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Globalization and the rise of fish importation has led to an increase in 

mislabeling.  To combat this problem, analytical and molecular methods have been 

employed.  First, nitrofuran metabolites were extracted, hydrolyzed, and derivatized in 

channel catfish, swai, and tilapia.  Utilizing high performance liquid chromatography 

coupled with triple quadrupole mass spectrometry, derivatized metabolites were detected 

at levels of 1 ng/mL with coefficients of determination greater than 0.998.  Recoveries 

greater than 90% and relative standard deviation less than 17% indicate that the method is 

successful.  Secondly, chip based electrophoresis coupled with restriction fragment length 

polymorphism was used for the species differentiation.  By analyzing restriction digestion 

products, fragmentation patterns from fin-clip and muscle could consistently differentiate 

different species requiring two or fewer endonucleases for positive identification.  This 

method of screening reduces the expertise, time, and expense required to reduce fish 

mislabeling.   In tandem, these methodologies could significantly reduce the dangers of 

fish mislabeling. 
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CHAPTER I 

INTRODUCTION 

Mislabeling 

In recent years, authentication of seafood has become increasingly important due 

to global growth. Not only has the world market supply increased from 54 million tons in 

1964 to 154 million tons as of 2011 but approximately half of total fish supplies are 

dedicated to international trade with 16.6% accounting for consumption of animal protein 

[39, 50]. In recent years, mass mislabeling of fish and other seafood has become much 

more prevalent. Seafood fraud is not limited to grocery stores, restaurants, or sushi bars 

and can usually be sourced back directly to importers [36]. Numerous studies on the 

mislabeling of seafood products have been conducted within the past decade. The 

National Seafood Laboratory found that the 37% of fish and 13% of other seafood 

products analyzed were mislabeled [71]. In a study conducted by Oceana, a non-profit 

organization, approximately 1200 samples from over 600 different businesses were 

analyzed using FDA bar-coding protocols. The study found that 33 percent of the 

samples were mislabeled with substitutions among red snapper being the highest at 89 

percent. This is supported by a study conducted by Marko et al, which showed that 

approximately three-quarters of all red snapper sold were often mislabeled or substituted 

with rock-fish or other types of snapper. Other common substitutions include basa 

(Pangasius bocourti) or swai (Pangasiandon hypophtalmus) instead of channel catfish 
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(Ictalurus punctatus) [33], and escolar (Lepidocybium flavobrunneum) in the place of 

albacore tuna (Thunnus alalunga) [51].  As shown by these studies, mislabeling of 

seafood products represents pertinent risks to consumers such as financial fraud, health 

issues resulting from allergies or adulterants, and hampering conservation efforts.  To 

combat the problem of mislabeling, government legislation has been signed into law 

requiring seafood products such as catfish, bonito, crab, and oysters to be marketed under 

a statement of identity, which may only be used to describe those specific species. Under 

these guidelines, only channel catfish may be sold under the label of catfish. [4]. For all 

other seafood, the U.S. Food and Drug Administration provides guidelines that help 

consumers and producers better understand what constitutes an acceptable market name. 

Other than statements of identity and scientific nomenclature, acceptable market names 

include common names as long as they are not misleading, contain geographic 

descriptors, or vernacular [9].  Mislabeling or substitution of a fish species for another 

represents a form of economic deception. For instance, “red-fish” which is significantly 

cheaper than red snapper is often substituted for the purpose of economic gain [70]. 

White fish is substituted for albacore tuna for similar reasons but also has ill desired side 

effects. Often, the substituted fish is actually escolar or tilapia. In the case of the escolar, 

also referred to as butter fish or snake mackerel, the substitution poses a potential health 

risk because ingestion of minimal amounts of escolar can result in gastrointestinal issues. 

Escolar diets consist primarily of food sources that are high in wax esters which are 

stored in the fatty tissue after consumption. Human beings lack the digestive enzymes 

necessary to break down these esters which results in a condition referred to as keriorrhea 

where the orange colored esters uncomfortably pass through the digestive system [69].  
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Another scenario that often arises is simply the misidentification or incorrect labeling of 

certain fish species. Atlantic halibut can often be labeled as Pacific halibut and vice versa.  

Another example is the labeling of farm-raised salmon as wild salmon to earn more 

revenue.  Common names and vernacular also cause issues with proper naming. In one 

study, a sample labeled as king-fish was actually Scomberomorus cavalla. The label of 

king-fish is also commonly used to describe Scomberomorus regalis. Despite the 

vernacular used, S. cavalla actually describes a fish with the common name king 

mackerel and the market name Spanish mackerel. Above all, mislabeling of seafood 

represents an annulment of contract between consumer and producer [70, 35]. 

In order to protect consumers, new and existing methodologies have been 

developed or adapted to improve seafood identification. Correct identification of 

processed seafood products and fish fillets at points of origin can reduce the risks 

associated with mislabeling. Described in the following sections are common protocols 

that have been developed to improve the identification or description of animal species. 

DNA Methodology 

Differentiation by morphological means requires some training in taxonomy to 

differentiate species. Typically, taxonomists use morphological features Figure 1.1 

supplemented with geographical, behavioral, and genetic information when available; 

however, due to the variation in fish life cycles and introduction of hybrid species, 

positive identification using morphology has become increasingly difficult [68].   
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Figure 1 Diagram of morphological features 

Diagram of morphological features of channel catfish illustrating the difficulties inherent 
in identifying fish fillets lacking the very features required to identify them. 
 

Taxonomic identification is limited in its scope, requiring individuals who are 

highly trained which can be time consuming. Often, batches of fish require identification 

for the purpose of conservation and are very large which increases costs exponentially.  

Twenty-one percent of fish sold in 2006 consisted of whole or gutted fish while the rest 

consisted of fish that had been processed in some way: filleting, canning, or cooking [52].  

Large-scale identification by hand is nearly impossible and it’s because of this that 

morphological differentiation of species as the sole method of identification is no longer 

sufficient. 

New and rapid methodology is necessary to curb fraud before products reach the 

consumer. Many methods exist for the differentiation of fish species. Those commonly 

used include: forensically informative nucleotide sequencing (FINS), restriction fragment 

length polymorphism (RFLP), single-stranded conformational polymorphism (SSCP), 
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amplified fragment length polymorphism AFLP, Random Amplified Polymorphic DNA 

RAPD and DNA bar-coding [51]. 

