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Reniform nematode (Rotylenchulus reniformis Linford and Oliveira) currently 

infests about 36% of the Mississippi G. hirsutum acres causing economic losses of $130 

million annually.  For more than 40 years nematodes, including R. reniformis, have been 

managed using an at-planting treatment of Temik 15G or with soil fumigants like Telone 

II.  With the label loss of Temik 15G and expense of soil fumigants, there is a need to 

develop an integrated nematode management program centered around nematicide seed 

treatments (NST) with and without foliar applications of Vydate C-LV.  In addition there 

is a need to better understand how new cotton cultivars provide improved growth, 

development and yield in nematode infested fields.  Results from research at Auburn and 

Mississippi State Universities revealed tested varieties responded positively to NST and 

improved growth and yield without NST was variety specific especially early in G. 

hirsutum development (between nodes 1-9).  Cutivars Phy 499, FM 1740 and Stv 5458 

showed the greatest nematode tolerance while Phy 375 WRF had the least tolerance, 

benefitting greatly from NST.  Trials involving NST with and without Vydate C-LV 



 

 

indicated yield of plants treated with Temik 15G was greater than plants treated with 

NST treatments.  Aeris + Votivo with and without Vydate C-LV provided better plant 

growth and yield than Aeris alone or with Vydate C-LV.  Relative to yield Vydate C-LV 

treatments increased pounds of lint cotton/acre across all treatments.  There were no 

differences in fruit retention at fruiting site one during the square period with fruit loss 

primarily occurring between bloom and open boll.  Vydate C-LV treatments increased 

overall fruit retention compared to all nematicide seed treatments making them 

comparable to Temik 15G.
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CHAPTER I 

INTRODUCTION 

Cotton (Gossypium hirsutum) is the world’s most important natural fiber crop.  

The United States G. hirsutum lint (fiber) production accounts for one-quarter of world 

supply (USDA-Agricultural Marketing Service, 2007).  In Mississippi, G. hirsutum 

remains a significant agronomic crop accounting for 1.1 million hectares in 2013 

(Mississippi Agricultural Statistical Service, 2013).  Since 1990, the G. hirsutum industry 

has undergone several positive changes including boll weevil eradication, introduction of 

genetically modified G. hirsutum cultivars and development of more efficient harvest and 

planting equipment (USDA-Agricultural Marketing Service, 2007).  These milestones 

lowered inputs facilitating management of other important problems like plant parasitic 

nematodes. 

The predominant plant parasitic nematode that has become the most damaging 

pathogen to G. hirsutum is the reniform nematode (Rotylenchulus reniformis Linford and 

Oliveira).  Rotylenchulus reniformis, first described in 1931 (Linford and Oliveira, 1940), 

has become a widely distributed tropical and subtropical pest throughout the United 

States G. hirsutum producing region (Heald and Robinson, 1990; Kinloch and Sprenkel, 

1994; Lawrence and McLean, 1996 ab; Star, 1998; and Koenning, et al., 1999).  

Rotylenchulus reniformis depends on successful formation of feeding sites in G. hirsutum 

roots that serve as site of nourishment.  It has been well documented the vermiform 
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female of R. reniformis penetrates G. hirsutum roots indiscriminately until 50% of its 

anterior body enters the root making it a semi-endoparasite.  It establishes feeding sites 

near the root pericyle where it creates synecia from altered pericycle cells (Jones and 

Dropkin, 1975).   Because of this feeding mechanism, R. reniformis cause uniform stunt 

across a field, making it difficult to visually identify.  In limited regions, they cause 

interveinal chlorosis and yield loss (Lawrence and McLean, 2001). Rotylenchulus 

reniformis is also known to affect G. hirsutum by reducing yield, boll size and lint 

percent (Cook et al.,1997b; Jones et al., 1959).  It has been further shown, G. hirsutum 

plants respond poorly to normal agronomic management practices i.e. irrigation and 

fertilization (Birchfield and Jones, 1961).  In addition to direct impacts of feeding, R. 

reniformis provide portals for introduction of several soil-borne pathogens including 

Fusarium oxysporum f. sp. vasinfectum, F. solani, Rhizoctonia solani and Thielaviopsis 

basicola (Palmateer et al., 2004).   

Since 1960, R. reniformis began manifesting adaptive ability to survive colder 

environments allowing movement through much of the eastern half of the G. hirsutum 

producing region (Heald and Robinson, 1990) and as far north as Lubbock, Texas, and 

Missouri bootheel (Heald and Thames, 1982; Wrather et al., 1992).  Today, R. reniformis 

has been identified and associated with G. hirsutum yield loss in Mississippi, Alabama, 

Tennessee, Texas, Missouri, Florida, North Carolina, Louisiana, South Carolina, 

Arkansas and Georgia (Koenning. et al., 1999), accounting for 7% annual yield loss and 

nearly $126 million loss to the G. hirsutum industry in 2008 (Blasingame et al., 2009), 

and 11.7% in 2014 (Lawrence et al., 2015), resulting in approximately $70.0 million in 

economic losses.  In Mississippi alone, R. reniformis was responsible for annual losses of 
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235,398, 252,023, 56,378 and 58,000 bales of G. hirsutum in 2004, 2005, 2011 and 2014, 

respectively (Blasingame and Patel, 2004; 2005; 2011; Lawrence et al., 2015).  

Lawrence, et al. (2002) reported more than 32% of cotton acres in Mississippi were 

infested with R. reniformis increasing the threat to G. hirsutum yields (Lawrence and 

McLean, 1995 a and b).  Gazaway and McLean (2003) further reported R. reniformis 

infested more than 36% of the Alabama G. hirsutum production area and is increasing.  

Diez et al. (2003) reported that a population shift began in 1986 from root knot nematode 

(Meloidogyne incognita) toward R. reniformis infestation and was accomplished by 2004.  

A primary reason for population shift was due to ability of R. reniformis to reduce M. 

incognita egg hatching, thereby reducing secondary generation infection (Diez et al., 

2003).  The characteristics promoting rapid spread is ability of R. reniformis to reproduce 

in a broader range of soil types than M. incognita (Koenning et al., 1996; Widmer et al., 

2002; Gazaway and McLean, 2003; Moore and Lawrence, 2013).  It also has ability to 

survive and promote yield loss under drought conditions (Herring et al., 2010), survive 

long periods in fallow fields by tolerating dehydration of its egg masses followed by re-

hydration under favorable conditions (Heald and Thames, 1982; Koenning et al., 1996) 

and can spread completely across a field in one season due to fecundity and ability to 

move by equipment and irrigation (Moore et al., 2010; Monfort et al., 2008).  R. 

reniformis also has ability to survive deep in the soil profile (Moore et al., 2010; Lee et 

al., 2003; Robinson, 2005 a and b; 2005b; Heald and Thames, 1980).  Moore et al. (2010) 

reported finding these parasites at a depth of 91 cm and moving horizontally a distance of 

200 cm in one season.  This was further verified by Lee et al. (2015) where it was 

reported that R. reniformis was found 120 cm deep.  Heald and Thames (1980) reported 
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finding R. reniformis at depths of 1.75 m from soil surface and these populations 

correlated to the G. hirsutum root zone.  However, it has been reported R. reniformis 

occurred at deeper soil depths despite presence of G. hirsutum roots (Lee et al., 2015; 

Robinson et al., 2005a).  Lee et al. (2003) further reported R. reniformis could fluctuate to 

depths of 1.2 m throughout the season depending on environmental conditions.  Newman 

and Stebbins (2002) and Robinson et al. (2005b) found these deep nematode populations 

could reduce G. hirsutum yields, but yields could be increased using nematicides like 

Temik 15G applied as a side-dress application.   

In addition to surviving well at deeper soil depths, R. reniformis it can survive in a 

wide array of soil textures.  Starr et al. (1993) reported only 12% of samples possessing 

R. reniformis had a sand content greater than 40%.  Robinson et al. (1997) further 

reported R. reniformis at higher incidence levels in soils with textures of higher silt and 

clay.  However, Gazaway and McLean (2003) first reported a greater presence of R. 

reniformis occurring in coarser textured soils.  Further attributes of R. reniformis survival 

is ability to rebound quickly following rotation to corn (Zea mays).  Davis et al. (2003) 

and Windham and Lawrence (1992) reported that following a one year corn rotation with 

G. hirsutum resulted in higher R. reniformis population than where rotation was not 

followed by bloom of G. hirsutum growth.  This was further verified by Lee et al. (2015).  

Further facilitating increased populations of R. reniformis is its wide host range of 314 

plant species surveyed to date (Robinson et al., 1997).   

Management of R. reniformis in G. hirsutum was primarily with Temik 15 G (a 

main-stay nematicide/insecticide for over 40 years).  However, with removal of label use 

of Temik 15G in 2012, it became evident and necessary to evaluate other means to 
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produce cotton in R. reniformis infested soils.  An integrated approach to improve 

efficacy of nematicide seed treatments (NST) is needed.  This integrated crop 

management approach involves better understanding of how to improve overall G. 

hirsutum health while growing in R. reniformis infested soils.  Integrated crop 

management is important because crop rotation is not viable in all G. hirsutum producing 

areas (Davis et al., 2003), resistant cultivars are not commercially available, little 

information is available on tolerance in commercial varieties (Koenning et al., 2000; Starr 

et al., 2007) and nematicide applications are expensive with environmental concerns.  

Attempts have been made to reduce need for and improve efficacy of nematicides in R. 

reniformis infested soils primarily with GIS/GPS systems as a part of integrated G. 

hirsutum management programs (Herring et al., 2010; Overstreet et al., 2010; Greer et al., 

2009; Lawrence et. al, 2008; Wolcott et al., 2008; Monfort et al., 2007; Ellis et al., 2005; 

Wolcott et al., 2005).  In addition, work has been conducted in an integrated G. hirsutum 

management program to showcase yield improvement of G. hirsutum grown in different 

soil types infested with R. reniformis relative to irrigation.  Herring et al. (2010) reported 

coarser texured soils infested with R. reniformis produced lower G. hirsutum yields than 

soils possessing finer textures, but the lower yielding soil textures could be improved via 

timely irrigations.  They further demonstrated effects of R. reniformis on cotton yield 

were independent of irrigation, but dependent on soil texture.  Similar results were 

reported by Moore and Lawrence (2013) and Davis et al. (2014).  Widmer et al. (2002) 

further demonstrated increased soil organic matter improved overall plant health and 

performance in nematode infested soils by changing soil microflora which can reduce 

parasitic nematode populations. Therefore, understating different parameters of G. 
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hirsutum management as it improves G. hirsutum plant health can improve performance 

in R. reniformis infested soils.  

Further knowledge of commercial G. hirsutum germplasm performance in R. 

reniformis infested soils is pertinent in developing a successful integrated G. hirsutum 

management program. Numerous studies have been conducted to evaluate performance 

of commercial G. hirsutum varieties in nematode infested soils as related to tolerance. 

Tolerance can be defined as the plant’s ability to sustain itself in nematode presence 

without dying or having serious injury or yield loss (Agrios, 1978).  Tolerant plants 

support nematode reproduction while displaying acceptable yields compared to 

susceptible plants (Koenning et al., 2000).  Cook et al. (1997 a) stated G. hirsutum 

tolerance might be a management possibility but little information exists relative to R. 

reniformis.  Since 1988, eleven M. incognita tolerant breeding lines have been released 

(Jones et al, 1988; Cook et al., 1997a; Cook et al., 1997b; Cook and Robinson, 2005) to 

M. incognita.  These varieties yield well in the M. incognita infested fields of their 

production regions.  However, according to Koening et al. (2001), these varieties might 

not be adapted to a wide geographic area.  Wheeler, et al. (2014) reported a positive 

economic interaction between nematicides plus foliar applications of Vydate C-LV® and 

variety in M. incognita populations. Usery et al. (2004; 2005), Legee et al. (2007) and 

Blessit et al. (2012) reported several varieties showed tolerance in high R. reniformis 

infested soils. Earlier maturing varieties showed greater tolerance to R. reniformis 

providing higher yields and lower nematode feeding activity in the roots (Usery et al., 

2005).  However, Blessitt et al. (2012) demonstrated no relation between maturity and G. 

hirsutum performance in R. reniformis infested soils but stated that six of thirteen G. 
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hirsutum varieties tested showed tolerance.  Further work evaluating commercial variety 

performance in nematode infested soils was reported by Phipps and Eisenback (2005) and 

Davis (2005) as it related to M. incognita.  This group further showed no difference to 

nematode species infestation related to maturity in G. hirsutum varieties.  Koenning et al. 

(2005), however, reported late maturing varieties performed better than early maturing 

varieties in soils infested with the Columbia lance nematode (Hoploaimus columbus) 

while Williams et al. (2004) reported similar findings to M. incognita.    Phipps and 

Eisenback (2005) further reported net dollar return was greater when using tolerant G. 

hirsutum varieties planted in M. incognita infested fields.  They also reported nematicides 

were still economically beneficial when used with tolerant varieties.  There are several 

public sector varieties that show promise in highly infested nematode soils (Davis et al., 

2010).  The only advanced technology (Widestrike/Roundup Flex or BG 2/RF) 

containing cotton variety evaluated that has shown nematode tolerance is Phy 367 WRF.  

McPherson and Rush (2011) cited that Phy 367 WRF showed excellent response in M. 

incognita infested soils despite not being treated with nematicides.   

Nematicides continue to be an important segment of an integrated G. hirsutum 

management program that allows cotton to be successfully produced in nematode 

infested soils.  Since 2003, the G. hirsutum industry began moving away from granular, 

at-planting treatment with Temik 15G for nematode control.  Nematode seed treatments 

today have replaced Temik 15G in the industry.  Padgett and Overstreet (2004) reported 

some NSTs were as effective as Temik 15G when compared at nematicide rate of 0.75 

lbs ai/Ac and some seed treatments reduced galling over untreated check but did not 

improve maturity or yield.  This indicates lack of longevity of seed treatments compared 
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to Temik 15G and necessitates need for additional management options to improve cotton 

performance in nematode infested soils.  Kirkpatrick and Monfort (2004) reported NST 

did not differ in nematode management from Temik 15G from 14 to 35 DAP.  In 

addition, they reported NST applied at 100 g (a.i)/kg of seed was similar to Temik 15G 

applied at 0.75 lbs ai per Ac.  Monfort et al. (2004) reported root knot nematode numbers 

and gall numbers were reduced using NSTs similar to using Temik 15G.  A major 

concern of NST was lack of early season insect control compared to Temik 15G.  Brown 

et al. (2008) reported tobacco thrip (Frankliniella fusca) damage occurring in early 

developmental stage of G. hirsutum growing in nematode soils reduced early root growth 

and yield.  However, the group did not evaluate loss of maturity as a result of combined 

effects from nematodes and thrips.  This research led the industry to combine seed 

treatments containing insecticides with nematicides or mandating an over-top application 

for insect management.   

To further enhance and improve R. reniformis management of NST treatments 

beyond 35 days after planting, foliar applied Vydate C-LV® has been shown to be an 

excellent tool used in conjunction with older nematicide products (Lawrence and 

McLean, 2000; 2002; 2003).  Vydate C-LV® with nematicide/insecticide properties 

remains a viable tool in managing G. hirsutum nematodes because of ease of foliar 

application and phloem transmission to root system (Hsu and Kleier, 1996).  This tool 

becomes crucial since R. reniformis obtains maximum population densities when G. 

hirsutum is in its peak reproductive phase (Lawrence and McLean, 1995 a and b; 1996 a 

and b; 1997).  The additional plant stress from parasitism by R. reniformis can result in 
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reduced yields and requires additional treatments beyond those obtained by NST 

treatments. 

Understanding G. hirusutum growth and development is critical in understanding 

biotic and abiotic stress effects while implementing management strategies for 

maximizing yields and profits.  Gossypium hirusutum possesses a unique fruiting pattern 

of simultaneous reproductive and vegetative growth which makes G. hirsutum much 

different in growth pattern compared to other row crops. This growth mechanism makes 

G. hirusutum an ideal plant in which to evaluate and quantify stresses due to nematodes 

(Jenkins and McCarty, 1995; Kerby et al., 1987; Smith et al., 1996; Smith and Turnage, 

1998). 

Gutherie and Kerby (1993) reported G. hirusutum growth maintains a record of its 

response to environmental conditions and management inputs which can be traced by 

observing its vegetative structure and fruit distribution.  The vegetative and reproductive 

growth distribution can be quantified by plant mapping processes.  Biotic or abiotic 

stresses can be placed on a developmental time-line by denoting where the symptoms 

occurred on the plant.  Early-season conditions are recorded in vegetative growth and 

square retention levels while mid-season effects are observed in internode lengths and 

boll retention.  Late-season influences impact location of last harvestable boll and degree 

of secondary growth.  Plant mapping importance has been well documented (Jenkins and 

McCarty, 1995; McCarty et al., 1994, Albers, 1993; Hake et al., 1990).  In-season plant 

mapping has been used extensively to quantify treatment effects in G. hirusutum.  Smith 

and McCarty (1996) used in-season plant mapping to demonstrate Temik 15G 

effectiveness applied at-planting and as a side-dress in G. hirusutum growing in R. 
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reniformis infested soils.  From this methodology, Smith and McCarty (1996) were able 

to capture fruiting pattern differences, growth differences, maturity and yield resulting 

from the treatments.  Turnage and Smith (1998) further used in-season plant mapping to 

demonstrate how Temik 15G performed compared to Acephate 15G under heavy thrips 

pressure of PM 1215 G. hirusutum variety based on fruit retention, height to node ratios, 

earliness and yield grown in R. reniformis infested soils.  Lawrence et al. (1998; 2001; 

2002) and Lawrence and McLean (2002) further showed influence of nematicide 

treatments on G. hirusutum in R. reniformis infested soils via plant mapping processes. 

The objectives of these studies were to evaluate G. hirsutum growth and 

development using plant mapping processes comparing NST to Temik 15 G and foliar 

applications of VydateC-LV® (oxamyl) in combination with the NST in R. reniformis 

infested soils; to evaluate performance of five commercially available G. hirsutum 

varieties with and without NST to determine if varieties are tolerant to R. reniformis; and 

to determine treatment efficacy population thresholds of R. reniformis using controlled 

environments to verify field findings. 
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CHAPTER II 

LITERATURE REVIEW 

Integrated management of cotton grown in reniform nematode infested soils as 
affected by nematicides and varieties 

General Introduction 

Presently, suppression of R. reniformis in cotton is with use of nematicides 

(granular, fumigant, biological, seed treatments and foliar).   The granular product, Temik 

15G (aldicarb), a mainstay in the cotton industry for over 40 years and recognized for its 

superior at-planting and side-dress insecticide and nematicide properties, was removed 

from market by Bayer Crop Science. The decision was preceded by launch of several 

nematicide seed treatments (NSTs) that are environmentally friendly with more favor 

with the Environmental Protection Agency.  Lawrence et al. (1990) and Lawrence and 

McLean (2001), from an aggressive testing program, saw positive economic returns when 

using fumigant nematicdes in heavily infested R. reniformis fields; however, this practice 

is costly, application takes considerable time and requires special equipment.  In lieu of 

this, a move in 2003, to treat cotton seed with chemicals and/or biologicals with known 

nematicide properties occurred. 

Nematicide Seed Treatments 

Since 2003, the cotton industry has been moving away from granular, at-planting 

treatment of Temik 15G for nematode control.  Nematicide seed treatments today have 
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replaced Temik 15G.  Padgett and Overstreet (2004) reported some NSTs were as 

effective as Temik 15G when compared at its nematicide rate of 0.75 lbs ai/Ac and some 

seed treatments reduced galling over untreated check, but did not improve maturity or 

yield.  This indicates lack of longevity of seed treatments compared to Temik 15G and 

necessitates need for additional management options to improve G. hirsutum 

performance in nematode infested soils.  Kirkpatrick and Monfort (2004) reported NSTs 

did not differ from Temik 15G from 14 to 35 DAP.  In addition, they reported NSTs 

applied at 100 g (a.i)/kg of seed was similar to Temik 15G at 0.75 lbs ai/Ac.  Monfort et 

al. (2004) reported root knot nematode and gall numbers were reduced using NSTs 

similar to Temik 15G.  A major concern of NST was a lack of early season insect control 

obtained from Temik 15G.  Brown et al. (2008) reported tobacco thrip (Frankliniella 

fusca) damage occurring in early cotton developmental stages combined with nematode 

infestation reduced early root growth and yield.  However, the group did not evaluate 

harvest maturity delays as result of combined nematode and thrips effects.  This research 

led the industry to combine seed treatments containing insecticides with nematicides or 

mandating over-top applications for insect management.   

To further enhance and improve R. reniformis management of NST treatments 

beyond 35 days after planting, foliar applied Vydate C-LV® has been shown to enhance 

nematode management combined with older nematicide products (Lawrence and 

McLean, 2000; 2002; 2003).  Vydate C-LV® with nematicide/insecticide properties 

remains a viable tool used in managing nematodes in G. hirsutum because of ease of 

foliar application and phloem transmission to root system (Hsu and Kleier, 1996).  This 

tool becomes crucial since R. reniformis obtains maximum population densities when 
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cotton is in peak reproductive phase (Lawrence and McLean, 1995 a and b; 1996 a and b; 

1997).  The additional plant stress from parasitism by R. reniformis can result in reduced 

yields and requires additional treatments beyond what is obtained by NST treatments. 

Today, the primary seed treatments for nematode suppression in cotton include; 

Aeris® (thiodicarb), Avicta™ (abamectin), Votivo® (Bacillus firmus) and N-Hibit® 

(Erwinia amylovora) (Woodard et al., 2008; Kirkpatrick et al., 2011; Overstreet and 

Kirkpatrick, 2011).  Other companies are emerging with experimental biological products 

for nematode suppression in crops that will also be used as a seed treatment.   

Aeris® Seed Applied System (imidachloprid + thiodicarb @ 0.375 mg (ai)/Lb of seed)  

This product is listed for suppression of root knot and reniform nematodes as well 

as Frankliniella fusca (tobacco thrips), Sericothrips variabilis (soybean thrips), Thrips 

tabaci (onion thrips) and Aphis gossypii (cotton aphids).  It provides an additional option 

of having Trilex® (seed treatment fungicide) for control of Rhizoctonia, Pythium, 

Thielaviopsis and Fusarium.  Graham et al. (2007) reported AERIS® Seed Applied 

System increased plant height, leaf area, white-bloom count and yield when compared to 

Avicta™ which was also reported by Kemerait et al. (2006; 2007; 2008). However, 

Kemerait et al. (2007; 2008) reported Temik 15G provided better yields and return on 

investment (ROI) when compared to seed treatments in nematode infested soils. 

Avicta Complete Cotton™ (abamectin + cruiser + dynasty) 

The abamectin portion of Avicta™ is a macrocyclic lactone produced by 

Streptomyces avermitilis (Faske and Starr, 2007).  Monfort et al. (2004), Kirkpatrick and 

Monfort (2004) and Phipps and Eisenback (2007) reported Avicta™ provided similar 
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nematode control as Temik 15G. This was disputed by Kemerait et al. (2006; 2007; 2008) 

who found Avicta™ performed at a lower level than AERIS® or Temik 15G and provided 

a negative ROI. 

Votivo® (Bacillus firmus) 

VOTIVO® is a biological nematicide believed to protect roots from early season 

nematode damage by colonizing roots and immediate root environment promoting plant 

growth which characterizes this product as a Plant Growth Promoting Rhizobacteria 

(PGPR).  Five to ten million spores are applied per seed and once the bacteria begins to 

grow (activated by temperature and water) expands exponentially with root growth as the 

bacterium uses root exudates as a food source.  It is believed bacterium colonization of 

root receptor sites used by nematodes reduces root finding by nematodes (Riggs and 

Bugg, 2011; Bugg, 2010).    

N-Hibit and Messenger® (Erwina amylovora) 

Both products are classified as harpin proteins which activate natural stress-

defense mechanisms improving plant vigor and health.  Harpin proteins were first 

isolated from Erwinia amylovora (Wei et al., 1992) and shown to promote gene 

expression involved in hypersensitive response, plant growth, stamina, increased yields, 

improve shelf-life and induce systemic plant defense (Wei and Berr, 1996).  N-Hibit® is 

seed applied while Messenger® is applied foliarly.  Kirkpatrick et al. (2005) working with 

M. incognita did not show differences in plant growth, but did show reduction of galls 

and reduced reproduction.  Kirkpatrick et al. (2005), in growth chamber, reported 

increased plant height, plant biomass, and node number from harpin proteins applied to 
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seed or foliage.  French et al. (2006 a and b) showed positive yield increases comparable 

to Temik 15G and Avicta. 

Historical reasons for loss of aldicarb (Temik 15G) manufacture in the U.S. 

Aldicarb (2-methyl-2-(methylthio)-propionaldehyde O-methylcarbamoyloxime) 

had been used on cotton since 1970 in the United States for control of sucking, piercing 

insects and plant parasitic nematodes.  Temik 15G is highly toxic with an oral LD50 of 

0.3-0.9 mg/kg (Cox, 1992). When misused it can cause death to mammals (Center for 

Disease Control, 1986; 1999) and continue mortality within food chain due to tissue 

persistence.  Balcomb et al. (1982) observed high mortality levels from Temik 15G in 

sparrow and blackbird populations of 80 and 40% respectively.  In 1986, California 

watermelons illegally treated with Temik 15G during 1985 promoted one of the largest 

poisonings in North American history where nearly 2,000 people became ill (Green et al, 

1987; Goldman, 1990).  In this incident there was one fatality and several pregnant 

women gave birth to stillborn babies.  This was followed by illnesses in Louisiana during 

1998 when Temik 15G placed in a pepper container was used to season a salad resulting 

in 20 illnesses (Center for Diseased Control, 1999).  Aldicarb related posionings in 

Nebraska and British Columbia have been cited to occur from illegal applications in 

cucumbers (World Health Organization, 1991).  In 1991, above tolerance levels were 

found in bananas prompting the removal of bananas from the Temik 15G label.  In 1979, 

Temik 15G residues were detected in well water in the New York’s potato-growing 

region after only four years of use.  By 1986, 2,500 wells were found to be contaminated 

with unacceptable levels of Temik 15G which prompted a cease use (Jones and 

Marquardt, 1987).  This led the Environmental Protection Agency (EPA) under The Safe 
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Drinking Water Act to develop the Maximum Contaminant Level Goal (MCLG) which is 

the contamination level where no known detriment occurs for man (U.S. E. P. A., 1998).  

The level was established at 1.0 part per billion, especially for Temik 15G.  Following 

these reports, 26 states, including Mississippi, were cited for Temik 15G well water 

contamination (U.S. E. P. A., 1991).  From these studies, solubility of Temik 15G and its 

metabolites and contaminants (aldicarb sulfoxide, aldicarb sulfone, aldicarb oxime, 

dichloromethane and N-nitrosaldicarb) were documented (U.S. E. P. A., 1988).  Pacenka 

et al. (1987) further reported enormous solubility of Temik 15G.  In 1990 registration of 

Temik 15G was removed after field tests found residues in potatoes above tolerance 

levels (U.S. E. P. A., 1990).  The American Academy of Pediatrics (1990) reported a 

child consuming a potato with these levels over time would consume a dose one-tenth of 

LD50, well above toxicity threshold.  From 1966 to 1982 there were 165 incidents and 

several deaths regarding workers exposed to Temik 15G (U.S. E. P. A. 1988).  A study 

involving German greenhouse workers, revealed a decrease in acetylchlolinesterase for 

up to ten days following exposure (Wagner and Hermes, 1987).  In addition to these 

issues, Temik 15G has been linked to 35% of attempted homicides, 40% of suicides and 

10% of accidental poisonings (Ragoucy-Sengler et al., 2000) in the United States 

population.  The product has also been linked to one of the worst chemical disasters since 

the end of World War II occurring in Bhopal, India (a manufacturing site for methyl 

isocynate (MIC) used in formulating Temik 15G) in 1984.  Sabotage of the plant resulted 

in a release of a toxic cloud of MIC into the atmosphere causing 5,000 direct deaths and 

up to 200,000 illnesses including respiratory problems, eye damage, and death to babies 

in fetal and new born state (Metha, 1990).  Because of this string of deaths and 
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devastation, EPA began closely scrutinizing product use.  From an extensive EPA report 

(EPA, 2010) showing risks and residue levels of Temik 15G and its metabolites in 

particular crops, Bayer Crop Science decided to phase out production and distribution of 

Temik 15G globally by 2018.  Temik 15G use in potatoes and citrus was banned in 2012 

and all remaining uses end by 2018.  In the meantime, new requirements went into effect 

to change labeling to protect ground water near cotton, soybean and peanut farms (Cone, 

2010).  Hoewever, due to stipulated EPA requirements, Bayer Crop Science decided to 

stop production of MIC in 2012 and not later as was first announced (Kirkpatrick et al., 

2011).  Regardless of safety issues, efficacy of Temik 15G had been on decline.  An early 

study revealed Temik 15G’s half life at two months in some fields and eight months in 

other fields (Jones and Marquardt, 1987).  In yet another study, half life was shown to be 

408 days (World Health Organization, 1991).  However, performance of Temik 15G 

began to decline in 1998 in Mississippi, Arkansas, Alabama and Louisiana (Lawrence et 

al., 2004).  Lawrence et al. (2004) in a conclusive study across four soil types linked 

Temik 15G efficacy loss to soil type and degradation by soil microorganisms with 

complete degradation in 12 days to 43 days depending on soil type.  Boozer et al. (2006) 

further validated this study but extended to include efficacy loss on early season insects.  

Loss of efficacy was linked to degradation in specific soils due to breakdown by 

microorganisms not due to acquired resistance by R. reniformis.  

Integrated approaches to growing cotton in R. reniformis infested soils 

Despite presence of adequate seed treatments, use of multiple management 

strategies involving crop rotation using grain crops, peanut (Arachis hypogea) or 

reniform resistant soybean (Glycine max) cultivars has been encouraged (Windham and 
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Lawrence, 1992; Robinson et al., 1997; 1999; 2001; Koenning et al., 2005).  However, 

rotation only reduces population for one year allowing rapid population increase the 

following growing season when there is a return to cotton (Davis et al., 2003) still 

requiring use of a suitable nematicide in future years of G. hirsutum production.  Other 

alternatives to nematicides and crop rotation include cover crops and soil amendments 

and reducing plant stresses that result from compaction and poor drainage (Gaur and 

Perry, 1991).  Another method of addressing suppression of R. reniformis is use of host 

plant resistance since resistance genes have been identified in G. hirsutum (Cook et al., 

1997 a; Jones et al. 1988; Yik and Birchfield, 1984).  Despite gene indentification, 

incorporation into commercial and elite varieties has proven too difficult.  Therefore, 

integrated approaches have been strongly encouraged to manage nematodes and facilitate 

yield enhancement.  Integrated nematode management programs have many limitations, 

but have been made necessary with loss of Temik 15G.   

Variety performance and breeding programs involving R. reniformis 

There is need for a complete integrated approach that leads to limited reliance on 

chemicals for R. reniformis management.  A portion of this integrated approch involves 

identifying tolerance levels of current cotton germplasms to R. reniformis.   

Presently, there are no marketed nematode resistant G. hirsutum varieties, but a 

large effort has been directed toward resolving this need.  There are varieties that have 

shown tolerance to nematodes (Usery et al., 2004, and 2005), but most studies only show 

low to moderate tolerance by currently grown varieties (Starr et al., 2007; Weaver et al., 

2007).  Gene identification driving nematode resistance in G. hirsutum has made positive 

strides.  Davis et al. (2011) reported M. incognita resistance is a multi-gene trait difficult 
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to maintain in breeding programs while Bell and Robinson (2004) reported resistance to 

R. reniformis requires introgression of genes from Gossypium longicalyx.  Robinson and 

Bell (2006) further reported DNA markers had been identified imparting resistance to M. 

incognita and R. reniformis, but, to date, the best industry can hope for is tolerance.  The 

United States Department of Agriculture (USDA) released two cotton varieties 

(LONREN-1 and LONREN-2) originating from G. longicalyx (a wild Gossypium species 

from Africa) virtually resistant to R. reniformis (Robinson et al., 2007 a and b; Starr et 

al., 2007).  Percival et al. (1999) and Yik and Birchfield (1984) cited G. longicalyx as 

having complete resistance, preventing R. reniformis females entering the root from 

forming their normal kidney shape. This prevents nematode mating, reproduction and egg 

production reducing subsequent generations.  However, G. longicalyx has poor growth 

habit in spite of being adapted to dry and high saline environments.  Bell (1984) reported 

incompatibility between G. hirsutum (2n=52, similar to other Gossypium sp.) and G. 

longicalyx (2n=26) makes it difficult to successfully cross the species.  However, 

progress has been made relative to this issue (Avila et al., 2005; 2006; 2008; Dighe et al., 

2005; Bell and Robinson, 2004; Robinson et al., 2004; Bell et al., 2009; Young et al., 

2004; and Robinson et al., (2007), introgressing resistance to R. reniformis into G. 

hirsutum from G. longicalyx.   

LONREN cultivars have great susceptibility to root borne fungi and can support 

only low populations of R. reniformis in the greenhouse and field (Bell et al., 2009; 

Weaver et al., 2011; Weaver et al., 2013) despite having excellent fiber quality.  Where 

R. reniformis populations ranged from 10,000 to 50,000 per 100 cm3 of soil at planting, 

LONREN lines were intolerant promoting smaller root systems, stunted shoots and 
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reduced yields (Nichols et al., 2010; Sikkens et al., 2011).  It has been shown that 

LONREN lines provide a hypersensitive reaction where root cell tissue damaged upon 

infection promotes R. reniformis death, but negative plant growth still occurs.  The 

negative effect occurs between radical emergence and full seedling growth (Sikkens et 

al., 2011; Weaver et al., 2013).  Schrimsher, et al. (2014) showed nematicides could 

overcome this brief period of susceptibility. 

BARBEN is yet another Gossypium species derived from Gossypium barbadense.  

Through years of studies and searching, a number of G. barbadense cultivars were 

discovered to have resistance to R. reniformis reducing egg production to as low as 8% 

and affecting subsequent generations (Yik and Birchfield, 1984; Robinson and Percival, 

1997; Robinson et al, 2004).  Robinson et al. (2004) found accession GB-713 reduced 

egg production of R. reniformis to as low as 3% and is now being used to introgress 

resistant genes into G. hirsutum.  In 2012, USDA, Mississippi State University, and 

Cotton Incorporated launched BARBEN-713. Sikkens et al. (2012) reported this cultivar 

supported continuous low levels of R. reniformis and yielded comparable to 

commercially available cotton cultivars indicating a potential for being crossed with high 

yielding, commercially available germplasms. 

Numerous studies have been conducted to evaluate performance of commercial 

varieties in nematode infested soils. Since 1988, eleven breeding lines tolerant to M. 

incognita have been released (Jones et al, 1988; Cook et al., 1997a; Cook et al., 1997b; 

Cook and Robinson, 2005).  These varieties yield well in M. incognita infested fields of 

their developed production regions.  However, according to Koening et al. (2001), these 

varieties might not be adapted to a wide geographic area.  Wheeler, et al. (2014) reported 
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a positive economic interaction between nematicides plus foliar applications of Vydate 

C-LV® and variety in M. incognita populations. Usery et al. (2004; 2005), Legee et al. 

(2007) and Blessitt et al. (2012) reported several varieties showed tolerance in high R. 

reniformis infested soils. Usery et al. (2004) reported earlier maturing varieties showed 

greater tolerance to R. reniformis providing higher yields and lower nematode feeding 

activity in the roots.  Further work evaluating commercial variety performance in 

nematode infested soils was reported by Phipps and Eisenback (2005) and Davis (2005) 

as it related to M. incognita and Sciumbato, et al. (2005) and Blessitt et al. (2012) as it 

related to R. reniformis.  These groups showed no difference in tolerance related to cotton 

maturity and nematode species.  Koenning et al. (2005), however, reported late maturing 

varieties performed better than early maturing varieties in soils infested with the 

Columbia lance nematode (Hoploaimus columbus) while Williams et al. (2004) reported 

similar findings with M. incognita.   Phipps and Eisenback (2005) further reported net 

dollar return was significantly greater when using tolerant cotton varieties planted in M. 

incognita infested fields.  They also reported nematicides were still economically 

beneficial when used with tolerant varieties.  Several public sector varieties show 

promise in highly infested nematode soils (Davis et al., 2010).  The only advanced 

technology (Widestrike/Roundup Flex or BG 2/RF) containing G. hirsutum variety 

evaluated that has shown nematode tolerance is Phy 367 WRF.  Phy 367 WRF showed 

excellent response in M. incognita infested soils despite not being treated with Telone II 

or Temik 15G (McPherson and Rush, 2011).  Today, Fiber Max and Stoneville, 

subsidiaries of Bayer Crop Science, are discussing potential tolerance to nematodes, 

especially R. reniformis.  There is a great need to understand the fruiting mechanisms and 
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performance of the new, high yielding G. hirsutum varieties in nematode infested soils.  

With cost of G. hirsutum seed and technology it is important to minimize controllable 

risks.  In addition, new G. hirsutum varieties containing advanced technologies have 

ability to yield approximately 400 lbs. of lint cotton/acre more than the older technology 

containing varieties due to increased fruit retention (Stewart and Smith, 2007).  With 

yield potentials of 1,400 to 1,600 lbs. lint/acre, all yield hindering events must be 

minimized.  R. reniformis tolerant varieties can greatly improve yield and improve NST 

efficacy.   

Importance of plant mapping monitoring procedures in evaluating cotton 
development in nematode soils 

Understanding G. hirusutum growth and development is critical in implementing 

management strategies for maximizing yields, profits and understanding stress effects.  

G. hirusutum possesses a unique fruiting pattern of simultaneous reproductive and 

vegetative growth which makes cotton much different in growth pattern for other row 

crops. This growth pattern makes G. hirusutum an ideal plant in which to evaluate and 

quantify stresses due to nematodes and environment (Jenkins and McCarty, 1995; Kerby 

et al., 1987; Smith et al., 1996; 1998).     

The best method of understanding how a variety fits a system is by understanding 

its fruiting architecture via plant mapping processes (Jenkins and McCarty, 1995; Kerby 

et al., 1987; Smith et al., 1996; 1998).  Plant maps will determine growth propensity and 

fruit retention under adverse environmental conditions.  In addition, greenhouse 

evaluations must occur concurrently to establish a tolerant innoculated population (Pi) for 

each variety tested.   
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Gutherie and Kerby (1993) reported G. hirusutum growth maintains a record of its 

response to environmental conditions and management inputs which can be traced by 

observing its vegetative structure and fruit distribution. The vegetative and reproductive 

growth distribution can be quantified by the plant mapping process. Biotic or abiotic 

stresses can be placed on a developmental time-line by denoting where the symptoms 

were left on the plant. Early-season conditions are recorded in vegetative growth and 

square retention levels while mid-season effects are observed in internode lengths and 

boll retention.  Late-season influences impact location of last harvestable boll and degree 

of secondary growth.  The importance of plant mapping has been well documented 

(Jenkins and McCarty, 1995; McCarty et al., 1994, Albers, 1993; Hake et al., 1990).  In-

season plant mapping process has been used extensively to quantify treatment effects in 

G. hirusutum.  End-of-season box mapping is an intensive process where every position 

on the cotton plant is accounted for by boll number, weight by position, contribution by 

position and cumulation over time relative to yield (Jenkins and McCarty, 1995). 

Smith and McCarty (1996) used in-season plant mapping and box mapping to 

demonstrate effectiveness of Temik 15G applied at-planting and as a side-dress in G. 

hirusutum growing in R. reniformis infested soils.  From this methodology, they were 

able to capture treatment fruiting pattern differences, growth differences, maturity and 

yield differences.  Turnage and Smith (1998) further used in-season plant mapping to 

demonstrate how Temik 15G performed compared to Acephate 15G under heavy thrips 

pressure across 15 G. hirusutum varieties based on fruit retention, height to node ratios, 

earliness and yield when grown in R. reniformis infested soils.  The pertinence of early 

season insect management was also reported using in-season plant maps and box 
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mapping techniques (Stewart et al., 2001; Phelps et al., 1996).  Using in-season plant 

mapping and box mapping, Smith and Turnage (1998) further demonstrated how use of 

Temik 15G benefited an early season cotton variety by reducing thrips damage in R. 

reniformis infested soils.  From this data they demonstrated value of maintaining apical 

dominance and how apical dominance related to yield, earliness, ease of harvest and 

increased first harvest.  Smith et al. (1999) demonstrated efficacy of Bollgard technology 

across 11 G. hirusutum varieties at 14 locations using in-season plant mapping (pre-

bloom, and 30% open boll).  He also used this method to determine timing of defoliation 

by variety and how harvest of difficult to harvest G. hirsutum varieties could be improved 

with the use of Finish harvest aid.  Presley et al. (1999) used in-season plant mapping to 

demonstrate fruiting mechanisms in Deltapine Seed Bollgard G. hirsutum varieties 

compared to experimental varieties in North Delta of Mississippi.  In-season plant 

mapping and box mapping processes were used to quantify fruiting pattern of Roundup 

Ready varieties treated with labeled and non-labeled applications of Glyphosate prior to 

the Roundup Ready Flex technology (Monks et al., 2007; Stewart et al., 2005; Pline-

Srnic et al., 2004; Viator et al., 2004; File et al., 2000; Jones and Snipes, 1999).  Jenkins 

et al. (1990 a and b; 1990b) and Kerby et al. (1987) using box mapping, reported 66 to 

75% of the yield originated from first position fruiting sites on the sympodial (fruiting) 

branches while 18 to 21% came from second position fruiting sites.  Jenkins et al. 

(1990b) also reported, by use of box mapping across eight G. hirsutum varieties, seed 

cotton per boll varied among fruiting sites where bolls at the first fruiting position along 

sympodial branchs were 14% larger than from second positions which was 21% larger 

than bolls than position three.  In this study, Jenkins et al. (1990b) reported boll weights 
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increased from node 6 to node 12 and declined at upper nodes.  Jenkins and McCarty 

(1995), in the most conclusive box mapping project, reported percentage of mature bolls 

at harvest began to decline beyond node 15 at fruiting position one and chance of 

harvesting these positions was reduced at all sites as was fruiting positions >2.  In this 

study, they further reported higher dollar value bolls were located between nodes 7 and 

13 at first position fruiting site in the early maturing variety DES 119.  Second positions 

and >2 positions were lower in value.  The later maturing variety, Deltapine 90, showed a 

higher dollar value between node 8 and 16 at the first position fruiting site.  This work 

indicates importance of maintaining first positions on sympodial branches and that 

second position fruiting positions can’t totally compensate for loss of the first position.  

Furthermore, the first position is the only fruiting site differentiated in apical meristem 

(Mauney, 1986).  Sadras (1995), in a comprehensive review on G. hirsutum 

compensation using plant mapping, reported that loss of key fruiting positions could be 

overcome but depended on plant-water reserves, photosynthesis, changes in plant 

structure and carbon/nitrogen reserves. In nematode infested soils, this knowledge is 

pertinent due to root feeding by nematodes and subsequent loss of first position retention 

sites (Lawrence et al., 1998; 2001; 2002 a). These are very conclusive trials examining 

fruiting mechanics in nematode infested soils. Davidonis et al. (2004) used plant mapping 

to evaluate lint quality relative to lint diameter (micronaire) which indicated lower bolls 

had lower micronaire followed by an increase in the middle fruiting zone followed by a 

reduction in micronaire at upper nodes. Micronaire is only one quality parameter affectin 

fiber spinability and marketability.   
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There have been several trials showing influence of nematicide treatments on 

fruiting patterns in conventional and Bollgard/Round-up Ready G. hirusutum varieties.  

Lawrence et al. (1998; 2001; 2002 b) and Lawrence and McLean (2002) showed the 

influence of nematicide treatments on G. hirusutum in R. reniformis infested soils via the 

number of bolls retained per position and lint cotton weights per fruiting position. 

However, there are few trials (Usery, 2004; 2005) of this nature on new Bollgard 

II/Roundup Ready Flex (BG2/RF) technology which is expensive, but capable of 

providing higher fruit retention than observed in the older BG/RR technology and 

conventional varieties (Stewart and Smith, 2007).  This increased boll retention and 

maintenance to harvest mandates adequate root development to enhance complete 

nutrient and water uptake to maximize yield.   
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CHAPTER III 

EFFECTS OF SEED TREATMENT NEMATICIDES WITH AND WITHOUT FOLIAR 

APPLICATIONS OF VYDATE C-LV® ON THE GROWTH AND DEVELOPMENT 

OF GOSSYPIUM HIRSUTUM GROWING IN ROTYLENCHULUS RENIFORMIS 

INFESTED SOILS 

Abstract 

Reniform nematode (Rotylenchulus reniformis Linford and Oliveira) currently 

infests 36% of the Mississippi cotton acreage and causes economic losses of $130 million 

annually.  With Temik 15G being removed from the market and high expense of soil 

fumigants, there is a need to develop an integrated nematode management program 

centering around Nematicide Seed Treatment (NST) with and without foliar applications 

of Vydate C-LV®.  In greenhouse studies, all NSTs showed greater root and shoot 

weights compared to the untreated control (UTC).  Aeris® + Votivo® produced greater 

root and shoot weights in inoculated populations (Pi) up to 5,000 reniform 

nematodes/500 cc of soil.  Relative to root and shoot growth, Aeris® treated plants began 

having less growth at 2,500 reniform nematodes/500 cc.  Temik 15G increased shoot 

weights until Pi of 7,500 reniform nematodes/500 cc of soil, but root weights of Temik 

15G treated plants at all nematode levels were not better than the UTC at 0 and 2,500 

reniform nematodes/500cc of soil respectively indicating root growth restriction from 

Temik 15G not observed in NSTs.  In-season plant mapping indicated Node of First 
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Fruiting Branch (NFFB) was reduced with all nematicide treatments. Plant height and 

height to node ratios (HNR) were increased by the addition of Vydate C-LV® treatments 

above the NSTs alone, as shown by accumulated internode measurements, while all 

nematicide treatments improved growth over the UTC.  During square growth period, no 

retention differences occurred at fruiting position one but Vydate C-LV® treatments 

provided higher retention at positions greater than (>) two.  Final fruit evaluation 

indicated no difference in retention at position one, but Vydate C-LV® treatments did 

increase retention at position two.  From a plant zone perspective, little difference in zone 

one (Nodes 5-9) and zone two (Nodes 10-14) existed during square.  However, in-bloom 

retention began to improve in all nematicide treatments treated with Vydate C-LV® 

across all zones for position one while at position two the Vydate C-LV® treatment 

increased retention at zones one. At position two and three (N 15-19) during open boll 

growth phase at fruiting position one and two.  All NSTs were improved using Vydate C-

LV® equaling that of Temik 15G alone, but Temik 15 G still provided greater boll 

retention in R. reniformis infested soils. This was further observed in yields where all 

treatments increased yield over the UTC and Vydate C-LV® treatments increased yields 

above the NST alone treatments. 

Key study nematicides:  Nematicides used in the seed treatment study included 

the following; *Temik 15 G (Aldicarb):  2-methyl-2-(methylthio)-propionaldehyde 0-

methylcarbanoyloxime); *Vydate C-LV® (Oxamyl): methyl N’N’-dimethyl-N-[(methyl 

carbamoyl ) oxy]-1-thiooxamimidate; *Aeris® (Thiodicarb):  dimethyl N,N’-

[thiobis[(methylimino) carbonyloxy]bis [ethanimidothioate].  Votivo® (Bacillus firmus). 
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Introduction 

The reniform nematode (R. reniformis Linford and Oliveira), a plant parasitic 

nematode, has become the most damaging G. hirsutum pathogen.  R. reniformis, first 

described in 1931 (Linford and Oliveira, 1940), is a tropical and subtropical pest present 

throughout the United States G. hirsutum producing region (Heald and Robinson, 1990; 

Kinloch and Sprenkel, 1994; Starr, 1998; Koenning et al., 1999).  Since 1960, R. 

reniformis has shown an adaptive capability to survive colder environments allowing 

colonization of much of the eastern half of the G. hirsutum belt (Heald and Robinson, 

1990) and as far north as Lubbock, Texas and the Missouri bootheel (Heald and Thames, 

1982; Wrather et al., 1992).  Today, R. reniformis has been identified and associated with 

a 7% annual G. hirsutum yield loss totaling nearly $126 million in Mississippi, Alabama, 

Tennessee, Texas, Missouri, Florida, North Carolina, Louisiana, South Carolina, 

Arkansas and Georgia (Blasingame and Patel, 2011; Koenning et al., 1999).   In 

Mississippi, an annual yield loss of 235,398, 252,023 and 56,378 bales occurred in 2004, 

2005 and 2011, respectively (Blasingame, 2004; 2005; Blasingame and Patel, 2011).  By 

2002, more than 32% of the G. hirsutum acres in Mississippi were infested with R. 

reniformis causing a 5.5% yield reduction (Lawrence and McLean, 2002).  Gazaway and 

McLean (2003) reported R. reniformis infested more than 36% of Alabama G. hirsutum 

acreage and was increasing. 

Since 2004, the cotton industry began moving away from the granular, at-planting 

treatment with Temik 15G for nematode management.  Prior to this time, and for more 

than 40 years, Temik 15G was the main-stay for nematode management in the cotton 

industry.  However, in 2012, Bayer Crop Science made the decision to cease production 
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of this product, and Nematicide Seed Treatments (NSTs) have replaced Temik 15G in the 

industry.  Padgett et al (2004) reported some NST treatments were as effective as Temik 

15G applied at its nematicide rate of 0.75 lbs ai/Ac and reduced galling over the untreated 

control (UTC), but did not improve maturity or yield indicating lack of longevity 

compared to Temik 15G.  Kirkpatrick and Monfort (2004) reported NSTs did not differ 

from Temik 15G 14 to 35 days after planting (DAP).  In addition, they reported NSTs 

applied at 100 g ai/kg of seed was similar to Temik 15G applied at 0.75 lbs ai/Ac.  

Monfort et al. (2004) reported Meloidogyne incognita (root knot nematode) numbers and 

gall numbers were also reduced using NSTs similar to Temik 15G.  A major concern of 

using NST was lack of the early season insect control obtained with Temik 15G.  Brown 

et al. (2008) reported tobacco thrips (Frankliniella fusca) damage reduced early cotton 

root growth and yield in R. reniformis infested soils.  However, the group did not 

evaluate the loss of cotton plant maturity as a result of the combined effects from the 

nematodes and thrips.  This research lead the industry to combine seed treatments 

containing insecticidal modes of action with those of nematicidal modes of action or 

mandating an over-top application for insect management to maintain normal cotton 

growth.  

Aeris® Seed Applied System (imidachloprid + thiodicarb at 0.825 mg ai/kg of 

seed) is listed for suppression of M. incognita and R. reniformis as well as F. fusca, 

soybean thrips (Sericothrips variabilis), onion thrips (Thrips tabaci) and cotton aphids 

(Aphis gossypii).  There is an additional option of using TRILEX® (seed treatment 

fungicide) for control of Rhizoctonia, Pythium, Thielaviopsis and Fusarium added in this 

mixture.  Graham et al. (2007) reported AERIS® Seed Applied System increased plant 
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height, leaf area, white-bloom count and yield when compared to Avicta™ which was 

similar to findings by Kemerait et al. (2006; 2007; 2008). Kemerait et al. (2007; 2008) 

reported Temik 15G provided better yields and return on investment when compared to 

NSTs in nematode infested soils. 

Extension of R. reniformis management beyond 35 days after planting has been 

made possible with foliar applied Vydate C-LV® (Lawrence and McLean, 2000; 2002; 

2003).  Vydate C-LV® with nematicide/insecticide properties remains a viable tool in 

managing cotton nematodes because of the ease of foliar application and phloem 

transmission to the root system (Hsu and Kleier, 1996).  This tool becomes crucial since 

R. reniformis obtains maximum population densities at a time cotton is in its peak 

reproductive phase (Lawrence and McLean, 1995 a and b; 1996 a and b).  Parasitism by 

R. reniformis results in reduced cotton yields and requires additional treatments beyond 

the control obtained by the NSTs. 

The objectives of this study were to determine if NSTs provide adequate R. 

reniformis suppression to maintain fruiting architecture in cotton varieties compared with 

Temik 15G;  to determine if foliar applications of Vydate C-LV® enhances cotton fruit 

retention where NSTs are used in R. reniformis soils and to determine effect of the NST 

on cotton plant growth and maturity. Further exploration via additional greenhouse 

studies were used to determine how R. reniformins population affects growth of cotton 

treated with the NSTcompared to Temik 15G. 
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Materials and Methods 

In-field nematicide study 

Studies were conducted at two locations, Tennessee Valley Research and 

Extension Center (TVREC) of Auburn University (AU) in Belle Mina, Ala. and R. R. 

Foil Plant Science Research Center of Mississippi State University (MSU) in Starkville, 

Miss. 

Treatments consisted of two NSTs (Aeris® at 0.075 mg ai/seed rate and Aeris® + 

Votivo® at 0.424 mg ai/seed rate) (Bayer Crop Science-Raleigh, NC) and one in-furrow, 

at-planting treatment (Temik 15G at 0.75 lbs ai/ac) to evaluate effect of at-planting 

applications without post-planting application of Vydate C-LV® (Dupont USA-

Wilmington, DE) (Table 3.1).  Additional treatments included previous treatments with a 

post-plant foliar application of Vydate C-LV® at 0.24 lbs ai/ac at sixth true leaf growth 

stage.  A second application of Vydate C-LV® was applied ten days later.  NSTs without 

Vydate C-LV® received insecticide Orthene (acephate) 90S® at 0.75 lb ai/Ac (Table 3.1).  

Continued insect management was conducted similarly on an as needed basis applied 

with a pre-calibrated ground driven sprayer.  Vydate C-LV® and Orthene 90S® treatments 

were applied with a CO2 back-pack sprayer calibrated to deliver 15 gallons water per 

acre.  Phy 375 WRF (Dow AgroScience-Zionsville Road Indianapolis, IN) was the 

Gossypium hirsutum variety used.  Planting was conducted on May 1, 2012 and May 15, 

2012 at TVREC and MSU, respectively, using a four-row Almaco cone planter (Allan 

Manufacturuing Company, Nevada, IA). Weed control consisted of applications of Power 

Max® (glyphosate) (Monsato-St. Louis, MO) over-the-top of cotton at 1.0 lb ai/Ac 

followed by a lay-by application of Karmex DF ™ (diuron) (DuPont USA-Wilmington, 
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DE) at 1.0 lb ai/Ac.  Soil tests were conducted prior to planting at both locations and 

analysis processed at Mississippi State University Extension Soil Testing Lab 

(Mississippi State, Miss.).  Soil type at TVREC was a Decatur silty, clay loam while the 

MSU location was a Marrietta fine, sandy loam.  Both locations had irrigation with MSU 

location having furrow irrigation and TVREC having center pivot irrigation.  Due to dry 

weather, TVREC was the only location irrigated. 

Experimental design and trial establishment 

Trial design used at both locations was a randomized complete block (RCB) 

design consisting of five replications at MSU and four replications at TVREC.  This 

statistical method was selected to address the spatial distribution of nematodes across the 

field thereby reducing variability of nematode populations existing between plots.  Data 

were analyzed with Analysis of Variance (ANOVA) for a RCB (ARM 8 statistical 

software-Gylling Data Management, Brookings, SD) where block and treatment effects 

were evaluated to minimize dgree of error and improve confidence intervals among 

experimental units.  Means were separated using Least Significant Difference (LSD) at 

0.05 probability level.  Plots consisted of two-rows 50.0 feet at MSU and 25 feet at 

TVREC long with 10.0 foot alleys.  Row spacing consisted of solid planting patterns of 

40.0 inch at TVREC and 38.0 at MSU with a seeding rate of 4.0 seed per foot of row.  

Seed was pre-counted before planting using a Model U Seed Counter (International 

Marketing and Design Corporation, San Antonio, TX).  Border effects were reduced by 

planting sides with additional cotton and using a solid planting pattern.  Lack of 

bordering in front and back of trial area was compensated for by acquiring samples from 

within plots to avoid edge effects. 
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In-season evaluation prior to fruiting 

Evaluation of vigor, plant population and hypocotyl lengths (“) 

Visual plant vigor and plant populations were evaluated at 14 days following 

emergence.  Vigor was determined using two processes: 1. Visual assessment on a scale 

of one to five where one had greatest plant growth and five the worst and, 2. hypocotyl 

measurement.  Hypocotyl measurement involved measurement of length from seed 

embryo axis to cotyledonary node. Hypocotyl measurements, as opposed to visual 

evaluations, provide a quantifiable and accurate method to analyze vigor (Legee and 

Smith, 2002).    Plant population was determined by counting every plant in all plots to 

determine plants per acre.   

In-season evaluation during fruiting 

Evaluation during mid-square growth stage 

An extensive plant mapping program during reproduction was conducted where 

six consecutive plants having a normal terminal were destructively sampled and 

measured via plant mapping processes for boll retention and growth (Gutherie and Kerby, 

1993).  This process included three evaluation timings; mid-square, bloom and the open 

boll growth stages. 

At mid-square, evaluation criteria included: plant height (PH) (from the 

cotyledonary node to the terminal), node of first fruiting branch (NFFB), total nodes (TN) 

(cotyledonary node was treated as zero), height to node ratio (HNR) (determined by 

dividing total plant height by total nodes), retention by fruiting position along sympodial 

(fruiting branch) and by zone and average plant height by node measurements.  Fruiting 

zones were established up the cotton plant main axis based on node numbers where zone 
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1 represented nodes 5-9, zone 2 represented nodes 10-14, zone 3 represented nodes 15-19 

and zone 4 represented nodes greater than 20.   Average plant height by node 

measurements was conducted by measuring each internode length separately from 

cotyledons to 0.5 inch wide terminal leaf in a manner where overall length culminated in 

final height (Kerby, et al., 2003).  This method facilitated measuring individual internode 

growth across time as affected by nematicide treatment and R. reniformis.  Six 

consecutive plants possessing a normal terminal were sampled destructively per plot 

providing a total of 30 plants sampled at MSU and 24 plants at TVREC.     

Evaluation during bloom growth phase 

Evaluation criteria on six consecutive plants per plot during late bloom included: 

PH in inches, TN, HNR, nodes above white flower (NAWF), node of white flower 

(NOWF), retention by position and by zone and average plant height by node 

measurements conducted at TVREC (data was lost from MSU location).  In addition, 

caliper (General Ultra Tech, Port Washington, NY) readings were taken at the 

cotyledonary node to obtain basal stalk diameter and from unopened first position bolls at 

node 9 and 12 from the terminal to determine treatment effects on boll growth.    

Evaluation during open boll growth phase 

Evaluation during open boll plant growth phase on six plants destructively 

sampled at about 30% open boll within the earliest treatment included: PH, TN, 

cumulative plant height, node above cracked boll (NACB), fruit retention by position and 

by zone  and percent open boll.   



 

50 

Machine harvest 

Defoliation was conducted based on visual assessments of 60% open boll with 

harvest aids applied using high clearance ground equipment.  Harvest was conducted 

using a John Deere 9965 (Moline, IL) small plot machine harvester equipped with a Rice 

Lake 9201i weighing system (Rice Lake Weighing Systems-Rice Lake, WI) to measure 

seed cotton of individual plots on–the-go.  Seed cotton weights were converted to lint 

pounds per acre using lint percentages established via University Official Variety Trials 

at Mississippi State University (Mississippi State, MS). 

R. reniformis sampling and processing 

Rotylenchulus reniformis collection included nematode soil samples collected 

prior to planting from each plot to establish an initial population density.  Nematode 

populations were monitored at-planting, square, bloom and open boll.  Core soil samples 

were acquired using a fluted probe designed to collect multiple samples per plot.  Probe 

dimensions were 3.44 inches at the top and tapering to 0.75 inches at the bottom 

facilitating multiple samples without soil loss.  Length of sample device was 11.0 inches 

to guarantee acquisition of 500 cc of soil.  Samples were acquired from the side of the 

emerged row at a distance of about six inches in zig-zag pattern allowing six samples to 

be acquired at three samples per row.  Sampling was conducted at an approximate depth 

of four inches.  The sampling process was always conducted when the soil possessed 

adequate moisture levels, preferably at field capacity since R. reniformis move deeper 

into the soil profile as soil dries.  Samples were bagged in plastic bags and kept in cold 

storage until extraction using a semi-automatic elutriator (W.S. Tyler Co, Mentor, OH) 

and centrifugal (1 EC Model K Centrifuge, Needham Hts, MA) flotation (Byrd et al., 
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1976).  R. reniformis extraction process was as follows:  Collected soil from individual 

plots was placed into a 450 ml beaker and processed through a 60 mesh screen followed 

by a 400 mesh screen using an aqueous extraction process of the elutriator. Soil was 

removed and placed into a 250 ml beaker, water drained and sample poured into 

centrifuge tubes where it contained 10 to 15 grams of 1.0 inch of soil and spun for six 

minutes at 2,500 RPM.  Excess water was removed and mixed with a sucrose mixture 

(454 g sucrose per 1,000 ml of water) to the top of the centrifuge tube and followed by a 

one minute process in the centrifuge.  The liquid was poured through a 500 mesh screen 

and sample refrigerated until counted.  The resulting nematodes were enumerated using a 

stero-microscope (Nikon AFX-11A, Minato-ku, Tokyo).   

Effects of R. reniformis nematodes under greenhouse environments on G. hirsutum 
development treated with nematicides 

Trial establishment and experimental design 

 Two seperate greenhouse studies were established using the cotton variety Phy 

375 WRF planted at two seeds per 3.0 inch clay pot into an autoclave, fine sandy loam. 

All pots were brought to the same level to ensure 500 cc. Planting depth for all seed was 

0.5 inch.  Upon emergence, one plant was removed to leave one plant per container.  

Treatments included Temik 15G at an equivalent rate of 0.75 lbs ai/Ac, Aeris® at 0.075 

ai/seed rate and Aeris® + Votivo® at 0.424 mg ai/seed rate (Table 3.2).  Nematode 

populations were applied in a liquid solution using a graduated pipette and included 0, 

2,500, 5,000, or 10,000 R. reniformis per 500 cc of soil.  Each study was conducted for 

90 days.  Experimental design was a RCB design using four replications. Data were 

analyzed via the ANOVA for a RCB (ARM 8 statistical software-Gylling Data 
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Management, Brookings, SD) where block and treatment effects were evaluated to 

minimize dgree of error and improve confidence intervals among experimental units.  

Means were separated using Least Significant Difference (LSD) at 0.05 probability level. 

Evaluation criteria 

Before harvest evaluations included TN, PH, NFFB, HNR and basal stalk 

diameter.  At harvest evaluations included root and shoot biomass and nematode 

extraction (eggs and juveniles).  At harvest, shoot biomass was separated from the root 

biomass using hand pruners.  The shoot was then weighed and recorded.  Roots were 

extracted from soil in a bucket.  Soil-free roots were soaked in a 10% bleach solution and 

stirred in solution for three minutes and roots weighed.  The remaining solution was 

poured through 250 over 500 mesh screen to obtain eggs.  Remaining soil was mixed 

with 1,000 ml of water and processed through a 60 over 325 mesh screen to obtain 

juvenile numbers and centrifuged for six minutes at 2,500 rpm.   Excess water was 

removed and mixed with sucrose mixture (454 g sucrose per 1,000 ml of water) followed 

by a one minute centrifuge process at 2,500 rpm.  The liquid was poured through a 500 

mesh screen and sample refrigerated in a 250 ml beaker until counted.   Nematode 

numbers were surveyed via stereo microscope for R. reniformis juveniles and eggs by 

pipetting 20 mls of liquid into a quadrated petri dish. 

Results and Discussion 

In-the-field evaluation of R. reniformis populations across time  

In field evaluation of cotton using plant mapping processes is an in-depth process 

that generates accurate growth and development data relative to the effects of a treatment 



 

53 

under specific stresses like R. reniformis (Gutherie and Kerby, 1987; Jenkins et al., 1995; 

1990 a; 1990b; Smith et al., 2003; 1999; 1998; 1996).  This coupled with detrimental 

effects from R. reniformis and its seasonal population progression, allows for accurate 

monitoring of growth.   

R. reniformis population progression across time becomes important in 

determining impact on growth and development of G. hirsutum at each growth stage.  

Further relating nematode numbers to root development has established effective 

treatment against R. reniformis nematode populations resulting in greater root 

development at season end (Lawrence and McLean, 1995 a and b; 1996 a and b).   

Rotylenchulus reniformis populations in 500 cc of soil at MSU location showed low 

populations at planting that continued into square period (Table 3.3 and Fig. 3.1).  These 

numbers tended to increase across all treatments during bloom evaluation.  This trend 

was similar to Lee et al. (2015) where R. reniformis populations in fields of continuous 

cotton had the lowest population during the spring but increased steadily during the 

season.  Rotylenchulus renoformis numbers during open boll growth stage where all 

nematicide treatments and nematicides followed by applications of Vydate C-LV® were 

higher than untreated.  Rotylenchulus reniformis populations at TVREC were higher at 

planting than at the MSU location, and this trend continued throughout the growing 

season.  During square (40 DAE), nematode numbers were higher in all nematicide 

treatments compared to untreated while all nematicide treatments followed by Vydate C-

LV® became greater in population than NSTs without Vydate C-LV®.  Temik 15G was 

not different from NSTs with or without Vydate C-LV®.  During bloom (70 DAE) and 

open boll growth (100 DAE) stages at TVREC (Table 3.4 and Fig. 3.1), nematicide 
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treatments containing Vydate C-LV® applications, with exception of Temik 15G and 

Vydate C-LV®, were higher in R. reniformis numbers than NST with no Vydate C-LV®.  

R. reniformis numbers trended lower between square and open boll.  

In-the field evaluation prior to fruiting of cotton in R. reniformis infested soils 

Effect of nematicides on vigor, plant population and hypocotyl length  

Higher plant population occurred in the untreated compared to the nematicide 

treatments at MSU with having Aeris® the highest plant population of nematicide 

treatments (Table 3.5).  No differences in plant population occurred at TVREC (Table 

3.5) location.  

Vigor at both locations increased with all nematicide treatments compared to 

untreated.  Temik 15G yielded greatest vigor level at MSU location while Temik 15G 

and Aeris® + Votivo® yielded highest vigor at TVREC.  This was further manifested in 

hypocotyl length where all nematicide treatments possessed greater hypocotyl lengths 

than the untreated at both locations (Table 3.5). 

In-the-field evaluation of cotton development across time in R. reniformis infested 
soils 

Effect of nematicides on NFFB  

Node of first fruiting branch at both locations was reduced 9-18% for nematicide 

treatments at MSU location while Temik 15G or Aeris® and Votivo® reduced NFFB by 

8-13%.  Of the nematicide treatments Aeris® + Votivo® and Aeris® were greater in NFFB 

when compared to Temik 15G (Table 3.6) at the MSU location while all nematicides 

were similar at TVREC (Table 3.8).  
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Effects of nematicides on plant height  

Plant height during square was visually observed to trend lower at TVREC 

compared to MSU due to heavy thrips pressure and cold temperatures after emergence 

(Table 3.8).  After one application with Vydate C-LV®, plant height was greater at both 

locations when compared to untreated plants.  Plants with Vydate C-LV® applications 

were similar in height when compared to plants treated with Temik 15G, regardless of 

location.  These results differ from Lawrence and McLean (2000; 2002; 2003).  For 

nematicide treatments without Vydate C-LV®, plant heights were similar for the MSU 

location during square.  However, plants treated with Temik 15G were taller compared to 

plants treated with Aeris® or Aeris® + Votivo® at TVREC (Tables 3.7 and 3.8). 

During open boll growth stage, plants treated with Vydate C-LV® continued to be 

shorter when compared to untreated plants, regardless of location (Tables 3.7 and 3.8) At 

the MSU location, plants treated with Temik 15G had greater height compared to plants 

treated with Aeris®,  but not when compared to plants treated with Aeris® + Votivo® 

(Table 3.7).  At TVREC, there were no height differences between plants treated with 

Temik 15G, Aeris® or Aeris® + Votivo® (Table 3.8). 

Plant height was greater at both locations for all nematicide treatments compared 

to untreated (Tables 3.7 and 3.8).  In addition, at the MSU location, Vydate C-LV® 

applications increased plant height compared to NST alone which was in agrrement with 

previous literature (Lawrence and McLean, 2000; 2002; 2003).  Height of NST plants 

measured at open boll at the MSU location benefited from two applications of Vydate C-

LV®. 
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Effects of nematicides on total node number  

Node number at square increased across all nematicide treatments by addition of 

Vydate C-LV® with exception of Aeris® + Vydate C-LV® at TVREC (Table 3.8).  This 

further enhances the value of Vydate C-LV® in improving R. reniformis management as 

previously observed in findings by Lawrence and McLean (1995 a and b; 1996 a and b).  

Nematicide treatments at both locations without Vydate C-LV® increased total node 

number except for Aeris® at MSU (Table 3.7) but Aeris® and Aeris® + Votivo® had 

similar numbers when compared to untreated plants (Table 3.8).  In general, NST treated 

plants with addition of Vydate C-LV® had a node number greater than plants treated with 

Temik 15G at the MSU location. 

During bloom, all nematicide treatments resulted in increased total number of 

nodes compared to untreated, regardless of location.  Vydate C-LV® at the MSU (Table 

3.7 and 3.8) location increased or had similar node numbers compared to Temik 15G.  

Aeris® + Votivo® + Vydate C-LV® did not differ from Temik 15G or Aeris® + Votivo® 

alone.  Total node number was similar or better than Temik 15G for all treatments, 

regardless of location. 

At open boll (final evaluation), untreated plants at TVREC had greater node 

number compared to NSTs resulting from delayed fruit initiation (Mauney, 1986).  At 

MSU, only plants treated with Aeris® had more total nodes than the untreated. 

Effects of nematicides on Height to Node Ratios  

Height to node ratios (HNR) of all nematicides were improved by final evaluation 

compared to untreated regardless of location (Tables 3.7 and 3.8).  The addition of 

Vydate C-LV® made NSTs similar or better when compared to Temik 15G.    During 
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bloom no differences occurred at MSU location (Table 3.7) but all nematicides had 

greater HNR compared to untreated (Table 3.8).  Addition of Vydate C-LV® resulted in 

comparable HNR to Temik 15G, similar to Lawrence and McLean (2000; 2002; 2003). 

Effects of nematicides on average plant height by node 

Evaluation of plant height by node is a method by which stress effect can be 

quantified and identified via internode elongation (Kerby et al., 2003).  Average plant 

height by node at MSU (Table 3.9) location indicates no differences among nematicides 

until node 13 during square evaluation phase. Temik 15G with foliar applications of 

Vydate C-LV® at node 13 and 15 had greater internode elongation than untreated, but did 

not differ from Temik 15G treatment or NSTs. Plants treated with Temik 15G + Vydate 

C-LV® had internodes that were about two inches longer than untreated plants at nodes 

13 and 15.  Internode growth trends at TVREC (Table 3.10) under higher R. reniformis 

populations and early season stress is different from MSU location during bloom (Table 

3.9).  Differences in internode elongation began at node 1, where plants treated with 

Vydate C-LV® had greater internode elongation compared to untreated.  Application of 

Vydate C-LV® also improved internode elongation in plants treated with Temik 15G and 

Aeris® or Aeris® + Votivo®.  Addition of Vydate C-LV® increased internode length when 

compared to Temik 15G indicating NSTs were more beneficial than Temik 15G (Tables 

3.9 and 3.10).  Addition of Vydate C-LV® resulted in elongation at all other nodes when 

compared to plants not treated with Vydate C-LV® or the untreated. 

During bloom at TVREC (Table 3.11), all nematicide treatments had greater 

internode length than untreated plants at node 1, and by node 3, nematicide treatments 

began to differ in effect.  Plant height at node 3 was similar for all treatments except 
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Aeris® and untreated plants.  At node 5, treatments including Vydate C-LV® had greater 

height than Aeris® or untreated.  At node 15, plants treated with Vydate C-LV® had 

greater elongation than plants not treated with Vydate C-LV® and all were greater than 

untreated.  Nematicides continued to increase elongation for nodes 17-21 compared to 

untreated.  

Percent retention across sympodial fruiting positions as affected by nematicides  

Percent (%) square retention by position 40 DAE revealed no differences 

regardless of location, compared to untreated at fruiting position one indicating R. 

reniformis did not induce fruit loss during square at position one (Schubert et al, 1986).  

A high degree of retention at this fruiting site is vital in maintaining high yields and 

quality since it is initiated in the terminal and receives photosynthates from the main axis 

and subtending leaf as opposed to the fruiting sites farther out the sympodial (fruiting) 

branch which are nourished primarily by their subtending leaf (Jenkins et al., 1995; 

Sadras, 1995).  At fruiting position 2, all treatments had improved retention compared to 

untreated plants, but only Temik 15G + Vydate C-LV® demonstrated improvement 

compared to Temik 15G or Aeris® at MSU (Table 3.12).  Under higher R. reniformis 

population at TVREC (Table 3.13), Vydate C-LV® improved retention compared to all 

treatments except Temik 15G.  Fruiting position >2 did not exist at TVREC due to high 

levels of R. reniformis, thrips and cold weather, but the later planted MSU location did 

have retention at position >2.  At MSU location, all treatments had fruit retention greater 

than untreated and Vydate C-LV® improved retention in NSTs and Temik 15G although 

Temik 15G was similar to Aeris® + Vydate C-LV® + Votivo® (Table 3.12). 
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During bloom carbohydrate partitioning becomes important as boll development 

occurs and is partly related to healthy root development prior to bloom (Schubert et al., 

1986; McMichael, 1986).  At MSU, fruit retention at position one during bloom was 

greater for all nematicides compared to untreated (Table 3.12) which becomes important 

since position one produces high quality bolls (Jenkins et al., 1995; Sadras, 1995).  

Addition of Vydate C-LV® only improved retention for the Temik 15G treatment.  

Retention levels for Aeris® and Aeris® + Votivo® were not impacted by addition of 

Vydate C-LV®.  Nematicides also improved retention at fruiting position one compared 

to untreated plants at TVREC (Table 3.13) location.  Vydate C-LV® treated plants at 

MSU had higher % retention at fruiting position two compared to all other treatments 

except Temik 15G, which was similar. Percent retention at fruiting position two was 

greater than untreated plants at TVREC.  Nematicide seed treatments alone had lower 

fruit retention than Temik 15G at either location for this fruiting position which indicates 

addition of Vydate C-LV® had a greater effect in the plant.  Only Aeris® and Aeris® + 

Votivo® had higher fruit retention than untreated at MSU.  For the TVREC location at 

position >2, only Temik 15G with or without Vydate C-LV® retained more fruit than the 

untreated.  

Fruit retention during open boll growth stage at MSU location (Table 3.12) 

indicates nematicides improved retention at fruiting position one compared to untreated 

plants facilitating yield improvement (Jenkins and McCarty, 1995; Sadras, 1995).  

However, under higher R. reniformis populations of TVREC (Table 3.13), position one 

fruit retention with NSTs without Vydate C-LV® did not differ from untreated and had 

lower fruit retention compared to Temik 15G.  This could be due in part to a higher R. 
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reniformis population and/or early season stress at TVREC.  At both locations, addition 

of Vydate C-LV® maintained or improved retention for all treatments.  At the MSU 

location, Aeris® + Vydate C-LV® was the only Vydate C-LV® treatment to exhibit 

reduced retention compared to Temik 15G.  However, addition of Vydate C-LV® resulted 

in greater fruit retention compared to Temik 15G at TVREC. 

Percent retention at position two was greater across all nematicide treatments 

compared to untreated plants at MSU location. At TVREC, fruit retention was improved 

in all treatments except Aeris® + Votivo®.  At both locations, adding Vydate C-LV® in 

management of R. reniformis improved retention of position two fruiting sites across all 

nematicides. 

During open boll, fruiting position >2 retention at MSU only Aeris® + Votivo® 

and Aeris® + Vydate C-LV® had higher retention compared to untreated indicating 

normal termination on-going within the plant (Jenkins and McCarty, 1995).  Aeris® + 

Votivo® and Aeris® + Vydate C-LV® treatments had greater retention compared to the 

control at this fruiting position indicating delayed maturity resulting from a different 

architecture.  Foliar applied Vydate C-LV® treatments with Temik 15G and Aeris® + 

Votivo® had similar fruit retention compared to untreated at position >2.  Temik 15G + 

Vydate C-LV® had lowest retention at this position.  Temik 15G or Aeris® + Vydate C-

LV® resulted in an increase in retention at this fruiting position compared to all other 

nematicide treatments or untreated.   All nematicide treatments had greater retention than 

untreated plants.  Use of Vydate C-LV® enhanced performance of NSTs, especially under 

high R. reniformis populations. 
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Percent retention of sympodial positions within fruiting zones as affected by 
nematicides  

Percent retention during square (Tables 3.14 and 3.15) for fruiting position one in 

Zone one (Nodes 5-9) showed no differences for either location.  In Zone one at MSU, 

Vydate-CLV® treatment improved fruit retention of Temik 15G and Aeris® + Vydate C-

LV® compared to the untreated at fruiting position two making retention comparable to 

Temik 15 G.  For TVREC addition of Vydate C-LV® improved retention compared to 

untreated.  Impacts from Vydate C-LV® treatment were evident at TVREC (Table 3.15) 

with improved fruit retention at position two compared to the control.  These impacts 

were also observed at position > 2 at MSU when Vydate C-LV® was combined with 

Aeris® or Aeris® + Votivo® (Table 3.14), but there was no position > 2 at TVREC.  Fruit 

retention at Zone two (Nodes 10-14) had no differences between nematicide treatments at 

fruiting position one at MSU, but at TVREC, nematicide treatments had greater fruit 

retention than untreated plants.  In Zone two at fruiting position two, treatment with 

Vydate C-LV® resulted in greater fruit retention compared to untreated, regardless of 

location.  At fruiting position >2 in Zone two, Aeris® + Vydate C-LV® had greater fruit 

retention compared to the untreated or any other treatment at MSU, but all treatments of 

TVREC had greater fruit retention compared to the untreated.  In Zone two at fruiting 

position two at MSU, the only treatment different from untreated plants was Temik 15G 

+ Vydate C-LV®.  At TVREC, Temik 15G + Vydate C-LV® and Aeris® + Votivo® + 

Vydate C-LV® had greater fruit retention compared to Temik 15G or untreated. 

Vydate C-LV® treatments, during bloom (Table 3.16 and 3.17) at Zone one, 

position one, did not improve fruit retention of NSTs compared to their non Vydate C-

LV® equivalent at MSU (Table 3.16).  Temik + Vydate C-LV® and Aeris® + Votivo® + 
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Vydate C-LV® had greater fruit retention at position one in Zone one compared to 

untreated. In this zone and position at TVREC (Table 3.17), all treatments had greater 

fruit retention than untreated plants. Vydate C-LV® applications at MSU location, 

enhanced fruit retention at position two across all NSTs making them similar to Temik 

15G.  Aeris® + Votivo® and Aeris® did not differ from untreated plants in fruit retention 

in Zone one, position two (Table 3.16).  TVREC location followed a similar pattern for 

position two fruit retention, but Vydate C-LV® did not improve Aeris® retention at this 

zone and position.  At fruiting position > 2 in Zone one there were few differences 

compared to untreated plants.  At TVREC, all treatments improved fruit retention 

compared to untreated, but addition of Vydate C-LV® to NST’s did not improve their 

performance compared to Temik 15G (Table 3.17).  In zone two at position one, all 

treatments had greater fruit retention than untreated plants at MSU, but Aeris® was 

similar to untreated at TVREC.  Only Temik 15G had improved retention in Zone two, 

position two when Vydate C-LV® treatments were applied at MSU while effects of 

Aeris® at TVREC, were improved over untreated plants when Vydate C-LV® was used.  

Within Zone two, position > 2, all nematicide treatments with Vydate C-LV® improved 

fruit retention compared to untreated plants with the exception of Aeris® + Votivo® + 

Vydate C-LV® at MSU.  Vydate C-LV® treatments improved efficacy of the NST 

especially at the TVREC location.   

During bloom evaluation, Zone three (Nodes 15-19) had the greatest difference 

and benefits from nematicide applications at MSU with Vydate C-LV® improving the 

performance of both Temik 15G and Aeris® + Votivo® +Vydate C-LV® although all 

treatments were better than the control (Tables 3.14 and 3.15).  At TVREC, all treatments 
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resulted in greater fruit retention compared to the untreated plants, but addition of Vydate 

C-LV® did not enhance retention.  Fruit retention in Zone three, position two at MSU 

(Table 3.14) declined in Vydate C-LV® treatments with the exception of Aeris® + 

Votivo® + Vydate C-LV® compared to untreated increased harvest maturity as a result of 

increased boll retention at position one and two.  There was some retention at Zone three, 

position >2 at TVREC. TVREC possessed the greatest amount of fruit produced within 

this zone indicating delayed harvest maturity agreeing with previous fruiting 

development patterns (Jenkins and McCarty, 1995). 

During open boll evaluation (Table 3.18 and 3.19), all nematicide treatments 

enhanced retention at position one within zone one compared to untreated plants 

regardless of location.  Aeris® had poorer retention compared to other nematicides 

regardless of location.  Fruit retention at Zone one, position two increased due to 

nematicidal activities at both locations.   Vydate C-LV® improved fruit retention with 

NST’s in high R. reniformis populations at TVREC.  Position > 2 fruit retention was 

improved with application of Vydate C-LV® for NST’s at TVREC (Table 3.19) while all 

nematicides except Aeris® improved retention. Plants treated with NST’s at MSU did not 

benefit from the addition of Vydate C-LV®. 

Within Zone two, position one all nematicide treatments improved retention 

compared to untreated plants regardless of location.  However, Vydate C-LV® did not 

improve retention of this position within Zone two in MSU and only improved Aeris® 

Votivo® + Vydate C-LV® at TVREC.  All nematicide treatments improved fruit retention 

in Zone two, position two, compared to untreated plants at both locations with exception 

of Aeris® + Votivo® and Temik 15G regardless of location.  However, at both locations 
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Vydate C-LV® increased NST fruit retention resulting in a higher retention than Temik 

15G.  

Fruit retention at Zone three, position one was improved with Vydate C-LV® 

applications at MSU.  Nematicides not receiving foliar applications of Vydate C-LV® did 

not differ from untreated plants.  Fruit retention at TVREC in Zone three, position one 

was improved by foliar applications of Vydate C-LV® when compared to the non Vydate 

C-LV® counterpart.  At this Zone, NSTs were better or similar in fruit retention to Temik 

15G at both locations.   At position two, only Aeris® and Aeris® + Votivo® + Vydate C-

LV® had less fruit retention than untreated at MSU. Only Aeris® + Votivo®  + Vydate C-

LV® had lower retention compared to untreated or Aeris® at TVREC.  It is evident that 

less effective treatments were continuing fruit production and delaying harvest agreeing 

with findings by Jenkins et al. (1995; 1990a; 1990b). 

Data from zones do not track as well as that of positions across zones; however, 

Vydate C-LV® treatments did influence retention at position one within Zones one and 

two, but were not as dramatic at position two or >2.  Fruit retention at position one is 

very important for yield increase especially in Zones two and three (Jenkins and 

McCarty, 1995).  Therefore, nematicides are important in suppressing R. reniformis and 

improving fruit retention of G. hirsutum.  Generally, addition of Vydate C-LV® did 

improve efficacy of the NSTs compared to untreated, but data were varied when 

comparing the same nematicide with or without Vydate C-LV®.  However, Vydate C-

LV® does provide an additional option in the overall management of R. reniformus. 



 

65 

Effects of nematicides on cotton maturity  

Nodes above white flower (NAWF), expression of harvest maturity, at both 

locations indicated NSTs without Vydate C-LV® did not differ from untreated plants in 

maturity (Tables 3.20 and 3.21).  Vydate C-LV® applications at MSU decreased harvest 

maturity of the NSTs compared to untreated, but Temik 15G and Aeris® + Votivo® + 

Vydate C-LV® were similar to Temik 15G.  At TVREC, only Aeris® + Votivo® + Vydate 

C-LV® decreased NAWF compared to the untreated although it was similar to Temik 

15G + Vydate C-LV® (Mauney 1986).  At both locations, NAWF in NSTs with Vydate 

C-LV® applications had a lower NAWF compared to NSTs without Vydate C-LV® 

except Aeris® + Vydate C-LV® at TVREC.  Nodes above white flower trended lower at 

MSU (Table 3.20) for all treatments because of early season stress. 

Node above cracked boll (NACB) conducted during open boll is a later measure 

of maturity (Jenkins et al., 1996) and showed NSTs at MSU did result in different harvest 

maturity compared to untreated plants (Table 3.20).  Temik 15G was earlier in harvest 

maturity than NST with Vydate C-LV®.  All nematicide treatments at MSU (Table 3.20) 

had earlier harvest maturity when treated with Vydate C-LV®.  However, at TVREC 

(Table 3.21), differences in maturity were not as well defined due to early stress and high 

R. reniformis population.  At TVREC, Temik 15G + Vydate C-LV® had fewer NACB 

compared to NSTs, but did not differ from NSTs treated with Vydate C-LV® or Temik 

15G.   Evaluation at TVREC occurred prior to the break in maturity for those treatments 

containing Vydate C-LV®, but does indicate Temik 15G promotes earlier cotton maturity.   
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Node of Last Harvestable Boll (NLHB) during open boll showed no differences 

among nematicides at MSU (Table 3.20), but were slightly higher at the TVREC location 

in the untreated, Aeris® or Temik 15G treatments (Table 3.21). 

Harvest maturity was hastened at both locations in all nematicide treatments with 

Vydate C-LV® increasing percentage of open bolls compared to NSTs without Vydate C-

LV®.  Nematode seed treatments had an equal or a higher percentage of open bolls 

compared to Temik 15G (Tables 3.20 and 3.21).  Maturity data can be related to level of 

fruit retention especially at position one and two.  Bolls at these positions provide a very 

stong sink for photosynthates which reduce growth and promote harvest earliness 

(Mauney, 1986; Sadras, 1995). 

Effects of nematicides on monopodial (vegetative) branch and boll formation  

Monopodial branch formation occurs after bloom initiation below the node of first 

fruiting branch, and the degree of monopodial branch formation is often due to row 

pattern (i.e. skip row vs. solid), plant population and environmental conditions (Mauney, 

1986; Jenkins and McCarty, 1995).  Monopodial branch number was increased in plants 

treated with Vydate C-LV® compared to untreated.  Additionally, Vydate C-LV® 

increased branch number when combined with Aeris® or Aeris® + Votivo® (Table 3.22).  

Vydate C-LV® treatments did not induce monopodial branch production at TVREC nor 

did it improve monopodial boll numbers produced per branch.  However, at MSU, 

Vydate C-LV® treatments did improve monopidial branch production in Aeris® and 

Aeris® + Votivo® and number of bolls produced when compared with untreated. 
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Effects of nematicide treatments on basal stalk and boll diameter  

Basal stalk diameter is important to the cotton plant since massive above-ground 

biomass must be supported during boll development (Mauney, 1986).    All NSTs 

increased basal stalk diameter compared to untreated plants at MSU (Tables 3.24), but 

only Temik 15G + Vydate C-LV® increased stalk diameter when compared to untreated 

plants at TVREC (Table 3.25).  Addition of Vydate C-LV® at MSU only increased the 

boll diameter of Aeris® + Vydate C-LV®.  At TVREC, Temik 15G treated with foliar 

applications of Vydate C-LV® resulted in greater stalk diameter than untreated plants. 

Boll diameter at node nine, below the terminal, except Aeris® + Vydate C-LV® at 

MSU, was improved in boll development due to nematicides and Vydate C-LV® (Table 

3.24).  Boll diameter at node 12 at MSU was greatest for Aeris® or Aeris® + Vydate C-

LV® compared to all other treatments and untreated while Temik 15G + Vydate C-LV® 

was greatest in TVREC (Tables 3.24 and 3.24).  Boll diameter in untreated plants at node 

12 at MSU was 20% greater than TVREC.  At both locations, Vydate C-LV® applications 

increased boll size at node nine compared to nematicide treatments without Vydate C-

LV® except for Aeris®.  In addition, all nematicide treatments increased boll size at node 

nine compared to untreated plants at TVREC.  Temik 15G alone resulted in larger bolls 

compared to NSTs alone at MSU, but at TVREC, under greater nematode populations, 

neither Aeris® + Votivo® nor Aeris® differed from Temik 15G.  Node nine boll diameters 

at TVREC were larger with Temik 15G + Vydate C-LV® than NSTs with or without 

Vydate C-LV®.  Due to early stress at the TVREC location, boll development and size 

were delayed but had improved boll size when using NSTs or Temik 15G.   
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At 12 nodes below the terminal, boll diameter at MSU (Table 3.24) was greatest 

with Aeris® + Votivo® + Vydate C-LV® compared to all other treated or untreated plants.  

There was no difference between remaining treatments and untreated.  However, TVREC 

(Table 3.25) location did show differences where NSTs increased boll diameter at Node 

12 with application of Vydate C-LV® except for Aeris® + Vydate C-LV®. Temik 15G + 

Vydate C-LV® had greater boll diameter compared to other NSTs or untreated.  At 

TVREC, all NSTs improved boll diameter at fruiting position 12, with exception of 

Aeris® + Vydate C-LV®. 

Differences in boll diameters between nodes nine and 12 below the terminal node 

indicate progress in boll development between the oldest (node 12) to the youngest (node 

nine) boll sampled (Tables 3.24 and 3.25).  Boll differences at MSU indicate that Temik 

15G with or without Vydate C-LV® and Aeris® + Votivo® + Vydate C-LV® had similar 

differences in boll size than other nematicide treatments.  In addition, all nematicide 

treatments had similar differences when compared to untreated plants.  TVREC had 

greater differences in boll diameter btween node nine and 12 because of late maturity due 

to early season stress and higher populations of R. reniformis affecting boll growth.  

Plants treated with Vydate C-LV® had smaller differences in boll diameter when 

compared to plants that did not receive Vydate C-LV®.  All nematicide treatments had 

smaller differences in boll diameter when compared to untreated.   

Effect of nematicides on cotton yield grown in R. reniformis infested soils 

Treatment effects upon yield in pounds per acre at both locations showed 

application of Vydate C-LV® increased yields above NSTs alone (Table 3.26).  Under 

lower R. reniformis populations at MSU, Aeris® + Votivo® + Vydate C-LV® had greater 
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yield than Aeris® + Vydate C-LV®.  Nematode seed treatments + Vydate C-LV® 

treatments were greater than Temik 15 G without Vydate C-LV® but Aeris® + Vydate C-

LV® was lower than Temik 15G + Vydate C-LV®.  Temik 15G and Aeris® + Vydate C-

LV® did not differ from each other.   

Under higher R. reniformis populations at TVREC, Aeris® + Votivo® + Vydate C-

LV® produced higher yields than Temik 15G and did not differ from Temik 15G + 

Vydate C-LV® as observed at MSU.  Aeris® + Vydate C-LV® yielded lower than Temik 

15G + Vydate C-LV® at this location indicating its weakness under high R. reniformis 

populations.  However, Aeris® + Votivo® at this location had greater yield than Aeris® 

alone indicating value of the biological nematicide, Votivo®, under high R. reniformis 

populations.  Conclusively, Vydate C-LV® applications improved yield compared to 

NSTs alone and NSTs alone had higher yield than untreated plants (Wheeler et al., 2014).  

Under high R. reniformis populations, NSTs benefit from Vydate C-LV® applications 

improving fruit retention as has been observed in findings by Lawrence and McLean 

(2000; 2002; 2003). 

Performance of nematicide treatments under varying populations of R. reniformis in 
greenhouse environments 

Effect of R. reniformis on root biomass development  

In all treatments, with the exception of Temik 15G, as R. reniformis population 

(juvenile and eggs) increased, root mass decreased, which correlated to a reduction in 

shoot biomass (Table 3.27) (Lawrence and McLean, 1996 a and b).  Aeris® + Votivo® 

and Aeris® had greater root biomass than Temik 15G or untreated plants in absence of 

nematodes indicating root development suppression by Temik 15G. However, root 
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biomass was reduced as R. reniformis populations increased with the exception of Temik 

15G.  Under an initial population (Pi), R. reniformis of 2,500/500 cc of soil, Aeris® or 

Aeris® + Votivo® had lower root biomass than Temik 15 G, but all had greater root 

biomass than the untreated.  Addition of Votivo® to Aeris® did improve root biomass 

compared to Aeris® alone.  Treatment effects at Pi 5,000 and 7,500/500cc, indicated all 

nematicide treatments had greater root biomass than untreated plants.  However, Temik 

15G had greater root biomass than NSTs.  The NSTs did not differ from each other at Pi 

of 5,000 but Aeris®+ Votivo® did improve root biomass development at Pi of 7,500.  As 

R. reniformis numbers increased, root biomass development declined in Aeris® and 

Aeris® + Votivo® treatments with no decline in Temik 15G treatment.  Aeris® + Votivo® 

provided better management at higher R. reniformis populations than Aeris®.  However, 

all treatments for nematode control improved root biomass over untreated plants.  

Effects of R. reniformis on shoot biomass development  

Treatments without R. reniformis had greater stem biomass across all nematicide 

treatments compared to untreated plants (Table 3.27). At Pi 2,500, all nematicide 

treatments had greater shoot biomass than untreated plants with Aeris® + Votivo® and 

Temik 15G having greater shoot biomass than Aeris®.  With Temik 15G at Pi 5,000 R. 

reniformis improved shoot biomass development compared to NSTs.  Untreated plants 

had less biomass when compared to plants receiving nematicides.  At Pi 7,500 Temik 

15G and Aeris® + Votivo® did not differ in shoot biomass production, but all treatments 

differed from untreated plants.  Temik 15G and Aeris® + Votivo® had greater shoot 

biomass development than plants treated with Aeris®. 



 

71 

Egg and juvenile R. reniformis populations across nematicide treatments  

Juvenile R. reniformis populations were similar for untreated plants, plants treated 

with Temik 15G, or Aeris® + Votivo® at Pi 2500.  Both untreated plants and plants 

treated with Aeris® had similar juvenile numbers at Pi 5,000.  While Temik 15G had 

fewer juveniles and plants treated with Aeris® + Votivo® had the most.  At Pi 7,500, 

untreated plants and plants treated with Aeris® + Votivo® had more juveniles compared 

to plants treated with Temik 15G or Aeris®.  Temik 15G continued to have the lowest 

juvenile numbers compared to all other treatments or untreated plants.  Nematode 

populations can be associated with root volume where there is a direct relation between 

root growth and nematode population development (Lawrence and McLean, 1996 a and 

b).  Temik 15G reduced R. reniformis population in greenhouse environments and 

prevented normal reproduction.  Of the NSTs, Aeris® + Votivo® had greater root mass at 

Pi 7,500 than Aeris®, but neither of the NSTs were as effective in managing R. reniformis 

as Temik 15G. 

Egg production with Temik 15 G was similar to untreated regardless of Pi, less 

than Aeris® at any Pi, and less than Aeris® + Votivo® at Pi 2500 and 5,000 (Table 3.27).  

Temik 15G prevented reproduction, but populations of R. reniformis were similar as 

treated Pi increased.  Across NSTs, egg production of R. reniformis was greater at Pi 

2,500 compared to plants treated with Temik 15G or untreated plants.  Plants treated with 

Aeris® + Votivo® had higher egg numbers at Pi 3000 or 7,500 compared to plants 

receiving Temik 15G or untreated.  
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Effect of nematicide treatments on cotton growth at varying R. reniformis 
populations under greenhouse environments  

Under a controlled greenhouse environment, fruit initiation (NFFB) occurred 

earlier in plants treated with Temik 15G compared to untreated plants or Aeris® with or 

without Votivo® when Pi is 0 or 2500.  When Pi was 5,000 or 7,500, nematicides 

hastened fruit initiation compared to untreated plants.  In absence of R. reniformis, Temik 

15G delayed NFFB (Table 3.28).  Without presence of R. reniformis, Phy 375 was able to 

initiate fruiting at fruiting node six, the genetically controlled NFFB for this variety.  The 

largest differences in NFFB occurred at Pi 2,500 where Temik 15G had fruit initiation 

similar to Pi 0.  Nematode seed treatments at this population did not differ from untreated 

plants and initiated fruiting one node higher than Temik 15G.  Within Pi 5,000 and 7,500, 

all nematicide treatments fruited at nodes lower than untreated plants, but at these 

populations did initiate fruiting one node higher than the genetically controlled NFFB.  

Initiation of fruiting began two nodes higher at Pi of 5,000 and 7,500 for untreated plants.  

In presence of nematicides, R. reniformis at higher Pi delayed fruit initiation, however, 

NFFB remained one node earlier than untreated plants. 

Plant height increased across all nematode populations with nematicide treatments 

compared to untreated plants (Table 3.28).  The greatest height reduction occurred in 

untreated plants at Pi 5,000 and 7,500 treatments.  In absence of R. reniformis, plant 

height was improved by NSTs.  Aeris® + Votivo®, Aeris® and Temik 15G were similar to 

each other at Pi 0 but did show growth advantages compared to untreated.  In presence of 

R. reniformis at Pi 2,500 treatment, all nematicide treated plants were taller than 

untreated plants with no difference among NSTs.  At Pi 5,000, all nematicides improved 

plant height over untreated plants.  Temik 15G and Aeris® + Votivo® were similar while 
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Aeris® plants were shorter than other nematicide treated plants.  All nematicide treated 

plants were taller at Pi 7,500 than untreated plants.  At this population, Temik 15G 

treated plants had greater plant height than NSTs but NSTs were still taller than untreated 

plants.  Temik 15G offered greater management of R. reniformis across a greater 

nematode population than NSTs.  This indicates a need for additional pesticide 

treatments, i.e. Vydate C-LV®, to maintain G. hirsutum growth under high populations of 

R. reniformis when using NSTs.  

Rotylenchulus reniformis affected nodal development and effects on total node 

(TN) with plants receiving Aeris® + Vydate C-LV® having more total nodes than other 

nematicides through Pi 5,000 (Table 3.28).  Height node ratios were similar for treated or 

untreated plants at Pi 0.  However, nematicides increased HNR compared to untreated 

plants at p 2500 or 5,000.  All NSTs increased TN across all R. reniformis populations.  

All nematicides in absence of R. reniformis improved TN development compared to 

untreated plants indicating nematicides enhanced G. hirsutum growth. Height to node 

ratio at Pi 7,500, showed plants treated with Aeris® + Votivo® continued to produce more 

nodes than Aeris® even with a greater HNR.  While Temik 15G plants had fewer nodes, 

HNR was greater under increasing R. reniformis populations than Aeris® or Aeris® + 

Votivo®. 

Conclusion 

R. reniformis greatly affected all growth aspects of G. hirsutum, including NFFB, 

plant height, boll size, internode elongation, fruit retention during bloom and open boll 

growth phases at fruiting positions one and two, delayed maturity and reduced yield.  

However, use of nematicides improved G. hirsutum performance in R. reniformis infested 
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soils similar to Phipps and Eisenback (2005).  Temik 15G was generally the best stand-

alone nematicide treatment as observed in field and greenhouse studies.  Of the NSTs, 

Aeris® + Votivo® provided best growth under R. reniformis infested soils.  Nematicide 

seed treatments alone improved performance of G. hirsutum compared to untreated plants 

in most growth parameters.  However, efficacy of NSTs was usually improved with foliar 

applications of Vydate C-LV® making them comperable to Temik 15G without Vydate 

C-LV®.  Temik 15G efficacy was generally improved with Vydate C-LV® applications, 

but Vydate C-LV® tended to not impact efficacy of Temik 15G as much as in NSTs.  

Under high R. reniformis populations, NSTs alone did not offer satisfactory management 

of R. reniformis without additional control from Vydate C-LV®.   
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Table 3.1 In- the- field treatment list for seed applied nematicides (Aeris® and Aeris® 
+ Votivo®), at-planting hopper box treatment (Temik 15G) and in-season 
foliar application (Vydate C-LV®) applied with CO2 back-pack sprayer. 

Treatment Rate Mode of Application 

Aeris® + Orthene 90 S 
.075 mg ai/seed rate + 0.75 

Lbs ai/Ac 

Seed treatment followed by 
foliar applications at 6 leaf 

and 10 leaf 

Aeris® + Votivo® +  
Orthene 90 S 

0.424 mg ai/seed rate+ 0.75 
Lbs ai/Ac 

Seed reatment followed by 
foliar applications at 6 leaf 

and 10 leaf 

Temik 15Gy +  
Orthene 90 S 

0.75 lbs ai/ac + 0.75 Lbs 
ai/Ac 

At-planting followed by 
foliar applications at 6 leaf 

and 10 leaf 

Aeris® +Vydate C-LV®x + 
Vydate C-LV®  

0.075 mg ai/seed rate; + 8.0 
Oz/ac; + 8.0 Oz/ac  

Seed Treatment followed 
by foliar applications at 6 

leaf and 10 leaf 

Aeris® + Votivo® + Vydate 
C-LV® +Vydate C-LV® 

0.075 mg ai/seed rate; + 
0.424 mg ai/seed rate; + 

0.24 Lbs ai/ac; + 0.24 Lbs 
ai/ac  

Seed treatment followed by 
foliar applications at 6 leaf 

and 10 leaf 

Temik 15G + Vydate C-LV® 

+ Vydate C-LV®   
0.75 lbs ai/ac; + 0.24 Lbs 
ai/ac; + 0.24 Lbs ai/ac 

At-planting followed by 
foliar applications at 6 leaf 

and 10 leaf 

Untreated - - 
z Aeris® and Aeris® + Votivo® were applied to the seed prior to planting by Bayer Crop 

Science at Research Triangle Park, Raleigh, North Carolina. 
y Temik 15G was applied at planting via hopper boxes pre-calibrated to apply the product 

in-furrow beneath the seed. 
x Vydate C-LV® was applied to the foliage using a CO2 backpack sprayer calibrated to 

deliver 15.0 gallons of water per acre. 
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Table 3.2 Treatment list for greenhouse nematicide study where Phy 375 was grown 
under varying R. reniformis populations in a autoclaved pre-mixed soil. 

Treatment Rate Mode of 
Application 

Innoculated 
reniform numbers 

Aeris® 0.075 mg ai/seed rate Seed Treatment 0 
 

Aeris® + Votivo® 0.075 mg ai/seed rate 
+ 0.l424 mg ai/seed 

rate 
 

Seed Treatment 0 

Temik 15G 0.75 lbs ai/ac 
 

At-Planting 0 

Untreated - 
 

- 0 

Aeris® 0.075 mg Ai/seed rate 
 

Seed Treatment 2,500 

Aeris® + Votivo® .075 mg ai/seed rate + 
0.424 mg ai/seed rate 

 

Seed Treatment 2,500 

Temik 15G 0.75 lbs ai/ac 
 

At-Planting 2,500 

Untreated - 
 

- 2,500 

Aeris® 0.075 mg ai/seed rate 
 

Seed Treatment 5,000 

Aeris® + Votivo® .075 mg ai/seed rate + 
0.424 mg ai/seed rate 

 

Seed Treatment 5,000 

Untreated - 
 

- 5,000 

Aeris® 0.075 mg ai/seed rate 
 

Seed Treatment 7,500 

Aeris® + Votivo® 0.075 mg ai/seed rate 
+ 0.424 mg ai/seed 

rate 
 

Seed Treatment 7,500 

Temik 15G 0.75 lbs ai/ac At-Planting 7,500 
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Table 3.3 Seasonal progression of R. reniformis sampled at six core samples per plot 
during four growth stages at Mississippi State University. 

Treatment Reniform Nematode Numbers/500 cc 
May 

(0 DAEx) 
Square 

(40 DAE) 
Bloom 

(70 DAE) 
Open Boll 
(100 DAE) 

Untreated 4726.0az 2761.0a 4982.0d 8973.6c 
Temik 15G 4541.0a 928.0d 9306.0a 16092.8b 
Aeris® 5308.0a 1821.0b 5828.6cd 15263.6b 
Aeris® + Votivo® 4107.0a 1551.0bc 6181.0cd 16622.8b 
Temik 15G + Vydate 
C-LV® 

- y 578.00e 9490.6a 23026.6a 

Aeris® + Vydate C-
LV® 

- 1418.0c 7922.8ab 22704.0a 

Aeris® + Votivo® + 
Vydate C-LV® 

- 1031.0d 7236.6bc 18105.4b  

LSD (0.05) 3381.0 307.6 1297.4 2990.9 
z Means within columns followed by the same letter are not different according to the 

Least Significant Difference means separation test Pα=0.05. 
y Indicates no data taken at this evaluation since Vydate C-LV® had not been applied. 
x DAE=Days after emergence. 

Table 3.4 Seasonal progression of R. reniformis sampled at six core samples per plot 
during four growth stages at Tennessee Valley Research and Extension 
Center. 

Treatment Reniform Nematode Numbers/500 cc 
May 

(0 DAEx) 
Square 

(40 DAE) 
Bloom 

(70 DAE) 
Open Boll 
(100 DAE) 

Untreated 22252.5bz 21901.3a 5848.0c 7625.3d  
Temik 15G 27755.9a 6536.0cd 9030.0bc 16015.1bc 
Aeris® 21376.4b 11008.0b 8428.0bc 11829.5c 
Aeris® + Votivo® 20981.9b 11180.0b 8886.7bc 13416.0c 
Temik 15G + Vydate 
C-LV® 

-  y  5188.8d 13588.0a 24710.7a 

Aeris® + Vydate C-
LV® 

- 9508.3bc 9173.3bc 16301.7bc 

Aeris®+ Votivo® + 
Vydate C-LV® 

- 7138.0cd 12040.0b 20668.7b 

LSD (0.05) 1549.1 2628.5 2898.4 67.8 
z Means within columns followed by the same letter are not different according to the 

Least Significant Difference means separation test Pα=0.05. 
y Indicates no data taken at this evaluation since Vydate C-LV® had not been applied. 
x DAE=Days after emergence. 



 

78 

Table 3.5 Plants/ac (in 1000’s), visual vigor and hypocotyl lengths acquired 14 days 
after emergence at Mississippi State University and Tennessee Valley 
Research and Extension Center. 

Treatment MSU TVREC 
Plants/ac 
(1000’s)w 

Vigor 
(1-5) x 

Hypocotyl 
(mm) y 

Plants/ac 
(1000’s) 

Vigor     
 (1-5)  

Hypocotyl 

(mm)  
Untreated 51.7a z 2.1a  9.6b  33.1a  3.3a  6.7d  
Temik 15G 49.9c 1.0c 10.8a 27.2ab 1.9c 7.1c 
Aeris® 49.1b 1.5b 10.4a 29.8ab 2.4b 7.2bc 
Aeris® + 
Votivo® 

50.2c 1.5b 10.8a 24.8b 1.5c 7.5b 

LSD (0.05) 1.0 0.4 0.3 1.0 0.3 0.1 
z Means within columns followed by the same letter are not different according to the 

Least Significant Difference means separation test Pα=0.05. 
y Hypocotyl measured from point of seed attachment to cotyledon. 
x Visual vigor evaluation in ranking of 1-5 where 1 had best growth and 5 the lowest. 
w Plants/ac was conducted by counting all plants per plot with expanded cotyledons. 

Table 3.6 Node of first fruiting branch (NFFB) acquired during square (40 days after 
emergence) at Mississippi State University and Tennessee Valley Research 
and Extension Center. 

Treatment  NFFB  
 MSU TVREC 

Untreated  7.0a z  7.5a   
Temik 15G  5.8c 6.6b 
Aeris®  6.3b 7.2ab 
Aeris® + 
Votivo® 

 6.3b 6.9b 

LSD (0.05)  0.5 0.7 
z Means within columns followed by the same letter are not different according to the 

Least Significant Difference means separation test Pα=0.05. 
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Table 3.7 Cotton growth parameters, plant height (inches), total nodes and height to 
node ratio (inches), at square, bloom and open boll stages in R. reniformis 
infested soils at Mississippi State University. 

Treatment Square x,y Bloom  Open Boll  
PH  TN HNR PH TN HNR PH  TN HNR 

Untreated 12.8dc z  12.2d  1.2c   31.3b   17.9d   1.7a   37.4f   23.2bc   1.6c 
Temik 15G 15.1abc 12.8bc 1.0d 33.1a 18.5c 1.8a 39.0d 21.3bc 1.8b 

Aeris® 14.7c 12.4d 1.1c 31.8b 18.3c 1.8a 38.1e 21.2a 1.8b 
Aeris® + 
Votivo® 

14.9bc 12.7c 1.3a 32.5ab 18.5c 1.8a 38.9d 21.6bc 1.8b 

Temik 15G + 
Vydate C-

LV® 

15.8a 13.3a 1.2b 34.3a 18.8bc 1.8a 40.9a 20.5c 1.99a 

Aeris® + 
Vydate C-

LV® 

15.5ab 13.4a 1.1c 33.1a 19.1b 1.7a 39.5c 21.9b 1.8b 

Aeris® + 
Votivo® + 
Vydate C-

LV® 

15.8a 13.2a 1.2b 33.3a 19.5a 1.8a 40.2b 20.6bc 1.93a 

LSD (0.05) 0.7 0.3 0.1 1.6 0.5 0.1 0.6 0.8 0.1 
z Means within columns followed by the same letter are not different according to the 

Least Significant Difference means separation test Pα=0.05. 
y Evaluation timing Days After Emergence (DAE); square (40 DAE); bloom (70 DAE); 

open boll (100 DAE). 
x Average six consecutive plants with normal terminal per plot sampled destructively. 
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Table 3.8 Cotton growth parameters, plant height (inches), total nodes and height to 
node ratio (inches), at square, bloom and open boll stages in R. reniformis 
infested soils across time at Tennessee Valley Research Extension Center. 

Treatment Square x,y Bloom  Open Boll  
PH TN HNR PH  TN HNR PH  TN HNR  

Untreated 5.5d z  11.0b   0.5d   15.8d   18.0d   0.9e   23.4d   26.0a   0.9d   
Temik 15G 8.7b 13.0a 0.7b 23.4b 19.0bc 1.2b 28.5bc 24.0c 1.2bc 

Aeris® 5.7d 11.0b 0.5d 20.4c 19.0c 1.0cd 27.5c 24.0c 1.1c 
Aeris® + 
Votivo® 

7.1c 12.0b 0.6c 20.5c 19.0bc 1.0d 28.0bc 24.0c 1.2bc 

Temik 15G + 
Vydate C-LV® 

9.9a 12.0a 0.8a 26.6a 20.0a 1.3a 29.8b 25.0c 1.2b 

Aeris ®+ 
Vydate C-LV® 

8.4b 11.0b 0.7b 22.0bc 19.0bc 1.1bc 32.7a 25.0b 1.3a 

Aeris® + 
Votivo® + 

Vydate C-LV® 

8.9b 13.0a 0.7b 23.2b 20.0ab 1.2b 28.8b 25.0b 1.2bc 

LSD (0.05) 0.6 0.7 0.1 1.7 0.7 0.9 1.6 0.7 0.1 
z Means within columns followed by the same letter are not different according to the 

Least Significant Difference means separation test Pα=0.05. 
y Evaluation timing Days After Emergence (DAE); square (40 DAE); bloom (70 DAE); 

open boll (100 DAE). 
x Average six consecutive plants with normal terminal per plot sampled destructively.  

Table 3.9 Average plant height (inches) at each node culminating in total height 
(inches) of cotton measured during square (40 days after emergence) in R. 
reniformis infested soils at Mississippi State University. 

 
Treatment 

Plant height at each node (inches)x 
Node Number y 

1 3 5 7 9 11 13 15 
Untreated 1.5b z  3.4b   6.3a  9.0a   11.7a   12.9a   13.2b   13.3b   

Temik 15G 1.8a 4.3a 6.4a 9.0a 12.1a 14.0a 14.5ab 14.6ab 
Aeris® 1.6a 4.3a 6.2a 8.6a 11.5a 13.4a 14.0ab 14.0ab 

Aeris® + Votivo® 1.6a 4.2a 6.2a 8.8a 11.7a 13.5a 14.1ab 14.2ab 
Temik® + Vydate 

C-LV® 
1.7a 4.5a 6.4a 9.5a 12.2a 14.5a 15.5a 15.5a 

Aeris® + Vydate 
C-LV® 

1.7a 4.6a 6.6a 9.2a 12.1a 13.7a 14.2ab 14.3ab 

Aeris® + Votivo® 
+ Vydate C-LV® 

1.8a 4.5a 6.4a 9.2a 12.3a 14.3a 14.9ab 15.0ab 

LSD (0.05) 0.2 0.6 0.8 1.0 1.2 1.2 1.3 1.4 
z Means within columns followed by the same letter are not different according to the 

Least Significant Difference means separation test Pα=0.05. 
y Odd node measurements are shown to facilitate reporting. 
x Average six consecutive plants with normal terminal per plot sampled destructively.  
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Table 3.10 Average plant height (inches) at each node culminating in total height 
(inches) of cotton measured during square (40 days after emergence) in R. 
reniformis infested soils at Tennessee Valley Research Extension Center. 

Treatment Plant height at each node (inches)x 
Node Number y  

1 3 5 7 9 11 13 15 
Untreated 0.87cd z  1.7c  2.6d   3.6e   4.8d   5.3e   5.4f   5.4f   

Temik 15G 0.84cd 1.8c 2.8d 4.2d 5.1c 6.2d 6.8d 6.9d 
Aeris® 0.83cd 1.8c 2.7d 3.8e 4.8d 5.3e 5.4f 5.4f 

Aeris® + Votivo® 0.77d 1.9c 2.6d 3.7e 5.2c 6.3d 6.5e 6.5e 
Temik 15 G + 
Vydate C-LV® 

1.08a 2.9a 4.1a 5.7a 7.4a 8.9a 9.6a 9.7a 

Aeris® + Vydate 
C-LV® 

1.0b 2.4b 3.8b 5.4b 7.1b 8.2c 8.6c 8.6c 

Aeris® + Votivo® 
+ Vydate C-LV® 

1.02b 2.3b 3.4c 5.1c 7.5a 8.5b 8.8b 8.8b 

LSD (0.05) 0.1 0.1 0.2 0.3 0.2 0.2 0.1 0.1 
z Means within columns followed by the same letter are not different according to the 

Least Significant Difference means separation test Pα=0.05. 
y Odd node measurements are shown to facilitate reporting. 
x Average six consecutive plants with normal terminal per plot sampled destructively.  

Table 3.11 Average plant height (inches) at each node culminating in total height 
(inches) of cotton measured during bloom (70 days after emergence) in R. 
reniformis infested soils at Tennessee Valley Research Extension Center. 

Treatment Plant height at each node (inhes)x 
Node Number y  

1 3 5 7 9 11 13 15 17 19 21 
Untreated 0.85b z  1.7c   2.4d   3.6d   5.4e   8.5e   11.4e   14.3f   15.6f   16.4f   16.6f   

Temik 15G 1.0a 2.5a 4.0a 5.3b 7.4b 11.1b 15.5b 20.9c 24.6a 26.4b 26.6b 
Aeris® 1.02a 2.3b 3.5c 4.6c 6.1d 8.6e 12.4d 16.8e 19.3f 20.0e 20.2e 

Aeris®+  
Votivo® 

1.03a 2.6a 3.7b 5.3b 7.2bc 9.1d 12.6d 17.1e 20.8e 22.7d 23.1d 

Temik 15G + 
Vydate C-LV® 

1.04a 2.6a 3.7b 5.7a 8.3a 11.3ab 16.4a 22.7a 25.7b 27.2a 27.8a 

Aeris® + 
Vydate C-LV® 

1.06a 2.6a 3.7b 4.7c 6.9c 10.3c 14.8c 19.8d 22.5c 23.3c 23.3c 

Aeris® +  
Votivo® + 

Vydate C-LV® 

1.08a 2.6a 3.8ab 5.7a 8.0a 11.5a 16.5a 21.6b 23.2c 23.7c 23.9c 

LSD (0.05) 0.14 0.2 0.2 0.26 0.3 0.4 0.6 0.5 0.6 0.7 0.7 
z Means within columns followed by the same letter are not different according to the 

Least Significant Difference means separation test Pα=0.05. 
y Odd node measurements are shown to facilitate reporting. 
x Average six consecutive plants with normal terminal per plot sampled destructively.  
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Table 3.12 Percent (%) fruit retention at sympodial positions 1, 2 and > 2 during 
square, bloom and open boll stages at Mississippi State University. 

Treatment % Retentionw 
(40 DAE) v 

% Retention 
(70 DAE)  

% Retention 
(100 DAE)  

Pos 1y Pos  2 Pos  >2 Posy 1 Pos  2 Pos  >2 Pos 1 Pos  2 Pos  >2 
Untreated 99.2a z  72.6d 26.2e   76.3d   36.1b   17.7b   49.4d   19.6d   3.9bc   

Temik 15G 99.4a 75.1bc 50.1b 85.6c 52.4a 30.0b 66.3a 23.9c 2.9c 
Aeris® 100.0a 74.1bc 32.7d 83.3c 40.1b 43.6a 54.8c 24.4c 5.2b 

Aeris® + Votivo® 99.4a 76.7ab 45.1c 86.6bc 37.4b 51.5a 59.8b 26.4c 7.4a 
Temik 15G + 

Vydate C-LV® 
100.0a 79.2a 53.4a 94.4a 53.9a 25.4b 68.8a 33.8a 0.0d 

Aeris® + Vydate 
C-LV® 

99.0a 78.8ab 53.4a 84.3c 51.4a 25.7b 61.5b 29.9b 7.1a 

Aeris® + Votivo® 
+ Vydate C-LV® 

99.2a 76.1ab 50.4ab 89.2b 52.5a 25.1b 68.6a 30.4b 2.8c 

LSD (0.05) 1.8 3.0 3.6 3.3 7.3 10.8 3.3 2.6 1.9 
z Means within columns followed by the same letter are not different according to the 

Least Significant Difference means separation test Pα=0.05. 
y Pos=Sympodial (fruiting) position. 
x % retention was by fruiting position across the whole plant. 
w Average six plants with normal terminal sampled destructively per plot. 
v Evaluation timings (Days After Emergence); square-June (40 DAE); bloom-July (70 

DAE); open boll-Sept. (100 DAE). 
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Table 3.13 Percent (%) fruit retention at sympodial positions 1, 2 and > 2 during 
square, bloom and open boll stages at Tennessee Valley Research Extension 
Center. 

Treatment % Retention w 
(40 DAE) v 

% Retention  
(70 DAE)  

% Retention  
(100 DAE) 

Pos 1y Pos  2 Pos  >2 Pos  1 Pos  2 Pos  >2 Pos  1 Pos  2 Pos  >2 
Untreated 98.3a z  13.5d   0.0a   70.5b   27.2d   1.4c   45.9c   16.8d   3.8c   

Temik 15G 98.3a 50.9a 0.0a 95.9a 71.2a 65.5ab 51.3b 20.8c 7.9b 
Aeris® 98.6a 21.2cd 0.0a 95.2a 46.2c 35.2sbc 46.8c 22.2c 10.2b 

Aeris® + Votivo® 100.0a 24.6c 0.0a 93.9a 58.0b 24.3bc 47.5c 17.4d 9.7b 
Temik 15G + 

Vydate C-LV® 
100.0a 50.9a 0.0a 96.9a 70.6a 76.9a 53.8a 28.0a 14.1a 

Aeris® + Vydate 
C-LV® 

100.0a 33.5b 0.0a 94.1a 53.7b 36.2abc 53.2a 25.5b 15.3a 

Aeris® + Votivo® 
+ Vydate C-LV® 

97.5a 47.2a 0.0a 94.1a 65.9a 41.1abc 
 

55.1a 29.2a 10.8b 

LSD (0.05) 2.9 10.6 0.0 5.4 6.5 35.5 1.9 2.1 3.6 
z Means within columns followed by the same letter are not different according to the 

Least Significant Difference means separation test Pα=0.05. 
y Pos=Sympodial (fruiting) position. 
x % retention was by fruiting position across the whole plant. 
w Average six plants with normal terminal sampled destructively per plot. 
v Evaluation timings Days After Emergence (DAE); square-June (40 DAE); bloom-July 

(70 DAE); open boll-Sept. (100 DAE). 
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Table 3.14 Percent (%) fruit retention by sympodial positions 1, 2 and >2 within zons 
as divided by nodes during square (40 days after emergence) at Mississippi 
State University. 

Treatment Zone 1 (Nodes 5-9) x 
(%) 

Zone 2 (Nodes 10-14)  
(%) 

Pos 1 y Pos 2  Pos >2 Pos 1  Pos 2  Pos >2  
Untreated 98.0a z  91.4b   50.4b   100.0a   51.8b   0.33a   

Temik 15G 99.6a 97.0ab 87.1a 100.0a 59.1ab 8.3a 
Aeris® 98.4a 93.5ab 55.9b 100.0a 53.0ab 2.1a 

Aeris® + 
Votivo® 

98.4a 92.1b 51.3b 100.0a 53.1ab 0.78a 

Temik 15G + 
Vydate C-LV® 

100.0a 99.2a 96.9a 100.0a 66.2a 3.3a 

Aeris® + 
Vydate C-LV® 

98.8a 99.2a 95.0a 100.0a 61.7ab 1.6a 

Aeris® + 
Votivo® + 

Vydate C-LV® 

100.0a 96.5ab 98.4a 100.0a 58.5ab 3.1a 

LSD (0.050) 3.2 4.8 12.3 1.4 8.7 6.2 
z Means within columns followed by the same letter are not different according to the 

Least Significant Difference means separation test Pα=0.05. 
y Pos=Sympodial (fruiting) Position. 
x Zone 1 represents fruit retention between nodes 5 to 9; Zone 2 represents fruit retention 

between nodes 10 to 14. 
w Average six plants with normal terminal sampled destructively per plot. 
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Table 3.15 Percent (%) fruit retentionv by sympodial positions 1, 2 and >2 within 
zones as divided by nodes during square (40 days after emergence) at 
Tennessee Valley Research Extension Center. 

 
Treatment 

Zone 1 (Nodes 5-9) w 
(%) 

Zone 2 (Nodes 10-14)  
(%) 

Pos 1 x Pos 2  Pos >2  Pos 1  Pos 2  Pos >2  
Untreated 96.3az 22.9c  - y  75.0b 0.0c - 

Temik 15G 99.4a 84.6a  - 100.0a 2.6c - 
Aeris®  100.0a 34.4c - 94.9a 5.6bc - 

Aeris® + 
Votivo® 

100.0a 49.3bc - 97.2a 4.2bc - 

Temik 15G + 
Vydate C-LV® 

100.0a 84.2a - 97.2a 19.6a - 

Aeris® + 
Vydate C-LV® 

100.0a 64.6ab - 100.0a 12.5abc - 

Aeris® + 
Votivo® + 

Vydate C-LV® 

100.0a 88.9a - 100.0a 17.4ab - 

LSD (0.050) 4.2 25.5 0.0 28.5 11.7 0.0 
z Means within columns followed by the same letter are not different according to the 

Least Significant Difference means separation test Pα=0.05. 
y (-) reflects no data at fruiting position >2. 
x Pos=Sympodial (Fruiting) Position. 
w Zone 1 represents fruit retention between nodes 5 to 9; Zone 2 represents fruit retention 

between nodes 10 to 14. 
v Average six plants with normal terminal sampled destructively per plot. 
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Table 3.16 Percent (%) fruit retentionv by sympodial positions 1, 2 and >2 within zones 
as divided by nodes during bloom (70 days after emergence) at Mississippi 
State University. 

Treatment Zone 1 (Nodes 5-9) w 
(%) 

Zone 2 (Nodes 10-14)  
(%) 

Zones 3 (Nodes 15-19)  
(%) 

Pos 1 x Pos 2  Pos >2  Pos 1  Pos 2  Pos >2  Pos 1  Pos 2  Pos >2  
Untreated 67.8cz 37.1b 36.1b 86.7b 32.8c 21.7c 60.0d 8.3d -y 

Temik 15G 75.8abc 61.7a 33.8b 98.9a 72.5b 36.1bc 83.8bc 25.0ab - 
Aeris® 69.0c 40.1b 50.1b 93.3a 65.0b 26.7bc 83.3bc 30.6a - 

Aeris® + 
Votivo® 

78.3abc 45.1b 43.7b 100.0a 61.7b 32.5bc 81.7c 26.7ab - 

Temik 15G + 
Vydate C-LV® 

85.5a 62.6a 97.9a 100.0a 86.7a 41.6b 97.8a 13.3cd - 

Aeris®+ Vydate 
C-LV® 

78.6abc 69.0a 50.3b 100.0a 68.3b 56.7a 91.5ab 18.3bc - 

Aeris® + 
Votivo® + 

Vydate C-LV® 

84.2ab 67.2a 99.1a 100.0a 66.7b 31.6bc 93.3a 12.5cd - 

LSD (0.05) 10.8 16.0 21.9 4.0 12.2 15.3 8.3 8.2 0.0 
z Means within columns followed by the same letter are not different according to the 

Least Significant Difference means separation test Pα=0.05. 
y (-) reflects no data at fruiting position >2. 
x Pos=Sympodial (Fruiting) Position. 
w Zone 1 represents fruit retention between nodes 5 to 9; Zone 2 represents fruit retention 

between nodes 10 to 14; Zone 3 represent fruit retained between nodes 15 to 19. 
v Average six plants with normal terminal sampled destructively per plot. 
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Table 3.17 Percent (%) fruit retentionw by sympodial positions 1, 2 and >2 within zones 
as divided by nodes during bloom (70 days after emergence) at Tennessee 
Valley Research Extension Center. 

Treatment Zone 1 (Nodes 5-9) x 
(%) 

Zone 2 (Nodes 10-14)  
(%) 

Zones 3 (Nodes 15-19)  
(%) 

Pos 1 y Pos 2  Pos >2  Pos 1  Pos 2  Pos >2  Pos 1  Pos 2  Pos >2  
Untreated 70.8bz 5.6c 4.2c 86.7b 54.4c 0.0f 53.9c 21.7c 0.0b 

Temik 15G 92.6a 59.1a 40.8b 100.0a 90.0ab 97.0a 95.0ab 63.3a 3.3b 
Aeris® 97.2a 39.6b 38.2b 100.0a 60.0c 44.3d 88.3b 43.3b 0.0b 

Aeris® + 
Vydate C-LV® 

91.2a 35.1b 50.7ab 96.4a 78.3b 61.8c 95.0ab 43.3b 9.9a 

Temik 15 G + 
Vydate C-LV® 

90.8a 61.8a 57.9a 100.0a 95.0a 100.0a 100.0a 60.0b 1.3b 

Aeris® + 
Votivo® 

85.0a 30.6b 35.0b 98.3a 90.0ab 39.6e 87.5b 44.4b 0.0b 

Aeris® + 
Votivo® + 

Vydate C-LV® 

94.7a 63.5a 49.1ab 100.0a 91.1ab 76.3b 98.3ab 48.3b 0.0 

LSD (0.05) 11.0 8.9 14.2 6.3 5.1 4.3 5.7 7.3 0.0 
z Means within columns followed by same letter are not different according to Least 

Significant Difference means separation test Pα=0.05. 
y Pos=Sympodial (Fruiting) Position. 
x Zone 1 represents fruit retention between nodes 5 to 9; Zone 2 represents fruit 

retentionbetweennodes 10 to 14; Zone 3 represent fruit retained between nodes 15 to 
19. 

w Average six plants with normal terminal sampled destructively per plot. 

 

  



 

88 

Table 3.18 Percent (%) fruit retentionv by sympodial positions 1, 2 and >2 within zones 
as divided by nodes during open boll (100 days after emergence) at 
Mississippi State University. 

Treatment Zone 1 (Nodes 5-9) w 
(%) 

Zone 2 (Nodes 10-14)  
(%) 

Zones 3 (Nodes 15-19)  
(%) 

Pos 1 x Pos 2  Pos >2  Pos 1  Pos 2  Pos >2  Pos 1  Pos 2  Pos >2  
Untreated 31.7c z  25.5c   5.0c   73.3c   23.3c   6.7a   40.0b   10.0a   -y 

Temik 15G 58.3a 41.7b 8.9bc 81.6ab 23.3c 0.0c 43.3b 6.7ab - 
Aeris® 49.4b 39.4b 16.3a 81.8ab 31.6b 6.7a 41.6b 0.0c - 

Aeris® + 
Votivo® 

56.1a 38.1b 8.8bc 81.6ab 25.0c 8.9a 41.6b 6.7ab - 

Temik 15G + 
Vydate C-LV® 

61.3a 42.2b 0.0d 83.9a 41.6a 0.0c 63.7a 6.2ab - 

Aeris® + 
Vydate C-LV® 

56.7a 43.3b 13.3ab 80.0b 41.3a 5.0b 62.2a 6.8ab - 

Aeris® + 
Votivo® + 

Vydate C-LV® 

58.9a 51.6a 8.3bc 83.3ab 33.9b 0.0c 62.7a 2.5bc - 

LSD (0.05) 6.8 5.3 4.5 2.9 4.6 3.1 5.8 4.2 0.0 
z Means within columns followed by same letter are not different according to Least 

Significant Difference means separation test Pα=0.05. 
y (-) reflects no data at fruiting position >2. 
x Pos=Sympodial (Fruiting) Position. 
w Zone 1 retention nodes 5 to 9; Zone 2 retention nodes 10 to 14; Zone 3 retention nodes 

15 to 19. 
v Average six plants with normal terminal sampled destructively per plot. 
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Table 3.19 Percent (%) fruit retentionw by sympodial positions 1, 2 and >2 within zones 
as divided by nodes during open boll (100 days after emergence) at 
Tennesse Valley Research Extension Center. 

Treatment Zone 1 (Nodes 5-9) x 
(%) 

Zone 2 (Nodes 10-14)  
(%) 

Zones 3 (Nodes 15-19)  
(%) 

Pos 1 y Pos 2 Pos >2 Pos 1 Pos 2 Pos >2 Pos 1 Pos 2 Pos >2 
Untreated 18.3d z  5.0d   0.0d   73.5c   35.6de   10.0b   58.3e   22.2ab   5.0a   

Temik 15G 52.3b 35.0a 13.9bc 81.9b 31.7e 17.8ab 68.3bc 16.9abc 0.0b 
Aeris® 33.3c 23.8b 6.9d 79.4b 45.0c 28.3a 60.9de 23.3a 5.0a 

Aeris® + 
Votivo® 

46.7b 11.1c 15.0c 85.0b 39.4d 28.3a 64.4cd 15.0abc 0.0b 

Temik 15G + 
Vydate C-LV® 

53.3b 35.6a 25.0ab 86.1b 49.4b 26.5a 78.3a 13.3bc 5.0a 

Aeris® +Vydate 
C-LV® 

47.5b 25.6b 31.1a 86.1b 68.3a 25.0 68.3bc 18.3abc 5.0a 

Aeris® + 
Votivo® + 

Vydate C-LV® 

63.3a 38.3a 18.3b 92.8a 66.7a 15.6ab 73.2b 11.7c 5.0a 

LSD (0.05) 7.6 4.8 7.8 9.4 9.8 9.7 5.7 7.3 0.0 
z Means within columns followed by the same letter are not different according to the 

Least Significant Difference means separation test Pα=0.05. 
y Pos=Sympodial (Fruiting) Position. 
x Zone 1 retention nodes 5 to 9; Zone 2 retention nodes 10 to 14; Zone 3 retention nodes 

15 to 19. 
w Average six plants with normal terminal sampled destructively per plot.  
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Table 3.20 Measure of cotton maturity (nodes above white flower) [NAWF], (nodes 
above cracked boll) [NACB], (node of last harvestable boll)x [NLHB] and 
percent open boll as affected by nematicides during bloom (70 DAEw) and 
open boll (100 DAEw) in R. reniformis infested soils at Mississippi State 
University. 

Treatment NAWF 
(bloom) 

NACB 
(open boll) 

NLHB 
(open boll) 

 Open Boll 
(%)y 

Untreated 8.1ab z  8.2a   16.0a   22.0d   
Temik 15G 7.6bc 8.4a 17.0a 24.0c 

Aeris® 8.1ab 8.3a 16.0a 24.0c 
Aeris® + Votivo® 8.3a 8.5a 16.0a 21.0d 
Temik® + Vydate 

C-LV® 
7.4cd 7.4bc 16.0a 29.0a 

Aeris® + Vydate 
C-LV® 

7.0d 7.7b 16.0a 26.0b 

Aeris® + Votivo® 
+ Vydate C-LV® 

7.1cd 7.1c 16.0a 30.0a 

LSD (0.05) 0.42 0.37 0.76 1.4 
z Means within columns followed by the same letter are not different according to the 

Least Significant Difference means separation test Pα=0.05. 
y % open boll derived from number of open first position bolls/total number of first 

position bolls retained.  
x Average six plants with normal terminal sampled destructively per plot.  
w DAE=Days After Emergence. 
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Table 3.21 Measure of cotton maturity (nodes above white flower) [NAWF], (nodes 
above cracked boll) [NACB], (node of last harvestable boll)x [NLHB] and 
percent open boll as affected by nematicides during bloom (70 DAEw) and 
open boll (100 DAEw) in R. reniformis infested soils at Tennessee Valley 
Research Extension Center. 

Treatment NAWF NACB NLHB % Open Boll y 
Untreated 10.1ab z  10.4a   19.0a 10.0d   

Temik 15G 10.1ab 9.3ab 18.3b 24.0b 
Aeris® 10.1ab 10.4a 18.3b 10.0d 

Aeris® + Votivo® 10.3a 10.0a 17.2c 16.0c 
Temik 15G + 

Vydate C-LV® 
9.7abc 8.5b 17.3c 30.0a 

Aeris® + Vydate 
C-LV® 

10.1ab 9.7ab 17.7c 22.0b 

Aeris® + Votivo® 
+ Vydate C-LV® 

9.5c 9.7ab 17.5c 25.0b 

LSD (0.05) 0.6 0.6 0.5 1.3 
z Means within columns followed by the same letter are not different according to the 

Least Significant Difference means separation test Pα=0.05. 
y % open boll derived from number of number of open first position bolls/total number of 

first position bolls retained.  
x Average six plants with normal terminal sampled destructively per plot.  
w DAE=Days After Emergence. 
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Table 3.22 Monopodial (vegetative) branch and boll productionx at Mississippi State 
University collected during open boll (100 days after emergence) to 
showcase overall plant performance treated with nematicides R. reniformis 
infested soils. 

Treatment Monopodial Branch/Plant y Monopodial Bolls/Plant  
Untreated 1.8c z  2.0c   

Temik 15G 2.1bc 3.0ab 
Aeris® 1.8c 2.0bc 

Aeris® + Votivo® 2.0d 2.0bc 
Temik 15G + Vydate C-LV® 3.0ab 3.0a 

Aeris® + Vydate C-LV® 3.0a 3.0ab 
Aeris® + Votivo® + Vydate 

C-LV® 
2.0ab 3.0ab 

LSD (0.05) 0.4 0.7 
z Means within columns followed by the same letter are not different according to the 

Least Significant Difference means separation test Pα=0.05. 
y Monopodial branch and boll production represents plant health. 
x Average six consecutive plants with a normal terminal sampled destructively. 

Table 3.23 Monopodial (vegetative) branch and boll productionx at Tennessee Valley 
Research Extension Center collected during open boll (100 days after 
emergence) to showcase overall plant performance treated with nematicides 
in R. reniformis infested soils. 

Treatment Monopodial Branch/Plant y Monopodial Bolls/Plant  
Untreated 0.4ab z  1.0a   

Temik 15G 1.4a 2.3a 
Aeris® 0.9a 2.0a 

Aeris® + Votivo® 0.3b 2.2a 
Temik 15G + Vydate C-LV® 1.3a 2.4a 

Aeris® + Vydate C-LV® 1.0a 2.8a 
Aeris® + Votivo® + Vydate 

C-LV® 
1.4a 2.3a 

LSD (0.05) 0.8 0.7 
z Means within columns followed by the same letter are not different according to the 

Least Significant Difference means separation test Pα=0.05. 
y Monopodial branch and boll production represents plant health. 
x Average six consecutive plants sampled destructively per plot. 

  



 

93 

Table 3.24 Basal stalk and boll diametersw (70 days after emergence) taken at ninth and 
twelth node below terminal to showcase improved plant performance 
resulting from nematicide treatments in R. reniformis infested soils at 
Mississippi State University. 

Treatment Basal Stalk 
Diameter 

(mm) y 

Boll Diameter 
(mm)  

Boll Diameter  
Difference  

(mm) Node-9x  Node-12x 
Untreated 5.9d z  24.8d   32.9bc  8.2d  

Temik 15G 9.0ab 29.5b 32.9bc 3.5a 
Aeris® 6.9c 27.8c 32.4bc 7.0c 

Aeris® + Votivo® 8.4b 28.4c 32.8bc 5.9b 
Temik 15G + Vydate C-

LV® 
9.8a 31.0a 33.6b 2.6a 

Aeris® + Vydate C-LV® 7.0c 25.5d 32.9bc 5.1b 
Aeris® + Votivo® + 

Vydate C-LV® 
9.7a 30.5a 34.2a 2.3a 

LSD (0.05) 0.9 1.1 0.6 1.1 
z Means within columns followed by the same letter are not different according to the 

Least Significant Difference means separation test Pα=0.05. 
y Diameters taken with digital calipers at boll center and cotyledonary node for stalk. 
x Bolls at node 12 from terminal are the oldest boll and bolls at node 9 are the youngest. 
w Six consecutive plants sampled destructively per plot. 
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Table 3.25 Basal stalk and boll diametersw (70 days after emergence) at ninth and 
twelth node below terminal to showcase improved plant performance 
resulting from nematicide treatments in R. reniformis infested at Tennessee 
Valley Research Extension Center. 

Treatment Basal Stalk 
Diameter 

(mm) y 

Boll Diameter 
(mm)  

Boll Diameter  
Difference 

(mm)  Node-9 x Node-12 x  
Untreated 6.3b z  9.2d   26.4d   17.2c  

Temik 15G 8.6ab 15.3b 31.3b 15.9b 
Aeris® 7.5ab 15.5b 31.0b 15.5b 

Aeris® + Votivo® 7.2ab 15.4b 31.1b 15.8b 
Temik 15G + Vydate C-

LV® 
9.4a 19.1a 32.1a 13.0a 

Aeris® + Vydate C-LV® 8.0ab 13.4c 26.1d 13.9a 
Aeris® + Votivo® + 

Vydate C-LV® 
8.0ab 15.3b 29.2c 12.7a 

LSD (0.050) 1.9 0.4 1.7 1.8 
z Means within columns followed by the same letter are not different according to the 

Least Significant Difference means separation test Pα=0.05. 
y Diameters taken with digital calipers at boll center and cotyledonary node for stalk. 
x Bolls at node 12 from terminal are oldest boll and bolls at node 9 are youngest. 
w Average six consecutive plants sampled destructively per plot. 

Table 3.26 Yield of Phy 375 in pounds (Lbs.) lint cotton per acre treated with 
nematicides grown in R. reniformis infested soils at MSU and TVREC. 

 
Treatment 

Lbs Lint/Ac y 
MSU 

Lbs Lint/Ac  
TVREC 

Untreated 1418.0e z  582.0f   
Temik 15G 1529.0bcd 1168.0c 

Aeris® 1474.0d 783.0e 
Aeris® + Votivo® 1483.0d 887.0d 

Temik 15G + Vydate C-LV® 1755.0a 1331.0a 
Aeris® + Vydate C-LV® 1557.0b 1246.0b 

Aeris® + Votivo® + Vydate 
C-LV® 

1610.0a 1328.0a 

LSD (0.05) 65.1 46.1 
z Means within columns followed by the same letter are not different according to the 

Least Significant Difference means separation test Pα=0.05. 
y Lbs lint cotton formulated using harvested seed cotton weights x established lint % for 

Phy 375 taken from MSU Official Variety Trials (OVT). 
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Table 3.27 Effect of nematicides on reproduction of R. reniformis and shoot and root 
biomass development of Phy 375 under varying R. reniformis populations 
grown under greenhouse environments at 90 days after emergence. 

Treatment Nematode 
Population u 

Juvenile 
number/500 

ccv,w 

Egg 
number/500 

ccv,w 

Shoot Biomass 
(Grams) y 

Root 
Biomass 
(Grams) y 

Untreated 0.0 0.0g z  0.0d   48.0fgh   46.6d   
Temik 15G 0.0 0.0g 0.0d 68.5ab 52.5b 

Aeris® 0.0 0.0g 0.0d 70.3a 55.6a 
Aeris® + 
Votivo®  

0.0 0.0g 0.0d 64.5bc 57.0a 

Untreated 2,500 1,597.0fg 1,123.0cd 46.9gh 35.0f 
Temik 15G 2,500 901.0fg 438.0d 70.2a 51.6b 

Aeris® 2,500 7,892.0c 4,282.0ab 56.0d 46.7d 
Aeris® + 
Votivo® 

2,500 1,597.0fg 5,214.0a 60.9c 49.7c 

Untreated 5,000 3,901.0e 1,975.0cd 45.7h 34.5f 
Temik 15G 5,000 1,087.0f 1,306.0cd 62.6c 51.4b 

Aeris® 5,000 5,021.0de 2,639.0bc 51.7ef 45.3d 
Aeris® + 
Votivo® 

5,000 9,754.0b 5,163.0a 53.3de 45.6d 

Untreated 7,500 5,995.0d 1,442.0cd 41.4i 25.1g 
Temik 15G 7,500 1,576.0f 1,391.0cd 52.9de 51.4b 

Aeris® 7,500 4,172.0e 1,759.0cd 46.2h 39.8e 
Aeris® + 
Votivo® 

7,500 5,459.0d 2,820.0bc 50.6efg 44.6d 

LSD (0.05)  1236.0 2196.5 4.1 2.7 
z Means within columns followed by the same letter are not different according to the 

Least Significant Difference means separation test Pα=0.05. 
y Shoot and root biomass were acquired from the one plant grown in a 3.0 inch pot. 
x Two seed per pot planted 0.5 inches deep and one removed after emergence. 
w 3.0 inch pot represented 500 cc of soil. 
v Juvenile and eggs of R. reniformis extracted from the 500 cc of soil via elutriator and 

centrifuge process. 
u R. reniformis added to soil at planting using a pipette via a graduated factor. 
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Table 3.28 Effect of nematicides on growth of Phy 375 WRF grown under varying R. 
reniformis populations under greenhouse environmentsw,x at 90 days after 
emergence. 

Treatment Nematode 
Population v 

NFFB 
(number) y 

Total Node 
(number)  

Plant Height 
(inch)  

HNR 
(inch)  

Untreated 0z 6.0d z  12.0c   21.4de   1.7bc   
Temik 15G 0 7.0c 13.0b 23.0abc 1.7bc 

Aeris® 0 6.0d 13.0b 23.4ab 1.8ab 
Aeris® + 
Votivo® 

0 6.0d 14.0a 23.8a 1.7bcd 

Untreated 2,500 7.3b 11.0d 16.0g 1.4e 
Temik 15G 2,500 6.0d 13.0b 23.4ab 1.8ab 

Aeris® 2,500 7.0b 12.0c 22.3bcd 1.8ab 
Aeris® + 
Votivo® 

2,500 7.0b 14.0a 23.2abc 1.7cd 

Untreated 5,000 8.0a 10.0d 14.0h 1.3f 
Temik 15G 5,000 7.0b 12.0c 22.6abc 1.9a 

Aeris® 5,000 7.0b 12.0c 21.0e 1.7cd 
Aeris® + 
Votivo® 

5,000 7.0b 13.0b 22.0cd 1.7bcd 

Untreated 7,500 8.0a 10.0e 14.4gh 1.4e 
Temik 15G 7,500 7.0b 12.0c 21.3de 1.8bc 

Aeris® 7,500 7.0b 13.0b 19.2f 1.6d 
Aeris® + 
Votivo® 

7,500 7.0b 12.0c 19.0f 1.4e 

LSD (0.05)  0.1 0.4 1.2 0.1 
z Means within columns followed by the same letter are not different according to the 

Least Significant Difference means separation test Pα=0.05. 
y Growth parameters were acquired from the one plant grown in a 3.0 inch pot. 
x 3.0 inch pot represented 500 cc of soil. 
w Two seed per pot planted 0.5 inches deep and one removed after emergence. 
v R. reniformis added to soil at planting using a pipette via a graduated factor. 
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 Seasonal progression of R. reniformis populations sampled during May (at-
planting), June (square), July (bloom) and August (open boll) using cotton 
variety Phy 375 WRF grown at Mississippi State University and Tennessee 
Valley Research Extension Center. 

z Samples acquired on a per plot basis and averaged across all plots on per 500 cc basis 
to display population dynamics of R. reniformis at each cotton growth stage. 

y Six samples per plot were acquired using a fluted probe from six inches from the row 
middle in a manner to obtain three samples from each of the two row plots. 

x Sample depth was approximately three inches deep. 
w Samples were bagged and cooled away from direct sunlight until sampled using the 

elutriator/centrifuge system. 
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CHAPTER IV 

PERFORMANCE OF COMMERCIALLY AVAILABLE GOSSYPIUM HIRSUTUM 

VARIETIES GROWN IN ROTYLENCHULUS RENIFORMIS INFESTED  

SOILS WITH AND WITHOUT NEMATICIDES 

Abstract 

 Reniform nematode (Rotylenchulus reniformis Linford and Oliveira) infests 36% 

of the Mississippi cotton (Gossypium hirsutum) acres promoting national economic losses 

of 58,000 bales of G. hirsutum in 2015.  Previously nematodes were managed using an 

at-planting treatment of Temik 15G or soil fumigants.  With label loss of Temik 15G and 

expense of soil fumigants need arose to develop an integrated nematode management 

program entailing understanding which commercial G. hirsutum varieties exhibit 

tolerance to R. reniformis.  Tolerance to root knot nematode (Meloidogyne ingognita) 

exists, but little tolerance to R. reniformis has been observed in G. hirsutum varieties.  

However, research indicates some varieties grow and yield better than other varieties in 

R. reniformis infested soils.  Studies at Mississippi State University (Mississippi State, 

MS) during 2012 indicated all varieties evaluated had improved growth, development and 

yield with the addition of a nematicide.  Greenhouse and field studies indicated some 

commercially available varieties grew and yielded better than others when grown without 

nematicides. Evaluated commercial varieties, Stv 5458 (Bayer Crop Science-Raleigh, 

NC), FM 1740 B2RF (Bayer Crop Science, Lubbock, TX) and Phy 499 WRF (Dow Agro 
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Science, Indianapolis, IN) were comparable in yield when untreated compared to those 

treated with a nematicide.  Phy 375 (Dow Agro Science-Indianapolis, IN) responded 

positively to a nematicide treatment.  Response differences based on soil type indicated 

positioning a variety by soil type preference can improve performance in R. reniformis 

infested soils.  Greenhouse studies at Mississippi State University indicated all varieties 

had improved root and shoot growth using a nematicide.  As R. reniformis populations 

increased, a reduction in shoot and root growth was observed, but performance varied by 

variety. 

Introduction 

Reniform nematode (Rotylenchulus reniformis Linford and Oliveira) has become 

the most damaging pathogen to cotton (Gossypium hirsutum).  R. reniformis, first 

described in 1931 (Linford and Oliveira, 1940), is a tropical and subtropical pest present 

throughout the United States G. hirsutum producing regions (Heald and Robinson, 1990; 

Kinloch and Sprenkel, 1994; Star, 2007; Koenning et al., 1999).  Since 1960, R. 

reniformis has shown an adaptive capability to survive colder environments allowing 

colonization of much of the eastern half of the G. hirsutum belt (Heald and Robinson, 

1990) and as far north as Lubbock, Texas and the Missouri bootheel (Heald and Thames, 

1982; Wrather et al., 1992).  Today, R. reniformis has been identified and associated with 

7% annual G. hirsutum yield loss totaling $130 million in Mississippi, Alabama, 

Tennessee, Texas, Missouri, Florida, North Carolina, Louisiana, South Carolina, 

Arkansas and Georgia (Blasingame et al., 2009; Koenning et al., 1999).  In Mississippi, 

an annual yield loss of 235,398, 252,023 and 56,378 bales occurred in 2004, 2005 and 

2011, respectively (Blasingame, 2004; 2005; 2011).  By 2002, more than 32% of G. 
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hirsutum acreage in Mississippi were infested with R. reniformis causing a 5.5% yield 

reduction (Lawrence et al., 2002).  Gazaway and McLean (2003) reported R. reniformis 

infested more than 36% of Alabama G. hirsutum acreage and was increasing. 

Since 2004, the G. hirsutum industry began moving away from the granular, at-

planting treatment with Temik 15G for nematode management.  Previously, Temik 15G 

was the main-stay for nematode management in G. hirsutum. Since use of Temik 15G on 

G. hirsutum was removed from the product label, producers had to find alternate control 

methods involving a complete integrated nematode management program with limited 

reliance on chemicals for R. reniformis management.  A portion of this integrated 

approach involves identifying strengths and characteristics of currently available varieties 

grown in R. reniformis infested soils.   

Presently, there are no G. hirsutum varieties marketed as R. reniformis resistant, 

but much effort is being directed toward resolving this need (Usery et al., 2005; Robinson 

et al., 2007; Starr, et al., 2007).  Some varieties have been shown to possess nematode 

tolerance (Usery et al., 2004; 2005) at low to moderate nematode populations (Starr et al., 

2007; Weaver et al., 2007).  Gene identification driving nematode resistance in G. 

hirsutum has made positive strides.  Davis (2011) reported root knot nematode 

(Meloidogyne incognita) resistance is a multi-gene trait difficult to maintain in breeding 

programs. Bell and Robinson (2004) reported resistance to R. reniformis requires 

introgression of genes from G. longicalyx.  They further reported DNA markers 

imparting resistance to M. incognita and R. reniformis had been identified.  The United 

States Department of Agriculture released two varieties (LONREN-1 and LONREN-2) 

originating from G. longicalyx (a wild Gossypium species from Africa) that are very 
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resistant to R. reniformis  (Usery et al., 2005; Robinson et al., 2007; Starr, et al., 2007).  

Percival et al. (1999) and Yik and Birchfield (1984) cited G. longicalyx  as having 

complete resistance to R. reniformis  preventing females entering the root from forming 

their normal reniform shape.  This reduces normal sexual activities which prevents egg 

production and subsequent generations.  However, G. longicalyx cultivars have serious 

commercial limitations.  They have a poor growth habit despite being well adapted to dry 

and high saline environments and having excellent lint properties.  A problem of 

LONREN cultivars is susceptibility to root borne fungi, and they can support only low 

populations of R. reniformis in the greenhouse or field (Bell et al., 2009; Bell et al., 2011; 

Weaver et al., 2011; Weaver et al., 2013).  Where R. reniformis populations ranged from 

10,000 to 50,000 per 100 cm3 of soil at planting, LONREN lines were intolerant having 

smaller root systems, stunting and reduced yields (Nichols et al., 2010; Sikkens et al., 

2011).  Rotylenchulus reniformis control in LONREN lines is by hypersensitive reactions 

where root tissues damaged upon infection promotes R. reniformis death, but negative 

plant effects between radical emergence and full seedling growth does occur (Sikkens et 

al., 2011; Weaver et al., 2013).  Schrimsher, et al. (2014) showed nematicides could aid 

in R. reniformis management during this susceptible period.  A further issue with G. 

longicalyx cultivars is incompatibility with G. hirsutum due to chromosome differences; 

G. hirsutum (2n=52, similar to other Gossypium sp.) and G. longicalyx (2n=26) (Bell, 

1984).  Genetic markers have been identified, leading to successful breeding programs 

involving R. reniformis resistance (Avila et al., 2005; 2006; Avila and Stewart, 2008; 

Dighe et al., 2005; Bell and Robinson, 2004; Robinson and Bell, 2006; Robinson et. al. 

2007; 2004; 1997; Bell et al., 2009; Jenkins et al., 2004; Young et al., 2004). Robinson et 
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al. (2007) has been successful in introgressing resistance to R. reniformis into upland 

cotton from G. longicalyx.   

BARBEN is another cotton cultivar derived from an exotic cotton species, G. 

barbadense.  Through years of searching G. barbadense cultivars, tolerance to R. 

reniformis was discovered which reduced egg production to as low as 8% and thus, 

subsequent generations (Yik and Birchfield, 1984; Robinson and Percival, 1997; 

Robinson et al., 2004).  Robinson et al. (2004) found an accession, GB-713, which 

reduced egg production of R. reniformis to as low as 3% and is now being used to 

introgress resistant genes into G. hirsutum.  In 2012, the USDA, Mississippi State 

University and Cotton Incorporated launched BARBEN-713. Sikkens et al. (2012) 

reported this cultivar suppressed reproduction resulting in low levels of R. reniformis 

with yields comparable to commercial cotton cultivars. These results show promise 

relative to possibilities of crossing BARBEN-713 with high yielding, commercially 

available varieties.  A suitable commercial variety possessing resistance is still years 

away and a need exists to better understand how commercial varieties perform in a R. 

reniformis infested environment. 

Numerous studies have been conducted evaluating performance of commercial 

varieties in nematode infested soils. Since 1988, eleven breeding lines tolerant to M. 

incognita have been released (Jones et al., 1988; Cook et al., 1997 a and b; Cook and 

Robinson, 2005).  These varieties yield well in M. incognita infested fields of their 

production regions.  However, according to Koening et al. (2001), these varieties may 

have geographic limitations.  Wheeler, et al. (2014) reported a positive economic 

interaction between nematicides plus foliar application of Vydate C-LV® and variety in 
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M. incognita infested fields. Usery et al. (2004; 2005) and Legee et al. (2007) reported 

several varieties had tolerance to high R. reniformis infestation using plant mapping to 

evaluate variety performance in these environments.  Luangkhot et al. (2015) further 

reported currently grown non-tolerant varieties responded to nematicides in greenhouse 

and field environments where R. reniformis was present.  This group did not use plant 

mapping to evaluate variety strengths to understand variety management in this 

environment.  Usery et al. (2004; 2005) reported that early maturing varieties had greater 

R. reniformis tolerance resulting in higher yields and lower nematode feeding.  Further 

work evaluating commercial variety performance in nematode infested soils was reported 

by Phipps and Eisenback (2005) and Davis (2005) as related to M. incognita and 

Sciumbato et al. (2005) as related to R. reniformis, indicating no difference among 

Gossypium hirsutum maturity groups.  Koenning et al. (2005), however, reported late 

maturing varieties performed better than early maturing varieties in soils infested with 

Columbia lance nematode (Hoploaimus columbus). Williams et al. (2004) reported 

similar findings with M. incognita.   Phipps and Eisenback (2005) further reported net 

dollar return was greater when using tolerant G. hirsutum varieties planted in M. 

incognita infested fields.  They also reported nematicides were still economically 

beneficial when used with tolerant varieties.  There are several commercial varieties that 

show promise in highly infested nematode soils (Davis et al., 2010).   McPherson and 

Rush (2011) reported PHY 367 had excellent growth and yield in M. incognita infested 

soils despite not being treated with Telone or Temik 15G. 

Today, Fiber Max and Stoneville, subsidiaries of Bayer Crop Science are 

discussing potential tolerance to nematodes, especially R. reniformis.  There is a need to 
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understand the fruiting mechanisms and performance of new, high yielding G. hirsutum 

varieties in nematode infested soils.  With cost of G. hirsutum seed and technology, it is 

important to minimize controllable risks.  In addition, new cotton varieties containing 

advanced technologies retain higher fruit levels and produce higher yields than older 

technologies and varieties which makes minimizing events that limit yield important 

(Stewart and Smith, 2007).  Also, with label removal of Temik 15G, identifying R. 

reniformis tolerant varieties can greatly improve G. hirsutum performance and improve 

efficacy of seed treatment nematicides.  The best method to understand how a variety fits 

a R. reniformis management system is by establishing and understanding fruiting 

architecture using plant mapping (Jenkins and McCarty, 1995; Kerby et al., 1987; Smith 

et al., 1996; 1998).  Plant mapping determines growth propensity and fruit retention with 

environmental and pest interactions.  In addition, greenhouse evaluations must occur 

concurrently to establish an innoculated population (Pi) tolerance for each variety tested.   

The study objective was to evaluate and map growth, development and yield of 

five Gossypium hirsutum varieties grown with and without nematicide treatments in R. 

reniformis infested soils to determine tolerance among commercial G. hirsutum varieties. 

Materials and Methods 

In-field variety treatments (with and without nematicides) 

Two studies were conducted at R. R. Foil Plant Science Research Center at North 

Farm of Mississippi State University Mississippi State, MS on two different soil types 

containing an established population of R. reniformis.  Soil tests were conducted prior to 

planting and analyzed at Mississippi State University Extension Soil Testing Lab.  At 
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location one, the soil was a Marrietta fine sandy loam and at location two, the soil type 

was a Leeper silty clay loam. 

Five commercially available varieties (FM 1740 B2RF, Stv 5458 B2RF, Stv 5288 

B2RF, Phy 375 WRF and Phy 499 WRF) with and without NST, Aeris® (Bayer Crop 

Science, Raleigh, NC) (Table 4.1) were evaluated.  Planting occurred on May 15 and 16, 

2012, using a four-row Almaco cone planter (Allan Manufacturing Company, Nevada, 

IA) using seed previously treated with Aeris® by Bayer Crop Science and counted prior 

to planting through a Seed Counter Model U (International Market and Design 

Corporation, San Antonio, TX) to deliver consistent seed per plot. Weed control 

consisted of applications of Power Max® (glyphosate) (Monsanto, St. Louis, MO) over-

the-top of cotton at 1.0 lb ai/Ac followed by a lay-by application of Karmex DF ™ 

(diuron) (DuPont USA, Wilmington, DE) at 1.0 lb ai/Ac.   Both trial locations had furrow 

irrigation available, but was not used due to adequate rainfall.  

Experimental design and establishment 

Trial design used at both locations was a randomized complete block (RCB) 

design with five replications.  This statistical method was selected to address the spatial 

distribution of nematodes across the field thereby reducing variability of nematode 

populations existing between plots.  Data was analyzed using Analysis of Variance 

(ANOVA) for a 5 by 2 Factorial with a RCB factor (ARM 8 Statistical Software, Gylling 

Data Management, Brookings, SD) where block and treatment effects were evaluated to 

minimize dgree of error and improve confidence intervals among experimental units.  

Means were separated using the Least Significant Difference (LSD) test at Pα=0.05.  

Individual plot length consisted of two-row plots of 50 feet with 10 foot alleys.  Row 
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spacing consisted of a solid planting pattern planted on 38 inches centers with a seeding 

rate of 4.0 seed per row feet.  Border effects were reduced by planting border rows with 

additional cotton and using a solid planting pattern.  The lack of bordering in the front 

and back of the trial area was compensated for by acquiring samples from within the 

plots to avoid edge effects. 

In-season evaluation prior to fruiting 

In-season field evaluations at both locations included vigor and plant population 

followed by an extensive plant mapping program where six consecutive plants consisting 

of a normal terminal were cut at the ground level, tagged and removed to be monitored 

via plant mapping processes for boll retention and growth (Gutherie and Kerby, 1993).   

Evaluation of vigor, plant population and hypocotyl lengths  

Visual plant vigor and plant population were evaluated at 14 days following 

emergence (DAE).  Vigor was established using two processes; visual assessment on a 

scale of one to five where one had best vigor and five lowest vigor, based on overall plant 

growth and health and hypocotyl measurement.  Hypocotyl measurement involved a 

measurement of length from seed embryo axis to cotyledonary node. The hypocotyl 

length is a direct measurement of seedling vigor and energy stored in the seed.  

Furthermore, hypocotyl measurements, as opposed to visual evaluations, provide a 

quantifiable and accurate method to analyze vigor (Legee and Smith, 2002).  Plant 

population was determined by counting every plant in all plots to determine plants per 

hectare.   
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In-season evaluation during fruiting 

Evaluation during mid-square growth stage 

In-season evaluation occurred at mid-square, bloom and open boll growth stages.  

The first plant mapping occurred at mid-square.  Evaluation criteria included: plant 

height (PH) (from the cotyledonary node to terminal), node of first fruiting branch 

(NFFB), total nodes (TN) (cotyledonary node treated as zero), height to node ratio 

(HNR), fruit retention by position along sympodial (fruiting branch) and average plant 

height by node measurements.  Average plant height by node measurements were 

conducted by measuring each internode length separately from cotyledons to terminal 

leaf 0.5 inch in size and internode lengths summed to obtain final plant height (Kerby, et 

al., 2003).  This method facilitated collecting final height and individual internode growth 

across time as affected by G. hirsutum variety in presence of R. reniformis.  Six 

consecutive plants possessing a normal terminal were destructively sampled per plot 

totaling 30 plants sampled.  Evaluation time was two weeks following square initiation. 

Evaluation during bloom growth phase  

Evaluation criteria on six consecutive plants per plot included the following: PH 

in inches, TN, nodes above white flower (NAWF), node of white flower (NOWF), fruit 

retention by position as stated previously and HNR in mm.  In addition, caliper (General 

Ultra Tech, Port Washington, NY) was measured at the cotyledonary node to obtain basal 

stalk diameter and from unopened first position bolls at nodes 9 and 12 below the 

terminal to determine treatment effect on boll size.  Bolls at the ninth node below the 

terminal represented younger bolls while bolls at the twelfth node represented older bolls.  

Evaluation occurred during late bloom. 
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Evaluation during open boll growth phase 

Evaluation during open boll plant growth stage included the following criteria on 

six consecutive plants: PH, TN, HNR, nodes above cracked boll (NACB), fruit retention 

by position and percent (%) open boll.  Monitoring began when cotton bolls of the 

earliest treatment in the study were approximately 30% open collectively, based on visual 

assesment. 

Machine harvest 

Defoliation was conducted based on visual assessments of 60% open boll with 

harvest aids applied using high clearance ground equipment.  Harvest was conducted 

using a small plot machine harvester (John Deere 9965, Moline, IL) equipped with a 

weighing system (Rice Lake 9201i, Rice Lake Weighing Systems, Rice Lake, WI) to 

measure seed cotton of individual plots during harvest.  Seed cotton weights were 

converted to lint pounds per acre using historical lint percentages established via 

University Official Variety Trials at Mississippi State University (Mississippi State, MS). 

R. reniformis sampling and processing 

Rotylenchulus reniformis collection included nematode soil samples collected 

prior to planting from each plot to establish an initial population density.  Nematode 

populations were monitored at-planting, square, bloom and open boll.  Core soil samples 

were acquired using a fluted probe designed to collect multiple samples per plot.  Probe 

dimensions were 3.44 inches at the top and tapering to 0.75 inches at the bottom 

facilitating multiple samples without loss of soil.  Length of sample device was 11.0 

inches to guarantee acquisition of 500 cc of soil.  Samples were acquired from the side of 
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the emerged row at a distance of about six inches in a zig-zag pattern allowing six 

samples to be acquired at three samples per row.  Sampling was conducted at an 

approximate depth of four inches.  The sampling process was always conducted when the 

soil possessed adequate moisture levels and preferably at field capacity since the R. 

reniformis move deeper into the soil profile as soil dries.  Samples were bagged in plastic 

bags and kept in cold storage (35oF) until extraction using a semi-automatic elutriator 

(W.S. Tyler Co, Mentor, OH) and centrifugal flotation (1 EC Model K Centrifuge, 

Needham Hts, MA) (Byrd et al., 1976).  Rotylenchulus reniformis extraction process was 

as follows:  Collected soil on an individual plot basis was placed into a 450 ml beaker 

and processed through a 60 mesh screen followed by a 400 mesh screen using the 

aqueous extraction process of the elutriator. Soil was removed and placed into a 250 ml 

beaker, water drained and the sample poured into centrifuge tubes where it contained 1.0 

inch of soil and was spun for six minutes at about 2,500 RPM.  Excess water was 

removed and mixed with a sucrose mixture (454 g sucrose per 1,000 ml of water) 

followed by a one minute process in the centrifuge.  The liquid was poured through a 500 

mesh screen and sample refrigerated (35oF) until counted.  The resulting nematodes were 

enumerated using a stereo-microscope (Nikon AFX-11A, Minato-ku, Tokyo).   

R. reniformis tolerance of commercially available cotton varieties grown at varying 
populations under greenhouse environments  

Study establishment and experimental design 

To support field findings, two seperate greenhouse studies were established using 

five cotton varieties Phy 375, Phy 499, Stv 5288, Stv 5458 and FM 1740 treated with 

Aeris® or untreated (Table 4.2).  Varieties were planted at two seeds per 3.0 inch clay pot 
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into a sterile soil.  Soil medium included an autoclave, fine sandy loam.  All pots were 

brought to the same level to ensure 500 cc. Planting depth for all seed was 0.5 inch.  

Upon emergence, one plant was removed to leave one plant per container.  Nematode 

populations were applied in a liquid solution to the soil using a graduated pipette and 

included 0, 2,500, 5,000 or 10,000 R. reniformis per 500 cc of soil.  Each study was 

conducted for 90 days.  Experimental design was a RCB design using four replications. 

Data were analyzed via ANOVA for a RCB (ARM 8 statistical software) where block 

and treatment effects were evaluated to minimize dgree of error and improve confidence 

intervals among experimental units.  Means were separated using the LSD at Pα=0.05 

level of probability. 

Evaluation criteria 

Before harvest evaluations included TN, PH, NFFB, HNR and basal stalk 

diameter.  At harvest evaluations included root and shoot biomass and nematode 

extraction (eggs and juveniles).  At harvest, shoot biomass was separated from the root 

biomass using hand pruners.  The shoot was weighed and mass recorded.  Roots were 

extracted from the soil in a bucket.  Soil-free roots were soaked and stirred in 10% bleach 

solution for three minutes and roots weighed.  Remaining solution was poured through 

250 over 500 mesh screen to obtain egg numbers.  The remaining soil was mixed with 

1,000 ml of water and processed through a 60 over 325 mesh screen and centrifuged for 

six minutes at 2,500 rpm.   Excess water was removed and mixed with a sucrose mixture 

(454 g sucrose per 1,000 ml of water) followed by a one minute centrifuge at 2,500 rpm.  

The liguid was poured through a 500 mesh screen and sample refrigerated in a 250 ml 
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beaker until counted.   Nematode numbers were counted under a stereo microscope for R. 

reniformis juveniles and eggs by pipetting 20 ml of liquid into a quadrated petri dish. 

Results and Discussion 

Seasonal population development of the reniform nematode  

Rotylenchulus reniformis population progression across time becomes important 

in determining impact on growth and development of G. hirsutum at each growth stage.  

Relating nematode numbers to root development has aided in establishing effective 

treatments against R. reniformis nematode populations resulting in greater root 

development at season end (Lawrence and McLean, 1995 a and b; 1996 a and b).   

At the Marrietta fine sandy loam location, R. reniformis population was low 

during May (at-planting) evaluation and remained unchanged until June (square) when 

the population began trending upward (Table 4.3 and Fig. 4.1).  The largest population 

increase occurred between July (bloom) and August (open boll) at this location (Table 

4.3).  At the Leeper silty clay loam location, initial population development followed a 

similar pattern between May and June, but from June to August began a rapid population 

increase (Table 4.3 and Fig. 4.1).  Major population increases began one month earlier at 

location one relating to pre-square to late-bloom growth phases.  

Variety influence grown in R. reniformis infested soils with and without nematicides 
prior to fruiting 

Plant Population  

Plant populations were similar for treated or untreated seed within each variety 

with the exception of FM 1740 where treating the seed resulted in a reduced population 

(Table 4.4).  However, Stv 5458 populations were greater compared to varieties, 
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regardless of seed treatment.  In this location, varieties possessing the lowest number of 

emerged plants included Aeris® treated FM 1740 and Phy 375 when compared to Stv 

5458.  Plant population at the Leeper silty clay loam location was reduced in all treated 

seeds except FM 1740 and Stv 5458 when compared within varieties (Table 4.5). 

Untreated Phy 499 followed by Stv 5458 (Aeris® treated and untreated) and untreated 

Phy 499 were greater in plant population than remaining treatments.  Early maturing 

cotton varieties, Phy 375 and Stv 5288, were improved in plant population without 

addition of a nematicide.  FM 1740 was lower in overall population compared to Phy 499 

and Stv 5458 and was not improved with the addition of nematicide (Table 4.5).   

Vigor evaluation  

Seedling vigor at the Marrietta fine sandy loam location (Table 4.4) was improved 

in Phy 499 when using a nematicide while nematicide had no affect on seedling vigor in 

the other varieties. The variety with greatest vigor was untreated Phy 499 at the Marrietta 

fine sandy loam location and vigor was reduced using a nematicide (Phy 499 is a late 

maturing variety which does not exhibit rapid early growth).  Seedling vigor of varieties 

grown at the Leeper silty clay loam location (Table 4.5) was again reduced with addition 

of a nematicide except with Stv 5458 where seed treatment had no influence.  Differences 

in variety seedling vigor between treated and untreated were not as great at the Leeper 

silty clay loam location indicating a possible interaction of location and R. reniformis. 

Hypocotyl length  

Hypocotyl length (Legee and Smith, 2002) of G. hirsutum varieties was improved 

at the Marrietta fine sandy loam location when grown in R. reniformis infested soils in 
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the presence of a nematicide with exception of Stv 5458 which did not differ between 

treated or untreated (Table 4.4).  Across all varieties, treated Stv 5288 exhibited the 

greatest hypocotyl length compared to all other varieties, regardless of seed treatment, 

except treated Phy 499 or Stv 5458.  Stv 5288 and Phy 499 had less hypocotyl growth 

with NST at the Leeper silty clay loam location while the other varieties were the same or 

improved with the NST. 

Influence of varieties grown in R. reniformis infested soils with and without 
nematicides during fruiting 

Node of First Fruiting Branch  

Initiation of node of first fruiting branch has been been used extensively to 

document treatment effects on harvest maturity (Jenkins et al., 1995). Nematicide 

treatments lowered initiation of NFFB in Phy 499 and Stv 5458 in Marrietta fine sandy 

loam soils (Table 4.4) and in Phy 375, Phy 499 and Stv 5458 at the Leeper silty clay loam 

soil location (Table 4.5).  Later maturing varieties Stv 5458 and Phy 499 exhibited 

reduced NFFB in response to NST at both locations.  Untreated and treated early 

maturing cotton varieties, Phy 375 and Stv 5288 grown at the Marrietta fine sandy loam 

location did not differ (Table 4.2). However, Phy 375, Phy 499 and Stv 5458 at the 

Leeper silty clay loam location initiated fruiting lower when a nematicide was applied 

(Table 4.5).   
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Expression of varieties relative to plant height grown in R. reniformis infested soils with 
and without nematicides during fruiting 

Square growth period  

All varieties treated with NST had increased plant height during the square 

evaluation period at the Marrietta fine sandy loam location with exception of Phy 499 

which did not differ between treated or untreated (Table 4.6).  Phy 499 lack of growth 

differences between treated and untreated could be due to its being a late maturing 

variety.  Stv 5288 had reduced node number with NST while Phy 499 had an increased 

node number with NST. There was no difference between NST and untreated in the 

remaining varieties (Table 4.6).  The NST improved HNR for Stv 5288 and FM 1740, but 

did not influence the remaining treatments (Table 4.6). 

At the Leeper silty clay loam location (Table 4.7), all varieties were taller as result 

of the exception of Phy 499, which did not differ from the untreated.   At the Leeper silty 

clay loam location, there was no difference between variety or NST vs. untrerated on TN 

(Table 4.7).  Height to node ratio was greatest in Phy 499 regardless of treatment, which 

was also the tallest variety (Table 4.7). Seed treatment did impact plant height for Phy 

499 for either soil type, suggesting Phy 499 had some tolerance to R. reniformis. 

Bloom growth period  

Plant height of all treated varieties at bloom was improved at the Marrietta fine 

sandy loam location when NST was used (Table 4.6).  Due to intrinsic growth patterns, 

treated FM 1740 and Stv 5288 did not differ in plant height from the untreated Stv 5458 

or Phy 499. Height to node ratio increased with NST at bloom in all varieties, except for 

Stv 5458. Stv 5458 exhibited greater nematode tolerance than other varieties at the 
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Marrietta fine sandy loam location since HNR was not impacted by NST.  At the Leeper 

silty clay loam location, plant height at bloom increased in all varieties with the NST 

(Table 4.7).  Similarly, HNR increased between untreated and NST in all varieties except 

Phy 375 which showed no difference in HNR, but did increase in TN.  With the 

exception of Phy 375, nematicide treatments resulted in increasing node development at 

the Leeper silty clay loam location, and NST plants had longer internodes indicating seed 

treatment mitigated the impact of R. reniformis in all varieties except Phy 375 during 

bloom. 

Open boll growth stage  

Plant height at open boll at the Marrietta fine sandy loam location (Table 4.6) was 

increased by NST except for FM 1740 which is a naturally shorter variety.   Stv 5458 

with NST was the tallest variety but Stv 5458 also outperformed all other varieties when 

untreated.   With exception of Stv 5458, all varieties had more total nodes with NST than 

when untreated (Table 4.6).  Height to node ratio increased with NST in all varieties, 

except FM 1740 and Phy 499.  Phy 499 increased in height but also had a large increase 

in node number with NST resulting in no difference in HNR.  Similar results were 

measured at the Leeper silty clay loam location except Phy 499 had no difference in 

height between NST and untreated (Table 4.7).  At the Leeper silty clay loam location, 

treated Phy 375, Stv 5288 and Phy 499 were similar in height.  Total nodes decreased 

with NST in Phy 375 and Phy 499, increased with NST in FM 1740 and Stv 5458 and 

was similar to Stv 5288 (Table 4.7).  However, HNR increased with NST for all varieties 

tested (Table 4.7).  Varieties have differing tolerance in R. renifromis infested soils as 
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shown in non-nematicide treatments.  However, location seemingly impacts how well 

varieties perform under R. reniformis environments. 

Variety average plant height by node grown in R. reniformis infested soils 

Square growth phase 

Evaluation of plant height by node provides a powerful method by which the 

variety performance relative to a stress effect can be quantified and indentified via 

internode elongation (Kerby et al., 2003).  With this method, each internode is measured 

in cumulative fashion culminating with a total plant height.  In such, effects of stress 

events can be measured by observing growth at each internode since during plant 

development three unexpanded nodes exist in meristematic tissues of the terminal at any 

point in time.  Development of these nodes is greatly affected by growth conditions in the 

field.  At the Marrietta fine sandy loam location (Table 4.8), there were no differences 

due to treatment within varieties at main-stem node one or three.  At node one, Stv 5288 

(NST and untreated) was taller than other varieties and treatments although treatment had 

no effect on growth of Stv 5288.  Internode length at main-stem node five indicated no 

differences between treated and untreated for varieties Phy 375, Stv 5288 and Stv 5458.  

At node five, the NST treated FM 1740 and Phy 499 were taller than the untreated 

suggesting these varieties experienced stress from nematodes earlier than other varieties.  

Average plant height at main-stem node nine indicated that NST treatment was beneficial 

within all varieties except Phy 375.  At main-stem node eleven, all varieties were taller 

than the untreated comparison when treated with an NST.  This remained true through 

main-stem node thirteen except for Phy 499 where the height was similar for NST and 

untreated plants.  By main-stem node fifteen, all varieties were taller when receiving a 
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NST.  Phy 375 was as much as one inch taller when treated with a NST compared to only 

about one-half of an inch increase in other varieties.  Lack of difference in height 

between NST and untreated Phy 375 up to main-stem node eleven suggests a higher 

tolerance to nematode populations in this variety at this growth stage.  

Unlike at the Marrietta fine sandy loam location, Stv 5288 and FM 1740 at node 

one at the Leeper silty clay loam location (Table 4.9) were taller in NST than the 

untreated plants.  Average plant height at main-stem node three showed no differences 

between the NST or untreated plants within variety.  At main-stem node five and seven, 

only FM 1740 and Stv 5458 had increased plant height when treated with the NST.  All 

other varieties were similar in the untreated or the NST.  Average plant height at main-

stem node nine followed a similar pattern as in the previous nodes, except Stv 5288 along 

with Stv 5458 and FM 1740 increased in plant height with the NST.  This may indicate 

these varieties show early nematode tolerance but lose tolerance by node nine.  Phy 499 

treatments were shorter than other treatments.  Average plant height at main-stem node 

eleven is where nematodes appear to have affected growth at the Leeper silty clay loam 

location with all varieties increasing in height with NST treatment.  This is different than 

at the Marrietta fine sandy loam location where this break occurred at node nine for all 

varieties except Phy 375.  This pattern held true through node 15.  Nematicides improve 

growth in R. reniformis infested soils through square production, but the response is 

variety driven.  Overall, effect of nematodes on plant height occured earlier at the 

Marrietta fine sandy loam location. 
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Average plant heights by node during bloom growth phase 

Internode elongation of nodes one through five was considered to be complete at 

square growth stage.  The second evaluation of internode growth was measured at bloom 

phase and included nodes eleven through 21.  At the Marrietta fine sandy loam location, 

all varieties, except Stv 5458 saw growth advantages from the Aeris® treatments at main-

stem node eleven during bloom (Table 4.10).  All Aeris® treated varieties grown at the 

Leeper silty clay loam location at node eleven had taller growth compared to untreated 

(Table 4.11).  At the Marrietta fine sandy loam location, all varieties were affected by 

nematodes except Stv 5458 which showed no height difference between treated and 

untreated from node 11 to 21.  Growth of Stv 5458 at the Marrietta fine sandy loam 

location at bloom indicated tolerance to nematodes at later growth stages than when 

measured at square.  At the Leeper silty clay loam location, all varieties benefitted from 

the NST from nodes 11 to 15, with the exception of Stv 5288 at node 15 (Table 4.11).  In 

the Marrietta fine sandy loam location, Phy 499 was unaffected by NST.  This was not 

observed at the Leeper silty clay loam location where Stv 5458 benefitted from the NST 

through node 21 measured at bloom.  Phy 499 showed no height difference at the Leeper 

silty clay loam location due to NST from nodes 17 to 21 indicating tolerance to 

nematodes with plant maturity or cessation of growth after node 17.  Phy 375 exhibited a 

15% and 10% increase in plant height at node 21 for Marrietta fine sandy loam and 

Leeper silty clay loam locations, respectively.  This indicates Phy 375 may have a lower 

R. reniformis tolerance of the varieties tested and suggests that Phy 375 requires 

maintenance in this environment (Usery et al., 2005; Legee et al., 2007, Blessitt et al., 

2012).  
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Percent sympodial fruit retention by position across all fruiting zones of cotton varieties 
grown in R. reniformis infested soils 

Square fruiting period  

Main stem fruit retention at fruiting position one indicated no difference in 

percent fruit retention between Aeris® and the untreated within variety at either location 

(Table 4.12 and 4.13).  Fruit retention at sympodial fruiting position two in Marrietta fine 

sandy loam location was improved at square with Aeris® in Phy 375, Phy 499 and Stv 

5458 (Table 4.12).  At this fruiting position, Aeris® treatments improved retention as was 

seen in the previous nematicide study (i.e. Chapter 3).  Fruit retention at square did not 

differ at sympodial position two between varieties when treated with Aeris® for the 

Leeper silty clay loam location (Table 4.13).  Fruit retention at position two was greatest 

in Stv 5288, FM 1740 and Phy 499 indicating these varieties had improved retention 

farther out the fruiting branch, but still at a high quality position (Jenkins et al., 1990 a 

and b; Sadras, 1995).  

At square, fruit retention at position >2 in Marrietta fine sandy loam soils was 

improved with NST treatment improved fruit retention for Stv 5288 and Stv 5458 (Table 

4.12).  Aeris® treated and untreated FM 1740 had greater retention than Aeris® treated 

and untreated Phy 375 and Phy 499 at fruiting position > 2.  At the higher Leeper silty 

clay loam location, Aeris® treatment did not improve main-stem retention at fruiting 

position > 2 of Phy 375, Stv 5288 or Stv 5458 (Table 4.13).  Phy 499 and FM 1740 had 

improved retention with addition of Aeris®.  Improvement in fruit retention at square 

using Aeris® was dependent on variety at positions farther out the sympodial branch. 
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Bloom growth phase  

Aeris® improved fruiting position one retention during bloom (Table 4.12) in all 

varieties grown at the Marrietta fine sandy loam location with exception of Stv 5288 and 

FM 1740 which did not benefit from Aeris® treatment.  At the Leeper silty clay loam 

location at fruiting position one, Phy 375, Phy 499, FM 1740 and Stv 5458 had improved 

fruit retention with addition of Aeris® (Table 4.13).  When treated, FM 1740 and Phy 499 

had the greatest fruit retention at fruiting position one.  During this growth phase, 

repartitioning of carbohydrates for boll development was on-going (Schubert et al.1986; 

Sadras, 1995) and retention was greatly reduced especially in untreated varieties in 

response to R. reniformis populations (Cook et al., 1997b; Smith et al., 1996; Jones et al., 

1959).    

Fruit retention at bloom at fruiting position two within at the Marrietta fine sandy 

loam location (Table 4.12) indicated only Stv 5458 had increased fruit retention with 

Aeris® treatment.  At the Leeper silty clay loam location, all Aeris® treated varieties had 

improved fruit retention at fruiting position two except Stv 5288 (Table 4.13). Untreated 

Stv 5288 had as great fruit retention as treated Phy 499.  A higher fruit retention at 

fruiting position two indicates compensation for a lower retention level at fruiting 

position one (Jenkins et al., 1995; Sadras, 1995).   

Fruit retention at position > 2 at bloom was increased with addition of Aeris® for 

all varieties at the Marrietta fine sandy loam location with exception of FM 1740 (Table 

4.12).  FM 1740 had lower fruit retention than all other treated varieties except untreated 

Phy 499, Phy 375 or Stv 5458.   
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At the Leeper silty clay loam location (Table 4.13), similar results were observed 

as at the Marrietta fine sandy loam location in fruit retention at position > 2 at bloom.  

FM 1740 again had no difference in fruit retention between treated and untreated.  FM 

1740 had greater fruit retention than Aeris® treated or untreated Stv 5458 and Phy 375.  In 

Leeper silty clay loam at this fruiting position, Stv 5288 had the greatest fruit retention of 

the varieties tested with application of Aeris®. 

Open boll growth stage  

In the Marrietta fine sandy loam location, fruit retention at position one measured 

at open boll was improved in varieties treated with Aeris® except FM 1740 (Table 4.12).  

FM 1740 did not benefit from the Aeris® and had lower fruit retention compared to other 

NST treatments.  In addition, all varieties when untreated did not differ from the treated 

or untreated FM 1740.  Varieties with greatest fruit retention were Aeris® treated Phy 499 

and Stv 5288.  At the Leeper silty clay loam location, all varieties increased fruit 

retention with Aeris® seed treatment (Table 4.13).  Unlike at the Marrietta fine sandy 

loam location, FM 1740 treated had the greatest fruit retention at position one at open 

boll and exhibited tolerance to R. reniformis at the Leeper silty clay loam location.   

Percent fruit retention at sympodial fruiting position two at the Marrietta fine 

sandy loam location measured at open boll followed the same pattern as at position one 

(Table 4.12).  Only FM 1740 had no increase in fruit retention with Aeris®.  Treated Phy 

375 had greater fruit retention than the remaining treated varieties benefitting from the 

presence of the nematicide at the Marrietta fine sandy loam location.  Treated FM 1740 

had a greater fruit retention than untreated Phy 375, Stv 5288, Phy 499 and Stv 5458 

(treated or untreated). Fruiting position two retention differences indicate R. reniformis 
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populations negatively impacted most varieties diminishing fruit retention at this fruiting 

position; however, FM 1740 showed excellent nematode tolerance at the Marrietta fine 

sandy loam location.  This further demonstrates the impact of R. reniformis by cotton 

variety on fruit retention along the sympodial branch.   

Percent fruit retention at position two of G. hirsutum varieties grown in a soil of 

Leeper silty clay loam infested with R. reniformis increased when Aeris® seed treatment 

was applied except for Stv 5288 (Table 4.13).  Stv 5288 was comparable to treated Stv 

5458, FM 1740 and untreated Phy 375 in fruit retention.  Aeris® treated Phy 375 had the 

greatest fruit retention compared to all other tested varieties.   

Position > 2 fruit retention at the Marrietta fine sandy loam location (Table 4.12) 

was similar within variety, regardless of treatment, except untreated Phy 375 had greater 

retention.  Untreated Phy 375 had greater fruit retention compared to treated plants 

indicating variety sensitivity to R. reniformis. Delayed harvest maturity was due to lower 

fruit retention as untreated Phy 375 had the greatest fruit retention during open boll at 

position > 2 followed by Stv 5288. 

At the Leeper silty clay loam location (Table 4.13), all Aeris® treatments resulted 

in lower retention  at fruiting position > 2 except FM 1740 which had improved fruit 

retention at open boll.  This is driven by a lower fruit retention of earlier fruiting sites as 

seen in the untreated varieties (Jenkins et al., 1995; Smith et al., 1996; Sadras, 1995).  At 

this location, all untreated varieties differed from each other except Phy 375 and Stv 

5458.  Of all the treated varieties, FM 1740 had the least fruit retention when untreated 

and the most fruit retention when treated with Aeris®.  
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During this evaluation period, first and second position fruit retention provided a 

greater understanding how individual varieties respond to the presence of R. renifromis 

across soils.  Retention at the >2 fruiting site results in delayed harvest maturity resulting 

from fruit loss at earlier fruiting positions.  All Aeris® treated varieties, except FM 1740, 

were improved in retention at the high quality positions, one and two, when compared to 

untreated varieties.  However, higher retention at these fruiting sites established early 

during square and then bloom in untreated varieties indicate variety tolerance to R. 

reniformis resulting in a higher degree of retention between bloom and open boll growth 

stages. 

Untreated varieties did provide benefit at position one, despite the location, 

through bloom but were reduced greatly between bloom and open boll which followed 

the increase in R. reniformis population (Tables 4.1, 4.2 and Fig. 4.1). 

Cotton maturity measured as nodes above white flower, nodes above cracked boll, 
percent open boll  

Nodes Above White Flower across two locations 

Number of nodes above white flower (NAWF) is a measure of harvest maturity in 

cotton. At the Marrietta fine sandy loam location (Table 4.14), NAWF was reduced in all 

varieties when treated with Aeris® except Stv 5288 and Phy 499 due to increased boll 

retention and partitioning of carbohydrates into a higher number of bolls (Jenkins et al., 

1995; Sadras, 1995).  Untreated Phy 375 and Stv 5288 did not differ in NAWF from 

Aeris® treated FM 1740, a later maturing variety.   Few differences in NAWF were found 

in the Leeper silty clay loam location (Table 4.15), and only Phy 499 had a decrease in 

NAWF with the Aeris® indicating an improvement in harvest maturity.  A lack of NAWF 
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differences due to Aeris® treatment during bloom indicates nematodes had little effect on 

plant maturity during this growth phase further indicating a level of variety tolerance.   

Nodes Above Cracked Boll and Percent Open Boll  

Nodes above cracked boll and percent open boll are development criteria highly 

indicative of maturity within a treatment or variety and is greatly enhanced by increased 

boll numbers (Jenkins et al., 1995).  All Aeris® treated varieties possessed lower NACB 

at the Marrietta fine sandy loam location except with FM 1740 (Table 4.14).   FM 1740 

had greater tolerance to R. reniformis in NACB having no differences between Aeris® 

treated and untreated plants.  Percent open boll was increased in all varieties when treated 

with Aeris®.  While FM 1740 did not differ in NACB with addition of Aeris®, there was 

an increase in percent open boll.  Node above cracked boll and percent open boll had a 

direct correlation with total fruit retention which provided a sink for carbohydrate 

partitioning (Schubert et al., 1986, Sadras, 1995). 

Node above cracked boll and percent open boll of all varieties grown at theLeeper 

silty clay loam location (Table 4.15) were improved with the Aeris® treatment; NACB 

were reduced and open boll increased.  Untreated Phy 375 had higher NACB than other 

untreated varieties indicating this variety is very sensitive to R. reniformis.  Aeris® treated 

varieties did not differ from each other except for FM 1740 which which had greater 

NACB than the remaining treated varieties. 
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Production of monopodial branches and bolls of G. hirsutum among treated and untreated 
varieties grown in R. reniformis infested soils  

Monopodial branch production  

Monopodial branch and subsequent boll production occurs after initiation of 

sympodial branches and is increased under lower plant populations, wider planting rows 

and vigorous growing conditions (Mauney, 1986).  At both locations (Table 4.16), all 

varieties had greater monopodial branch number when treated with Aeris® except FM 

1740 at both locations and Stv 5458 at the Leeper silty clay loam location.  Nematicide 

treatment did improve growth and overall plant health of some varieties like Phy 375, Stv 

5288 and Phy 499 when compared to untreated plants as indicated by increased 

monopodial branch numbers.   

Monopodial boll production  

Monopodial boll production per plant at the Marrietta fine sandy loam location 

(Table 4.16) exhibited fewer differences than did as monopodial branch production.  

Aeris® treated varieties, Stv 5458, Stv 5288, and FM 1740 did not differ from untreated 

plants. Growth continued in absence of a nematicide suggesting some R. reniformis 

tolerance. 

At the Leeper silty clay loam location (Table 4.16), monopodial boll production 

was lower in untreated Phy 375, Phy 499, and Stv 5458 compared to treated in each 

variety.  Nematicide seed treatment did not increase monopodial boll production for Stv 

5288 or FM 1740 indicating tolerance.  Phy 375 treated with Aeris® had 2.4 more 

monopodial bolls compared to untreated Phy 375 plants. 
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Stalk and boll diameters of G. hirsutum grown in R. reniformis infested soils  

Basal stalk diameters in R. reniformis infested soils  

Basal stalk size becomes important to G. hirsutum due to its excessive biomass 

generated during boll development and need to reduce lodging.  At the Marrietta fine 

sandy loam locations (Table 4.17), Aeris® treated Phy 375, Stv 5288, and Stv 5458 had 

thicker basal stalks than untreated.  Aeris® treated Stv 5458 had a larger basal stalk 

diameter than the other treated varieties.  Phy 499 and FM 1740 did not differ when 

treated with Aeris®, indicating nematode tolerance at the Marrietta fine sandy loam 

location.  Basal stalk diameter at the Leeper silty clay loam location (Table 4.17) was 

larger in Aeris® treated Stv 5458, Phy 499 and Stv 5288.  As at the Marrietta fine sandy 

loam location, there was evidence of variety tolerance to R. reniformis. 

Variety effects on boll diameters in R. reniformis infested soils at two locations  

Boll diameter measurement at 12 nodes below the terminal at the Marrietta fine 

sandy loam location was increased for Phy 375 and Stv 5288 treated with Aeris®.  Boll 

diameter at 12 nodes below the terminal (represents older bolls) at the Leeper silty clay 

loam location (Table 4.17) increased boll size in all varieties except FM 1740 when 

treated with Aeris® seed treatment.  Aeris® treated Phy 499 produced larger bolls than 

any other variety and treatment combination.  FM 1740 treated with Aeris® did not differ 

from remaining treated varieties except Phy 499 which produced larger bolls and Stv 

5288 which produced smaller bolls.  This indicates FM 1740 has some tolerance in R. 

reniformis infested soils. Untreated Phy 375, Stv 5458 and Stv 5288 had reduced boll size 

at this node. 
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Boll diameter measurements at nine nodes (represents younger boll) below the 

terminal indicated improved boll growth from Aeris® seed treatment with exception of 

Stv 5288 at the Marrietta fine sandy loam location and Phy 375 at the Leeper silty clay 

loam location.  At the Marrietta fine sandy loam location boll diameter difference for all 

Aeris® treated varieties differed and were as follows: Phy 375, Phy 499, Stv 5458, FM 

1740 and Stv 5288.  With the exception of Stv 5288, untreated varieties had higher boll 

diameter differences when compared within treated varieties. 

Effects on boll diameter at nine nodes below the terminal by variety at the Leeper 

silty clay loam location indicated all varieties had increased boll diameter with Aeris® 

treatment except Phy 375 which had no difference (Table 4.16).  

Differences between node nine and node 12 from the terminal indicate a 

difference in boll rate of development between these nodes.  Bolls at 12 nodes below the 

terminal generally had enough time to allow boll size to equalize.  However, at nine 

nodes below the terminal, bolls were still developing facilitating measurement of 

developmental delays.  At the Marrietta fine sandy loam location (Table 4.17), all 

untreated varieties had greater boll diameter differences than treated except Stv 5288 

which exhibited no treatment effect.  This indicates nematicides do hasten boll 

development.  Boll diameter difference was 75% greater in in Phy 375 suggesting 

sensitivity to R. reniformis.  Phy 375, Stv 5288, FM 1740 and Stv 5458 had increases in 

boll diameter differences when untreated compared to treated at the Leeper silty clay 

loam location (Table 4.17). 
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Yield of treated and untreated upland cotton varieties grown in R. reniformis infested 
soils  

Yield was increased at the Marrietta fine sandy loam location with addition of 

Aeris® with exception of FM 1740 and Stv 5458 (Table 4.18).  Phy 375 had greatest 

yield, compared to all other treatments, and yield increase between treated and untreated 

equaled 430 lbs lint/Ac.  Aeris® treated Stv 5288 and Phy 499 did not differ from each 

other and except treated Phy 375, were greater in yield than the remaining treatments. 

Aeris® treated FM 1740 did not differ from treated Stv 5458 or untreated Stv 5288.  All 

varieties except Phy 375 yielded similarly without the nematicide.  

At the Leeper silty clay loam location (Table 4.18), Phy 375, Stv 5288 and Stv 

5458 had greater yield when treated with Aeris®.  Phy 499 regardless of Aeris® treatment 

performed better compared to all other treatments except treated Stv 5458.  Although 

Aeris® treated Phy 499 yielded more than Stv 5458, untreated Phy 499 was similar to 

both.  Phy 375 yielded less than all other treatments.  Treatment with Aeris® increased lbs 

lint/Ac by 173 lbs and 167 lbs for Phy 375 and Phy 499, respectively.  Stv 5288 treated 

with Aeris® was able to produce greater yields than Phy 375 at both locations, which was 

supported by previous growth parameters.  Phy 499 and FM 1740 show moderate R. 

reniformis tolerance and yielded well at the Leeper silty clay loam location.  This data 

agrees with previous findings where some commercial varieties showed a level of 

tolerance to R. reniformis (Blessit et al. 2012; Legee et al., 2007), but nematicides are still 

beneficial in these environments (Phipps and Eisenback, 2005). 
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Growth of Aeris® treated and untreated cotton varieties under varying populations 
of R. reniformis in a greenhouse environment  

Effects of R. reniformis population on root biomass development  

Within the greenhouse environment, all Aeris® treated varieties had increased root 

biomass at all nematode populations including zero (Table 4.19). In absence of R. 

reniformis, Aeris® treated varieties developed larger root volumes compared to untreated 

plants.   This establishes root growth parameters in a stress free environment. Varieties in 

absence of R. reniformis demonstrating the greatest root volumes included Phy 375 and 

Phy 499 which did not differ from each other.  One variety, untreated Phy 499, displayed 

no reduction in root growth despite R. reniformis population with exception of Pi 7,500.  

Even though root growth declined in treated Phy 499 as R. reniformis population 

increased, it displayed greater root biomass than other treatments at both Pi 5,000 and 

7,500 showing some R. reniformis tolerance at higher populations.  In absence of a 

nematicide, Phy 499 root development was reduced at Pi 7,500 to levels similar to other 

varieties.  Remaining varieties treated with Aeris® indicated increased root biomass.  As 

population increased to Pi 5,000, root growth differences among varieties treated with 

Aeris® began differing from each other with Stv 5458 having greater root volume than 

Phy 375.  At Pi 5,000, treated FM 1740 and Stv 5288 root volumes did not differ from 

each other, but had lower volume than Stv 5458 and Phy 499.  As R. reniformis 

population increased to Pi 7,500, only Aeris® treated Phy 499 and FM 1740 produced 

greater root volumes compared to Phy 375, Stv 5288, and Stv 5458, regardless of 

treatment.  As R. reniformis Pi increased to 5,000, untreated Phy 375 and Stv 5288 

produced less root volume compared to all other treatment combinations.  As R. 

reniformis population increased to Pi 7,500, each untreated variety produced less root 
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mass compared to all other treatment combinations and populations except untreated Phy 

375 at Pi 5000.  This data indicates Aeris® adds to tolerance of R. reniformis, but root 

biomass reduction occurs with use of Aeris® as R. reniformis population increases.  

Aeris® efficacy was reduced in all varieties at Pi 7,500.  In addition, there was some 

variety tolerance to R. reniformis until the population reached Pi 7,500. 

Effects of R. reniformis population on shoot biomass development  

Shoot biomass in the greenhouse environment followed a similar pattern as root 

biomass among varieties with Aeris® treatment improving shoot biomass with the 

exception of Phy 375 when Pi is 0 or 5,000 (Table 4.19).  For varieties other than Phy 

375, this establishes genetically determined shoot development parameters and indicates 

nematicide, even in environments void of R. reniformis, improves shoot growth and 

development.  Aeris® treated Stv 5288, Phy 499 and FM 1740 void of R. reniformis had 

greater shoot biomass than Phy 375. Aeris® treated Stv 5458 did not differ from FM 1740 

or Phy 375.  Shoot biomass production across Aeris® treated varieties declined at varying 

degrees depending on variety as R. reniformis population increased.  Aeris® treated Phy 

375 had less shoot biomass compared to other Aeris® treated varieties except FM 1740 at 

Pi 2,500.  At Pi 2,500, Aeris® treated Stv 5288, Phy 499 and Stv 5458 had greater shoot 

biomass than Phy 375 while not differing from each other. Further separation continued 

at the R. reniformis Pi 5,000 with Aeris® treated Stv 5458 and Phy 499 differing from 

Phy 375 FM 1740, and Stv 5288 at this population.  Within the highest R. reniformis Pi 

7,500, Aeris® treated Phy 499 maintained greater shoot biomass production over the 

remaining varieties.  This indicates Phy 499 is more tolerant to nematode populations or 

shoot biomass responds better to nematicide. 
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Recovered R. reniformis juvenile numbers by variety  

Rotylenchulus reniformis is an obligate parasite and requires developing root mass 

for reproduction (Linford and Oliveira, 1942).  A direct correlation of root biomass and 

increased population of R. reniformis has been observed in previous work (Lawrence and 

McLean, 1995; Lawrence and McLean, 1996).  It is fair to say that higher juvenile 

numbers also relates to increased root biomass as was observed (Tables 4.19 and 4.20).  

As with root growth and development, