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Age estimation, a component of the biological profile, contributes significantly to 

the creation of a post-mortem profile of an unknown set of human remains. This goal of 

this study is to: (1) refine the juvenile age estimation method of cranial vault thickness 

(CVT) through MARS modeling, (2) test the method on known age samples, and (3) 

compare CVT and dental development age estimations. Data for this study comes from 

computed tomography (CT) scans, radiographic images, and dry bone. CVT was 

measured at seven cranial landmarks (nasion, glabella, bregma, vertex, vertex radius, 

lambda and opisthocranion). Results indicate that CVT models vary in their predictive 

ability; vertex and lambda produce the best results. Predicted fit values and prediction 

intervals for CVT are larger, and less accurate than dental development age estimates. 

Aging by CVT could benefit from a larger known age sample composed of individuals 

older than 6 years old. 
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CHAPTER I 

INTRODUCTION 

The Biological Profile 

The first task in the anthropological analysis of human skeletal remains is to 

generate a biological profile of the individual. A biological profile is the combination of 

four trait estimates including age-at-death, sex, ancestry, and stature, as well as the 

assessment of pathological conditions or other anomalies on the skeleton (Cattaneo, 

2007). Information generated here is important because it can be individualizing and 

relate to a specific set of skeletal remains. In this regard, the biological profile can be 

used in forensic and humanitarian situations in an effort to identify missing persons. For 

archaeologically derived skeletal materials, the biological profile is used to further 

investigate bioarchaeological or paleopathological questions of growth and development, 

and demographic and health studies (Hoppa and FitzGerald, 1999). 

Age at death 

Age-at-death determination is the estimation of the biological or developmental 

age in an individual. Biological age is the physiological age reflected in skeletal features 

or morphology, which can be used to predict chronological age (i.e., the calendric years, 

months, and days that passed before death) (Garvin et al, 2012). Ages are usually 

expressed as a range, and researchers strive to create methods that narrow the age range 

as much as possible. In forensic cases, precise age ranges are very useful in the 
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reconciliation process between missing person’s data and unidentified human remains 

(Garvin et al, 2012). Konigsberg and colleagues (2008) emphasize that statistically sound 

aging methods should have correct coverage. For example, the estimated age range 

should include 50% of the individuals that chronologically fall into that range, while the 

remaining 50% should be equally distributed above and below the targeted age estimation 

range (Konigsberg et al., 2008). Several studies report 50%, 90% and 95% coverages. 

Estimated age ranges are based on changes in skeletal morphology. Certain 

elements of the skeleton, like the cranium, dentition, long bones and features on the os 

coxae and the ribs, change throughout the course of people’s lives and can be used to 

estimate the age at which a person died. These changes are well documented in the 

literature (McKern and Stewart, 1957; Scheuer and Black, 2000b; Garvin et al., 2013), 

Studies of skeletal samples have demonstrated that certain features of the skeleton, 

namely the pubic symphysis (Todd, 1920; Suchey and Katz, 1986), auricular surface 

(Lovejoy et al., 1985), sternal rib ends (Iscan and Loth, 1986), epiphyseal fusion of long 

bones (Scheuer and Black, 2000b), dental development (Moorrees et al., 1963), and 

diaphyseal long bone lengths (Maresh, 1955; Hoffman, 1979) give reliable age estimates. 

Skeletal elements that provide reliable age estimates show a sequence of change that 

correspond to growth and development in children or degeneration in adults. Skeletal 

changes that correspond to growth and development include the formation and fusion of 

ossification centers and an increase in bone deposition (Scheuer and Black, 2000b; 

Franklin, 2010). Degenerative changes corresponding to advanced age include cranial 

sutures closure, osteoarthritis and osteoporosis of the skeleton and dental attrition and 

periodontal disease in dentition (Ubelaker, 1989; Ortner, 2003; Larson, 1999). Qualitative 
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changes of these bony features are then used to create methods for age estimation and 

tested on known-age individuals. These methods have been developed using multiple 

historic skeletal samples (Usher, 2002), such as the Terry Collection (n=1728), with 

birthdates ranging from pre 1840 to post 1960 (Hunt and Albanese, 2005), and the 

Hamann-Todd Collection (n=>3,000), with birthdates ranging from 1825-1877 (de la 

Cova, 2011). However, historic skeletal collections from the 19th and mid 20th century no 

longer reflect worldwide growth trends in juveniles (Stull et al., 2014). Because many 

skeletal collections are not reflective of current growth trends (Stull et al., 2014), methods 

have recently been developed and updated using samples from living individuals, via 

radiographs (Mays, 1998; Stull et al, 2014) and computed tomography (CT) scans 

(Schultz et al., 2005). 

Juveniles and Age-at-death estimation 

Traditionally, the term ‘juvenile’ refers to any individual that is not yet an adult. 

Normal, non-pathological changes in the juvenile skeleton can be used to estimate age 

because the skeleton is actively maturing. In general, juveniles pass through three stages 

of rapid growth. The first growth spurt begins quickly after birth, slowing around 3 years 

of age (Lewis, 2007:60). Growth accelerates again during the second growth spurt, which 

occurs between 6 and 8 years of age (Scheuer and Black, 2000b). The third growth spurt 

begins at the onset of adolescence, and finally, growth plateaus in late adolescence 

(Larsen, 1997:8; Scheuer and Black, 2000b). Because growth occurs on a relatively strict 

time scale in juveniles, fusion of multiple bony elements or dental development can be 

used to establish a more accurate age estimate than estimates based upon degenerative 

changes in adults (Franklin, 2010). 
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Age estimation methods for juveniles vary in their comprehensiveness, covering 

specific intervals or growth trajectories of single skeletal elements. Many of these 

methods are complementary to each other and are used in tandem for age estimation 

purposes (White and Folkens, 2000). The most commonly used age estimation methods, 

which can be used together, include dental development, epiphyseal union and 

measurements of long bone lengths (Ubelaker, 1989; Cardoso et al., 2013). The study 

presented here investigates an alternative age estimation method in juveniles that could 

be used in tandem or alone. It examines the age-dependent properties of cranial vault 

thickness (CVT) in juveniles using CVT measurements at linear cranial landmarks on the 

cranial vault. Multiple studies have examined the relationship between CVT and 

chronological age (Hansmen, 1966; Brown et al., 1979; Garofalo et al., 2008), but a 

survey of published literature does not reveal the use of regression models for age 

estimation using CVT. Studies by Hansmen (1966), Brown and colleagues (1979) and 

Garofalo and colleagues (2008) found correlations between CVT and age at nasion, 

vertex, right euryon, left euryon (Brown et al., 1979), the midpoint between the sagittal 

suture and left parietal boss (Garofalo et al., 2008), bregma and lambda (Brown et al., 

1979; Garofalo et al., 2008). These findings demonstrate that CVT may be positively 

correlated with developmental age in juvenile crania. The results also suggest that this 

relationship may hold true for a lengthy portion of the sub-adult period, birth to 15 years 

old, making CVT the basis for a potential aging method for juvenile skeletons from a 

range of ages. Age-at-death estimates using CVT would allow for an additional area of 

the cranium to be used in age estimation. This would be beneficial for highly fragmented 
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remains or commingled contexts, which are commonly found in both forensic and 

archaeological contexts, and for use in the absence of dentition. 

Research Design 

The overarching research question is: Can differential CVT of juvenile crania be 

used to estimate age-at-death? The aim of this study is to refine the CVT age estimation 

method for juvenile skeletal material by creating Multivariate Adaptive Regression 

Spline (MARS) models at select cranial landmarks. This method demonstrates that CVT 

measurements at select cranial landmarks can be used to estimate age within the model. 

This method was developed using known age Computed Tomography (CT) data. Models 

were created using the CT data and then tested with radiographic images of juvenile 

crania to assess the fit of the model. The accuracy of the method was evaluated against 

chronological age and dental age estimates of the CT data, radiographic images and dry 

bone samples. Dental age was estimated using Shackelford and colleagues’ (2012) 

method of transition analysis applied to dental development, in which developmental 

scoring procedures are based on Moorrees and colleagues (1963) seminal study. The 

CVT method was also used to estimate age on CT scans, radiographs and dry bone 

samples from a forensic case and archaeological juvenile crania. Results are discussed 

separately as case studies. Limitations to this approach are identified and discussed in 

later chapters. 

The method is based on the assumption that there is a positive correlation between 

CVT and developmental age in juveniles at eight craniometric points, nasion, bregma, 

lambda, vertex, right euryon, left euryon, the midpoint between sagittal suture and left 

parietal boss. A sample size of 60 cranial radiographs of living individuals (Brown et al., 
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1979) and 28 archaeological crania (Garofalo et al., 2008) has already been used to test 

this assumption. This study goes beyond this, as it is based on a sample of CT images of 

juvenile crania (n=74) collected from living French children of mixed ancestry provided 

by Drs. Priscilla Bayle and Michael Coquerelle. Thickness measurements were collected 

at seven craniometric points (nasion, glabella, bregma, vertex, the vertex radius, lambda, 

and opisthocranion) that are clearly distinguishable on CT and radiographic 

cephalograms, or lateral, images. Statistical analyses, specifically univariate and 

multivariate models using loess regression, were used to detect relationships between 

CVT and known chronological age. These models use the standard error associated with 

each score to obtain a prediction interval (PI) for age ranges associated with 

measurements. PIs generated from the models provide a range with an associated 

probability where future thickness measures should fall. Once a refined method for age-

estimation using CVT was developed, it was tested on radiographic images (n=2) of 

known age children from the online database Patricia (Pediatric Radiology Interactive 

Atlas)1 with known chronological age from a forensic sample containing individuals from 

various ancestral groups in the United States (Ousley et al, 2013). This served to test 

whether the refined CVT method can accurately predict age and gauge the degree of 

precision in age estimates as they apply to different imaging techniques. 

Additionally, dry bone samples from the Lyon’s Bluff collection housed at 

Mississippi State University were used to evaluate the CVT method in relation to 

archaeological material. Individuals from these samples were aged using dental 

                                                 
1 http://math.mercyhurst.edu/~sousley/databases/radiographic_database/ 
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development (Moorrees et al., 1963) and transition analysis of dental development scores 

(Shackelford et al., 2012). Results from the dry bone samples are discussed separately 

because they are prehistoric and of limited size. These cases cannot significantly 

contribute to method development or testing until the CVT method is calibrated using 

dental development or long bone length as a calibration standard. Then, the CVT method 

can be applied to archaeological samples that are commingled, fragmented or do not 

include dentition. 

The proposed study addresses the following hypotheses: (1) CVT measurements 

at select cranial landmarks conform to expected growth curves using a locally smoothed 

(loess) fit. This would tell researchers if developmental age and increases in CVT are 

linked, and the degree of correlation. (2) CVT measured on radiographic images of 

juvenile crania will fit to age estimation models developed on CT scans. MARS models, 

which use loess regression, were created to illustrate the relationship between CVT and 

age at each landmark. Known age radiographic data was then tested against the model 

and the fit evaluated. Univariate and multivariate models were created using a single 

landmark or a combination of landmarks. (3) Hypothesis three states: CVT will compare 

to chronological age and age-at-death estimates using transition analysis (Shackelford et 

al., 2012) on dental development scores of all available teeth (Moorrees et al., 1963); 

however, prediction intervals will not be as narrow as those from dental age-at-death 

estimates. Following this hypothesis, the accuracy of the refined CVT method was 

evaluated to aging through transition analysis on dental development, because dental 

development is viewed as the most reliable and accurate age-at-death estimation method 

for juveniles (Hoppa and Fitzgerald, 1999). I tested the accuracy of both methods of age 
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estimation as compared to chronological age. The CT and radiograph samples were 

chosen because they are composed of many modern, known age individuals, and reflect 

current worldwide growth trends, which is appropriate to use when creating a forensically 

based age-estimation method. However, because this study compares CVT age to dental, 

results are applicable to bioarchaeological research. 

During refinement of the CVT method, the MARS statistical modeling 

methodology established by Stull and colleagues (2014) was followed on the CT scans. 

Stull and colleagues (2014) refined methods for estimating age in juveniles using 

diaphyseal dimensions of the femur, tibia, fibula, humerus, radius and ulna. They used 

loess regression, MARS, and univariate modeling of MARS to generate PIs of 

measurements and their associated age ranges. These statistical tests--loess regression 

and MARS modeling--were used here because they are appropriate to use on non-linear 

data such as growth data. These specific tests also do not make assumptions about the 

relationship of the variables to each other and are flexible to provide the best and least 

biased fit when generating a model (Stull et al., 2014). PIs with known error rates 

accompany each CVT measurement and describe the accuracy of the fit of the data to the 

model by providing an interval in which a variable yet to be observed will fall. 

The benefits of this method are numerous. This method provides an alternative 

option for age-at-death estimation for incomplete or fragmented juvenile remains 

recovered from archaeological sites or forensic context. For example, if taphonomic 

processes severely impact traditional age estimation markers (long bones, epiphyses, 

dentition), the crania, specifically CVT will be an alternative element for age estimation. 

This method could complement other aging methods by adding statistical support for a 
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particular estimate, increasing the accuracy of the overall estimated age. The results 

explain which cranial landmarks would benefit from future research using standardized 

data collection protocols.  
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CHAPTER II 

BACKGROUND 

Juveniles become part of the archaeological record for many different reasons. 

Their deaths can be attributed to disease, nutritional deficiencies, neglect, suicide, 

accident, abuse, murder or warfare (Lewis, 2007:1). In bioarchaeology, information from 

the biological profile of juveniles is important for establishing mortality profiles, 

estimating fertility and other population-level processes, and understanding the role that 

trait estimates may play in diet, nutrition, disease, and activity (Larsen, 1997). In 

forensics, the biological profile helps to establish the identity of skeletal remains for legal 

purposes and so family members can have closure. The starting point in identification 

involves the creation of the biological profile. 

In forensics, information from the biological profile provides authorities with 

specific and unique information about an unidentified skeleton. This information is 

crucial for correlating ante- and postmortem data (Kranioti and Paine, 2011). 

Antemortem data is information collected from family members or friends of a missing 

person. It is compared to postmortem data, which is information collected from human 

remains during autopsy or skeletal examination. Age-estimation methods used on 

unidentified human remains can contribute to resolving the fate of missing persons (Inter-

Parliamentary Union and International Committee of the Red Cross, 2009) or in 

determination of an unlawful offense. These methods can expedite the investigation 
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process by reducing case-by-case comparisons of ante and postmortem data (Rogers, 

2009). In practice, Kimmerle and colleagues (2010) report that estimated age was a 

significant factor in identifying juveniles. Age estimation methods are used to determine 

if humanitarian laws were violated (Plattner, 1989) or as evidence for prosecution in 

human rights cases (Ritz-Timme et al., 2000; Kimmerle, 2004). 

Because one aspect of this research contributes to the development of a method 

suitable for use in a forensic context where issues of legality are concerned, it is subject 

to the Daubert standards (Dirkmaat et al., 2008). These criteria are a direct result of the 

1993 Supreme Court ruling in Daubert v. Merrell Dow Pharmaceuticals, Inc2, in which 

scientific evidence crucial to the case was deemed inadmissible because it did not meet 

the general acceptance criteria for evidence previously established. The Daubert 

standards aid trial judges in their decision to allow certain scientific testimony, such as 

the inclusion and validity of methods used to estimate the biological profile. The Daubert 

standard guidelines are: (1) Has the theory or technique been tested? (2) What is the 

known or potential error rate? (3) Do standards exist for the control of the technique’s 

operation? (4) Has the theory or technique been peer reviewed and published? and (5) is 

the theory or technique generally accepted within the scientific community in which it 

was established? (Christiansen and Crowder, 2009). Although the Daubert criteria are not 

a requirement of methods used in forensic anthropology, researchers involved in method 

development should strive to meet the criteria, specifically, criteria 1-3, in case future 

legislation requires such standards. In accordance with the first three criteria of the 

                                                 
2 113 S. Ct. 2786 (1993) 
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Daubert standards, the proposed method provides error ranges through PIs so that 

officers of the court—judges and jury members—can understand the degree of precision 

of age estimation using the method, provides results from a test sample, and includes 

directions and procedures for other researchers to follow when using the method 

(Christiansen and Crowder, 2009). 

Age estimation methods aim to determine the developmental age of skeletal 

remains, which is then used to predict the chronological age at which the individual died 

(Garvin et al., 2012). In most instances, age estimation methods report a numerical age 

range, weeks to months in fetuses and neonates and years in sub-adults and adults. A 

range better captures the variation in growth and degeneration of the skeleton manifested 

by living individuals. One method does not provide a range; rather counts of dark and 

light bands present in dental cementum are used to generate a direct point estimate of age 

(Condon et al., 1986). Skeletal elements used in determining age-at-death are different in 

adults than they are in juveniles. Methods for estimating age in adults are premised on 

maintenance and deterioration of bony features, because growth has ceased.  In contrast, 

skeletal indicators of growth and development are the primary focus in juvenile age-at-

death estimation methods. Practitioners most frequently use dental development, 

epiphyseal closure and long bone length, respectively, when aging juvenile skeletal 

remains (Hoppa and FitzGerald, 1999). 