Analysis of DNA over protein for the identification of species has grown more 

common due to the fact that very little source material is required. Additionally, 

mitochondrial DNA (mtDNA) has replaced nucleic DNA due to the ring structure being 

more stable and thus more resistant to denaturation during processing which can alter the 

structure due to adjustment of pH, temperature, and hydrolysis through the addition of 

water [36]. These attributes are more conducive towards the analysis of cooked or canned 

products, fillets, fin-clips, eggs, or larvae. For most fish, this offers species level 

specificity of identification from egg to shelf. These methodologies are advantageous to 

the fields of food security and conservation because most species, including hybrids, can 

be identified during any part of the life cycle. The use of mtDNA was first described in 

1992 with the development of forensically informative nucleotide sequencing (FINS) for 

the identification of four different (thunnus) species by sequencing mitochonrdial 

cytochrome B gene [5]. FINS works by amplifying nucleotide sequences from 

cytochrome b, coenzyme oxidase subunit I (COI), or 16S RNA [22]. Similar to 

phylogenetic methods, amplicons are compared to a reference and sequences with 

nucleotide substitutions the lowest genetic distance away are considered to be in the same 

species group. These protocols are useful for population genetics and phylogenetic 

studies, but due to higher costs and time requirements, FINS isn’t suitable for large scale 

differentiation. Also, FINS is unable to handle samples of mixed species [21, 46, 6]. 

RFLP has also been used in conjunction with polymerase chain reaction (PCR) to 

differentiate species based on digested fragment polymorphisms [3]. Similar to FINS, a 
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gene region is selected, extracted, and amplified. Diverging at this point, RFLP protocols 

then call for the use of different restriction endonucleases which cleave the gene region of 

interest resulting in fragments particular to that species. Unlike FINS, RFLP is much 

more cost efficient and is often used as a screening method [21]. RFLP can be used to 

fingerprint cooked and mixed samples, but quality of the source DNA is critical for 

successful differentiation [46, 47, 10]. Analysis of multiple samples is required to build a 

reliable fingerprint and some samples lacking unique fragmentation patterns benefit from 

the use of multiple restriction sites [43, 60]. An alternative to FINS and RFLP is single-

stranded conformational polymorphism (SSCP) which also relies on polymorphisms for 

differentiation.  SSCP amplifies DNA genes such as mitochondrial cytochrome B before 

denaturing the amplicon into single strands which are then separated by PAGE 

electrophoresis  [47, 55]. Intra-species variation is even lower than RFLP with 

differences as minute as one nucleotide detectable. This allows for differentiation of 

fragments of 100 bp evenwith mixed samples. This specificity comes with the cost of 

requiring the reference sample being run on the same gel as unknowns [10, 56]. This 

makes SSCP unsuitable for fingerprinting and more useful for population studies. 

AFLP, similar to RFLP, utilizes restriction enzymes, typically MseI and EcoRI, to 

digest whole DNA [67, 45]. With one enzyme making short frequent cuts and the other 

making longer less frequent cuts, an adapter is then linked to the product before 

amplification with PCR. The resulting amplicons, about 100 fragments, are then 

amplified again with only 1/256 of the original DNA having been amplified [18, 16]. 

Using radioactive labels, the fragments are then separated by gel electrophoresis which 

allows for a very specific fingerprint [20].  Quick and cheap like RFLP, AFLP is far more 
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specific than RAPD and lacks the requirement of reference samples like SSCP. 

Unfortunately, unlike RFLP, AFLP is a very time consuming process and requires high 

quality DNA so would not handle cooked or mixed samples [45, 20, 16]. Species 

differentiation often requires some knowledge of DNA sequences for the development of 

primers for analysis. RAPD analysis bypasses this requirement by using randomly 

selected primers for the amplification of target DNA sequences. Although random, each 

amplicon produced should be unique to each species when analyzed with electrophoresis 

and compared to previously identified samples [72, 8]. 

RAPD is both cheap and quick requiring little source material for analysis making 

it an attractive tool for differentiation when compared to RFLP and AFLP. Unfortunately, 

relying on randomly amplified DNA has drawbacks such as decline in reproducibility in 

cooked samples and the possibility of incorrect species matching due to DNA regions 

from different species producing the same fragments [3]. 

Early sequencing methodologies were not efficient because techniques varied 

from lab to lab depending on the instrumentation and capabilities of that lab. Also, 

research labs and regulatory agencies had different goals, which led to different groups 

publishing research on a wide variety of methodologies using the same fish species [68, 

52]. To combat this problem, the initial protocols outlining DNA bar-coding were 

developed to compensate for these inefficiencies. Fish Bar-coding protocols are a set of 

rules outlining a single gene of interest to be used for identification. Bar-coding is used 

for a wide variety of services including: conservation, tree of life, ecosystem and 

behavior analysis, and food safety projects. Because of this, bar-coding methodologies 

were chosen as the foundation for the Bar-code of Life initiative [53, 68]. The Fish Bar-
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code of Life (Fish-BOL) initiative, which was implemented in 2005 represents a world-

wide collaboration with the goal of developing a standard reference bar-code library of 

different species. This library contains sequences of a 648 base pair region of the 

mitochondrial COI gene in addition to taxonomic data. The COI sequence was chosen 

due to the lack of intra-species variation and the presence of inter-species variation 

among most species in addition to the availability of primers. As of 2010, approximately 

25% of all known fish species have been processed with at least one species from 89% of 

all families sequenced and identified. Using this standardized system, only three percent 

of sequences observed have been unusable for differentiation when at least 2 specimens 

are sequenced [29]. 

Antibiotics 

Antibiotics are drugs used to kill or inhibit gram-negative and positive bacteria, 

which are differentiated via staining to determine intracellular structure. Gram-negative 

bacteria such as Eromonas, Pseudomonas, and Vibrio cause most bacterial infections in 

fish. Diseases resulting from infection can cause fin rot, gill disease, and tumors. In 

aquaculture, antibiotics are used as a prophylactic to prevent the spread of diseases. 

