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An estimated 39 million m3 of timber was damaged across the Southeast Forest 

District of Mississippi due to Hurricane Katrina.  Aggregated forest plot-level biometrics 

was coupled with wind, topographical, and soil attributes using a GIS.  Data mining 

through Regression Tree Analysis (RTA) was used to determine factors contributing to 

shear damage of pines and wind-throw damage of hardwoods.  Results depict Lorey’s 

Mean Height (LMH) and Quadratic Mean Diameter (QMD) are important variables in 

determining the percentage of trees and basal area damaged for both forest classes with 

sustained wind speed important for wind-throw and peak wind gusts for shear.  Logistic 

regression based on stand damage classification compared to RTA revealed LMH, stand 

height to diameter ratio, and sustained wind variable concurrence.   Reclassification of 

MIFI plot damage calls based on percentage of trees damaged increased predictability of 

wind-throw and shear classification 
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CHAPTER 1 

INTRODUCTION 

 

Hurricane Katrina caused unprecedented damage to the natural and built 

environment along Mississippi’s Gulf Coast.  In addition to the oppressive human toll, 

the strength and size of Katrina devastated the timber industry of Mississippi.  Timber 

losses alone tallied $1.3 billion, approximately worth two years annual harvest for the 

state of Mississippi (MFC 2005).  Severe forest damage was concentrated within 60 miles 

of the coast while moderate to light damage extended over 150 miles inland.  Forests hit 

the hardest were located in portions of southern Mississippi that comprise the Southeast 

Forest District.   

The Southeast Forest District was inventoried in 2006 by the Mississippi Institute 

of Forest Inventory (MIFI).  From the inventoried data, Hurricane Katrina was 

responsible for damaging over 500,000 acres (82%) of hardwood, 1.3 million acres 

(49%) of pine and just under 100,000 acres (49%) of mixed forest.  MIFI field crews 

collected and measured several tree metrics and noted damage types incurred to each tree 

located on established plots across the Southeast Forest District.   Tree metrics and 

categories inventoried include: species group, product, diameter at breast height (DBH), 

total height, type of tree damage, and base to live crown height.  From these individual 

tree metrics, basal area per plot, Lorey’s mean height, trees per acre, and quadratic mean 
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diameter (QMD) were calculated and aggregated to stand level.  These tree and stand 

metrics are knows as biotic factors.  These biotic measurements were coupled with the 

storm intensity, topography, and soil data of the region and known as abiotic factors.  The 

interrelationship between the biotic and abiotic factors creates a heterogeneous pattern of 

forest damage across the landscape.  Understanding the relationships among biotic and 

abiotic factors to forest damage will help both forest managers and emergency managers 

to better mitigate potential future forest damage from similar events.   

Damaged and downed timber increases the risk of wildfire occurrence and insect 

infestation (Everham and Brokaw 1996, Cooke et al. 2006).  The relative importance of 

biotic and abiotic factor interrelationships as contributors to wind-throw of hardwoods 

and shear of pines is investigated for the purpose of modeling the spatial distribution of 

vegetative debris.  Emergency response and recovery decisions regarding effective 

vegetative debris removal could be enhanced via these spatial models.  Emergency 

managers in charge of debris removal could assess damage via potential damage spatial 

distribution and optimize allocation of personnel and equipment to dispose of vegetative 

debris in a more efficient manner. 
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CHAPTER 2 

LITERATURE REVIEW 

 

The focus of this literature review is to investigate the existing state of knowledge 

of biotic and abiotic factors that contribute to the mechanics of wind-throw occurrence 

for hardwoods and shear occurrence for pines during hurricane conditions.  First, 

literature of the physical mechanics of wind-throw and shear are examined at the 

individual tree-level and stand-level.  Secondly, literature on differing biomechanical and 

physical properties of pines and hardwoods that influence unique damage occurence are 

identified and reviewed.  Next, literature of biotic and abiotic factors that predispose 

hardwoods to wind-throw occurrence and pines to shear occurrence are reviewed at the 

landscape scale.  Numerous studies have been published across wide-ranging 

geographical locations, forest types, and tree species.  Methods and results of these 

studies that relate to forest damage in southeastern Mississippi generated by Katrina are 

reviewed. 

Physical Forces Applied to Trees during Hurricanes: 

Though it might initially appear that the process by which wind blows a tree over 

or stem breakage occurs is simple, there are applied and resistive forces at work that 

determine each respective damage type’s probability of occurrence (Figure 2.1).  Wind-

throw occurs when the applied lateral forces on a tree are transmitted down the trunk to 
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create a torque force that exceeds the resistance to turning of the root/soil plate (Stathers 

et al. 1994; Moore 2000).  Shear occurs when a tree is subject to lateral forces that 

exceed the stem strength but that are not strong enough to dislodge or break the roots and 

roll the root ball (Putz et al. 1983).  Two applied lateral forces that cause wind-throw or 

shear are the force of the wind on the crown and stem and the force of gravity acting 

downward on the crown and stem during dynamic swaying (Trousdell et al. 1965, 

Fredericksen et al. 1993, Stathers et al. 1994, Everham and Brokaw 1996, Peltola 2006). 

These two applied forces act in the same manner on all trees (Peltola 2006). However, it 

is the different biotic and abiotic factors present that create differing damage types.  For 

simplistic reasons, these physical relationships are best described on the individual tree-

level that can then be applied to the stand-level (Stathers et al. 1994). 

 

            

Figure 2.1 Applied and Resistive Forces on Trees from Wind Loading 

 

 

 



 5 

Individual Tree-Level Physical Forces and Dynamics: 

Peltola (2006) and Stathers et al. (1994) describe the following physical equations 

that subsequently determine the inherent susceptibility of trees to wind-throw or shear.  

The first lateral force that contributes to the overall torque is a function of wind on the 

crown and stem at i-th increments of height (Eq. 2.1):  

         Fiw = (ρAiCDiui
2)/2                                                   Eq. 2.1 

where ρ is the density of the air, Ai is the streamlined projected area of the crown and 

stem perpendicular to wind flow (in square meters) at the i-th increment of height, CDi is 

the drag coefficient of the crown, and ui
 is the wind speed at height (i) above the ground.  

The second lateral force of gravity increases once substantial bending and swaying of the 

tree occurs (Peltola 2006).  The horizontal displacement of the crown and stem from its 

vertical axis translates into a gravitational force acting to pull the tree downward (Eq. 

2.2). 

Fig = mixig                                                                 Eq. 2.2 

where mi is the mass of the i-th height increment, xi is the horizontal displacement from 

the vertical, and g is the gravitational acceleration (9.8 m/s) (Stathers et al. 1994).  Based 

on Eq. 2.1 and Eq. 2.2, several biotic and abiotic factors that affect wind-throw potential 

can be deduced.  Biotic factors that influence the mechanics of wind-throw include crown 

density, crown size, stem elasticity, wood density, and stem mass, while abiotic factors 

are wind speed, wind duration, and precipitation intensity.  Summing the wind and 

gravitational forces for each i-th height increment of the tree equals the torque, or 

bending moment of the tree stem (Eq. 2.3). 
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       BM = Σ(Fihi)                                                       Eq. 2.3 

where hi is the height of the i-th increment and Fi is the summed horizontal force ( from 

wind and gravity) on that increment (Stathers et al. 1994).  As a tree becomes taller, the 

bending moment along the main stem increases and the tree becomes increasingly prone 

to wind-throw or shear.  Thus, the biotic factors of height, diameter, and the height to 

diameter ratio of a tree have a role in wind-throw occurrence (Curtis 1943, Everham and 

Brokaw 1996, Merry et al. 2009).  These biotic factors have been found to be significant 

in many studies (Jacobs 1936, Coutts 1983, Petty and Swain 1985, Moore 2000, Meunier 

et al. 2002, Fredericksen 1993).  Opposite of bending moment, an applied force, there are 

resistive forces that attempt to keep the tree up-right. 

Resistive forces counteract the applied wind and gravitational forces acting on the 

crown and stem (Peltola 2006).  A tree must rely on its root anchorage to resist these 

forces (Frederickson 1993, Stathers et al. 1994, Ray and Nicoll 1998, Dupey 2005, 

Peltola 2006).  Resistance to up-rooting or stem breakage is estimated based on tree 

pulling experiments by determining regressions between resistive bending moments and 

various tree characteristics (Frederickson 1993, Ray and Nicoll 1998).  These biotic 

factors include root depth, root mass, weight of the root-soil plate, and stem mass 

(Stathers et al. 1994, Peltola 2006).  Although, the root-soil strength and root-soil mass 

relationships to wind-throw and shear occurrence have been measured through static 

winching/pulling tests, relationships between root-soil properties and wind-throw and 

shear can not be tested at the landscape scale.  In static winching/pulling tests, only a 

select number of trees are tested at a specific site and few studies have correlated 

differing soil types to differing critical bending moments (Ray and Nicoll 1998, Dupuy et 
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al. 2005, Cucchi et al. 2004).  However, proxy measurements that affect root-soil 

strength and root-soil mass are more readily studied across the landscape.   

Proxy measurements of the root-soil interface include soil depth, soil texture, soil bulk 

density, and soil infiltration rate (Petty and Swain 1985, Ruel 1992, Frederickson 1993, 

Cucchi et al. 2004, Peltola 2006).  Trees growing in deep, well-drained soils produce 

much larger root systems than those in soils where anaerobic conditions, high bulk 

density, stoniness, hard pans, or near-surface bed-rock restrict root development 

(Touliatos and Roth 1970, Stathers et al. 1994).  Soil texture varies in the amount of sand, 

silt and clay present which can also influence the root development (Trousdell 1965).  

Trees growing in sandy well-drained soils are generally deeply rooted than trees growing 

in clay soils, soils with inhibiting clay layers, or soils with high water tables.  When soils 

become saturated, the shearing strength decreases dramatically with the loss of adhesion 

and cohesion of the soil granules with the roots.  Ray and Nicoll (1998) performed 

winch/pull tests on Sitka Spruce (Picea sitchebsis) and found on soils with higher water 

tables, the critical bending moment was two to three times less than those winched/pulled 

on well-drained, dry soils.   

Sandy, loamy, and silty soil textures have greater pore space allowing for less 

restriction of root growth than clay soils.  Even though sandy and sandy loam soils are 

well drained (i.e. larger pore spaces), this allows for faster saturation of the soils in high 

precipitation events (i.e. hurricanes).  Trousdell (1965) observed 30% of trees on sandy 

profiles where wind-thrown, opposed to only 5% of trees located on silt and clay profiles.  

Other abiotic factors that increase wind-throw or shear include the presence of pathogens 

which induce weakness of the stem or root rot (Thompson 1983, Webb 1988, Putz and 
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Sharitz 1991, Everham and Brokaw 1996).  These factors at the individual-tree scale all 

influence the type and amount of damage sustained. 

At the individual tree scale, there are many biotic and abiotic variables that can be 

identified that modify wind-throw potential based on the physical metrics of a tree set in 

motion by wind (Cremer 1982, Putz et al. 1983, Petty and Swain 1985, Frederickson 

1993, Lidemann and Baker 2002, Kupfer 2008).  Available literature suggests that 

important biotic factors include:  crown density, crown size, stem elasticity, stem density, 

stem mass, height, diameter, height to diameter ratio, root depth and root mass.  Abiotic 

factors identified include: wind speed, wind duration, total precipitation, precipitation 

intensity, soil texture, soil infiltration rate, and soil bulk density.  Interaction among all 

these variables predisposes an individual tree to the type of damage incurred (Everham 

and Brokaw 1996, Merry et al. 2009).  Yet, often trees are concentrated in forests and 

plantations, causing additional biotic and abiotic dynamics to affect the pattern of tree 

damage (Foster and Boose 1992).    

Stand-Level Physical Forces and Dynamics: 

A forest stands’ ability to withstand strong winds such as hurricanes has been 

found to be associated with a number of topographical, forest, and silvicultural factors 

(Wang and Xu 2008).  Topographical properties including elevation, slope, aspect, and 

surface roughness determine the forest stand’s relative exposure to wind (Lugo 1983, 

Foster 1988, Foster and Boose 1992, Boose and Foster 1992, Everham and Brokaw 1996, 

Lindemann and Baker 2002, McNab et al. 2004).  Forest factors include species 

composition, average stand height, average stand density, and natural canopy gaps (Smith 

et al. 1987, Stathers et al. 1994, Everham and Brokaw 1995, Xi 2008).  Silvicultural 
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management of trees can increase or decrease the susceptibility of individual tree damage 

through thinning, pruning, or edge feathering (Alexander 1964, Fredericksen 1993, 

Stathers et al. 1994, Stanturf 2007).  

The topographical position of trees relative to terrain features such as slopes, 

ridges, and valleys can either protect or expose them to strong winds.  Governing factors 

of topography include the elevation, slope, aspect, surface roughness and their relative 

location to topographical features.  Observed forest damage has typically been greater on 

windward sides of slopes than on leeward sides (Bellingham 1991, Reilly 1991, Walker 

1991).  However, forests on the leeside are still prone to turbulent eddies that develop 

(O’Cinneide 1975).  Anderson (1954), Gloyne (1968), and Foster and Boose (1992) 

found lee-slopes greater than 10% were protected (Everham and Brokaw 1996).  Higher 

elevations are generally susceptible to higher wind speeds, thus greater damage (Boose et 

al. 1994).  However, trees located in river valleys have also suffered high amounts of 

damage due to wind funneling (Alexander 1967, Walker 1991).  Steep slopes correlate 

with more wind-throw, but not necessarily more overall damage (Putz et al. 1983).  This 

could be a result of shallow soils resulting in shallow rooting which enhances the chances 

of wind-throw.  Exposure is a complex relationship of aspect, slope, surface roughness, 

and topographic position, while damage itself can reflect topographic correlates with 

species characteristics (Everham and Brokaw 1996). 

There are several aspects of forest stand conditions and composition that 

influence the severity of wind damage across a landscape.  These aspects include even-

aged vs. mixed-aged stands, single-species vs. mixed-species stands, and maturity of 

various trees within the stand (Everham and Brokaw 1996).  Even-aged stands produce a 
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more uniform canopy height which does not readily allow for wind gusts to penetrate 

deep into the canopy.  With all trees being relatively the same height, no one tree located 

within the interior of the stand is more exposed than any other given elevation, slope, and 

aspect stay constant across the stand.  Whereas in mixed-age forest stands, the taller trees 

have greater exposure to winds and are more likely to experience damage.  The forest 

composition of mixed-aged stands are made up of dominate and co-dominate species.    

Dominants are early successional species that establish themselves more readily 

after a disturbance while co-dominants exist in the understory (Everham, and Brokaw 

1996, Xi 2008).  Dominants are subjected to greater exposure by their height, thus 

creating greater bending moments along their stems and increasing their chances of wind-

throw or shear. Co-dominants are typically less mature, with less exposure to the wind 

(Everham and Brokaw 1996).  Within the Southeast U.S., dominate species within 

mixed-aged stands typically includes Pine species (Pinus), while late-succesional species 

present in the understory are hardwood species (Edeburn 2009, Xi 2008) (Figure 2.2). 

Pines species are more shade intolerant and grow at a faster rate than many other 

hardwood species (Martin and Gower 1996).  Pines are typically dominates of a given 

forest stand and are exposed to higher winds while hardwoods are generally intermediates 

or under-story in managed pine stands.  Mortality tends to be higher in early sucessional 

species, thus differences in susceptibility among broadleaf species may be due to their 

successional class (Webb 1986, Zimmerman et al. 1994, Everham and Brokaw 1995).  

Hardwoods are dominants in lower river basins with wetter soils where pines grow better 

in sandier, well-drained soils.  Without clearing and prescribed burning of managed 

forests, hardwoods would have a much larger aerial extent in southern Mississippi. The 
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stand density of dominants and co-dominants also contributes to the relative 

windfirmness of each tree and the stand overall.  

 

 

Figure 2.2 Succession of the Gulf Coastal Plain. 

 

Greater density stands tend to have less damage due to interlocking root-systems, 

inter-crown damping during swaying, and the affect of dense crowns reducing wind 

penetration into the stand (Stathers et al. 1994).  However, the individual tree that is part 

of a dense stand is not wind-firm in isolation because of restricted rooting, and higher 

height to diameter ratios due to competition for natural resources (Everham and Brokaw 

1996).  A dense stand is wind-firm as a whole but if a few trees are wind-thrown or 

sheared and the canopy is opened up, subsequent tree failure is more likely to happen 

(Merry et al. 2009).  One location where tree failure is most likely to occur is along the 

edge of forest stands.  Stanturf et al. (2007) determined the Modulus of Rupture (MOR) 

threshold for stem breakage of longleaf and loblolly pine occurs at lower wind speeds in 

open stands (7.5m spacing) than in more dense stands (2.5m spacing) (Figure 2.3).  

Conversely, tree height (i.e. exposure), was the primary factor in determining stem failure 
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of interior longleaf and loblolly pines (Figure 2.4).  Figures 2.3 and 2.4 also depict 

longleaf pine having a greater resistive bending moment than loblolly pine, thus agreeing 

with Touliatos and Roth (1970), Hughes (2006), and Oswalt and Oswalt (2008). 

 

 

Figure 2.3 Bending Moment expressed as Newton Meters (Nm) of trees at the 
Stand Edge as a function of Wind Speed. 
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Figure 2.4 Bending Moment expressed as Newton Meters (Nm) of trees at the 
Stand Interior as a function of Wind Speed. 

 

Trees along the edge of stands have greater exposure to high winds during 

hurricanes than trees located deeper in the stand.  The adaptive growth response of trees 

to mechanical forces like wind is known as thigmomorphogenesis and causes pre-

conditioning of trees (Jaffe 1973, Meng et al. 2008).  The greater exposure to natural 

wind regime has been known to pre-condition trees along edge boundaries (Coutts 1986, 

Cucchi 2004).  Pre-conditioning naturally builds up the stem and root strength over time 

in the direction of the predominate wind (Stokes 2002).  Cucchi (2004) investigated the 

root anchorage differences of maritime pine trees that grew along the edge of forest 

stands and those which grew towards the center through static winching.  Results 

indicated the soil-root plate of edge trees was three times more asymmetric, with a soil-

root plate 30% wider on the windward side and nearly two times larger that those in inner 

trees.  Concurring, Stokes (1995a,b) subjected Sitka spruce to wind 12 hours a day in a 
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wind tunnel experiment for one growing season and found root growth on the windward 

and leeward side were double compared to growth perpendicular to the wind direction.  

Leeward roots were thicker than roots found elsewhere in the rooting structure, whereas 

windward roots were more branched with increased surface area.  Thicker and longer 

roots add to the over all root-soil mass which increases the resistance force to counteract 

the bending moment placed on a tree during high winds.  This, however, places more 

force along the stem and favors shear damage to occur.  Stanturf et al. (2007) states the 

threshold for damage due to stem breakage is much lower along stand edges rather than 

in the interior of the stand and conversely tree height (i.e. exposure), was the primary 

factor in determining stem failure of interior longleaf and loblolly pines (Figure 2.3 and 

Figure 2.4 respectively).  If the strong wind differs by 90 degrees from the predominant 

wind regime, the tree will be more prone to wind-throw (lack of root support).  Wind-

throw associated with hurricane Katrina most frequently occurred along roads, powerline 

corridors, open fields and other landscape corridors (Stanturf et al. 2007).  Wind-throw 

was also found frequently in forested areas with edges created by adjacent stands with 

varying tree heights and densities (Marion et al. 2005).  To assuage the abrupt surface 

roughness experienced along forest stand edges, proactive silvicultural measures have 

been taken to mitigate wind-throw and shear through silivicultural treatments.   

Silviculture refers to the art and science of controlling the establishment, growth, 

composition, health, and quality of forests to meet diverse needs and values of many 

landowners, societies, and cultures (Boone 2005).  Specific silvicultural procedures can 

either exacerbate or mitigate losses of timber in a catastrophic wind event.  Such 

procedures are thinning, pruning, and edge feathering (Stathers et al. 1994).  The 
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temporal proximity of thinning to the catastrophic wind event greatly impacts the amount 

of damage incurred.  

Thinning is a necessary step in the management of either natural or planted 

forestland.  The three goals of thinning are to promote growth of the residual trees, to 

promote health of the residual stand and provide an economic return to the landowner 

(DeLoach 2007).  Initially a site may be able to support 600-700 trees per acre, however 

over time as the trees become larger and use more nutritional resources, the health and 

growth rates of the trees are affected.  To protect both the investment and the forest 

ecology, landowners and forest managers thin the forest stand.  The first thinning of pines 

in Mississippi typically occurs between 12-18 years of age when they reach an average 

height of 40 feet (Traugott 2002).  In order to maintain growth rates, about 40 percent of 

the trees are removed (Traugott and Dicke 2006).  Since dense stands compete for 

resources, individual trees have high height-to-diameter ratios.  When the canopy is 

opened up through thinning, the individual trees are highly susceptible to damage during 

the next high wind event.  Trees become more wind-firm after a few years of exposure as 

they develop reaction wood in response to swaying and take up more nutrients (Stathers 

et al. 1994, Meng et al. 2008).    

Recently thinned hardwood and pine stands suffer the greatest amount of damage 

during a hurricane (Alexander 1964, Trousdell et al. 1965, Touliatos and Roth 1970, 

Cremer et al. 1977, Stathers et al. 1994, Lindemann and Baker 2002).  Cremer et al. 

(1977) studied the impact of catastrophic wind on plantations in Australia with stands 

thinned within 5 years before the disturbance having 22% wind-throw damage opposed to 

0.2% for stands greater than 5 years.  In addition, un-thinned stands downwind of 
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clearcuts had 38% windthrow, but if these downwinds stands where thinned less than 6 

months prior, wind-thrown damage increased to 88%.  Cremer et al. (1977, 1982) suggest 

that five years is required to recover thinning, which is supported by Weidman’s (1920) 

results that two-thirds or more of damage occurred in the first five or six years after 

thinning.  Alexander (1964) reviewed previous work that has shown windfall losses to be 

increased by any kind of partial cutting.  Toursdell (1965) noted the presence of an 

impervious clay layer overtop sandy soils at the surface lead to severe wind-throw of 

loblolly pines in recently thinned stands.  When Camille struck the Mississippi coast in 

1969, Touliatos and Roth (1970) found that recently thinned loblolly pine stands with 

little taper were severely sheared, while open pine stands fared better.  Thinning of forest 

stands can have severe consequences if they coincide with a hurricane.  Cremer et al. 

(1982) suggest margins of stands should be thinned and pruned to make them more wind-

permeable and therefore prevent extreme turbulence at the edges of stands.  In this 

manner, edge thinning, known as edge feathering can moderate the abrupt forest edge 

interface to reduce turbulent eddies. 

Stabilization treatment of the forest edge has been shown to reduce the amount of 

wind-throw and shear damage (Stathers et al. 1994, BCMF 2003).  The frequency of 

strong winds and damage occurrence of forests in British Columbia, Canada have lead to 

the development of wind-throw handbooks by Stathers et al. (1994) and BCMF (2003).  

To enhance the stability of forest edges, Stathers et al. (1994) and BCMF (2003) 

developed recommended procedures for edge feathering and crown pruning.  The 

procedures can be different depending if the edge is composed of mixed-age species of 

varying height or for even-aged stands of uniform height.  In multi-storied stands, where 
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smaller, windfirm trees can be left, removal of taller trees at the stand edge may help 

crate a profile that gradually lifts the wind up over the edge.  For even-aged stands, the 

edge can be thinned by removing dominants having large crowns, large height-to-

diameter ratios, and physical deformities or visible disease.  In either case, feathering is 

best if confined to the forest tree length into the stand from the edge and not exceed 20-

30% of the total basal area. 

Another approached described by Stathers et al. (1994) and BCFM (2003) is 

crown pruning.  Crown pruning occurs when climbers prune back the larger branches and 

reduce the surface area of the crown.  As with edge feathering, the trees selected for 

crown pruning depends on the relative windfirmness of each tree to begin with.  

Typically, dominants with large crowns and trees with larger height-to-diameter ratios are 

pruned to reduce the force of the wind on the crown.  Removal of 20-30% of the crown is 

suggested by Stathers et al. (1994).  Primary and secondary branches that do not come in 

contact with other trees are removed while branches in close proximity to other trees are 

kept.  Branches proximal to other trees are kept because of the inter-crown dampening 

effects from the dynamic swaying of the tree.   

The physical forces of a hurricane place great stress on the individual tree and the 

forest stand.  The type of damage depends on the complex interaction of biotic and 

abiotic variables identified through the physical relationships of individual trees and 

stand dynamics.  Yet, damage observed through post-storm inventories, static 

winching/pulling, and wind tunnel experiments reveal hardwoods are more likely to 

wind-throw while pines are more likely to shear (Curtis 1943, Petty and Swain 1985, Putz 

et al. 1983, Foster 1988a, Everham and Brokaw 1996, Hook et al. 1996, Peltola et al. 
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2000, Rodgers et al. 2006, Merry et al. 2009).  However there have been cases were 

pines where wind-thrown more than hardwoods (Trousdell 1965, Xi 2008).  Differing 

species are more or less susceptible to a particular type of damage based on their inherent 

biomechanical and physical properties and the specific properties of the site. 