Age estimation methods based on dental development are preferred because 

dental development represents a reliable indicator of age (Demirjian et al., 1973) and 

gives the most narrow or precise age ranges. The timing of tooth growth, development 

and eruption into the oral cavity is under strong genetic control and is less affected by 
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environmental or cultural factors (Ubelaker, 1989; Moorrees et al., 1963; Scheuer and 

Black, 2000b, 2004). Dental remains are also less susceptible to taphonomic damage 

(Ubelaker, 1989) and are more likely to be recovered at excavation. Because dental age 

estimation methods are reliable, narrow and most likely available, the CVT method in 

this study will be compared to age estimation using dental development. Two 

fundamental studies by Gleiser and Hunt (1955) and Moorrees, Fanning and Hunt (1963) 

that examine dental growth in relation to age are discussed in more detail. Gleiser and 

Hunt (1955) examined calcification of the crown and root of the mandibular first molar as 

it related to growth in males and females. They divided calcification stages of the first 

molar into 15 stages, and found that calcification often occurs in spurts and at different 

time periods in both sexes, with females tending to develop more quickly (Gleiser and 

Hunt, 1955). In their study, Moorrees and colleagues (1963) determined that the 

formation and development of several permanent teeth are strong indicators of 

chronological age in both sexes. Using longitudinal data on American children (N=134), 

they created a scoring procedure from radiographic images for determining age using 

permanent and deciduous mandibular and maxillary teeth—maxillary and mandibular 

incisors and mandibular canines, premolars and molars (Moorrees et al., 1963). Stages 

are associated with numerical scores and are based on crown and root development and 

root reabsorption. This method is comprehensive, initiating during fetal development and 

concluding during late adolescence or adulthood (Scheuer and Black, 2000b). Even 

though this method is extensive, it provides better age estimates for younger individuals 

(Ubelaker, 1989), and is the preferred method for aging infants (Scheuer and Black, 

2000b). Shackelford and colleagues (2012) further refined the ease of this method. They 
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developed a code to estimate age using transition analysis on dental development scores, 

which illustrates maximum likelihood age estimates (MLE) for available dentition. 

When dentition is unavailable, anthropologists often use epiphyseal union and 

long bone length to estimate age (Cunha et al., 2009; Cardoso et al., 2013). Epiphyseal 

union is based on three phases of biological development and their processes. These 

phases of development are the appearance of an ossification center, followed by the 

morphological appearance of the center, and finally, the fusion of the center with a 

separate center of ossification (Scheuer and Black, 2004). This method can be used on 

individual elements or across multiple elements, and is best suited for estimating juvenile 

age between 10 and 20 years old, because age-at-death estimates from long bone lengths 

are of limited value for individuals older than ten years (Ubelaker, 1989). Ubelaker 

(1989) recommends evaluating the total pattern of epiphyseal closure in the skeleton 

when providing an age assessment because some elements give more reliable estimates 

than others when fusing, especially the proximal humerus, medial epicondyle, distal 

radius, femoral head, distal femur, iliac crest, medial clavicle, and segments of the sacral 

joints (McKern and Stewart, 1957). The third most common age estimation method uses 

long bone measurements. Age estimation from long bone length is achieved through 

measuring the maximum diaphyseal lengths of the femur, tibia, fibula, humerus, radius, 

ulna, ilium and clavicle (Scheuer and Black, 2000a). These measurements are then 

entered into regression formula based on comparative skeletal populations (Scheuer et al., 

1980). This method is best suited for fetal and infant skeletons, as the standard deviation 

from the mean increases significantly with age. Age estimation using long bone length is 

not very accurate and results vary, because growth in these elements can vary across 
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populations and individuals (Ubelaker, 1989:65-66) and be impacted by socioeconomic 

factors (Rogers, 2009). 

Apart from dental development, epiphyseal closure and measurements of long 

bone lengths, many other methods are available to estimate age in juveniles. Many of 

these methods focus on changes during growth that occur in the skull. These methods are 

based on multiple indicators, including stages of ossification of the cranial elements 

(Redfield, 1970; Fazekus and Kosa, 1978; Scheuer and MacLaughlin-Black, 1984; 

Scheuer and Black, 2000b), and geometric changes in length between specific points in 

the craniofacial region (Buschang et al., 1983; Braga and Treil, 2007) and mandible 

(Franklin et al., 2008). Ossification methods are limited to a small age group (e.g., 

neonates), because cranial vault ossification begins during embryonic development and 

completely finishes by 7 years old (Scheuer and Black, 2000b, 2004). Other methods 

focus on changes in linear distance measurements and geometric morphometric changes. 

Buschang and colleagues (1983) examined linear distances relating to facial and cranial 

height in juveniles to determine how the face and cranium develops with increasing age. 

They found that cranial base and the head height increased in linear distance based on the 

assessment of points on the mandible, the maxilla, and the upper face. The greatest 

increase in distance in the mandible, and the least increase in distance between linear 

points was observed in the head height. This study provides a list of mean and standard 

deviations for the facial proportions relative to age (Buschang et al., 1983). Braga and 

Treil (2007) used geometric morphometrics to determine if shape changes in the face and 

cranial base could be correlated with skeletal growth and chronological age. They used a 

sample of CT scans (n=127), ranging in age from newborns to 17.67 years old. Through 
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comparison of linear regression age calculations and the centroid size of the face and 

cranial base, they found that age estimation was more accurate in individuals older than 

10 years of age. Franklin and colleagues (2008) used morphometrics on developmental 

markers in the mandible to estimate age. They found that mandibular centroids of size 

and shape are useful for predicting age in individuals aged 10-17 years old. The standard 

error rates for their method varied from 1 to 3 years (Franklin et al., 2008). 

Despite the abundance of cranial based age estimation methods, studies 

examining the relationship of CVT and age in juveniles are limited. Hansmen (1966) 

measured thickness of juvenile males and females (n=134) at one cranial landmark, 

lambda. The purpose of this study was to understand cranial thickness and sinus growth 

with increasing age in healthy individuals to compare to children with pathological 

conditions. Hansmen noted that cranial thickness increased rapidly until 3 years of age, 

and then increased steadily into late adolescence before leveling off. Results of this study 

are listed as percentile standards for different age groups (Hansmen, 1966). Another, 

more in depth study by Brown and colleagues (1979) collected radiographic data from 

Australian aboriginal juveniles (n=60) aged 6-13 years through multiple, 4 to 10 

observations. They found a correlation between CVT and age at six craniometric 

points—nasion, bregma, vertex, lambda, right euryon, left euryon—measuring the 

distance between the ectocranial reference point and the nearest point on the adjacent 

endocranial surface. They found that CVT does not differ significantly between either 

sexes except at the following points: nasion at 13 years of age; bregma at 12, 13, and 14 

years of age; vertex at 8 and 14 years of age; and right euryon for 8 years of age. The 

study also showed that CVT increased steadily through time with little evidence of 
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growth spurts except for thickness measures at nasion. They noted that some thickness 

measures varied irregularly between 8 and 18 years of age, and attribute this error to 

small differences between mean measurements and deviations (error rates) from the 

mean. Nasion did exhibit a growth spurt occurring between 13 and 14 years of age, but 

the data was too incomplete to provide more detailed results (Brown et al., 1979). Their 

publication includes a table for age estimation in juveniles aged 8-18 years old at the 

following landmarks: nasion, bregma, vertex, lambda, right euryon, left euryon, frontal 

sinus height and frontal sinus depth (Brown et al., 1979). Garofalo and colleagues (2008) 

examined archaeological Native American juvenile crania (n=28) housed at the 

Smithsonian National Museum of Natural History. The sample had been previously aged 

by Smithsonian staff and contract osteologists using established age estimation methods, 

including dental eruption (Ubelaker, 1989), fusion of the speno-occipito synchondrosis 

(Ingervall and Thilander, 1972), fusion of the jugular plate (Maat and Mastwijk, 1995) 

and, when post cranial material was available, long bone length (Scheuer and Black, 

2000b). Garofalo and colleagues (2008) reassessed age independently and no 

interobserver error was noted. Data collection methods are explained in further detail in 

Zuckerman et al. (2014). Garofalo and colleagues (2008) found a correlation between 

CVT and age at an expanded/different set of cranial landmarks—left frontal boss, 

bregma, midpoint between bregma and left frontal boss, apex of the parietal bone on the 

left side, midpoint between sagittal suture and left parietal boss, lambda, midpoint 

between left frontal boss and lambda, apex of the skull lateral to sagittal suture, apex of 

occipital boss, most superior point of lateral orbital roof and most superior point directly 

posterior to supraorbital notch or foramen. Their results indicate a correlation between 
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age at CVT at bregma, lambda—as did Brown and colleagues’ (1979)—and midpoint 

between sagittal suture and left parietal boss, with the bregma being the most predictive 

of age. Because neither of these two studies developed a comprehensive method for aging 

the cranial vault through CVT measures, the proposed study has the potential to fill that 

gap. Following methodology employed by Stull and colleagues (2014), this study will 

create age estimation models using CVT, list prediction intervals calculated through 

standard error measurements to estimate where future measurements will fall, and show 

the error associated with the predictive ability of each cranial landmark used in modeling. 

This method will be tested on a sample with known chronological age and against 

transition analysis of the dental development age estimation method (Moorrees et al., 

1963; Shackleford et al., 2012) to gauge its performance. Finally, this study will list 

standard protocol for collecting CVT data on CT scans and radiographic data using two 

software programs available online. 
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CHAPTER III 

MATERIALS AND METHODS 

Materials 

To evaluate the research question for this study, a modern sample of juvenile 

crania with known age was used. CVT at seven, linear cranial landmarks was measured 

and the data was evaluated employing the statistical modeling for method creation used 

by Stull and colleagues (2014). This study uses a larger sample size (Brown et al., 1979; 

Garofalo et al., 2008) and more cranial landmarks (Hansmen, 1966; Brown et al., 1979) 

than previous studies that found correlations between CVT and age. Because this study 

aims at creating a method to be used in forensics and bioarchaeology, contemporaneous 

samples were used in model development. A sample that includes contemporary 

individuals is more likely to reflect the aging process of juveniles and provide more 

reliable statistics of current populations and their variation (Stull et al., 2014; Field et al., 

2012). This is important for forensically based methods, as unknown individuals come 

from current or recent populations. Even though the method is based on a 

contemporaneous sample, results from this study are applicable to bioarchaeological 

samples. Data was collected from two different sources; CT scans and radiographic 

images. 
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CT sample 

The CT sample that was used to create the models and refine the CVT method is 

comprised of juvenile CT scans (n=74), ranging in age from 0.08 to 16.58 years old. 

These scans were collected by Drs. Pricilla Bayle and Michael Coquerelle from living 

French children of different ethnic backgrounds who were “referred for medical care due 

to suspected cranial trauma, inflammation of the maxillary sinuses or neonatal distress, 

but did not exhibit any reportable abnormalities” (Coquerelle et al., 2011:193). No further 

explanation of cranial abnormalities was given. The scans come from two hospitals, one 

in Paris and one in Bordeaux, France (Coquerelle et al., 2011). Each scan captures data 

from one individual, and information with the scan includes known chronological age 

and biological sex.  Other demographic information has been removed. The CT data was 

approved for research following the Comite Consultatif pour la Protection des Personnes 

dans la Recherche Biomedicale Bordeaux A. The current study does not meet the 

requirements for Human Research Protection Program (HRPP) review, as the data set 

exhibits non-identifiable data that had been collected prior to this study. 

Radiographic sample 

The radiographic sample that was used to test the method comes from Patricia, 

the online radiographic database, which is maintained at Mercyhurst University. Patricia 

is a forensic radiographic image collection consisting of radiographs of juvenile 

skeletons, including skulls. These images were captured during autopsy or physical 

examination of individuals who had died in the United States after January 1, 2000. They 

were collected from medical examiner and coroner’s offices throughout the United States 

(Ousley et al., 2013). This sample comes from a modern population ranging in age from 
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newborns to twenty years old from different ethnic and ancestral groupings. Data on 

cause and manner of death is available upon request. Patricia was created as a data set 

available for research, specifically for investigation in developing juvenile age estimation 

methods. The collection contains over 9,709 images of varying quality that include all 

elements of the body in different anatomical views. I used a subset of data (n=2) from 

this sample to measure CVT for this study. The images are cephalograms because the 

cranial landmarks selected for this study are linear points, which are readily visible in a 

lateral view. Other non-linear points are not easily distinguishable on radiographs and if 

used, could be a potential source of error. The sample size was limited by three extrinsic 

factors: the number of cephalograms available for each age, image quality, which was 

either ‘very good’ or ‘good’, and scale presence. Image quality refers to a query option in 

Patricia when searching images. It corresponds to variable quality of the images based on 

disparities with exposure, sharpness and contrast (Ousley et al., 2013). Scale presence 

refers to a measurement scale in the image. Some images do not have any markers that 

indicate a scale or size of objects in the image. Images without scales could not be 

reliably used for the study. At the time of data collection and analysis, two radiographs 

between 0.0 and 2.9 years old with measurement scales were accessible that followed the 

criteria for image selection. Even though this sample is very small, it provided two test 

cases with known age from a modern sample that were freely available online. 

Dry bone and other samples 

Dry bone samples (n=22), a radiographic image (n=1) and CT scans (n=2) 

available through the Forensic and Bioarchaeology (FAB) Lab and the Biological 

Anthropology Research Laboratory (BARL) at Mississippi State University were used to 
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test the method. The dry bone sample comes from Lyon’s Bluff, an archaeological site (c. 

1200-1650 A.D.) from Oktibbeha County, MS (Peacock and Hogue, 2005). The 

radiographic image comes from a forensic case from the MS State Medical Examiner’s 

Office in Jackson, MS. The CT scan comes from the Mitrou Archaeological site in 

Central Greece. Because the demographic information on age is unknown in these 

samples, each individual was aged using dental development scores (Moorrees et al., 

1963; Shackelford et al., 2012), and compared to CVT estimates. This sample is 

discussed separately from method creation and testing, but can provide insight into future 

research on method performance on archaeological and dry bone samples. 

Methods 

Thickness measurements were collected on CT scans using Treatment and 

Increased Vision for Medical Imaging (TIVMI)3 and on radiographic cephalograms using 

ImageJ 4 at the following cranial landmarks: nasion, glabella, bregma, vertex, vertex 

radius, lambda, and opisthocranion (Howell, 1973; Martin, 1928) (see Figure 1). 

                                                 
3 http://www.pacea.u-bordeaux1fr/TIVMI/ 
4 http://imagej.nih.gov/ij/index.html  

http://imagej.nih.gov/ij/index.html
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Figure 1 Cranial landmarks used in this study. 

 

Cranial landmarks are defined as belonging to Type I, II or III (Bookstein, 1991: 

63). Type I landmarks are located at sutural intersections, such as bregma, lambda, and 

nasion. Type II landmarks are located at the geometric maxima of bony protrusions or 

depressions. They are points of application of biomechanical forces. These points are 

opisthocranion, vertex, and glabella. The vertex radius was identified according to 

Howell’s (1973) definition and the cranial landmark, vertex, was identified following 

Martin (1928). Definitions for each cranial landmark are listed in Appendix A. Some of 
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the cranial landmarks were chosen because they are points that have been shown to be 

predictive of age following previous studies on CVT and aging; namely nasion, bregma, 

vertex, and lambda. All seven points are visible on radiographic and CT data. CVT was 

reported as the smallest measure from the ectocranial to endocranial surfaces at a specific 

cranial landmark. 

CVT Collection on Computed Tomography (CT) Scans 

CVT measurements were collected on CT scans using TIVMI software developed 

by Guyomarc’h and colleagues (2011). TIVMI is a flexible medical imaging software 

used to perform various functions, including measuring, on multiple data types and files.  

Images were received as TSO files, which are a form of DIACOM images compatible 

with the TIVMI software. Threshold values were calculated to best illustrate bone and 

skeletal structures without including tissues, like veins, muscles, cartilage and skin or 

non-osseous material. A mesh, or 3D reconstruction, of each skull was created using the 

“Surface HMH 2” plug-in (see Figure 2). The “Surface HMH 2” plug-in reconstructs the 

skull using the half maximum height (HMH) protocol described by Spoor and colleagues 

(1993). 
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Figure 2 Mesh creating in TIVMI. 

The image shows the mesh from the reconstructed CT scan using the TIVMI software. 
Cranial landmarks were placed on the mesh in order to reconstruct planes. 

The seven cranial landmarks used in this study were marked as points on the mesh 

using a combination of visual placement and calculated placement through the creation of 

planes. The TIVMI user manual (Dutailly and Guyomarc’h, 2012) outlines the procedure 

for creating planes and placing Type II landmarks. Following the instructions in the 

manual, bregma, lambda, nasion, right and left porion, and right and left infraorbitale 

were visually placed on the cranium. The remaining landmarks, glabella, vertex and 

opisthocranion, were identified and marked using planes. The plug-in “Plane 3D” was 

used to create all planes. The sagittal plane was created from three placed points at 

nasion, bregma and lambda, or basion, if bregma was not available. Because the “Plane 

3D” plug-in requires three points in the calculation of a plane, four separate planes were 

created to make the Frankfort Horizontal or mean transverse plane; FH1 (right porion, 

left porion, right infraorbitale), FH2 (right porion, left porion, left infraorbitale), FH3 

(right infraorbitale, left infraorbitale, right porion) and FH4 (right infraorbitale, left 
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infraorbitale, left porion). FH1 and FH2 were averaged using the “Mean Plane” function 

to make FH5, and FH3 and FH4 were averaged to make FH6. The FH5 and FH6 planes 

were averaged to create the mean transverse, or Frankfort Horizontal plane. Two coronal 

planes were created using the “Orthogonal Plane from a Plane and 2 Points” function. 

The function input requires one previously created plane and two previously created 

points to create a new plane. The first orthogonal plane, C1, was created using the mean 

transverse plane, right, and left porion as the inputs. The second plane, C2, was created 

using the mean transverse plane, right and left infraorbitale as the inputs. C1 and C2 were 

averaged, using the “medium plane” as function to create the mean coronal plane. 

After Type I cranial landmark placement was complete, each image was resliced along 

the sagittal plane using the “Reslice” plug-in. This ensured that ectocranial to endocranial 

measurements would be taken in the same plane and not at an angle. Type II cranial 

landmarks were identified by increasing plane thickness in either the anterior, posterior or 

superior direction. For example, to find glabella and opisthocranion, the mean coronal 

plane was increased in thickness until a small amount of bone was visible at the 

intersection of the bone, the coronal plane, and the midpoint or sagittal plane (see Figure 

3). Vertex was found by increasing the thickness of the mean Frankfurt horizontal plane 

until a point along the sagittal plane was visible on the superior aspect of the cranium. 