Modes of introduction include feed and medicinal bath with the goal of preventing 

development of bacterial cell walls, damaging of membranes, and the disabling of key 

protein and nucleic acid synthesis.  These methods are both cheap and effective which 

contributes to their continued use despite being banned in most countries. When 

absorbed, these antibiotic residues are persistent in tissues and can remain behind causing 

a variety of health concerns. Heavy use of antibiotics results in an increase in resistance, 

development of human allergies upon consumption, and production of toxic effects. 
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Monitoring aquaculture quality can serve to reduce the need for new antibiotics and 

improve food quality [59]. 

In seafood, commonly used adulterants include antibiotics such as quinolones, 

amphenicols, and nitrofurans and dyes such as malachite green and crystal violet. These 

residues are used as antimicrobials to combat a variety of diseases in farm raised fish 

[59].  Quinolones are categorized into four generations separated by different chemical 

modifications to improve performance. The second generations of quinolones are 

commonly referred to as flouroquinolones due to the addition of a fluorine group to the 

C-6 group of a quinolone [41].  Flouroquinolones work by inhibiting the DNA gyrase in 

order to prevent duplication of the bacterial cells [59]. Third and fourth generation 

quinolones (flouroquinolones) were modified to increase effectiveness against gram-

negative bacteria and improve gram-positive and anaerobic coverage. Quinolones are 

often used because they are very effective at preventing urinary and digestive tract 

infections. Unfortunately, continued use can result in increased sensitivity and arthralgia 

[40]. Amphenicols are a synthetic group of antibiotics with a wide range of effectiveness, 

which include thiamphenicol, florenicol, and chloramphenicol [59].Chloramphenicol was 

the first large scale synthetic whose mode of action is to prevent mitochondrial protein 

synthesis by binding to the 16S ribosomal subunit. Chloramphenicol is frequently used 

due to its low manufacturing cost and effectiveness against both gram-positive and gram-

negative bacteria. Increased presence of tissue bound residues can result in bone marrow 

depression which can cause fatal anemia [59]. Lastly nitrofurans are another synthetic 

compound that have been used on a variety of farm raised animals including cattle, 

poultry, and fish. Nitrofurans are easily absorbed through the skin where the parent 
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compounds quickly break down resulting in several metabolites that then bind to muscle 

tissue. Frequently applied topically or through bath treatments, nitrofurans are 

carcinogenic and mutagenic [38]. Dyes such as malachite green and crystal violet are 

often used as antimicrobials and fungicides. Part of the triphenylmethane family, these 

cheap and effective dyes are quickly absorbed into fish tissue where they are converted to 

leuco-malachite green and leuco-crystal violet. Similar to nitrofurans, these dyes are 

carcinogenic and mutagenic and are thus prohibited [12]. 

Many countries have imposed bans on the use of these adulterants (Table 1) but 

due to the high level of importation many still find their way into the food supply. 

Consumer safety is ensured by government regulatory bodies such as the Food and Drug 

Administration of the United States and the European Union. The European Union 

enforces food safety by setting maximum residue limits (MRLs) and minimum 

performance limits (MPRL). MRLs are defined as maximum legal levels contained in 

food allowed to reach consumers while MPRL’s are the minimum capabilities of 

analytical methods [30, 49, 48]. In some cases, no such level exists and is determined by 

the capabilities of current screening methods. The FDA has similar standards and has 

banned the use of fluroquinolones, amphenicols, and nitrofurans for extra-label use with 

the exception of nitrofurans for topical use. The EU has placed MRL’s for malachite 

green and crystal violet at 2 ng/g [61, 12, 17]. 
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Table 1 Adulterant Regulations 

Adulterant Type Organization MRL MPRL Regulation Year

Chloramphenicol Antibiotic FDA Banned ‐‐ 21 CFR 522.390  1992

EU Banned 0.3 ug/kg Commission Decision 2003/181 2003

CFIA Banned ‐‐ C.01.610.1 1994

Nitrofuran Antibiotic FDA Banned ‐‐ 21 CFR 510.551 1991

EU Banned 1 ng/kg EEC 2309/93; 1442/95 1993/1995

CFIA Banned  – C.01.610.1 1994

Fluruoroquinolone Antibiotic FDA Banned ‐ ‐ 21 CFR 530.41 1997/2005

EU ‐ ‐ ‐ ‐ N/a ‐ ‐

CFIA Banned 1 ng / g B.01.048  2003

Malachite Green Dye FDA Banned ‐ ‐ 21 C.F.R. section 814.9. 1983

EU 2 mg/kg 1 mg/kg  Commission Decision 2004/25 2004

CFIA 1 ppb  0.5 ng/g C.01.610.1 1994  
 

Most adulterants are commonly screened with high performance liquid 

chromatography (HPLC) coupled to a variety of detectors. In the past, ultraviolet-visible 

(UV-VIS), fluorescence, electrochemical, and mass spectrometry detectors have all been 

used for residue detection [59]. In the past, UV-VIS and fluorescence detection were 

primarily used for the detection of nitrofurans, chloramphenicol, and fluoroquinolones, 

but mass spectrometry has become more common due to the specificity provided [59, 

11].  Unfortunately, no catch-all methods exist for the detection of both antibiotics and 

dyes that are frequently used as adulterants. Multi-residue methods do exist but are 

limited in scope. Nitrofurans have been extracted from fish tissue in conjunction with 

chloraphenicol, fluoroquinolones, and sulpha drugs using liquid chromatography coupled 

with UV-VIS [57, 31]. Multiresidue methods for the detection of dyes in fish tissue also 

exist using liquid chromatography coupled with mass spectrometry [11, 65, 63]. 

Due to increasing globalization and the rise of importation, monitoring of fish 

species has become quite important. High influx of seafood poses risks to health, 

security, economy, and conservation. These concerns must be dealt with to ensure not 
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only the safety of a nation’s constituents but states’ interests as well. To combat 

overfishing, mislabeling, and adulteration, regulatory bodies require the most efficient 

and rapid protocols and current databases. While one definitive protocol doesn’t yet exist 

to both identify aquatic species and detect adulterants, fast methods have been examined 

in this work to accommodate both tasks in a twenty-four hour period. Generating 

sequence data is quite expensive and time consuming and requires an up-to-date central 

database for comparison. Until new methodologies such as mini-bar-coding which relies 

on shorter sequence fragments and next generation sequencing are explored further, 

identification of mixed species with DNA bar-coding will remain problematic [36]. 