Differing Biomechanical and Physical Properties of Trees 

The following section reviews the differences between species groups (pine and 

hardwoods) that predispose each class to suffer unique damage patterns.  Different 

biomechanical properties are inherent to each species, much less differing taxonomy 

classes of trees (Everham and Brokaw 1996).  These biomechanical and physical 

properties include: tree height, weight, wood density, height-to-diameter ratios, drag 

coefficients, crown size, crown density, and those described above in sections 2.1.1 and 

2.1.2 (Petty and Swain 1985, Everham and Brokaw 1996, Peltola et al. 2000, Merry et al. 

2009).  Since pines species comprise the dominant cover type across the study area, their 

biomechanical and physical properties that induce shear or snapping of stems are 

examined.  The biomechanical and physical properties that induce increased 

susceptibility to wind-throw of hardwoods are also reviewed. 

Biomechanical and Physical Properties of Pines: 

Temperate, sub-tropical, and tropical coniferous forests have some definitive 

attributes that predispose pine species to shear rather than wind-throw (Everham and 

Brokaw 1996, Petty and Swain 1985, Merry et al. 2009).  Pine species typically have 

greater height-to-diameter ratios as they grow compared to hardwoods which increases 

the susceptibility of snapping (Petty and Swain 1985).  The shape of the bole and thus the 
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taper function of pines are generally are less than hardwood species, leading to a 

cylindrical shape rather than a more conical shape.  The cylindrical shape of most pine 

species places much greater strain on the stem during high wind events (Peltola et al. 

2000, Merry et al. 2009).  Many hardwood species have characteristically denser wood 

and tend to grow more slowly while pine species which grow faster resulting in softer, 

less dense wood (USFS 1994).  Due to their high growth rate, the tree rings of pines are 

spaced wider, and result in decreased density of wood fibers (Rodgers et al. 2006).  One 

particular study focused on the varying amount of damage between differing pine species 

in southern Mississippi as a result of Hurricane Katrina (Hughes 2006). 

Hughes (2006) found that not all pine species are affected equally, noting loblolly 

pine (Pinus taeda) suffered more damage than slash pine (Pinus elliottii) and longleaf 

pine (Pinus palustris).  Two plantations in Forest County, Mississippi were planted in the 

same year (1985) at the same tree farm, three miles apart.  The plantations consisted of 

three different species of pine and both had been thinned in 2002.  At both sites, 84% of 

loblolly pine (Pinus taeda) was damaged compared to 47.6% slash pine and 36% longleaf 

pine.  Of the 84% damaged loblolly pines, 75.9% had snapped stems, whereas slash pine 

had 38.1% and longleaf pine at only 8.9%.  Worth noting is that slash and longleaf pines 

are found more along the coast than loblolly pine suggesting slash and longleaf have 

adapted to a windier coastal climate and are thus less susceptible to damage.  This agrees 

with Touliatous and Roth (1970) after they surveyed damage of during Hurricane Camille 

and observed loblolly had the least resistance to stem breakage followed by slash pine 

and longleaf pine.  In Hughes (2006), longleaf pine actually had a greater percentage of 

wind-throw than shear (10.2% vs. 8.9%).  Longleaf pine has a higher wood specific 
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gravity (0.59) than loblolly (0.51) but is equal to slash (0.59) (USFS 1994).  As noted 

with hardwoods, trees with higher specific gravities have greater density wood and are 

more likely to fail at the root-soil plate than in the main stem.  The higher shade-

intolerance of longleaf pine allows for better self-pruning of bottom branches than in 

slash pine (USFS 1994).  More branches, coupled with a higher, denser crown, increases 

the surface area of mature slash pine compared to mature longleaf pine.  This greater 

surface area contributes to a greater lateral force placed on the stem by the wind.  Hughes 

(2006) suggests longleaf pine’s survival success pertained to its smaller diameter and 

shorter height compared to loblolly and slash pine.  The smaller diameter and height 

enabled it to be more flexible in high winds.  Secondly, Hughes (2006) notes that the 

thinning of longleaf pine was not a traditional fifth-row thinning as in the loblolly and 

slash pine due to smaller size and smaller basal area.  Despite longleaf pine’s resiliency, 

the smaller size and smaller basal area make longleaf pine less desired for forest 

investors.  Since timber value is based on weight, an investor would want to grow a large 

tree as fast as possible to get a quicker and greater economic return (Beckwith 1997). 

Therefore, in lieu of its slow growth rate compared to loblolly and slash pine, longleaf 

pine is not favored by forest landowners despite its hurricane resiliency.  

Summarizing, conifers tend to have small taper ratios and thus larger height-to-

diameter ratios that focuses more stress on the main stem rather than the soil-root plate 

(Putz et al. 1983, Petty and Swain 1985, Foster 1988a, Everham and Brokaw 1996, 

Merry et al. 2009).  Taproots of conifers can provide strong anchorage when growing 

deep, well drained soils with no restrictive layers (Trousdell 1965).  Since the root-soil 

anchorage strength is large compared the stem strength, pines are more predisposed to 
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shear damage than wind-throw although it can occur.  Hardwoods, however, have higher 

density wood and tend to be more dense when compared to wood from pine trees (Cutis 

1943, Petty and Swain 1985, Everham and Brokaw 1996, Merry et al. 2009).  The 

stronger stem allows for more kinetic energy from the dynamic swaying to be transferred 

to the ground.  This in turn, places stress on the root-soil plate. 

Biomechanical and Physical Properties of Hardwoods: 

Catastrophic wind storms affect temperate, sub-tropical, and tropical broadleaf 

deciduous forests through out the world (Everham and Brokaw 1996).  Yet, some 

conclusive biotic factors have been identified across a broad spectrum of hardwood 

species that render it more susceptible to wind-throw as opposed to shear (Curtis 1943, 

Putz et al. 1983, Foster 1988a, Everham and Brokaw 1996, Hook et al. 1996, MIFI 2006, 

Oswalt and Oswalt 2008, Merry et al. 2009).  In relation to wood density, Curtis (1943) 

found the bending force required for hardwoods is greater than twice that required for 

white pine (Pinus stobus L.).  Weaver (1989) and Walker (1992) found that higher 

specific gravity (greater density wood) is associated with less stem breakage.  This 

concurs with Putz et al. (1983) which found trees with shorter, thicker stems and denser 

wood tend to uproot, whereas species with low-density wood tend to snap and have 

higher mortality rates.  Foster (1988a) reported that species with full crowns and shallow 

roots are more susceptible to wind-throw than species with a vertical distribution of 

canopy, flexible branches, and a less-tapered shape.  Several post-storm inventories in 

Mississippi following hurricane land-falls are consistent with the above literature with 

Touliatos and Roth (1970) observing densely-crowned trees to be prone to wind-throw 

opposed to open-foliage crowns from felled trees due to Hurricane Camille.   
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A more recent inventory of 1,349 one-fifth acre sample plots done by Glass and 

Oswalt (2006) in the 6 southern-most counties of Mississippi after Katrina showed oak-

gum-cypress forests had the most basal area damaged at 42%.  This was followed by oak-

hickory (30%), oak-pine mix (28%), and loblolly-shortleaf pine (25%).  Oswalt and 

Oswalt (2008) inventoried 1581 hardwoods and found more wind-related damage across 

the entire state than softwoods (p<0.0001).  Oswalt and Oswalt (2008) also determined 

that hardwoods suffered 1.9 times more wind-throw occurrence than softwoods.  

Touliatos and Roth (1970) noted hardwood trees most susceptible to wind-throw included 

pecan (Carya illinoensis), hickory (Carya tumentosa, Carya glabra), dogwood (Cornus 

florida), red maple (Acer rubrum), and water oak (Quercus nigra) across southern 

Mississippi.  Oswalt and Oswalt (2008) surveyed southern Mississippi following Katrina 

and found water oak, and red maple hardwoods susceptible along with yellow poplar 

(Liriodendron tulipifera) and sweetgum (Liquidamba styraciflua) agreeing with Touliatos 

and Roth (1970).  Species typical of upland sites (yellow poplar and loblolly pine) were 

among the most damaged while select bottomland species (pondcypress, swamp tupelo, 

and blackgum) were among the least damaged (Oswalt and Oswalt 2008).  Pondcypress 

and swamp tupelo are resilient in hurricanes due to their buttressed trunks, extensive root 

network, and deciduous habit which greatly reduces the surface area exposed to high 

winds (Touliatos and Roth 1970, Putz et al. 1983, Peterson 2000, Gresham 1991).  Pecan, 

yellow poplar, red maple, and water oak are more susceptible due to their large crowns 

and location in hydric soils along river valleys in Mississippi (Hook et al. 1996).  The 

hydric soils of river valleys and bottomlands restrict the root depth allowing for less 

anchorage to occur (Everham and Brokaw 1996, Wang and Xu 2008).  Similar results by 
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Hook et al. (1996) were found in bottomland hardwoods in South Carolina with the 

passage of Hurricane Hugo.  

To summarize, the dense broadleaf crown of a larger and thus older deciduous 

hardwood given same site characteristics and higher density wood with a lower center of 

gravity compared to coniferous trees results in greater probability of exceeding the root-

soil strength than the stem strength.  The susceptibility among hardwood species to wind-

throw differs based on the characteristics of that species (Touliatos and Roth 1970, Putz 

et al. 1983, Peterson 2000, Gresham 1991, Everham and Brokaw 1996, Hook et al. 1996, 

MIFI 2006, Oswalt and Oswalt 2008, Wang and Xu 2008).  The tree characteristics of 

pines and hardwoods have been identified through small-scale post-storm inventories, 

static winching/pulling testes, and wind tunnel experiments.  Only recently have studies 

used remote sensing and GIS to study biotic and abiotic variables on the landscape scale 

as they relate to the pattern of damage observed (Foster and Boose 1992, Jacobs and 

Eggen-McIntosh 1993, Boose 1994, Nix 1996, Ramsey et al. 1997, Ramsey et al. 2001, 

Ayala-Silva and Twumasi 2004, McMaster 2005, Murrah 2007, Kupfer 2008, Xi 2008, 

Wang and Xu 2008).   

Review of Statistical Methodologies to Depict Threats to Forests 

Forests are subject to multiple threats which can jeopardize their health, ecology, 

biodiversity, and resources (SRS 2006).  Such threats can be natural or anthropogenic.  

Natural disturbances include wildfire, catastrophic wind events, drought, ice storms, 

insect infestation, fungal/pathogen outbreaks, and invasive plants.  Anthropogenic 

disturbances include pollution, forest fragmentation, and urbanization (SRS 2006).  

Sections 2.1 and 2.2 of this literature review identified many biotic and abiotic variables 
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that affect the amount and type of damage incurred to hardwood and pines during a 

hurricane.   A large database is required in order for hidden patterns of these variables to 

be extracted and understood.  A method that extracts hidden patterns in large amounts of 

data is known as Knowledge Discovery in Databases (KDD) or simply data mining 

(Imberman 2000).  The concept of data mining is based off well-known mathematical 

algorithms and techniques but its application is relatively new due to higher 

computational power, data storage logistics, and cost (Alexander 1997).  Existing data 

mining technologies used to identify causal variables of each respective threat to forests 

using predictive analytics can be categorized into two types: (a) Artificial Neural 

Networks (ANNs) and (b) Classification and Regression Trees (CART) (Lindemann and 

Baker 2002, Hanewinkel et al. 2004, Miller et al. 2005, Kupfer 2008).  These 

technologies have been combined with standard linear regression, binary logistic 

regression, and forward stepwise logistic regression to further depict the subsequent roles 

of biotic and abiotic variables and their predictive ability for forest damage (Hanewinkel 

et al. 2004, Wang and Xu 2008).  Each data mining type has its advantages and 

disadvantages.   

Artificial Neural Networks (ANNs) 

An Artificial Neural Network (ANN) is composed of interconnected processing 

elements known as nodes in parallel structure working in unison to solve specific and 

complex problems (Stergiou and Siganos 1996).  A typical ANN consists of three layers 

including: input, hidden, and output layers (Stergiou and Siganos 1996, Rounds 2002) 

(Figure 2.3.1).  Stergiou and Siganos (1996) further state the input layer contains multiple 

input units and their respective raw information and unit of measure.  The raw 
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information originates from a large database compiled by the user.  Each input layer unit 

then connects to each hidden layer.  The activity of each hidden unit is determined by the 

activities of the input units and the weights on the connections between the input and 

hidden weights.  The weights are determined by the amount and quality of training data 

that goes into the input layers.  Since the system is artificial, the interaction of the input 

units and the weights allows the hidden units to freely interpret their own representations 

of the input.  Once the hidden units have been determined, they combine to form the 

output layer.  The behavior of the output units also depends on the activity of the hidden 

units and the weights between the hidden and output units.  The user only defines the raw 

information of the input units with the rest of the process being automated.  This leads to 

the advantages and disadvantages of ANNs (Silva 2003) (Table 2.1).   

 

 

Figure 2.5 Schematic Diagram of a Neural Network 
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Table 2.1  Advantages and Disadvantages of ANN 

ANN Advantages ANN Disadvantages 
Capable to learn non-linear and very 
complex relations 

Long training time requirement and 
possible over-fitting of data 

Ability to handle noisy data 
Limiting Analytical Abilities:  Can not 
identify significance level of different input 
variables. 

Easy to use, implement, and integrate 
results in a GIS  

Inconsistent results due to the initial 
weights and learning parameters 

Good predictive capabilities Difficult to understand internal behavior 
 

Artificial Neural Networks have been used to model natural and anthropogenic 

forest threats.  Primarily, natural threats such as wildfires, insect outbreaks, and climate 

change have been studied using ANNs (Gardner and Dorling 1998, Ozesmi and Ozesmi 

1999, McCormick 2000, Schmildt 2001, Miller et al. 2005).  Rarely, have ANNs been 

utilized to model forest damage from a hurricane (Hanewinkel et al. 2004).  Hanewinkel 

et al. (2004) compared ANN to binary logistical regression using several biotic and 

abiotic factors to classify forests susceptible to wind damage.  Biotic and abiotic factors 

included stand age, tree species, dominant height, and aspect.  Results of Hanewinkel et 

al. (2004) did not reflect the actual interactions of the biotic and abiotic variables but 

focused on the accuracy of the differing methodologies using the mean squared 

sensitivity error (MSSE).  ANNs had lower MSSEs in four of the five datasets tested.  

Hanewinkel et al. (2004) concluded however, that due to the black-box nature of ANNs, 

identification of the hidden units and their weights could not be determined.  Thus, the 

significance level of the different input variables (biotic and abiotic) could not be 

identified.  If one is to depict the variables responsible for occurrence of wind-throw in 

hardwoods or shear of pines, and their interaction, then ANN methodology cannot be 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6VBS-4VNKBW0-4&_user=1512607&_coverDate=03%2F24%2F2009&_alid=896351411&_rdoc=2&_fmt=high&_orig=search&_cdi=5934&_st=12&_docanchor=&view=c&_ct=69&_acct=C000053407&_version=1&_urlVersion=0&_userid=1512607&md5=77f59884e1bca2b7af510fe0d2fe7a7b#bbib14�
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used.  This is due to the lack of depicted variable weights necessary for GIS model 

implementation.  Silva (2003) only uses the predicted ANN output as a GIS layer without 

knowing the underlying contributions of each variable.  There are, however, other data 

mining techniques that generate decisions based on the classification or regression of 

input variables of a large dataset.  These data mining techniques use predictive analytics 

that examine current and historical data to make predictions about future events (SAS 

2009).   

Predictive Analytics and Data Mining 

Predictive analytic modeling can be categorized in three types: fixed models, 

parametric models, and non-parametric models (Lynn 2006).  Fixed models are used 

when the exact input-output relationships are known and thus cannot be used to derive 

relationships between biotic and abiotic variables to forest damage.  Parametric models 

are used when a parametric mathematical relationship can be obtained.  Many small scale 

inventories and static/pulling studies used parametric statistics (linear and logistic 

regression) to determine the relationships of measured or derived tree characteristics and 

observed damage (Everham and Borkaw 1996).  Non-parametric models are used when 

the relationships between the input variables and the associated output are not well 

understood (Lynn 2006).  Different non-parametric algorithms include Multivariate 

Adaptive Regression Splines (MARS) and Classification and Regression Tree (CART) 

analysis.  MARS and CART analysis are regression procedures that make no assumption 

about the underlying functional relationship between the dependent and independent 

variables (Statsoft 2008).  Yet, they do have their respective advantages and 

disadvantages. 
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Multiple Adaptive Regression Splines (MARS) 

MARS is a flexible data-mining tool that automates the building of predictive 

models for continuous and binary dependent variables (Salford 2009).  Given a driving 

variable (independent variable), and a set of candidate predictor variables, MARS can 

determine the interactions between predictor variables (Salford 2009).  An important 

concept associated with MARS is that it contains hinge functions or knots where one 

local regression model gives way to another (Statsoft 2008).  These hinges allow MARS 

to operate as a multiple piecewise linear regression where each breakpoint, or hinge, 

defines the region of application for a particular linear regression equation between the 

dependent and independent variables (Statsoft 2008).  At the end of the model-building 

process, the straight lines at each node are replaced with a smooth function called a 

spline.  MARS is a computationally intensive procedure with CART being much faster 

(Lynn 2006).  The main disadvantages of MARS compared to CART are the 

interpretability of the interacting predictor variables and the cross-validation procedure.  

There is no graphical output of MARS showing the interaction of all the variables.  The 

splines are only models for each predictor variable and the interactions are displayed 

using mathematical equations.   MARS software also requires manual cross-validation 

the individual predictor’s over-fit splines of the training data whereas CART 

automatically performs a 10-fold cross-validation of the decision tree.  Since CART 

cross-validates the decision tree automatically, classification accuracy R2 and cross-

validation R2 values are generated for the interaction of the independent variables.  

Additional advantages of CART over MARS are that CART is not affected by outliers, 

collinearities, or distributional error structures that affect parametric procedures. 
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Classification and Regression Tree (CART) Analysis 

Data-mining statistics utilizing Classification and Regression Tree (CART) 

analysis have been more readily used than ANNs to identify important variables and their 

interaction with each other (Lindemann and Baker 2002, Kupfer 2008).  Additionally, 

CART analysis has been coupled with binary logistic regression and stepwise logistic 

regression to predict the probability of forest damage (Lindemann and Baker 2002, 

Oswalt and Oswalt 2008, Xi 2008, Wang and Xu 2008).  CARTs are analytic procedures 

for predicting the values of a categorical or continuous response variable given a 

categorical or continuous response variable (Statsoft 2009).  There are however, several 

analogous procedures that emulate CART analysis, each having advantages and 

disadvantages.  Such procedures include: TreeNet, RandomForests, and C-5/Cubist 

applications.  All three applications utilize the same concept behind CART analysis by 

using decision trees.  First, TreeNet, generates thousands of small decision trees built in a 

sequential error-correcting process to converge to an accurate model (Salford 2009).  

TreeNet models are very complex and thus the software generates a number of reports 

that must be meticulously analyzed.  The random forests procedure is similar to TreeNet 

procedure in that many decision trees are grown.  However, the procedures diverge 

because random forests grow classification trees and not regression trees (Breiman and 

Cutler 2009).  Only categorical data can be used for the random forests procedure.  In 

addition, each classification tree is fully grown and not pruned, tending to cause over-

fitting of the data.  Lastly, C5/Cubist most closely approximated CART methodology by 

only growing single classification and regression trees.    The decision tree program 

known as C5 has been used readily by the United States Geological Survey (USGS) for 
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inventorying agricultural land use and large area forest mapping including the National 

Land Cover Database (NLCD) (McNairn et al. 2004, Huang et al. 2001).  Advantages of 

C5, like CART include: being non-parametric, can handle both continuous and nominal 

data, generates interpretable classification rules, and is fast to train (USGS 2003).  Both 

the software used in this study, [R 2.8.0], and C5 would have likely produced similar 

results because of similar methodology.  C5/Cubist was not used simply because it was 

not readily available. 

CART was first introduced by Breiman (1984) allowing for an easy to interpret 

method of data mining using both categorical and continuous variables.  When the 

response variable of interest is categorical in nature, the technique is referred as 

classification tree analysis.  Conversely, if the response variable is continuous, then the 

method is referred as regression tree analysis (Statsoft 2009).  CART analysis is a form of 

binary recursive partitioning that forms a decision tree (Lewis 2000).  A decision tree is 

comprised of a root from which all decisions are then grown into subsequent child and 

terminal nodes (Figure 2.6).   

 

 



 31 

 

Figure 2.6 Example of Classification or Regression Tree comprised of a Root 
Node, Child Nodes, and Terminal Nodes. 

 

The root node contains the entire dataset to be tested according to an independent 

variable.  The subsequent splits that best predict the relationship between the dependent 

variable and independent variable are based of logical “if-then” statements.  Each “if-

then” statement separates the data that best depicts the relationship into child nodes.  

After many logical “if-then” statements, a node becomes heterogeneous and cannot be 

split further, resulting in a terminal node.  A decision tree is constructed based on several 

logical “if-then” statements constructed of one root node and several child and terminal 

nodes.  The term “binary” implies that the root and each child node can only be split into 

two groups, or child nodes, in which each case the original node is called the parent node 

(Lewis 2000).  The term recursive refers to the binary partitioning, or splitting process, 

that can be applied over and over again.  CART analysis consists of four basic steps.  The 

first step consists of tree building, as described above, using recursive splitting of nodes.  

Each resulting node is assigned a predicted class or value based on the distribution of 
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classes or values in the learning dataset.  A splitting criterion, which is used to decide 

which variable gives the best split, is determined by identifying which variables and their 

respective values has the greatest between-groups sum-of-squares in a simple analysis of 

variance between the left and right child nodes (Therneau et al. 1997).  In a sense, the 

decision tree seeks to maximize the average “purity” of the two child nodes (Lewis 

2000).  Once a decision tree is built, there comes a point where building must stop.  

Building stops when: (1) there is only one observation in each of the child nodes; (2) all 

observations within each child node have the identical distribution of predictor variables, 

making splitting impossible; or (3) an external limit placed by the user on the maximal 

depth of the tree.  Every classification or regression tree built over-fits the dataset (Lewis 

2000, Therneau et al. 1997).  This means that the maximal tree follows every 

idiosyncrasy in the dataset with later splits in the tree more likely to represent to over-

fitting than earlier splits.  This leads to the third step of tree pruning.  In order to generate 

simpler trees that provide a better fit to the dataset, a method of cost-complexity pruning 

is used (Therneau et al. 1997).  This method relies on a cost-complexity parameter (CP), 

usually denoted ά, which gradually increases during the pruning process.  Terminal and 

child nodes at the last levels of the decision tree are pruned away if the resulting change 

in misclassification cost is less than ά times the change in tree complexity.  Thus, ά is a 

measure of how much additional accuracy a split must add to the entire tree to warrant 

the additional complexity.  As the cost-complexity parameter (ά ) value increases, a 

greater number of nodes (decreasing to increasing importance) are pruned away, resulting 

in a simpler decision tree.  Now the question becomes, what is the optimal tree that fits 

the dataset the best?  Since the maximal tree over-fits the dataset provided, the 
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performance of the tree on an independent dataset is likely to be poor (Lewis 2000).  

Therefore, the goal is selecting the optimal tree, defined by its performance on an 

independent dataset, is to find the correct cost-complexity parameter (ά) so that that the 

information in the learning dataset is fit but not over-fit.  A method known as cross-

validation is used to determine the number of nodes the optimal tree should be. 

Cross-validation is a computationally-intensive method for validating a procedure 

for model building which avoids the requirement for a new or independent validation 

dataset (Lewis 2000).   In cross-validation, the learning dataset is randomly split into N 

sections, stratified by the driving variable of interest.  One of the N subsets is reserved for 

use as an independent test dataset, while the other N-1 subsets are combined for use as 

the leaning dataset in the model-building procedure (Figure 2.7).  Then the entire 

modeling procedure is repeated N times, with a different subset of the dataset reserved for 

use as the test dataset each time (Lewis 2000).  The average performance of these N 

models produces an average decision cost versus the complexity or number of nodes the 

optimal tree should have (Figure 2.8).  The minimum average decision cost within one 

standard-error is then used to prune the over-fit tree to the optimal tree that best fits 

subsequent untested independent datasets.  By using the 1-SE rule, it becomes a balance 

of higher decision cost for each split and the amount of information and interpretability of 

the results.  Ripley (2009) suggests a good choice for CP pruning is often the left-most 

value for which the mean lies below the horizontal line.  Furthermore, the corresponding 

CP value to the minimum cross-validation error (xerror) can be used to prune the 

regression tree.  The minimum cross-validation pruning method is known as minimum 
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CP pruning and generates a tree with the highest R2 correlation between the depending 

response variable tested against many independent variables. 

 

Figure 2.7 Cross-Validation Procedure to Determine Average Decision Cost. 