Vertex was not identified on crania that did not exhibit a cranial landmark for bregma and 

‘NA’ was used. The vertex radius was identified using the “Path3D” and “Segment3D” 

plug-ins.  First, a segment was created between both external auditory meatii (EAM). A 

point was placed on the center of the segment using the sagittal plane. A 3D path was 

drawn from bregma to lambda by clicking the cursor repeatedly. The path was aligned 
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with the sagittal plane using the “Align path to plane” function. Then, using the “Explode 

path to points” function, the previously created path was turned into points; one point for 

each click. A segment was created from the point between the EAM and each of the 

points in the path. The longest segment was designated the vertex radius. Bregma, vertex, 

and the vertex radius were not identified on reconstructed mesh of individuals with open 

fontanels, because predicting age using CVT requires a thickness measurement. CVT was 

marked ‘NA’ for all juvenile crania where the landmark could not be accurately placed. 

 

Figure 3 Point placement using planes in TIVMI. 

This image shows how Type II landmarks were located. In this instance, glabella was 
found by increasing the thickness of coronal plane until a small segment of bone was 
visible at the planes intersection with the sagittal plane. The same procedure was used to 
find opisthocranion. 

When collecting CVT measurements at cranial landmarks, the mesh image was 

hidden from the active screen, while the landmark points remained visible. The 3D 

image, which displays the original radiographic slices, was also visible in the sagittal 

plane. The same threshold value used in mesh calculation was used to illustrate the vault 
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in the radiographic image. The slices were moved so that the landmarks aligned with the 

image. 

CVT measurements were collected using half maximum height (HMH) protocol. 

Measuring objects using the HMH protocol is highly accurate, because measurements are 

based on the best interface or meeting point between tissues (Spoor et al, 1993). To 

calculate thickness using HMH values, a segment was extended through the ectocranial 

and endocranial surface of the crania at the cranial landmark, bypassing the estimated 

landmark location. The “HMH on Segment3D” plug-in was used, which created a new 

point every time a difference in density was detected at a tissue intersection. Two points 

conforming to the cranial landmark at the ectocranial and endocranial surface were 

isolated and a segment drawn between them with the “Make 3D segment from two 

points” plug-in. The observed value was collected as the HMH measurement. The 

“Segment3D” plug-in automatically created and displayed this measurement in 

millimeters. Measurements at nasion and glabella passed through a sinus on some 

individuals, but not all individuals. All measurements, regardless of sinus presence, were 

used in model creation. 

Images for individuals from the CT sample with the accession numbers 4, 10, 15, 

16, 25, 64, 67, and 78 were excluded from the dataset used to develop the method, 

because they exhibited evidence of cranial surgery or other pathology that would affect 

growth and development, and CVT. 

CVT Collection on Radiographic Images 

Cranial landmarks were collected using ImageJ® on radiographic data. ImageJ® 

is an open source software program that has the capacity to measure different types of 
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images. Type I cranial landmarks were visually placed on the radiographs. Type II 

landmarks, like glabella and opisthocranion, were estimated by measuring the maximum 

cranial length with the “line tool” in ImageJ®. Vertex was identified by drawing a line 

from porion to infraorbitale and moving it superiorly until the superior most point on the 

cranium was identified. The vertex radius was identified by measuring the maximum 

radial distance between bregma and lambda from a point at the center of the EAM. CVT 

measurements were collected, and HMH values were manually calculated following the 

protocol in Spoor and colleagues (1993). The length of one pixel was defined for each 

radiograph through known measurements and scales using the “Set Scale” option in the 

Analyze tab in ImageJ®. 

Points were marked on the cranium using the “point tool”. The smallest distance 

from ectocranial to endocranial surface was measured using the “line tool”. Following the 

HMH protocol (Spoor et al.,1993), two measurements were taken for each landmark. The 

average of these two landmarks was the CVT measurement used in statistical 

calculations. 

CVT Collection on Dry Bone 

The Lyon’s Bluff collection contains many juvenile crania in various states of 

preservation. Crania that were intact or cranial fragments that exhibited cranial landmarks 

used in this study were selected for CVT measurement. CVT measurements on dry bone 

were collected using a Miyutoyo dental caliper. Type I cranial landmarks, including 

lambda and bregma were visually placed and marked with a pencil, while type II 

landmarks, including glabella, vertex and opisthocranion were estimated and their 
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centroid marked with a pencil. CVT was taken at marked cranial landmarks to the nearest 

hundredth, perpendicular to the bone and recorded in an Excel spreadsheet. 

Dental Age (Transition Analysis) 

Dental age estimations were performed on all samples following Moorrees, 

Fanning and Hunt’s (1963) procedure for scoring dental maturation on individual teeth. 

Individual tooth scores for each individual were compiled and processed following 

Shackelford and colleagues (2012) method of age estimation of dental remains using 

transition analysis. Data was collected by visual examination of radiographic images, 

radiographic CT slices and available teeth not in occlusion. Black and white color levels 

were adjusted on each radiographic image using Photoshop (CS4) to delineate dental 

characteristics such as crown and root boundaries. Each observable tooth was scored and 

the numeric value was entered into a Microsoft ® Excel® (version 14.5.5) data sheet. 

Dentition that appeared radiopaque or radiolucent in the image were not scored and 

labeled ‘NA’. Dental development age estimation was performed on the CT sample by 

scoring individual teeth on the radiographic CT slices. The author moved through 

multiple slices in TIVMI in order to view the entire suite of dentition and scored each 

tooth following the same methodology used for radiographs. Dental development age 

estimation was performed on CT scans by scoring individual teeth on the radiographic 

image slices. The author moved through multiple slices in order to view the entire suite of 

dentition and scored each tooth following the same methodology used on the radiographs. 

Dry bone dental estimates were scored using loose teeth associated with the remains, as 

in situ crown and root development was not observable. 
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Scores were determined using Moorrees and colleagues’ (1963) coding system 

and recorded in a Microsoft ® Excel® spreadsheet. The following deciduous teeth: 

mandibular canines, first and second molars, and the following permanent teeth: the 

maxillary first and second incisor, and mandibular incisors, canines, premolars and 

molars were used to estimate age. Maxillary dentition was substituted into the scoring 

sheet when mandibular teeth were unobservable following established procedures in 

Shackelford and colleagues (2012). Tooth scores for each individual were analyzed using 

transition analysis, which is based on a combination of MLEs for individual teeth 

(Shackelford et al, 2012). A final MLE, with high-end and low-end estimates, was given 

for each individual. 

Model and PI creation and other statistical analyses 

CVT measurements were compiled in Microsoft ® Excel® spreadsheets and 

tested for normality using the Shapiro-Wilks test. CVT measurements that did not show a 

normal distribution underwent numerical transformations; measurements for nasion, 

glabella and vertex radius were converted to log or cubed root of the measurement. In the 

case of cubed root, the CVT measures were multiplied by (1/3), while the log 

transformation followed the log(CVT) equation. 

CVT values that were normally distributed were plotted against the cubed root of 

known age in R software and fit with a loess curve to illustrate growth trajectories for 

each cranial landmark. Data for these landmark points were further analyzed in R 

software using the Earth package (Milborrow, 2011) to create MARS models in order to 

understand the relationship between age and CVT. In the model formula, cubed root 

chronological age was the response variable (y) and the CVT measurement was the 



 

32 

predictor variable (x). The following equation (generalized) was used to create the 

univariate models: 

 model<-earth(cubed_root_age~CVT, data=dataset, keepxy=TRUE, 

  varmod.method=’lm’, trace=0, ncross=10, nfold=10) (Eq. 1) 

Equation 1 is the formula used to create a univariate model in the Earth package within R 

software. The regression formula reads as follows: the response variable, cubed root of 

age, minus the predictor variable, CVT. The dataset was the CT samples used in model 

creation. The varmod.method function selected the variance model, which was used to 

estimate prediction intervals. The ‘lm’, meaning linear model, estimated the standard 

deviation as a function of the predicted response. Ncross was set to do 10 cross 

validations. The model built 10 nfold cross-validated models. Each cross validation had 

10 folds. 

This equation was modified slightly for the multivariate models (see Equation 2). 

 model<-earth(cubed_root_age~CVT1+CVT2+CVT3+CVT4, data=dataset,  

 keepxy=TRUE, varmod.method=’lm’, trace=0, ncross=10, nfold=10) (Eq. 2) 

Equation 2 is the formula used when creating multivariate Earth models in R. The 

regression formula reads as follows: the response variable, cubed root of age, minus 

multiple predictor variables, CVT at multiple cranial landmarks. The multivariate 

equation also uses ‘lm’ varmod.method and the same number of cross validations and 

cross validation folds. 

Initially, the Earth package creates models to overfit the data, then trims them 

down through a forward and backward pruning pass. The pruning passes find the subset 

of terms that give the lowest generalized cross validation in a particular model. During 
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model construction, the Earth package tests multiple models with a subset of the test data 

to gauge accuracy and find the best model. The Earth package created multiple models 

for each cranial landmark to find the smallest residual standard error, which was used to 

create the PIs. PIs are based on the out of fold data and a k-fold cross-validation test to 

gauge the accuracy of the PIs. In order to find the predicted ages of test radiographs, CVT 

was entered into an equation (see Equation 3), and the measurements were placed within 

the PIs generated by the model. 

 Predict(object, newdata=dataset, interval=”pint”, level=.95 (3) 

This equation was used to generate prediction intervals for the test data and unknown age 

data. The object is the Earth model. The newdata is the data set being tested against the 

model. The interval= “pint” is set to use a prediction interval, and the level means that it 

is testing the data at the 95% PI. 

This equation was used on CVT measurements from the test data. The output of 

the equation gave lower, upper and fit age estimates for each of the radiographs at each 

cranial landmark. These estimates were compared to the chronological age associated 

with each radiographic image. Following Konigsberg and colleagues (2008), 50% 

coverage bands of CVT were compared to 50% coverage bands of dental development 

and their relationship discussed. These coverage bands were graphed using stock charts 

in Microsoft Excel® and compared to plotted points of chronological age. Graphs for 

CVT estimations at the 95% coverages were compared to plotted points of chronological 

age. These tests quantified how well the CVT method performs as compared to aging by 

dental development and chronological age on both the radiographic and CT samples. 

Results are discussed in Chapter VI. 
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CHAPTER IV 

RESULTS 

Summary Statistics 

The CT dataset was plotted to illustrate the frequency of individuals at given ages 

that make up the sample (see Figure 4). 

 

Figure 4 Distribution of ages in the CT sample. 

The figure shows the distribution of ages in the CT sample. 
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The graph shows that the majority of the sample is composed of younger 

individuals aged between birth and 5 years old. More than half of the sample is under the 

age of 10 years old, and there are very few individuals over the age of 15 years old. The 

sample is composed of 37 females and 37 males. 

CVT measurement values 

The CVT HMH values from the CT data were tested for normality using the 

Shapiro-Wilkes test. Bregma, vertex, lambda, and opisthocranion produced p-values 

above 0.05, indicating that the data for those cranial landmarks was normally distributed. 

The results of the Shapiro-Wilkes test for nasion, glabella, and the vertex radius produced 

p-values below 0.05, indicating these datasets did not exhibit a normal distribution (see 

Table 1). 

Table 1 Shapiro-Wilkes test on non-transformed CVT measurements. 

Normality test on HMH CVT measurements1 
 nasion glabella bregma vertex radius vertex lambda opistho 

W 0.92 0.92 0.98 0.93 0.97 0.97 0.99 
p-value 2.00E-04 5.00E-04 0.76 0.01 0.41 0.17 0.67 

1This table illustrates the results of the Shapiro-Wilkes test for each set of HMH CVT 
measurements from the CT data 

For additional verification of normality, the CVT datasets for nasion, glabella and 

vertex radius were plotted in a QQ plot (see Figures 5, 6 and 7). 
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Figure 5 QQ plot of CVT at nasion 

The above plot is the measured HMH CVT values for nasion. The data is skewed to the 
left, confirming that untransformed CVT measurements are not normally distributed. 
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Figure 6 QQ plot of CVT at glabella 

The above plot shows the measured HMH CVT values for glabella. The data is skewed to 
the left, confirming that untransformed CVT measurements are not normally distributed. 
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Figure 7 QQ plot for CVT at the vertex radius. 

The above plot shows the measured HMH CVT values for the vertex radius. The data is 
irregular at the lower end of the plot, confirming that untransformed measurements are 
not normally distributed. 

All three plots confirm that untransformed CVT measurements at nasion, glabella 

and vertex radius were not normally distributed. In an attempt to normalize the data, 

numerical transformations were performed on the measurement values. The CVT 

measurement data for nasion was transformed using the log of CVT. When tested again, 

the Shapiro-Wilkes test produced a p-value of 0.46, indicating a normal distribution. The 

CVT measurement data for glabella was transformed using the square root of CVT. 

When tested a second time, a p-value of 0.29 was produced, indicating that the 

distribution was normal. The CVT measurement for the vertex radius was transformed 
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using the log of CVT. When tested again, a p-value of 0.48 was produced, indicating the 

transformed data followed a normal distribution. In model construction at nasion and 

vertex radius, log of CVT was used; at glabella, the square root of CVT was used. 

CVT measurements were taken 10 times on the same CT scan using TIVMI. The 

standard error was calculated for each CT scan using Microsoft Excel®. Then, the 

average standard error was calculated for all CVT measurements at that landmark. The 

standard error for each landmark is listed in Table 2. 

Table 2 Standard error for CT measurements using TIVMI. 

Standard error on multiple CVT measurements 
landmark nasion glabella bregma vertex lambda opistho 
std error 0.04 0.03 0.03 0.03 0.02 0.02 
Standard error calculations are low for all cranial landmarks, indicating measurements are 
slightly off from the mean, but not by a large degree. 

Hypothesis One 

The first hypothesis states that: CVT measurements at select cranial landmarks 

(nasion, glabella, bregma, vertex, vertex radius, lambda, and opisthocranion) will 

conform to expected growth curves using a locally smoothed (loess) fit. 

To address this, scatterplots were created in R software where cubed root 

chronological age was plotted against CVT. Each scatterplot shows a smoothing line 

based on loess regression to better illustrate whether the data conformed to a growth 

curve or not (see Figure 8). 
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Figure 8 Plotted CVT values for each cranial landmark. 

The above plot shows HMH CVT values plotted against known age for each cranial 
landmark. A smoothing loess line (in blue) indicates that there is an increased thickness 
with age at all landmarks. Some plots show a more linear increase in thickness, while 
others shows burst of rapid growth followed by steady growth. 

The plots show that CVT increases with increasing age at every landmark. The 

loess lines indicate that CVT at certain cranial landmarks: bregma, vertex and 

opisthocranion, followed growth more closely than CVT at nasion, glabella, vertex radius 

and lambda. CVT at glabella and the vertex radius show an increase in thickness with 

age, but do not illustrate a typical growth curve. Nasion and lambda did not exhibit rapid 

increases in growth, but instead CVT increased steadily across the entire plot. 

Hypothesis one was supported for bregma, vertex and opisthocranion. It was 

rejected for glabella, vertex radius, nasion and lambda. 
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Hypothesis Two 

Hypothesis two states: CVT measured on radiographic images of juvenile crania 

will conform to age estimation models developed on CT scans. 

In order to test this hypothesis, MARS models were created to understand the 

statistical relationship between chronological juvenile age and CVT at cranial landmarks, 

based on methods used by Stull and colleagues (2014). MARS used cubed root 

chronological age as the response variable (y) and CVT as the predictor variable (x); 

exceptions were at nasion and vertex radius, where log CVT was used, and glabella, 

where square root CVT was used. Univariate MARS models were created for CVT and 

age at each cranial landmark: nasion, glabella, bregma, vertex, vertex radius, lambda, and 

opisthocranion. Multiple models were created and the program selected the best model 

with the smallest residual error. PIs were created using the out of fold cross-validation 

that quantify—in years—the accuracy of the measurement in predicting chronological 

age. 

MARS univariate models results 

MARS models were built using available data for each cranial landmark on each 

CT scan. Not all CT scans allowed a measurement at every landmark used in this study; 

as some landmarks, like bregma had not formed at the time the scans were taken. The 

majority of the data used in model creation came from juveniles younger than 3 years old. 

Data for juveniles aged between 4 and 16 years old was severely lacking, with a single 

individual available for a year age interval at 11, 13, 14, and 16. The oldest individual 

used in model creation was 16.58. Predicted ages on juvenile crania older than 4 years 

old were less accurate than those made on younger aged juveniles. Predicted ages with a 
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fit age older than 16.58 were not shown, because they are outside of the sample range. 

These limitations will be discussed in more detail in Chapter V. 

The univariate model analysis initially included four model interpretation plots: a 

model selection plot, a residual vs. fitted plot, a cumulative distribution plot, and a QQ 

plot of the residuals. The model selection plot illustrated the number of predictors used in 

the selected model. The residuals vs. fitted plot showed the residual spread, or difference 

between the values predicted by the model (predicted age) and the actual values (known 

age), for each predicted response. In an ideal residuals vs. fitted plot, points are evenly 

spread out across the plot, showing that the assumptions of linearity, randomness and 

homoscedasticity have been met (Field et al., 2012). The three largest residual values 

were labeled in this graph, a default of the Earth package. The line in center of the plot 

represents a normal distribution, which, ideally, should be straight. The QQ graph 

showed the normality distribution of the residuals (Milborrow, 2015). In the cumulative 

distribution plot, the line should start at zero and move rapidly to one. The point at which 

the vertical and graphed line connect, illustrate the percentage that the predicted value is 

within x units of the observed value. Smaller values suggest a better model for predicting 

age. 

Summary statistics revealed the fit of the model to the data and the relationship 

between CVT and age. In the Earth package, the following values were used to assess the 

model: RSS (residual sum of squares), RSq (R-squared), CVRSq (Cross validated R-

squared), GCV, and GRSq (generalized R squared). The RSS value measured the 

discrepancy between the data and the model. A lower RSS value indicated a better fit of 

the model to the data. The RSq measured the predictive ability of the model; the 
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quantification of an age estimate that can be explained by CVT. Values range from -1 to 

1, and the closer the RSq value was to 1, the better the CVT model could explain age 

(Milborrow, 2015). The cross-validation statistics measure the accuracy of the model on 

different samples not used in model creation. This value is typically lower than the RSq 

value because of noise created by the residuals. The generalization statistics, GCV and 

GRSq, assessed how well the model generalizes to other data sets, allowing conclusions 

to be drawn beyond the sample (Field et al., 2012).  

