙ (2)( � + ( � +

(1) l,e (2) l,e 
∂� ∂�l,e l,e 

∂ψ − α(1)) : ˙ 
∂ψ − α(2)) : ˙(1) (2)

( � + ( �β,e +
(1) β,e (2)

∂� ∂�β,e β,e 

∂ψ − κ(1))�̇(1) 
∂ψ 

�(2)( 
(1) ss,e + ( 

(2) − κ(2)) ˙ss,e + 
∂�ss,e ∂�ss,e 

∂ψ 
( − π)�̇π,e ≤ 
∂�π,e � � � � � � � � 

σ(1) (1) 
+ σ(2) (2) 

+ α(1) (1) 
+ α(2) (2)

: �̇ : �̇ : �̇ : �̇ +l,p l,p β,p β,p � � � � 
κ(1) �̇(1) + κ(2) �̇(2) (3.23)ss,p ss,p 
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Therefore as the elastic strains vanish:

∂ψ ∂ψ 
σ(1) σ(2)= = (3.24)

(1) (2)
∂� ∂�l,e l,e 

∂ψ ∂ψ 
α(1) α(2)= = (3.25)

(1) (2)
∂�α,e ∂�α,e 

∂ψ ∂ψ 
κ(1) κ(2)= = (3.26)

(2) (2)
∂�̇ss,e ∂�̇ss,e 

∂ψ 
π = (3.27)

∂�π,e 

The dissipation inequality becomes:

� � � � � � � � 
σ(1) (1) 

+ σ(2) (2) 
+ α(1) (1) 

+ α(2) (2)
: �̇ : �̇ : �̇ : �̇ +l,p l,p β,p β,p � � � � 

κ(1) �̇(1) + κ(2) �̇(2) ≥ 0 (3.28)ss,p ss,p 

The internal state variables κ(i) and α(i) are chosen to be of the form:

κ(i) (i)C(i)�(i)= 2µ κ ss (3.29)

and

α(i) (i)C(i)= 2µ α �β 
(i) (3.30)

where µ(i) is the temperature dependent shear modulus, �(i) and �(i) are the straining asso-ss β 

ciated with the SSDs and GNDs and Cκ 
(i) and Cα 

(i) are dimensionless material parameters

associated with each phase.

The stress like internal state variable κ(i), the work conjugate variable to the straining

�(i) associated with the SSDs in each phase. The mathematical defnition of �(i) in eachss ss 

phase is: q 

ss ρss 
(i)

�(i) = b(i) (3.31)
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where b(i) is the magnitude of the burger and ρ(i) is the dislocation density of SSDs. Thess 

rate form the SSDs density is:

�̇(i) = 
b(i) q 

1 
ρ̇(i) (3.32)ss ss2 (i)

ρss 

ρ(i)The form of the evolution law for ˙ss as determined by Kock and Mecking [53] and Estrin

and Mecking [31] accounting for thermally activated hardening and dynamic recovery of

SSDs, in each phase is:

� q � 
ρ(i)

(i) (i) (i) 
�̇eff ˙ = c ρss − c (θ) ρ(i) (3.33)ss 1 2 ss p 

(i) (i)where �̇( p
i) is the effective plastic strain rate in each phase. c1 and c2 are material param-

eters for each phase determined using experimental data. The static recovery component

ρ(i)of ˙ss accounting for thermal diffusion of dislocations as determined by Nes [85] is of the

form of the: � q � 
ρ(i)

(i) 
(θ) ρ(i) (i) (i)

˙ss = −c3 ss sinh c4 (θ) ρss (3.34)

(i) (i)where c3 and c4 are material parameters for each phase determined using experimental

ρ(i)data. In full form, the SSDs density rate ˙ss accounting for thermal diffusion of disloca-

tions and thermally activated hardening and dynamic recovery is:

� q � � q � 
(i) (i) (i) (i) (i) (i)

ρ̇(i) = c ρss − c2 (θ) ρ(i) �̇(i) − c (θ) ρ(i) sinh c (θ) ρ (3.35)ss 1 ss p 3 ss 4 ss 