 

 

Figure 2.8 Selection of Optimal Tree based on Minimum Average Decision Cost 
and Complexity 

 

Relatively few studies have used predictive analytics to determine the significant 

causal biotic and abiotic variables responsible for forest damage from historical or current 

data (Lindemann and Baker 2002, Kupfer et al. 2008).  Only CART analysis has been 

used due to the interpretable results, quick processing, and accurate classifications 
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(Lindemann and Baker 2002, Kupfer et al. 2008).  CART has been coupled with 

univariate analysis and parametric techniques such as frequency distributions, binary 

logistical regression, and forward stepwise logistical regression to determine the 

associated coefficients and trends of each biotic and abiotic factor on the measured and 

recorded damage pattern (Lindermann and Baker 2002, Kupfer et al. 2008).  These 

Geographical Information Studies (GIS) studies also use classified remotely sensed (RS) 

imagery that also aids in change detection of the landscape before and after the 

catastrophic wind event. 

Forest Damage Pattern across the Landscape Using Remote Sensing and GIS 

Literature herein will focus on remote sensing and GIS techniques and 

applications investigating relative roles of biotic and abiotic factors for mapping 

landscape-scale forest damage patterns.  Remote sensing platforms (including aircraft and 

satellite) provide a valuable perspective on disaster situations that allows for rapid 

assessment of damage and losses on the natural and built environment (Womble et al. 

2006).  However, remote sensing studies that measure the health and subsequent damage 

to forest vegetation following a hurricane and relate it to causal biotic and abiotic 

variables are minimal and scant (Ayala-Silva and Twumasi 2004, McMaster 2005, Wang 

and Xu 2008).  Moreover, there are limited remote sensing studies that utilize low to 

moderate spatial resolution necessary to view change in forest health and damage at the 

landscape scale following a hurricane (Jacobs and Eggen-McIntosh 1993, Nix 1996, 

Ramsey et al. 1997, Ramsey et al. 2001, Murrah 2007, Collins et al. 2008).     

Similar to remote sensing applications, there are a select few studies that 

incorporate GIS techniques that depict biotic and abiotic variables at the landscape scale 
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(Lindemann and Baker 2002, Kupfer 2008, Wang and Xu 2008).  These few studies 

utilize inventoried forest biotic metrics and measured or derived abiotic variables across 

the landscape.  Unfortunately, biotic and abiotic causal variables and their complex 

interaction have not been studied across the southeastern landscape of Mississippi.  The 

Southeast Forest District inventory of 2006 and the resulting damage from Katrina 

provide a unique research opportunity to identify the biotic and abiotic relationships for 

hardwoods and pines across the southeastern Mississippi landscape. 

Remote Sensing Studies 

The use of remote sensing platforms allows for rapid assessment of forest damage 

following a hurricane.  Furthermore, the size and scope of forest damage can be 

determined much quicker than ground surveys and inventories.  However, to relate the 

derived damage from remote sensing applications, ground truth data must be compiled.  

The time, personnel, and resource strain to conduct a tree-level inventory following a 

hurricane however is much more than the time and money expenditure for landscape 

scale remote sensing applications.  Thus very few landscape scale forest inventories are 

compiled following a hurricane except by select state agencies and the USFS through 

FIA plots (MIFI 2006, Oswalt and Oswalt 2008).  Thus, remote sensing studies used to 

classify forest damage across the landscape as they relate to forest coverage type and 

other abiotic variables are reviewed.  Such studies have related the derived forest health 

and impact from a hurricane to the inherent biotic metrics and varying abiotic factors 

across the landscape (Ramsey III et al. 1998, Ayala-Silva and Twumasi 2004, Wang and 

Xu 2008).  Ayala-Silva and Twumasi (2004) used Advanced Very High Resolution 

Radiometer (AVHRR) to detect changes in the Normalized Difference Vegetation Index 
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(NDVI) and how NDVI values correlated with Hurricane Georges’ path across Puerto 

Rico.  Ramsey III et al. (1998) combined Landsat TM and NOAA AVHRR data to assess 

the vegetation biomass impact and recovery from hurricane Andrew in coastal Louisiana.  

Wang and Xu (2008) performed a change detection analysis, along with derived NVDI 

and Tasseled Cap Wetness (TCW) values for the Pearl River Basin following Hurricane 

Katrina. The assessed factors of forest and site conditions consisted of landform 

characteristics of elevation, slope, and aspect, soil great groups, buffer zones along river 

channels, forest types, and forest attributes derived from Landsat 5 TM vegetation 

indicies (Wang and Xu 2008). 

AVHRR satellite data have been readily used for derived vegetation indices and 

landcover classifications to determine the relative vegetation health and coverage over a 

particular area (Roy et al. 1997, Ramsey III et al. 1998, Ayala-Silva and Twumasi 2004).  

Ayala-Silva and Twumasi (2004) assessed the impact in different forests in Puerto Rico 

following hurricane Georges using AVHRR NDVI data.  NDVI is the most widely used 

vegetative index which is a function of the red and near-infrared spectral bands with 

higher index values correlated to healthier vegetation (Ayala-Silva and Twumasi 2004) 

(Eq. 2.4). 

NDVI = 
BANDBAND

BANDBAND

REDNIR
REDNIR

+
−

                                Eq 2.4 

Data expressed as NDVI provides information on the vegetation health as well as the 

spatial-temporal changes that coincide with a forest disturbance such as a hurricane 

(Sader et. al. 2001).  Some of the most common change-detection approaches include (a) 

post-classification (supervised or unsupervised) change detections, (b) spectral-temporal 
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change classification, and (c) the NDVI (Michener and Houhoulis 1997, Ayala-Silva and 

Twumasi 2004).   

The objective of Ayala-Silva and Twumasi (2004) was to determine whether 

AVHRR data could be used to assess the effects of hurricanes with respect to vegetation 

across the landscape scale of Puerto Rico.  Visualizing damage over such a broad scale 

has the potential for forest damage estimates and volumes to be determined and resources 

for recovery allocated.  The study areas include two protected forested areas, the Luquillo  

Experimental Forest (LEF) located on the northeast side and Guanica Forest 

located on the southwestern side of the island and five cities spread through out the 

island.  AVHRR data from September 1997 and September 1999 were used for 

vegetative monitoring, temperature and percent reflectance (albedo) to evaluate the 

NDVI across the study areas, before and after hurricane Georges which make landfall in 

September 1998.  Results show that Georges affected the Guanica forest more than LEF 

(Table 2.2). 

Table 2.2 Change in mean NDVI values for the LEF and Guanica Forests 
before and after Hurricane Georges. 

Year Study Area Mean NDVI Standard 
Deviation Δ NDVI 

September 1997 LEF 0.0094 0.1659 - 
“ Guanica 0.3152 0.0629 - 

September 1999 LEF 0.0467 0.0733 +0.0373 
“ Guanica 0.1017 0.0409 -0.2135 

 

Forests on the south side of the island that were exposed to higher wind speeds for 

longer durations were more adversely affected than the LEF on the northeast side of the 

island.  Cities studies showed similar results with those located on the south side of the 
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island experiencing the greatest negative change in NDVI values.  Based on these values, 

a regression equation was fit to the NDVI changes for each city and their distance from 

the track of hurricane Georges.  Despite the second AVHRR image taken a year after the 

hurricane, there were detectible and significant relationships (p<0.025) between the 

distance from the track and ΔNDVI as measured by low-resolution data.  Ayala-Silva and 

Twumasi (2004) shows AVHRR data can reveal significant impacts from the passage of 

hurricanes at the landscape scale.  The distance from the center of the hurricane track 

does show a correlation to the amount of forest damage sustained; suggesting areas closer 

to the center of the track are prone to greater amount of damage.  Understanding the 

dynamic relationship of differing types of forest and differing types of damage to the 

distance away from the center has the potential to identify forested areas more or less 

susceptible to damage base of their location relative to the land-fall and hurricane track 

location.  

Ramsey III et al. (1998) also combined AVHRR images that were transformed 

into NDVI values and coupled with Landsat TM data to map the association between 

forest types and hurricane effects in the Atchafalaya River Basin, Louisiana, USA. 

Hurricane Andrew provided a practical application for a combined use of AVHRR and 

Landsat TM data.  Temporal curves of mean NDVIs for three forest sites for the dates 

before and shortly after the hurricanes’ passage and aggregate curves of the impacted 

forest to the average NVDIs of the study region were compared.  The results identified 

changes in NDVI values reflected differences in damage severity and type across the 

studied landscape and spatial covariation between increased impact magnitudes and river 

corridors dominated by open hardwood forest.  Open hardwood forests in bottomland 
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river locations are more susceptible to damage and infrastructures in these areas are 

placed at greater risk by wind-thrown trees.  Thus, appropriate mitigation and recovery 

procedures should be put into practice in these areas to minimize damage caused by 

falling trees.  

Overall, four AVHRR images were acquired for the time periods before and after 

landfall to determine the change in NDVI values shortly after landfall and during a 

recovery period.  Then unsupervised classification with an overall accuracy of 85.9% and 

Kappa Statistic of 0.81 was performed on the Landsat imagery with the aid of color-

infrared photography as reference data (Figure 2.9).  For comparison to the Landsat TM, 

the AVHRR NDVI images were subset to an area coincident with the Atchafalaya River 

Basin extent and resampled with a nearest-neighbor selection criteria to a 25 meter spatial 

resolution.  Therefore, the cross tabulation and spatial extent of the impact and recovery 

magnitudes were created for open, cypress-tupelo, and hardwood forest classes.   

A vast majority of the damage occurred on the east side of the Andrew’s Path 

with very little impact to hardwood forests to the west of the path (Figure 2.10).  The 

distribution of higher impact magnitudes was concentrated along the southwestern edge 

of the basin closely following the mixed hardwood/cypress-tupelo corridor.  In addition, 

there was moderate to high impact to cypress-tupelo in the extreme southeastern portion 

of the river basin.  Conversely, there was a large area of minimally impacted but highly 

dense cypress tupelo centered in the lower river basin. This finding agrees with Oswalt 

and Oswalt’s (2008) inventory of cypress-tupelo’s resiliency in the Pearl River basin 

following Katrina and other studies (Touliatos and Roth 1970, Putz et al. 1983, Gresham 

1991, Doyle et al. 1995, Peterson 2000). 
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Figure 2.9 Unsupervised Classification of the Atchafalaya River Basin 

 

The spatial distribution of recovery (increase in NDVI) generally follows the 

spatial distribution of the impacts.  Hardwood and cypress-tupelo areas moderately 

impacted in the central portions of the Achafalaya River Basin showed subsequent 

moderate to high recovery two months later.  Basin wide statistical measures implied 

nearly equal average impact to all three forest classes, while recovery distribution 

measures implied higher recovery among cypress-tupelo and open classes and lower 

recovery in hardwood classes. Based on reconnaissance of the area, some of the highest 

impacted areas were identified to be solely cypress-tupelo.  Ramsey III et al. (1998) then 

states that if cypress-tupelo were more resistant to wind damage than hardwoods, higher 

impacts could be a result of longer duration of wind speeds.  However, without a wind 

field distribution availible, the change in NDVI spatial distribution can not be directly 

correlated to one of the most important abiotic factors, the wind intensity. 
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Figure 2.10 NDVI Impact and Recovery Maps of the Atchafalaya River Basin 
following Hurricane Andrew. 

 

This caveat is negated in Wang and Xu (2008) which used Landsat 5 TM data coupled 

with several biotic and abiotic factors through GIS of a known and strong wind field of 

Hurricane Katrina along the Lower Pearl River Basin, USA. 

In addition to derived NDVI values that Ayala-Silva and Twumasi (2004) and 

Ramsey III et al. (1998) used, Wang and Xu (2008) also used Tasseled Cap Wetness 

(TCW) to supplement other ecological factors to be correlated to forest damage across 

the landscape scale.  Wang and Xu (2008) use logit regression on forest type, forest 

coverage, stand density, soil great group, elevation, slope, aspect, and stream buffer zones 

to identify causal factors best predicting forest damage.  The factors with continuous 
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attributes were classified into discrete categories for analysis together with other 

categorical factors.  The relative effects of the categories of each factor pertaining to 

hurricane disturbance were assessed by comparing percentages of the disturbed forest 

areas, percentage of the disturbed forest areas at three severity levels (light, moderate, 

and high), and odds ratio.  The relative effects of each factor on the disturbance were 

determined by comparing the full and reduced logit models.   

Wang and Xu (2008) noted a heterogeneous forest damage pattern with 

bottomland hardwood forests on the floodplains most severely affected.  Soil groups and 

stand factors including forest types, forest coverage, and stand density contributed to 85% 

accuracy in modeling the probability of the hurricane disturbance to forests in this region.  

The study area included the counties of Hancock and Pearl River in Mississippi and 

Washington and St. Tammany parishes of Louisiana that were centered around the Lower 

Pearl River Basin.  Forests in this area occupy 370,000 ha, which is roughly 53% of the 

total area investigated in this study.  The main forest cover types are wetland forests, 

upland forests, and urban forests.  In wetland forests, over 50% of the stands were 

comprised of water tupelo, swamp tupelo, sweet gum, oaks, and bald cypress (Rosson 

1995, USDA Forest Service 2007).  Upland forests are predominantly mixed groups of 

loblolly-shortleaf pines, longleaf pine, slash pine, hickories, and oak–pine mix forests 

(Rosson 1995, USDA Forest Service 2007).  To classify these forest coverage types and 

the other continuous variables across the landscape, Wang and Xu (2008) used national 

land-use land-cover data (NLCD), state soil geographic (STATSGO) data, digital 

elevation (DEM) data (30m x 30m), national hydrography data (NHD), NDVI, and TCW 

derived values.  The STATSGO data consisted of soil great groups across the study 
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region.  Five of the six land cover types were studied including urban forests, evergreen 

forests, mixed forests, shrub/scrub, and wetland forests to explore the differing damage 

amounts occurring to each forest type (Figure 2.11).   

Wang and Xu (2008) performed univariate analysis along with full and reduced 

logit models to analyze the effects of forest characteristics and site conditions on 

hurricane disturbance and to model probabilities that forests would be disturbed by 

hurricanes.  Forest disturbance (disturbed forests were coded as 1 and undisturbed forests 

were coded as 0) was entered as the dependent binominal variable and the coded factors 

of forest type, soil, elevation, aspect, buffer zone, NDVI, and TCW were entered as 

independent variables.  The authors never define the word “disturbance” and how it 

directly relates to the amount of damage incurred.  Each variable was categorized 

according to equal intervals of its respective value range.  Thus the differing categories 

could be compared to each other through logistical regression for the determination of 

their relative resiliencies to forest disturbance.  Variable comparison is then made 

between categories coded as lower numbers and the variable coded as the highest 

number.  These comparisons result in odds ratios that determine the relationship between 

the categories and thus the probability of forest disturbance based on that variable’s 

values. Odd ratios less than one indicate forested areas with attributes of the lower rank 

are experience less disturbance when compared to the higher category.  Evaluation of the 

fit models included percentages of correctly classified undisturbed and disturbed forests, 

percentage of concordance of predicted probabilities, and Akaike’s information criterion 

using SAS 9.1.   
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Figure 2.11 Forest Coverage Types across the Lower Pearl River Basin 

 

Through univariate analysis, Wang and Xu (2008) determined that approximately 

60% of forested land, 18% with highly, 35% with moderate, and 7% lightly disturbed 

forest land occurred in the Lower Pearl River Basin (Figure 2.12).  Similar to forest 

disturbance, the definitions of highly, moderate, or lightly disturbed forests is not 

specified within the paper.  Wetland forests located along the Pearl River northward from 

Hancock County to northern Pearl River County and Washington Parish were among the 

most heavily damaged.  Bottomland hardwoods of the Lower Pearl River Basin were 

especially prone to greater damage opposed to pine and mixed forests (Figure 2.12).  The 

damage of bottomland hardwoods corroborates the surveys by MIFI (2006) and Oswalt 
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and Oswalt (2008).  The largest amounts of highly disturbed forested areas were located 

with 100 meters of river channels.  With increasing distance from the river channels, the 

percentage of highly disturbed forests declines, while percentages of moderately and 

lightly disturbed forests escalate slightly.  Although a majority of moderate disturbance 

occurred along Pearl River County and St. Tammany Parish, sporadic pockets also exist 

across the landscape.  This applies with light disturbance to forests as well agreeing with 

most all previous research stating many biotic and abiotic variables create a 

heterogeneous forest damage pattern. 

 

 

Figure 2.12 Spatial Distribution of Hurricane-Induced Forest disturbances by 
Severity Levels. 

 

The heterogeneity of disturbance for Katrina-impacted forests and degree of 

severity varied by forest type.  The largest proportion of wetlands forests were disturbed 
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(78%), followed by urban (73%), mixed (69%), evergreen (47%), and shrub/scrub (43%).  

Among the three severity levels, the greatest proportion of wetland and urban forests 

were highly disturbed, 39% and 30% respectively.  Additionally, forests having greater 

NDVI and TCW derived values were less likely to be disturbed whereas areas with lower 

values were more prone to moderate or high damage.  NDVI is not an intrinsic physical 

measurement of vegetation characteristics, but is indeed correlated with vegetation 

properties such as percent vegetation cover, Leaf Area Index (LAI), and stand density 

(Ormsby et al. 1987, Purevdorj et al. 1998).  Wang and Xu (2008) conclude the 

relationships of higher NDVI/TCW derived values pertaining to higher percentage of 

forest cover and stand density are correlated to lower forest susceptibility to hurricane 

damage.  

Soil properties in Wang and Xu (2008) were found to correlate with forest 

disturbance susceptibility, agreeing with Trousdell (1965) and Everham and Brokaw 

(1996).  Glossaqualt soils typically do not have a fragipan, duripan, or nitric horizons, 

thus allowing for greater root growth and anchorage (USDA 1795).   Sulfaquants are 

almost permanently saturated while endoaquuepts are primarily wet soils located in flood 

plains or have very high water tables (USDA 1975).  Sulfaquants are almost permanently 

saturated while endoaquuepts are primarily wet soils located in flood plains or have very 

high water tables (USDA 1975).  Lower forest susceptibility occurred on glossaqualt 

soils with less than half of forests disturbed at any severity level.  Forests on endoaquept 

and sulfaquept soils were found to be most susceptible to hurricane damage with over 

80% forests disturbed.  Since higher forest disturbance was found on wet soils in the 

bottomlands, higher disturbed forests to be in the lower elevations.  However, forests 
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experiencing light and moderate disturbance increased as elevation increased.  

Relationships between forest disturbance and other topographical variables such as slope 

and aspect as relating to amount of forest disturbance were inconclusive.  Forest 

disturbance did not correlate to aspects although it was noted that there were greater 

amounts of highly disturbed and moderately disturbed forests on aspects of 315-360°.  

Percentage of disturbed forested area did not correlate well with varying of slopes.  Full 

logit regression results concurred with the univariate analysis with wetland forests having 

the greatest probability of being disturbed compared to all other forest types.  Odds ratio 

of the forest types with codes less (1-5) than wetland (6), indicated that woody wetlands 

had the highest probability of being disturbed compared to all other types of forest 

coverage.  Percent forest coverage as related to NDVI and TCW values statistically 

showed that higher NDVI and TCW derived values from Landsat imagery were 

correlated to less forest disturbance by the hurricane which agrees with Ramsey et al. 

(1998). High odds ratio for endoaquepts and the subsequent low odds ratio for 

glossaqualfs agreed with the univariate analysis.  The topographic location of the 

endoaquepts also lead to low odds ratios for low elevations between 0-48 meters having a 

greater likelihood of forest disturbance than those at higher elevations.  Odds ratio of 

slope and aspect were close to one, indicating forest disturbance was not well correlated 

to any single category.  

The lack of topographical factors associated with percentage of disturbed forests 

is not surprising in Wang and Xu (2008).  The study area is located along the coast and 

southern Gulf Coast Plain with characteristically little relief.  If the study area was 

expanded northward, more terrain variability would be included that may alter the 
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relationships of forest disturbance to various topographical factors.  Another limitation of 

Wang and Xu (2008) is the lack of damage definition.  The authors never define the word 

“disturbance” and how it directly relates to the amount of damage incurred.  Moreover, 

the type of damage incurred to various types of forests was not explored as it related to 

the biotic and abiotic factors.  Wang and Xu (2008), however, begins to shed light on 

biotic and abiotic variables’ relative role on different forest types using remote sensing 

and GIS techniques.  Two other studies, Lindemann and Baker (2002) and Kupfer (2008) 

also delve into the physical and biological factors contributing to the heterogeneity of 

forest damage.  These two studies use an extensive GIS database of biotic and abiotic 

factors and data mining software to extract the significant causal biotic and abiotic factors 

and their respective unit of measure. 

Geographical Information Systems (GIS) Studies 

Within the past 20 years, there has been little research utilizing GIS to analyze 

forest damage and the associated biotic and abiotic variables (Foster and Boose 1992, 

Boose 1994, Lindemann and Baker 2002, Kupfer 2008, Xi 2008, Wang and Xu 2008).  

Only two studies have used CART methodology to isolate significant variables across the 

landscape (Lindemann and Baker 2002, Kupfer 2008).  One study focused on a severe 

windstorm in the Rocky Mountains that affected 10,000 hectacres (ha) of forest while the 

later study focuses on observed tree damage in the Desoto National Forest as a result of 

Hurricane Katrina. 

In October 1997, easterly winds at 120-155 mph (200-250 km/hr) from a strong 

baroclinic low caused the largest forest blowdown known to occur in the southern 

Rockies (Wesley et al.1998).  The disturbance, known as the Routte-Divide blowdown is 
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located in the Routte National Forest in north-central Colorado’s Park Range.  

Lindemann and Baker (2002) built an extensive GIS database that included many abiotic 

variables.  However, only one biotic variable, vegetation cover type was used as a driving 

variable.  The authors’ primary objective was to determine which potential predictors can 

be used to predict the severity blowdown and where the blowdown occurred using 

univariate and CART analysis.  A list of all variables tested can be seen in Table 2.3. 
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Table 2.3 List of Predictor Variables for a Severe Forest Disturbance. 

Biotic Variables 
   Vegetation Cover Type 
      Engelmann Spruce/Subalpine fir 
      Grasslands/forblands 
      Lakes 
      Lodgepole Pine 
      Rockland, talus, scree 
      Rush Species, Sedge Species 
      Sagebush 
      Shrublands 
      Streams 
      Wetlands 
      Willows 
Abiotic Variables 
   Topographic Factors 
      Elevation (m) 
      Slope (°) 
      Aspect (°) 
      Roughness 
      Exposure 5° 
      Exposure 10° 
      Exposure 15° 
      Exposure 30° 
      Terrain Complexity (300m) 
      Terrain Complexity (600m) 
      Terrain Complexity (1km) 
      Terrain Complexity (2m) 
      Terrain Complexity (33m) 
Soil and Geological Characteristics 
      Soil Texture 
      Rooting Depth 
      Soil Permeability 
      Water Holding Capacity 
      Geology 
   Human Influences 
      Distance to Roads 
Past Disturbances 
      Past Beetle Outbreaks 
   Other Factors 
      Distance to Natural Edges 
      Distances to Continental Divide 
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The univariate analysis showed the most prominent predictors related to 

blowdown were in the middle elevation ranges, on east-facing aspects, shallow slopes, 

the middle bands of the distance from the Continental Divide, the engelmann spruce 

landcover type, exposed areas and on the west side of the Continental Divide 

(Lindermann and Baker 2002).  Blowdown was not increased by high terrain complexity 

or moist and thin soils.  Areas with low terrain complexity and greater rooting depths 

actually showed a slightly greater tendency of being blowndown.  Soil permeability, 

water holding capacity, distance to nearest ridge and distance to natural edge do not have 

a significant relationship with blowdown. 

A 22-node classification tree with a dependent variable of 5 categories of percent 

blowdown was produced (Figure 2.13). The classification tree bases the first split on the 

distance from the Continental Divide.  The second and third splits narrow the elevation 

bands at which the most blowdown occurred.  The greatest amount of blowdown actually 

occurred in the middle elevations and not near ridges.  The first terminal node with the 

highest number of sample points (347 of 401) predicted to be blown down includes points 

4km-9km from the Continental Divide at elevations greater than 2737.5m and in areas of 

wind exposure at a 15° inflection angle.  Conversely, the terminal node with the highest 

number of sample points regarding non-blowdown were less than 4km or grater than 9km 

from the Continental Divide and at elevations greater than 3288m.  The remaining sample 

points are spread out through many splits of the predictors, indicating that the 

explanations for areas not blowndown are quite complex (Lindermann and Baker 2002).  

As for vegetation cover, aspen trees showed resistance to blowdown while Engelmann 

Spruce was more susceptible.    
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Figure 2.13 22-Node Classification Tree of Predictor Variables for Blowdown 
and Non-blowdown areas in the Routte National Forest. 

 

According to Lindermann and Baker (2002), relatively few variables contribute to 

the overall pattern of blowdown with the primary variables defining blowdown locations 

were topographical features, rather than vegetation and geological or soil features.  

Vegetation-cover type played a small role in the blowdown location.  The authors 

attribute this to most of the area being the Engelmann Spruce/Subalpine fir cover type 

(58%).  However, in the forested areas, Englelmann Spruce/Subalpine fir did show a 

tendency to being blown down, whereas Aspen was more resistant and lodgepole pine 
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was moderate.   Several studies have shown that broadleaf species are more resistant to 

blowdown than pines (Curtis 1943, Foster 1988a, Everham and Brokaw 1996, Ramsey III 

et al. 1997, Peterson 2000).  Lindermann and Baker (2002) did not explore the biotic 

aspect as related to forest damage in detail since only one biotic variable was examined.  