PIs were plotted for each of the landmarks using the plotmo() function. The PIs 

and their standard deviations were calculated during model creation by the Earth 

package. Test measurements were entered in the model, and the Earth package output 

produced numerical PIs including the fit age, upper and lower age ranges. These 

predicted age estimates were exported as a CSV file and compared with chronological 

age. Linear regression models were created to get the standard error (SE) for the 

univariate models. 

Nasion 

The models interpretation plots for the Earth model at nasion is shown in Figure 

9. 
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Figure 9 Model interpretations plots for CVT at nasion 

 

The model selection plot explains that the best model at nasion used five terms. 

The residuals vs. fitted plot illustrates the residuals are clustered at the center and ends of 

the plot. The QQ plot shows that there is divergence from normality at both tails, but 

more at the right tail. Points 63, 69 and 51 are the largest residuals in the plot. These plots 

indicate that age predictions using the CVT model at nasion are not very accurate. 

Summary statistics for the model are listed below (see Figure 10 and Table 2). 
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Figure 10 Summary statistics for the Earth model at nasion (output example). 

This image illustrates the R output for the summary.statistics() function for the Earth 
model at nasion. The same results are shown in a table form in Table 3. 
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Table 3 Summary statistics for the Earth model at nasion. 

Statistic Acronym Value 
generalized cross validation GCV 0.07 

residual sum of squares RSS 3.62 
general r squared GRSq 0.78 

r squared RSq 0.78 
cross-validated r squared CVRSq 0.64 

standard deviation sd 0.14 
maximum error MaxErr -0.80 

standard deviation sd 0.59 
This table shows the summary statistics from the Earth model for CVT at nasion. 

The RSS value is 3.62, which indicates that the model does not fit the data very 

well. The RSq value is 0.78, which means that 78% of the model for age can be explained 

by CVT; there is a strong relationship between the two variables. The CVRSq value is 

0.64, which is lower than the model’s RSq, but still captures a significant percentage of 

the model. The GRSq value is 0.78, which indicates that the model is good at predicting 

age using CVT in a different data set. The 95% PIs for CVT are shown below (see Figure 

11). 
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Figure 11 95% prediction intervals at nasion. 

This plot illustrates the prediction intervals for the model at nasion in light pink; the CVT 
measurements at the cubed root of age; and the fit line. 

Figure 10 shows the log of CVT regressed on cubed root of age. The shaded area 

represents the 95% prediction interval generated by the model.  This graph shows that as 

age increases, there are two rapid increases in thickness at 9 months and just after a year 

until thickness plateaus. A variance model for nasion was plotted (see Figure 12). This 

model illustrates how well the confidence limits in dark grey compare to prediction 

intervals in pink. 
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Figure 12 Prediction bands in a residuals plot for nasion. 

The dark grey bands show the confidence limits; the wider pink bands show the 
prediction limits; the red line is a loess fit to the residuals; the blue line is the cross-
validation mean fit. 

The graph shows that CI band thickness is wide and varied throughout the plot, 

indicating model uncertainty. The loess line weakly corresponds with the grey line, while 

the cross-validation line does not correspond to the grey line. All of this data indicates 

that model created for nasion is not useful for predicting age from CVT. 

Glabella 

The Earth model at glabella was created using square root values of CVT. Model 

interpretation plots are shown below (see Figure 13). 
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Figure 13 Model interpretation plots for CVT at glabella. 

 

The model selection plot shows that the best model uses three terms. The 

residuals vs. fitted plot shows that the residuals cluster to the center, which means the 

model is less accurate as the predicted value increases. The QQ plot shows that the 

residuals diverge from normality at the right tail. Points 34, 43 and 1 are the largest 

residuals. This data indicates that the model is not accurate in predicting age using CVT 

at glabella. Summary statistics for the model at glabella are shown below (see Table 4).
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Table 4 Summary statistics for the Earth model at glabella 

Statistic Acronym Value 
generalized cross validation GCV 0.17 

residual sum of squares RSS 10.02 
general r squared GRSq 0.33 

r squared RSq 0.41 
cross-validated r squared CVRSq 0.05 

standard deviation sd 0.63 
maximum error MaxErr 1.20 

generalized cross validation sd 0.69 
This table shows the summary statistics from the Earth model at glabella. 

The RSS value is 10.02, which indicates that the model does not fit the data. The 

RSq value is 0.41 and tells us that 41% of age can be explained by CVT. The CVRSq is 

0.05, which is much lower than the model’s RSq value. This indicates that a smaller 

percentage of age is explained by the CVT. The GRSq value is 0.33, which explains that 

the model is not good at predicting age values in a different data set. Overall, this data 

indicates the model is not useful for predicting age using CVT. The 95% PIs are plotted 

below (see Figure 14). 
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Figure 14 95% prediction intervals at glabella. 

This plot illustrates the prediction intervals in light pink; the thickness measurements at 
each age in the CT sample; and the fit line. 

This plot shows that as age increases, the PIs narrow. The plot illustrates rapid 

growth of CVT at glabella just before 4 years of age, with a small leveling off period, 

then a steady increase in thickness until after 16 years old. The plot truncates at ~17 years 

old indicating that predictions above that age are less reliable. A variance model for 

glabella was plotted (see Figure 15). 

0 1 2 3 4 5

−0
.5

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

95% PI at Glabella

AGE (square root of age in years)

C
V

T 
(m

m
)



 

52 

 

Figure 15 Prediction bands in a residuals plot for glabella. 

The dark grey bands show the confidence limits; the wider pink bands show the 
prediction limits; the red line is a loess fit to the residuals; the blue line is the cross-
validation mean fit. 

The plot shows that the prediction limits are wider at the low and high ends, 

indicating that the model is more uncertain at those values. The confidence limits narrow 

across the plot, indicating greater certainty as the values shift to the right. The loess and 

cross-validation mean fit lines are close to the grey centerline of the model in the mid 

range values. The plot indicates that the model is useful for predicting age at middle and 

upper values, but uncertain at the lower values. 
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Bregma 

The Earth model at bregma was created using CVT measurements. The model 

interpretation plots are shown below (see Figure 16). 

 

Figure 16 Model interpretation plots for CVT at bregma. 

 

The model selection plot shows that the selected model uses three terms. The 

residuals vs. fitted plot shows the loess line is constant along the center of the plot. The 

residuals are evenly distributed throughout the plot, indicating that the model is a good fit 

for the data. The QQ plot shows the residuals diverge from normal at the right tail, and 

points 42, 44 and 11 are the largest residuals. Overall, the model assessment plots 

0 1 2 3 4 5 6

Model Selection

Number of terms

−1
−0

.5
0

0.
5

G
R

S
q 

  R
S

q

GRSq (full model)
selected model
RSq (full model)

mean out−of−fold RSq
max mean out−of−fold RSq
out−of−fold RSq

0.00 0.02 0.04 0.06 0.08 0.10 0.12
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Cumulative Distribution

abs(Residuals)
P

ro
po

rti
on

0% 25% 50% 75% 90% 95% 100%

1.10 1.15 1.20 1.25

−0
.1

0
0.

00
0.

10

Residuals vs Fitted

Fitted

R
es

id
ua

ls

44

42

11

−3 −2 −1 0 1 2 3−0
.1

5
−0

.0
5

0.
05

0.
15

Residual QQ

Theoretical Quantiles

R
es

id
ua

l Q
ua

nt
ile

s

44

42

11

Model Interpretation Plots at Bregma



 

54 

indicate that the model at bregma is useful for predicting age. Summary statistics for the 

model are shown in Table 5. 

Table 5 Summary statistics for the Earth model at bregma 

Statistic Acronym Value 
generalized cross validation GCV 4.00E-3 

residual sum of squares RSS 0.18 
general r squared GRSq 0.42 

r squared RSq 0.51 
cross-validated r squared CVRSq 0.12 

standard deviation sd 0.54 
maximum error MaxErr -0.19 

generalized cross validation sd 0.13 
This table shows the summary statistics from the Earth model at bregma. 

The RSS value is 0.18, indicating that the model is a good fit for the data. The 

RSq value is 0.51, which means 51% of the age prediction can be attributed to CVT. The 

CVRSq is 0.12, which is lower than the model’s RSq value; indicating the cross-

validation results capture lesser percentage of the model. The GRSq value is 0.42, which 

indicates that the model is useful for predicting values in a different data set. The 95% 

PIs for the model are shown below (see Figure 17). 
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Figure 17 95% prediction intervals at bregma 

This plot illustrates the prediction intervals (light pink); the thickness measurements at 
each age in the CT sample; and the fit line (black). 

To plot shows that there is a rapid increase in CVT at bregma beginning after 2 

years of age and slowing just before 4 years of age. This spurt is consistent with the first 

juvenile growth spurt, beginning shortly after birth and slowing around 3 years of age 

(Lewis, 2007:60). The PIs are narrow, and the plot shows that the CVT values vary by 

0.4 mm over 7 years of age. This is a very small range of measurement and using this 

model to estimate age by CVT would be impractical and unreliable. The model truncates 

just over 7 years of age indicating older age predictions are less reliable. A variance 

model for bregma was plotted with residual values (see Figure 18). 
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Figure 18 Prediction bands in a residuals plot for bregma. 

The dark grey bands show the confidence limits; the wider pink bands show the 
prediction limits; the red line is a loess fit to the residuals; the blue line is the cross-
validation mean fit. 

The plot shows wide confidence limits that increase with higher values. The 

prediction limits. The residuals plotted in the variance model show that the confidence 

limits widen at the extreme high values, revealing that the model is more unpredictable 

on the upper limits. The PIs are wide to start, and are very wide at the upper limit. 

Vertex 

The Earth model at vertex was created using CVT measurement. The model 

interpretation plots for the model are show in Figure 19. 
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Figure 19 Model interpretation plots for vertex. 

 

The model selection plot explains that the best model used two terms. The term 

selection line is also the point where the RSq and GRSq lines are the closest in contact; 

the ideal situation for an Earth model. The residuals vs. fitted plot shows the points are 

evenly distributed throughout the plot, with some clustering at the far end. The loess line 

is straight and indicates the model is a good fit for the data. The QQ plot shows that there 

is slight divergence from normality at the right tail. Points 19, 34, and 4 are the largest 

residuals. The model interpretation plots indicate that the vertex model is useful for 

predicting age. Summary statistics for the model are shown below (see Table 6).
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Table 6 Summary statistics for the Earth model at vertex 

Statistic Acronym Value 
generalized cross validation GCV 0.10 

residual sum of squares RSS 3.83 

general r squared GRSq 0.45 

r squared RSq 0.50 

cross-validated r squared CVRSq 0.16 

standard deviation sd 0.58 

maximum error MaxErr 0.84 

standard deviation sd 0.55 

This table shows the summary statistics from the Earth model for CVT at vertex. 

The RSS value is 3.83, which is high, and indicates that the model is not a good 

fit for the data. The RSq value is 0.50 and tells us that 50% of age predictions can be 

explained by CVT using the model. The CVRSq is 0.16, which explains that, using the 

cross validation data, a smaller percentage, 16%, of age is explained by CVT. The GCV 

is low, explaining The GRSq value is 0.45, indicating that the model is average at 

predicting values in a different data set. The 95% PIs for the model are shown below (see 

Figure 20). 
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Figure 20 95% prediction intervals at vertex. 

This plot illustrates the prediction intervals in light pink; the thickness measurements at 
each age in the CT sample; and the fit line. 

The model created prediction intervals for juveniles aged 1.5 to 7 years of age; 

outside of that age range, the predicted ages are uncertain. The plot illustrates that CVT at 

vertex increases from 1.5 until 4 years old, then thickness plateaus. The range of 

thickness for the vertex landmark is 2 mm. A variance model for vertex was plotted with 

residual values (see Figure 21). 
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Figure 21 Prediction bands in a residuals plot for vertex. 

The dark grey bands show the confidence limits; the wider pink bands show the 
prediction limits; the red line is a loess fit to the residuals; the blue line is the cross-
validation mean fit. 

The plot shows that prediction limits are widest at the lower values and indicates 

model uncertainty at those values, but overall the prediction limits are narrow. The loess 

line and cross-validation lines correspond fairly well with the grey line, indicating that 

the model fits the data. 

The Vertex Radius 

The Earth model at the vertex radius was created using the log of CVT. The 

model interpretation plots are shown below (see Figure 22). 
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Figure 22 Model interpretation plots for the vertex radius. 

 

The model selection graph explains that the best model used two terms. The 

residuals vs. fitted graph shows that the points are clustered at the lower end, indicating 

heteroscedasticity of the residuals. The QQ plot shows that there is slight divergence 

from normality at the right tail. Points 17, 14, and 5 are the largest residuals. Overall, the 

model assessment plots do not indicate that vertex is good at predicting ages using CVT. 

Summary statistics for the model at vertex radius are displayed below (see Table 7).
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Table 7 Summary statistics for the Earth model at vertex radius 

Statistic Acronym Value 
generalized cross validation GCV 0.12 

residual sum of squares RSS 4.20 
general r squared GRSq 0.37 

r squared RSq 0.43 
cross-validated r squared CVRSq 0.24 

standard deviation sd 0.35 
maximum error MaxErr -1.00 

generalized cross validation sd 0.67 
This table shows the summary statistics from the Earth model for CVT at vertex radius. 

The RSS value is 4.20, which indicates that the model is not a good fit for the 

data. The RSq value is 0.43 and tells us that 43% of age can be explained by CVT in the 

model at vertex radius. The CVRSq is 0.24, indicating a smaller percentage of the cross-

validated test data can explain age. The GRSq value is 0.37. This indicates that the model 

is not very good at predicting values in a different data set. Summary statistics suggest 

that this model is not useful for predicting age using CVT. The 95% PIs for the model at 

the vertex radius are shown below (see Figure 23). 
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Figure 23 95% prediction intervals at the Vertex Radius 

This plot illustrates the prediction intervals in light pink; the thickness measurements at 
each age in the CT sample; and the fit line 

The plot shows that there is a rapid increase in thickness at 0.22 years of age. The 

model shows that thickness varies by 2.5 mm over less than a year. According to the plot, 

the model reliably predicts age from 0 to 3.4 years old. A variance model for the vertex 

radius was plotted with residual values (see Figure 24). 
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Figure 24 Prediction bands in a residuals plot for the vertex radius. 

The dark grey bands show the confidence limits; the wider pink bands show the 
prediction limits; the red line is a loess fit to the residuals; the blue line is the cross-
validation mean fit. 

The graph shows that the prediction limit band thickness is narrow across the 

entire range. The cross validation line corresponds with the grey line better than the loess 

line. This plot indicates that the model has narrow prediction limits in age estimates and 

appears to be useful for predicting age. 

Lambda 

The Earth model for lambda was created assessing CVT measurements. The 

model interpretation plots are shown in Figure 25. 
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Figure 25 Model interpretation plots for lambda. 

 

The model selection graph shows that the best model used three terms. The 

residuals vs. fitted plot shows a smooth loess line, indicating the mean residual is 

constant. The data is evenly distributed throughout the plot indicating the assumptions of 

homoscedacity and random error have been met. The QQ plot is straight, but indicates 

that the residuals diverge from normal distribution at the left tail. Points 3, 29, and 36 are 

the largest residuals. Model interpretation plots indicate that the model is useful for 

predicting age. The summary statistics for the model at lambda are shown in Table 8.
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Table 8 Summary statistics for the Earth model at lambda 

Statistic Acronym Value 
generalized cross validation GCV 0.11 

residual sum of squares RSS 6.08 
general r squared GRSq 0.58 

r squared RSq 0.63 
cross-validated r squared CVRSq 0.46 

standard deviation sd 0.30 
maximum error MaxErr 0.92 

generalized cross validation sd 0.64 
This table shows the summary statistics from the Earth model for CVT at lambda. 

The RSS value is 6.08, which indicates that the model is not a tight fit to the data. 

The RSq value is 0.63, meaning that 63% of the age can be explained by CVT in the 

model at lambda. The CVRSq is 0.34, which means a lower percentage of cross-

validation CVT scores can explain age. The GRSq value is 0.58, indicating that the 

model is average at predicting values in a different data set. Overall, summary statistics 

indicate that the model is useful for predicting age using CVT. The 95% PI are plotted 

below (see Figure 26). 
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Figure 26 Prediction intervals at lambda 

This plot illustrates the prediction intervals in light pink; the thickness measurements at 
each age in the CT sample; and the fit line. 

The PIs for lambda range from 1 to 8 years of age. Outside of this age range, the 

predicted age is less certain. The plot indicates that CVT increases steadily from 1 to 8 

years of age at lambda. There is a greater increase in thickness from 1 to 3 years of age, 

and then thickness continues to increase steadily until 8 years of age. The model truncates 

at 8 years of age, indicating that age predictions over this age are less reliable. A variance 

model for lambda was plotted (see Figure 27). 
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Figure 27 Prediction bands in a residuals plot for lambda. 

The dark grey bands show the confidence limits; the wider pink bands show the 
prediction limits; the red line is a loess fit to the residuals; the blue line is the cross-
validation mean fit. 

The graph shows that the prediction limit band thickness is fairly thin across the 

plot, but widens at the ends. This shows that model created appears to be useful for 

predicting age from CVT at middle values. The loess and cross validation lines somewhat 

correspond with the grey line. The variance model confirms what is shown with the 

prediction intervals; the model is best suited for predicting the middle age ranges in the 

sample, 1 to 8 years old. 
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Opisthocranion 

The Earth model for opisthocranion was created assessing CVT measurements. 

The model interpretation plots are shown in Figure 28. 

 

Figure 28 Model interpretation plots for opisthocranion 

 

The model selection plot shows that the best model uses three terms. The 

residuals vs. fitted plot show that the loess line is not constant at the midrange values of 

the model. The residuals are clustered near the center of the model indicating 

heteroscedasticity. The QQ plot indicates the residuals are distributed normally; however 

there is a slight divergence of normality at the left tail. Cases 3, 27 and 38 are the largest 
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residuals. Model interpretation plots suggest that the model at opisthocranion is not 

useful for predicting age. Summary statistics are shown in Table 9. 