Substituting Eqn. (3.29), Eqn. (3.31) and Eqn. (3.32) into Eqn. (3.35) gives the evolution

equation for κ (Eqn. (2.18)):

κ(i) 
dµ (i)H(i)C

(i)
�̇(i)˙ = 

κ(i) 
( )(i)θ̇(i) + 2µ p(i)µ dθ k " # 

(i) Q( 
s
i)κ(i) − Rd κ

(i)�̇p 
(i) − Rs 

(i)κ(i) sinh (3.36)
2µ k 

(i)(i)C 
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The evolution law for the tensorial internal state variable α(i) in each phase, is chosen to

be in a hardening minus recovery format following Armstrong and Frederick [34]:

⎛ s ⎞ 
(i) (i) (i) ⎠ �̇(i)�̇ = ⎝h(i)N(i) − rd(i) 

2 
� � (3.37)β β β p3 

Substituting Eqn. (3.30) into Eqn. (3.37) gives the evolution equation for α (Eqn. (2.16)):

s 
◦ (i) dµ 3(i)h(i)C(i) d(i)α = 

α 
(

( 

i

i 

)

) 
( )(i)θ̇(i) + 2µ pµ dθ a 2 s 
(i) 

�̇(i) α(i) α(i)− 
rd 2 

(3.38)
(i) p

2µ(i)Ca 3 

where the convective derivative of α is of the form (Eqn. (2.17)):

◦ (i) (i)α(i) (i)α = α̇ (i) − we + α(i)we (3.39)

3.3.2 On the Transformation Kinetics Model 

The fnal set of equations needed to complete the multiphase model is the phase trans-

formation kinetic evolution equation. Transformation kinetic models are evolution equa-

tions that physically dictate the time rate of each phase. Under considering here is two

phases, qualitatively associated with austenite to martensite. There the transformation

equation considered are of a non-diffusion type. To date the KM [56] model is the most

widely adopted kinetics transformation model used for capturing austenite to martensite

transformation. The KM model is given by:

φ̇ = −bkm exp[−bkm(Ms − θ)]U(θ)θ̇ (3.40)
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⎪⎪
⎪⎪

where bkm is a fxed parameter. θstart is the temperature at the start of martensite formation.

U [θ] is a unit step function given by: ⎧ ⎪⎨ 1 Mf ≤ θ ≤ Ms 
U (θ) = (3.41)⎪⎩ 0 else 

whereMs andMf are martensite start and fnish temperature. For many reasons not limited

to the notable burst in transformation rate analogous to a mathematical discontinuity, it has

become necessary to develop alternative models. Figure 3.1 shows the commonly referred

to sharp transient in transformation rate as alluded to by [87]. The KM model was evaluated

at carbon content %C = 0.1,0,2,0.3,0.4 at a fxed cooling rate.
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Figure 3.1

Kinetics rate using Lusk and KM model at carbon content %C = 0.1,...,0.4.
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The KM model has an explicit dependence on the rate of change of temperature and

a fxed parameter bkm = 0.011. In other to circumvent the burst in transformation rate of

the modeled martensitic formation experienced when using the KM model, new models

have been developed. These models are analogous in part to the transformation profle

but with less of a discontinuous transformation rate. The non-diffusional kinetics model

adopted here is that of Lusk et al. [51, 72, 73] where additional consideration was given to

the carbon content infuence on the transformation rate. Using the Lusk model, austenite’s

phase fraction (φ(1)) is determined using:

dφ(1) dφ(2) 
= − (3.42)

dt dt 

The initial conditions for the austenitic phase is such that:

φ(1) (t0) = 0.99999 (3.43)