For the identification of fish species, RFLP and chip-based electrophoresis have 

been proposed to construct a database of species that have some economic or 

conservational importance. Extraction and fragmentation are relatively quick making 

PCR-RFLP a reliable method for building a database. Databases composed of fragments 

are easily searchable compared to lengthy sequences which require more specialized 

skills to acquire and analyze.  

Nitrofurans are a common family of carcinogenic and mutagenic adulterant used 

for the prophylaxis of farm raised fish. Although rapidly depleted in tissue, the 

metabolites left behind are easily analyzed using liquid chromatography coupled with 

triple quadrupole mass spectrometry once derivatized. A novel method for the 

identification of nitrofuran metabolites in commonly farm raised fish species is detailed 

below. 
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DETECTION OF NITROFURAN METABOLITES IN FISH FILLETS  

QUADRUPOLE MASS SPECTROMETRY 

Abstract 

An analytical method has been developed for the detection of nitrofuran 

metabolites in channel catfish, swai, and tilapia fillets utilizing high performance liquid 

chromatography coupled with electrospray ionization triple quadrupole mass 

spectrometry. Derivatization and hydrolysis under acidic conditions with 2-

Nitrobenzaldehyde followed by a solid phase extraction cleanup prepared the metabolites 

for analysis. Compounds were detected as low as 1 ng/mL with coefficients of 

determination greater than 0.998. Samples were spiked with 5 ng/mL solutions of 

nitrofuran metabolites with recoveries of 90-130% and relative standard deviations less 

than 17 percent. Application of the method to real samples resulted in the detection of 

semicarbazide in some samples. 

Introduction 

Furazolidone, furaltidone, nitrofurazone, and nitrofurantoin are members of a 

group of synthetic antibiotics commonly referred to as nitofurans. Frequently used for 

treatment of gastrointestinal disorders in humans and farm animals such as cattle, poultry, 

fish, and shrimp; Nitrofurans are widely applied due to cost, effectiveness, and ease of 
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application such as: introduction in feed, water baths, and topical ointments [67, 59]. Due 

to mutagenic and cargcenogic properties, nitrofurans have been banned by the U.S. Food 

and Drug Administration (FDA), European Union (EU), and other regulatory bodies. 

Since 1995, the EU has banned use of all nitrofurans on animals, which are destined for 

food production [25].  For nitrofurans, no MRL exists so in 2003, the EU set the 

minimum performance residue limit (MPRL) at 1 mg/kg [26]. 

Naturally, in order to meet these performance limits, quick and reliable methods 

of detection must exist. Nitrofurans present an interesting conundrum due to the fact that 

the compounds are rapidly metabolized once absorbed. The compounds 1-

aminohydantoin(AHD), 3-amino-2-oxazolidinone(AOZ), 3-amino-5-morpholinomethyl-

2-oxazolidinone (AMOZ), and semicarbazide (SEM) are the corresponding metabolites 

for the parent residues Figure 2.   
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Figure 2 Parent nitrofurans, metabolites, and nitrophenyl derivatives. 

 

Historically, liquid chromatography coupled with UV-VIS or diode array has 

been used to detect these compounds. [14]. Enzyme-linked immunosorbent assay 

(ELISA) based methods are in development [44], but currently liquid chromatography 

coupled with mass spectrometry represents the most efficient detection method. Due to 

matrix effects and such low molecular weights (75-201 g/Mol) of the metabolites, 

derivatization and Solid Phase Extraction (SPE) are required to make these polar 

compounds better suited for reverse-phase chromatographic separation and analysis.  
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Previous studies have detected nitrofuran metabolites in poultry [13, 19, 49, 32], 

pigs [42, 49, 1], fish [13, 62, 64, 24], and shrimp [64, 30, 23, 19]. Due to rapid absorption 

and stability combined with freezing and canning of seafood products, the production 

process provides a suitable environment for the preservation of these compounds. 

Because of increasing global demand for seafood, the instances of nitrofuran usage have 

also increased [7] creating a scenario in which processed fish of immediately unknown 

origins enters the food supply. Processing such as filleting, canning, or cooking along 

with the growing problem of fish mislabeling, regardless of intent, serves to further mask 

the identity of imported fish species. Because of the inherent difficulty in identifying fish 

fillets and the increase of farm-raised fish production as a global entity, rapid detection of 

nitrofuran metabolites in a variety of tissues is vitally important. 

Mississippi is the top producer of farm-raised catfish in the United States resulting 

in 175 million dollars of revenue per year [73]. Due to the increase in global importation 

and demand, the Americas have seen an increase in fish species from European and 

Asian countries in American markets.  Because of differing regulations, fish species such 

as basa and swai entering US markets may contain antibiotics such as nitrofurans as 

adulterants. 

Antibiotics of concern have been detected in imported fish above 1 ng/mL [7]. 

Because most fish entering the country have been processed in some way, fillets of 

catfish and basa or swa can be indistinguishable from one another. Therefore to maintain 

financial and health security, it would be advantageous to not only detect adulterants in 

fish tissue, but to also have a set of protocols allowing for the detection of nitrofurans 

regardless of the species origin. In this study, a method has been developed to detect 
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nitrofuran metabolites in the muscle tissue of channel catfish, swai, and tilapia fillets 

using liquid chromatography coupled with Electrospray Ionization (ESI) triple 

quadrupole mass spectrometry. 

Materials and Methods 

Nitrofuran standards of AOZ, AMOZ, AHD-HCl, and SEM and internal 

standards AOZ-d4 and AMOZ--5 were all purchased from Sigma-Aldrich. Analytical 

standards with purity greater than 99% were used. Standard solutions of 100 ng/mL were 

prepared by diluting 1 mg/ml solutions of each standard with 10 mL of methanol 

(MeOH). Internal standard solutions were prepared in the same way. Solutions were 

stored in a dark location and used within 6 months. Ethyl Acetate (EAc), n-hexane, 

HPLC grade water, Sodium Hydroxide, and 2-Nitrobenzaldehyde were also purchased 

from Sigma-Aldrich.  Chromatographic analysis was performed with a 1260 Infinity 

High Performance Liquid Chromatograph equipped with a Zorbax Eclipse XDB C8 

column (150mm x 4.6mm ID, 5 micron particle size) from Agilent Technologies (Santa 

Clara, California). Mass analysis occurred in an Agilent 6460 Triple Quadrupole Mass 

Spectrometer outfitted with a Jet Stream nitrogen source operating in positive 

electrospray ionization mode (ESI+). Mobile phase conditions for chromatographic 

analysis consisted of MeOH (A) and 10 mM ammonium formate in aqueous solution (B). 