Table 9 Summary statistics for the Earth model at opisthocranion 

Statistic Acronym Value 
generalized cross validation GCV 0.17 

residual sum of squares RSS 9.19 
general r squared GRSq 0.35 

r squared RSq 0.43 
cross-validated r squared CVRSq 0.19 

standard deviation sd 0.29 
maximum error MaxErr 1.10 

generalized cross validation sd 0.77 
This table shows the summary statistics from the Earth model for CVT at opisthocranion. 

The RSS value is 9.19. This high value indicates that the model is not a good fit 

for the data. The RSq value is 0.43, and shows us that 43% of the age can be explained by 

CVT using the model. The cross-validation percentage of age explanation using CVT is 

only 19%, as the CVRSq is 0.19. The GRSq value is 0.35, which indicates that the model 

is average at predicting values in a different data set. Overall, the summary statistics 

suggest that the model at opisthocranion is not useful for predicting age. The 95% PI are 

plotted below (see Figure 29). 
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Figure 29 95% prediction intervals at opisthocranion 

This plot illustrates the prediction intervals in light pink; the thickness measurements at 
each age in the CT sample; and the fit line. 

The PIs range from 1 to 10 years old at opisthocranion. The PIs indicate that CVT 

at opisthocranion increases rapidly from 1 to 3 years of age, then CVT plateaus until just 

before age 6. Thickness increases again until age 10, but at a slower rate. A variance 

model for opisthocranion was plotted below (see Figure 30). 
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Figure 30 Prediction bands in a residuals plot for opisthocranion. 

The dark grey bands show the confidence limits; the wider pink bands show the 
prediction limits; the red line is a loess fit to the residuals; the blue line is the cross-
validation mean fit. 

The variance model at opisthocranion shows that confidence limits and prediction 

limits increase at higher values, suggesting that the model is not a good predictor of age 

as CVT increases. The loess line indicates the model is unreliable in its predictive ability 

at midrange values. 

Standard Error and Prediction Intervals 

The standard error and prediction intervals for the univariate models are listed in 

Table 10. Standard error was calculated using linear models. Dummy variables were 
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created to illustrate the PIs response to age. Prediction interval size was calculated from 

the plots illustrated in Figures 31-37. 

Table 10 Standard Error and Prediction Intervals for the univariate models 

Landmark SE Size of 95% PI 
nasion 0.07 1.5 to 17 years 

glabella 0.14 80 to ~1500 years 
lambda 0.19 4 to 25 years 

opisthocranion 0.23 2.5 to 35 years 
bregma 0.32 1 to 1.6 years 

vertex radius 0.34 9 to 42 years 
vertex 0.41 3 to 18 years 

The table shows the standard error and size of the 95% prediction interval for each 
model. The standard error was calculated from a linear regression model using the Earth 
package because this statistic was not provided in the loess Earth models. 

 

Figure 31 95% prediction intervals when age is regressed on CVT for Nasion. 

CVT thickness is expressed in millimeters and age in years. 
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The plot at nasion shows a narrow prediction interval at the low CVT 

measurements. The PI increases with increasing thickness, with widest increase occurring 

just after 10 mm. 

 

Figure 32 95% prediction intervals when age is regressed on CVT for Glabella. 

CVT thickness is expressed in millimeters and age in years. Black circles represent 
dummy measurements. 

The PI plot for glabella truncates at 7 mm in thickness. Age estimates in the PIs 

increase exponentially, up to about 1500 years old, which are unrealistic. 
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Figure 33 95% prediction intervals when age is regressed on CVT for Bregma. 

CVT thickness is expressed in millimeters and age in years. Black circles represent 
dummy measurements. 

The plot for bregma shows that the PIs increase slightly when CVT increases. The 

PIs are narrow, starting at a width of 1 year and increasing to slightly over 2 years. Even 

though CVT varies in thickness, the predicted ages only fall within a 3-year window. 
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Figure 34 95% prediction intervals when age is regressed on CVT for Vertex. 

CVT thickness is expressed in millimeters and age in years. Black circles represent 
dummy measurements. 

The plot shows that PIs are narrow at smaller CVT measurements ranging to 

about 3 years. As CVT increases, so do the PIs. 
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Figure 35 95% prediction intervals when age is regressed on CVT for the Vertex 
Radius. 

CVT thickness is expressed in millimeters and age in years. Black circles represent 
dummy measurements. 

This plot shows that the PIs are more narrow and smaller CVT measures and 

increase as thickness increases. The smallest predicted range is about 10 years, which is 

still very wide. 
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Figure 36 95% prediction intervals when age is regressed on CVT for Lambda. 

CVT thickness is expressed in millimeters and age in years. Black circles represent 
dummy measurements. 

This plot shows narrow PI intervals at smaller CVT measurements that increase 

with increasing thickness. The smallest predicted range is less than 5 years old, while the 

widest PI is about 25 years old. 

0

10

20

30

40

0.0 2.5 5.0 7.5 10.0
CVT

A
ge

0.4

0.4

PI at Lambda



 

79 

 

Figure 37 95% prediction intervals when age is regressed on CVT for Opisthocranion. 

CVT thickness is expressed in millimeters and age in years. Black circles represent 
dummy measurements. 

The PIs at lower ages are narrower, starting at a width of 2.5 years. They increase 

in size after measurements of 6 mm. Larger CVT measurements have larger PI ranges; at 

their greatest range they are almost 35 years. This is consistent with results from the 

model assessment plots indicating greater uncertainty with increasing age. 

All models show that as CVT increased, the PIs adjusted for age, usually 

becoming larger. For all models, except bregma, the high end of the PIs extended past 18 

years of age into adulthood. The best model was for lambda, which had PIs that started at 

4 years and ranged to 25 years at its greatest dimension. The worst model was for 

glabella. The low end of the PI started at almost 100 years old and the upper end 
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extended over 1000 years of difference. The PI plot illustrates that glabella is inaccurate 

and unrealistic at predicting age using CVT. Even though bregma has a small PI range, 

the model above shows us that measurements vary by less than 1 mm. 

MARS multivariate model results 

All seven cranial landmarks 

Individual CT scans that had measurements available for all seven points were 

used to create a multivariate model. The model interpretation plots are shown in Figure 

38. 

 

Figure 38 Model interpretation plots for entire suite of seven cranial landmarks 
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The model selection plot explains that five terms were used to create the best 

model. The residuals vs. fitted plot shows that the data is evenly spread over the plot, but 

slightly clustered at the lower values. The loess line follows the centerline. The QQ plot 

shows the largest residuals were 16, 32, and 40. Overall, the model appears to be useful 

for predicting age. Summary statistics for the seven point multivariate model are shown 

in Table 11. 

Table 11 Summary statistics for the Earth model at all seven landmarks 

Statistic Acronym Value 
generalized cross validation GCV 0.11 

residual sum of squares RSS 2.74 
general r squared GRSq 0.52 

r squared RSq 0.69 
cross-validated r squared CVRSq -0.86 

standard deviation sd 4.30 
maximum error MaxErr -1.50 

generalized cross validation sd 0.76 
This table shows the summary statistics from the multivariate Earth model for CVT at the 
seven cranial landmarks. 

The RSS value is 2.74. This value indicates that the model is not a good fit for the 

data. The RSq value is 0.69, which means that 69% of age can be explained using the 

CVT model for all landmarks. The CVRSq is -0.86, which indicates that the model is 

worse than using a mean. The GRSq value is 0.52, which is midway between 0 and 1. 

This indicates that the model is not useful for predicting values in a different data set. 

Variable importance of cranial landmarks 

Variable importance was estimated among the seven points in the model using the 

evimp() function in the Earth package (see Table 12). 
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Table 12 Multivariate model using suite of seven cranial landmarks 

Variable importance of cranial landmarks in the multivariate model 
 # of subsets GVC RSS 

log nasion 4 100.0 100.0 
log vertex radius 3 40.7 54.3 

vertex 1 11.2 25.4 
opistho-unused 0 0 0 
lambda-unused 0 0 0 
bregma-unused 0 0 0 

sqrt glabella-unused 0 0 0 
The evimp() function produces information on the number of subsets (abbreviated # of 
subsets) of terms generated by the pruning pass until the best subset is selected; the RSS 
and GVC are scaled by a decrease, which are listed in the RSS and GVC columns. 

The seven point model used three cranial landmarks: nasion, vertex, and the 

vertex radius. Of those points, nasion was the most important, used in 4 subsets and 

produced the highest net decrease in the RSS and GCV values. Opisthocranion, lambda, 

bregma and glabella were not used to create the model. 

A second multivariate model was created using the highest ranked landmarks 

from the previous model; nasion, vertex radius, and vertex. The highest ranked 

multivariate model interpretation plots are shown in Figure 39. 
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Figure 39 Model interpretations plots for best variables set (nasion, vertex, and vertex 
radius) 

 

The model selection plot shows that four terms were used in selecting the best 

model. The residuals vs. fitted plot shows that points cluster toward the lower values, and 

the loess line is relatively straight. The QQ plot indicates a good fit with one large 

residual; number 40. Summary statistics are shown in Table 13. 
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Table 13 Summary statistics for the multivariate model of nasion, vertex and the 
vertex radius. 

Statistic Acronym Value 
generalized cross validation GCV  0.09 

residual sum of squares RSS 2.71 
general r squared GRSq 0.58 

r squared RSq 0.69 
cross-validated r squared CVRSq -0.73 

standard deviation sd 3.30 
maximum error MaxErr -1.50 

generalized cross validation sd 0.68 
This table shows the summary statistics from the multivariate Earth model for CVT at the 
three highest ranked cranial landmarks. 

The RSS value is 2.71, and indicates that the model is not a good fit for the data. 

The RSq value is 0.69, which means 69% of age can be explained by CVT for this model. 

The CVRSq is -0.73, indicating the model is worse than explaining age using CVT than 

simply using the mean. The GRSq value is 0.58, which indicates that the model is 

moderate at predicting values in a different data set. Summary statistics suggest that the 

model is useful for predicting age. A variance model with prediction bands is shown in 

Figure 40. 



 

85 

 

Figure 40 Prediction bands in a residuals plot. 

The dark grey bands show the confidence limits; the wider pink bands show the 
prediction limits; the red line is a loess fit to the residuals; the blue line is the cross-
validation mean fit. 

The CIs are wide for the entire model. The loess line indicates a fit to the data, but 

the cross-validated mean fit line is very irregular. This plot indicates that the values 

predicted by the model are more uncertain. This model does not appear to accurately 

predict age using CVT. 

The vault set of cranial landmarks 

A third multivariate model was created for a vault set of landmarks; glabella, 

bregma, lambda and vertex. The plots for the Earth model are shown below (see Figure 

41). 
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Figure 41 Model interpretation plots for the vault set (glabella, bregma, vertex and 
lambda) 

 

The model selection plot shows that five terms were used in selecting the best 

model. The residuals vs. fitted plot shows that points cluster toward the lower and middle 

values, and the loess line is fairly straight. The QQ plot indicates a slight deviation from 

normal at the upper and lower tails. Points 17, 30, and 40 are the largest residuals. The 

model interpretation plots suggest that the vault set is not useful for predicting age. 

Summary statistics for the model are shown in Table 14. 
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Table 14 Summary statistics for the vault set model. 

Statistic Acronym Value 
generalized cross validation GCV 0.13 

residual sum of squares RSS 3.12 
general r squared GRSq 0.45 

r squared RSq 0.65 
cross-validated r squared CVRSq -1.00 

standard deviation sd 4.10 
maximum error MaxErr -1.50 

generalized cross validation sd 0.73 
This table shows the summary statistics from the multivariate Earth model for CVT at the 
three best cranial landmarks. 

The RSS value is 3.12, which indicates that the model is not a good fit for the 

data. The RSq value is 0.65, meaning that 65% of age can be explained by CVT using the 

model. The CVRSq is -1.00 and much lower than the model’s RSq value. This indicates 

that the model is worse at predicting age than just using the mean alone. The GRSq value 

is 0.45, and indicates that the model is average at predicting values in a different data set. 

Summary statistics suggest that the model is not useful for predicting age. The residual 

model with prediction bands is plotted in Figure 42. 
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Figure 42 Prediction bands in a residuals plot. 

The dark grey bands show the confidence limits; the wider pink bands show the 
prediction limits; the red line is a loess fit to the residuals; the blue line is the cross-
validation mean fit. 

The plot shows that the confidence limits increase as age increases. The 

prediction limits are irregular and large at high values, indicating the model is more 

uncertain in predicting older ages. The loess line follows the center, however the cross 

validation line is very irregular. Overall, the model does not appear to be very useful in 

predicting age from CVT. 

Radiograph Test Results 

The CVT models were used to estimate age in radiographic test data. Since 

measurements are required for this method of age estimation, the author evaluated only 
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images with a scale (n=2). In both test images, vertex and vertex radius were unavailable. 

A measurement for bregma was unavailable on image 114-00030-01-007-011 because 

the cranial sutures were not yet closed. Table 15 shows the lower, upper and fit ages at 

the 95% and 85% CI for each univariate model. Table 16 shows the fit predicted ages and 

the known chronological ages for two test cases. 

Table 15 Prediction intervals at the 95% and 85% PI. 

ID Landmarks PI Level lower fit upper 

118-00080-01-
012-012 nasion 

95% 0.94 3.27 7.88 

85% 1.38 3.27 6.39 

114-00030-01-
007-011 nasion 

95% 0.05 0.54 2.03 

85% 0.11 0.54 1.50 

118-00080-01-
012-012 glabella 

95% 0.23 3.30 12.15 

85% 0.71 3.30 9.04 

114-00030-01-
007-011 glabella 

95% 0.01 1.46 9.55 

85% 0.07 1.46 6.43 

118-00080-01-
012-012 bregma 

95% 0.90 1.30 1.80 

85% 0.99 1.30 1.65 

118-00080-01-
012-012 lambda 

95% 0.80 4.13 11.89 

85% 1.36 4.13 9.29 

114-00030-01-
007-011 lambda 

95% 0.00 0.41 3.26 

85% 0.01 0.41 2.13 

118-00080-01-
012-012 opisthocranion 

95% 0.30 3.53 13.39 

85% 0.72 3.53 9.92 

114-00030-01-
007-011 opisthocranion 

95% 0.00 0.57 3.43 

85% 0.04 0.57 2.34 
Numerical values represent age in years. 
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Table 16 Predicted CVT age (fit values) and know ages on radiographs at cranial 
landmarks. 

ID nasion glabella bregma lambda opistho known 
118-00080-01-

012-012 3.27 3.30 1.30 3.53 0.88 1.37 
114-00030-01-

007-011 0.54 1.46 NA 0.41 0.57 0.18 
Numerical values represent age in years. When no measurement was available, NA was 
used. 

The sample size was too small to use correlation tests; therefore, graphical 

representations of the prediction intervals for each landmark are shown in Figures 43 and 

44. 

 

Figure 43 95% Prediction intervals for 118-00080-01-012-012. 

The y-axis represents age in years and the x-axis represents cranial landmarks used and 
known age. 

The fit ages produced using CVT for the test case 118-00080-01-012-012 range 

between 1.30 to 4.13 years. The CVT models for nasion, glabella, lambda and 
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opisthocranion produced wide PI ranges. For example, the fit age for nasion is 3.27 years 

old, but the PIs extend the range to 0.94 to 7.88 years. Therefore at nasion, the most 

accurate age estimation is from 0.94 to 7.88 years. 

 

Figure 44 95% Prediction intervals for 114-00030-01-007-011. 

The y-axis represents age in years and the x-axis represents cranial landmarks used and 
the known age. 

The fit ages for the CVT model on the test case 114-00030-01-007-011 range 

from 0.41 to 1.46 years, and are close to the known chronological age of 0.18 years, 

except at glabella. The PIs for all models were narrow, ranging from 0.00 to 3.26 years, 

except at glabella where they ranged from 0.01 to 9.55 years. 

This data supports hypothesis two. The known age for each individual fell within 

PIs generated by the models. The models over predicted age. Results indicate that age in 

older individuals is more over predicted than age in younger individuals. 
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Hypothesis three 

Hypothesis three states: CVT will compare to chronological age and age-at-death 

estimates using transition analysis (Shackelford et al., 2012) on dental development 

scores of all available teeth (Moorrees et al., 1963); however, prediction intervals will not 

be as narrow as those produced by dental age-at-death estimates. 

It was not possible to use correlation tests because the test sample size was too 

small. Instead, a chart showing the PIs with the fit age was compared to the MLE dental 

age (see Figures 45 and 46). 

 

Figure 45 95% PIS for 118-00080-01-012-012 with dental age. 

The y-axis represents age in years and the x-axis represents cranial landmarks used and 
the dental age. 
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The fit ages produced by all models, except bregma, are higher than the MLE 

dental age. The PIs are much wider than the dental age interval. The most narrow PI, 

nasion, ranges from 0.94 to 7.88. 

 

Figure 46 95% PIs for 114-00030-01-007-011 with dental age. 

The y-axis represents age in years and the x-axis represents cranial landmarks used and 
the dental age. 

Overall results showed that fit estimates overestimated age, except at bregma on 

the older test case (118-00080-01-012-012). The prediction intervals were very large for 

all points, with the exception of bregma. In the test of the second radiograph (114-00030-

01-007-011), results shows that fit estimates were closer to the dental estimates; however, 

the prediction interval at glabella was still very large and extended past 9 years old. 

Results indicated that CVT age estimates correlated more closely with dental age-at-

death estimates in the test case of the younger individual. 
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Hypothesis three is therefore supported; all PIs for the CVT models compared to 

dental age at death estimates, but were wider. As age increased in the test sample, the 

models over predicted age. CVT predicted ages were higher than dental age at death 

estimates. Models that did not support hypothesis three on the first test case were at 

glabella, lambda, and opisthocranion. The PIs were very large and did not correspond 

well with the predicted dental range. On the second test case, the model at glabella did 

not support hypothesis three, as the PI was very large and did not correspond with dental 

age. Alone, results from the model at glabella did not support hypothesis three on either 

of the test cases. 