For the evolution of martensite phase we have that:

dφ(2) 

dt 
� �a(%C) � �b(%C) 
φ(2) 1 − φ(2)= −v (%C) U (θ) 

dθ 
dt 

(3.44)

where %C is the carbon content in percentage. θ̇ is the temprature rate. v, a, and b are

transformation parameters ft to dilatometry test. Marteniste start Ms temperature was de-

termined using Andrews [2] formula where the material chemistry is the sole determining

factor. The form of the parameters v:

v (%C) = v0 + v1%C + v2%C2 + v3%C3 (3.45)

The form of the parameters a:

a (%C) = a0 + a1%C (3.46)
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The form of the parameters b is:

b (%C) = b0 + b1%C (3.47)

The initial condition for the martensitic phase is given by:

φ(2) (t0) = 0.00001 (3.48)
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Figure 3.2

Lusk model at a fxed cooling rate evaluated at %C = 0.1,0.2,0.3,0.4.

Independent of the mechanical response Figure 3.2 shows the carbon content infuence

on the transformation kinetics for any given cooling rate. The cooling rate serves as a

driving function for the transformation kinetics. Specifcally, it is a is a linear multiple of
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the volume fraction at each time step. For these cases Ms was chosen to be fxed, however,

based on the Andrews [2] formula this is not the case. There is a variation due to the carbon

content infuence.

3.3.3 Integration of the Multiphase EMMI Constitutive Equations 

To numerically integrate the constitutive multiphase EMMI model equations Eqn. (2.4-

3.44) we make the assumption that the discretized set of equations suffciently satisfy the

continuous form; to a prescribed level of accuracy determined by the integration scheme.

The multiphase EMMI model is further cast into a discrete form with the symbol n+1 and

n indicating the current and previous time step solutions, respectively. Table 3.1 is the

direct integration algorithm for the constitutive EMMI model equations. The algorithms

is suitable for any specifed strain rate or temperature. An explicit Euler fnite difference

scheme is used for the time integration of the stress and state variables in each phase. The

incremental form of the elastic asymmetrical portion of the velocity gradient in each phase

is:

(i) (i) (i)
Δwe = Δw(i) − Δwp − Δwθ . (3.49)

Similarly the incremental form of the symmetrical portion of the velocity gradient in each

phase is:

Δd( 
e
i) = Δd(i) − Δd( 

p
i) − Δd(i) 

. (3.50)θ 

The incremental form of the plastic part of the symmetrical portion of the velocity gradient

in each phase is computed using: s 
3 (i),n+1 

Δd( 
p
i) = Δ�( p

i)Ń (3.51)
2 
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(i),n+1
where Ń is the direction of the plastic fow given by:

´(i),n+1 
ξ(i),n+1

Ń (3.52)= . 
(i),n+1´ ξ 

The norm of the net effective stress is given by:

(i),n+1 2´ σ́(i),n+1 − α(i),n+1 (3.53)ξ = 
3 

Δ�(i) p is the incremental form of net effective plastic fow in each phase which can be

evaluated using several approaches. For an explicit Euler algorithm, Δ�( p
i) depends on the

previous time step values of the stress and internal state variables in each phase. With this

observation, Δ�( p
i) can be simply computed using a functional evaluation approach. Using

a simple functional evaluation, Δ�( p
i) is computed and stored as:

⎤⎡ (i)nq (i),n 
ξΔ´ 

Δκ(i),n + Y (i) 

3 ± π(i),n+1 ⎢⎢⎣ − 1 
⎥⎥⎦ 

2 
Δ�( p

i) = f (i) sinh (3.54)

An incremental approach can be used to compute the incremental net effective plastic fow

(Δ�( p
i)) in each phase. This approach requires mathematically treating the net effective

plastic fow as an ordinary differential equation (ODE). As an ODE, the current time step

value of the plastic strain �( p
i),n+1 in each phase to be computed using the previous time step

value �( p
i),n. This implies that:

⎤⎡ (i)nq (i),n 
ξΔ´ 

Δκ(i),n + Y (i) 

3 ± π(i),n+1 ⎢⎢⎣ − 1 
⎥⎥⎦ 

2 
�(i),n+1 = �(i),n 
p p + f (i) sinh (3.55)
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The incremental Δ�( p
i) is needed in order to calculate the stress and internal state variables

in each phase at the current time level n + 1. The incremental value of the net effective

plastic fow Δ�( p
i) in each phase is:

