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Chicken is an important non-mammalian vertebrate model organism for 

biomedical research, especially for vaccine production and the study of embryology and 

development. Chicken is also an important agricultural species and major food source for 

high-quality protein worldwide. In addition, chicken is an important model organism for 

comparative and evolution genomics. Exploitation of this genome as a biomedical model 

is hindered by its incomplete structural and functional annotation. This incomplete 

annotation makes it difficult for researchers to model their functional genomics datasets. 

Improving structural and functional annotation of the chicken genome will allow 

researchers to derive biological meaning from their functional genomics datasets. 

The objectives of this study were to identify proteins expressed in multiple 

chicken tissues, to functionally annotate experimentally confirmed proteins expressed in 



 

 

 

 

different chicken tissues, to quantify and assess the Gene Ontology (GO) annotation 

quality, and to facilitate functional annotation of microarray data.  

The results of this research have proven to be fundamental resource for 

improving the structural and functional annotation of chicken genome. Specifically, 

we have improved the structural annotation of the chicken genome by adding support 

to predicted proteins. In addition, we have improved the functional annotation of the 

chicken genome by assigning useful biological information to proteomics datasets 

and the whole genome chicken array. The Gene Ontology Annotation Quality (GAQ) 

and Array GO Mapper (AGOM) tools developed in this study will sustainably 

continue to facilitate functional modeling of chicken arrays and high-throughput 

experimental datasets from microarray and proteomics studies. The ultimate positive 

impact of these results is to facilitate the field of biomedical research with useful 

information for comparative biology, better understanding of chicken biological 

systems, diseases, drug discovery and eventually development of therapies.  

Keywords: Genome annotation, Gene Ontology, proteomics, GO annotation quality, 

microarray 
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CHAPTER 1 

INTRODUCTION 

Chicken (Gallus gallus) is an important non-mammalian vertebrate model 

organism for biomedical research, especially for vaccine production and the study of 

embryology and development. Chicken is also an important agricultural species and 

major food source for high-quality protein worldwide. Chicken was the first avian 

and the first agricultural animal to have its genome sequenced in 2004. After the 

chicken genome sequence was released scientists started to interpret the raw sequence 

data into useful biological information, a process known as genome annotation. This 

process involves comprehensive genome structural annotation mostly performed 

using automatic tools (ab-initio method) to identify structural elements such as open 

reading frames (ORFs) and their localization, structural description of genes, location 

of regulatory motifs, protein coding regions, characterization of putative protein 

products and other features in the primary genomic sequence. 

The next step after genome structural annotation is functional annotation - a 

process where both biological experiments and in silico analysis are used to attach 

biological information to the identified genomic elements. As a biomedical model 

species, detailed annotation of the chicken genome sequence greatly facilitates 
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comparative genome studies to accelerate the process of finding the causes of human 

diseases, drug discovery and therapies development.  

The chicken genome sequence provides opportunities for combining new 

technologies for functional profiling of genome scale experiments. Proteomics and 

microarray studies (aka: transcriptomics) are among the new technologies currently 

used to realize biological meaning from the chicken genome sequence. However, 

exploitation of this genome as a biomedical model organism is hindered by its poor 

structural and functional annotation because researchers find it difficult to model their 

proteomics and transcriptomics datasets to biological systems. About 42% of the 

chicken proteins that have been predicted by ab initio methods have not been 

confirmed experimentally and therefore, there is no functional information that is 

associated with these proteins. On the other hand, the chicken genome array, which 

enables researchers to simultaneously monitor genome-wide expression profiles, is 

associated with little structural and/or less detailed functional annotation information.  

Our central objective is to improve the structural and functional annotation of 

the chicken genome. In this objective we want to confirm the expression of chicken 

predicted proteins in vivo. In addition we would like to provide researchers with tools 

and biological functional information for modeling their proteomics (proteins) and 

transcriptomics (microarray) datasets. To achieve the central objective we 

implemented the following specific objectives: (1) to identify chicken predicted 

proteins expressed in multiple tissues; (2) to use Gene Ontology (GO) standards to 

functionally annotate experimentally confirmed proteins that were expressed in 

multiple chicken tissues; (3) to develop a tool that will help assess and track 
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improvement of the functional annotation quality in chicken and other eukaryotes; 

and (4) to facilitate functional annotation of chicken microarray data by developing 

GO mapping tool(s). 
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CHAPTER 2 

REVIEW OF PERTINENT LITERATURE 

Importance of chicken 

Chicken (Gallus gallus) is an important agricultural species and major food 

source for high-quality protein worldwide. In the United States alone, more than 9 

billion chicken are produced for meat yearly with a value exceeding $20 billion [1]. 

Chicken was the first farm animal and non-mammalian vertebrate to have its genome 

completely sequenced in 2004 [2].  The completion of this genome has raised the 

status of chicken as an important animal model for biomedical research [3] especially 

in the fields of evolution [4,5], immunology [6], oncology [7-9], virology [10-13], 

embryology and development [14,15], as well as comparative genomics[16-19]. 

Genome structural annotation 

The chicken genome contains 1.2 billion base pairs of DNA divided into 40 

chromosomes of different lengths, designated as large macro-chromosomes (Chr. 1– 

5), intermediate chromosomes (Chr. 6–10) and micro-chromosomes (Chr. 11–38) as 

well as sex chromosomes Z and W [20,21]. Unlike mammals, the chicken males are 

homogametic (Z/Z), while the females are heterogametic (Z/W). After genome 

sequencing and assembly processes are completed, researchers start to convert the 
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sequence into a meaningful information that relates to the biology of the organism 

[22]. The first phase in the genome annotation is known as structural annotation. 

This process uses gene prediction tools to identify the open reading frames (ORFs) 

and their localization [23,24], gene structure [25,26], protein coding genes [27,28] 

and regulatory motifs [29].  

The sequencing of the chicken genome, in combination with advances in 

computing technology, has resulted in rapid advances in discovery of genes and other 

functional elements. The structural annotation statistics of the current assembly of the 

chicken genome (http://www.ncbi.nlm.nih.gov/, Build 2.1, 03/14/2009) estimates 

19,936 genes that encode nearly 34,209 proteins. Complete structural annotation is an 

essential tool as chicken researchers investigate the biology of this potent biomedical 

model organism. Improved genome annotation has been realized in other organisms 

through a combination of comparative and ab initio gene prediction algorithms [27]. 

While structural annotation identifies the functional elements, it should be 

distinguished from the identifying functions of the elements (refer section 2.3). 

Genome structural annotation by proteomics approach 

Incomplete structural annotation of the chicken genome poses a challenge to 

researchers who want to derive value from their experimental datasets. Currently, 

42% of chicken gene products are based on computational predictions which lack any 

experimental information (http://www.ncbi.nlm.nih.gov/; 03/14/2009). These gene 

products need to be experimentally confirmed through a series of functional genomics 

experiments such as proteomics. Mass spectrometry is a technology in the field of 
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proteomics that produces tandem mass spectra (MS/MS) to enable scientists to 

identify and quantify the entire complement of proteins (proteome) in a complex 

biological sample [27,30,31]. Traditionally, proteomics relies on matching peptide 

sequences from a protein database with experimental MS/MS spectra to identify 

proteins. Given MS/MS spectra, programs such as SEQUEST can identify the peptide 

which produced it by comparing the experimental MS/MS spectra (found in sample) 

against theoretical spectra (in-silico generated) and return best matches in form of 

amino acid sequences [23,32,33].   

High-throughput expression proteomics for rapid experimental structural 

annotation have been demonstrated in a study which involved multiple chicken 

tissues [34]. A limitation of proteomics is that it can only detect peptides of proteins 

present in database. If the protein is not in the searched database, it will never be 

identified, despite its presence in the sample. This is a significant problem with the 

newly sequenced or poorly annotated genomes which have just a fraction of known or 

predicted proteins in the public databases. However, biological modeling of high-

throughput datasets requires that we know all the components in the complex 

biological system of an organism. This can be partially achieved through comparative 

genome analysis between poor and better annotated genomes.  

At the genomic level, tandem mass spectrometry (MS/MS) allows researchers 

to experimentally validate computationally predicted open reading frames in a high-

throughput manner [31,35,36] as well as making novel gene predictions [23,37]. This 

procedure is known as proteogenomics [31,38]. Proteogenomics matches 
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experimental MS/MS spectra against genomic sequences [30,35,39] and can even 

involve multiple genome alignments to make gene predictions [23,37]. Searching or 

aligning a whole eukaryotic genome such as that of chicken (1.2 Gb) for novel gene 

predictions require faster tools such as BLAT [40]. BLAT is a BLAST-Like 

Alignment Tool which has been observed to be more accurate and 500 times faster 

than popular existing tools for mRNA/DNA alignments and 50 times faster for 

protein alignments [40]. BLAT uses an index of all non-overlapping K-mers in the 

genome and this can fit inside the RAM of normal computers. 

Genome functional annotation 

The function of genomic elements is determined through a process known as 

functional annotation. In this process the gene or gene products are linked with 

functional information using Gene Ontology (GO) standards [41]. Gene ontology 

contains standardized vocabularies of terms that are organized into three categories 

representing molecular functions, biological processes, and cellular component 

[41,42] Basically, molecular function terms describe the biochemical activity 

performed by a gene product (e.g. kinase activity) whereas biological process terms 

describe the ordered assembly of more than one molecular function (e.g. limb 

development) and cellular component terms describe the cellular location (e.g. 

nucleus). It is good to note that GO annotations are always based on the 

characteristics of gene products, even though it may be the gene that is cited in the 

annotation [43]. 
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Various groups such as AgBase [44] and UniProtKB [45] continuously 

annotate chicken gene products with GO. This helps researchers to access already 

existing functional information. Other groups such as NetAffx [46] annotates the gene 

products linked to probesets in Affymetrix chicken arrays. The current statistics of 

chicken GO annotation (http://www.geneontology.org/GO.current.annotations.shtml; 

03/14/2009) shows that there are 64,093 GO annotations associated with 16,353 

proteins. The fraction of proteins associated with GO is nearly 48% (chicken build 

2.1) and over 98% of these annotations are inferred from electronic annotation (IEA). 

The IEA annotations are obtained using InterPro tool and InterProScan software [47] 

which searches the protein sequences to identify signatures from the InterPro member 

databases i.e. Pfam [48], PROSITE [49], PRINTS [50], ProDom [51], SMART [52], 

TIGRFAMs [53], PIRSF [54,55], SUPERFAMILY [56], Gene3D [57], and 

PANTHER [54]. By using InterProScan software, the AgBase [44] biocurators have 

been able to provide a breadth of GO annotation coverage for a poorly annotated 

chicken genome. It should be noted the most of IEA annotations represent general 

functions of a gene product in contrast with the direct experimental-based annotation 

of functional literature which provides detailed, organism specific functional 

annotation [45,58]. So far, less than 1% of chicken GO annotations are based on 

direct experimental evidence.  

Functional annotation of gene products by orthology method 

In comparative genomics the transfer of functional annotations from one 

species to the other is one of the main applications of comparative genomics 
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[34,59,60]. The key concern is that the annotators need to know where the functions 

are transferred from. Orthology is currently the most logical way of assigning 

functions to gene products when there is no direct experimental evidence available 

[34]. The term orthology describes the evolutionary relationship between homologous 

genes in different species that have been derived from a single gene in the last 

common ancestor [61], and since orthologous pairs have minimum level of 

evolutionary separation between them, they are more likely to retain a common 

function [62,63]. Orthology is different from the paralogy - the latter describes the 

relationship between two genes that arose through duplication within the same 

species and may not have the same function [61]. After speciation, if an ortholog 

undergoes duplication in one species, the resulting orthologs are referred to as 

inparalogs [63,64], indicating paralogs that arose through a gene duplication event 

after speciation. Paralogs are also commonly referred to as outparalogs especially in 

cases where the inparalog term is used. [63,65]. Unlike outparalogs, inparalogs can 

form a group of genes that together are orthologous to a gene in another species. 

There are various tools for ortholog prediction [66-68], ortholog databases and 

search tools [60,65,67]. Software such as Biomart [69] can be used to search 

orthologs for a given set of gene products and also retrieve the GO annotations for the 

orthologs. Biocurators at AgBase [44] continuously use orthology to annotate chicken 

predicted proteins. These predicted proteins are normally not assigned any GO during 

the assembly process because they are not experimentally confirmed but have only 

been predicted by ab initio methods. However, transferring of functional information 
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should be done with caution because, for most species most of their GO annotations 

are from electronic prediction. The most reliable GO annotations to be transferred are 

the ones associated with experimental evidence codes, a method always adopted in a 

previous study [34] by AgBase biocurators [44]. 

The quality of GO annotation 

Gene Ontology (GO) vocabularies [41,42] have been widely used in various 

species to facilitate proteome [70,71]  and microarray [72-75] data interpretation. The 

statistics of GO annotation as submitted by various GO consortium members show 

great variation in terms of the amount of information represented by specific projects 

(http://www.geneontology.org/GO.current.annotations.shtml). As reported in a 

previous study, looking only at the volume of annotations does not directly help 

researchers to correlate the amount and quality of GO annotations especially between 

different sets of gene products in different species [76]. One common characteristic 

feature of all annotations is the large fraction of electronic annotations. However, 

proportionally, some species such as human and mouse have more experimental and 

manually checked computational annotations than, for example, chicken. 

Experimental GO annotations which are obtained from literature by skilled biologists 

generates high-quality reliable information that is more accurate, reliable and detailed 

than electronic annotation [45,58]. Nevertheless, reading literature is very time 

consuming and more labor-intensive. Computational GO annotation continues to be 

the most rigorous method for annotation of the high-throughput data generated from 

microarray and proteomics studies. 
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Efforts to maintain the quality of available annotations is extremely important. 

Some quality measures that have been used in GO annotation are mainly based on 

maintaining the consistency and accuracy of annotation [45,58,77]. These measures 

are employed to minimize variability in annotation between curators, make sure all 

the necessary fields are complete in an annotation, check for data integrity and 

updating annotations based on a combination of evidence codes. Frequently, evidence 

codes linked with annotations has been used to measure the quality of annotation. For 

example, some groups replaces annotations with IEA evidence code with non-IEA 

based annotation if the term is in the same ontology [77].  