Lindermann and Baker (2002) is one of the first to use CART analysis to depict the 

interaction of measured and derived biotic and abiotic variables across a large landscape.  

In doing so, they showed an accurate assessment across a10,000 ha (38 sq. mile) area by 

having an overall classification accuracy of 81% for blowdown areas.  Therefore the 

CART methodology has shown to be an effective method in determining forest 

susceptibility using governing biotic and abiotic variables.  Similar to Ayala-Silva and 

Twumasi (2004), the authors explicitly state two variables that could have improved 

CART analysis would have been an accurate coverage showing stand height and fine 

resolution model showing wind speeds over the landscape.  This caveat is negating in 

Kupfer et al. (2008) using H*Wind analysis and CART methodology to analyze biotic 

and abiotic factors that affected the forests of the Desoto National Forest in Mississippi as 

a result of Hurricane Katrina. 

Hurricanes alter landscape-scale patterns of forest structure and composition, 

habitat availability and distribution, and susceptibility to subsequent disturbances (Kupfer 

et al. 2008).  Nonetheless, they are normal, integral parts of long-term forest dynamics in 

the Caribbean, Atlantic, and Gulf Coast Regions which means that forest management 

plans need to recognize their effects and include the potential for such events to occur 

(Dale et al. 1998).  Understanding the biotic and abiotic factors that govern tree and thus 

forest susceptibility to hurricane winds must be known before mitigation practices can be 
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implemented.  Both forest managers and emergency managers can institute mitigation 

efforts on two fronts, proactively before the storm, and retroactively following the storm. 

An interesting question is how large can an area become before the CART procedure 

cannot resolve the biotic and abiotic interactions and the respective classification and 

cross-validation values show weak correlation?  Kupfer et al. (2008) begins to explore 

the biotic and abiotic dynamics for the Desoto National Forest covering an area of 

153,000 ha (590 sq. miles).  This area is much larger than the Routte-Divide area from 

Lindermann and Baker (2002).  Kupfer’s et al. (2008) objective was to develop and test a 

CART model of forest damage resulting from Katrina for a 153,000 ha forest 

management unit in southern Mississippi.  Kupfer et al. (2008) used classification tree 

analysis to develop a model of damage severity on the basis of storm meteorology, stand 

conditions, and site characteristics for more than 400 locations.  By including variables 

addressing wind speed, rainfall, species composition, forest structure, age, topography, 

and flood plain conditions, Kupfer et al. (2008) attempted to contrast the importance of 

different types of factors associated with landscape-scale patterns of forest damage. 

The study was conducted in the DeSoto Ranger District of the DeSoto National 

Forest (NF) that was located in right-front quadrant of Katrina as is move north over 

Mississippi.  Kupfer et al. (2008) modeled the wind swath of Katrina as it made landfall 

by using the H*Wind product from the Hurricane Research Divison (HRD) of the 

National Hurricane Center (NHC).  Pioneered by Powell et al. (1996) and furthered by 

Powell et al. (2004), the H*Wind product is a downloadable GIS uniform gridded 4km 

point shapefile.   Attributes contained for each grid point include the maximum sustained 

wind speed, duration of hurricane force winds, direction of maximum wind, and the 
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steadiness of the wind.  The attributes of each point are compiled through remotely 

sensed satellite, in situ airborne, and surface data collected through an array of platforms 

and sensors.  The wind swath of hurricane according to Kupfer et al. (2008) is displayed 

in Figure 2.14.  The details of how the gridded point shapefile was interpolated to 

produce a continuous wind-field are not detailed in Kupfer et al. (2008).  There seems to 

be disconnect between the stronger winds over Harrison and Stone Counties and the 

actual path of the hurricane over Hancock and Pearl River Counties.  According to the 

official write-up on Katrina from the NHC, the higher sustained winds were realized 

farther west then over the DeSoto National Forest as portrayed in Figure 2.14 (NHC 

2009). 

 

Figure 2.14 Location of DeSoto NF relative to Katrina’s storm track and Wind 
Speeds. 
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Kupfer et al. (2008) described the topography as characterized by broad and 

gently sloping uplands dissected by numerous streams and rivers, the largest of which 

have mature flood plains (Pearl River and Pascagoula River Flood plains).  As depicted 

by Oswalt and Oswalt (2008) and Glass and Oswalt (2006), the uplands are dominated by 

pines, especially loblolly pine, slash pine, longleaf pine, and shortleaf pine.  Bottomlands 

are dominated by hardwoods, including various species of oak, sweetgum, and many 

others.   

Assessments of damage severity to forests were conducted using ADS40 aerial 

photographs taken by the U.S. Army Corps of Engineers (USACE) in September of 2005 

and were retrieved from the Mississippi Automated Resource Information System 

(MARIS).  For pre-storm imagery, Kupfer et al. (2008) used the USDA National 

Agriculture Imagery Program (NAIP) imagery taken in 2004 of the same area.  After 

image acquisition and rectification, 415 random points were selected for forest damage 

analysis using Hawths tools extension for ArcGIS.  A 17.8m buffer around each point 

was created to be consistent with field assessments.  Field assessments were taken on 40 

0.1 hectacre (~0.25 acre) circular plots in February 2006.  All standing and fallen trees 

greater than 10 cm DBH were measured and identified to species.  Kupfer et al. (2008) 

used the 40 field assessment plots to train CART and supplement information for the 

other 415 random points that were chosen through Hawths Tools.  The damage was 

classified using a four-point scale based on the estimated percentage of downed overstory 

trees: (1) no discernable downed trees, (2) light damage (<33% blowdown), (3) moderate 

damage (33-67% blowdown), and (4) heavy damage (>67% blowdown).  Damage was 

classified by two independent researchers with 88% agreement.   



 58 

Predictor variables used for input of CART can be viewed in Table 2.4.  Four 

measures of storm meteorology were used, along with estimated cumulative rainfall, 

topographic settings (elevation, slope angle, and aspect), distance to nearest streams, 

distance to hurricane track, forest type, stand age, stand condition, hardwood basal area, 

pine basal area, and total basal area.  Wind speeds were derived from the H*wind product 

pioneered by Powell et al. (1996) and furthered by Powell et al. (2004).  Pine Forest types 

are categorized as ≥ 70% of basal area with dominant and co-dominant crowns were 

softwoods; Pine-Hardwoods: 51-69% softwood basal area; Hardwood-Pine: 51-69% 

hardwood basal area, Hardwoods ≥ 70% hardwood basal area.  Stand Conditions were 

extracted from the DeSoto NF Continuous Inventory of Stand Conditions (CISC) 

database. 
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Table 2.4 Variables used to predict Forest Damage from Hurricane Katrina at 
Desoto National Forest. 

Variables Description/Source 
Storm Meteorology  

Maximum Sustained Winds (km/h) Extracted from NOAA H*Wind Model 
Duration of Hurricane Force Winds (h) Extracted from NOAA H*Wind Model 
Directional Steadiness Extracted from NOAA H*Wind Model 
Cumulative Precipitation (in) NOAA Climate Prediction Center 

Site Topography and Location  
Elevation (m above sea-level) Extracted from 10m DEM 
Slope Angle (°) Extracted from 10m DEM 
Aspect (Classified to Direction) Extracted from 10m DEM 
Distance to Nearest Perennial Stream (m) Based on U.S. Geological Hydrography 

data 
Distance to nearest Stream (m) Based on U.S. Geological Hydrography 

data 
Distance to Hurricane Track (km) Extracted Euclidian Distance based on 

NOAA map of hurricane track 
Stand Characteristics  

Age From CISC Database, defined as years 
since stand origination 

Forest types From CISC Database, grouped into: 1. Pine: 
P. palustris dominant 2. Pine: P. taeda 
dominant; 3. Pine: P. elliottii dominant; 4. 
Pine: mixed yellow pines; 5. Pine-
hardwood: non-P. taeda dominant;  6. Pine-
hardwood: P. taeda dominant; 7. 
Hardwood-pine: 

Stand Condition From CISC Database, grouped into 1. 
sparse pole- and sawtimber; 2. mature 
sawtimber and poletimber; 3: immature 
poletimber; 5: regeneration; 6: immature 
sawtimber 

Hardwood Basal Area (ft2/acre) From CISC Database 
Pine Basal Area (ft2/acre) From CISC Database 
Total Basal Area (ft2/acre) From CISC Database 
  

 

To relate each biotic and abiotic variable from Table 2.4., Kupfer et al. (2008) 

used classification tree analysis (CTA), a non-parametric, probabilistic machine learning 

method that recursively partitions observations with a categorical response variable based 



 60 

on binary splitting criteria.  A single classification tree was grown and subsequently 

pruned such that the cross-validated error cost of the smaller tree was no more than one 

standard error from the minimal cross-validated error.   The one standard error (1-SE) 

pruning method and minimum cross-validation error pruning method were used for 

grown regression trees across the Southeast Forest District as stated in the methods 

section.  Additionally, Kupfer et al. (2008) predicted forest damage severity using a form 

of CTA termed stochastic gradient boosting (SGB).  SGB starts by fitting an initial tree 

but the residuals for the first tree are fed into a second tree which attempts to reduce the 

error, a process that is repeated through a series of successive trees (Lawrence et al. 

2004).  The final predicted value is formed by adding the weighted contribution of each 

tree.  Both CTA and SGB models in DTREG software provide a variable importance 

score to clarify the relationships between forest damage and predictor variables.  This 

score is calculated based on the improvement in classification gained by each split that 

used the predictor.   

Overall classification accuracy of the optimal single tree model was 71.5% with a 

producer’s accuracy ranging from 65-82% and user’s accuracy varying from 58 to 82%.  

The use of SBG increased the overall accuracy of predictions to 81% and improved the 

producer’s and user’s accuracy over values of the single tree model.  Age was the best 

predictor of forest damage in both the single tree and SGB models.  Forest type, stand 

condition, aspect, and distance to the nearest perennial stream had moderate to high 

importance scores as evident in the first successive splits (Figure 2.15).  The storm 

meteorology variables were generally of limited importance in the single-tree model but 

moderate in SBG model. 
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Figure 2.15 Classification tree for forest damage caused by Hurricane Katrina at 
DeSoto National Forest. 

 

The first split states forests stands younger than 30.5 years were least likely to 

suffer damage.  The greatest number of plots that experienced severe damage were older 

than 63.5 years, comprised of predominantly loblolly pine, at elevations between 148.5 

feet and 227.5 feet with streams less than 54.1 meters away.  Other terminal nodes 

showing severe forest damage are trees greater than 86.5 years of age and elevations less 

than 148.5 meters and stands on south, southwest, and west facing slopes.  However, 

other stands comprised of longleaf, slash, mixed yellow poplar, and loblolly dominant 

mixed pine forests on north, east, and southeast slopes younger than 82.5 years, 

experiencing less than 4.7 hours of hurricane force winds, but were less than 15.1 km 
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away from the storm track were also severely damaged.  Mature longleaf, slash, mixed 

yellow pine , and loblolly dominant mixed pine forests greater than 5 inches DBH with 

greater 4 ft2/plot basal area were more likely to be damaged than immature longleaf, 

slash, mixed yellow pine, and loblolly dominant mixed pine forests (less than 5 inches 

DBH).  Based of these classifications, Kupfer et al. (2008) depicted the spatial pattern of 

forest damage across the DeSoto National Forest (Figure 2.16).  Not explained, however, 

is the variable of basal area being incorporated into the spatial model since it is not a 

continuous variable as are all other variables used. 

Kupfer et al. (2008) found that damage patterns following Hurricane Katrina over 

a large, heterogeneous landscape were mostly strongly associated with stand conditions 

and site characteristics such as age, forest type, aspect, and distance to nearest perennial 

stream.  Increasing severity of damage was positively correlated to increasing age, 

increasing hardwood component of each stand, and increasing damage on aspects facing 

the dominant wind flow (east, southeast, south, and southwest), agreeing with Sheffield 

and Thompson (1992), Everham and Brokaw (1996), Oswalt and Oswalt (2008).  

Increasing distance from a perennial stream had a negative relationship on severity of 

damage with greatest severity coming from hardwoods located in bottomlands and along 

river channels.  Plots classified as pine had increased damage with increased pine basal 

area. 
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Figure 2.16 Pattern of forest damage predicted for Desoto National Forest by the 
Single Tree Classification Model.  Inset shows damage mapped by 
USDA Forest Service. 

 

Concurring with Trousdell et al. (1965), Touliatos and Roth (1971), and Xi 

(2008), Kupfer et al. (2008) found cumulative precipitation and maximum sustained 

winds had a positive relationship with amount of damage incurred.  Upland pine and 

pine-hardwood stands only suffered heavy damage within 15 km of the hurricane’s track 

whereas heavy damage on less-resistant bottomland hardwood and hardwood-pine stands 

extend 30 km from the track.  This agrees with multiple studies summarized in Everham 

and Brokaw (1996) and post-storm inventories from Sheffield and Thompson (1992) 
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taken in South Carolina following Hurricane Hugo. Even though the bottomland 

hardwood forest stands were further away from the stronger winds, other biotic and 

abiotic factors still contributed to their susceptibility of damage.  Despite the many 

findings of Kupfer et al. (2008), there are some limitations and potential sources of error. 

One obvious potential source of human error is potential misclassification of damage 

from aerial photographs even though two independent researchers classified the damage.  

Another potential source of human error is image rectification and registration errors of 

the aerial imagery causing plot locations to be inaccurate.  Also, damage was classified 

on 0.1 ha plots but corresponding predictor variables extracted from the CISC database 

were aggregated to entire forest stands.  This may lead to some errors in assigning stand-

level properties to individual plots.  Kupfer et al. (2008) does not specify the type of 

damage recorded for each measured tree on each 0.1 ha plot.  The authors state their long 

term objective is to project the susceptibility of forest stands to future events as an aid to 

forest management activities.  Yet, without specifically documenting the type of damage 

incurred across the landscape, the implications for management are less clear.  Differing 

damage types and amounts to differing species require different salvage and management 

practices (DeLoach and Dicke 2005, Long et al. 2005).   

DeLoach and Dicke (2005) of the Mississippi State Extension Service detail 

questions facing landowners with salvage and management decisions of damaged forest 

stands due to Katrina (Table 2.5).  One main controlling factor in determining if a stand 

remains manageable is the amount of basal area damaged within the forest stand.  Basal 

area is the cross sectional area of a tree at DBH.  The basal area of all trees on a plot is 
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then summed to the plot or acre level to determine the amount, and thus the value of 

wood growing in a given area. 

Table 2.5 Questions facing Landowners with Salvage and Management 
Decisions. 

Question Information needed to Answer 
Do I have a manageable timber stand left 
undamaged? 

The Basal Area (Density) of undamaged 
standing timber. 

Will I be able to make a timber sale in the 
future when prices are better? 

The volume or tonnage of undamaged 
standing timber. 

Can I salvage the damaged timber? The amount of damage – volume or 
tonnage of damaged timber. 

 

The amount of basal area damaged will direct the order of operations of salvage 

efforts.  DeLoach and Dicke (2005) present a timber stand salvage decision model to aid 

forest landowners operations following a catastrophic wind event (Figure 2.4.2.5).  The 

decision tree is based off the basal area of undamaged timber and splits are then made 

based on the estimated weight of undamaged and damaged sawtimber and pulpwood 

leading to the management decision.  Figure 2.17 depicts forest stands with 50 ft2/acre 

undamaged timber with 15 tons/acre of sawtimber or 25 tons/acre of pulpwood 

undamaged but has less than 15 tons/acre sawtimber or 25 tons/acre leads to salvaging 

the downed timber yet having a remaining manageable stand.  Conversely, if there is only 

30 ft2/acre undamaged timber, meaning greater amounts of damaged basal area, with 

more than 15 tons/acre of sawtimber or 25 tons/acre of pulpwood undamaged yet the 

majority of timber is damaged then the landowner is to salvage all timber, site prep, and 

then replant the stand. 
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Figure 2.17 Timber Stand Salvage Decision Model. 

 

For a land-owner, downed timber must be salvaged as soon as possible to provide 

maximum return from investment (MFC 2009).  Timber left down, particularly snapped 

trees which are typically pines, degrade in quality and lose considerable value in the first 

60-90 days following a hurricane (Hughes 2005).  Trees still attached to the root ball or 

that are uprooted retain their value for more than 90 days before losing value (Hughes 

2005).  Understanding the causal biotic and abiotic factors that govern the type of 

damage for pines and hardwoods at the landscape scale, aid both emergency managers 

and forest managers decision process for recovery efforts.  Lessons learned from previous 

land-falling major hurricanes illustrate that coordination and communication are critical 

to successfully mitigating immediate effects (Stanturf 2007).  Understanding the relative 
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importance of each biotic and abiotic factor and its contribution to wind-throw in 

hardwoods and shear of pines may enable spatial modeling distribution of vegetative 

debris.  Rapid assessment of damage via spatial models can guide recovery efforts and 

mobilize the political and financial support necessary to meet both short-term and long-

term needs (Compass 2008).  Unfortunately, there are few rapid assessment predictive 

models that map forest damage extent and severity for use by emergency managers and 

forest managers.   

Mississippi Institute of Forest Inventory (MIFI) 

Legislation was passed in July of 2002 for the creation of the Mississippi Institute 

for Forest Inventory (MIFI) by Ronnie Musgrove (Sewell 2002).  Four years later, MIFI 

was incorporated in the Mississippi Forest Commission (MFC).  The responsibilities of 

MIFI include developing statewide forest resource inventory protocols, policies to 

maintain inventory information and reports, and analyzing data on forest resources in 

support of new and existing forest industries.  Mississippi was split into five different 

forest districts based on geography, physiography, economic, and political characteristics 

(Figure 2.18) (MIFI 2006).   
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Figure 2.18 Forest Districts as established by MIFI for the State of Mississippi 

 

Each district is inventoried every five years with one district inventoried each year 

to keep an updated statewide forest inventory (MIFI 2006).  Years of Mississippi forest 

district inventories can be viewed in Table 2.6. 

Table 2.6 Forest District Inventory Dates 

Forest District Year First Inventoried 
Southwest Forest District 2004-2005 
Southeast Forest District 2005-2006 
Central Forest District 2006-2007 
North Forest District 2007-2008 
Delta Forest District 2008-2009 

 

Between the time of inception of MIFI in the summer of 2002, to the first 

inventory in 2004, the inventory methodology was established primarily by MSU 

researchers aiding state officials (Parker et al. 2005).  MIFI directs sampling of forest 
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resources in a two stage process, (1) remote sensing and (2) ground surveys.  The remote 

sensing effort utilizes the spectral reflectance of vegetation captured by spectral bands of 

the Landsat 7 ETM+ satellite.  Through a combination of band analysis, and image 

classifications techniques, water, non-forest, and forest classes are obtained (Figure 2.19) 

(MIFI 2008).  Imagery from previous years is used in conjunction with classification 

products to map the dynamic change of land cover 

 

            

Figure 2.19 Classified Pine Forest (Left) and Hardwood Forest (Right) 

 

Ground-based measurements are implemented on one-fifth acre fixed radius plots 

located randomly within the forest cover strata obtained from the remotely sensed data 

(Figure 2.20) (MIFI 2006).  Saw-timber, pole, and veneer volume product classes are 

sampled and characteristics associated with stand dynamics are measured. A one-tenth 

acre plot is incorporated to measure the volume of products classes that produce fiber for 
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the pulp industry.  Finally, a one-twentieth acre plot is inventoried to measure non-

merchantable stems that range from 1.0 to 4.5 inches in diameter at breast height (DBH).  

In the event there are no merchantable trees located on a plot, such as following a harvest, 

a one-hundredth acre plot is established to measure the reproduction that will develop 

into a future timber stand (MIFI 2006).  Individual tree attributes measured include 

species, product, observable damage, DBH, total height, height to base of live crown, five 

and ten year radial growth, and age (MIFI 2006).  Stand level attributes recorded include 

slope, size class, apparent stand level damages, over-story composition, and 

physiographic region (MIFI 2006).  These individual and stand-level attributes were to be 

inventoried for the Southeast Forest District starting September 1, 2005.  However, 

Mother Nature intervened with Hurricane Katrina making landfall on the 

Mississippi/Louisiana border on August 29th, 2005. 
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Figure 2.20 Inventoried MIFI Plots of the Southeast Forest District 2005-2006 
with Hurricane Katrina track overlaid. 
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Hurricane Katrina and Related Forest Damage 

The record setting year of 2005 in terms of named storms (28), number of 

hurricanes (15), and Category 5 storms (4), caused great destruction of property, natural 

resources and loss of human life (NOAA 2006).  Hurricane Katrina was particularly 

devastating becoming the costliest natural disaster in U.S history (NCDC 2009).  

However, Katrina is not the first major hurricane to strike the Mississippi/Louisiana 

border.  Emergency management and forest management lessons were also partially 

learned in 1969 with the land-fall of Hurricane Camille (Touliatos and Roth 1971). 

There have only been three recorded Category 5 hurricanes to make landfall in the U.S. 

since 1851.  One of them was Hurricane Camille, which slammed into the Mississippi 

coast on August 17th, 1969.  Although small in diameter, Camille came ashore with 1-

minute sustained wind speeds of 190 mph (305 km/h) coupled with 10 inches of rain 

falling in Hancock County (NOAA 2009).  This resulted in a loss of 8.2 million m3 of 

felled timber in Mississippi.  In Touliatos and Roth’s (1971) survey of damage from 

Camille concentrated on stem breakage versus uprooting, they found shallow-rooted 

species along the coast were most susceptible to uprooting (dogwood, water oak, pecan, 

bay and red maple).  They also concluded that recently-thinned pine stands with little 

taper were severely broken with loblolly pine being the most susceptible.  Hurricane 

Camille became the “benchmark” storm for Gulf coast residents and for forest damage, 

until August 29th, 2005.   

Hurricane Camille’s hurricane force wind radius was only 60 miles whereas 

Hurricane Katrina became a very large and powerful category five hurricane with 

maximum sustained winds at 175 mph (282 km/h) and hurricane force winds extending 
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125 miles from the center.  In addition to its large size, the presence of a double eyewall 

feature in Katrina lead to higher sustained winds realized over a greater portion of 

southern Mississippi for a longer duration (Blackwell et al. 2007).  Concentric double 

eyewalls develop most often in more powerful hurricanes and broaden the wind-field 

(Willoughby 1990).  Interestingly, the highest unofficial peak wind gust for Katrina was 

recorded in Poplarville, Mississippi, with winds of 135 mph (217km/h) (Blackwell et al. 

2007).  Poplarville, located in heavily forested Pearl River County, is 40 miles north of 

the coast.  The outer eyewall of Katrina contracted as it moved north into Pearl River and 

Lamar Counties causing locally higher sustained and peak gusts to occur.  The initial 

expansion of the wind field associated with the double eyewall structure coupled with the 

contraction of the outer eyewall inland resulted in tremendous timber damage across 

Mississippi. 

Hancock and Harrison Counties suffered between 51-60% county level timber 

damage (Wayne 2006).  Jackson County suffered 41-50% while Pearl River, Stone, 

Lamar, Forrest, and Perry Counties suffered 31-40% county level timber damage (Wayne 

2006).  Compared to Camille’s 8.2 million m3 of timber damage, Katrina felled or 

damaged an estimated 49 million m3 (MFC 2005).    This volume of downed timber was 

estimated to be enough to build 800,000 single family homes or produce 25 million tons 

of paper and pulp products (MFC 2005).  Roughly 39 million m3 (~83%) of timber 

damage occurred in the 10 southernmost counties of the Southeast Forest District (MFC 

2005, Jacobs 2007). 
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Study Area 

Hurricane Katrina made landfall at the mouth of the Pearl River Basin along the 

Mississippi and Louisiana border.  This landfall location brought the heaviest rain and 

highest winds as the right-front quadrant of the hurricane traversed southeast Mississippi.  

The study area is the Southeast Forest District which contains 15 counties in the hardest 

hit region of Mississippi (Figure 2.21). 

 

 

Figure 2.21 Southeast Forest District with Depiction of Hurricane Katrina Track 
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The Southeast Forest District’s climate is marked by mild, short winters and hot, 

humid summers (NCDC 2009).  Normal annual temperatures range between 64-67° 

Fahrenheit (F) with normal January temperatures ranging 48-51°F and normal July 

temperatures ranging 80-84°F (NDCD 2009).  However, average maximum temperatures 

in July average routinely average over 90°F across the entire region (NCDC 2009).  

Average precipitation across the southern tier of Mississippi ranges 58-64 inches and 

evenly distributed through out the year (NCDC 2009). 