Δ�(i) = �(i),n+1 − �(i),n . (3.56)p p p 

Figure 3.3 shows EMMI model response to uniaxial tension using a functional ver-

sus an incremental evaluation approach to evaluating Δ�( p
i) using SS304L at strain rate

of �̇ = 0.1/s. The results show no distinction between both methods. The difference in

computational cost is also negligible; depending on implementation into computer code.
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Functional vs. an incremental approach for SS304L at �̇ = 0.1/s 
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The incremental form of the thermal part of the symmetrical portion of the velocity

gradient in each phase is computed using:

Δd(i) (i) 
θ = Δ�θ I (3.57)

where the incremental thermal strain is:

Δ�θ 
(i) 

= fβ (θ
n)(i)Δθ. (3.58)

fβ(θ
n)(i) is the form of the temperature dependence of the coeffcient of thermal expansion

given by:
(i) (i)

β(θn)(i) − β0 bθ (θ
n − θ0)

fβ(θ
n)(i) = (3.59)

(1 − β(θn)(i)(θn − θ0)) 
(i) (i)where bθ is a coeffcient of thermal expansion parameter. The form of β0 is given by:

(i) (i)
β(θn)(i) = β0 (1 − bθ (θ

n − θ0)) (3.60)

The incremental form of the isotropic hardening evolution equation yield:

κ(i),n+1 κ(i),n + κ(i),n(µ(i))−1Δµ(i)= 

(i)H(i)C
(i) (i)

+ (2µ k − Rd κ
(i),n)Δ�( p

i) 

h i 
κ(i),nQ(i) (i) (i))−2− ΔtR(i)κ(i),n sinh (2C µ (3.61)s s k 

where all material parameters and constants are evaluated at the prescribe temperature. The

incremental form of the kinematic hardening evolution equation is such that:

α(i),n+1 α(i),n + α(i),n(µ(i))−1Δµ(i)= s 
3(i)h(i)C(i) Δ�(i)N(i),n+ 2µ a p2 s 

(i)
r 2d Δ�(i) α(i),n α(i),n− 

(i)
2µ(i)Ca 3 p 

(i)α(i),n − α(i),nΔw(i)+ Δwe e . (3.62)
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The incremental form of the deviatoric Cauchy stress is given by:

(i),n+1 (i),n (i),n(µ(i))−1Δµ(i)s = s + s 

(i),n(i)Δ´ + Δt2µ de 

(i),n (i),n − s(i),nΔw(i),n+ Δwe s e . (3.63)

The incremental form of the pressure is such that:

(i),n+1 (i),n (i),n(K(i))−1ΔK(i)p = p + p 

+ ΔtK(i)Tr[Δd( 
e
i),n] 

(i),n (i),n − p(i),nΔw(i),n+ Δwe p e . (3.64)

The incremental form of the interfacial stress evolution equation is such that:

h iΔV 
πn+1 1 − 2φn+1 = πn + Cπ Δφ (3.65)

V n+1 

ΔV is the volume change due to carbon content variation given by:
V n+1 

= V n+1 − V nΔV (3.66)

where the volume at the current and previous time steps are computed using:

V n+1 = 3.548 + 0.44%Cn+1 V n = 3.548 + 0.44%Cn (3.67)

The incremental form of the volume fraction of martensite is such that:

h i 
φn+1 = φn − v(φn)a(1 − φn)bU Δθ (3.68)

where the incremental temperature difference (Δθ) is computed using:

Δθ = θn+1 − θn (3.69)
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Using the discretized set of equations, the multiphase EMMI model equations are inte-

grated directly (Table 3.2). Classical algorithms are designed around a yield surface, how-

ever, direct integration of the multiphase EMMI model utilizes a functional argument de-

termined by the kernel of the fowrule. The argument is such that plastic fow occurs iff:

s 
3 s − 2

3 α ± π 
> 1 (3.70)