Integration of features of GO annotation such as the number of annotations 

(breadth), the level of annotation detail (depth) and the evidence for the annotation 

(quality) has been recommended as a more precise way of assessing the quality of GO 

annotation [76], and at the same time monitoring the quality  of GO over time. In this 

method the evidence codes are ranked based on whether they represent direct 

experimental evidence or indirect evidence. For example, direct experimental 

evidence codes such as IDA, IMP, IGI, IPI and EXP shown on Table 2.1 can be given 

higher ranks than the computational evidence codes because the functional 

information associated with these codes has been proven by specific direct 

experiments. Consideration of the depth of GO annotation will give a direct guide to 

researchers because GO is organized as a hierarchy of terms in a Directed Acyclic 

Graph (DAG) [78]. In this structure more general term such as ‘growth’ lead to more 

specific terms such as ‘organ growth’, ‘heart growth’, and ‘cardiac muscle tissue 
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growth’, allowing gene products to be annotated to any level of specificity as the 

biological understanding allows. 

Functional annotation of chicken array 

Microarray technologies such as cDNA [79,80] and oligonucleotide probe 

[81] arrays have emerged as important tools in functional genomics for global 

analysis of gene expression and biological systems in chicken. A number of 

microarray screening platforms have been developed to study differential gene 

expression occurring in chicken as a response to different challenges and stimuli 

[6,82]. In the chicken research community,  microarrays are used for a wide range of 

applications including not only gene expression analysis [83,84] but also exon 

expression analysis [85-87], novel transcript discovery [88], genotyping [89,90], 

resequencing [91,92] and in identification of transcription factors along with their 

respective binding sites [93]. 

The common problem in microarray data analysis is biological interpretation 

of the results. The Gene Ontology (GO) [41,42,58] has been the de facto functional 

annotation method for array modeling [73-75,94]. In GO, the proteins are the one 

annotated to either molecular function, biological process or cellular component but 

the annotations are assigned to the respective gene that codes the protein being 

annotated. Most microarrays generated by the chicken research community are 

deposited in the Gene Expression Omnibus (GEO) at the National Center for 

Biotechnology Information (NCBI) [95]. These microarray data can easily be 

browsed, queried and retrieved for further studies [96]. Most of the information 
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represented on the chicken microarray platform at GEO is insufficient for biological 

interpretation of any results obtained from microarray studies. One of the reasons for 

this is that chicken microarrays are mostly developed from cDNA and ESTs. These 

cDNA and ESTs have not been structurally linked to protein accessions that can be 

annotated to GO. Of all the chicken arrays, the Affymetrix GenChip chicken genome 

array has been annotated to GO [46]. 

The Affymetrix GeneChip chicken genome array has been extensively used in 

different studies such as gene expression profiling in chicken and avian viruses 

[84,97-99]. The current array (NetAffx build 29) contains coverage of 37,703 

probesets for spotting 32,774 transcripts corresponding to nearly 28,000 chicken 

genes. In addition, it contains 689 probesets for detecting 684 transcripts from 17 

avian viruses. NetAffx [46] links probesets on Affymetrix GenChip microarrays to 

GO and has developed GO mining tool to give a picture of GO graph relationships 

[94]. However, these annotations are far from complete because they lack important 

features such as references used to make functional assertions (See: 

http://www.affymetrix.com/support/support_result.affx). The annotations of this 

array, if improved, can facilitate annotation of other arrays and even experimental 

microarray datasets because of its comprehensive coverage of transcripts, genes and 

GO information. In addition, this array is linked to cross reference (over six different 

types of gene identifiers and protein accessions) that can be used to facilitate mapping 

to similar accessions from other chicken arrays and experimental datasets. Identifiers 

that are represented and may be used for mapping are Probe set ID linked to GenBank 
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mRNA, Gene Symbol, UniGene ID, Entrez Gene ID, Ensembl gene ID, SwissProt 

accession, RefSeq Protein ID, RefSeq Transcript ID and InterPro, all in separate 

columns. Improving the amount and quality of GO annotation linked to gene products 

represented on the Affymetrix GenChip chicken genome array may form a more 

comprehensive database for chicken microarray structural and functional annotation. 
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Table 2.1 The current evidence codes approved by the Gene Ontology consortium 

Types of evidence codes Description 
Experimental Evidence Codes 

1. EXP  Inferred from Experiment 
2. IDA  Inferred from Direct Assay 
3. IPI  Inferred from Physical Interaction 
4. IMP  Inferred from Mutant Phenotype 
5. IGI  Inferred from Genetic Interaction 
6. IEP  Inferred from Expression Pattern 

Computational Analysis Evidence Codes 
7. ISS  Inferred from Sequence or Structural Similarity 
8. ISO Inferred from Sequence Orthology 
9. ISA  Inferred from Sequence Alignment 
10. ISM Inferred from Sequence Model 
11. IGC  Inferred from Genomic Context 
12. RCA  inferred from Reviewed Computational Analysis 

Author Statement Evidence Codes 
13. TAS  Traceable Author Statement 
14. NAS  Non-traceable Author Statement 

Curator Statement Evidence Codes 
15. IC Inferred by Curator 
16. ND No biological Data available 

Automatically-assigned Evidence Codes 
17. IEA Inferred from Electronic Annotation 

Obsolete Evidence Codes 
18. NR Not Recorded 

Source: http://www.geneontology.org/GO.evidence.shtml 
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CHAPTER 3 

EXPERIMENTAL CONFIRMATION AND FUNCTIONAL ANNOTATION 

OF PREDICTED PROTEINS IN THE 

CHICKEN GENOME1 

1 Reprint from T.J. Buza, F.M. McCarthy, and S.C. Burgess. 2007. Experimental-confirmation and 
functional-annotation of predicted proteins in the chicken genome. BMC Genomics 8: 42. This article 
is available from: http://www.biomedcentral.com/1471-2164/8/425
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Abstract 
Background: The chicken genome was sequenced because of its phylogenetic position as a non-
mammalian vertebrate, its use as a biomedical model especially to study embryology and 
development, its role as a source of human disease organisms and its importance as the major 
source of animal derived food protein. However, genomic sequence data is, in itself, of limited 
value; generally it is not equivalent to understanding biological function. The benefit of having a 
genome sequence is that it provides a basis for functional genomics. However, the sequence data 
currently available is poorly structurally and functionally annotated and many genes do not have 
standard nomenclature assigned. 

Results: We analysed eight chicken tissues and improved the chicken genome structural 
annotation by providing experimental support for the in vivo expression of 7,809 computationally 
predicted proteins, including 30 chicken proteins that were only electronically predicted or 
hypothetical translations in human. To improve functional annotation (based on Gene Ontology), 
we mapped these identified proteins to their human and mouse orthologs and used this orthology 
to transfer Gene Ontology (GO) functional annotations to the chicken proteins. The 8,213 
orthology-based GO annotations that we produced represent an 8% increase in currently available 
chicken GO annotations. Orthologous chicken products were also assigned standardized 
nomenclature based on current chicken nomenclature guidelines. 

Conclusion: We demonstrate the utility of high-throughput expression proteomics for rapid 
experimental structural annotation of a newly sequenced eukaryote genome. These 
experimentally-supported predicted proteins were further annotated by assigning the proteins 
with standardized nomenclature and functional annotation. This method is widely applicable to a 
diverse range of species. Moreover, information from one genome can be used to improve the 
annotation of other genomes and inform gene prediction algorithms. 
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Background 
After genome sequencing, genome annotation is critical to 
denote and demarcate the functional elements in the 
genome (structural annotation) and to link these genomic 
elements to biological function (functional annotation). 
Structural annotation of newly sequenced genomes 
begins during the final stages of genome assembly with 
electronic prediction of open reading frames (ORFs) [1-
3]. Sequencing consortiums typically release these pre-
dicted genes and their translated products into public 
databases, where they account for the majority of data for 
the newly sequenced species [4,5] and are critical for high-
throughput wet lab functional genomics (microarray and 
proteomics) experiments [4,6]. The NCBI Non-Redun-
dant Protein Database (NRPD) and the UniProt Archive 
(UniParc) do not directly provide functional annotation 
for these predicted ORFs. The highly curated UniProt 
Knowledgebase (UniProtKB) database [7] displays func-
tional annotation from the European Bioinformatics 
Institute Gene Ontology Annotation (EBI-GOA) Project 
[8], but does not include predicted gene products until 
there is experimental evidence for their in vivo expression. 
Thus, despite being critical for functional genomics exper-
iments, most data from a newly sequenced genome does 
not have even preliminary functional annotation. This 
problem is exacerbated as other public resources such as 
Ensembl [9]. Entrez Gene [10] and Affymetrix Netaffx 
[11] use data from UniProtKB or the EBI-GOA Project as 
their functional annotation source. 

GO has become the de facto standard for functional anno-
tation [12]. Annotations are attributed to sources (e.g. a 
PubMed ID) and to the type of evidence used to make the 
association (indicated by evidence codes; Table 1). Many 
of the evidence codes describe direct species-specific 
experimental evidence such as "inferred from direct assay" 
(IDA), "physical interaction" (IPI), "mutant phenotype" 
(IMP) or "genetic interaction" (IGI). Other evidence codes 
refer to indirect lines of evidence such as functional motifs 
and structural or sequence similarity. However, by defini-
tion, there can be no direct experimental evidence availa-
ble for determining the function of predicted gene 
products. Instead, adding GO annotations based upon 
indirect evidence such as "inferred from electronic anno-
tation" (IEA) or "inferred from structural/sequence simi-
larity" (ISS) provide the first significant and valuable 
increases in the breadth of annotations for functional 
modelling. 

Although most GO annotations for newly sequenced spe-
cies are the IEA-based annotations provided by the EBI-
GOA Project [8], these IEA annotations do not initially 
include the gene products predicted during sequence 
assembly. Moreover, while IEA annotations are based on 
functional motifs and sequences, the most rigorous way 
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of assigning function when there is no direct experimental 
evidence available, is based on strict orthology. Orthology 
is one of the central concepts of comparative genome 
analysis. By definition orthologs are genes or proteins in 
two or more species that share significant similarity, and 
are thought to have diverged from a common ancestral 
gene that existed in their last common ancestor [13-17]. 
Since orthologous pairs have minimum level of evolu-
tionary separation between them, they are more likely to 
retain a common function. Determination of orthology 
relations assists knowledge transfer between species and 
can be used to improve both structural and functional 
annotation in organisms that have less annotation. 

A number of ortholog prediction methods and search 
tools are available [9,18-20]. However, the number of 
proteins from one species that is considered to be part of 
the same orthologous group varies from one method to 
another due to different algorithms employed and species 
included in the methods [14]. For example, Homologene 
[21] does orthology analyses by comparing protein 
sequences using the BLASTP tool and then matching the 
sequences using phylogenetic trees built from sequence 
similarity and synteny, where possible. Ensembl [9] first 
uses BLASTP and the Smith-Waterman algorithm to iden-
tify putative orthologs by reciprocal BLAST analysis and 
synteny evidence. Inparanoid [17] is based on pairwise 
similarity scores and it detects best-best hits between 
sequences from two different species to form the main 
orthologous group to which other sequences (in-para-
logs) are added only if they are closely related. Treefam 
(Tree families) [18] uses phylogeny based on Ensembl 
datasets and clusters genes (and corresponding gene prod-
ucts) from multiple organisms into groups that are all 
descended from a single ancestor gene. In order to obtain 
good coverage and reliable predicted orthologs, various 
methods should be integrated [13]. 

Comparative genome analysis also requires standardized 
nomenclature. By identifying orthologs of experimentally 
supported proteins, standardized nomenclature can be 
added. Committees for standardized nomenclature exist 
for human and mouse gene and gene products [22] and 
chicken researchers have followed suit [23] and will use 
human nomenclature for orthologous chicken genes. 

In this work we analysed nine chicken tissues using a 
three-stage combined high throughput proteomics and 
computational biology approach to derive "expressed 
protein sequence tags" (ePSTs) to improve structural 
annotation by experimentally supporting the in vivo 
expression of computationally predicted chicken proteins 
[24]. We then used orthology to add standardized gene 
nomenclature and GO annotations (by transferring func-
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Table 1: Gene Ontology evidence codes 

Code Description Example 

Direct experimental evidence codes 
IDA Inferred from Direct Assay enzyme assays 

in vitro reconstitution 
immunofluorescence 
cell fractionation 
physical interaction/binding assay 

IGI Inferred from Genetic Interaction "traditional" genetic interactions such as suppressors, synthetic lethals, etc. 
functional complementation 
rescue experiments 
inference about one gene drawn from the phenotype of a mutation in a 
different gene 

IMP Inferred from Mutant Phenotype any gene mutation/knockout 
overexpression/ectopic expression of wild-type or mutant genes 
anti-sense experiments 
RNAi experiments 
specific protein inhibitors 
polymorphism or allelic variation 

IPI Inferred from Physical Interaction 2-hybrid interactions 
co-purification 
co-immunoprecipitation 
ion/protein binding experiments 

IEP Inferred from Expression Pattern transcript levels (e.g. Northerns, microarray data) 
protein levels (e.g. Western blots) 

Indirect evidence codes 

NAS Non-traceable Author Statement Database entries that don't cite a paper 
TAS Traceable Author Statement original experiments are traceable through that article 
IC Inferred by Curator inferred by a curator from other GO annotations 
IGC Inferred from Genomic Context operon structure 

syntenic regions 
pathway analysis 
genome-scale analysis of processes 

NR Not Recorded used for annotations done before curators began tracking evidence types, 
not used for new annotations 

ND No biological Data available "unknown" molecular function, biological process, cellular component 
IEA Inferred from Electronic Annotation "hits" in sequence similarity searches, if they have not been reviewed by 

curators; transferred from database records, if not reviewed by curators 
ISS Inferred from Sequence or Structural sequence similarity (homologue of/most closely related to) 

Similarity 
recognized domains 
structural similarity 
Southern blotting 
protein features, predicted or observed (e.g. hydrophobicity, sequence 
composition) 

RCA Inferred from Reviewed Computational predictions based on large-scale experiments (e.g. genome-wide two-hybrid) 
Analysis 

predictions based on integration of large-scale datasets of several types 
text-based computation (e.g. text mining)

tional annotations based on direct experimental evidence 
for corresponding human and mouse orthologs). 