Ten µL of sample was injected on column at a flow rate of 0.8 mL/minute with a column 

temperature of 30 C for the entire duration of the run. 

Gradient elution began at 20% of eluent B increasing to 95% over a period of six 

minutes.  Eluent B was increased to 100% for two minutes before returning to starting 

conditions in a 3 minute post run period for a total run time of 11 minutes per sample.  
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Mass Spectrometer analysis occurred under the following source conditions: sheath gas 

temperature, 400° C; drying gas, 325° C; sheath gas flow, 12 Liters/minute; drying gas 

flow, 10 Liters/minute; nebulizer pressure, 25 psi; and capillary voltage, 4000 volts. 

Analysis of nitrofuran metabolites and internal standards was conducted in Multiple 

Reaction Monitoring (MRM) mode during a 1.5 minute observation window with a dwell 

time of 50 ms. Method development, acquisition, and quantitation were performed using 

Agilent’s Masshunter software packages. SPE cleanup was performed utilizing 

Chromabond C6H5 cartridges. 

2.5 grams of homogenized fish fillet was weighed into a 50-ml polypropylene 

tube before addition of 0.2 M HCl and 100 µL of 0.1 M 2-NBA freshly prepared in a 

solution of methanol. As previously described cite extraction, hydrolysis, and 

dervitization occurred sequestered from light for 16-20 hours in a water bath at 37° C. 

Samples were acclimated to room temperature before neutralization at pH 7.1-7.5 with 

600-800 µL of 2.5 M NaOH dependent upon matrix along with 1.5 mL of 0.1 M di-

sodium hydrogen phosphate solution. Samples were vortexed and centrifuged at 3500 

RPMs (x G) before addition of 10 mL hexane. The aqueous layer was transferred to a 

new 50 mL polypropylene tube before undergoing SPE clean-up using X Chromabond 

C6H5 3 mL cartridges. The samples were conditioned with 6 mLs of HPLC grade ethyl 

acetate, methanol, and water before loading of the sample. The cartridge was first washed 

with 6 mL of water then 6 mL of 30% methanol. The metabolites of interest were eluted 

into a 15 mL falcon tube with 8 mL of ethyl acetate followed by evaporation to dryness 

under a steady stream of nitrogen using a Turbovap.  Samples were brought up in 1 mL 

of mobile phase (80% H20 w/ 10 mM Ammonium Formate ) 20% MeoH v/v). Lastly, the 
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samples were filtered through a 0.45 micron PTFE filter into auto-sampler vials. Samples 

were stored at 0 C and analyzed within 1 week. 

For this study, Mississippi farm-raised catfish fillets and imported swai and tilapia 

fillets were purchased from the local Kroger super market (Starkville, MS). Samples were 

homogenized in a Magic Bullet blender then stored in a freezer at 0 C before 

derivitization and analysis. Samples devoid of the analyte of interest were used as blank 

material for preparation of calibration standards and for the calculation of extraction 

efficiency and relative standard deviation (RSD). 

Results and Discussion 

Tilapia, channel catfish, and swai fish were chosen because all samples were 

relatively easy to acquire, could be used across multiple studies, and all fish are farm-

raised in their respective countries of origin and thus subject to adulteration.  Imported 

samples prone to contamination needed to be tested for adulteration.  Extraction, 

hydrolysis, and derivitization procedures were identical for each species. Mass 

Spectrometer parameters were adjusted using the Masshunter Optimizer software. This 

software automates the process of selecting the appropriate fragmentor voltage, collision 

energy, and product ions by performing several injections for each individual analyte at a 

concentration of 1 mg/mL given the molecular weight of the parent ion. Analysis of the 

calibration and internal standards was performed without chromatographic separation 

with mobile phase conditions for eluent A and B set at 50 percent. As further described in 

Table 2, the two transitions with the highest abundance were selected for verification of 

analyte identity. For the two internal standards, the transition with the highest abundance 
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was selected.  Source conditions and solvent selection were based off of previous studies 

of nitrofuran metabolites using similar instrumentation and methods [14, 66].   

Table 2 Mass Spectrometer source conditions 

Compound Molecular Transition Fragmentation Collision Dwell Retention R Recovery RSD

Weight Voltage Energy Time Time Squared

(grams / mole) (Volts) (Volts) (ms) (minutes) % %

AOZ 235 236 → 134 117 9 50 5.36 0.999868 110.74 14.95%

236 → 104 117 21 50 5.36

AMOZ 334 335 → 291.1 103 5 50 5.78 0.998695 104.62 11.93%

335 → 100 103 37 50 5.78

SEM 208 209 → 192.1 83 5 50 5.49 0.998326 120.47 16.50%

209 → 91.1 83 29 50 5.49

AHD 248 249 → 134 126 9 50 5.73 N/A N/A N/A

249 → 104 126 17 50 5.73  

Initially a C18 reverse phase column was chosen for chromatographic separation 

but total analysis time and quality of separation were less than ideal. An Eclipse XDB C8 

column was selected for the experiment due to a higher affinity for the metabolites, 

which resulted in adequate separation and a shorter run time. A flow rate of 0.8 

mL/minute was chosen to achieve a relatively short run time while also maintaining 

adequate chromatographic separation and column pressure within appropriate operating 

conditions. Intermediate solutions of calibration standards were injected at volumes of 5, 

10, 20, and 30 µL and were examined qualitatively, with 10 µL being chosen to minimize 

the total volume required for each injection while still maintaining chromatographic 

separation and instrument sensitivity.  Once optimum conditions were reached for 

gradient, flow rate, and injection volume, an injection program was created to inject 1 µL 

of an intermediate internal standard solution (20 ng/mL solution of d4-AMOZ and d5-

AOZ) along with 9 µL of sample or calibrant.  Chromatograms of nitrofuran metabolites 

at 1.25 ng/mL can be seen in Figure 3 below. 
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Figure 3 Nitrofuran metabolite chromatograms 

LC-MS-MS chromatograms of derivatized nitrofuran metabolites (NP-AOZ, NP-AMOZ, 
NP-SEM, NP-AHD) at concentrations of 1.25 ng/mL. 
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The metabolite AHD was not retained through SPE cleanup most likely due to the 

30% MeOH wash step along with a lack of affinity to the C6H5 cartridges. This lead to 

poor detection of the standard during analysis resulting in a poor calibration curve. AOZ, 

AMOZ, and SEM were retained through sample cleanup producing calibration curves 

(Figure 4, 5, and 6) with r-squared values greater than 0.998 which were considered 

adequate for further calculations. The lower limit of detection was 0.625 ng/mL. 