2 (κ + Y ) 

otherwise the stress and internal state variables in each phase retain their previous time

step values. For a purely explicit algorithm, the current time step value for the stress can

be computed for each phase. However, for the internal state variables in each phase only

the previous time value is available. Therefore, the discrete form of Eqn. (3.70) for a purely

explicit algorithm is such that:

s 
3 
2 

s(i),n+1 − 2 α(i),n 
3 

(κ(i),n + Y ) 
± π 

> 1. (3.71)

3.4 Results 

A quantitative assessment of the multiphase EMMI material model coupled with the

non-diffusive phase transformation kinetic model of Lusk et al. [51,72,73] was carried out.

Parameter identifcation for the mechanical response of both the austenite and martensite

phases was performed using a gradient based optimization routine as listed on Table 2.1

following previous works of Marin et al. [80]. Table 2.2 is a tabulation of the material

properties used in this study. Parameters used here for the kinetic models are published

values based on previous works of Lusk et al. [51, 72, 73]. For the sake of simplicity

material hardening dependence on carbon content was not accounted for. Figure 3.4 and
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Table 3.1

Direct Integration Algorithm for Single Phase EMMI Model

Step 0: Compute Material Parameters

Step 1: At Time = 0, Material Initialization Procedure

⇒ Compute: Δ� or Δd 

⇒ Compute σ1 

⇒ Retrieve and Store α0 , κ0 and Δ�0 
p 

Step 2: At Time > 0, Material Integration Procedure

⇒ Compute: Δ� and Δd 

⇒ Retrieve: σn , αn , κn and Δ�p
n 

⇒ Compute: σn+1 

⇒ Decompose σn+1 into sn+1 and pn+1 

⇒ Determine magnitude of plastic deformation :

q 
3 sn+1 − 2 αn > (κn + Y )⇒ Evaluate:
2 3 

If(True)
⇒ Evaluate: Δ�p or Δdp 
⇒ Compute: αn+1 and κn+1 

⇒ Compute: pn+1 

⇒ Store: σn+1 

⇒ Return to PDE solver

If(False)
⇒ Update: σn+1 

⇒ Return to PDE solver
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Table 3.2

Direct Integration Algorithm for Multiphase EMMI Model at θ0 < Mstart 

Step 0: Compute Material Parameters

Step 1: At Time t = 0 (n=0), Material Initialization Procedure For i = 1,2 Phases

⇒ Assuming: θ0 < Mstart, Therefore: σ1,(2) = 0 
⇒ Evaluate Material Properties and Parameters for i = 1 at θ0 

⇒ Compute: σ1,(1) 

⇒ Retrieve and Store State: α0 , κ0 , π and Δ�0 
p 

Step 2: At Time t > 0 (n>0), Material Integration Procedure

⇒ Update: θn+1 

⇒ Evaluate Material Properties and Parameters For i = 1,2 Phases at θn+1 

⇒ Compute: φn+1 or πn+1 

⇒ Retrieve: σn , αn , κn and Δ�np 
⇒ Compute: σ(i),n+1 For i = 1,2 Phases
⇒ Decompose: σ(i),n+1 into s(i),n+1 and p(i),n+1 

⇒ Determine Magnitude of Plastic Deformation: For i = 1,2 Phasesq
3 s(i),n+1 − 2 α(i),n ± π > (κ(i),n + Y (i))⇒ Evaluate:
2 3 

If(True)
⇒ Evaluate: Δ�( p

i) or Δd( 
p
i) 

⇒ Compute: α(i),n+1 and κ(i),n+1 

⇒ Compute: p(i),n+1 

⇒ Store: σ(i),n+1 For i = 1,2 Phases
⇒ Return to PDE solver

If(False)
⇒ Update: σ(i),n+1 , φn+1 and πn+1 

⇒ Return to PDE solver
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Figure 3.5 shows the a ft of EMMI state variable model to experimental data for 5120

steel.
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Figure 3.4

EMMI model for 5120 austenite steel at uniaxial tension.