Results 
Identification of predicted proteins 
In total, we identified 7,809 proteins from the analyzed 
tissues (see additional file 1), corresponding to 51% of the 

chicken predicted proteins in NCBI (01/08/2007). In 
doing so, we also obtained data about the tissue expres-
sion patterns of these proteins (Figure 1A). By setting P  
0.05 as a threshold for peptide identification we were able 
to identify 48,583 peptides that had scores above the 
threshold in the real database and 438 in the reversed 
database, giving a peptide false discovery rate (FDR) of 

Page 3 of 10 
(page number not for citation purposes)28 

http://www.biomedcentral.com/1471-2164/8/425


 

  

 

 

 

 

 

  

   

  

 
  

 

 

Chicken predicted proteins identified from different tissues

BMC Genomics 2007, 8:425 http://www.biomedcentral.com/1471-2164/8/425 

A 

6000 

Tissue specific proteins 
5000 

Proteins identified in 
other tissues 

4000 

3000 

2000 

1000 

0 

Tissue type 

B 
1% 0%4% (61) (2) 0% 

7% (0) 
(561) 

(313) 

14% 
(1,073) 

48% 
(3,779) 

26% 
(2,020) 

In one tissue In two tissues In three tissues In four tissues 
In five tissues In six tissues In seven tissues In all eight tissues 

Figure 1 
Chicken predicted proteins identified from different 
tissues. Proteomic based analysis was used to demonstrate 
the in vivo expression of electronically predicted chicken pro-
teins. (A) The number of predicted chicken proteins identi-
fied from each tissue, with the proportion of proteins that 
were identified in more than one tissue indicated. (B) The 
majority of proteins were identified in more than one tissue. 
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0.9% on the real database. The protein FDR was 1%, 
equivalent to 78 proteins from this dataset. This FDR is 
better than recently reported rates [25] and although 
4,567 (58%) of the protein identifications in this study 
were based on single-peptide matches, the low FDR pro-
vides a high degree of confidence in these identifications. 
In other studies, nearly 98% of proteins identified by a 
single peptide match have been predicted to be correctly 
identified [26]. Moreover, 44% of the single-peptide 
matches were identified independently in more than one 
tissue, providing further evidence for their in vivo expres-
sion. Interestingly, we identified 30 proteins that were 
only electronically predicted or hypothetical translations 
in human. 

Not surprisingly, more predicted proteins were identified 
by mass spectrometry when Differential Detergent Frac-
tionation (DDF) was used as the method for protein iso-
lation, as previously reported [27]. This means that 
muscle and brain tissues, two tissues which would nor-
mally be expected to have the highest number of identi-
fied proteins, had the fewest predicted proteins (61 and 
36, respectively). We found that 52% of the identified 
proteins were expressed in more than one tissue (Figure 
1B), and their independent identification in multiple tis-
sues lends validity to their in vivo expression in chicken. 
The protein identification and mass spectrometry data has 
been submitted to the PRoteomic IDEntifications data-
base (PRIDE; [28]), accession numbers 1621–1626, 1654 
& 1655. 

ID mapping 
One of the most time consuming tasks in high-through-
put experiments is navigating among different database 
identifiers. To assist researchers with their data analysis 
and facilitate data sharing we mapped all identified pro-
teins to UniParc, IPI (International Protein Index), Entrez 
Gene and Ensembl identifiers (see additional file 2). Only 
80% of the identified proteins were mapped to Ensembl 
IDs. This may be because Ensembl has a different gene 
prediction method [9] to that of NCBI and not all of the 
NCBI predicted proteins are represented in Ensembl. 

Ortholog identification 
We identified human or mouse orthologs for 77% 
(6,008) of the identified chicken predicted proteins (Fig-
ure 2A) and 86% of these orthologs are predicted by more 
than one ortholog prediction method (Figure 2B). Since 
each of these tools use different methods for ortholog pre-
diction, orthologs predicted by more than one method are 
more likely to be accurately predicted. 

Standardized nomenclature 
The use of standardized nomenclature facilitates compar-
ative biology and aids modelling of functional genomics 
data. We assigned 5,064 (65%) chicken predicted proteins 
with HGNC (Human Genome Organization (HUGO) 
Gene Nomenclature Committee) approved gene symbols 
and names based on their human or mouse orthologs (see 
additional file 3). Although it has been agreed to base 
chicken gene nomenclature on human nomenclature 
guidelines [23] it is only relatively recently that there has 
been a concerted effort to provide standardized nomen-
clature for chicken genes, and the majority of chicken 
gene products are not named according to standardized 
nomenclature guidelines. We have assigned standardized 
nomenclature to chicken genes on a large scale as part of 
a high-throughput experimental annotation effort. 
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Figure 3 
Overview of cellular component transferred to 
orthologous chicken predicted proteins. The GO anno-
tations are summarized to broad terms of cellular compo-
nent. These GO annotations are publicly available via the 
AgBase database [4]. 

Discussion 
Here we demonstrate a combined approach to provide 
experimental-based structural annotations and functional 

Figure 2 annotations based on orthology. The workflow we have 
Chicken – human/mouse orthologs. (A) The number of 
identified predicted proteins that had either human or mouse 

14001:1 orthologs. (B) Distribution of orthologs identified by dif-
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ferent orthology prediction methods. The 4 most commonly 
used ortholog prediction tools are Homologene, Ensembl, 
InParanoid and Treefam. Human/mouse orthologs were 
identified for 77% of the identified chicken proteins (see 

Functional Annotation 
To functionally annotate the predicted proteins we 
mapped them to the GO annotations for human and 
mouse orthologs that are based on direct experimental 
evidence codes (Table 1). We GO annotated 1,651 (21%) 
chicken predicted proteins with 8,213 associations. These 
GO annotations are summarized based on cellular com-
ponent (Figure 3), molecular function (Figure 4) and bio-
logical process (Figure 5). These GO annotations 
represent an increase of 8% over the current chicken GO 
annotations (EBI-GOA, 04/25/2007) and a doubling of 
chicken non-IEA annotations. These GO annotations are 
publicly available via the AgBase database [5] and will 
enter the pipeline to be submitted to the EBI-GOA Project. 

additional file 3). 

Molecular function 

Figure 4 
Overview of molecular function transferred to 
orthologous chicken predicted proteins. The GO anno-
tations are summarized to broad terms of molecular func-
tion. These GO annotations are publicly available via the 
AgBase database [4]. 
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Figure 5 
Overview of biological processes transferred to 
orthologous chicken predicted proteins. The GO anno-
tations are summarized to broad terms of biological proc-
esses. These GO annotations are publicly available via the 
AgBase database [4]. 
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developed relies on using proteomics to survey a range of 
tissues from the species of interest. Newer structural anno-
tation pipelines include the use of ESTs and mRNA in 
their computational models. We are proposing an analo-
gous method that would include experimental support at 
the protein level while providing information that can be 
used to improve structural annotation in the species being 
studied, provide information to improve annotation in 
other species and be used to improve open reading frame 
prediction algorithms. In addition, providing information 
about tissue specificity and preliminary functional infor-
mation based on sequence analysis will facilitate analysis 
of future functional genomics studies. 

The chicken genome was sequenced because of its impor-
tance as a non-mammalian vertebrate model, its use as a 
biomedical model to study embryology and [29,30] 
development and its agricultural importance. A major 
step that follows after genome sequencing is structural 
and functional annotation (denoting and demarcating 
the functional elements in the genome and link these 
genomic elements to biological function, respectively). 
When we began the work described in this manuscript 
only 53% of chicken proteins were known to be expressed 
in vivo, with the remainder being electronically predicted 
using in silico methods. Moreover, only 52% of chicken 
gene products had any GO annotations and, although 
genes predicted during genome assembly may be the bulk 
of the data for a newly sequenced species, these predicted 
gene products are not automatically assigned any GO 
annotation. 

http://www.biomedcentral.com/1471-2164/8/425 

The parameters we have used in this study provide strong 
support for protein expression in vivo. In particular, the 
parameter DeltaCn is a measure of specificity of the match 
within the database used and a DeltaCn value 0.1 ensures 
that a peptide is distinctly different from other peptides 
within the same database. However, a single peptide 
match to a predicted protein does not necessarily provide 
evidence that the annotation for the entire open reading 
frame is accurate; this can only be confirmed by accumu-
lating more mass spectra data and accounting for the 
detectable peptides within the genome [31]. While some 
of the predicted proteins we identified were identified on 
the basis of a single peptide, 44% of these proteins were 
expressed in more than one tissue, providing additional 
evidence for their in vivo expression. In a typical proteom-
ics experiment 20–67%-of proteins are identified by a sin-
gle peptide match [26,32,33]. Calculation of false 
discovery rate has been used to validate peptide or pro-
teins identifications [32,34-37], including proteins identi-
fied by a single peptide match. In one study, 90% of the 
proteins identified by a single peptide were validated by 
immunoassay detection [33]. 

By analysis of multiple tissues we maximize the number 
of predicted proteins identified and provide tissue expres-
sion data for these identified proteins. Also, identifying 
predicted proteins in more than one experiment (52% of 
the chicken proteins identified were detected in more than 
one tissue) provides additional confidence that the pre-
dicted protein is expressed in vivo. In addition, 30 proteins 
were only electronically predicted or hypothetical transla-
tions in human. Identifying these proteins in chicken is 
additional information to support, not only the expres-
sion of these proteins in chicken but also in human based 
on orthology. 

The least number of proteins were identified from the 
muscle and brain tissues. However, this does not necessar-
ily reflect the biological complexity of these tissues but is 
more likely a reflection of the different protein extraction 
method used for these two tissues and amount of sample 
analyzed. 

In addition to providing experimental support for the in 
vivo expression of chicken predicted proteins, we used 
strict 1:1 orthology with human and mouse genes to pro-
vide the identified proteins with standardized gene 
nomenclature based on established nomenclature guide-
lines and functional annotations based on the best avail-
able data. Since by definition predicted proteins have no 
direct experimental evidence, assignation of GO annota-
tion for these proteins can be done using either IEA or ISS. 
While IEA is provided for a large range of organisms by the 
EBI-GOA Project, this annotation effort does not include 
predicted proteins and IEA annotations tend to be broad 
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descriptions of function (e.g. "protein binding"). The 
most rigorous way to assign function in the absence of 
direct experimental evidence is by strict orthology. 

Orthologs are genes in different species that evolved from 
a common ancestral gene by speciation. Orthologs are, by 
definition, more likely to share functional similarity [38] 
and orthology can be used to reliably infer function to 
their co-orthologs. We determined chicken orthologous 
genes that pair with human and mouse genes. Since there 
is no a 'gold standard' method for orthologs identification 
[14], we integrated different published orthology identifi-
cation methods that could possibly increase the breadth 
of orthologs identified. We were able to identify human or 
mouse orthologs for 77% of the identified chicken pro-
teins. This figure, however, is better than the number that 
could have been obtained when using only one method 
(see additional file 3). For example from the total number 
of identified chicken predicted proteins (7,809), only 
71%, 57%, 57% and 23% could have been identified by 
Homologene, Inparanoid, Ensembl and Treefam, respec-
tively. Each of these methods use different procedures and 
orthologs identified by more than one method have been 
reported to be more consistent and reliable [14]. 

In addition to the experimentally supported predicted 
proteins that have human or mouse orthologs, there are a 
further 1,780 predicted proteins that we identified in this 
study. We are in the process of providing GO functional 
annotation for these proteins based on sequence similar-
ity to other GO annotated gene products and functional 
motifs and domains and this information will be also be 
made publicly available. 

Standardized nomenclature is becoming increasingly 
important with the large amounts of data released by 
sequencing projects, gene expression microarrays and pro-
teomics. This information will facilitate comparative and 
functional genomics studies in both avians and mam-
mals. Moreover, assigning functional annotation based 
on orthology is more robust than using sequence similar-
ity alone [14]. This is because the higher level of func-
tional conservation between orthologous proteins makes 
orthology highly relevant for protein function prediction. 
Thus our 8% increase in chicken GO annotated proteins 
is a significant improvement. 

Conclusion 
We demonstrate the value of proteomics to experimen-
tally support the in-vivo expression of electronically pre-
dicted proteins of a newly sequenced genome. We 
assigned standardized nomenclature and GO functional 
annotations for these newly confirmed proteins. The 
approach we have developed facilitates comparative and 
functional genomics studies and may be applied to 
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improve the annotations of a diverse range of newly 
sequenced genomes. 

Methods 
Tissues and protein extraction 
Proteins were isolated from several different tissues in a 
series of experiments. Bursal B cells and stromal cells were 
isolated from bursas collected from five 21-day-old Ross 
508 mixed sex chickens, muscle from the Pectoralis Major 
muscle of six 42 day old female chickens, brain from six 
42 day old female chickens, spleen from eighteen 7- and 
8-day-old advanced intercross Fayoumi and Leghorn 
mixed sex chickens, T cells from peripheral blood mono-
nuclear cells (PBMC) obtained from adult Ross 508 mixed 
sex chickens, serum from 20-day-old Ross 508 male chick-
ens. The disease virus-transformed cell line, MDCC-UA01 
(obtained from Dr M. Parcells, University of Delaware) 
was grown as described [39]. Proteins were isolated using 
Differential Detergent Fractionation (DDF) [27] for each 
of the tissues except muscle and brain. For the muscle and 
brain samples, the samples were immediately frozen at -
80°C. The samples were then allowed to warm to -21°C 
and solubilized in lysis buffer (7 M urea, 2 M thiourea, 4% 
CHAPSO, 8 mM PMSF) with repetitive pulsed sonication 
on ice. Note that the DDF method has been shown to 
yield more proteins than a single step lysis of tissues (as 
used for muscle and brain) [27]. 

Proteomics 
All solubilized proteins were identified by 2-dimensional 
liquid chromatography tandem mass spectrometry (2-
DLCMS/MS) exactly as previously described [24,27]. 
Briefly, protein mixtures are trypsin digested and the pep-
tides desalted prior to strong cation exchange followed by 
reverse phase liquid chromatography coupled directly in 
line with ESI ion trap MS. A flow rate of 3 L/min was 
used for both SCX and RP columns. A salt gradient was 
applied in steps of 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 
57, 64, 71, 79, 90, 110, 300, and 700 mM ammonium 
acetate in 5% ACN, 0.1% formic acid and the resultant 
peptides loaded directly into the sample loop of a 0.18 × 
100 mm BioBasic C18 reverse phase liquid chromatogra-
phy column of a Proteome X workstation (ThermoElec-
tron). The reverse phase gradient used 0.1% formic acid in 
ACN and increased the ACN concentration in a linear gra-
dient from 5% to 30% in 30 min and then 30% to 65% in 
9 min followed by 95% for 5 min and 5% for 15 min. 