 

Figure 4 AOZ calibration curve 

Calibration cuve of AOZ standard spiked into swai at 0.3125, 0.625, 1.25, 2.5, 5, and 10 
ng/mL. 

 

Figure 5 AMOZ calibration curve 

Calibration curve of AMOZ standard spiked into swai fillet at 0.3125, 0.626, 1.25, 2.5, and 10 ng/mL 
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Figure 6 SEM calibration curve 

Calibration curve of SEM standard spiked into swai fillet at 0.3125, 0.625, 1.25, 2.5, and 
10 ng/mL 
 

Derivatized standard solutions (1000 ng/mL) were spiked into each matrix with 4 

replicates at a final expected concentration of 5 ng/mL.  Underivatized standard solution 

(1000 ng/mL) was also spiked into each matrix with 3 replicates at a final concentration 

of 5 ng/mL. The starting derivatized standard did not undergo SPE cleanup or analysis, 

making the efficiency of derivatization an unknown. Despite this, the resulting data (not 

shown) indicated that the efficiency of derivatization is less than 100% despite presence 

of 2-NBA in greater excess. Recoveries, shown in Figure 7, indicate exceptional 

extraction and derivatization of underivatized standards. RSD was determined to be less 

than 17 percent which is comparable to results observed by [66, 2]. 
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Figure 7 Extraction efficiency 

Chart illustrating extraction efficiency of AMOZ, AOZ, and SEM when spiked at 5 
ng/mL in catfish, swai, and tilapia matrices. Recoveries range from 90-130 percent. 
 

Blank samples (n=4) of catfish and swai along with (n=3) tilapia fillets were 

analyzed for the presences of nitrofuran metabolites. AOZ and AMOZ were not detected 

in any of the 11 samples analyzed. SEM was detected in all three matrices and this is 

attributed to the fact that semicarbabzide is a poor marker for nitrofurazone and is 

frequently found in soft plastic packaging and flour [15]. Blank samples were compared 

to reagent blanks, which underwent the entire experiment without the presence of tissue 

or standard solutions. 

Conclusion 

A short, robust method was developed for the analysis of nitrofuran metabolites 

using liquid chromatography coupled with triple quardupole mass spectrometry. Because 

of the lengthy derivatization process, cleanup and detection methods were optimized to 

reduce the time spent on analysis. Use of a phenyl column resulted in cleaner extracts for 
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analysis.  Chromatographic analysis occured in fewer than 12 minutes with detection of 

concentrations as low as 1 ng/mL. Alteration of the cleanup process is necessary to 

achieve better analysis of the AHD metabolite. Despite this, the recoveries and 

repeatability of the experiment are adequate. The method was tested and proved accurate 

in the determination of nitrofuran metabolites in real world samples. 
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DIFFERENTIATION OF FISH SPECIES WITH CHIP BASED ELECTROPHORESIS 

Abstract 

Chip-based electrophoresis was used in conjunction with polymerase chain 

reaction restriction fragment length polymorphism (PCR-RFLP) for the differentiation of 

catfish, swai, and other economically important species. By analyzing the restriction 

digestion products of several endonucleases (DdeI, HaeIII, NlaIII) using Agilent’s 2100 

bioanalyzer, unique fragmentation patterns were recorded using only muscle tissue or fin-

clips as source material. Multiple sample runs produced consistent results indicating that 

as few as one restriction enzyme was required for positive identification. This method of 

screening reduces the expertise, time, and expense required to reduce the mass 

mislabeling of imported fish. With further database development, PCR-RFLP could 

become the standard screening method. 

Introduction 

Farmers, fisherman, and consumers are dependent on what is now a global fish 

market.  Increases in worldwide demand and production have created new challenges and 

exacerbated old ones. Mislabeling of fish species, regardless of intent, poses risks to 

consumer health and security, state economies, and conservation efforts. Global entities 

such as the FAO along with the European Union (EU), the United States Food and Drug 
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Administration (FDA), and the Canadian Food Investigative Agency (CFIA) have all set 

forth regulations to combat this growing problem [4, 34, 25, 26, 27, 28, 54]. Similar to 

FAO and EU regulations, congressmen in the US have passed laws which describe how 

seafood products in the United States should be labeled [4]. The current problem is not a 

lack of regulation but a lack of enforcement of these regulations. 

The FDA lays out pretty straightforward guidelines for the proper labeling and 

description of seafood products. In addition to common and scientific names, congress 

has produced a list of acceptable market names that explicitly state products such as 

catfish, bonito, and crab must be labeled as such. The guidelines only state that 

vernacular and geographic descriptions are generally not acceptable. Due to a lack of 

enforcement, nonprofit groups such as Oceana have found mislabeling rates higher than 

50% in the United States [69]. 

Mislabeling which can occur at multiple points of contact such as super markets, 

sushi bars, restaurants, and even at the port or distributor level which represents a large 

security risk. Currently, the FDA identifies about 2 percent of incoming shipments [28]. 

Increased enforcement of existing regulations is necessary to prevent sickness, fraud, and 

allow for emerging markets to grow. Rapid growth of importation and processing of 

seafood products has resulted in incoming shipments of fish fillets that cannot be 

immediately identified. Many modern methodologies exist for the analysis of DNA for 

the identification of fish fillets such as DNA bar-coding and PCR-RFLP. DNA bar-

coding requires the sequencing of a specific gene sequence from mitochondrial DNA, 

usually cytochrome C oxidase subunit I. While extremely reliable, gene sequencing is 

often quite expensive and time consuming [36].  PCR-RFLP is a cheap alternative that 
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uses enzyme restriction digestion coupled with PCR amplification to examine gene 

sequences. Mitochondrial DNA is also a common target of PCR-RFLP. Studies have 

shown that mitochondrial cytochrome b can be used for comparison of salmon, eels, and 

hakes at various stages of processing [58, 37]. 