Case Studies 

Age estimation using CVT was performed on unknown age cranial samples from 

the FAB Lab and the BARL. These crania (n=24) came from three sources: (1) 

individuals recovered from forensic contexts; (2) archaeological remains recovered from 

the Lyon’s Bluff site in Oktibbeha County, Mississippi; (3) an archaeological cranium 

from the Mitrou site in Central Greece, which dates to the protogrometric period (1070-

900 BC) (Tartaron, 2008; Rutter, 1993; Morris, 1989; Pedley, 2007). CVT was measured 

on a radiograph and CT scan for the forensic case, on dry bone from the Lyon’s Bluff 

collection, and on a CT scan from the Mitrou site. These results are discussed separately 

as case studies because sample size and unknown demographics prevent them from 

contributing to method development or testing. 
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Case Study #1: An Unknown Forensic Case 

An unknown juvenile cranium, designated MSU2014-02, was aged using CVT on 

radiographic images and a CT scan. Aging by transition analysis on dental development 

produced an age range of 3.81 to 7.84 with a MLE age of 5.51 years old. CVT age 

estimates using the radiographic data are listed in Table 17. CVT age estimates using the 

CT scan are listed in Table 18 and shown in Figure 47. 

Table 17 CVT PIs for case MSU 2014-02 using radiographic data 

CVT PIs at the 95% and 85% PI for case MSU 2014-02 (radiographic image) 

 PI level lower fit upper 

nasion 
95% 0.99 3.41 8.16 

85% 1.45 3.41 6.63 

glabella 
95% 0.31 3.28 12.13 

85% 0.71 3.28 9.03 

bregma 
95% 0.99 1.43 2.00 

85% 1.10 1.43 1.84 

vertex 
95% 2.20 8.51 16.14 

85% 3.36 8.51 17.31 

vertex radius 
95% 1.97 7.77 19.84 

85% 3.03 7.77 15.89 

lambda 
95% 2.17 7.37 17.54 

85% 3.16 7.37 14.26 

opisthocranion 
95% 0.71 5.99 20.59 

85% 1.47 5.99 15.54 
Numerical values are age in years for the unknown individual. Transition analysis of 
dental development produced an age range of 3.81 to 7.84 with a mean age of 5.51 years 
old. 
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Table 18 CVT PIs for case MSU 2014-02 using CT data 

CVT PIs at the 95% and 85% PI for case MSU 2014-02 (CT image) 

 PI level lower fit upper 

nasion 
95% 1.21 3.93 9.15 

85% 1.73 3.93 7.48 

glabella 
95% 1.83 6.37 15.29 

85% 2.70 6.37 12.41 

bregma 
95% 1.22 1.78 2.50 

85% 1.35 1.78 2.30 

vertex 
95% 1.52 6.22 16.14 

85% 2.37 6.22 12.88 

vertex radius 
95% 0.61 3.35 9.84 

85% 1.06 3.35 7.66 

 
lambda 

95% 2.36 7.76 18.19 

85% 3.40 7.76 14.85 

opisthocranion 
95% 0.32 3.67 13.81 

85% 0.76 3.67 10.24 
Numerical values are age in years. 
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Figure 47 Chart showing univariate model PIs for MSU2014-02. 

The y-axis represents age in years and the x-axis represents cranial landmarks used and 
the dental age. 

Measurements on the CT scan and radiograph were slightly different. Because 

slight differences in CVT measurements can affect predicted ages, measurements using 

TIVMI, where HMH values are automatically calculated, were used over manually 

calculated HMH measurements in radiographs. 

Results show that each model differed in its ability to predict age. Glabella, vertex 

and lambda produced a mean fit closest to the MLE dental age, but their PIs were very 

large. The widest PI, at lambda, includes all ages between 2.36 to 18.19 years old in the 

estimate. The mean values for nasion, bregma, vertex radius and opisthocranion 

underestimated age by approximately 2 to 4 years. The model for bregma showed the 
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narrowest PIs, but under predicted age by about 4 years. Results for the multivariate 

models are shown at the 95% and 85% PI levels in Table 19. 

Table 19 Multivariate models using the CT data 

Multivariate PIs at the 95% and 85% PI for case MSU 2014-02 (CT image) 

 PI level lower fit upper 

7 cranial 
landmarks 

95% 0.93 5.00 14.58 

85% 1.61 5.00 11.37 

highest ranked 
95% 0.72 3.58 10.10 

85% 1.21 3.58 7.93 

vault-set 
95% 1.90 11.57 35.41 
85% 3.45 11.57 27.34 

Numerical values are age in years. Transition analysis of dental development produced an 
age range of 3.811 to 7.839 with a mean age of 5.509 years old. 

Results show that the PIs were wide in the multivariate models. The 7 cranial 

landmarks model was the best predictor of age. The fit age was close to the estimated 

dental age. The fit age for the highest ranked model under predicted age. The vault-set 

over predicted the fit age by 6 years and showed the largest PIs with the upper end 

extending to 35 years old. Results are shown in Figure 48. The 7 cranial landmarks model 

was the best predictor of age for the multivariate models, but it showed a large PI range. 

Glabella and vertex were the best predictors of age using univariate models. All three 

models produced an accurate fit age, but PIs were wide. The PI range for all three models 

was about 15 years, which is not useful for estimating a narrow age range. 
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Figure 48 All models and PIs for MSU2014-02. 

The y-axis represents age in years and the x-axis represents cranial landmarks used and 
the dental age. 

Case Study #2: Lyon’s Bluff Archaeological Crania 

Dry bone and fragmentary CVT measurements were collected on the Lyon’s 

Bluff collection. These crania (n=22) were aged by the author using transition analysis on 

dental development (Moorrees et al., 1963; Shackelford et al., 2012) on teeth not in 

occlusion and by measuring CVT on dry bone. Scatterplots of dental age estimates and 

CVT are shown in Figures 49-54. Each plot includes a fit line to illustrate the relationship 

of the two variables. 
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Figure 49 Dental age plotted against CVT age at nasion in the Lyon’s Bluff sample. 

There is a positive relationship between the two aging methods, however the points are 
not close to the fit line. This indicates that the age estimates from the two methods 
weakly compare to each other. 
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Figure 50 Dental age plotted against CVT age at glabella in the Lyon’s Bluff sample. 

There is a slight positive relationship between the two methods. The fit line shows a 
slight increase in as predicted ages increase. Points do not conform to the line and 
indicate these two methods do not compare well. 
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Figure 51  Dental age plotted against CVT age at bregma in the Lyon’s Bluff sample. 

There is a very weak correlation between the two methods at bregma. The fit line does 
not increase for CVT as the dental age estimate increase. 
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Figure 52 Dental age plotted against CVT age at vertex in the Lyon’s Bluff sample. 

The scatterplot shows a positive relationship between the two methods; however the 
sample size is small, consisting of three points. 
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Figure 53 Dental age plotted against CVT age at lambda in the Lyon’s Bluff sample. 

The scatterplot shows a positive relationship between both methods at lambda. The 
predicted ages increase at a slower rate in the CVT sample. 
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Figure 54 Dental age plotted against CVT age at opisthocranion in the Lyon’s Bluff 
sample. 

The scatterplot shows a positive relationship between both aging methods at 
opisthocranion. There are outliers as the age increases in both samples. 

Predicted age ranges using CVT were compared to the predicted age ranges based 

on dental development and results are listed in Table 20. Bolded values indicate predicted 

ages that are outside of the sample range used in model creation. They were included to 

show the models ability to predict, but should not be used until the model can be 

supplemented with more known age samples that cover their range. Correlation tests 

between CVT and dental age on the entire sample indicated different levels of correlation 

at different cranial landmarks (see Table 21). 
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Table 20 Predicted CVT fit compared to predicted dental fit in Lyon’s Bluff 

CVT fit compared to dental fit 

ID nasion glabella bregma vertex lambda opistho dental 

67_2 - - - - - 5.61 2.13 
67_3 - - - 4.38 2.41 3.53 0.75 

67_5 - - - - 2.52 3.53 11.89 

67_11 - - - - 10.14 19.68 14.75 

67_14 3.23 - 1.52 7.11 3.49 4.33 4.35 

67_15 6.50 1.99 - - 5.85 - 6.88 

67_18B 3.13 3.83 1.47 - - - 4.41 

67_20 3.29 - - - - - 5.01 

67_21 5.43 5.75 1.81 - 7.14 4.89 9.90 

67_23 - 2.33 - 1.50 1.74 3.53 1.95 

68_6 - - - - 6.45 3.53 2.56 

68_17 - - - - 7.51 - 10.59 

68_19 - - - - 1.92 - 3.64 

68_21 3.53 2.33 1.39 - 2.41 1.98 2.39 

68_29 8.69 - 1.60 - 8.00 - 11.98 

68_31 5.43 6.37 - - - 9.89 15.10 

68_34 3.40 2.33 - - - - 5.90 

68_35 - 5.38 - - 5.52 7.11 8.90 

01_01 3.71 3.03 1.94 - - - 13.59 
Numerical values are age in years. Bold ages are those predicted outside of the model’s 
range. These values are less reliable. 

Table 21 Correlation between CVT and dental age in Lyon’s Bluff 

 nasion glabella bregma vertex lambda opistho 

t -1.78 0.45 0.24 -2.40 2.53 1.36 
df 7 6 3 1 11 9 

p-value 0.12 0.67 0.82 0.25 0.03 0.21 

cor -0.56 0.18 0.14 -0.92 0.61 0.41 
Results for the correlation test using Pearson’s r. 
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The correlation values range from -1 to 1. A positive or negative integer indicates 

the directionality of the relationship, and the closer the value of the integer to 1 indicates 

its strength; 1 is the strongest score. Results show that predicted age using CVT at certain 

cranial landmarks varied in correlation strength with age estimates using transition 

analysis on dental development. Correlation values between the two methods were weak 

for models at bregma and glabella, moderate for models at opisthocranion and nasion, 

and strong for model at lambda. The scatterplot for vertex suggests a correlation between 

CVT and age, however correlation test data produces a strong negative correlation. There 

were only three samples for vertex. Results of the comparison between the two methods 

suggest that the model at lambda was accurate and comparable to dental age for 

predicting age in the Lyon’s Bluff sample. Results suggested that the models for 

predicting age at nasion and opisthocranion were less accurate than using dental age, and 

the models for predicting age at bregma and glabella were not accurate when compared to 

dental age estimates. 

Case Study #3: Mitrou Archaeological Cranium 

CVT was used to estimate age in a juvenile cranium from the Mitrou 

archaeological site. The cranium was not complete. Measurements were available for 

nasion and glabella and an estimated measurement was available for bregma. 

Measurements were unobservable at vertex, vertex radius, lambda, and opisthocranion 

because the cranial bone was absent at those landmark locations. Age estimates using the 

univariate models are listed in Table 21. A multivariate model was created for the three 

points available on the cranium. Data for the multivariate model is also in Table 22. 

Dental age was estimated to be between 3.83 and 6.50 with a fit of 5.01 years old. Figure 
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55 compares the fit ages and prediction intervals for the various landmarks used in 

estimation. 

Table 22 Results for the Mitrou Cranium 

Predicted ages at the 95% PI for the Mitrou Cranium 

Cranial Landmark lower fit upper 
nasion 0.04 0.54 2.03 

glabella 0.71 4.33 13.31 

bregma (est) 0.98 1.42 1.97 

multivariate 0.48 2.40 6.80 
Numerical values are age in years. 

 

Figure 55 Models and PIs for Mitrou cranium 

The y-axis represents age in years and the x-axis represents cranial landmarks used and 
the dental age. 

The model for glabella predicted the closest fit age to the dental age, however the 

upper and lower PIs were very wide. Their width includes approximately 13 years. The 
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models at nasion and bregma under predicted age in the Mitrou cranium. The multivariate 

model (nasion, glabella, and bregma) prediction includes the dental range, however the 

predicted fit age was lower than the dental MLE by approximately 3 years. The models at 

nasion, bregma and the multivariate model were not accurate in predicting age in the 

Mitrou cranium. The model for glabella performed the best, predicting a fit age consistent 

with the dental fit age. Because the prediction interval ranges were large, the model at 

glabella would not be useful in creating a narrow age estimate. 
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CHAPTER V 

DISCUSSION AND CONCLUSIONS 

Predicting age using CVT 

Results indicated that CVT at certain cranial landmarks is useful for predicting 

age at death in juveniles. Models indicated that certain landmarks were more useful than 

others, in particular, vertex and lambda. 

Univariate and Multivariate Models 

CVT at all cranial landmarks increased with increasing age. MARS models parsed 

out the relationship and clarified the degree of accuracy with which CVT predicted age. 

In all models, the PIs widened as age increased. The upper PI range varied for all models, 

and, in many instances, extended to include ages over 18 years old. Each model is 

discussed in detail below. 

Nasion 

The univariate model at nasion produced high R squared values for the general 

model and cross-validated model. These high scores indicated that a large percentage of 

age could be explained by an increase in CVT. Plots illustrating the residual spread 

showed clustering, and the RSS (residual sum of squares) value was high; indicating the 

model was not a good fit for the data. The variance model further showed that the model 

had a moderate degree of uncertainty when predicting age using CVT. The plot of the age 
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regressed on CVT showed the PIs, which were narrow for measurements between 2.5 to 

10 mm. After 10 mm, the PIs rapidly widened where at 12.5 mm, their width extended to 

15 years. Alone, nasion was not useful for predicting age using CVT. Moderate 

correlation values indicated that more data would be useful to clarify predictive ability of 

CVT at nasion. 

Glabella 

R squared values for the univariate model at glabella were low, indicating that age 

could not be explained very well using CVT in the model. Model interpretation plots and 

the RSS (residual sum of squares) value indicated the model was not a good fit for the 

data. The variance model confirmed that the model had a high degree of uncertainty 

when predicting age using CVT. The PI plot of age regressed on CVT showed that the 

model had a large predictive age range for all CVT values. A trend indicated that as CVT 

increased, the PIs widened exponentially and extended into the 1000’s of years old. The 

PIs and predicted fit age were so high that the model at glabella was unrealistic to use for 

estimating age in juveniles. The CVT model at glabella is not useful to use when 

predicting age in juveniles. 

Bregma 

Results showed that the R squared values for the univariate model at bregma were 

midrange, indicating that about 50% of age could be explained by CVT using the model. 

The model interpretation plots and the RSS value indicated a good fit of the model to the 

data. The variance model suggested greater uncertainty in predictions at high values. The 

plot showing age regressed on CVT indicated narrow predictive age ranges varying from 
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less than 1 year to about 1 year and 6 months. The statistics suggest that the model for 

bregma is useful for predicting age, but the model was based on a very small 

measurement difference (0.4 mm) for CVT values. This small variance could be 

problematic as small measurement differences could greatly affect age predictions. 

Adjusted PI values on dummy variables indicated a range of a little over 3 years in the 

model’s predictive ability. Such a small age range is neither useful nor practical for age 

estimation. Bregma is not useful for predicting age by CVT because the estimation range 

is limited to very young juveniles (newborns to 3 years old). 

Vertex 

The univariate model for vertex showed midrange R squared values. This 

indicated that about 50% of age could be explained by CVT using the model. The model 

interpretation plots indicated that the model was a good fit to the data. The variance 

model data further supported the goodness of fit. The plot illustrating age regressed on 

CVT with PIs, illustrated narrow PIs at lower CVT measures. The narrowest PI range 

was 3 years. The PIs increased with increasing CVT, and the widest PI range was 20 

years. Results indicated the model at vertex is useful for predicting age. 

Vertex Radius 

The R squared values for the vertex radius model were low, indicating other 

factors apart from CVT contributing to age. The model interpretation plots and other 

summary statistics suggested a poor fit of the model to the data. The variance plot was 

the best plot for all of the landmarks, and suggested that the model is a good fit for the 

data. PIs on the plot showing age regressed on CVT widened as CVT increased. The 
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narrowest range was 9 years and the widest range was 42 years. Therefore, accuracy in 

age predictions decreased with age. Results suggested that more data would be useful to 

clarify the predictive ability of the model at vertex radius. 

Lambda 

The univariate model at lambda had high R squared values, indicating that a large 

percentage of age could be explained by changes in CVT. The model interpretation plots 

and variance plot supported a good fit of the model to the data. The plot illustrating age 

regressed on CVT showed very narrow PIs (5 years >) at small CVT measurements that 

increased in width as CVT increased. Results suggest that the model at lambda is useful 

for predicting age. 

Opisthocranion 

The R squared values were low, meaning that other factors apart from CVT 

contributed to age. The model interpretation plots and other summary statistics indicated 

that the model was not a good fit for the data. The variance model supported a poor fit of 

the model to the data. Overall, results indicated that the model at opisthocranion is 

uncertain and not useful for predicting age. 

All Seven Landmarks 

A multivariate model was created using CVT at all seven cranial landmarks. The 

R squared values were high suggesting that age could be explained by a combination of 

all CVT measurements. The model interpretation plots suggested that multivariate model 

was useful for predicting age by CVT; however, summary statistics suggested the model 
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was not useful for predicting age. More data is needed to accurately address if this model 

is useful for predicting age using CVT. 

Highest Importance 

The multivariate highest importance model was created from the highest ranked 

CVT values, determined using the evimp() function. The R squared value was high, 

indicating that most of age could be explained by CVT using the model. However, the 

cross-validated R squared value was negative, meaning that the model did not perform 

well with the cross-validation sample. The plots showed that the residuals cluster in one 

spot and the variance models had large confidence limits. The cross-validation line 

spiked and dropped randomly over the centerline along the entire variance plot, when it 

should have been straight. This information indicated that the model was not a good fit to 

the data. Despite their importance in the model using all seven landmarks, the high-

ranking combination of CVT values did not produce a useful model for estimating age by 

CVT. 