A database containing only chicken proteins that have 
been electronically predicted was prepared by parsing the 
chicken RefSeq entries (chicken gene build 2.1, 01/08/ 
2007) for records with an XP prefix (14,676 proteins). The 
XP prefix is used to indicate proteins that have been pre-
dicted using the GNOMON pipeline. Redundancies were 
minimized by using the RefSeq dataset rather than the 
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dataset from the Non-redundant Protein Database. The 
RefSeq database contained 19,500 chicken proteins but 
only the 14,676 GNOMON predicted proteins were used 
in this study. Trypsin digestion was applied in silico to the 
predicted protein database including mass changes due to 
cysteine-carboxyamidomethylation and methionine oxi-
dation. 

The MS2 spectra were then used to search the non-redun-
dant predicted protein database using Cluster 3.2 (Biow-
orks Browser 3.2, Thermo Electron, San Jose, CA). The 
peptide (MS precursor ion) mass tolerance was set to 1.4 
and the groups scan to 1.0. Peptide molecular range was 
set to 600–3500. Only peptides  6 amino acids in length 
that had cross correlation (Xcorr) scores of 1.5, 2.0 and 
2.5 (for +1, +2, and +3 charge state, respectively) and Del-
taCn of > 0.1 [25,40,41] were considered matches. To 
quantify the peptide false discovery rate (FDR), we used 
the reverse database function in Bioworks 3.2 to search all 
MS2 spectra against a reversed version of our predicted 
proteins database using the same search criteria described 
above. Prior to calculating the FDR, we calculated the 
probability of each peptide match from both real and 
reversed database based on the product of XCorr and Del-
taCn and set a cut-off of P  0.05 for individual peptide 
identifications. With this probability as the cut-off, we cal-
culated the FDR using the expected proportion E(V) of 
incorrect identifications from correct identifications (R) 
[36]: FDR = E(V)/R. Proteins were identified based on the 
peptides that pass the above criteria. 

ID Mapping 
Proteins identified by SEQUEST search algorithm have a 
Genbank identifier (gi) and RefSeq identifiers. In order to 
facilitate data sharing with public databases and ortholog 
determination we mapped the identified proteins to cor-
responding identifiers from UniProt Archive (UniParc), 
the International Protein Index (IPI), Entrez Gene and 
Ensembl protein identifiers using either different online 
tools for ID mapping [42-45] or an in-house Perl script 
(MapProtID.pl) to match different ID datasets. In cases 
where the program could not find an identifier, we used gi 
or RefSeq numbers to manually search co-identifiers in 
the UniParc [46], IPI [47], Entrez [48] or Ensembl [49] 
databases. 

Ortholog Prediction 
Chicken-human orthologs were downloaded from the 
HGNC (Human Genome Organization (HUGO) Gene 
Nomenclature Committee) Comparison of Orthology 
Predictions (HCOP) site [50] using the HCOP search tool 
[20,51]. HCOP integrates and displays the orthology 
assertions made by different ortholog prediction methods 
such as Ensembl [9], Homologene [21,52], Inparanoid 
[17], MGI (Mouse Genome Informatics) [53] and Tree-

http://www.biomedcentral.com/1471-2164/8/425 

fam [18]. In cases where we could not identify chicken-
human orthologs we manually checked Homologene 
[52], Inparanoid [54] or Ensembl [49,55] in order to 
obtain the most recent data. Chicken-mouse orthologs 
were downloaded only from Homologene, Inparanoid 
and Ensembl because HCOP does not predict chicken-
mouse orthologs 

Standardized Nomenclature 
Standardized gene nomenclature is vital for effective sci-
entific communication [22] and chicken researchers have 
agreed to use human nomenclature for orthologous 
chicken genes [23]. In this study we assigned chicken 
standardized nomenclature based on HGNC approved 
gene symbols and names that were associated with the 
human or mouse orthologs. We manually check the exist-
ence of each symbol and name in the HGNC nomencla-
ture database before transferring it to chicken. In cases 
where the human or mouse gene symbol or name was not 
found or withdrawn from HGNC, no symbol or name was 
assigned to the chicken co-ortholog. To distinguish 
chicken from human genes the symbol assigned to 
chicken gene products are all in lowercases except for the 
first letter, as is the convention for mouse. 

Functional Annotation 
Since orthologs are presumed to have the same function, 
useful functional information can be extracted from other 
species when annotating orthologous gene products with 
unknown functions. To provide GO annotation for the 
identified chicken predicted proteins, we downloaded the 
human and mouse GO annotations from either the Euro-
pean Bioinformatics Institute GO annotation project 
(EBI-GOA: 03/12/2007) or searched Ensembl [49] using 
Biomart [43,55]. We assigned the chicken predicted pro-
teins the GO annotations of human and mouse orthologs 
that are only based on direct experimental evidence codes 
(Table 1) and each chicken GO annotation was assigned 
an ISS GO evidence code, as per usual GO annotation pro-
cedure. 

Public Availability of Data 
Experimentally supported predicted proteins will be 
shared with the NCBI database, standardized nomencla-
ture made available to both the NCBI and UniProt data-
bases and GO annotations made available publicly via 
AgBase, the EBI-GOA Project and the GO Consortium. 
Assigned GO annotations are publicly available via the 
AgBase database [5] and will be submitted to the EBI-GOA 
Project. A summary of these GO annotations was 
obtained by mapping the associated GO terms to the 
Generic GOSlim Sets [56] using GOSlimViewer [4,5]. 
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CHAPTER 4 
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ABSTRACT 

Functional analysis using the Gene Ontology (GO) is 
crucial for array analysis, but it is often difficult for 
researchers to assess the amount and quality of GO 
annotations associated with different sets of gene 
products. In many cases the source of the GO 
annotations and the date the GO annotations were 
last updated is not apparent, further complicating a 
researchers’ ability to assess the quality of the GO 
data provided. Moreover, GO biocurators need to 
ensure that the GO quality is maintained and optimal 
for the functional processes that are most relevant 
for their research community. We report the GO 
Annotation Quality (GAQ) score, a quantitative 
measure of GO quality that includes breadth of GO 
annotation, the level of detail of annotation and the 
type of evidence used to make the annotation. As 
a case study, we apply the GAQ scoring method to 
a set of diverse eukaryotes and demonstrate how 
the GAQ score can be used to track changes in GO 
annotations over time and to assess the quality of 
GO annotations available for specific biological 
processes. The GAQ score also allows researchers 
to quantitatively assess the functional data avail-
able for their experimental systems (arrays or 
databases). 

INTRODUCTION 
Elucidation of the complete human genome sequence (1,2) 
was a watershed event for both biology and computer 
science. As more genome sequence projects have been 
initiated, the amount of biological data and number of 
databases have proliferated (3,4). Methods for high-
throughput, genome-wide analysis of biological systems 

have been developed and applied to an increasing number 
of organisms. Foremost among these techniques are 
functional genomics using microarrays and proteomics. 
The current challenge for functional genomics experiments 
is to translate large lists of genes or gene products into 
biologically relevant models. The Gene Ontology (GO) 
(5,6) was developed in part to answer this problem and has 
since become the de facto method for functional annota-
tion of gene products (7). 
GO annotations are provided by literature curation or 

by computational analysis that must be continually 
updated by human biocurators. For example, the 
European Bioinformatics Institute GO Annotation 
(EBI-GOA) Project (8) currently provides annotations 
for over 122 199 different species; GO annotations for all 
but 33 of these organisms have been generated by 
mapping functional motifs and domains to GO terms 
[‘inferred by electronic annotation’ (IEA) annotations] 
(9). These IEA annotations account for more than 90% of 
GO annotations and the basis for these annotations is 
continually reviewed so that all IEA annotations are 
updated on a weekly basis. Moreover, IEA annotations 
are generalized to apply to a diverse range of species and 
usually only represent very broad functions such as 
‘protein binding’ and ‘enzyme binding’. In effect, this 
means that as functional genomics data is modeled using 
GO annotation, there are no curated GO annotations for 
many gene products and a large proportion of the 
remaining data describes only very broad biological 
concepts. 
One axiom of GO is that the amount of functional 

information for any gene product varies from species to 
species, depending on the literature and databases avail-
able for different species. To assist researchers and 
biocurators with assessing the overall species-specific GO 
annotation quality of a particular dataset we developed 
the GO Annotation Quality (GAQ) score. The GAQ score 
is a quantitative measure of the GO annotation of a set of 
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gene products (e.g. all annotated proteins in a species) 
based on the number of GO annotations available, the 
level of detail of the annotation and the types of evidence 
used to make these GO annotations. We demonstrate the 
utility of the GAQ score by comparing the current state of 
GO annotation in nine taxonomically diverse eukaryotes, 
by quantifying the improvement in GO annotation for 
two biomedical model species (chicken and mouse) 
relative to the time a dedicated GO annotation effort 
commenced for each species, and by demonstrating how 
the GAQ score can be used by biocurators to better direct 
GO annotation efforts and facilitate comparative func-
tional annotation. 

MATERIALS AND METHODS 
The GAQ score 
The overall GO annotation quality of a set of gene 
products is related to the coverage of gene products with 
GO annotation (breadth), the level of detail of GO 
annotation (depth), the types of evidence used to make 
these GO annotations (GO evidence code) and the 
completeness of the annotations based on how much of 
the current literature containing relevant information has 
been annotated. 
We used quantitative information from breadth, depth 

and GO evidence code to derive a quantitative measure of 
GO annotation quality which we call the GAQ score. We 
define the GAQ score for an annotation (a) as the product 
of its depth in the ontology (Dd) and the evidence code 
rank (ECR) of the annotation: 

GAQðaÞ ¼ ECRa Dda 

The GAQ score for a set of gene products (S) with a total 
of A GO annotations is defined as: 

A 
GAQðSÞ ¼  ðECRa DdaÞ 

a¼1 

X

The ‘breadth’ in this study is defined as ‘the number of 
annotations assigned to each of the gene products in the 
dataset.’ Note that, in some cases, it may be more 
informative to compute a separate GAQ score for each 
of the three GO ontologies and to consider the ‘breadth of 
annotation’ for each ontology. When considering the 
annotation, breadth of a specific gene product should be 
evaluated separately for each ontology. 
GO annotation ‘depth’ is quantified by the depth of 

each GO annotation term within the ontology structure. 
The gene ontologies are structured as directed acyclic 
graphs (DAGs) where each ‘leaf’ term represents the most 
detailed level of information in relation to the parent level. 
Therefore, DAG depth from the root to an annotation 
term a (child node) is an indicator of the level of 
functional detail captured in the annotation. It has 
recently been argued that DAG structural levels are not 
good indicators of specificity for GO terms when grouping 
terms for functional analysis and that information theory 
can be used to partition GO terms into groups with similar 
specificity as measured by information content (10). 

PAGE 2 OF 9 

However, this approach results in different groupings of 
terms for different species and would make cross-species 
comparisons very difficult. We have chosen to use DAG 
depth because we feel it gives the best overall view of the 
level of annotation detail, it is easily understood and 
because it facilitates comparison of annotation levels 
among different species. Since the GO ontologies are 
DAGs and not trees, there may be several paths from a 
child term to the root node. We define the GO DAG depth 
(Dd ) of an annotation term as the length of the longest 
path from the term to its top-level parent in the ontology 
(either ‘molecular function’, ‘biological process’ or ‘cellular 
compartment’). We use the longest path rather than the 
shortest because the ‘true path rule’ used by the Gene 
Ontology (http://www.geneontology.org/GO.annotation. 
shtml#general) implies annotation to all parents on any 
path to the root. Note that different GO annotations will 
have different path lengths (which represent granularity) 
and that such annotations depends on the type of 
experiment performed, the amount of literature available 
for the gene product in question and the species being 
annotated. Therefore, a less granular GO term does not 
equate to a lesser annotation. We also define the Dd for 
an entire ontology as the sum of the Dd for each term in 
the ontology. Likewise, the average Dd for ontology is 
the Dd of all the terms divided by the number of terms 
in the ontology. 

Each GO annotation indicates the type of evidence used 
to make that annotation and we initially assigned each 
GO term an evidence code rank (ECR) on a scale of 1 to 5 
based on whether the evidence was direct or indirect 
(Table 1). However, like the GO itself, evidence code 
usage is evolving and we expect that ECRs will change 
over time. To test how any change in the ECR will affect 
the GAQ score we also used two other ranking systems to 
calculate GAQ (Supplementary Data). The average ECR 
for a species is a reflection of how much of the GO 
annotation is based on direct experimental evidence. 

The breadth of annotations for a set of gene products 
(for example all annotated gene products for a species) can 
be measured in two ways. First, the total GAQ score for 
the set is an indication of both the number of products 
annotated and the quality of the annotation. In order to 
evaluate the breadth of annotation for each annotated 
gene product, we also define the meanGAQ score for a set 
of gene products as the GAQ score for the set divided by 
the total number of gene products (n) annotated: 

meanGAQðSÞ ¼ GAQ=n 

The meanGAQ for a species is defined as the meanGAQ for 
all annotated gene products for that species. 

Two in-house Perl scripts (DAGdepth.pl and GAQ.pl) 
have been implemented to determine the Dd of a given GO 
term and the GAQ score for a set of gene products. 

GO annotation statistics for model eukaryotes 
We obtained GO annotation statistics for nine species that 
have a dedicated GO annotation effort (Table 2). The 
number of GO annotations for each species, number of 
gene products that have annotations and percentage 
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Table 1. GO evidence codes and their corresponding rank used for this 
study. 