The Southeast Forest District is located in the Gulf Coastal Plain which is 

characterized by broad and gently sloping uplands dissected by numerous streams and 

rivers, the largest of which have mature floodplains and noticeable topographic changes 

in areas to upland systems (Chapman 2004).  Elevation of the area ranges from sea-level 

along the coast with little elevation rise northward along mature floodplains of the Pearl 

and Pascagoula River Basins to around 500 feet in Jefferson and Covington Counties.  As 

seen in Figure 2.22, the lowlands of the Pearl River Basin and uplands in Lamar, Jones 

and Covington Counties were directly in the path of Katrina. 
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Figure 2.22 Topography of the Southeast Forest District 

 

The varying climate and physiography of the Southeast Forest District supports 

several different ecoregions (Chapman 2004).  The study area is comprised of five 

ecoregions: Coastal Marshes, Gulf Coast Flatwoods, Southeastern Floodplains and 

Terraces, Southern Pine Plains and Hills, and Southern Hilly Gulf Coastal Plain (Figure 

2.23) (Chapman 2004).   
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Figure 2.23 Level-IV Ecoregions encompassing the Southeast Forest District in 
Mississippi.  Nomenclature; 75k (Gulf Coastal Marshes), 75a (Gulf 
Coast Flatwoods), 75i (Floodplains and Low Terraces), 65p, 
(Southeastern Floodplains and Low Terraces), 65f (Southern Pine 
Plains and Hills), and 65d (Southern Hilly Gulf Coastal Plain). 

 

The Costal Marshes region contains salt and brackish marshes, dominated with 

cordgrass (Spartina patens) and saltgrass (Distichlis spicata) with live oak and laurel oak 

hardwoods (Chapman 2004).  Slightly further north are the Gulf Coast Flatwoods which 

are characterized by level terraces and delta deposits lined with hardwoods such as 

swamp tupelo, bald cypress, oaks, hickories, and in some higher drained sites, longleaf 

and slash pine (Chapman 2004).  Continuing along the river basins, the Southeastern 

Floodplains and Low Terraces is a riverine ecoregion of large rivers and backwaters with 

ponds, and oxbow lakes (Chatman 2004).  Similar to the coastal flatwoods, water tupelo, 

bald cypress, and oak-dominate the bottomland hardwood forests. The Southern Pine 

Plains and Hills cover most of the study area consisting almost entirely of loblolly, slash, 

and longleaf pine plantations.  The northern tier of the study area is known as the 

Southern Hilly Gulf Coastal Plain.  This region is characterized by rolling topography, 
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higher elevations, and more relief than regions mentioned above.  Vegetative cover 

consists primarily of longleaf and loblolly pine with some mixed forests of oak, hickory, 

and co-dominant pine.  Summarizing, the vegetative cover of the uplands is primarily 

dominated by pines, while bottomlands along low terraces and river floodplains are 

flanked with hardwoods (Figure 2.24). 

 

 

Figure 2.24 Forest Cover of Southeast Forest District in Mississippi. 
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CHAPTER 3 

RESEARCH OBJECTIVES 

 

The primary objective of this research was to employ data mining techniques to 

ascertain the interactive affects of the biotic and abiotic factors that were significantly 

related to the damage patterns in the Southeastern Forest District of Mississippi as a 

result of Hurricane Katrina.  The primary objective investigated two separate dependent 

response variables against independent biotic and abiotic variables which maximize 

wind-throw of hardwoods and shear in pines: 

• Percentage of Stems Damaged per Plot 

• Percentage Basal Area Damaged per Plot 

A second objective was to compare CART analysis with stepwise forward logistic 

regression in the identification of important and significant variables for wind-throw of 

hardwoods and shear of pines.   

A tertiary objective was to determine the accuracy of MIFI’s original 

classification of damaged plots.  Through personal communication with Patrick Glass, 

MIFI Director, plot-level classification of wind-throw or shear is subjectively based on 

aerial images and ground truth opinions of various surveyors.  The original MIFI plot 

damage classifications were reclassified to wind-throw or shear based on greatest 

percentage of damage type recorded per tree per plot. 
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CHAPTER 4 

DATA AND METHODS 

 

The following section details the materials and methods used to develop a GIS 

database of biotic and abiotic variables across the Southeast Forest District following 

Hurricane Katrina.  First, the raster and vector GIS layers needed to develop the GIS 

database using ArcMAP 9.2 are described.  Next, the operation and coding of the 

statistical data mining software [R 2.8.1] is given.  Then, forward stepwise logistic 

regression was used to compare significant variables to variables identified through 

CART analysis. Then, the statistical methodology investigating the original MIFI plot 

damage classifications to the reclassified damage plots using SPSS 15.0 is reviewed.  

Lastly, simple binary logistical regression was used to predict the probability of each 

individual variable and its respective data values.   

Raster and Vector Data 

The GIS raster layers used to develop the GIS database where obtained from the 

Mississippi Automated Resource Information System (MARIS) and the College of Forest 

Resources (CFR) at Mississippi State University.  The geographic coordinate system of 

each raster dataset was projected in North American Datum (NAD) 1983 with the 

projected coordinate system of Mississippi Transverse Mercator (MSTM).  The raster 

description, resolution, and respective source can be viewed in Table 4.1. 
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Table 4.1 Raster Datasets, Resolution, and Sources 

Raster Dataset Resolution Source 
Mississippi Topography   
   DEM of Mississippi 10 Meters MARIS/Dr. Cooke 
      Elevation (m)→(ft) 10 Meters MARIS/Dr. Cooke 
      Slope (°) 10 Meters MARIS/Dr. Cooke 
      Surface Roughness 10 Meters MARIS/Dr. Cooke 
      Aspect (°)→(direction) 10 Meters MARIS/Dr. Cooke 
Forest Land Cover   
   Classified Landcover 30 Meters CFR 

 

The 10 meter Digital Elevation Model (DEM) of Mississippi was mosaiced 

together by Dr. Cooke using a 9x9 focalmean window to fill in data gaps in between 

county borders.  The DEM was subset to the Southeast Forest District study area.  The 

units of the original DEM (meters) was converted to feet and GIS functions were used to 

derive slope, aspect, and surface roughness.  

The GIS vector layers used to develop the GIS database where obtained through 

the Mississippi Automated Resource Information System (MARIS), Untied States 

Geological Survey (USGS), Hurricane Research Division (HRD), and Mississippi 

Institute for Forest Inventory (MIFI). The vector shapefiles and their respective sources 

can be viewed in Table 4.2. 
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Table 4.2 Vector Data and Respective Sources 

Vector Shapefile Name Vector Geometry Source 
Geographical Shapefiles   
   State of Mississippi  Polygon MARIS 
   Mississippi Counties Polygon MARIS 
   Mississippi Coast  Line MARIS 
   Perennial Streams Line MARIS 
Meteorological Shapefiles   
   Katrina Path Line USGS 
   Sustained Wind (MPH) Point HRD/H*Wind 
   Cumulative Wind (MPH) Point Derived 
   Peak Wind Gusts (MPH) Point USGS 
   Max. Surface Direction (°) Point HRD/H*Wind 
   Duration (hr) Point HRD/H*Wind 
   Precipitation Totals (in) Point NCAR/EOL 
   Precipitation Intensity (in/hr) Point Derived 
Soil Shapefiles   
   Texture (Categorical) Polygon Eduardo (2008)/SWAP/NCRS 
   Infiltration Rate (Categorical) Polygon Eduardo (2008)/SWAP/NCRS 
   Bulk Density (g/cc) Polygon Eduardo (2008)/SWAP/NCRS 
MIFI Shapefiles   
   Forest Inventory Plots Point MIFI/Patrick Glass 

 

The H*Wind and precipitation point shapefiles were converted to continuous 

raster fields across the study area.  An Inverse Distance Weighting (IDW) interpolation 

technique was implemented with the 4km x 4km point shapefile containing the attributes 

of sustained wind speeds, peak wind gusts, cumulative wind speeds, duration, and 

maximum surface direction to create continuous wind-flow layers (Figures 4.1-4.5).  The 

IDW technique uses the inverse distance as a weight multiplied by the sample value for 

the calculation of unknown values between the known values (DeMers 2005).  The IDW 

technique results in the output of a continuous grid that represents general trends in the 

values across the landscape. Kriging, another commonly used interpolation technique, 

incorporates the spatial correlation of the sample data opposed to a simple weighted 
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approach (Largueche 2006).  This spatial correlation is measured through a 

semivariogram graph.  The vertical graph axis contains the distance between points and 

the horizontal axis contains the square of the standard deviation between each sample 

value and its neighbors (Gilreath 2007).  A best-fit curve is applied to the points to 

estimate the spatial correlation along a certain direction or gradient.  Points located along 

the isotropic gradient are weighted higher than along the anisontropic gradient.  The 

differing weights across the sample points can alter the interpolation compared to an 

IDW of the same sample data.  However, the uniform distribution of the 4km x 4km 

HRD H*Wind and hourly MPE grid points provides an excellent sample grid for 

applying IDW interpolations.  If one was to only have access to surface wind 

observations at fewer locations opposed to an equally distributed grid, then kriging would 

be a better method. 

 

 

Figure 4.1 Sustained Wind Speeds derived from H*Wind Product 
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Figure 4.2 Peak Wind Gusts derived from USGS Point data. 

 

 

Figure 4.3 Cumulative Wind Experienced from 06Z-21Z on August 29th, 2005. 
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Figure 4.4 Duration of Hurricane Force Winds (hr) derived from H*Wind 

 

 

Figure 4.5 Maximum Surface Direction derived from H*Wind Product. 

 

Soil polygon shapefiles were created by importing soil texture, infiltration rates, 

and mean bulk density values compiled by Eduardo (2008) into a downloaded soils 
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associations database file.  Polygons of each soil variable with similar attributes were 

aggregated using the dissolve function in ArcMap 9.2.   

The MIFI Southeast Forest District (SFD) inventoried plot point shapefile was 

used for model fitting and validation.  Original attributes include: plot number, forest 

coverage type, stand condition, physiographic location, type of damage estimated for the 

stand-level, stand origin, and x,y coordinates for each plot.  Tables 4.3-4.5 detail the 

forest coverage types, stand conditions, physiographic location, and stand-level damage 

classification and their respective descriptions.  Initial damage classifications were 

investigated to determine if pine plots suffered more shear damage and if hardwoods 

suffered more wind-throw damage (Figure 4.6). 

Table 4.3 Forest Type and Descriptions. 

Coverage Type Coverage Description 

Hardwood Canopy composition is less than 20% 
Coniferous 

Mixed Canopy Composition is between 40%-
60% coniferous 

Pine Canopy composition is greater than 80% 
Coniferous 
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Figure 4.6 Pine and Hardwood Plots across the Study Area and their respective 
wind-thrown and Sheared Percentages. 
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Table 4.4 Stand Condition/Size Class and Descriptions. 

Stand Condition/Size Class: Class Description 

Reproduction 
No Commercial tree species greater 

than 1 inch in DBH are encountered with 
the radius of 1/5th acre plot. 

Sub-Merchantable 
No commercial tree species greater 

than 4.5 inches in DBH are encountered 
with the radius of 1/5th acre plot. 

Pulpwood 
The majority of commercial tree 

species occupying the 1/5th acre are 4.6 to 
10.6 inches in DBH. 

Pallet 
The majority of commercial 

hardwood stems occupying the 1/5th acre 
plot at 7.6 to 10.5 inches in DBH. 

Chip’n Saw 
The majority of commercial pine 

stems occupying the 1/5th acre plot are 7.6 
to 10.5 inches in DBH. 

Saw Timber 
The majority of commercial tree 

species occupying the 1/5th acre plot are 
greater than 10.6 inches in DBH. 

Non-Timber The site has been converted to non-
forestry application. 

Non-Stocked  There is less than 20 square feet of 
basal area on a 1/5th acre plot. 

 

Table 4.5 Topographic Position and Description. 

Topographic Position Topographic Description 

Upland Drier, xeric sites found on top of ridges 
and side slopes. 

Bottomland Wet, Hydric sites found along rivers and 
streams. 

Terrace Mesic sites that by default not Upland or 
Bottomland. 
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Table 4.6 Stand-Level Damage Classifications and Descriptions 

Stand-Level Damage 
Categories 

Damage Descriptions 

Shear Stems have been sheared of twisted off with 
no crown material present above the break. 

Blowdown Tree stem intact but laying on the ground 
with the root system attached. 

 

Table 4.3 reveals a potential error in the classification of forest types with forests 

greater than 20% but less than 40% coniferous trees not clearly defined by the coverage 

definition MIFI provides in their technical manual.  The issue arises again when the 

percentage of coniferous trees is greater than 60% but less than 80%.  Table 4.4 depicts 

the stand condition and classes that are primarily associated with DBH criteria.  Table 4.5 

identifies the location of each plot according to physiographical location.  Table 4.6 

depicts the only two damage types investigated for this study and their respective 

descriptions according to MIFI (2007). 

 

Southeast Forest District Inventory Tree-Level Data 

In addition to the stand-level attributes present in the SFD inventoried plot 

shapefile, tree-level data for the corresponding plots were also obtained from MIFI 

through the Director of Operations, Patrick Glass.  The tree-level data were originally 

sent as a large spreadsheet containing tree characteristics of each individual tree 

measured on plots according the methodology explained above.  A total of 46,848 trees 

were individually sampled by: species group, DBH, total height, type of tree damage, 

diameter at break in stem, height to base of live crown, and diameter of main stem one 
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foot above the ground being.  The fields of height to base of live crown, diameter at break 

in stem, and diameter of main stem at one foot above the ground were incomplete for all 

tree records and a decision was made to exclude these fields from the analysis.  

Therefore, only the DBH, tree height, and damage type statistics were utilized.  Basal 

Area (BA) per plot, trees per acre, wind-thrown basal area, sheared basal area, height to 

diameter ratio, Quadratic Mean Diameter (QMD), and Lorey’s mean height were derived 

from the utilized fields.  Basal area is the cross-sectional area of a tree measured at breast 

height (DBH) (Emanuel 2009) and is calculated using Eq. 4.1 for English units (in). 

2005454.0 DBHBA ∗=                                       Eq. 4.1 

Quadratic mean diameter was computed since it has been shown to be more 

strongly correlated to stand volume than the arithmetic mean (Brack 1999)  

  ndQMD i∑= 2                                                        Eq. 4.2 

where di is the DBH of an individual tree and n is the total number of trees in the stand.   

Lorey’s mean height was calculated because it weights the contribution of trees to the 

stand height by their basal area (Brack 1999).  Lorey’s mean height is determined by 

multiplying the tree height (h) by the basal area (g), and then dividing the sum of this 

calculation by the total stand basal area (Eq 4.3) (Brack 1999, Dr. David Evans, personal 

communication, 2009). 

∑
∑ ∗

=
g

hg
H L                                                  Eq. 4.3 
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GIS Database Construction using ArcGIS 

ArcMap 9.2 and Excel were used in conjunction to build a database containing 

biotic and abiotic variables to be subsequently analyzed through data-mining techniques, 

forward stepwise logistic regression, and binary logistic regression to depict causal 

variables for wind-throw of hardwoods and shear of pines (Figure 4.7).  Tree-level data 

of DBH, height, and type of damage were aggregated to the plot-level.  Seven biotic 

variables were calculated from the tree-level data using Eq. 4.1-Eq. 4.3 in Excel while the 

sheared and wind-thrown basal areas were determined using SAS 9.1 (Fan 2009).  

Ninety-one of the plots did not have latitude or longitude coordinates and were excluded 

from the dataset.  An attribute join of the tree-level database file (.dbf) to the MIFI 

inventory plot (.dbf) was performed using the common plot number field.  The attribute 

join function links two separate tables (.dbf format) based on a common field in their 

respective attribute tables.  With biotic variables now entered into the MIFI inventory 

point shapefile, abiotic variables were then addressed. 
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Figure 4.7 Flowchart describing the Database Building Process. 
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The abiotic factors consist of multiple variables, including both raster and vector 

datasets.  The H*Wind product was accessed from the Hurricane Research Division 

(HRD) and is a compilation of satellite, aerial, and surface observing platforms (Powell et 

al.1998).  The HRD produces 3-hourly intervals of wind-surface analysis available in 

image and shapefile format.  A shapefile stores non-topological geometry and attribute 

information for the spatial features in a dataset and consists of a main file, an index file, 

and dBase file (ESRI 2009).  Each H*Wind point shapefile contains the attributes of 

latitude and longitude, maximum sustained wind, and maximum surface direction.  The 

HRD also produces a separate point file which includes the swath of maximum sustained 

winds, duration, and maximum surface direction.  Inverse Distance Weighting (IDW) 

interpolation was implemented for each H*Wind point file resulting in a continuous 

raster grid with a resolution of 4km.  Multiple time steps of Katrina H*Wind analysis 

were downloaded to develop the cumulative wind speed layer over from 06Z (1am) the 

morning of Katrina’s landfall (~12Z or 7am) to 00Z (7pm) that evening.  The IDW 

procedure was also applied to these point shapefiles in the same manner.  The continuous 

raster wind-fields were summed within the GIS.  Peak wind gusts were not included in 

the HRD H*Wind Analysis product, however, the USGS provided a point shapefile based 

on surface observations stations.  IDW was again implemented for  peak wind gust field 

at 4km x 4km resolution to produce a similar grid to the H*Wind grids.  In addition to 

continuous wind fields, continuous precipitation fields were also generated across the 

study area. 

Precipitation data were accessed from the National Center for Atmospheric 

Research (NCAR) Earth Observing Laboratory (EOL).  The Stage IV data are based on 
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the multi-sensor hourly/6-hourly State III analyses produced at twelve River Forecast 

Centers (RFCs) around the U.S (NCAR/EOL 2009).  The original downloaded files are 

projected to a 4km polar-sterographic Grided Binary (GRIB) grid that was subsequently 

re-projected to Mississippi Transverse Mercator (MSTM) and decoded.  Time series grids 

spanning from 13Z (7am) August 28th through 00z (7pm) August 29th were compiled and 

decoded using “Degrib.”  Degrib is a software program maintained by the NWS to 

decode the National Digital Forecast Database (NDFD) output which uses grib2 files.  

Degrib allows the user to create large or small polygon, or point shapefiles from the input 

grib2 file and specify a file path and location.  A total of 37 hours were decoded and 

converted to point shapefiles.  IDW interpolation was again utilized to generate 

continuous precipitation fields across the study area at 4km x 4km resolution.  Since the 

precipitation grids units were in inches and the time step of one hour was known, the 

precipitation intensity could then be calculated (in/hr).  Precipitation intensity was 

determined using a maximum function in the GIS.  The maximum function determines 

the greatest value of each pixel present in a series of overlaid raster datasets.  When this 

function is executed, the pixel values are reassigned to the maximum value present at 

each cell location over the time period.  A GIS cannot process all 37 grids at one time so 

the maximum function was used on 6-hour blocks of hourly data.  The final step was 

finding the maximum pixel value of each of the 6 hour blocks that generated a continuous 

precipitation intensity field across the study area.  H*Wind products, peak wind gusts, 

and precipitation variables were assembled into continuous fields and their respective 

values at MIFI field plot locations were extracted for analysis.  This extraction method 

was also utilized for the topographical variables. 
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The topographical variables of elevation, slope, aspect, and curvature were 

derived from a 10 meter mosaiced DEM of the study area.  The original DEMs used were 

10 meter county DEMs acquired from MARIS.  They were mosaiced in the GIS.  Once 

mosaiced, data gaps existed at some county boundaries.  This was remedied by 

constructing and moving a 9x9 averaging window across the extent of raster data using 

the a GIS focalmean function.  For each cell location in the input grid, focalmean uses the 

mean values within a specified neighborhood (9x9) and places that value in the 

corresponding cell location in the output grid (Easson and Robinson 2008).  The 

mosacied grid of the original DEMs and the focalmean grid using the 9x9 window were 

then merged, only filling the pixels that originally had no data values.  Once all data gaps 

had been filled, the FILL function was used to fill in sinks and level peaks that 

represented probable errors in the DEM data.  Using the focalmean and FILL functions 

creates and averages out erroneous data present in the DEM.  Surface Analysis under 

spatial analyst in ArcMap 9.2 was then used to determine the slope (degrees), aspect 

(degrees), and the surface roughness or curvature.  These continuous values, like the wind 

and precipitation values, were extracted at MIFI inventory plot locations.  In addition to 

the DEMs, MARIS was a source for several vector GIS files. 

Vector files acquired from MARIS included perennial streams, Hurricane 

Katrina’s track, and a polyline file depicting the coast of Mississippi.  Previous research 

of Everham and Brokaw (1996), Wang and Xu (2008), and Kupfer et al. (2008) 

suggested forests closer to streams, to the hurricane track, and the coast were more likely 

to be damaged.  Three new attribute fields were created in the MIFI inventory plot file 

and the distance from the coast, from streams, and from the hurricane track for each plot 
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was determined from these polyline files for the study region.  Everham and Brokaw 

(1996) and Wang and Xu (2008) also have found soil properties such as texture and 

infiltration rate to be significant in determining susceptibility to wind-throw and shear. 

The soil properties of texture, infiltration rate, and bulk density were obtained 

through previous work of Arias (2008) which used Soil Water Atmosphere Plant (SWAP) 

software that simulates transport of water, solutes, and heat in the vadose zone in 

interaction with vegetation development.  Texture, infiltration rates, and bulk densities 

were determined for all soil associations in Mississippi by Arias (2008).  The data from 

Arias (2008) was in Excel spreadsheet format and organized according to soil 

associations.  Therefore, a soil association polygon GIS file was accessed from MARIS 

and sorted in alphabetical order to match that Excel database of Arias (2008).  The 

information from the Excel spreadsheet was then copied and pasted into the attribute file 

of the newly downloaded soil association polygon GIS file.  Three copies were made of 

the soil association file, each one displaying one of the ‘distance from’ attributes.  A 

dissolve function was used to aggregate the smaller soil association polygons to larger 

polygons based on the attribute field.  The categorical values of soil texture and 

infiltration rate and numerical bulk density values were extracted to the MIFI plot 

locations. 

Through modification, the MIFI inventory plot point file contains all biotic and 

abiotic variables and their association with type of damage recorded for 1637 plots across 

the 15 counties of the Southeast Forest District.  The plots were then queried by 

hardwood and pine forest type and exported as new GIS layers with hardwood and pine 

forest types separated into their own databases (Figure 4.2.1.1).  Table 4.7 identifies all 
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biotic and abiotic variables now present for all 1637 MIFI Inventory plots that were 

analyzed using [R 2.8.0] for CART analysis and by SPSS 15.0 for logistic regression.   

Table 4.7 Biotic and Abiotic Variables, Units, and Resolution aggregated to the 
MIFI Inventory Plot point shapefile. 

Variable Units Resolution(if applicable) 
   Biotic   
      Percentage of Trees Wind-Thrown % NA 
      Percentage of Trees Sheared  % NA 
      Sheared Basal Area ft2/plot NA 
      Wind-Thrown Basal Area ft2/plot NA 
      Total Basal Area ft2/plot NA 
      Trees per Acre - NA 
      Quadratic Mean Diameter (QMD) In NA 
      Lorey’s Mean Height (LMH) Ft NA 
      Height to Diameter Ratio (H/D) - NA 
      Forest Coverage Classification Categorical NA 
      Stand Condition Classification Categorical NA 
      Stand-Level Forest Damage Categorical NA 
Abiotic   
   Meteorological     
      Sustained Wind Speed MPH 4km x 4km 
      Peak Wind Gusts MPH 4km x 4km 
      Cumulative Wind Speed MPH 4km x 4km 
      Duration Hr 4km x 4km 
      Maximum Surface Direction ° 4km x 4km 
      Precipitation Storm Total In 4km x 4km 
      Precipitation Intensity In/hr 4km x 4km 
   Topographical   
      Elevation Ft 10 Meters 
      Slope ° 10 Meters 
      Aspect Categorical 10 Meters 
      Surface Roughness/Curvature - 10 Meters 
      Topographic Position Categorical NA 
   Geographical   
      Distance to Perennial Streams  Miles NA 
      Distance to Hurricane Track Miles NA 
      Distance to Coast Miles NA 
Pedological   
      Soil Texture Categorical NA 
      Infiltration Rate Categorical NA 
      Bulk Density g/cc NA 
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Data Mining Operation and Code using [R 2.8.1] 

Prior to implementing analysis procedures, the MIFI inventory point database was 

queried first for only hardwood plots and then for pine plots in order to separate both 

spatial and tabular data by forest type (Figure 2.19).  The respective database (attribute 

table) files of both hardwood and pine GIS files were imported into Excel and saved as 

both a comma separated value (.csv) format and workbook (.xls) format in separate 

directories.  The (.csv) files where then brought into [R 2.8.1], a free software 

environment for statistical computing and graphics developed at Bell Laboratories 

(formerly AT&T) by John Chambers and colleagues (Leisch 2003).  [R 2.8.1] was 

downloaded from the Comprehensive R Archive Network (CRAN) which hosts the R-

code as it is updated.  For this project, the CRAN host selected was the University of 

California, Berkley (http://cran.cnr.Berkeley.edu).  Concurrent with downloading [R 

2.8.1], three extensions were also downloaded.  These three extensions included rpart, 

boot, and bootstrap.  Rpart, short for Recursive Partitioning, is the primary package used 

for recursive portioning and regression trees (i.e. CART analysis) (Ripley 2009).  Boot 

and bootstrapping allow for summary statistics and Confidence Intervals (CIs) of each 

terminal node value to be determined. 