In other to get a qualitative feel for how the local thermal histories affect phase trans-

formation, three multiphase EMMI material point simulation (mmps) runs were performed

at 100C/s, 200C/s and 300C/s cooling rates. The transformation kinetics Figure 3.6 shows

a rapid transformation from austenite to martensite at higher cooling rates. The deviatoric

stress in the austenite Figure 3.7 and martensite Figure 3.8 phases increases as the transfor-

mation proceeds. Though these runs only indicate the effect of cooling rate at a point they

help qualitatively determine how the the deformation at juxtaposed material points would

interact to cause deformation due to gradients in temperature.
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EMMI model for 5120 martensite steel at uniaxial tension.
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Figure 3.6

Multiphase EMMI model with Lusk model at 100C/s, 200C/s and 300C/s and 0.2%C.
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Figure 3.7

Multiphase EMMI model with Lusk model showing σ́ for austenite at 100C/s, 200C/s
and 300C/s and 0.2%C.
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Figure 3.8

Multiphase EMMI with Lusk model showing σ́ for martensite at 100C/s, 200C/s and
300C/s and 0.2%C.
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Figure 3.9

Interfacial for multiphase EMMI model with Lusk model at 100C/s, 200C/s and 300C/s
and 0.2%C.

The carbon content effect on the mechanical response was investigated Figure 3.10,

Figure 3.11 and Figure 3.12. The transformation kinetics coupled with the multiphase

EMMI model for a fxed cooling rate of 100/s at a carbon content ranging from 0.05% to

0.2%. Prantil et al. [87] determined that the rate of transformation was faster as the carbon

content was increased. The results here show a similar qualitative behavior when coupled

with the EMMI mechanical response. The feld variables however show no change in the

mechanical response.

Figure 3.13 shows the additional straining induced by the transformation accounted

for by the interfacial stress acting as a forward stress in the austenite and a backward

stress in the martensite. The percentage of carbon content controls the smoothness of the

rate of additional deformation due to transformation from austenite to martensite. Though
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these simulation only indicate the effect of carbon content at a point they help qualitatively

determine how carbon gradients at juxtaposed material points affect the transformation

kinetics.
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Figure 3.10

Multiphase EMMI with Lusk kinetics showing 1 − φ at 100C/s for %C = 0.05, 0.1 and
0.2.

3.5 Summary 

We premised this investigation with a consistent thermodynamic framework and ex-

tended the single phase Evolving Microstructural Model of Inelasticity (EMMI) internal

state variable model to multiphase affrming that the interaction between coexisting phases

is through an interfacial stress. Following this, we employed a self-consistent polycrys-

talline model in order to partition each individual phase’s strain feld ensuring a hybrid
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Figure 3.11

Multiphase EMMI with Lusk model showing σ́ for austenite at 100C/s and %C = 0.05,
0.1 and 0.2
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Multiphase EMMI with Lusk model showing σ́ for martensite at 100C/s and %C = 0.05,
0.1 and 0.2.
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Multiphase EMMI with Lusk model showing TRIP strain at 100C/s for %C = 0.05, 0.1
and 0.2.

between compatibility and equilibrium. With a synthesis of the aforementioned ideas,

the additional transformation plasticity (TRIP) is numerically accounted for by modifying

each phase’s fowrule to accommodate an interfacial stress. Further, we coupled the me-

chanical multiphase model equations with the previously developed non-diffusional phase

transformation kinetics model developed by Lusk [51, 72, 73].

As noted by Ferguson et al. [33], necessary material processing routines not limited

to quenching, welding or heat treatment produce high thermal gradients that lead to a fast

transformation rates, most of which are experimentally challenging to capture. With this

mind, it is conceivable that a well premised mathematical and physical model would serve

as a useful numerical tool in the material fabrication industry.
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CHAPTER 4

SUMMARY

4.1 Summary 

Heat treatment for the purpose of material strengthening is accompanied by residual

stresses and distortion. During these processing steps, steel alloys experience a phase

change that in turn modify their overall mechanical response. To properly account for

the cumulative composite behavior, the mechanical response, transformation kinetics and

subsequent interaction of each phase have to be properly accounted for.