Code Code definition Evidence 
code rank 

IDA Inferred from Direct Assay 5 
IGI Inferred from Genetic Interaction 5 
IMP Inferred from Mutant Phenotype 5 
IPI Inferred from Physical Interaction 5 
IC Inferred by Curator 4 
TAS Traceable Author Statement 4 
IEP Inferred from Expression Pattern 3 
RCA Inferred from Reviewed Computational Analysis 3 
IGC Inferred from Genomic Context 3 
ISS Inferred from Sequence or Structural Similarity 2 
IEA Inferred from Electronic Annotation 2 
NAS Non-traceable Author Statement 2 
NR Not Recorded 1 
ND No Biological data available 0 

Direct experimental evidence codes (IDA, IMP, IGI and IPI) are 
ranked higher than indirect evidence codes. The IC and TAS evidence 
codes are based on expert judgment (of either the GO annotator or the 
researcher, respectively). The IEP, IGC and RCA codes refer to 
functions inferred from expression pattern, genomic context and 
reviewed computation analysis, respectively, and rank lower than 
direct functional evidence. The ISS evidence code is used for 
annotations made based on structural or sequence similarities. In 
contrast, the IEA evidence code is used for annotations that depend on 
automated transfer of annotations. Since some IEA annotations 
assigned by some groups may be of the same quality as ISS annotations 
assigned by other groups we assigned the same rank to both codes. 
NAS refers to uncited statements in reviewed articles and this data is 
not readily traced or the author may be referring to experiments done 
in a different species. The NR evidence code is a historical artifact of 
the GO and is used for older GO annotations made before the evidence 
code ontology was developed; since the evidence source is unrecorded, 
it must be presumed to be of lesser rank. ND is assigned where there 
are no biological data available. Other ranking systems used in this 
study are outlined in Supplementary data 1. 

Table 2. GO annotation statistics. 

Species Number Number of Number of % IEA Lc 
of GO annotated gene annotations per 
annotations products gene product 

Bt 85 316 22 812 4 96 193 
Ce 72 558 12 171 6 90 723 
Dm 83 615 11 363 7 65 3546 
Dr 102 202 31 106 3 98 527 
Gg 56 745 16 230 3 96 123 
Hs 167 889 34 118 5 69 13 361 
Mm 179 696 34 886 5 59 7834 
Rn 113 012 27 954 4 88 2933 
Sc 64 770 5536 12 54 6123 

Current GO statistics (as at 05/05/2007) for B. taurus (Bt), C.elegans 
(Ce), D. melanogaster (Dm), D. renio (Dr), G. gallus (Gg), H. sapiens 
(Hs), M. musculus (Mm), R. norvegicus (Rn) and S. cerevisiae (Sc). The 
number of GO annotations, annotations per gene products and 
percentage non-IEA annotations are obtained from EBI-GOA. 
Literature curated (Lc) figures are obtained by parsing the total 
number of PubMed records in the GO association files. 

of GO annotations that are IEA were all obtained 
from EBI-GOA statistics (http://www.ebi.ac.uk/GOA/ 
proteomes.html; 05/05/2007). A quantitative measure of 
the literature curated to the GO (Lc) for each species was 
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Figure 1. The DAG depth (Dd) for each Gene Ontology. The overall 
average Dd (dashed line) was determined for all GO terms in each 
ontology (as at 05/052007). GO term Dds were compared to mean 
Dd of each species for (A) Biological Process (BP), (B) Cellular 
Component (CC) and (C) Molecular Function (MF). The species 
represented are B. taurus (Bt), D. renio (Dr), G. gallus (Gg), 
R. norvegicus (Rn), M. musculus (Mm), C. elegans (Ce), S. cerevisiae 
(Sc), H. sapiens (Hs) and D. melanogaster (Dm). 

obtained by downloading the EBI-GOA gene association 
file and counting the number of different literature entries 
for each of the species. However, none of these statistics 
allow a quantitative comparison of ‘how well’ a species is 
GO annotated. To capture this information, we computed 
the average Dd for each species for each ontology 
(Figure 1), the mean ECR for all annotations for each 
species (Figure 2) and the meanGAQ for the set of all 
annotated gene products for each of the species (Figure 3). 
To compare the overall GAQ scores between species, we 

constructed GAQ matrices by pair-wise comparison of 
mean GAQ scores for all species (Table 3). Each entry in 
the table is the ratio of the GAQ scores of the species listed 
with each column divided by that of the species listed with 
each row. 

Measuring GAQ over time 
It may be useful to know the GAQ score for a species 
of interest or even to compare GAQ scores between 
two species. Obviously, care must be taken when 
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Maximum ECR improving functional annotation, which can be used with5.00 
more confidence by researchers to model their genes or 
gene products to derive biological value. We used GAQ 

4.00 scores to measure the change in GAQ in chicken (which 
has only recently been actively GO annotated) and mouse 
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Figure 2. The evidence code rank (ECR) for each species. GO evidence 

(one of the GO founder species) for the first 5 years of 
each species’ respective GO annotation (Figure 4). Since 
the date of each GO annotation is recorded, we obtained 
annotations for each time period by parsing the chicken 
and mouse gene association files. The IEA annotations 
were excluded from this study because all IEA annotations 
are updated on a monthly basis and the date of these 
annotations changes to reflect this updating. 

Assessing GAQ scores for different areas of the GO 
Since each species has its own body of functional 
information that can be annotated to the GO, andcodes were ranked based on how closely they describe direct 
because some species are specifically used as modelexperimental evidence (Table 1) and current GO annotations were 

evaluated based upon these rankings. The maximum ECR, based on organisms for particular physiologic processes, we hypo-
direct experimental evidence, is five. The species represented are 
S. cerevisiae (Sc), M. musculus (Mm), D. melanogaster (Dm), 
H. sapiens (Hs), R. norvegicus (Rn), C. elegans (Ce), B. taurus (Bt), 
G. gallus (Gg) and D. renio (Dr). The founder species (Sc, Mm, 
Dm), with a longer history of GO annotation, have the highest 
average ECRs. Other evidence code rankings were also used 
(Supplementary Data). 
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thesize that some sub-areas of the GO have more 
comprehensive annotation than others and that annota-
tion cannot proceed uniformly across the entire GO. To 
test our hypothesis, we calculated the meanGAQ (exclud-
ing IEA annotations) for sub-areas of the chicken and 
mouse GO Biological Process Ontology (Table 4). We first 
summarized the annotations to Generic GOSlim terms 
using the GoSlimViewer tool at AgBase (11). Generic 
GOSlim terms are a subset of the GO ontologies and 
provide a summary level view of annotation in different 
major categories. 

Assessing GAQ using available functional literature 
The amount of functional literature available for curation 
to the GO varies for each species and estimating the 
amount of literature available for a species is difficult. We 
estimated the total PubMed entries available for a species 
by using that species’ scientific name, common name or 
taxonomy identifier. To estimate the amount of functional 
literature that could contain GO annotation data we used 
both Gene Reference Into Function (GeneRIF) (12) 
entries and GOPubMed (13). To determine the amount 
of literature curated to the GO (Lc) in each species we 

150 
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All GO annotations Experimental GO annotations 

Figure 3. Mean GO Annotation Quality (GAQ) scores for each species. 
To quantify GO annotation quality, we combined annotations (number 
of annotations per gene product), ‘depth’ (Dd) and evidence quality 
(ECR) to create the GO Annotation Quality (GAQ) score. The average 
GAQ score for S. cerevisiae (Sc), D. melanogaster (Dm), M. musculus 
(Mm), H. sapiens (Hs), C. elegans (Ce), R. norvegicus (Rn), B. taurus 
(Bt), G. gallus (Gg) and D. renio (Dr) (as at 05/05/2007) is shown. 
GO annotation founder species have higher overall meanGAQ scores 
than species with more recent GO annotation efforts. Higher scores are 
found in Sc, Mm, Rn and Dr, when computing meanGAQ scores from 
annotations made using only direct experimental evidence codes. 

comparing functional annotations between species, how-
ever, because each species has its own set of literature that 
contains data that can be annotated directly for that 
species. The GAQ score is also useful for tracking how GO 
annotations may be improving with time (especially 
relative to changes in the ontology) for a given species 
of interest. Improving species-specific GAQ scores indicate 

counted the number of unique PubMed identifiers 
recorded in the species’ gene association file (Table 2). 
The proportion of literature that contains functional data 
suitable for GO annotation varied significantly by species 
but in every case the percentage of available literature that 
has already been annotated using the GO is a small 
fraction of the functional literature available (Table 5). 

RESULTS 
GO annotation statistics of the study species 
While it might be expected that organisms with the longest 
history of active GO annotation would have the most 
comprehensive GO annotations, the number of GO 
annotations does not accurately reflect the overall 
GO annotation quality (GAQ) for a species. This is 
because so many GO annotations are based on nondirect 
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Table 3. The GAQ matrix obtained from pairwise comparison of meanGAQ scores for each species. 

Species meanGAQ Sc Dm Mm Ce Hs Rn Bt Gg Dr 

meanGAQ(1) 225 105 81 68 64 49 41 37 36 
Sc 225 1.0 0.5 0.4 0.3 0.3 0.2 0.2 0.2 0.2 
Dm 105 2.1 1.0 0.8 0.6 0.6 0.5 0.4 0.4 0.3 
Mm 81 2.8 1.3 1.0 0.8 0.8 0.6 0.5 0.5 0.4 
Ce 68 3.3 1.5 1.2 1.0 0.9 0.7 0.6 0.5 0.5 
Hs 64 3.5 1.6 1.3 1.1 1.0 0.8 0.6 0.6 0.6 
Rn 49 4.6 2.1 1.7 1.4 1.3 1.0 0.8 0.8 0.7 
Bt 41 5.5 2.6 2.0 1.7 1.6 1.2 1.0 0.9 0.9 
Gg 37 6.1 2.8 2.2 1.8 1.7 1.3 1.1 1.0 1.0 
Dr 36 6.3 2.9 2.3 1.9 1.8 1.4 1.1 1.0 1.0 

meanGAQ(2) 152 81 128 59 83 103 70 65 90 
Sc 152 1.0 0.5 0.8 0.4 0.5 0.7 0.5 0.4 0.6 
Dm 81 1.9 1.0 1.6 0.7 1.0 1.3 0.9 0.8 1.1 
Mm 128 1.2 0.6 1.0 0.5 0.6 0.8 0.5 0.5 0.7 
Ce 59 2.6 1.4 2.2 1.0 1.4 1.7 1.2 1.1 1.5 
Hs 83 1.8 1.0 1.5 0.7 1.0 1.2 0.8 0.8 1.1 
Rn 103 1.5 0.8 1.2 0.6 0.8 1.0 0.7 0.6 0.9 
Bt 70 2.2 1.2 1.8 0.8 1.2 1.5 1.0 0.9 1.3 
Gg 65 2.3 1.2 2.0 0.9 1.3 1.6 1.1 1.0 1.4 
Dr 90 1.7 0.9 1.4 0.7 0.9 1.1 0.8 0.7 1.0 

Species represented are S. cerevisiae (Sc), D. melanogaster (2 Dm), M. musculus (Mm), H. sapiens (Hs), C. elegans (Ce), R. norvegicus (Rn), 
B. taurus (Bt), G. gallus (Gg) and D. renio (Dr). The meanGAQ scores are based on number of gene products associated with the GO terms. 
meanGAQ(1) is based on all species’ GO annotations, meanGAQ(2) is based on annotations made using only direct experimental evidence codes 
and in each case the meanGAQ is shown in bold at the top of each matrix. Where a species is compared to itself, the value will necessarily be one 
and these values are also marked in bold. A value >1 indicates that the species has higher meanGAQ score than the one it is compared against. For 
example, on average the meanGAQ score for the mouse gene products are two folds higher than that of chicken. Yeast consistently has the highest 
rates of meanGAQ scores when compared to each of the other organisms. 
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Figure 4. Change in GO annotations and GAQ score over time. Chicken and mouse were chosen as two species with a dedicated GO annotation 
effort that started at different times. Number of annotations, meanGAQ scores and annotations per gene product derived from all non-IEA 
annotations (A, B & C) and from annotations made using only direct evidence codes (D, E & F) are shown.
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Table 4. The 20 top-ranked chicken biological processes and the mouse 
GAQ score for these processes. 

Biological process Chicken Mouse 

meanGAQ Rank meanGAQ Rank 

Ion transport 46 1 44 9 
DNA metabolic process 36 2 51 4 
Response to biotic stimulus 31 3 60 2 
Cell death 26 4 47 7 
Anatomical structure 25 5 65 1 
morphogenesis 

Multicellular organismal 24 6 48 6 
development 

Lipid metabolic process 23 7 41 11 
Nucleic acid metabolic process 22 8 41 11 
Amino acid and derivative 22 8 44 9 
metabolic process 

Cell cycle 22 8 41 11 
Signal transduction 22 8 44 9 
Transcription 21 9 54 3 
Protein modification process 21 9 44 9 
Cytoskeleton organization 19 10 45 8 
and biogenesis 

Embryonic development 19 10 33 18 
Response to stress 19 10 25 25 
Metabolic process 18 11 29 22 
Translation 18 11 32 19 
Cell differentiation 18 11 40 12 
Catabolic process 17 12 30 21 

meanGAQ scores were calculated for sub-areas of the Biological Process 
ontology in both chicken and mouse (excluding IEA annotations). 
The 20 top-ranked chicken biological processes (as summarized by the 
Generic GOSlim using the GoSlimViewer) are shown along with the 
calculated GAQ score for the chicken gene products currently described 
by these processes. The corresponding mouse meanGAQ score for the 
same sub-area and its ranking is also shown. 

Table 5. Assessment of literature for GO annotation. 

Species PubMed (L) % Functional literature (Lf) % Lc 

GeneRIF GOPubMed 

Bt 
Ce 
Dm 
Dr 
Gg 
Hs 
Mm 
Rn 
Sc 

301 568 
15 920 
61 488 
9058 

143 170 
10 018 771 

902 076 
2 125 874 

83 543 

0.49 
7.73 
7.81 
15.51 
0.71 
1.10 
5.73 
1.01 
4.00 

4.01 
104.22 
27.63 
157.01 
9.58 
0.10 
1.82 
0.72 
22.60 

0.06 
4.54 
5.77 
5.82 
0.09 
0.13 
0.87 
0.14 
7.33 

For consistency we searched in NCBI the total number of PubMed 
available for a species (L) by using the species’ scientific name, common 
name and/or taxonomy identifier. Species represented are B. taurus 
(Bt), C.elegans (Ce), D. melanogaster (Dm), D. renio (Dr), G. gallus 
(Gg), H. sapiens (Hs), M. musculus (Mm), R. norvegicus (Rn) and 
S. cerevisiae (Sc). The amount of functional literature (Lf) is from the 
geneRIF database and GOPubMed. GeneRIFs are often extracted 
directly from the document that is identified by the PubMed ID while 
GoPubMed is a knowledge-based search engine for biomedical 
texts. The amount of curated literature (Lc) is computed as the 
number of Pubmed IDs recorded in GO annotation (EBI-GOA; 5 May 
2007). The percentage of Lf and Lc is computed based on L available 
for a species. 
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experimental evidence (e.g. ISS and IEA). For example, 
zebrafish has more annotations than two of the ‘founder’ 
species (fruitfly, yeast), but a much smaller percentage of 
these annotations are based on direct experimental 
evidence (Table 2). Moreover, each species has its own 
body of direct experimental evidence that can be used for 
functional annotation and each group annotating to the 
GO have prioritized their annotation efforts based on their 
resources and the needs of the scientific community that 
they serve. 