Vault Set 

The R squared values for the vault set were high, indicating that age was 

explained by CVT using the model; however other data indicated a poor model fit. The 

RSS value was high and residual points clustered together on the model interpretation 

plots. The variance model exhibited wide confidence limits, indicating uncertainty in age 

predictions using the model. Overall, results indicated that the vault set model is not a 

useful predictor of age using CVT. 
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Radiographic Test Data 

When the models were evaluated against the radiographic test data, they over 

predicted age at all cranial landmarks. Results from the two test cases indicated that the 

model over predicted age more in the older juvenile. The CT sample used in model 

creation contained a larger number of individuals aged between 0 and 3. Therefore, it is 

possible that the models would more accurately predict age in individuals younger than 3. 

Results indicated that PIs widened with increasing age, which could also be reflective of 

the sample used to generate the models. 

The fit age estimated by the models at lambda, opisthocranion and nasion was 

accurate on the younger test sample, but not accurate on the older test sample. With the 

exception of the model at bregma, each model predicted age consistently for the older test 

individual when compared to each other. Fit ages produced by each CVT model differed 

by a maximum of 1 year. However, CVT age estimates were still higher than dental 

estimates and known age.  

The performance of the method on the test radiographs indicated that the method 

has the potential to accurately predict age at death, but the data needs to be supplemented. 

More data from older known age samples would need to augment existing models to 

understand if the model is over predicting age because of sample bias, or because it does 

not perform well as age increases. Without adding more data, CVT age at death estimates 

are not very accurate and have large PIs. If skeletal remains have dentition, epiphyseal 

ends or a complete long bone, this method would not be recommended for age estimation 

alone. However, if fragmentary cranial remains or cranial remains without dentition were 
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the only skeletal tissue available, this method could be used cautiously, especially when 

estimating age in individuals suspected to be older than 3 years old. 

Case Studies 

Case Study #1 tested the method on radiographic and CT data from an unknown 

forensic case (MSU2014-02). CVT on the CT scan was measured in TIVMI, which 

automatically calculated the CVT HMH value. CVT on the radiograph was hand 

measured in Image J, and the HMH value was manually calculated. HMH values were 

similar for bregma, lambda, and opisthocranion on both the CT scan and radiograph. 

Measurements at nasion, glabella, vertex, and vertex radius were different on the CT scan 

and radiograph, differing by 1.4 mm to 3.6 mm. This difference was reflected in the 

predicted fit estimates for those models, except nasion. The fit estimates differed by 0.52 

years at nasion, 3.09 years at glabella, 0.35 at bregma, 1.89 years at vertex, 4.42 years at 

vertex radius, 0.39 years at lambda, and 2.32 years at opisthocranion. The larger 

measurements and subsequent fit age estimates came from radiographic data, which 

suggested error in placement and/or measurement on radiographic data. When CVT 

measurements for the radiograph and CT scan were similar, they produced similar age 

estimates. Results suggested that manual measurements have the potential to add more 

error in age predictions than do automatically calculated CVT measurements. More 

testing is needed to assess the error associated between automatic and hand measured 

CVT measurements. 

In Case Study #2, the aging method was tested on dry bone samples from the 

Lyon’s Bluff collection (n=22). Results were compared with dental age estimates 

(Moorrees et al., 1963; Shackelford et al., 2012) using a correlation test. Vertex radius 
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was not used, as it could not be accurately placed on cranial vault fragments. Scatterplots 

indicated a positive correlation between dental age and CVT age for the following 

available landmarks: nasion, lambda, vertex, and opisthocranion The plots show that 

glabella and bregma had weak correlations between the two methods, which was 

reflected in a correlation value of 0.18 and 0.14. The plot for bregma showed that as age 

increased using the dental estimation method, it seemed to remain at the same numerical 

value for the CVT method. Even though the plot for nasion shows a positive correlation, 

the test produced a value of -0.56, indicating a negative correlation between CVT and 

age. Points were further from the fit line as age increased in nasion. The same is true of 

opisthocranion, however the correlation value was 0.41, indicating a moderate 

relationship between the two methods for predicting age. Vertex produced the largest, 

correlation of -0.92; indicating a negative correlation between the two methods. Results 

are unclear as there were only three age estimation values for comparison. CVT and 

dental development age predictions correlated the best at lambda, with a correlation value 

of 0.61. A larger number of CVT estimates would clarify results for vertex and 

opisthocranion. 

Case Study #3, the Mitrou archaeological cranium, tested the method on a CT 

scan of incomplete archaeological material. Univariate models were used to test CVT at 

each available cranial landmark, and one multivariate model was used to test CVT at all 

three cranial landmarks. No one model performed well. The models for bregma and 

nasion severely under predicted fit age, and did not include the dental age estimate. The 

multivariate model PIs did include the dental age estimate, but the fit age was low. The 

model for glabella performed the best, as predicted age was closest to the fit dental age. 
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The PIs, however, were very wide, spanning 13 years. None of the models were useful 

for predicting a narrow, accurate age estimate. This may have to do with the quality of 

the CT scan, or the lack of cranial landmarks with better predictive abilities, such as 

lambda or vertex. 

Conclusions of the Method 

In this study, the overarching research question was: Can differential CVT of 

juvenile crania be used as a method to estimate age? Results from this study indicated 

that MARS models of CVT can be used to estimate age at vertex and lambda. Results 

indicated that CVT was not useful to estimate age at glabella and bregma. Results also 

showed that more CVT measurement data is needed to fully clarify the ability of the 

model at nasion, vertex radius and opisthocranion. Results on each model’s ability to 

predict age are explained in Table 23. In practice, the refined CVT method is less 

accurate than age predictions made by transition analysis on dental development because 

the PIs are much wider, as would be expected.  
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Table 23 Predictive capabilities of the models 

Model Name Useful for 
predicting age? Comments: 

nasion Maybe More data and testing are needed to further clarify the 
ability of this model. 

glabella No The age range is too wide to be practical and realistic in 
age at death estimations. 

bregma No This model under predicts age. 

vertex Yes Not useful for fragmentary remains. 

vertex radius Maybe More data and testing are needed to further clarify the 
ability of this model. Not useful for fragmentary remains. 

lambda Yes More data could help refine the model 

opisthocranion Maybe More data and testing are needed to further clarify the 
ability of this model. 

seven landmarks Maybe More data and testing are needed to further clarify the 
ability of this model. 

highest 
importance No The model over predicts age. 

vault set No The age range is very wide and the model under 
predicted age during the test. 

The table explains which cranial landmarks are useful for predicting age using CVT, and 
which models could be improved. 

Limitations 

This study and the refined method were not free from biases that influenced how 

the models’ performance and age estimation results. The discussion is separated into 

limitations specific to this study and limitations specific to the method. 
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Limitations of the Study 

Sources of error specific to this study were found in the following areas: the 

limited age range of the sample used to create the method and the small sample size of 

the test data from Patricia. 

The CT sample used to create the refined method limited the model’s predictive 

ability because of its composition. As mentioned in Chapter IV, the sample used to create 

the models contained 74 individuals, of which 35 were younger than 6 years old. This 

meant that 35 individuals made up the 6 to 18 year old category used to create the middle 

and upper age range of the model. The lack of middle and older age juveniles (6-18 years 

old) could be the reason the models were more uncertain as age predictions increased. 

Since the majority of the sample was younger than 6 years old, the models may be better 

at predicting individuals younger than 6, because there is more data for those ages used to 

construct the model and clarify prediction intervals. 

The Patricia sample is a large data source of known age juvenile radiographs, but 

it is not the best source for metric data collection on radiographs. The majority of the 

radiographic images did not include a scale or information on radiograph dimensions, 

which could be used to create a scale. Because this study required an accurate 

measurement for CVT, most images from this sample could not be used. The first 

potential source of error was the lack of results from the radiographic test of the method. 

Since only two samples were used, there was not enough data to comprehensively test the 

method. A larger sample size that includes various juvenile ages, especially those older 

than 6 years old, could be used to remake the models. 
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Limitations of the Method 

Limitations of the CVT method include error in measurement collection. 

Measurements at nasion and glabella sometimes included a sinus, and there is potential 

for error when using software and calipers to collect measurement data 

During measurement collection, CVT at nasion and glabella was divided into two 

types measurements. One type of measurement passed through a distinct compact bone-

diploe-compact bone boundary. The other type of measurement included a sinus. At these 

points, sinuses extended or blurred the compact bone-diploe-compact boundary, thus 

creating inaccurate measurements. The raw CVT scores for these two points were not 

normal after a normality test, and the models were not well suited for predicting age. 

Measurements with and without a sinus were included, which could account for 

unreliability and inaccuracy in both models. To address this issue, measurements could 

be separated into two categories: those with a sinus present and those without. 

A second source of error lies within measurement collection. CVT collection was 

automated in TIVMI to reduce user error. However, on two separate occasions the 

software misidentified HMH values for bone, and produced an HMH measure for soft 

tissue directly above the ectocranial surface. To correct this, the author displayed the 

mesh and manually placed the ectocranial point above the mesh and the endocranial point 

below the mesh. This means that measurements should be checked even when they are 

automated in a software package, otherwise CVT may be a larger or smaller measure 

than its actual size. If not checked, this could lead to over or under estimations of age in 

the models. Another source of measurement error can be caused by different measuring 

equipment. In this study, digital calipers provided the most accurate measurements for 
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dry bone when compared to sliding calipers. Sliding calipers must be visually read, while 

digital calipers estimate to the nearest tenth of a millimeter, creating a more exact 

measurement. Differences in tenths of a millimeter can cause over or under estimation in 

age by the models. Measurement error could arise when measurements are collected on 

radiographic images. Radiographic images may be blurred or radiolucent at cranial 

landmarks, causing the user to over or under estimate thickness. Estimations could lead to 

over and under prediction of age as measurements differ by millimeter. 

Discussion 

This study used the MARS modeling methodology put forth in Stull and 

colleagues’ (2014) study estimating subadult age from diaphyseal dimensions of long 

bones, which used a larger sample size (n=1,310) than employed in the current study. The 

models performed much better with RSq and CVRSq values greater than 0.93. This 

indicated that greater than 93% of the age estimations could be explained by diaphyseal 

dimensions of long bones. As shown in the publication, predicted age intervals adjusted 

and widened as age increased. Stull and colleagues (2014) found that in individuals older 

than 10 years of age, age predictions using diaphyseal length underestimated age, and the 

degree of underestimation increased with increasing age. They noted that the diaphyseal 

breadth models overestimated age in younger individuals and underestimated age in older 

individuals. Despite the over and underestimation in the models, chronological age fell 

within the PIs from 94% to 100%. Stull and colleagues (2014) note that the models lost 

precision after 10 years of age, reflecting greater variability in growth after 10 years. 

Age estimations using CVT are still unclear. More research is needed to address 

variability in growth and its relationship to overprediction of older ages. Results from this 
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study show that CVT models can be used to estimate age in juveniles. The estimate from 

the CVT method is not as narrow and accurate as dental age determinations, but it 

produces an age range. This adds to the literature of methods available for estimating age 

in juveniles, specifically using the cranium, which is suitable for forensics and 

bioarchaeology. In instances where remains are highly fragmented, such as mass disasters 

where dentition or smaller epiphyses may not be recovered or material for aging using 

long bones is not available, CVT can suffice. CVT measurements on cranial fragments 

can be used within the models to differentiate between multiple children, and children 

and adults. This information contributes to the biological profile and can be used for 

identification purposes in forensics and to understand health, disease, and populational 

information in bioarchaeology. 

Conclusions 

The purpose of this study was to refine and test the CVT method for estimating 

age at death in juvenile remains. Three hypotheses were used to guide this study: (1) 

CVT measurements at select cranial landmarks conform to expected growth curves using 

a locally smoothed (loess) fit; (2) CVT measured on radiographic images of juvenile 

crania will fit to age estimation models developed on CT scans; and (3) CVT will 

compare to chronological age and age-at-death estimates using dental development scores 

of all available teeth developed by Shackelford et al. (2012), however it will not offer as 

narrow prediction intervals as aging by dental development. The first hypothesis tested 

whether CVT conformed to expected growth curves for juvenile remains at each of the 

seven cranial landmarks under study. From there, univariate and multivariate MARS 

models were created using the seven cranial landmarks. The second hypothesis tested 
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whether the models would produce an age that correlated to known age from a 

radiographic test sample. The third hypothesis tested whether age predicted by CVT 

models would correlate to age predicted by transition analysis on dental development. 

This study refined the CVT age estimation method and includes measurement tables with 

error that are easy to use and understand. This method can be used on forensic cases 

because the samples come from individuals from contemporary populations, but it also 

applies to bioarchaeological samples. 

Overall, 74 individuals from CT scans were used to create the models. Two 

individuals from the Patricia sample were used to test the model and assess CVT and 

dental age. Archaeological juvenile samples and an unknown juvenile forensic case 

(n=24) were used to illustrate this method on various case examples. 

In summary, CVT models varied in their predictive ability to estimate age. Aging 

by CVT produced large confidence intervals that sometimes stretched into adulthood. 

The CVT models at vertex and lambda were useful predictors of age. Models at glabella, 

bregma, the highest ranked landmarks and the vault set of landmarks were not useful for 

predicting age. The models at vertex radius, nasion, opisthocranion and all seven 

landmarks could be refined with more data. Test cases showed that age estimations for 

younger individuals produced a more accurate and narrow age range at bregma, lambda 

and opisthocranion. The CVT models at nasion, glabella, lambda and opisthocranion over 

predicted age in the older juvenile test case. Aging by CVT has the potential to improve 

if more known age data are used to create the models, especially juveniles older than 6 

years. By adding more data to existing models, the PIs may narrow and produce a more 

accurate fit  
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Future Directions 

The study is suitable for aging as currently stands, however a larger sample size 

would improve the method. A larger sample, with a large number of individuals older 

than 6 years old should be added to the CT data used in model creation. The models were 

created with data mainly from young juveniles, specifically, individuals younger than 6 

years old. This bias affected the models, as they became more unreliable for predicting 

age as juvenile age increased. CVT measurements would need to be taken at the seven 

cranial landmarks on CT scans using an automated measurement tool, such as TIVMI. By 

adding new data to existing models and recreating the models using the Earth package, 

the models’ ability to predict age would be clarified, especially at nasion, bregma, the 

vertex radius, opisthocranion, and the multivariate models. 

In order to finalize the CVT method as useful for a bioarchaeological sample, it 

must be calibrated by another, more accurate age estimation method, such as dental 

development. The author plans to examine a large, juvenile archaeological sample, like 

the collection at the University of Alabama. Such an archaeological sample presents a 

great opportunity to calibrate the method using dental development and compare CVT to 

long bone length measurements for growth and development studies. 
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Cranial Landmark Definitions 

The definitions of the cranial landmarks used in this study are listed in Table 10. 

Table 24 Definition and source of cranial landmarks used in this study. 

Landmark Definition Reference 
Infraorbitale The most inferior point on the orbital rim. (Dutailly and 

Guyomarc’h, 2012) 
Porion The most superior point on the external auditory 

meatus. 
(Dutailly and 
Guyomarc’h, 2012) 

Nasion The intersection of the fronto-nasal suture and 
the median plane. Consider nasion as on the 
frontal bone. 

(Howell, 1973) 

Glabella The maximum projection of the midline profile 
between nasion and supraglabellare (or the point 
at which the convex profile of the frontal bone 
changes to join the prominence of the glabellar 
region. 

(Howell, 1973) 

Bregma The posterior border of the frontal bone in the 
median plane.  Normally, this point is the 
meeting point of the coronal and sagittal suture. 
The sagittal suture may diverge from the 
midline, but the measurement should stay on the 
midline and metopic sutures should be 
disregarded. 

(Howell, 1973) 

Vertex Radius The perpendicular to the transmeatal axis from 
the most distant point on the parietals (including 
bregma or lambda), wherever found. 

(Howell, 1973) 

Vertex The highest point on the ear-eye plane aligned 
to the median sagittal plane of the skull. 

(Martin, 1928) 

Lambda The apex of the occipital bone at its junction 
with the parietals, in the midline.  This is the 
meeting of the sagittal and lambdoidal sutures 
and must be placed in the midline. 

(Howell, 1973) 

Opisthocranion The most posteriorly protruding point of the 
occipital bone in the midsagittal plane. 