With aforementioned statements, the goal of this investigation was to develop a multi-

phase model capable of predicting and therefore aiding in controlling dimensional changes,

distortion and residual stress in parts. Such a model must have several features. Foremost,it

must be premised on a consistent thermodynamic framework. In addition, it must have the

ability to predict the mechanical response of individual phases. Lastly, the model must cap-

ture the transformation kinetics of individual phases while physically incorporating their

effects on the mechanical model.

To achieve the aforementioned objectives, a consistent thermodynamic framework was

developed. Following this, the single phase EMMI internal state variable model was ex-

tended to multiphase affrming that the interaction between coexisting phases is through

an interfacial stress. Since the effcacy of a multiphase model is dependent on its ability to
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capture the behavior of constituents phases and their subsequent interaction, a physically

based self-consistent partitioning algorithm was introduced. With a combination of the

above, TRIP was numerically accounted for by modifying each phase’s fowrule to accom-

modate an interfacial stress. In addition, for simulating the cohabitation of two phases,

the mechanical multiphase model equations are coupled with a previously developed non-

diffusional phase transformation kinetic model proposed by Lusk [51, 72, 73].

Here a two-phase system was implemented and qualitatively associated with austenite

and martensite. Available was experimental data of 5120 steel over a limited strain rate and

temperature regime. The goal to eventually extend this work to all fve phases in an attempt

to modify and extend the approach taken previously by Bammann et al. [12–14, 16]. Of

interest here are materials that undergo phase transformation that consequentially modi-

fes their material macroscopic response. The belief is that a proper continuum mechanics

based formulation with internal state variables is suffcient to capture the underlying phys-

ical phenomena.

A quantitative assessment of the material response and plastic fow based on the Taylor,

Sachs and self-consistent approximation was carried out. Following this, a quantitative

assessment of the multiphase EMMI material model coupled with the non-diffusive phase

transformation kinetic model was carried out. Parameter identifcation for the mechanical

response of both the austenite and martensite phases was performed using a gradient based

optimization routine following previous works of Marin et al. [80]. Parameters used here

for the transformation kinetics are published values based on previous works of Lusk et
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al. [51,72,73]. For the sake of simplicity material hardening dependence on carbon content

was not accounted for.
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[37] J. Giusti, Contraintes et déformations résiduelles d’origine thermique: application
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APPENDIX A

EXPERIMENTAL AND NUMERICAL DATA FOR AUSTENITE
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Experimental and numerical data for austenite:
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Figure A.1

EMMI model response to uniaxial tension data for 5120 austenite steel at various strain
rates and temperatures
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APPENDIX B

EXPERIMENTAL AND NUMERICAL DATA FOR MARTENSITE
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Experimental and numerical data for martensite:
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Figure B.1

EMMI model response to uniaxial tension data for 5120 martensite steel at various strain
rates and temperatures
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APPENDIX C

FORMS OF MATERIAL PARAMETERS
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C.1 Form of EMMI Model Parameter 

Effective Plastic Flow Parameters:

c(9) 
n(θ) = + c(1) (C.1)

θ 

−Q(1)
f(θ) = c(2)Exp( ) (C.2)

θ 

Kinematic Hardening Parameters:

Cα(θ) = c(11) (C.3)

h(θ) = c(4) (C.4)

−Q(2)
rd(θ) = c(3)Exp( ) (C.5)

θ 

Isotropic Hardening Parameters:

Cκ(θ) = c(12) (C.6)

H(θ) = c(6) (C.7)

−Q(3)
Rd(θ) = c(5)Exp( ) (C.8)

θ 
−Q(4)

Rs(θ) = c(7)Exp( ) (C.9)
θ 

−Q(5)
Qs(θ) = c(10)Exp( ) (C.10)

θ 
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