The GAQ score 
The overall average Dd of Biological Process is 7.1, 
Cellular Component is 6.9 and Molecular Function is 6.1 
(dashed line in Figure 1). In general, we found that there is 
very little variation for Dd between the species, although 
Saccharomyces cerevisiae (Sc) has a higher average Dd for 
both Biological Process and Cellular Component ontolo-
gies when compared to the other species. Also, the mean 
ECR for each species is higher in yeast, mouse and fruitfly, 
the founder species of GO annotation (Figure 2). This is 
expected because these species have the earliest dedicated, 
literature biocuration effort. 

The meanGAQ score was calculated from all GO 
annotations and compared to that obtained from annota-
tions that are only based on direct experimental evidence 
codes (Figure 3). Intuitively, GAQ scores should reflect the 
amount of dedicated GO annotation effort in each species. 
Yeast, fruitfly and mouse have the highest overall 
meanGAQ scores. This is expected because these three 
species (the GO founder species) have the longest effort of 
GO annotation. However, cow is an interesting exception 
to this trend as the effort to annotate bovine gene products 
is relatively new, yet it has slightly higher GAQ scores than 
chicken. We expect that this is because, as a mammalian 
species, cow benefits more from the transfer of GO 
annotations from other species such as mouse and human. 

To compare the magnitude of meanGAQ scores between 
different species we used a GAQ matrix (Table 3). A score 
of 1 means that the two species compared in the pair-wise 
comparison have equal GAQ scores. A score >1 means 
that the species listed in column has better quality 
annotation than the one it is compared against in the 
corresponding row. Yeast consistently has the highest 
meanGAQ when compared to each of the other organisms. 
Although by no means completely GO annotated, yeast 
may be considered as the current ‘gold standard’ species 
for GAQ. 

Measuring GAQ over time 
Since the structure of the GO DAG, the available 
functional literature and the investment and effort in 
GO annotation change over time, it is desirable to be able 
to compare GO annotation progress over time. We 
compared the progression of annotation and GAQ 
scores in chicken and mouse (Figure 4; Supplementary 
Data). As we expected, based on the investment in GO 
annotation for these species, the number of annotations 
for both species increased over time (Figure 4A and D), 
with mouse annotations showing a rapid increase after the 
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third year of annotation. Interestingly, although mouse 
has more annotations, chicken has higher overall 
meanGAQ scores (Figure 4B). But mouse has a higher 
meanGAQ score when using only annotations based on 
direct experimental evidence codes (Figure 4E) are used in 
the calculation. The meanGAQ score is directly propor-
tional to the numbers of annotations per gene product 
(Figure 4C and F) rather than overall numbers of GO 
annotations. 

Assessing GAQ scores for different areas of the GO 
By using the meanGAQ score to evaluate specific regions 
of the Biological Process ontology, we found that some 
regions of the GO have more comprehensive annotation 
than others (Table 4). This also applies when either 
comparing GO annotation within a species (chicken). In 
general, chicken meanGAQ scores for the 20 highest-
ranked regions of the Biological Process ontology are 
lower when compared to those of mouse. The exception is 
ion transport. 

Assessing GAQ using available functional literature 
By estimating the amount of literature available for 
annotation to the GO, we were able to assess what 
proportion of functional literature has been curated. Since 
it is difficult to assess how much functional literature is 
available, we used two different methods to estimate the 
amount of functional literature (Lf) that is available 
(Table 5). Some ‘model species’ (e.g. mouse and rat) have 
a low Lf while Caenorhabditis elegans and D. renio have a 
high Lf. However, while the Lf differs from one species to 
another, in all cases the percentage of literature curated 
(Lc) is very small. This is partially due to the amount of 
time and resources it takes to do literature curation but 
also because the amount of literature available is 
increasing dramatically. 

DISCUSSION 
Oftentimes it is difficult for researchers to assess the 
quality of functional annotation associated with their gene 
expression arrays or proteomics databases and it is often 
not easy to determine when they were last updated. 
Ideally, an overall assessment of the current GO annota-
tion status for a genome would include the average 
number of GO annotations per gene. However, for many 
species the number of genes is not known or the number of 
reported genes differs significantly depending on the 
source used. This problem is compounded when compar-
ing different species because it is even more difficult to find 
comparable information for a diverse range of species. 
Moreover, the number of GO annotations does not 
provide information about the quality of the available 
GO annotations. We developed the GAQ score as a 
quantitative measure of GO quality. 

The GAQ score is derived from the number of GO 
annotations (breadth), DAG depth (Dd) and GO 
Evidence Code Rankings (ECR). In this instance, when 
we are discussing the ‘breadth of annotation’ we are 
referring to the total number of annotations assigned to 

Nucleic Acids Research, 2008, Vol. 36, No. 2 e12 

Table 6. Example of breadth of GO annotations for mouse and 
chicken. 

Gene product Total annotations Number of annotations 

MF BP CC 

Mouse POLA1 
Chicken POLA1 
Mouse BASP1 
Chicken BASP1 
Mouse Total 
Chicken Total 

33 
27 
4 
7 
37 
34 

14 
9 
1 
0 
15 
9 

12 
11 
1 
1 

13 
12 

7 
7 
2 
6 
9 
13 

Using the number of GO annotations as a measure of annotation 
breadth shows the overall GO annotation breadth of a dataset but does 
not reflect the annotation breadth of individual gene products. In this 
example mouse and chicken GO annotations are obtained from EBI-
GOA (6 November 2007) for polymerase (DNA directed), alpha 1 
(POLA1) and brain abundant, membrane attached signal protein 1 
(BASP1) for each GO ontology. The three GO are molecular function 
(MF), biological process (BP) and cellular component (CC). Although 
the overall number of GO annotations is comparable for both species, 
the chicken BASP1 GO annotations are predominately CC annota-
tions. When examined individually, the mouse BASP1 has better GO 
annotation breadth as there are annotations to all three ontologies. The 
UniProtKB accession numbers for the proteins are: chicken POLA1– 
Q59J86; mouse POLA1–P33609; chicken BASP1–P23614; and mouse 
BSAP1–Q91XV3. 

each of the gene products in the dataset of interest. 
However, the overall GAQ score for a dataset provides 
little information about GO annotation for individual 
genes. For example, when GO annotations for mouse or 
chicken POLA1 and BASP1 are combined, there are 
37 GO annotations for the mouse proteins and 34 GO 
annotations for the chicken proteins (Table 6). While this 
is a comparable number of GO annotations, the BASP1 
mouse protein has annotations for each of the three 
ontologies while chicken BASP1 has no molecular 
function and the majority of GO annotations are to 
cellular component. The mouse BASP1 protein has fewer 
GO annotations but greater GO annotation breadth. 
The GO DAGs are designed so that the more detailed 

terms are deeper in the structure. As expected, none of the 
species in this study reach the average Dd for any of the 
three ontologies. Even comprehensively GO-annotated 
orthologs from different species have different Dd, 
reflecting the type of experiments performed in each 
species, the amount of species-specific literature available 
for that gene and inter-species variation in gene function. 
However, while a less granular GO term does not equate 
to a lesser annotation, it does mean less detailed functional 
information. The only way to assess the maximum granu-
larity possible for a species is to have completed literature 
annotation for each of the gene products of interest; this is 
not possible nor is it currently possible to accurately and 
quantitatively assess the amount of granularity currently 
available in comparison to the functional detail available 
in current literature. Despite these practical limitations, 
our method still provides a quantitative measure of GO 
annotation that enables researchers to assess the GAQ of a 
specific dataset at a given time. 
It is unlikely that any one species will have direct experi-

mental evidence to be annotated to the most detailed 
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(or deepest) GO terms across the enormous range of the 
GO. Detailed GO annotation relies on continued funding 
of new and existing annotation efforts, including support 
for developing the GO, maintaining existing data and 
database resources and updating existing GO annotations. 
Literature curation to the GO across a wider range of 
different species will provide more detailed and species-
specific information in addition to informing functional 
annotation in closely related species. 
Our ECR also reflected the importance of species-

specific GO annotation. However, GO evidence code 
usage changes over time and the IEA and ISS evidence 
codes are particularly broad. To assess how the ECR may 
skew results we did additional analyses using different 
ranking systems (Supplementary Data) but the meanGAQ 
showed little change. We hypothesized that annotations 
based on direct experimental support will provide the 
‘best-case scenario’ for assessing the GAQ and this is 
supported by our results (Figure 3). The use of GO 
evidence codes is evolving and that ranking GO evidence 
codes should be done knowledgably and to best suit the 
needs of specific datasets, questions and requirements. 
To test the GAQ score we measured the GO annotation 

effort over a period of time and we also assessed GO 
quality for different sub-areas of the GO for both chicken 
and mouse. We chose chicken and mouse because they 
represent two species that we expected to have very 
different bodies of literature (based on the fact that the 
mouse is a purely model organism while the chicken is an 
agricultural species as well as a biomedical model). 
Moreover, the mouse and chicken GO annotation efforts 
started at different times and their annotation efforts 
employed different strategies for annotating literature; 
moreover, as a GO founding species, mouse annotators 
were heavily involved in the development of the GO 
during this period. By tracking GAQ score over time, we 
observed that for the first 5 years of GO annotation effort 
mouse had more annotations than chicken, but chicken 
had a higher average GAQ score. The mouse annotation 
effort focuses on biocurating the latest available literature 
while the biocurators for chicken gene products annotate 
all the literature for specific gene products, so that initially 
the average number of annotations per gene product is 
higher in chicken than that of mouse (eight compared to 
five). However, when only annotations based on direct 
experimental evidence are considered, mouse has a higher 
meanGAQ score, reflecting the early emphasis on literature 
biocuration in this species. A high GAQ score does not 
necessarily mean the most direct experimental knowledge 
has been captured for a species; it is more a general 
annotation coverage. Nevertheless, the improvement of 
the chicken GAQ over time demonstrates the effectiveness 
of a gene product-directed literature curation effort for 
newly sequenced species. 
By using the GAQ score to quantitatively assess GO 

annotation for different sub-areas of the GO we show that 
GO annotation does not progress evenly across the 
ontology. This is in part due to differences in experimental 
literature available for each species and in part due to the 
focus of the GO annotation efforts. Analysis of sub-areas 
is useful as many research projects are directed at specific 
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functional processes. By determining the quality of 
functional annotation available for different species, 
researchers may choose to target their research for 
experimental models that have the best-curated functional 
data for the processes they are studying. 

The ability to assess what functional literature is 
available for a particular species is very difficult and it 
was this lack of accessibility for functional data that could 
be compared across species that initially drove the 
development of the GO (5). PubMed contains most of 
the published papers but one of the problems we faced is 
how to accurately assess the amount of literature (L) and 
functional literature (Lf) available for a specific species. 
We used GeneRIF (12) and GOPubMed (13) to estimate 
Lf. The GeneRIF database contains statements about the 
function of a gene and each geneRIF entry links to the 
PubMed ID and the gene name. While anyone may add 
GeneRIFs, National Library of Medicine (NLM) curators 
also add GeneRIFs and it may be this effort that skews 
GeneRIFs numbers to favor human, mouse and rat 
publications while other species are under-represented. 
GOPubMed is a sophisticated tool that combines PubMed 
searching with controlled vocabulary terms and does not 
have the same species as GeneRIFs. However, adding 
GOPubMed numbers for publications that have biological 
process, molecular function or cellular component terms 
will overestimate the number of papers that have 
functional literature, as many papers will be counted 
more than once. Neither method can effectively account 
for GO term synonyms, recognize variations in gene 
product names or account for functional data that may 
not be mentioned in the title and abstract of an article. 
Trained biocurators are essential for recognizing and 
curating experimental data from published literature but 
cannot keep up with the increasing amount of functional 
literature without improved tools and resources to support 
biocuration. However, by capturing the different direct 
experimental evidence for different species it is possible to 
extrapolate functional data to other, less well-annotated 
species. Given the increasing number of organisms to 
which functional genomics and proteomics analyses is 
applied, providing quality functional annotations for a 
diverse range of organisms is a critical research need. By 
developing a quantitative measure to assess GO quality, 
we provide a means for researchers to make the most of 
existing GO annotations and for biocurators to more 
efficiently focus their GO annotation efforts. The GAQ 
scripts will be freely distributed via the AgBase website 
(http://www.agbase.msstate.edu) and users provided with 
assistance in using or calculating GAQ scores to suit their 
specific needs. 

In summary, we demonstrate the utility of the GAQ 
score for assessing GO annotation quality in nine different 
species that have varying levels of GO annotation and by 
assessing the improvement in GO annotation for both 
chicken and mouse based on time since a dedicated GO 
annotation effort commenced for each species. We also 
show how the GAQ score may be used to assess specific 
areas of the ontologies and this can also be applied to 
specific datasets (including microarrays). A quantitative 
assessment of GO quality will help biocurators to better 
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direct current GO annotation efforts to specific areas that 
are important for their organisms’ research community 
and provides researchers with valuable information about 
their model systems. 