The southern states of Mississippi, Alabama, Arkansas, and Tennessee are mass 

producers of farm-raised catfish with Mississippi earning 175 million dollars in revenue 

as of last year [73]. With revenue slowly declining each year, dilution of the market with 

imported fish species poses financial and health risks. Pangasius species such as 

Pangasius hypothalmus and Pangasius bocourti originating from Vietnam and Taiwan 

have in the past contained banned antibiotic adulterants such as nitrofurans, amphenicols, 

and quinolones [7]. These residues are both mutagenic and carcinogenic and remain 

bound to tissue long after processing [59]. Because processing often alters the overall 

morphology of the fish, it often becomes difficult for an individual, taxonomists included, 

to differentiate one fillet from another [68]. A database containing restriction digestion 

fragments resulting from PCR-RFLP would be a suitable means of quickly screening 

incoming fish species. 

This study sought to accomplish two goals. The first was to utilize the bioanalyzer 

to differentiate multiple American catfish species from Asian Pangasiid using both fish 

fillets and fin clips as source material. Once this was completed, the database was used to 

identify basa fillets sourced from an internet supplier. The second goal of this project was 

to fill the aforementioned database with a variety of fish species that had some economic 

or environmental importance. Bonito, red snapper, king mackerel, wahoo, and many 

other fish species were sourced from local super markets or donated by the FDA’s 
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Dauphin Island lab for identification. Because red snapper and king mackerel were in 

greater supply, these samples were combined at different ratios to test the bioanalyzer’s 

ability to detect multiple fragment patterns in a single sample. 

Materials and Methods 

Sample Collection 

Samples for this study were collected from several different locations. First, 

Mississippi farm-raised catfish, swai, tilapia, and flounder fillets were purchased from the 

local Kroger supermarket. With the exception of the farm-raised catfish, all other fish 

were imported from other locales. Secondly, a variety of fish samples were collected 

from the FDA marine research lab in Dauphin Island, Alabama. Collected during 

Alabama’s annual fishing rodeo, samples of muscle tissue were collected from blue 

runner, bonito, flounder, king mackerel, red drum, red snapper, Spanish mackerel, and 

tripletail. These fish samples were positively identified on site using morphological 

features and all were frozen at 0° C.  Lastly, fin clips were obtained from wild-caught 

channel catfish and blue catfish in the Mississippi River in Memphis Tennessee and the 

Pascagoula River in Pascagoula, Mississippi and stored in ethanol. Whenever possible, 

three to four samples were collected for each species for analysis to verify intra-species 

consistency. Also, samples of red snapper and king mackerel DNA extract were 

combined in ratios of 95, 90, 85, and 80 percent for analysis. 

DNA Extraction Protocol 

Upon receipt of samples with the exception of fin clips, all fish were 

homogenized using a Magic Bullet blender and stored in falcon tubes at 0° C until 
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analysis. To prepare for analysis, samples were thawed and 150 mg (+/- 50mg) were 

weighed out and stored at 40° C until extraction. Genomic DNA was extracted utilizing 

the reagents and protocols supplied in Agilent Technologies DNA 1000 kit. Salt wash 

buffer and 80% ethanol solution were prepared using nuclease free sterile water and 

100% ethanol (Sigma Aldrich) and all reactions were scaled to meet the needs of the 

current sample set. Extracts were stored at 0° C or immediately amplified using 

polymerase chain reaction if time permitted. 

PCR Amplification 

Extractions yielded DNA with concentrations ranging from 5 ng/ µL to 500 ng/ 

µL which is suitable for further analysis. While spectrophotometric analysis of genomic 

DNA or analysis of PCR products to verify quality yield can be performed, for screening 

purposes these optional steps are unnecessary. A positive control of salmon DNA with an 

approximate concentration of 50 ng/µL l along with a negative control of sterile water 

was used to verify successful amplification and digestion. All preparations for the PCR 

reaction were scaled to fit the needs of the sample set plus one excess and were 

performed on ice.  To amplify the region of interest, a short section of mitochondrial 

cytochrome B, one microliter of genomic DNA extract was combined with 24 µL of a 

PCR reaction mixture containing sterile water, 2 x Master mix, and the universal primers: 

L14735 (5- AAA AAC CAC CGT TGT TAT TCA ACT A-3) and H15149ad (5-GCI 

CCT CAR AAT GAY ATT TGT CCT CA-3). The PCR reaction was carried out in an 

Eppendorf (Hamburg, Germany) thermo cycler under the following conditions: One 

cycle of 5 minutes at 95° C followed by 40 cycles of 30 seconds at 95° C, 30 seconds at 
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50° C, and 30 seconds at 72° C with a final cycle of 7 minutes at 72° C. PCR products 

were stored at -20° C or immediately digested if time permitted. 

Restriction Fragment Length Polymorphism and Bioanalyzer Analysis 

PCR amplification products underwent digestion in three individual PCR tubes 

containing the restriction endonucleases: Dde I, Hae III, and Nla III. The fragments were 

digested in a volume of 5 µL containing sterile water, a buffer solution, and the 

corresponding enzyme for a minimum 2 hours at 37° Cbut often extended overnight. The 

digestion process was halted with 60mM EDTA following a modified incubation period 

of 20 minutes at 80° C to ensure total cessation of the reaction. Digestion products were 

analyzed using Agilent’s Bioanalyzer lab-on-a-chip electrophoresis. Chips were prepared 

according to the protocols provided by Agilent. In brief, chips are loaded with gel 

containing a dye followed by addition of DNA markers. Then, each digested sample and 

ladder is loaded in the appropriate well before immediate analysis. Absence of 12 

samples on a chip requires the addition of sterile water to ensure proper analysis. Sample 

analysis is essentially automated occurring during a 30 minute window with results 

viewable after that time. 

Results and Discussion 

The goal of this study is to ascertain the capabilities of Agilent’s 2100 bionalyzer 

as a DNA fingerprinting tool for the purpose of identifying and differentiating fish 

species. The flexibility of PCR-RFLP lies in the unique endonucleases which can provide 

an increasing amount of differentiating ability. Coupled with chip based electrophoresis, 

PCR-RFLP can differentiate most fish species with three or fewer endonucleases quickly 
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and efficiently which makes it a great alternative to more expensive methods such as 

DNA bar-coding. In this study, the capabilities of chip based electrophoresis for 

differentiation of fish species was tested in two ways. First, fish species that are important 

from an economic or health standpoint have been analyzed and differentiated. Secondly, 

the ability of the bioanalyzer to differentiate mixed samples was tested by analyzing 

mixed extracts of red snapper and king mackerel. Snapper and mackerel were chosen 

because those samples were had in excess and also because red snapper has been reported 

by Oceana to be one of the most mislabeled fish species in America either by substitution 

with other fish species or other types of snapper. 