Growing Regression Trees 

To complete the first objective, rpart, boot, and bootstrap packages were loaded 

into the active R-Console window within [R 2.8.1].  The methodology of entering R-code 

to yield a regression tree will be described below using the dependent response variable 

of percentage of sheared pines.  The same methodology was used for the dependent 

response variables of: percentage of hardwoods wind-thrown on hardwood plots, basal 

http://cran.cnr.berkeley.edu/�
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area of pines sheared on pine plots, and basal area of hardwoods wind-thrown on 

hardwood plots.  Example R-code from previous research by Dr. Fan of the College of 

Forest Resources at Mississippi State University was utilized for this study.  The R-Code 

was tailored to fit the dependent response and independent driving variables amassed in 

the GIS Database along with R-code determining the confidence intervals for each 

successive split.  This allowed for R-code to be copied and pasted from Notepad into the 

R-Console.  The R-code containing the pine (.csv) file was copied and pasted into the R-

Console which then reads all data contained within the (.csv) file.  Next, the name for the 

over-fit regression tree is set as PN_shear_P.tree and the rpart package is called to action 

with the dependent response variable stated first, followed by all other biotic and abiotic 

variables (Figure 4.8).  The method of ANOVA was specified since the recursive 

partitioning was based on a continuous dependent variable.  If the dependent variable had 

been categorical in nature, the method would have been specified as CLASS for 

classification tree.  This option was not used in this study.  After the rpart package was 

called to action, [R] subsequently data mines all variables to determine which biotic and 

abiotic variables and their respective values were important and produced an over-fit 

regression tree.  To view the regression tree, a post script file was created and a title was 

specified, “Fully-Grown Regression Tree for Pine Shear Percentage.”  The post script file 

was then opened using Adobe Acrobat 8.0. 
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Figure 4.8 R-Code depicting Package Loading, (.CSV) File Loading, Defining 
Regression Tree Name and Input and Creation of Post Script File. 

 

The over-fit regression tree was printed out and each node was numbered starting 

with root node.  Nodes were numbered in ascending order as nodes split to the left and 

then to the right.  The terminal nodes’ respective position (i.e. number) was later used in 

R-coding to determine the confidence interval for each successive split.  The next task 

was to prune the over-fit regression tree using two different methods. 

Pruning Regression Trees 

Initial pruning for the over-fit regression tree used the highest cross-validation 

error less than one standard error above the minimum cross-validation error (Thereau et 

al. 1997).  This was determined by analyzing the cost-complexity parameter (CP) table in 

[R].  This table was displayed by entering “printcp(PN_shear_P.tree) (Figure 4.9).”  The 

rpart regression tree formula that constructed the tree, the variables actually used in the 

tree, the root node error, sample size, and summary statistics for different sized regression 

trees are shown in Figure 4.9.  The minimum “xerror” or cross-validation error was added 

to the “xstd” (standard deviation) creating the one standard error (1-SE) bar.  The 

resulting value was then used to determine the proper number of splits the optimal tree 

should have before over-fitting occurred. 
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Figure 4.9 PrintCP Table showing [R] Output of Important Variables used and 
the relative CP values for varying sized Regression Trees for the  
Percentage of Pines Sheared. 

 

In addition to this value, the number of splits was also determined by plotting the 

cross-validation relative error against the Cost-complexity Parameter (CP) value (Figure 

4.10).  The CP value is a measure of how much additional accuracy a split must add to 

the entire tree to warrant the additional complexity.  As the cost-complexity parameter 

value increases, a greater number of nodes (decreasing to increasing importance) are 

pruned away, resulting in a simpler decision tree.  A third axis on the graph depicts the 

number of splits that an optimal tree will have depending on the CP value used to prune 

the tree.  The relative error is equal to 1-R2, with R2 being the correlation coefficient that 

measures how well the data fit the dependent response variable.  Therefore, the lower the 

relative error, the better the fit the data are to the dependent response variable.  However, 

as the number of splits increase, the R2 will be higher due to over-fitting of many 
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parameters to the dataset.  By using the 1-SE rule, it becomes a balance of higher 

decision cost for each split and the amount of information and interpretability of the 

results.  Ripley (2009) suggests a good choice for CP pruning is often the left-most value 

for which the mean lies below the horizontal line.  Based on Figure 4.10, the 1-SE rule 

suggests a tree supporting 6 terminal nodes or 5 splits can be used as the optimal tree.  

However, quantitatively this tree was not the best-fit model according to the xerror 

values.  The minimum xerror values showed the optimal tree is one that only has 4 

terminal nodes with three splits (Figure 4.10).  This led to the second method of pruning 

by using the minimum xerror and its corresponding CP value.  This method is known as 

minimum CP pruning.  Minimum CP pruning was carried out on all regression trees for 

each dependent response variable.  R-Code created for each dependent variable was 

imported in the R-Console and the CP value corresponding to the lowest cross-validation 

error was used to automatically prune the regression trees.   
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Figure 4.10 Example of PLOTCP in [R 2.8.1] to Determine the Optimal Size of 
the Regression Tree. 

 

In addition to the lowest cross-validation error being used to prune the over-fit 

regression tree, the R2 values of each split was also used to determine when successive 

splits stopped increasing the correlation to percentage of damaged trees or basal area on 

hardwood and pine plots.  The apparent R2 value is derived by subtracting the relative 

error by one and the X-Relative R2 is determined by subtracting one from the cross-

validation error (Difford 2008).  The apparent R2 value represents the classification 

accuracy of the data being utilized through that respective split.  The X-Relative R2 

depicts the optimal tree when this value is at its maximum.  Recall that when the 

minimum CP method of pruning is used, this is actually using the minimum cross-

validation error (xerror).  Since the X-Relative error is calculated by subtracting one from 

the cross-validation error, the maximum value of the X Relative graph in Figure 4.11 

depicts the optimal tree size. This command was entered into the active R-Console as 
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rsq.rpart(PN_shear_P.tree) and produces a R2 and CP graphs in a new [R] window 

(Figure 4.11). 

 

 

Figure 4.11 R2 and Cost-complexity Parameter (CP) graphs depicting Split 
Correlation and Decision Cost. 

 

Determination of 95% Confidence Intervals 

As mentioned above, three extensions were downloaded and installed along with 

[R 2.8.1].  Two of those extensions, boot, and bootstrap were used to determine the 95% 

confidence intervals of the means of each node.  Both extensions compile a large number 

of datasets and a distribution of the mean value for each node can be determined.  Boot 

and Bootstrap packages allow for resampling of the dataset to estimate the standard error 

of the mean by repeatedly drawing “bootstraping samples” from the original data, re-

evaluating each median value for each bootstrap sample, and estimating the standard 

error of the original median by the observed variability in the bootstrap means (Efron 

2009).  This re-sampling method allows for the estimation of the distribution of the 



 105 

sample’s statistics.  Potential statistics derived using the bootstrapping method include 

the mean, median, standard deviation, and quartiles of a given dataset.  A schematic of 

how bootstrapping works is shown in Figure 4.12.  The biggest advantage of 

bootstrapping over other summary statistic analytics is the straight-forward application to 

derived estimates of standard errors and confidence intervals for complex estimators of 

complex parameters within the distribution (Burns 2008). 

As mentioned above, three extensions were downloaded and installed along with 

[R 2.8.1].  Two of those extensions, boot, and bootstrap were used to determine the 95% 

confidence intervals of the means of each node.  Both extensions compile a large number 

of datasets and a distribution of the mean value for each node can be determined.  Boot 

and Bootstrap packages allow for resampling of the dataset to estimate the standard error 

of the mean by repeatedly drawing “bootstraping samples” from the original data, re-

evaluating each median value for each bootstrap sample, and estimating the standard 

error of the original median by the observed variability in the bootstrap means (Efron 

2009).  This re-sampling method allows for the estimation of the distribution of the 

sample’s statistics.  Potential statistics derived using the bootstrapping method include 

the mean, median, standard deviation, and quartiles of a given dataset.  A schematic of 

how bootstrapping works is shown in Figure 4.12.  The biggest advantage of 

bootstrapping over other summary statistic analytics is the straight-forward application to 

derived estimates of standard errors and confidence intervals for complex estimators of 

complex parameters within the distribution (Burns 2008). 
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Figure 4.12 Schematic Diagram illustrating the Concept of Bootstrapping. 

 

Previously compiled R-code was obtained from Dr. Fan of the CFR at Mississippi 

State University for boot and bootstrapping packages.  The R-code was tailored to each 

dependent response variable tested.  The nodes numbering from the printouts were used 

from each full, 1-SE, and min CP regression tree to determine the 95% Confidence 

Interval (CI) for the mean values of all terminal nodes.  Using the bootstrap package, the 

sample data set of pine (N = 784 plots) was resampled 1000 times to determine the upper 

and lower 95% confidence intervals.  The same number of resamplings was carried out 

on each dependent response variable.  The mean values, along with their upper and lower 

bounds, of the full, 1-SE, and minimum CP values were input into an Excel spreadsheet 

and graphed. 
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Forward Stepwise Logistic Regression using SPSS 15.0 

Logistic regression, a multivariate technique that uses a logit function to predict 

the outcome of a dichotomous or polytomous response, was utilized to complete the 

second and third objectives of this study.  The second objective was to compare the 

CART analysis with forward stepwise logistic regression and their respective 

identification of significant variables for wind-throw of hardwoods and shear of pines.  In 

the amassed MIFI Inventory plot point shapefile, pine plots were queried for plots that 

were field-classified as sheared plots and were given the code as one.  Pine plots not 

classified as sheared plots were coded as zero.  The same coding was applied to 

hardwoods with respect to wind-throw plot classification.  Hardwood plots deemed by 

MIFI to have suffered wind-throw were coded with a value of one, while hardwood plots 

that were not wind-thrown were coded as zero.  The attribute tables were saved as 

workbooks (.xls) in Excel and opened in SPSS 15.0 for statistical analysis on the 

bivariate plot damage classifications as they related to the biotic and abiotic variables. 

Unlike CART methodology, logistic regression has been utilized more frequently 

for bivariate analysis on stand-level damage classifications (Peterson, 2007, Oswalt and 

Oswalt 2008, Xi et al. 2008).  Logistic regression is the best technique for relating binary 

response variables (wind-throw occurrence or not, shear occurrence or not) to categorical 

or continuous biotic and abiotic independent variables (Peterson 2007).  Once files were 

imported into SPSS 15.0, a forward stepwise logistic regression analysis was initiated.  

When forward logistic regression is employed, the computer begins with a model that 

includes only a constant value and then adds single predictor variables into the model 

based on the significance of the Wald statistic. The Wald statistic, otherwise known as 
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Wald χ2 statistic is used to test the significance of individual coefficients in the model and 

is calculated by Eq. 4.4 

2







 Β

=
SE

Wald
                                             Eq. 4.4 

where B is the coefficient of the independent variable and SE is the standard error of the 

variable.  In addition to the Wald statistic, the log-likelihood ratio was used to compare 

each logistic regression model.  Lower log-liklihood ratio values result in better model 

performance (Wuensch 2008).   Models were built using forward selection of variables, 

with a threshold of p<0.05 to enter a variable into the equation and p>0.10 to remove a 

variable from the equation.  The overall significance of the logistic regression models 

was tested using the -2 log likelihood ratio, while the Wald statistic was used to evaluate 

the significance of individual variables within the models for sheared pine and wind-

thrown hardwoods.  Pseudo R2 values known as Cox and Snell R2 and Nagelkerke R2 

values are also used as a measure of strength of association.  Cox and Snell’s R2 is an 

attempt to imitate the interpretation of of multiple R-Square based on the log likelihood 

of the final model versus log likelihood for the base line model, but its maximum can not 

be one (Garson 2009).  Nagelkerke’s R2 is a modification of the Cox and Snell coefficient 

to assure that it can vary from zero to one (Garson 2009).  This approach divided Cox and 

Snell R2 by its maximum in order to achieve a measure that ranges from zero to one.  

Thus, Nagelkerke’s R2 will normally be higher than the Cox and Snell measure and will 

tend to run lower than the corresponding ordinary least squares R2.  The results of the 

forward stepwise logistic regression models were compared to the biotic and abiotic 

variables that were important in the CART analysis for pine and hardwood shear and 
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wind-throw percentages.  MIFI personnel used aerial photographs and conditions 

observed in-route to plots to classify plot damage types and did not base estimates on 

aggregation of tree-level damage incurred to plot-level statistics.  This fact leads to the 

third objective which was an assessment of the accuracy of MIFI’s original classification 

of plot-level damage classes. 

To determine the accuracy of MIFI’s original classification, the binary plot-level 

information damage was analyzed using the same forward stepwise logistic regression 

procedure applied for the second objective.  However, to determine the accuracy of 

predicting whether a plot should be categorized as sheared or wind-thrown, the binary 

plot damage classifications were recoded according to a set threshold value.  This 

threshold value was chosen on the basis percentage of wind-throw and shear per plot 

from the tree-level data.  Histograms of all plots and the respective wind-throw and shear 

percentages were generated and identified a majority of plots suffered less than 10% for 

each respective damage type (Figures 4.13 and 4.14).   
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Figure 4.13  Plot Distribution of Blowdown Percentage for All Plots from Tree 
Level Data. 

 

 

Figure 4.14 Plot Distribution of Sheared Plot Percentage for All Plots from Tree 
Level Data. 

 

Since a majority of plots suffered less than 10% of wind-throw or shear damage, 

plots that experienced more then 10% damage were reclassified as wind-throw damage if 

the plot was hardwood and shear damage if the plot was pine.  A new attribute field was 

created for the recoded plot classifications to the MIFI Inventory plot point shapefile.  

Again using SPSS 15.0 forward stepwise logistic regression was performed on the 
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recoded classifications and compared to MIFI’s original damage plot classifications.  

Forward stepwise logistic regression was used to determine which variables and their 

interactions were significant to predicting the damage classification of a given plot.  In 

addition, each individual biotic and abiotic variable was assessed in determining its role 

in plot-level classification accuracy through binary logistic regression.  Each variable was 

analyzed using the logistic regression equation through SPSS 15.0.  Since the coefficients 

in the logistic regression equation are in log-odds units the use of Equation 4.5 allows for 

a back-transformation to a predicted probability where P is the probability, e is the base 

of the natural logarithm and a is the constant and b adjusts how quickly the probability 

changes with changing X a single unit. 

bXa

bXa

e
eP +

+

+
=

1                                                        Eq. 4.5 

This allowed for each individual biotic and abiotic variable value to be correlated to a 

predicted probability of wind-throw or shear at the stand-level. 
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CHAPTER 5 

RESULTS 

 

This chapter focuses on the biotic and abiotic variable interaction and the 

relationship to wind-throw damage of hardwood plots and shear damage of pine plots 

across southeastern Mississippi following Hurricane Katrina.  Results of each fully-

grown regression tree, 1-SE pruned tree, minimum CP pruned tree and R2 split-

correlation and decision-cost graphs are presented.  The 95% confidence intervals of the 

terminal nodes mean values are also displayed.  Next, forward stepwise logistic 

regression identification of significant biotic and abiotic variables is compared to CART 

analysis findings.  Original MIFI damage plot classifications are compared to the 

quantitatively reclassified damage plots. 

CART Results 

The CART results below are primarily displayed and explained based on the 

regression tree diagrams.  An example below can be used as an aid to understand the 

regression tree layout and numerical output shown in each node (Figure 5.1). 
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Figure 5.1 Example of Regression Tree Output 

 

The oval at the top of the regression tree is the root node which displays the mean 

percentage of the dependent response variable tested (P) and the sample size (N) 

contained within that specific node.  Therefore, the sample size (N) value of the root node 

contains the entire dataset for either pine or hardwood plots, depending on which is being 

tested.  Each splitting criterion (SC) showing the biotic or abiotic variable responsible 

and its corresponding value is displayed between the parent node and subsequent child or 

terminal node.  As a general rule, as nodes split to the right, the mean percentage of trees 

or basal area damaged increases, while splits to the left show decreases of mean 

percentage of trees or basal area damaged. 

Percentage of Pines per Plot Sheared 

The fully-grown regression tree for percentage of sheared pines per plot reveal 

pine plots having greater than 8 inches QMD had 3.5 times more damage than plots that 



 114 

averaged less than 8 inches QMD (Figure 5.1).  The next split shows pine plots with a 

Lorey’s Mean Height (LMH) less than 43.5 feet experienced 3.9 times the shear damage 

than those with LMH vales greater than 43.5 feet.  The regression tree then separates into 

two main branches but interestingly uses the same variable in the following split, peak 

wind gusts.  For the left branch, pine plots greater than 43.5 feet LMH that experienced 

over 130 mph had 3 times the amount of damage opposed to plots that experienced less 

than 130 mph.  QMD is again used in the next split further reinforcing that pines with 

greater diameters suffered greater shear damage.  Further splits in the left branch are 

made but are most likely the result of over-fitting of the data.  Focusing on the right 

branch were sheared damaged to pine plots is maximized shows pine plots less than 43.5 

feet LMH and prone to peak wind gusts greater than 138 MPH had the highest percentage 

of shear damage at 47%.  Pine plots experiencing wind gusts less than 138 mph but 

having higher height to diameter (H/D) ratios of 54 had 15 times the amount of shear 

damage than on plots where H/D ratio was less than 54.  The last split on the right 

branch, even through it over-fit to the dataset, depicts the higher the elevation of the 

stand, the greater chance of shear damage was to occur.  The values stated above are 

means of a vast data mining array not accessible or viewable by the user.  However, 

bootstrapping statistics can be performed on this array to determine the upper and lower 

bounds (i.e. confidence intervals).  Knowledge of the upper and lower 95% confidence 

intervals (CI) reveal the relative robustness of each mean node value. 

The fully-grown regression tree CIs for each terminal node of percentage of pines 

per plot experiencing shear is illustrated in Figure 5.2.  The first four terminal nodes 

(Nodes 2, 5, 7, 10) had relatively small intervals leading to greater robustness and 
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confidence in the mean values.  Nodes further down the tree and those that split right tend 

to have greater intervals.  The largest interval occurred for Node 18.  Referencing back to 

Figure 5.1, the bottom right terminal node splits right and is based on an elevation 

splitting criteria.  A good majority of values from elevation terminal nodes equal or 

surpass the mean value of node the peak wind gust terminal node which was also split 

right and based on peak wind gust speed.  However, node 18 is most likely over-fit to the 

data and will subsequently be pruned away.  The presence of elevation however, hints 

that is this variable may be important for other dependent response variables or other 

statistical procedures.  The statistics of the cptable were then examined to determine the 

classification accuracy of the full regression tree. 
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Figure 5.2 Fully-Grown Regression Tree for Pine Shear Percentage. 
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Figure 5.3 95% Confidence Intervals for Full Regression Tree of Percentage 
Pines Sheared per Plot. 

 

The overall classification accuracy for the full regression model for biotic and 

abiotic variables to predict the percentage of sheared pines per plot is 50% based off the 

cost-complexity parameter table (cptable) (Table 5.1).  Further investigation of the 

cptable shows the greatest decrease in the first and second splits with another small drop 

for the third split for both relative error and xerror columns.  The minimum xerror is 

reached after three splits, suggesting the optimal tree should be pruned to three splits.  

However, if additional information following the third split was sought out, the CP plot 

indicates up to 6 splits could be used using the 1-SE rule of pruning (Figure 5.1.1.3).  In 

concurrence with the cptable, the R-Square graph shows that only the first three splits 

help explain the correlation to percentage of pines sheared per plot (Figure 5.1.1.4).  The 

X Relative R2 is only 0.13 at its greatest value, thus alluding that percentage of pines 
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sheared per plot are not well correlated to the measured and derived independent biotic 

and abiotic variables.   

Table 5.1 Cost-Complexity Parameter (CP) Table for Full Regression Tree for 
Percentage of Pines per Plot Sheared. 

CP NSplit Relative Error Xerror Xstd 
0.112644 0 1.000 1.000 0.14188 
0.064274       2 0.77471 0.89224 0.12492 
0.050965       3 0.71044 0.86520 0.12589 
0.040547       4 0.65947 0.96200 0.12822 
0.038230       5 0.61893 0.94419 0.12560 
0.036371       6 0.58070 0.94419 0.12560 
0.032002       7 0.54433 0.92225 0.12441 
0.010633       8 0.51232 0.91347 0.11963 
0.010000       9 0.50169 0.92496 0.11470 

 

 

 

Figure 5.4 Cross-Validation Relative Error Graph with Standard Error Lines for 
Percentage of Pines per Plot Sheared. 
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Figure 5.5 Apparent, X Relative R-Square and Cross Validation Relative Error 
Graphs of 1-SE Pruned Regression Tree for Shear of Pine Plots 
Percentage. 

 

The fully-grown regression tree was then pruned using Figure 5.4 and the 1-SE 

rule.  The pruned tree now consists of 6 splits or 7 terminal nodes opposed to the 10 splits 

or 11 terminal nodes of the fully-grown and over-fit regression tree (Figure 5.6).  The 

mean values of remaining nodes do not change as other nodes are pruned away.  

However, as the nodes are pruned away, the fewer variables are used in the actual 

regression tree construction.  In Figure 5.6, the only variables used now are QMD, LMH, 

peak wind gust speed and H/D ratio.  By removing the terminal nodes fitting the 

idiosyncrasies of the dataset, the classification accuracy decreases to 42% (1.0-0.58070) 

(Table 5.2). 
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Table 5.2 Cost-Complexity Parameter (CP) Table for 1-SE Pruned Regression 
Tree for Percentage of Pines per Plot Sheared. 

CP NSplit Relative Error Xerror Xstd 
0.112644       0 1.00000 1.00172 0.14165 
0.064274       2 0.77471 0.88062 0.11011 
0.050965       3 0.71044 0.86662 0.10567 
0.040547       4 0.65947 0.89973 0.10999 
0.038230       5 0.61893 0.95735 0.11568 
0.037000       6 0.58070 0.95116 0.11568 

 

As stated above, the greatest decreases in both relative error and xerror occur 

within the first three splits with the minimum cross-validation error (0.86662) being 

attained at the third split.  The 95% CIs continued to show early nodes splitting to the left 

have smaller intervals than nodes splitting right and subsequently going through 

additional splitting criterion (Figure 5.7).  The farthest right terminal node has the largest 

interval with a mean value of 47.24 but its 95% CI upper bound is 60.7 and lower bound 

is 34.0. 
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Figure 5.6 1-SE Pruned Regression Tree for Pine Shear Percentage 

 



 122 

 

Figure 5.7 95% Confidence Intervals for 1-SE Pruned Regression Tree of 
Percentage Pines Sheared per Plot. 

 

The 1-SE regression tree was pruned to 3 splits based of the minimum cross-

validation error in Table 5.2 and the R-Square graph (Figure 5.8). 

 

 

Figure 5.8 Apparent, X Relative R-Square and Cross Validation Relative Error 
Graphs of 1-SE Pruned Regression Tree for Percentage Pines Sheared 
per Plot. 
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The minimum CP pruned regression was then pruned using the CP value of 0.045 

(Figure 5.9).  This parsimonious regression tree only consists of 3 splits or 4 terminal 

nodes with only three variables used: QMD, LMH, and peak wind gust speed (Table 5.3).  

The minimum CP tree had an overall classification accuracy of 39%.  Recall the fully-

grown regression tree had a classification accuracy of 50% using 6 variables.  Only an 

11% drop occurred while removing half of the variables used to predict the percentage of 

pines sheared per plot.   

Table 5.3 Cost-Complexity Parameter (CP) Table for Minimum CP Pruned 
Regression Tree for Percentage of Pines per Plot Sheared. 

CP NSplit Relative Error Xerror Xstd 
0.112644       0 1.00000 1.00172 0.14165 
0.064274       2 0.77471 0.88062 0.11011 
0.050965       3 0.71044 0.86662 0.10567 

 

The parsimonious minimum CP regression tree was then smoothed to the 95% CI 

line with each successive node having a greater interval than the previous node (Figure 

5.10).  As each regression tree is pruned and subsequent child and terminal nodes are 

removed, the node number alters according to the number of nodes present. 
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Figure 5.9 Minimum CP Pruned Regression Tree for Pine Shear Percentage 
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Figure 5.10 95% Confidence Intervals for MinCP Pruned Regression Tree of 
Percentage Pines Sheared per Plot. 

 

Percentage of Hardwoods per Plot Wind-thrown 

The fully-grown regression tree for percentage of wind-thrown hardwoods per 

plot reveals hardwoods with H/D ratios less than 28 experienced 8.3 times more wind-

throw than hardwoods greater than 28 (Figure 5.11).  Surprisingly, the plots having less 

than a 28 H/D ratio only tally 11 plots (3%) of the 342 total hardwood plots incorporated 

into the regression tree.  These plots were identified and removed from the dataset and 

CART analysis was performed again (Figure 5.12).  The new fully-grown regression tree 

excluded the H/D ratio variable entirely based of the removal of these plots.  In addition, 

the classification accuracy of the first regression tree including the 11 plots is 65% with 

the second full regression tree having a classification accuracy of 66% (Tables 5.4 and 

5.5). 
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Figure 5.11 Original Fully-Grown Regression Tree for Hardwood Wind-throw 
Percentage. 
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Figure 5.12 Reanalyzed Fully-Grown Regression Tree for Hardwood Wind-throw 
Percentage with removal of 11 HW Plots. 
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Table 5.4 Cost-Complexity Parameter (CP) Table for Original Full Regression 
Tree for Percentage of Hardwoods per Plot Wind-thrown. 