SUPPLEMENTARY DATA 
Supplementary Data are available at NAR Online. 
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Table 4.9 Sample of GAQ output file # 2 showing summary of GAQ score of 
individual gene product and the mean GAQ score of the whole set 

Gene_product_ID  GAQ score  
Q91018  81  
Q5GQ97  22  
Q70GM8  26  
Q90ZG0  49  
P21760  24  
P21760  15  
Q9PVN4  14  
Q90998  43  
P30371  34  

SUMMARY  
Total GAQ score  308  
Number of annotated gene products  8  
Mean GAQ score  38.5  

NOTE:GAQ scores for each gene product are summed-up and a summary is      
generated. 
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CHAPTER 5 

FACILITATING FUNCTIONAL ANNOTATION OF CHICKEN 

MICROARRAY DATA1 

1 Reprint from T.J. Buza, R. Kumar, C.R. Gresham, S. C. Burgess, F.M. McCarthy.2009. Facilitating 
functional annotation of chicken microarray data. BMC Bioinformatics 2009, 10(Suppl 11):S2 
This article is available from: http://www.biomedcentral.com/1471-2105/10/S11/S2
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Abstract 
Background: Modeling results from chicken microarray studies is challenging for researchers due 
to little functional annotation associated with these arrays. The Affymetrix GenChip chicken genome 
array, one of the biggest arrays that serve as a key research tool for the study of chicken functional 
genomics, is among the few arrays that link gene products to Gene Ontology (GO). However the GO 
annotation data presented by Affymetrix is incomplete, for example, they do not show references 
linked to manually annotated functions. In addition, there is no tool that facilitates microarray 
researchers to directly retrieve functional annotations for their datasets from the annotated arrays. 
This costs researchers amount of time in searching multiple GO databases for functional information. 

Results: We have improved the breadth of functional annotations of the gene products associated with 
probesets on the Affymetrix chicken genome array by 45% and the quality of annotation by 14%. We have 
also identified the most significant diseases and disorders, different types of genes, and known drug targets 
represented on Affymetrix chicken genome array. To facilitate functional annotation of other arrays and 
microarray experimental datasets we developed an Array GO Mapper (AGOM) tool to help researchers 
to quickly retrieve corresponding functional information for their dataset. 

Conclusion: Results from this study will directly facilitate annotation of other chicken arrays and 
microarray experimental datasets. Researchers will be able to quickly model their microarray 
dataset into more reliable biological functional information by using AGOM tool. The disease, 
disorders, gene types and drug targets revealed in the study will allow researchers to learn more 
about how genes function in complex biological systems and may lead to new drug discovery and 
development of therapies. The GO annotation data generated will be available for public use via 
AgBase website and will be updated on regular basis. 
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Background 
The development of microarray high-throughput screen-
ing platforms for chicken is an important step for gene 
expression profiling in changes occurring in avian as a 
response to different challenges and stimuli [1-3]. The 
chicken research community uses microarrays for a wide 
range of applications, including gene expression analysis 
[1,4], exon expression analysis [5-7], novel transcript 
discovery [8], genotyping [9,10] and resequencing 
[11,12]. In addition, microarray analysis can also be 
combined with chromatin immunoprecipitation to per-
form genome-wide identification of transcription factors 
and their respective binding sites [13]. 

According to statistics obtained from “Gallus Expression 
in Situ Hybridization Analysis” (GEISHA; http://geisha. 
arizona.edu/geisha/microarray.jsp; 03/14/2009), there is 
already significant resources constructed for the “Whole 
Genome” Chicken Microarrays. Listed in GEISHA are: 
1) Arizona Gallus gallus 20.7 K Long Oligo Array, 
2) Affymetrix array which cover 32,773 transcripts 
corresponding to over 28,000 chicken genes, 3) FHCRC 
Chicken 13 K Array, 4) University of Delaware-Larry 
Cogburn which produced UD_Liver_3.2 K, UD 7.4 K 
Metabolic/Somatic Systems, Chicken Neuroendocrine 
System 5 K and the DEL-MAR 14 K Integrated Systems 
and 5) ARK Genomics which offers a 1,153 clone 
chicken embryo array, a 5,000 cDNA chicken immune 
array, and a 4,800 clone chicken neuroendocrine array. 
Gene Expression Omnibus (GEO), publicly accessible 
through the World Wide Web at http://www.ncbi.nlm. 
nih.gov/geo, is a curated public repository for high-
throughput gene expression data [14,15]. Platform is one 
of central data entities of GEO which contains a list of 
probes that define what set of molecules may be detected 
and can easily be browsed, queried and retrieved to fit 
user’s interests [14,16]. 

Comprehensive annotation of these arrays will benefit 
chicken researchers, because they will be able to 
functionally model their expressed dataset to obtain 
relevant information about their biological system. 
However, most arrays are not associated to any 
functional information. The only array that is compre-
hensively annotated to GO is the Affymetrix chicken 
GeneChip array [17]. This array is the mostly used for 
gene expression studies as shown in a survey when the 
chicken research community was polled in July 2008 
ht tp : / /doodle . com/par t i c ipa t ion .html?pol l Id=  
zwvmhpt5t23tvfv8. The Affymetrix NetAffx database 
links probesets on Affymetrix GenChip microarrays to 
GO using data from the GO Consortium [18]. However, 
the GO evidence codes are not linked to any reference 
that was used to make functional assertions. This is a 
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challenge  to researchers  who want to associate  their  
dataset with functional information at the same time 
showing supporting evidence. For example, use of an 
experimental evidence code in a GO annotation should 
be associated with a paper that displays results from a 
physical characterization of a gene/gene product being 
annotated. This allows the researcher to access the 
detailed information that was used to make the GO 
annotation. 

In this study we have re-annotated all gene products 
associated with probesets on Affymetrix chicken genome 
array using GO standards. However, the GO describes 
normal gene or gene product function [19] such that 
information about which genes are associated with 
significant diseases and disorders and which are known 
to be drug targets is not captured using the GO. This type 
of information would clearly benefit researchers in 
modeling diseases. We therefore used Ingenuity Pathway 
Analysis to identify significant diseases, disorders, drug 
targets and types of gene represented on Affymetrix 
chicken genome array. Furthermore, we demonstrate 
how other microarrays can be annotated using the 
annotations from Affymetrix chicken array. 

Results 
Initial assessment of structural and functional 
annotation of chicken array 
Most of chicken arrays currently available are linked to 
either gene or gene products but very few of the arrays 
are annotated to any functional information (Table 1). 
The Affymetrix chicken array was chosen for this study 
because it represents most of genomic elements anno-
tated on chicken genome. Initial assessment of annota-
tion of Affymetrix chicken genome array are shown 
(Additional file 1). Over 97% of chicken Affymetrix 
probesets are mapped to 27,852 genes or gene products 
in total. Other probesets represented on this array are for 
studying 17 different avian viruses. About 51% of the 
probesets are associated with GO annotations made for 
12,457 genes or gene product. 

Functional annotation and GO annotation quality 
The GO annotation of Affymetrix chicken probesets does 
not show any reference supporting the evidence of the 
annotation as pointed out in methods section. We re-
annotated all gene products represented on this array, 
regardless of their initial annotations, according to GO 
standards. We were able to increase the number of GO 
annotations in all three ontologies (Figure 1); re-
annotation increased the total GO annotations by 
45%, the number of annotated gene products by 10% 
and the number of probe sets linked to annotated gene 
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Table 1: Initial assessment of structural and functional annotation of chicken array 

Cross reference 
Name of Microarray Size 

Gene/EST Protein 
GO Evd* 

ARK-Genomics G. gallus 20 K v1.0 (GPL5480) 22,176 + - - -
ARK-Genomics G. gallus 13 K v4.0 (GPL5673) 
Affymetrix GenChip® chicken genome array 

27,648 
38,535 

+ 
+ 

-
+ 

-
+ 

-
+ 

Chicken 44 K custom Agilent microarray (GPL4993) 42,034 + + - -
Arizona Gallus gallus 20.7 K Oligo Array v1.0 (GPL6049) 21,120 + - - -
FHCRC Chicken 13 K Array (GPL1836) 15,769 + - - -
Custom 4 × 2 K miRNA microarray (#4166) (GPL7472) 1,412 + - - -
Chick Pineal 2004 (GPL1289) 9,056 + + - -
DEL-MAR 14 K Integrated Systems(GPL1731) 19,200 + - - -
Avian Innate Immunity Microarray (AIIM) (GPL1461) 14,877 + - - -
UD 7.4 K Metabolic/Somatic Systems (GPL1737) 7,680 + - - -
UD_Liver_3.2 K (GPL1742) 3,456 + - - -
Chicken_Neuroendocrine_System_5 K (GPL1744) 7,000 + - - -

Different chicken arrays (column 1) have different gene products represented on them (column 2). Column 3 & 4 shows whether the printed 
transcripts are linked to a gene (G), mRNA (R), EST or protein. GO in column 5 indicates GO functional annotation linked to gene products 
represented on these arrays and evd (column 6) indicates evidence code supporting the functional information. The (+) or (-) in columns 3 – 6 
indicates presence or absence of the parameter in that specific column. 
+ or - shows that the array is linked or not linked. 
*Evidence that support the GO annotation. 

Figure 1 
Functional annotation of Affymetrix chicken genome 
array. Original annotation of Affymetrix chicken array 
(grey bars) were compared with re-annotated GO 
(black bars). All biological ontologies show improvements 
realized from the re-annotation. 

Figure 2 
The mean GAQ score of the GO annotation. 
The mean GAQ scores are calculated for both original 
(black bar) and re-annotated (grey bar) GO annotations. 
The mean GAQ score is based only on the unique gene 
products with GO, not individual the probesets. 

products by 13%. Moreover, the quality of the original 
GO annotations in all three GO ontologies, as deter-
mined by GAQ score [20], was improved by the 
additional annotations (Figure 2). Briefly, the GAQ 
score quantitatively assess the level of detail provided by 
the GO annotation and  the type  of  evidence  used  to  
make the annotations. The overall mean GAQ score of 
all annotations regardless of biological ontology, 
increased from 52 to 66.  

Additional functional information was obtained using 
the Ingenuity Pathway Analysis (IPA) tool to identify the 
significant biological functions, diseases and disorders 
that are represented on Affymetrix chicken genome array 
(Table 2). The most significant diseases and disorders 
represented on this array are cancer and genetic 
disorders, respectively. Cell death was identified to be 
the most significant molecular and cellular function 
while organismal survival was the most significant 
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Table 2: Biological functions represented on Affymetrix chicken 
GenChip® array 

Biological Function Number of P-value* 
Genes 

Diseases and Disorders 
Cancer 2,298 2.43E-53 – 6.86E-08 
Neurologic disease 1,219 4.94E-52 – 6.76E-08 
Genetic disorder 1,152 6.69E-37 – 6.69E-37 
Cardiovascular disease 583 3.18E-36 – 6.17E-08 
Developmental disease 554 6.01E-30 – 6.17E-08 
Molecular and Cellular 
Functions 
Cell death 1,604 1.19E-55 – 6.51E-08 
Cellular growth and proliferation 1,774 6.66E-42 – 4.87E-08 
Cellular development 1,231 1.00E-35 – 5.68E-08 
Gene expression 1,231 2.82E-35 – 2.21E-08 
Cellular movement 931 1.89E-32 – 6.78E-08 
Physiological System 
Development and Function 
Organismal survival 718 5.95E-38 – 1.18E-12 
Tissue development 920 6.07E-36 – 4.30E-08 
Organismal development 879 5.40E-34 – 5.36E-08 
Organ development 585 2.33E-33 – 4.90E-08 
Tissue morphology 666 2.03E-27 – 1.20E-08 

Significant biological functions represented on Affymetrix chicken 
genome array. 
*Based on Fisher's Exact Test P-value ≤ 0.05. 

process among the physiological system development. 
Different types of genes and known drug targets were 
also identified (Figure 3). 

Tool for array GO mapping 
Improved functional annotation of Affymetrix chicken 
array proved to facilitate the annotation of other arrays, 
such as the Arizona Gallus gallus 20.7 K Oligo Array v1.0 
(GPL6049). An Array GO Mapper (AGOM) tool devel-
oped in this study was able to map Entrez genes, 
Ensembl genes and GenBank accessions from the 
Arizona array to Affymetrix annotations in order to 
retrieve GO annotations. We successfully identified 79% 
of genes that were common in both arrays (Figure 3), 
out of which 72% were mapped to GO annotations 
(Figure 4). The total number of GO annotations 
generated for Arizona array was 60,846. An example of 
output generated by AGOM is shown on additional file 2 
which includes only the first 1,000 gene association lines 
generated for Arizona chicken array. The mean GAQ 
score associated with the GO annotations retrieved was 
59 and was calculated by summing up all GAQ scores of 
all 60,846 GO associations and dividing these by the 
number of annotated gene products. These results 
provide an initial assessment of GO annotations avail-
able for the Arizona chicken array and demonstrates how 
GO annotations can be transferred to identical transcrip-
tional elements represented on multiple arrays. 

http://www.biomedcentral.com/1471-2105/10/S11/S2 

Figure 3 
Types of genes and drug targets represented on 
Affymetrix GenChip® chicken genome array Sample 
figure title. The probesets matching different types of genes 
(A) were determined by using Ingenuity Pathway Analysis 
software. Some probesets were mapped to genes that are 
considered drug targets (B). 

Figure 4 
Distribution of genes and gene products represented 
on Affymetrix and Arizona chicken array. 

Discussion 
The major challenge that faces microarray researchers is 
interpretation of hundreds of differentially expressed 
genes into a biologically relevant context. The Gene 
Ontology (GO) Consortium provides a controlled 
vocabulary to annotate the biological knowledge asso-
ciated with genes or gene products. In order to make the 
functional interpretation of microarray dataset less 
challenging, microarray developers can associate their 
arrays with functional information. 

However, most chicken arrays either have no associated 
GO information or do not follow the GO annotation 
standards [21]. In this study we have re-annotated and 
improved the GO annotation of Affymetrix chicken 
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genome array to facilitate annotation of other chicken 
arrays and microarray experimental datasets. Further, we 
developed the Array GO Mapper (AGOM) tool to 
generate GO annotations for chicken arrays with no 
GO information or for microarray experimental datasets 
and demonstrated its utility by annotating the Arizona 
chicken array which had no associated GO information. 
By implementing AGOM researchers will not only obtain 
functional information for their experimental dataset but 
will also obtain GAQ scores associated with each GO 
term retrieved. This will help researchers determine the 
quality of annotations made to their datasets and also 
help tracking the improvement made by any additional 
GO when there are any updates. 

We also provided additional functional information not 
covered by the GO but is associated with the Affymetrix 
chicken genome array. This additional data broadens the 
ability of array users to model their datasets, for example 
infectious disease datasets. The additional information 
obtained on diseases, disorders and known drug targets 
represented on this array will provide light to future 
research in drug and therapy development. 