(Jantz et al., 2008) 

The cranial landmark definitions and sources are listed in the above table.
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Age Estimation Tables Using CVT 

 

Table 25 Age estimation table for CVT at nasion at the 95% PI 

CVT fit_age lwr_age upr_age 
<4.25 0.54 0.05 2.03 

4.3 0.56 0.05 2.07 
4.4 0.66 0.07 2.32 
4.5 0.76 0.09 2.58 
4.6 0.87 0.12 2.84 
4.7 0.99 0.15 3.12 
4.8 1.12 0.18 3.42 
4.9 1.25 0.22 3.72 
5 1.39 0.26 4.03 

5.1 1.54 0.31 4.35 
5.2 1.69 0.36 4.69 
5.3 1.86 0.41 5.03 
5.4 2.03 0.47 5.38 
5.5 2.20 0.53 5.75 
5.6 2.38 0.60 6.12 
5.7 2.53 0.65 6.41 
5.8 2.57 0.67 6.49 
5.9 2.61 0.68 6.58 
6 2.65 0.70 6.66 

6.1 2.70 0.71 6.75 
6.2 2.74 0.73 6.83 
6.3 2.78 0.75 6.91 
6.4 2.82 0.76 7.00 
6.5 2.86 0.78 7.08 
6.6 2.90 0.79 7.16 
6.7 2.94 0.81 7.24 
6.8 2.98 0.82 7.32 
6.9 3.02 0.84 7.40 
7 3.06 0.86 7.48 

7.1 3.10 0.87 7.55 
7.2 3.14 0.89 7.63 
7.3 3.18 0.90 7.71 
7.4 3.22 0.92 7.78 
7.5 3.26 0.93 7.86 
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Table 25 (Continued) 

7.6 3.30 0.95 7.93 
7.7 3.34 0.96 8.01 
7.8 3.38 0.98 8.08 
7.9 3.41 0.99 8.16 
8 3.45 1.01 8.23 

8.1 3.49 1.03 8.30 
8.2 3.53 1.04 8.37 
8.3 3.56 1.06 8.45 
8.4 3.60 1.07 8.52 
8.5 3.64 1.09 8.59 
8.6 3.67 1.10 8.66 
8.7 3.71 1.12 8.73 
8.8 3.75 1.13 8.80 
8.9 3.78 1.15 8.87 
9 3.82 1.16 8.94 

9.1 3.85 1.18 9.00 
9.2 3.89 1.19 9.07 
9.3 3.93 1.21 9.14 
9.4 3.96 1.22 9.21 
9.5 4.00 1.23 9.27 
9.6 4.03 1.25 9.34 
9.7 4.07 1.26 9.41 
9.8 4.10 1.28 9.47 
9.9 4.13 1.29 9.54 
10 4.17 1.31 9.60 

10.1 4.20 1.32 9.67 
10.2 4.24 1.34 9.73 
10.3 4.42 1.42 10.08 
10.4 4.62 1.50 10.44 
10.5 4.81 1.59 10.81 
10.6 5.02 1.67 11.18 
10.7 5.22 1.77 11.56 
10.8 5.43 1.86 11.94 
10.9 5.64 1.95 12.33 
11 5.86 2.05 12.72 

11.1 6.08 2.15 13.12 
11.2 6.30 2.25 13.52 
11.3 6.52 2.36 13.92 
11.4 6.75 2.47 14.33 
11.5 6.98 2.57 14.75 
11.6 7.22 2.69 15.17 
11.7 7.46 2.80 15.59 
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Table 25 (Continued) 

11.8 7.70 2.91 16.02 
11.9 7.94 3.03 16.45 
12 8.19 3.15 16.88 

12.1 8.44 3.27 17.32 
12.2 8.69 3.40 17.76 
12.3 8.95 3.52 18.21 
12.4 9.21 3.65 18.66 
12.5 9.47 3.78 19.11 
12.6 9.73 3.91 19.57 
12.7 10.00 4.05 20.03 
12.8 10.27 4.18 20.49 
12.9 10.26 4.17 20.46 
13 10.22 4.16 20.41 

13.1 10.19 4.14 20.35 
13.2 10.16 4.13 20.30 
13.3 10.13 4.11 20.25 
13.4 10.10 4.10 20.19 
13.5 10.07 4.08 20.14 
13.6 10.04 4.07 20.09 
13.7 10.01 4.05 20.04 
13.8 9.98 4.04 19.99 
13.9 9.95 4.02 19.94 
14 9.92 4.01 19.89 

14.1 9.89 3.99 19.84 
14.2 9.86 3.98 19.79 
14.3 9.84 3.96 19.74 
14.4 9.81 3.95 19.69 
14.5 9.78 3.94 19.64 
14.6 9.75 3.92 19.60 
14.7 9.72 3.91 19.55 
14.8 9.70 3.89 19.50 
14.9 9.67 3.88 19.46 
15 9.64 3.87 19.41 

CVT measurements are in mm. Bolded measurements are generated outside of the 
model’s ability and are more unpredictable; they should be used with caution. 

Table 26 Age estimation table for CVT at glabella at the 95% PI 

CVT fit age lower age upper age 
<3.00 1.41 0.00 9.46 
3.25 1.76 0.02 10.05 
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Table 26 (Continued) 

3.50 2.14 0.05 10.63 
3.75 2.33 0.08 10.90 
4.00 2.33 0.08 10.90 
4.25 2.33 0.08 10.90 
4.30 2.33 0.08 10.90 
4.40 2.33 0.08 10.90 
4.50 2.33 0.08 10.90 
4.60 2.33 0.08 10.90 
4.70 2.33 0.08 10.90 
4.80 2.39 0.09 10.98 
4.90 2.46 0.10 11.08 
5.00 2.53 0.12 11.17 
5.10 2.60 0.13 11.26 
5.20 2.67 0.15 11.36 
5.30 2.74 0.16 11.45 
5.40 2.81 0.18 11.54 
5.50 2.88 0.20 11.64 
5.60 2.95 0.21 11.73 
5.70 3.03 0.23 11.82 
5.80 3.10 0.25 11.91 
5.90 3.18 0.28 12.00 
6.00 3.25 0.30 12.09 
6.10 3.33 0.32 12.18 
6.20 3.40 0.35 12.28 
6.30 3.48 0.37 12.37 
6.40 3.56 0.40 12.45 
6.50 3.63 0.42 12.54 
6.60 3.71 0.45 12.63 
6.70 3.79 0.48 12.72 
6.80 3.87 0.51 12.81 
6.90 3.95 0.54 12.90 
7.00 4.03 0.58 12.99 
7.10 4.11 0.61 13.08 
7.20 4.19 0.64 13.16 
7.30 4.27 0.68 13.25 
7.40 4.36 0.72 13.34 
7.50 4.44 0.75 13.43 
7.60 4.52 0.79 13.51 
7.70 4.61 0.83 13.60 
7.80 4.69 0.87 13.69 
7.90 4.77 0.91 13.77 
8.00 4.86 0.96 13.86 
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Table 26 (Continued) 

8.10 4.94 1.00 13.94 
8.20 5.03 1.05 14.03 
8.30 5.12 1.09 14.12 
8.40 5.20 1.14 14.20 
8.50 5.29 1.19 14.29 
8.60 5.38 1.23 14.37 
8.70 5.47 1.28 14.46 
8.80 5.56 1.34 14.54 
8.90 5.64 1.39 14.63 
9.00 5.73 1.44 14.71 
9.10 5.82 1.49 14.79 
9.20 5.91 1.55 14.88 
9.30 6.00 1.61 14.96 
9.40 6.10 1.66 15.05 
9.50 6.19 1.72 15.13 
9.60 6.28 1.78 15.21 
9.70 6.37 1.84 15.30 
9.80 6.47 1.90 15.38 
9.90 6.56 1.96 15.46 
10.00 6.65 2.03 15.55 
10.10 6.75 2.09 15.63 
10.20 6.84 2.16 15.71 
10.30 6.94 2.22 15.80 
10.40 7.03 2.29 15.88 
10.50 7.13 2.36 15.96 
10.60 7.22 2.43 16.04 
10.70 7.32 2.50 16.13 
10.80 7.42 2.57 16.21 
10.90 7.51 2.64 16.29 
11.00 7.61 2.72 16.37 
11.10 7.71 2.79 16.45 
11.20 7.81 2.86 16.54 
11.30 7.91 2.94 16.62 
11.40 8.01 3.02 16.70 
11.50 8.11 3.10 16.78 
11.60 8.21 3.18 16.86 
11.70 8.31 3.26 16.94 
11.80 8.41 3.34 17.03 
11.90 8.51 3.42 17.11 
12.00 8.61 3.50 17.19 
12.10 8.71 3.59 17.27 
12.20 8.82 3.67 17.35 
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Table 26 (Continued) 

12.30 8.92 3.76 17.43 
12.40 9.02 3.85 17.51 
12.50 9.13 3.93 17.59 
12.60 9.23 4.02 17.67 
12.70 9.33 4.11 17.75 
12.80 9.44 4.21 17.83 
12.90 9.54 4.30 17.91 
13.00 9.65 4.39 18.00 
13.10 9.76 4.48 18.08 
13.20 9.86 4.58 18.16 
13.30 9.97 4.68 18.24 
13.40 10.08 4.77 18.32 
13.50 10.18 4.87 18.40 
13.60 10.29 4.97 18.48 
13.70 10.40 5.07 18.56 
13.80 10.51 5.17 18.64 
13.90 10.61 5.27 18.72 
14.00 10.72 5.37 18.80 
14.10 10.83 5.48 18.87 
14.20 10.94 5.58 18.95 
14.30 11.05 5.69 19.03 
14.40 11.16 5.79 19.11 
14.50 11.27 5.90 19.19 
14.60 11.39 6.01 19.27 
14.70 11.50 6.12 19.35 
14.80 11.61 6.23 19.43 
14.90 11.72 6.34 19.51 
15.00 11.83 6.45 19.59 

CVT measurements are in mm. 

Table 27 Age estimation table for CVT at bregma at the 95% PI 

CVT fit age lower age upper age 
1.20-2.34 1.30 0.90 1.80 

2.61 1.35 0.94 1.88 
2.78 1.42 1.04 1.98 
2.99 1.51 1.10 2.11 
3.20 1.60 1.19 2.24 
3.50 1.74 1.23 2.44 
3.64 1.80 1.24 2.53 
3.89 1.82 1.24 2.56 
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Table 27 (Continued) 

4.21 1.85 1.26 2.60 
4.35 1.87 1.27 2.62 
4.48 1.88 1.28 2.64 
4.73 1.90 1.29 2.67 
4.82 1.91 1.30 2.68 
5.23 1.95 1.32 2.74 
5.39 1.96 1.33 2.76 
5.69 1.99 1.35 2.80 
5.89 2.01 1.37 2.83 
6.02 2.02 1.37 2.85 
6.21 2.04 1.39 2.88 
6.43 2.06 1.40 2.91 
6.59 2.08 1.41 2.93 
6.94 2.11 1.43 2.98 
7.04 2.12 1.44 3.00 
7.32 2.15 1.46 3.03 
7.46 2.17 1.47 3.06 
7.69 2.19 1.48 3.09 
7.84 2.21 1.49 3.12 
7.99 2.22 1.50 3.14 

CVT measurements are in mm. It is not recommended to use this model for age 
predictions. 
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Table 28 Age estimation table for CVT at vertex at the 95% PI 

CVT fit age lower age upper age 
0.25 0.30 0.02 1.16 
0.50 0.43 0.04 1.55 
0.75 0.58 0.07 2.01 
1.00 0.78 0.11 2.56 
1.25 1.01 0.15 3.20 
1.50 1.29 0.21 3.95 
1.75 1.61 0.29 4.80 
2.00 1.98 0.37 5.76 
2.25 2.41 0.48 6.85 
2.50 2.89 0.60 8.06 
2.75 3.44 0.75 9.41 
3.00 4.04 0.91 10.90 
3.25 4.72 1.10 12.54 
3.50 5.46 1.31 14.34 
3.75 6.28 1.54 16.30 
4.00 7.18 1.80 18.43 
4.25 8.16 2.09 20.74 
4.30 8.37 2.16 21.22 

>4.40 8.52 2.20 21.57 
CVT measurements are in mm. Bolded measurements are generated outside of the 
model’s ability and are more unpredictable; they should be used with caution. 
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Table 29 Age estimation table for CVT at vertex radius at the 95% PI 

CVT fit age lower age upper age 
1.34-3.52 3.35 0.612 9.84 

3.76 3.49 0.65 10.17 
3.88 3.83 0.74 10.98 
4.21 4.82 1.03 13.28 
4.27 5.01 1.09 13.70 
4.66 6.27 1.48 16.55 
4.79 6.71 1.62 17.52 
5.10 7.79 1.98 19.87 
5.23 8.25 2.13 20.88 
5.37 8.75 2.31 21.96 
5.86 10.56 2.94 25.82 
5.90 10.71 2.99 26.14 
6.21 11.89 3.42 28.61 
6.30 12.24 3.55 29.34 
6.44 12.78 3.75 30.47 
6.84 14.35 4.33 33.71 
6.92 14.67 4.45 34.37 
7.10 15.39 4.72 35.84 
7.32 16.27 5.06 37.63 
7.48 16.91 5.30 38.94 
7.69 17.76 5.63 40.66 
7.90 18.61 5.97 42.39 
8.03 19.14 6.17 43.45 
8.32 20.33 6.64 45.83 
8.47 20.95 6.89 47.06 
8.69 21.85 7.25 48.87 
8.93 22.84 7.65 50.84 

CVT measurements are in mm. Bolded measurements are generated outside of the 
model’s ability and are more unpredictable; they should be used with caution. 

Table 30 Age estimation table for CVT at lambda at the 95% PI 

CVT fit age lower age upper age 
<1.25 0.42 0.00 3.31 
1.50 0.57 0.00 3.82 
1.75 0.75 0.01 4.39 
2.00 0.96 0.02 5.00 
2.25 1.21 0.04 5.68 
2.50 1.50 0.08 6.39 
2.75 1.72 0.12 6.93 
3.00 1.97 0.17 7.49 
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Table 30 (Continued) 

3.25 2.24 0.23 8.09 
3.50 2.53 0.30 8.72 
3.75 2.85 0.38 9.39 
4.00 3.20 0.49 10.08 
4.25 3.57 0.60 10.81 
4.30 3.64 0.63 10.96 
4.40 3.80 0.68 11.26 
4.50 3.96 0.74 11.57 
4.60 4.13 0.80 11.89 
4.70 4.30 0.86 12.21 
4.80 4.48 0.93 12.53 
4.90 4.66 0.99 12.86 
5.00 4.85 1.07 13.20 
5.10 5.04 1.14 13.54 
5.20 5.24 1.22 13.89 
5.30 5.44 1.30 14.25 
5.40 5.64 1.39 14.61 
5.50 5.85 1.48 14.98 
5.60 6.07 1.57 15.35 
5.70 6.29 1.67 15.73 
5.80 6.52 1.77 16.12 
5.90 6.75 1.88 16.51 
6.00 6.99 1.99 16.91 
6.10 7.23 2.10 17.31 
6.20 7.48 2.22 17.72 
6.30 7.74 2.34 18.14 
6.40 8.00 2.47 18.57 
6.50 8.26 2.60 19.00 
6.60 8.54 2.74 19.43 
6.70 8.81 2.88 19.88 
6.80 9.10 3.02 20.33 
6.90 9.39 3.17 20.79 
7.00 9.68 3.33 21.25 
7.10 9.99 3.49 21.72 
7.20 10.30 3.65 22.20 
7.30 10.61 3.83 22.69 
7.40 10.93 4.00 23.18 
7.50 11.26 4.18 23.68 
7.60 11.59 4.37 24.18 
7.70 11.93 4.56 24.70 
7.80 12.28 4.76 25.22 
7.90 12.64 4.96 25.75 
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Table 30 (Continued) 

8.00 13.00 5.17 26.28 
8.10 13.36 5.38 26.82 
8.20 13.74 5.60 27.37 
8.30 14.12 5.83 27.93 
8.40 14.51 6.06 28.50 
8.50 14.90 6.30 29.07 
8.60 15.31 6.55 29.65 
8.70 15.71 6.80 30.24 
8.80 16.13 7.05 30.83 
8.90 16.56 7.32 31.44 
9.00 16.99 7.59 32.05 
9.10 17.43 7.86 32.67 
9.20 17.87 8.15 33.29 
9.30 18.33 8.44 33.93 
9.40 18.79 8.73 34.57 
9.50 19.26 9.04 35.22 
9.60 19.74 9.35 35.88 
9.70 20.22 9.66 36.55 
9.80 20.71 9.99 37.23 
9.90 21.21 10.32 37.91 
10.00 21.72 10.66 38.60 

CVT measurements are in mm. Bolded measurements are generated outside of the 
model’s ability and are more unpredictable; they should be used with caution. 

Table 31 Age estimation table for CVT at opisthocranion at the 95% PI 

CVT fit age lower age upper age 
<1.5 0.32 0.00 2.31 
1.75 0.51 0.00 3.18 

2 0.78 0.01 4.26 
2.25 1.13 0.03 5.55 
2.5 1.56 0.06 7.08 
2.75 2.10 0.12 8.87 

3 2.74 0.19 10.94 
3.25 3.50 0.30 13.30 

3.5-5.4 3.53 0.30 13.39 
5.5 3.58 0.31 13.53 
5.6 3.73 0.33 13.99 
5.7 3.89 0.36 14.46 
5.8 4.05 0.38 14.94 
5.9 4.21 0.41 15.43 
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6 4.38 0.43 15.93 
6.1 4.55 0.46 16.44 
6.2 4.73 0.49 16.96 
6.3 4.91 0.52 17.49 
6.4 5.10 0.55 18.04 
6.5 5.29 0.58 18.59 
6.6 5.49 0.62 19.16 
6.7 5.69 0.65 19.73 
6.8 5.89 0.69 20.32 
6.9 6.10 0.73 20.92 
7 6.32 0.77 21.54 

7.1 6.54 0.81 22.16 
7.2 6.76 0.85 22.80 
7.3 7.00 0.89 23.45 
7.4 7.23 0.94 24.11 
7.5 7.47 0.98 24.78 
7.6 7.72 1.03 25.46 
7.7 7.97 1.08 26.16 
7.8 8.23 1.13 26.87 
7.9 8.49 1.19 27.60 
8 8.76 1.24 28.33 

8.1 9.03 1.30 29.08 
8.2 9.31 1.35 29.84 
8.3 9.60 1.41 30.62 
8.4 9.89 1.47 31.41 
8.5 10.19 1.54 32.21 
8.6 10.49 1.60 33.02 
8.7 10.80 1.67 33.85 
8.8 11.11 1.74 34.70 
8.9 11.44 1.81 35.55 
9 11.76 1.88 36.42 

9.1 12.10 1.95 37.31 
9.2 12.44 2.03 38.21 
9.3 12.78 2.10 39.12 
9.4 13.13 2.18 40.05 
9.5 13.49 2.27 40.99 
9.6 13.86 2.35 41.95 
9.7 14.23 2.43 42.92 
9.8 14.61 2.52 43.91 
9.9 14.99 2.61 44.91 
10 15.38 2.70 45.92 

10.1 15.78 2.80 46.96 
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Table 31 (Continued) 

10.2 16.19 2.89 48.00 
10.3 16.60 2.99 49.07 
10.4 17.02 3.09 50.15 
10.5 17.44 3.19 51.24 
10.6 17.87 3.30 52.35 
10.7 18.31 3.40 53.48 
10.8 18.76 3.51 54.62 
10.9 19.22 3.63 55.78 
11 19.68 3.74 56.95 

11.1 20.15 3.86 58.14 
CVT measurements are in mm. Bolded measurements are generated outside of the 
model’s ability and are more unpredictable; they should be used with caution. 
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