Table 3 Sample Origins 

Common Name Scientific Name Origin Location Sample Type Correctly Labeled

Blue Catfish Ictaluras furcatus Wild Memphis, TN Fin‐Clip Yes

Wild Pascagoula, MS Fin‐Clip Yes

Channel Catfish Ictaluras punctatus Farm‐raised Mississippi Fillet Yes

Farm‐raised Mississippi Fillet Yes

Wild Memphis, TN Fin‐Clip Yes

Wild Pascagoula, MS Fin‐Clip Yes

Basa Pangasius bocourti Farm‐raised Asia Fillet No

Swai Pangasius hypothalmus Farm‐raised Asia Fillet Yes

Tilapia Oreochromis Farm‐raised Asia/Africa Fillet Yes  
 

One of the advantages of PCR-RFLP is the source material (Table 3) that can be 

used for differentiation. Eggs, larvae, fillets, and fin clips can all be used in raw or 

cooked forms with less than a gram required for analysis. When comparing Pangasiid to 

Icatlaruid species, both fin-clips and fillets were used for analysis. No major differences 

were found between fin-clips and fillets other than natural degradation of fin-clips due to 

long term refrigeration. Differentiation of channel catfish and swai samples was still 
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possible with two of the three restriction enzymes (Figure 8). Agilent’s database verified 

the identity of both fillets and fin-clips successfully. 

 

Figure 8 PCR-RFLP gel 

Gels for chip-based electrophoresis of restriction digest products of (A) DdeI B) HaeIII 
C) and NlaIII for different fish species. 
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The next set of samples was those commonly considered to be important to the 

fishing industry. Only bonito and red drum were matched to Agilent’s database, but many 

others such as white trout, Spanish mackerel, bonito, and blue runner are frequent gulf 

catches. Table 4 shows the average of multiple fragments (n=3) detected for each 

restriction enzyme including a standard deviation making each fish differentiable from 

the other. Whiting was the only fish which lacked any fragmentation patterns. 

Table 4 Fragmentation patterns of Gulf fish species 

Common Name Scientifica Name D(SD) H(SD) N(SD) Database Match

Bonito Sarda sarda 229 (0.5) 136 (0) 122 (0.82) Yes

238 (2.38) 150 (0.5) 245(1.26)

175(0.5)

Cobia Rachycentron canadum 132 (0) 132 (0.58) 160 (0.58) No

348(1.53) 149 (0) 285(0.58)

355 (1.0) 161 (0.58)

Spanish Mackerel Scomberomorus maculatus 441 (2.65) 130 (0.58) 183 (0.58) No

149 (0) 281 (1.53)

182 (0)

Red Drum Sciaenops ocellatus 450 (0.58) 75 (0.58) 92 (0) Yes

117 (0.58) 107 (0)

130 (0.58) 289 (0.58)

148 (0)

Flounder (Store) Paralichthys 158 (0) 134 (0.58) 180 (0.58) Yes

277 (1.53) 294 (0.58) 290 (1.55)

285 (1.0)

Flounder (Wild) Paralichthys 190 (0) 137 (0.58) 290 (1.0) Yes

261 (1.15) 295(0)

Tripletail  Lobotes surinamensis 97 (0) 131 (0.58) 106 (0)

122 (0.58) 340 (0.58) 383 (1.0) No

210 (1.0)

Blue Runner Caranx crysos 472 (2.65) 47 (0) 124 (0) No

137 (1.0) 174 (0)

164 (0) 189 (0)

White Trout Salmo / Cynoscion 123 (0) 118 (0.5) 92 (0) No

349 (1.26) 133 (0.82) 107 (0.5)

355 (1.41) 222 (0.5) 291 (0.82)
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Although not matched to the database provided, samples can easily be matched to 

positively identified samples to verify authenticity when the database is found lacking.  

This removes the need for the screener to have any previous knowledge of DNA bar-

coding or sequencing for that matter.  One of the difficulties inherent in identifying fish is 

that most imported products have already been processed. Processes such as mixing and 

cooking alter the original DNA making identification more difficult. RFLP is 

advantageous because mitochondrial DNA which is the gene region of interest for most 

applications is quite resistant and still maintains interspecies differences after cooking. To 

test this, red snapper and king mackerel DNA was mixed at ratios ranging from 95% to 

80%. With as little as 5% of source material, red snapper and king mackerel were both 

differentiable using DdeI and HaeIII restriction enzymes (Figure 9 and Figure 10) 

 

Figure 9 DdeI Electropherogram 

Electroperhogram of DdeI restriction digestion products of king mackerel and red 
snapper mixed at a 95:5 ratio. 
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Figure 10 HaeIII Electropherogram 

Electropherogram of HaeIII restriction digestion products of king mackeral and red 
snapper mixed at a 95:5% ratio. 
 

The results of this study find that PCR-RFLP coupled with chip-based 

electrophoresis is a useful tool for the quick and efficient fingerprinting of fish species 

regardless if the fish has been filleted or mixed during processing. Taking less than a 24 

period, the process can easily be used by those not familiar with sequencing or taxonomic 

identification allowing for the quick comparison to an already compiled database which 

also removes the need for reference samples. 

Conclusion 

Because importation of seafood products is continually increasing and the 

problem of mislabeling is also growing, a method for quick differentiation of fish species 

is needed to protect citizens’ health and economic interests. This study concludes that the 

bioanalyzer is a useful tool for DNA fingerprinting. Capable of differentiating fish 
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species using restriction digestion products coupled with chip-based electrophoresis, the 

bioanalyzer simplifies the process of screening incoming seafood products. Not only is 

very little source material required, but individuals lacking expansive knowledge of 

sequencing or bar-coding protocols can still use the bioanlyzer for screening purposes. 

With an expansive database, chip-based electrophoresis stands out as a much needed tool 

to combat the growing mislabeling problem. 
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