Conclusion 
Improved amount and quality of GO annotations of 
gene products represented on the Affymetrix chicken 
genome array will help researchers to model their genes 
of interest to high quality functional information by 
using AGOM tool. The existing chicken microarray 
studies can use AGOM and this demonstrates how this 
tool can enhance functional annotation in these studies. 
Annotation of microarrays of other species will be 
included in the future. The top significant diseases and 
disorders represented on the chicken array correlate well 
with how the chicken is used as a biomedical model 
organism to study human diseases and development. 
The identified gene types and drug targets allows 
researchers to learn more about how genes function in 
complex biological systems and may lead to new drug 
discovery and development of therapies. 

Methods 
Initial assessment of structural and functional annotation 
of chicken array 
We downloaded 12 chicken array platforms deposited in 
the NCBI Gene Expression Omnibus (GEO: http://www. 
ncbi.nlm.nih.gov/geo/) database (Table 1). Affymetrix 
GenChip chicken genome array annotations were down-
loaded from the Affymetrix website http://www.affyme-
trix.com. In each array we assessed whether the printed 
transcripts were structurally linked to any gene, EST or 
protein. Gene Ontology (GO) was used as criteria for 
initial assessment of functional annotation. The purpose 
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of this assessment was to determine which whole 
chicken genome arrays could be used as reference for 
structural and functional annotation of other arrays or 
experimental datasets. Affymetrix chicken genome array 
was the only one that had been comprehensively 
structurally and functionally annotated and was selected 
for further improvement. 

Functional annotation 
Further assessment and improvement of GO annotation 
of the Affymetrix chicken array was necessary. The GO 
annotations associated with the probe sets on Affymetrix 
chicken array do not show detail information to support 
the annotation. For example; were experimental evi-
dence codes are shown there is no any literature 
referenced to support the annotation. For this reason 
we decided to re-annotate all gene products linked to the 
probesets on this array, regardless of their original 
annotations, in order to provide high quality and 
standard functional information to the array users. We 
first used GORetriever [22] to download chicken GO 
annotations for all UniProtKB accessions linked to the 
probesets. Further annotations for linked gene products 
with RefSeq number and Ensembl gene identifiers were 
obtained from AgBase-community databases and Gene 
Ontology Annotation (GOA) project using an in-house 
Perl script (GOMapper.pl). Additional GO was retrieved 
by implementing an in-house tool (ISO.pl) to transfer  
the experimental GO annotations from 1:1 chicken-
human/mouse/rat orthologs to the corresponding 
chicken proteins orthologs. The improved GO annota-
tions will be made available publicly via AgBase. 

Additional functional information 
In addition to the molecular function, biological process 
and cellular component annotations provided via the 
GO, other functional information is also useful for 
researchers wishing to assess the type of biological 
information represented by transcript printed on an 
array. For example, researchers will also benefit by 
knowing which genes on the array are associated with 
disease and disorders and which are known drug targets. 
We used Ingenuity Pathways Analysis (IPA) software to 
determine known drug targets and significant disease 
and disorders. The Fischer’s exact  test  was used to  
calculate a P-value determining the probability that the 
biological functions, diseases or disorders assigned to the 
array datasets was due to chance alone. 

Assessment of GO annotation quality (GAQ) 
To assess the improvement made in the re-annotated 
functional annotations of the Affymetrix chicken array, 
the meanGAQ score for GO initially associated with the 
array was calculated as previously described [20] and 
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compared to that calculated for GO after re-annotations. 
Briefly, the GAQ score takes into account the quality of 
GO annotations by quantitatively assessing the level of 
detail provided by the GO annotation and the type of 
evidence used to make the functional association. 
Mathematically the GAQ score of a GO annotation (a) 
can be defined as the product of annotation depth in the 
ontology (Dd) and the evidence code rank (ECR) of the 
annotation, represented as: 

GAQ( )a = ECR ⋅ Dd a a 

When you have a set of gene products (S) annotated to a 
number of GO terms (A), the  GAQ score can be defined 
as: 

A 

GAQ S( ) = (ECR ⋅ Dd )∑ a a 

a=1 

In this study we reported the mean GAQ score based on 
number of gene products (n) that have GO and was 
calculated as: 

meanGAQ S( ) = GAQ S( ) / n 

Development of Array GO Mapper (AGOM) 
AGOM was developed to GO annotate chicken arrays 
and chicken microarray experimental datasets using 
improved Affymetrix GO annotations generated in the 
work described here. The tool is written in Perl and 
works on both windows and Linux platforms. It requires 
a tab delimited input file containing the microarray 
dataset cross references for which the GO annotations 
are searched.  The Affymetrix improved GO data file was  
used as a database to search from. This database contains 
6 cross-reference identifier types, which facilitate map-
ping between arrays and experimental datasets. AGOM 
works with any type of array (whole genome and specific 
array platform) and experimental datasets with common 
identifier(s) between the arrays/datasets and the Affyme-
trix data. The gene associations are presented in 16 
columns according to GO standards (Additional file 3). 
The depth of a GO term, evidence code rank and GAQ 
score of individual GO term associated with the 
Affymetrix GO data are in the last 3 columns of file. 

We demonstrated AGOM implementation by searching 
GO annotation for Arizona chicken array (GPL6049) 
from improved Affymetrix chicken array GO data. The 
Arizona chicken array was chosen because it has no 
existing GO associated with its gene products (Table 1). 
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In addition, the Arizona array probes are linked to a 
variety of identifiers (GenBank accession, Entrez Gene ID 
and Ensembl ID) that can be used to search the 
Affymetrix GO data while most of other arrays contain 
only GenBank accessions (Additional file 3). For 
example, in this study GenBank accession, Entrez Gene 
ID and Ensembl ID linked to Arizona array were 
searched against the improved Affymetrix GO annota-
tions to retrieve corresponding GO records. The output 
generated from the search includes Arizona array 
identifiers in the first 5 columns; Oligo_ID (unique 
ID), GenBank accession, Entrez Gene ID, Ensembl ID 
and array Spot number. When a match is found the 
corresponding GO information is added to a tab-
delimited output file. 

AGOM is available via AgBase (http://www.agbase. 
msstate.edu/; see under Array annotation) where users 
can use the tool directly online or can download it as a 
standalone program. When implementing the tool 
online, users will be given options to retrieve any 
data associated with the Affymetrix chicken array 
(Additional file 3). The script is also available upon 
request and advice is available by e-mail. 
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Additional material 

Additional file 1 
Initial assessment of annotation of Affymetrix chicken genome array. 
Additional file descriptions text (including details of how to view the file, 
if it is in a nonstandard format). 
Click here for file 
[http://www.biomedcentral.com/content/supplementary/1471-
2105-10-S11-S2-S1.pdf] 
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Additional file 2 
Example of output generated by the Array GO Mapper (AGOM). 
Unique identifier for the Arizona array (Oligo_ID) is displayed in 
column 1. Column 2–4 displays GenBank accessions, Entrez gene ID 
and Ensembl gene ID used for mapping. The array spot number is in 
column 5. The name of database and the corresponding gene product in 
Affymetrix annotations are shown in column 6 & 7. The GO and name 
of the GO term are displayed in column 8 & 9 with the evidence code for 
the annotation in column 10. Column 11 shows the aspects of gene 
ontology either molecular function (F), cellular component (C) or 
biological process (P). The GO Annotation Quality (GAQ) score for 
individual GO term is displayed in column 12 and the date the output 
was generated in column 13. 
Click here for file 
[http://www.biomedcentral.com/content/supplementary/1471-
2105-10-S11-S2-S2.xls] 

Additional file 3 
Chicken array platform cross-reference. Each column represents one 
array platform showing the identifiers that can be used to search GO 
annotations from Affymetrix GO data. (+) indicates presence of 
identifier in the corresponding array platform. (-) indicates absence of 
identifier in the corresponding array platform. 
Click here for file 
[http://www.biomedcentral.com/content/supplementary/1471-
2105-10-S11-S2-S3.xls] 
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Table 5.4 Sample of input file to upload to AGOM for GO annotation of ten gene 
products linked to Arizona chicken array 

OLIGO_ID GenBank ID Entrez gene Ensembl gene Spot number 

RIGG03527 BX933209  ENSGALG00000015746 24.11.17 

RIGG03528 BX933190  ENSGALG00000015764 32.11.17 

RIGG04490 NM_204158 373965  11.7.16 

RIGG05105 CR407421  ENSGALG00000015751 47.19.16 

RIGG05209 AF514777 373895  33.19.16 

RIGG06460 AF257352 373985 ENSGALG00000008072 18.10.14 

RIGG06663 NM_001012521 373923 ENSGALG00000008097 5.11.14 

RIGG07052 AB046396 373936 ENSGALG00000000474 19.13.14 

RIGG07281 BX932369  ENSGALG00000015763 14.2.13 

RIGG17763 AF246958 373925 ENSGALG00000014096 18.10.3 

NOTE:In Arizona chicken array GenBank accessions (column 2), Entrez gene ID 
(column 3) and Ensembl gene ID (column 4) which are linked to unique 
OLIGO-ID (column 1) and spot number (column 5) can be used for mapping 
into Affymetrix chicken array GO database to retrieve GO annotations. 
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CHAPTER 6 

CONCLUSION 

Genome annotation is crucial for deriving value from a genome sequence. 

Generally proteomics offers a fast, relatively cheap and precise method for obtaining a 

large amount of experimental evidence to assist genome annotation. The value of 

proteomics in genome annotation, as demonstrated in this study, was to provide a higher 

level confirmation of protein expression in vivo. In this study we used mass spectrometry 

(MS) data obtained from multiple chicken tissues to confirm in vivo expression of 

electronically predicted proteins. Expression of about 7,811 chicken predicted proteins 

was confirmed. The results demonstrate the utility of proteome data for genome 

annotation. Proteomics data can be used to experimentally validate predicted proteins and 

offers an additional support that genes that code for these proteins are not only 

transcribed, but also translated. However, a big list of confirmed proteins does not mark 

the end point for proteomics. Proteins need to be assigned useful biological information. 

The most complex component of annotation is linking the genome to biological 

functions. Functional annotation, a major feature of genome sequence analysis, enables 

researchers to model their experimental dataset and provide answers to their research 

questions. Since predicted proteins usually have no functional 
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information, we transferred Gene Ontology (GO) annotations and standardized gene 

nomenclature from human and mouse orthologs to the chicken protein that we identified 

from the proteomics analysis. Using GO we were able to group the confirmed proteins 

according to their molecular function, involvement in a particular process or subcellular 

location. As a result we were able to improve the functional annotation of chicken 

genome by 8%. Improved functional annotation provides researchers with valuable 

resource for modeling their experimental datasets and answers most of functional 

genomics questions. As a point of caution the quality of these annotations should be 

known and maintained. 

The GO Annotation Quality (GAQ) score developed in this study provides a 

measure to quantify and assess the overall quality of GO annotations. As demonstrated in 

nine different species, GAQ can be used to assess quantity and quality of functional 

annotation available for a species. Analysis using GAQ scores will enable researchers to 

determine what species have better GO annotations. Researchers will be able to compare 

orthologs across species and determine the best annotated orthologs based on higher 

GAQ scores. This will facilitate the choice of sources of information to be transferred 

across species whenever deemed necessary. In addition, the GAQ score can be used to 

help biocurators better direct annotation efforts to specific gene products found to have 

low scores and also to track the improvement of GO annotation over time. GAQ scoring 

can be applied to GO annotations assigned to either proteomics or microarray data in any 

species. 
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The last part of this dissertation demonstrates a comprehensive approach that 

facilitates structural and functional annotation of gene products at the same time showing 

the GAQ scores of each association. The Affymetrix GenChip chicken whole genome 

array is used as a case study. This array is associated with gene and protein cross 

references (structural annotation), GO annotations (functional annotation) as well as GAQ 

scores (quality assessment). The number of transcripts, genes and gene products on this 

array is considered comprehensive because it represents the entire chicken genome. The 

structural coverage of chicken genome gave us a reason to improve its functional 

annotation using GO standards and assessing the annotation quality using the GAQ 

scores. We have assigned GO annotations that have been either experimentally verified 

or computational annotations that have been manually checked or electronically 

predicted. 

We have used the improved annotations of the Affymetrix chicken array as a 

database that can facilitate annotation of other arrays and experimental datasets from 

either proteomics or microarray studies. To make this possible, we developed an Array 

GO Mapper (AGOM) tool and demonstrated its implementation by annotating the 

Arizona chicken array (GPL6049). The Arizona chicken array is linked to GenBank 

accession, Entrez Gene ID and Ensembl ID. These identifiers were used in the mapping 

process to retrieve GO annotations from the Affymetrix GO annotation database we 

developed. In the mapping process over 95% of genes represented on Arizona array were 

found to be common with the Affymetrix array, and 72% of these genes were mapped to 
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GO annotations (mean GAQ score = 59). Likewise, the existing chicken microarray 

studies can use AGOM to enhance functional annotation in these studies. 

In this dissertation, one point worth knowing is that, besides GO, other functional 

information can as well be useful for researchers wishing to assess the type of biological 

information represented by transcript printed on an array. In any array knowing which 

genes are associated with diseases and disorders and which are known drug targets is 

crucial. This can be achieved through integration of functional annotation from multiple 

databases such as GO annotations and Ingenuity Pathway analysis knowledge base. In the 

future, this information can be linked to the Affymetrix functional information to show 

the importance of chicken as a biomedical model organism to study human diseases, 

development and any other biomedical issues. If gene types, drug targets and even 

pathways are comprehensively identified, it will allow researchers to properly design 

their studies and learn more about how genes function in complex biological systems. 

Ultimately, this may lead to new drug discovery and development of therapies. 

To sum up, the results reported in this dissertation provides a foundation for 

comprehensive annotation of chicken genome. The methods applied facilitate 

improvement of both structural and functional annotation of the chicken genome. 

Conversely, the approach that was used and the tools we developed are simple to 

implement and are applicable to any species; prokaryotes or eukaryotes, as long as the 

format suggested is maintained. The broad applicability of this approach will accelerate 

the genomics knowledge base and understanding of the complex biological system of 
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 poorly annotated and newly sequenced genomes. Ultimately, improved genome 

annotation will be realized. 
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