CP NSplit Relative Error Xerror Xstd 
0.347901 0 1.00000 1.00114 0.158603 
0.111234 1 0.65210 0.72915 0.107995 
0.054991 2 0.54086 0.60919 0.092845 
0.027891 3 0.48587 0.59865 0.095687 
0.019235 5 0.43009 0.66975 0.101877 
0.015269 8 0.37172 0.66760 0.100558 
0.011461 9 0.35645 0.68798 0.101359 
0.010000 10 0.34499 0.68792 0.101295 

 

Table 5.5 Cost-Complexity Parameter (CP) Table for Reanalyzed Full 
Regression Tree for Percentage of Hardwoods per Plot Wind-thrown. 

CP NSplit Relative Error Xerror Xstd 
0.207926 0 1.00000 1.00681 0.158972 
0.064454 2 0.58415 0.8142 0.094053 
0.047813 3 0.51969 0.90158 0.102799 
0.039602 4 0.47188 0.86711 0.106497 
0.029830 5 0.43228 0.85813 0.104514 
0.024159 6 0.40245 0.86759 0.104267 
0.016267 7 0.37829 0.83488 0.103420 
0.012024 8 0.36202 0.83307 0.100518 
0.011398 9 0.35000 0.84218 0.100266 
0.010000 10 0.33860 0.85272 0.100416 

 

The reanalyzed fully-grown regression tree for percentage of wind-thrown pines 

per plot reveals plots averaging less than 40.5 feet LMH experienced three times more 

wind-throw damage than plots greater than 40.5 feet.  Similar to the fully-grown 

regression tree for pines, the gully-grown regression tree for hardwoods also splits into 

two main branches.  Exploring the left branch shows hardwood plots having greater than 

9.7 ft2/plot basal area (i.e. larger diameters) had 4 times the amount of wind-throw 

damage than plots averaging less than 9.7 ft2/plot.  The following split reveals the 
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distance from hurricane track had an influence the percentage of hardwood trees wind-

thrown.  Hardwood plots greater than 11.6 miles away from Katrina’s track had 2.2 times 

less wind-throw damage than those within 11.6 miles of the hurricane’s center path.  The 

next split to the left has the categorical aspect depicting plots on northeast and southern 

exposures had about two times as much wind-throw then those on other aspects.  

Splitting right, the plots in the child node less than 11.6 miles from the track were further 

split by the distance the plots were from the coast.  Hardwood plots located within 31 

miles of the coast suffered 2 times the amount of wind-throw damage (12.7%) compared 

to plots greater than 31 miles (5.8%).  Aspect and Distance from coast are located near 

the bottom of the regression tree and are most likely over-fit to the dataset.  Focusing on 

the right branch, the splitting criteria used after LMH, is QMD.  Hardwood plots having 

greater than 9.7 inch QMD experienced 6 times more wind throw damage (24.5%) 

compared to hardwoods plots averaging less than 9.7 inches QMD (4.1%).  Following the 

left split, the Basal Area (BA) per plot was next used to split the previous child node.  

Hardwood plots having greater than 4.77 ft2/plot BA suffered 11 times more wind-throw 

damage (11.26%) opposed to hardwood plots having less than 4.77 ft2/plot (0.82%).  

Aspect was again used as a split criterion variable again depicting plots on east, 

southeast, and southern exposures had greater instance of wind-throw damage.  

Following the right split that maximizes the percentage of hardwoods per plot 

occurrence, the splitting criterion is sustained wind speeds.  Hardwood plots subjected to 

sustained wind speeds greater than 106 MPH had twice the percentage of wind-throw 

occurrence (40%) than plots experiencing less than 106 MPH (20.5).  Interestingly, the 

next split for plots experiencing less than 106 MPH was the distance to coast variable 
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showing plots greater than 59 miles from the coast had 1.5 times more wind-throw 

damage (25.4%) then plots less than 59 miles (10.7%)  This left split is a discrepancy of a 

right split that occurred in the left main branch where the closer a plot was to the coast 

given the previous splitting criterion, the more prone it was to suffering wind-throw 

damage. However, in both instances where the distance from coast variable is used, the 

location within the regression tree suggests this variable is over-fitting the dataset. 

The 95% CIs of the full regression tree are similar to the full regression tree of 

pines in that as the number of splits and subsequent nodes increase, so does the 95% CI 

(Figure 5.13).  Nodes 2, 6, 7, 9, and 10, all have small upper and lower bound variations 

from the mean value suggesting the mean values presented by CART analysis lead to 

higher confidence of these values.  The terminal nodes present in the main right branch 

have higher 95% CIs with the last node, node 21, having the greatest 95% CI with the 

upper bound being 49.9 and the lower bound being 30.4. 

Through the use of the cptable (Table 5.5) of the newly accepted regression tree 

over the original and the cpplot graph, the regression tree for wind-throw percentage on 

hardwood plots was pruned using the 1-SE rule (Figure 5.14 & Figure 5.15).  Figure 5.14 

depicts the cross-validation graph for the full regression tree and suggests five terminal 

nodes or four splits should be used before over-fitting begins to occur after the 5th split 

with a noticeable decreasing trend of the cross-validation error. 
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Figure 5.13 95% Confidence Intervals for Full Regression Tree of Percentage 
Hardwood Wind-thrown per Plot. 

 

 

Figure 5.14 Cross-Validation Relative Error Graph with Standard Error Lines for 
Percentage of Hardwoods per Plot Wind-thrown. 
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Figure 5.15 1-SE Pruned Regression Tree for Hardwood Wind-throw Percentage 

 

The 1-SE pruned tree in Figure 5.15 shows using a CP value of 0.40 prunes the 

full regression tree to 5 terminal nodes or 4 splits total.  The entire left main branch from 

the fully-grown regression tree is pruned away, and the splits remaining are the ones 

contributing to the overall classification accuracy and R2 values.  The 1-SE pruned 
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regression tree now only depicts LMH, QMD, basal area per plot, and sustained wind 

speeds.  The classification accuracy of the 1-SE pruned regression tree is 53% (1.0 – 

0.47188) with a cross-validation R2 value of 0.13 (1.0-0.86295) with all four splits (Table 

5.6 and Figure 5.16).  The 95% CIs of the 1-SE pruned regression tree again show splits 

to the right have larger CIs with far most right node, node 9’s upper bound is 49.6 and 

lower bound is 29.4 with a mean value of 40 (Figure 5.17).  To increase the cross-

validation R2 value, the tree is further pruned to the minimum cross-validation error, 

which only contains three terminal nodes (Figure 5.18). 

Table 5.6 Cost-Complexity Parameter (CP) Table for Reanalyzed 1-SE Pruned 
Regression Tree for Percentage of Hardwoods per Plot Wind-thrown. 

CP NSplit Relative Error Xerror Xstd 
0.207926 0 1.00000 1.00439 0.158972 
0.064454 2 0.58415 0.76786 0.094053 
0.047813 3 0.51969 0.80080 0.102799 
0.040000 4 0.47188 0.86295 0.106497 

 

 

Figure 5.16 95% Confidence Intervals for 1-SE Pruned Regression Tree of 
Percentage Hardwoods Sheared per Plot. 
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Figure 5.17 Apparent, X Relative R-Square and Cross Validation Relative Error 
Graphs of 1-SE Pruned Regression Tree for Wind-thrown Hardwood 
Percentage. 
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Figure 5.18 Minimum CP Pruned Regression Tree for Hardwood Wind-throw 
Percentage. 

 

The minimum CP pruned regression tree for percentage of hardwoods per plot 

experiencing wind-throw only contains two variables: LMH and QMD.  Based on the 

cptable, the classification accuracy dropped to 42% from 53% of the 1-SE pruned tree 

(Table 5.7).  However, the cross-validation R2 increased to 0.23 from 0.14 by just using 
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the first two splits of the entire regression tree opposed to the first four splits (Figure 

5.19). 

Table 5.7 Cost-Complexity Parameter (CP) Table for Reanalyzed MinCP 
Pruned Regression Tree for Percentage of Hardwoods per Plot Wind-
thrown. 

CP NSplit Relative Error Xerror Xstd 
0.207926 0 1.00000 1.00439 0.158972 
0.064454 2 0.58415 0.76786 0.094053 

 

 

Figure 5.19 Apparent, X Relative R-Square and Cross Validation Relative Error 
Graphs of MinCP Pruned Regression Tree for Wind-thrown 
Hardwood Percentage. 

 

The 95% CIs for the minimum CP pruned tree show the three terminal nodes that 

have not been pruned away (Figure 5.20).  There is vary little variance within Node 2 and 

Node 4, with Node 5 having a larger interval.  Node 5’s upper bound is 30.1 while its 

lower bound is 19.1 with a mean value of 24.5. 
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Figure 5.20 95% Confidence Intervals for MinCP Pruned Regression Tree of 
Percentage Hardwoods Wind-thrown per Plot. 

 

Summarizing both the percentage of pines per plot sheared and hardwoods per 

plot wind-thrown reveals similarities and differences among the biotic and abiotic 

variables.  For both tree classes, Lorey’s Mean Height (LMH) and Quadratic Mean 

Diameter (QMD) contribute greater to both the classification accuracy of the CART 

analysis and minimizing the cross-validation error of the dataset. The abiotic variable 

depicted through CART analysis that differs between pines and hardwoods is the wind 

regime pattern.  Greater shear percentages to pines occur with high peak wind gusts while 

greater wind-throw percentages occur with higher sustained wind speeds.  Sections 5.1 

and 5.2 focused on the percentage of both pines and hardwood trees per plot experiencing 

shear and wind-throw damage respectively.  The following sections, 5.3 and 5.4, focus on 

the percent basal area of pine and hardwood trees per plot that experienced shear and 

wind-throw respectively.  The amount of basal area damaged on established plantations 
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determines the course of action for salvaging efforts of the affect timber and the future 

manageability of the stand (DeLoach and Dicke 2005, Long et al. 2005). 

Percentage of Pine Basal Area per Plot Sheared 

The fully-grown regression tree of sheared basal area percentage per plot across 

all pine plots shows the first splitting criteria used is peak wind gusts (Figure 5.21).  Pine 

plots experiencing over 124 mph peak wind gusts had three times the basal area damaged 

(12.5%) compared to plots experiencing less than 124 mph wind gusts (4%).  Peak wind 

gusts also showed up in the percentage of pine trees per plot damaged minCP regression 

tree in the earlier section.  Following the peak wind gusts split, pine plots averaging 

greater than 9.8 inches QMD had twice the amount of basal area percentage sheared 

(21.6%) opposed to pine plots averaging less than 9.8 inches QMD (9.3%).  The full 

regression tree then splits into two main branches.  QMD is again used in the next split to 

the left, reinforcing the fact the larger the diameter, the more prone pine trees and pine 

plots are to being sheared.  The next split uses the number of trees per acre with plots 

having less trees, thus being more open, had three times the amount of shear (32.8%) 

compared to greater density pine stands (10.4%).  Further splits in the left main branch 

include the distance from coast and elevation 
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Figure 5.21 Fully-Grown Regression Tree for Sheared Basal Area Percentage per 
plot across Pine Plots 

 

Pine plots less than 54 miles from the coast averaged almost three times the 

amount of basal area sheared than plots greater than this distance.  Additionally, pine 

plots higher than 295 feet averaged 2.9 times more basal area sheared than pine trees 
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below 295 feet.  Now following the right main branch, aspects that were flat, faced the 

north and southeast also had 3 times the amount of basal area sheared compared to other 

aspect directions.  Splitting left, peak wind gust is used again and concurs with the first 

split with higher peak gusts being responsible for higher mean percentages of sheared 

basal area.  The last two splits of the secondary left branch depict two abiotic variables 

including duration of hurricane force winds and precipitation intensity.  Interestingly, 

durations less than 4.5 hours of hurricane force winds actually caused more sheared basal 

area damage than in areas with longer durations.  Pine plots that experienced over 1.2 

inches of rain in one hours time throughout the course of the event had three times more 

sheared basal area damage (44.8%) then areas not affecting with high precipitation rates 

(14.8).  The last split to the right identifies soil texture as having a large influence on the 

amount of sheared basal area.  Pine plots exposed to greater than 124 peak wind gusts 

and having QMD grater than 9.8 inches on flat, north, and southern aspects located on 

sandy-loam and silty-loam soils experienced 61% basal area shear damage per plot.  

Whereas plots located on loamy and loamy-sand had 24% basal area damage per plot. 

The overall classification accuracy of the full regression tree however, in only 

39% (Table 5.7).  In addition, the maximum cross-validation R2 is only  0.07 and is 

reached after three splits, further suggesting that the full regression tree is well over-fit 

and needs to be pruned (Table 5.8).   
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Table 5.8 Cost-Complexity Parameter (CP) Table for Full Regression Tree for 
Percentage of Basal Area of Sheared Pine Trees per Plot. 

CP NSplit Relative Error Xerror Xstd 
0.084137 0 1.00000 1.00165 0.12997 
0.065257       1 0.91586 0.95845 0.11769 
0.044708       3 0.78535 0.93602 0.11434 
0.021908       4 0.74064 0.96059 0.11426 
0.018203       6 0.69683 1.00418 0.11677 
0.017251       8 0.66042 1.01758 0.11705 
0.010000      11 0.60866 1.02767 0.11694 

 

The 95% confidence intervals suggest the more splitting criteria a node is based 

off of, the greater the interval (Figure 5.22).  Nodes 11, 12, and 15 all had large 95% CIs 

compared to other nodes and were subsequently pruned away in smaller regression trees.  

Nodes with 95% CIs less than 24 were typically not pruned away.  In order to prune the 

tree back to the lowest cross-validation error and thus the highest R2 value, the 1-SE 

pruned tree is forgone and the MinCP pruned regression tree is plotted (Figure 5.23).  

The MinCP pruned regression tree was pruned using a cost-complexity parameter value 

of 0.40 (Table 5.9). 
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Figure 5.22 95% Confidence Intervals for Full Regression Tree of Sheared Basal 
Area for Pine Plots. 

 

The parsimonious MinCP regression tree pruned away much of the full regression 

tree, leaving only 4 terminal nodes (Figure 5.23).  The classification accuracy of the 

MinCP tree dropped from 39% of the full regression tree to 21% and the cross-validation 

R2 value is only equal to 0.07 (Table 5.9 and Figure 5.24).  Figure 5.25 depicts the 95% 

CIs for the four remaining nodes of the MinCP pruned regression tree. 
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Figure 5.23 MinCP Regression Tree for Sheared Basal Area Percentage per plot 
across Pine Plots. 

 

Table 5.9 Cost-Complexity Parameter (CP) Table for MinCP Tree for 
Percentage of Basal Area of Sheared Pine Trees per Plot. 

CP NSplit Relative Error Xerror Xstd 
0.084137 0 1.00000 1.00165 0.12997 
0.065257       1 0.91586 0.95845 0.11769 
0.044708       3 0.78535 0.93602 0.11434 
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Figure 5.24 Apparent, X Relative R-Square and Cross Validation Relative Error 
Graphs of MinCP Pruned Regression Tree for Percentage Pines 
Sheared per Plot. 

 

 

Figure 5.25 95% Confidence Intervals for MinCP Pruned Regression Tree of 
Sheared Basal Area for Pine Plots. 
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Percentage of Hardwood Basal Area per Plot Wind-thrown 

Similar to the first couple splits in the MinCP regression tree for percentage of 

hardwoods wind-thrown, are the variables of LMH and QMD reappearing in the fully-

grown regression tree of wind-thrown basal area percentage (Figure 5.26).  Hardwood 

plots averaging less than 40.5 feet LMH had a mean basal area wind-thrown of 19.3% 

compared to hardwood plots greater than 40.5 feet LMH with 5.1% wind-thrown basal 

area.  Splitting left, LMH is again used with hardwood plots less than 48.5 feet LMH are 

more prone to greater wind-thrown basal areas opposed to hardwood plots averaging 

higher LMHs.  The next split shows QMDs greater than 8.7 inches had 3 times more 

wind-thrown basal area (13.6%) opposed to hardwoods averaging less than 8.7 inches 

QMD (3.9%).  Sustained wind speeds are used in the next split with hardwood plots 

expose to winds greater than 74 mph averaged 17.7% wind-thrown basal area opposed to 

4% for hardwood stands not experiencing hurricane force winds.  Following the main 

right branch, QMD again appears as an important splitter with larger average diameter 

hardwood plots has more wind-thrown basal area damage.  CART analysis then depict 

the LMH variable again, showing shorter plots averaged more wind-thrown basal area 

damage than plots having taller trees.  Splitting left, the variables of aspect and stand 

condition are shown.  Northwest, southeast, and western aspects averaged greater wind-

thrown basal areas then other aspects.  The stand condition split shows hardwood plots 

classified as sawtimber or sub-merchantable had greater wind-thrown basal area damage 

(21.5%) compared to pulpwood and pallet classified stands (8%).  The splits maximizing 

the percentage of wind-thrown basal area were aspect and trees per acre.  Hardwoods 

plots averaging less than 33.5 feet LMH and were on southeast or southwest facing 
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slopes averaged 61.5% of wind-thrown basal area per plot.  Hardwood plots having 

greater than 72.5 trees per acre averaged 38.5% wind-thrown basal area wind-thrown 

opposed to 18.8% with plots averaging less than 72 trees per acre. 

 

 

Figure 5.26 Fully-Grown Regression Tree for Wind-thrown Basal Area 
Percentage per plot across Hardwood Plots. 
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The classification accuracy of the full regression tree for percentage of basal area 

wind-thrown per plot for hardwoods is 62% (Table 5.10).  However, the full regression 

tree only has a cross-validation R2 of 0.07.  The highest cross-validation R2 of 0.24 

occurs after two splits and thus the full regression tree is pruned to the minimum cross-

validation error and corresponding CP value (Figure 5.27). 

Table 5.10 Cost-Complexity Parameter (CP) Table for Full Regression Tree for 
Percentage of Basal Area of Wind-Thrown Hardwood Trees per Plot. 

CP NSplit Relative Error Xerror Xstd 
0.192826 0 1.00000 1.00702 0.12951 
0.056549       2 0.61435 0.76633 0.10289 
0.028990 4 0.50125 0.82008 0.11814 
0.027588 5 0.47226 0.87102 0.12523 
0.013487 6 0.44467 0.86702 0.12068 
0.012423 9 0.40421 0.91575 0.12262 
0.011138 10 0.39179 0.92620 0.12314 
0.010000      11 0.38065 0.93445 0.12343 
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Figure 5.27 MinCP Pruned Regression Tree for Wind-thrown Basal Area 
Percentage per plot across Hardwood Plots. 

 

The MinCP regression tree only depicts two variables used: LMH and QMD.  The 

classification accuracy drops from 62% to 40% (Table 5.11).  The R-square graphs of 

both the apparent and X-Relative error concur with Table 5.11 (Figure 5.28). 
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Table 5.11 Cost-Complexity Parameter (CP) Table for MinCP Regression Tree 
for Percentage of Basal Area of Wind-Thrown Hardwood Trees per 
Plot. 

CP NSplit Relative Error Xerror Xstd 
0.192826 0 1.00000 1.00702 0.12951 
0.056549       2 0.61435 0.76633 0.10289 

 

 

Figure 5.28 Apparent, X Relative R-Square and Cross Validation Relative Error 
Graphs of MinCP Pruned Regression Tree for Percentage Pines 
Sheared per Plot. 

 

The 95% CIs for the minCP pruned regression tree depicting the three nodes show 

relative little variance in the ensemble bootstrapping statistics (Figure 5.29).  With such 

small variances, higher confidence is placed on these mean values and their contribution 

to the percentage of basal area wind-thrown for hardwood plots. 
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Figure 5.29 95% Confidence Intervals for MinCP Pruned Regression Tree of 
Wind-thrown Basal Area for Hardwood Plots. 

 

Biotic and abiotic variables contributing the shearing and wind-throw basal area 

of pine and hardwood plots tend to differ more than the biotic and abiotic variables 

controlling the percentage of actual trees sheared or wind-thrown.  The only biotic factor 

common to both pine and hardwood plots when percentage of basal area sheared or wind-

thrown is tested, is QMD.  Peak wind gust speeds and aspect were more contributing 

factors in pine plots while hardwood plot basal area damaged was governed by the 

stands’ relative height.  Classification accuracies through CART analysis were higher for 

the minCP regression trees of hardwood plots (42% and 35%) for both dependent 

variables tested versus pine plots (29% and 21%).  Greater cross-validation R2 values 

were obtained for hardwood plots testing wind-throw (0.24 and 0.24) than shear damage 

for pines (0.13 and 0.07).  Forward Stepwise Logistic Regression (FSLR) was performed 

in SPSS 15.0 to corroborate the findings of CART analysis.      
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Forward Stepwise Logistic Regression Results 

Forward Stepwise Binary Logistic Regression was performed using the Wald 

Statistic as the selecting criterion for a variable to be entered or removed from the 

stepwise regression equation (Peterson 2007).  Only one dependent response variable was 

tested in FSLR opposed to the two tested in CART analysis.  The dependent response 

variable examined here is the binary plot damage classifications tested against the biotic 

and abiotic independent variables.  Binary plot classification based on the percentage of 

sheared or wind-thrown basal area was not computed.   

FSLR Analysis of Sheared Pine Plots 

Forward stepwise logistic regression based on the binary classification of sheared 

and non-sheared plots of pine plots depicts five variables that are significant at p<0.01 

and one variable was significant at p<0.05 (Table 5.12).  The coefficient (B) is the value 

for the logistic regression equation for predicting the dependent variable from the 

independent variable and expressed in log-odds units.  The Standard Error (SE) is 

associated with the coefficient of the independent variable (B).  The Exp(B) is the odds 

ratio of the independent variable by exponentiating the coefficients (B) using log to base 

e.  There are no coefficients, SE, or Exp(B) for the variable physiographic region because 

it was not entered into the logistic regression equation (p>0.05).  Only the bottomland 

physiographic region was entered into the equation for p<0.05.  However, similar to the 

logistic regression used in Wang and Xu (2008), the odds ratios of the physiographic 

region suggest pine plots located in bottomland areas where much more resilient to shear.  

Where pine plots located on terraces were not as resilient with an odds ratio of 0.829.  

The positive coefficient of 0.007 of elevation means for every foot higher a pine plot is 
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located, it is 1.007 times more likely to be classified as sheared.  The negative coefficient 

of the distance to coast variable indicate for every mile a pine plot is located inland from 

the coast it is 0.966 times less likely to be classified as shear.  The H/D ratio is also 

negative, meaning as the average H/D ratio per plot decreases, shear of pines increases.  

Lorey’s Mean Height (LMH) coefficient was negative with an odds ratio of 0.961 

indicating that for every foot increase in the average LMH of a 1/5th acre pine plot, it is 

0.961 times less likely to be classified as shear than non-shear.  This concurs with the 

results of CART analysis which depicted higher percentage of shear occurrence had 

lower LMH values.  Seventy-six plots had 10% or greater sheared pine trees per plot with 

LMHs greater than 50 feet whereas 368 pine plots having greater than 50 feet LMH but 

had less than 10% sheared pines per plot, further reinforcing the results of CART and 

FSBLR.   

Table 5.12 Significant variables and respective statistics for prediction of pine 
plot damage classification.  ** denotes p<0.01 significance and 
denotes p<0.05 significance. 

Variable Coefficient (B) SE Wald Exp(B) Sig 

Elevation 0.007 0.002 14.509 1.007 0.000** 

Trees per Acre 0.008 0.002 30.635 1.008 0.000** 
Lorey’s Mean 
Height 

-0.040 0.008 25.505 0.961 0.000** 

Distance from 
Coast 

-0.035 0.008 20.852 0.966 0.000** 

H/D Ratio -0.019 0.007 7.778 0.981 0.005** 

Physiographic 
Position 

- - 4.963 - 0.084 

Bottomlands -1.421 0.644 4.863 0.241 0.027* 

Terraces -0.187 0.265 0.501 0.829 0.479 



 153 

The model summary shows 12 steps were taken to determine the significant 

variables (Table 5.13).  However, the lowest -2 log likelihood and highest pseudo R2 

values are shown in the tenth step of the model building process.  Peak wind gust speed 

was entered as a significant variable early on in the modeling process but was removed 

after the 10th step yet contributed to higher pseudo R2 values for classification of shear 

occurrence on pine plots.   

Table5.13 Model Summary of Forward Stepwise Logistic Regression of Shear 
Occurrence on Pine Plots. 

Step 
-2 Log 

likelihood 
Cox & Snell 

R Square 
Nagelkerke 
R Square 

1 642.555 .023 .040 
2 624.509 .045 .079 
3 613.013 .059 .104 
4 605.979 .067 .118 
5 598.063 .077 .135 
6 591.960 .084 .147 
7 592.016 .084 .147 
8 580.695 .097 .170 
9 576.241 .102 .179 
10 569.382 .110 .193 
11 572.050 .107 .188 

12 574.369 .104 .183 
 

Percentage of Hardwoods Wind-thrown 

Forward stepwise logistic regression based on the binary classification of Wind-

thrown and non-wind-thrown plots of hardwood plots depicts five variables that are 

significant at p<0.01 and two are significant at p<0.05 (Table 5.14).   
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Table 5.14 Significant variables and respective statistics for prediction of 
hardwood plot damage classification.  ** denotes p<0.01 significance 
and * denotes p<0.05 significance. 

Variable Coefficient (B) SE Wald Exp(B) Sig 

Elevation 0.006 0.002 10.481 1.006 0.000** 

Trees Per 
Acre 0.009 0.002 20.250 1.009 0.000** 

H/D Ratio -0.043 0.009 24.971 0.958 0.000** 

Cumulative 
Wind 0.044 0.011 17.423 1.044 0.000** 

Sustained 
Wind 0.029 0.012 6.098 1.029 0.014* 

Total 
Precipitation -0.394 0.155 6.455 0.674 0.011* 

Physiographic 
Position 

- - 13.561 - 0.001** 

Bottomlands 1.529 0.415 13.560 4.613 0.000* 

Terraces 1.204 0.523 5.292 3.332 0.21* 

 

The exponentiated coefficient (Exp(B)), shows that for every one foot rise in 

elevation a hardwood plot is located, it is 1.006 times more likely to be classified as 

wind-thrown.  Related to elevation, the topographical position classification identified 

hardwood plots classified as bottomland were 4.613 times more likely to be classified 

wind-thrown opposed to hardwood plots classified as upland.  More so, hardwood plots 

in terrace locations were 3.332 times more likely to be classified as being wind-thrown 

than hardwood upland plots.  The greater the amount of trees per acre, the higher 

likelihood of a hardwood plot being classified as wind-thrown.  Similar to pine plots, the 

H/D ratio for hardwoods is also negative indicating for each one unit increase, a 

hardwood plot is 0.958 times less likely to be categorized as wind-thrown.  The next 
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variables include cumulative and sustained wind speeds.  With an increase in one mile 

per hour, a hardwood plot is 1.044 and 1.029 times more likely to be classified as wind-

thrown opposed to non-wind-thrown.  Total precipitation, however is inversely related to 

the probability of a hardwood plot being classified as wind-thrown.  Further investigation 

of the distribution of wind-thrown classified plots overlaid on the event total precipitation 

grid does corroborate with the SPSS statistical output.  There more hardwood plots 

classified as non-wind-thrown (0) on precipitation totals greater than 6 inches (82) than 

plots classified as wind-thrown (1) in areas receiving over 6 inches (69) (Figure 5.30).   

 

 

Figure 5.30 Wind-throw and Non-Wind-throw Classified Hardwood Plots 
overlaid on Total Event Precipitation. 

 

The model summary for significant variables predicting the classification of wind-

throw for hardwood plots shows that the logistic regression model built includes 9 steps 
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(Table 5.15).  However, the 9th step does provide the lowest -2 log-likelihood ratio and 

highest pseudo R2 values opposed to the model summary for shear classification of pines 

which occurred in the 10th step and lower pseudo R2 values. 

Table 5.15 Model Summary of Forward Stepwise Logistic Regression of Wind-
throw Occurrence on Hardwood Plots. 

Step 
-2 Log 

likelihood 
Cox & Snell 

R Square 
Nagelkerke 
R Square 

1 432.333 .072 .098 
2 423.290 .096 .131 
3 411.078 .128 .174 
4 404.264 .145 .197 
5 391.703 .176 .239 
6 391.743 .176 .239 
7 385.728 .190 .258 
8 379.855 .204 .277 
9 373.454 .219 .297 
    

 

Comparison of CART analysis and FSBLR Results 

A direct comparison of the CART analysis and the FSBLR results can not truly be 

made since CART investigates a continuous variable while FSBLR examines a 

categorical binary classification.  However, the variables identified as important in CART 

and the resulting splitting criteria used in the 1-SE and MinCP pruned trees can be 

compared to the significant exponentiated coefficients through FSBLR.   

There is very little concurrence between the important variables of CART 

analysis and significant variables of FSBLR for predicting sheared percentage to sheared 

classification (Table 5.16).  There are only two variables common to both analyses: H/D 

Ratio and Lorey’s Mean Height.  Yet, in the CART methodology, the 1-SE pruned tree 
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has greater H/D ratios splitting right, indicative of increased shear percentage while 

logistic regression analysis shows a negative coefficient to the likelihood of shear 

occurrence.  Similarly, CART analysis has larger LMH values splitting to the left 

opposed to FSBLR depicting the greater the LMH height of a pine forest plot, the greater 

its chance is of being classified as sheared.  The cross-validation error R2 of the 1-SE and 

MinCP pruned regression trees of percentage pine sheared was only 0.05 and 0.13 

respectively.  The FSBLR regression equation attained a pseudo R2 value between 0.12 

and 0.2.  Hardwoods, however, had similar R2 values from the CART and FSBLR. 

Table 5.16 Comparison of CART Analysis and FSBLR Analysis for Shear of 
Pine Plots. ** denotes p<0.01 significance and * denotes p<0.05 
significance. 

Variable Important in CART Significant in FSBLR 
Elevation  X** 
Lorey’s Mean Height X X** 
Distance from Coast  X** 
H/D Ratio X X** 
Trees Per Acre  X** 
Physiographic Region  X* 
Quadratic Mean Diameter X  
Lorey’s Mean Height X  
Peak Wind Gusts X  

 

The 1-SE and MinCP pruned regression trees for wind-throw percentage cross-

validation R2 values are 0.14 and 0.24 respectively.  The FSBLR regression equation 

attained a pseudo R2 value between 0.21 and 0.29.  Yet, similar to pine plots, CART 

analysis and FSBLR only share one variable in common for hardwoods wind-thrown 

(Table 5.17).  Both CART and FSBLR identify increasing sustained wind speeds 

increases the percentage and likelihood that a plot will be wind-thrown.   
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Table 5.17 Comparison of CART Analysis and FSBLR Analysis for Wind-throw 
of Hardwood Plots. ** denotes p<0.01 significance and * denotes 
p<0.05 significance. 

Variable Important in CART Significant in FSBLR 
Elevation  X** 
Trees per Acre  X** 
H/D Ratio  X** 
Cumulative Wind  X** 
Sustained Wind X X* 
Total Precipitation   
Physiographic Region  X** 
Quadratic Mean Diameter X  
Lorey’s Mean Height X  

 

MIFI Plot Damage Classification/Reclassification Results 

The original binary classifications completed by MIFI through aerial photographs 

and ground surveys by multiple personnel were recalibrated based on a plot experiencing 

10% or greater of shear or wind-throw damage.  If shear and wind-throw damage was 

greater than 10% for a specific plot, the plot was classified by the greater percentage 

damage percentage.  The classification accuracies and pseudo R2 values were determined 

through FSBLR of the subjectively based MIFI plot damage classification and the 

quantification based plot damage classifications for shear damage of pines and wind-

throw damage of hardwoods. 

FSBLR of the original MIFI plot classifications showed 12 steps (Table 5.13) 

used to generate the significant variables whereas the reclassified pine plots only used 3 

steps (Table 5.18).  The average pseudo R2 values of the reclassified damaged minutely 

increase compared to the original MIFI damage plot classifications from 0.15 to 0.17. 
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Table 5.18 Model Summary of Forward Stepwise Logistic Binary Regression of 
Shear Occurrence on Reclassified Pine Plots. 

Step 
-2 Log 

likelihood 
Cox & Snell 

R Square 
Nagelkerke 
R Square 

1 613.511 .058 .103 
2 563.924 .116 .204 
3 558.82 .122 .214 

 

SPSS 15.0 produces classification accuracy tables detailing the observed binary 

variable and based on the regression equation built at that step, is used to predict the 

variable’s binary occurrence.  The classification accuracies through FSBLR were low 

when trying to predict whether a pine plot will be classified as shear.  Classification 

accuracies for predicting whether a plot will be classified as sheared was only 5.1% in the 

10th step for the original MIFI plot classifications (Table 5.19).  Whereas the 2nd step of 

the reclassified MIFI plot calls is able to correctly classify 10.3% of classified pine plots 

(Table 5.20).  The change in -2 log likelihood from the original binary MIFI damage 

classifications to the reclassified damaged plots was not statistically significant χ2 (3, 

N=784) = 15.543, p>0.05. 
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Table 5.19 Classification Accuracy of Original MIFI plot damage classifications 
through FSBLR for Pine Plots. 

 Observed Predicted 

    SHEAR 
Percentage 

Correct 

    0 1 0 
Step 1 SHEAR 0 667 0 100.0 
    1 117 0 .0 
  Overall Percentage     85.1 
Step 2 SHEAR 0 667 0 100.0 
    1 117 0 .0 
  Overall Percentage     85.1 
Step 3 SHEAR 0 665 2 99.7 
    1 116 1 .9 
  Overall Percentage     84.9 
Step 4 SHEAR 0 664 3 99.6 
    1 114 3 2.6 
  Overall Percentage     85.1 
Step 5 SHEAR 0 663 4 99.4 
    1 115 2 1.7 
  Overall Percentage     84.8 
Step 6 SHEAR 0 664 3 99.6 
    1 114 3 2.6 
  Overall Percentage     85.1 
Step 7 SHEAR 0 664 3 99.6 
    1 115 2 1.7 
  Overall Percentage     84.9 
Step 8 SHEAR 0 662 5 99.3 
    1 115 2 1.7 
  Overall Percentage     84.7 
Step 9 SHEAR 0 661 6 99.1 
    1 112 5 4.3 
  Overall Percentage     84.9 
Step 10 SHEAR 0 665 2 99.7 
    1 111 6 5.1 
  Overall Percentage     85.6 
Step 11 SHEAR 0 666 1 99.9 
    1 111 6 5.1 
  Overall Percentage     85.7 
Step 12 SHEAR 0 665 2 99.7 
    1 112 5 4.3 
  Overall Percentage     85.5 
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Table 5.20 Classification Accuracy of Reclassified MIFI plot damage 
classifications through FSBLR for Pine Plots. 

 Observed Predicted 

    SHR_0_1 
Percentage 

Correct 

    0 1 0 
Step 1 SHR_0_1 0 664 3 99.6 
    1 116 1 .9 
  Overall Percentage     84.8 
Step 2 SHR_0_1 0 659 8 98.8 
    1 105 12 10.3 
  Overall Percentage     85.6 
Step 3 SHR_0_1 0 655 12 98.2 
    1 106 11 9.4 
  Overall Percentage     84.9 

 

The same classification procedure was carried out on hardwood plots classified as 

wind-thrown or non-wind-thrown.  The original MIFI plot damage classifications for 

hardwoods had 9 steps with only 4 steps used for the reclassified MIFI damage 

classifications (Table 5.21).  The average pseudo R2 values of the reclassified damaged 

increased compared to the original MIFI damage plot classifications from 0.26 to 0.33. 

Table 5.21 Model Summary of Forward Stepwise Logistic Binary Regression of 
Wind-throw Occurrence on Reclassified Hardwood Plots. 

Step 
-2 Log 

likelihood 
Cox & Snell 

R Square 
Nagelkerke 
R Square 

1 250.762 .185 .304 
2 237.238 .217 .356 
3 226.508 .241 .396 
4 219.919 .255 .420 

 

Classification accuracies for predicting whether a plot will be classified as Wind-

thrown was 61.2% in the 9th step for the original MIFI plot classifications (Table 5.22), 

whereas the 2nd step of the reclassified MIFI plot calls decreases to 45.3% (Table 5.23).  
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However, the overall classification accuracy including both wind-thrown and non-wind-

thrown plots increases from the original MIFI plot classifications from 71.1% to 88%.  

The change in -2 log likelihood from the original binary MIFI damage classifications to 

the reclassified damaged plots was statistically significant χ2 (4, N=342) = 153.535, 

p<0.01. 

Table 5.22 Classification Accuracy of Original MIFI plot damage classifications 
through FSBLR for Hardwood Plots. 

 Observed Predicted 

    BLOWDOWN 
Percentage 

Correct 

    0 1 0 
Step 1 BLOWDOWN 0 172 36 82.7 
    1 98 36 26.9 
  Overall Percentage     60.8 
Step 2 BLOWDOWN 0 171 37 82.2 
    1 89 45 33.6 
  Overall Percentage     63.2 
Step 3 BLOWDOWN 0 168 40 80.8 
    1 77 57 42.5 
  Overall Percentage     65.8 
Step 4 BLOWDOWN 0 166 42 79.8 
    1 70 64 47.8 
  Overall Percentage     67.3 
Step 5 BLOWDOWN 0 168 40 80.8 
    1 66 68 50.7 
  Overall Percentage     69.0 
Step 6 BLOWDOWN 0 168 40 80.8 
   1 66 68 50.7 
  Overall Percentage     69.0 
Step 7 BLOWDOWN 0 165 43 79.3 
    1 57 77 57.5 
  Overall Percentage     70.8 
Step 8 BLOWDOWN 0 164 44 78.8 
    1 57 77 57.5 
  Overall Percentage     70.5 
Step 9 BLOWDOWN 0 161 47 77.4 
    1 52 82 61.2 
  Overall Percentage     71.1 
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Table 5.23 Classification Accuracy of Reclassified MIFI plot damage 
classifications through FSBLR for Hardwood Plots. 

 Observed 

Predicted 

WTRW_0_1 
Percentage 

Correct 0 1 
Step 1 WTRW_0_1 0 273 8 97.2 

1 46 15 24.6 
Overall Percentage     84.2 

Step 2 WTRW_0_1 0 273 8 97.2 
1 40 21 34.4 

Overall Percentage     86.0 
Step 3 WTRW_0_1 0 273 8 97.2 

1 33 28 45.9 
Overall Percentage     88.0 

Step 4 WTRW_0_1 0 272 9 96.8 
1 33 28 45.9 

Overall Percentage     87.7 
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CHAPTER 6 

DISCUSSION AND CONCLUSIONS 

 

The primary focus of this study was to employ data mining and statistical 

techniques to ascertain the affects of biotic and abiotic factors that are significantly 

related to damage patterns across the Southeastern Forest District of Mississippi as a 

result of Katrina.  A GIS database was built using tree-level characteristics aggregated to 

the plot level along with meteorological, topographical, and pedological variables in an 

attempt to identify the causal factors influencing shear damage of pines and wind-throw 

damage of hardwoods.  Using [R 2.8.1], CART analysis was performed using two 

dependent response variables, percentage of stems damaged per plot and percentage basal 

area damaged per plot.  Additional statistical analysis was executed on the binary 

classifications of plot damaged and compared to CART for the identification of causal 

variables responsible for differing damage types to trees.  Reclassification of the binary 

original plot damage classifications was attempted to increase the classification accuracy 

through logistic regression.  The relative importance of biotic and abiotic factor inter-

relationships as contributors to wind-throw of hardwoods and shear of pines was 

investigated for the purpose of modeling the spatial distribution of vegetative debris.  

Knowledge of the spatial distribution of vegetative debris could optimize allocation of 
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personnel and equipment to dispose of vegetative debris in a more efficient manner 

following a hurricane. 

CART 

CART analysis was used to assess the factors which maximized: the percent of 

pines per plot sheared, percentage of hardwoods per plot wind-thrown, percentage of pine 

basal area per plot sheared, and the percentage of hardwood basal area per plot wind-

thrown.  Each regression tree was fully-grown and pruned twice using the 1-SE method 

and MinCP method.  Subsequent pruning of the grown regression trees revealed that 

Lorey’s Mean Height (LMH) and average Quadratic Mean Diameter (QMD) were 

important variables for both pine and hardwood plots.  Pine plots experiencing greater 

wind gusts were more prone to snapping while hardwood plots exposed to higher 

sustained wind speeds maximized the percentage of wind-thrown hardwoods and percent 

wind-thrown basal area.  However the splitting criteria used is confounding when 

compared to other literature. 

The 1-SE pruned regression tree for pine shear percentage (Figure 5.1.1.5) shows 

the pine plots averaging greater than 8 inches QMD experienced about 2.5 times more 

sheared pines per plot than pine plots averaging less than 8 inches QMD.  This is 

suggesting the larger diameter, thus taller trees are more prone to snapping then smaller 

diameter, shorter trees agreeing with Everham and Brokaw (1996) and many others.  

However, the next split details plots averaging less than 44 feet LMH experienced more 

shear damage than plots averaging more than 44 feet LMH.  Further investigation in 

ArcMap 9.2 showed only 76 plots having LMHs equal to and greater than 44 feet with 

over 10% pines sheared, whereas 345 plots existed with LMHs less than 44 feet but still 
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experienced 10% shear, corroborating the findings of CART.  Further splits of the 1-SE 

pruned regression tree seem to justify the prior split however.  Higher peak wind gusts 

values were used as splitting criteria (139 mph) for plots less than 44 feet LMH compared 

to pine plots greater than 44 feet LMH (130 mph).  The shorter the average LMH, the 

greater the wind speed must be to cause damage.  Shorter pine trees have smaller bending 

moments placed on them due to wind loading compared to larger trees, and for more 

damage to occur on shorter pine stands, higher winds and peak gusts must be realized 

(Stanturf 2007).  For the taller pine plots, the split following the wind gusts again shows 

greater QMD plots averaged 20% shear damage per plot.  Moreover, the following split 

for shorter pine plots experiencing less than 139 MPH peak wind gusts depicts plots with 

H/D ratios greater than 54 had 14.7 times more sheared pines per plot than plots 

averaging less than 54.  According to Pienaar et al. (1997) which investigated growth and 

yield information for loblolly pine in the south, found the average H/D ratio for a loblolly 

pine located in a 400 tree/acre stand at age 14 is around 74.  The average H/D ratio for 

loblolly pines at age 5 was determined to be 19.9ft/0.35ft equaling 57.  Therefore, caution 

should be used when using the splitting criteria and how it relates to previous splits. 

The 1-SE pruned regression tree of percent hardwoods per plot wind-thrown also 

identified shorter LMHs were prone to more wind-throw but the next splitting criteria 

depicts hardwoods plots having greater QMD had 6 times the amount of wind-throw.  

This study incorporates all hardwood species surveyed by MIFI in 2006.  Yet it has been 

shown by Oswalt and Oswalt (2008), Touliatos and Roth (1970), Putz et al. (1983), 

Peterson (2000), that differing species of hardwoods are more or less resilient in a 

hurricane environment.  Therefore, trees less susceptible to wind-throw damage such as 
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pondcypress and swamp tupelo with greater heights than trees more susceptible like 

Pecan, Hickory, Dogwood, and Red Maple with lower heights at the time of the 

inventory, may be leading to this splitting criteria being used.  Dogwoods only grow to 

20-25 feet, Red Maple grows to 60 feet, Hickories grow to 60-80 feet, with Pecan trees 

being the taller of the hardwoods growing upwards to 100 feet (Sander 2009).  Whereas 

Pondcypress grows to roughly 80 feet and Swamp Tupelo achieves heights of 120 feet 

(USDA 1994).  The resulting species differences in heights and a respective species 

susceptibility may contribute the splitting criteria used in CART suggesting hardwood 

stands lower in LMH are more wind-thrown susceptible. 

A larger question at hand for the CART analysis is the low classification 

accuracies and low cross-validation R2 compared to other studies which used CART 

methodology.  Lindermann and Baker (2002) were able to correctly classify 82.9% of 

their dataset to a 22-node decision tree over a 10,000ha (38.6 sq. mi) area.  Kupfer et al. 

(2008) correctly classified 71.5% of their single classification tree across 153,000ha (590 

sq. mi) area.  The Southeast forest District study area is 2,294,607ha (8860 sq. mi) (MIFI 

2006).  The 15-fold increase in area of the Southeast Forest District compared to the 

DeSoto National Forest and over 233 times the size of the Routte-Divide area most likely 

reduced the classification accuracies and cross-validation R2 values of the regression 

trees produced (Table 6.1 and Table 6.2). 
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Table 6.1 Classification Accuracies of each Response Variable for each 
Regression Tree Generated. 

Dependent Response Variable Tested Full Tree 1-SE Tree MinCP Tree 
Percent Pine Trees Sheared 50.0% 42.2% 29.5% 
Percent Basal Area of Pines Sheared 39.7% 30.3% 21.6% 
Percent Hardwood Trees Wind-thrown 66.0% 53.0% 41.5% 
Percent Basal Area of Hardwoods Wind-
thrown 61.9% 55.5% 38.5% 

 

Table 6.2 Cross-Validation R2 values of each Response Variable for each 
Regression Tree Generated. 

Dependent Response Variable Tested Full Tree 1-SE Tree MinCP Tree 
Percent Pine Trees Sheared 0.076 0.051 0.133 
Percent Basal Area of Pines Sheared 0.039 0.039 0.064 
Percent Hardwood Trees Wind-thrown 0.15 0.137 0.232 
Percent Basal Area of Hardwoods Wind-
thrown 0.065 0.132 0.233 

 

The size of the study area and the generality of tree groupings, i.e. hardwood and 

pines, may hinder the accurate classification of the dependent response variables to the 

biotic and abiotic variables and results in low cross-validation R2 values.  The large area 

used may be deterring the true relationship between the dependent response variables and 

independent biotic and abiotic variables to be realized through CART analysis.  Higher 

classification accuracies and cross-validation R2 values may be obtained by partitioning 

the forest inventory plots spatially or by their attributes.  Inventory plots located with a 

given county can be analyzed through CART and resulting regression trees be compared 

to the Southeast Forest District to see if classification accuracy and cross-validation R2 

values increase.  In addition to spatial segregation, plots could be further separated by 

their species group attribute.  This will allow for single or similar species to be tested 
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against the biotic and abiotic independent factors opposed to the general classes of pine 

and hardwood.  

Further limitations of CART methodology are the hard splitting criterion used to 

build regression trees.  For example in the MinCP pruned regression tree for sheared 

basal area percentage for pine plots depicts stands exposed to wind gust speeds greater 

than 124 MPH had more basal area sheared (12.5%) opposed to plots experiencing less 

than 124 MPH peak wind gust speeds (4%).  What if a plot experiences a wind gust speed 

of 123MPH? Does this mean it will not experience more basal area sheared compared to 

another pine plot that experienced 125MPH peak wind gust speed?  A comparison of 

CART analysis to MARS analysis would also be of interest since the hinge functions 

built into MARS allow trends along the range of an independent variable as it compares 

to the dependent variable.  

Forward Stepwise Binary Logistic Regression 

There were very few variables that were portrayed in CART analysis and also 

proved to be significant through binary logistic regression.  Variables that did coincide 

were Loreys’ Mean Height and H/D ratio.  However, greater H/D ratios in CART split 

right indicating greater percentage of damage, whereas in FSBLR the coefficient was 

negative.  FSBLR reinforced that topographical classification (bottomland, terrace, or 

upland) depicted pines plots classified as bottomland were 0.241 times less likely to be 

classified as shear proving to much more resilient than those classified as terrace or 

upland plots.  The pseudo R2 values corroborated with the findings of CART analysis 

with lower values for the prediction of pine shear opposed to hardwood wind-throw.   
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Forward Stepwise Binary Logistic Regression can only perform statistical 

analysis on binary coded dependent variables and it cannot identify hard splits rules like 

CART can.  Future utilization of FSBLR, like CART, can be used to analyze various 

portions of the dataset opposed the entire dataset.  As mentioned above, the incorporated 

data can be separated spatially or by a specific attribute. 

Reclassification of MIFI Damage Classifications 

FSBLR results of the original and reclassified MIFI plot damage classifications 

showed a significant (p<0.01) increase in classification accuracy for hardwood plots 

when the reclassified plot damage classifications were used.  There was not a significant 

difference in classification accuracy for pine plots categorized as sheared.  However, for 

both hardwood and pine plots, simpler regression equations were generated using the 

reclassified MIFI plot damage classifications which in turn generated higher pseudo R2 

values.  It is the recommendation of these results that once a ground survey has been 

completed of the damaged areas, the plots be classified according to the percentage of the 

majority of damage sustained greater than 10% opposed to subjective analysis. 

Future Studies  

Much continued work is needed to fill the limitations of this study.  The dataset 

can be partitioned by political or environmental boundaries to analyze and compare 

smaller sized datasets analyzed through CART to the results from the entire study area.  

This will test the interaction robustness among the biotic and abiotic factors as they relate 

to the dependent variables.  In order for the important biotic variables identified through 

CART and significant biotic variables through FSBLR to be implemented into a 
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continuous predictive vegetative debris distribution model, remote sensing studies similar 

to Ramsey et al. (1998) need to be carried out on archived Landsat 5 TM, NAIP imagery, 

or other aerial imagery.  Large area forest inventories using Landsat imagery have shown 

promise in predicting forest parameters such as basal area, height, health conditions, and 

biomass across large landscapes (McCombs 2003, Berryman 2004, Schultz et al. 2006, 

Meng et al. 2008).  Applying continuous forest metrics over the landscape scale with 

knowledge of their relationship to forest damage will increase the accuracy of potential 

vegetative debris distribution following a land-falling hurricane.  Applying the values 

used in splits of the full regression trees produced using CART coupled with the logistic 

regression equations to the continuous raster grids of biotic and abiotic variables of future 

work will allow for a rapid continuous spatial model depicting vegetative debris 

distribution to be generated for utilization by emergency managers.  This information can 

potentially improve decisions made in allocation of personnel and equipment for faster 

recovery following a hurricane. 
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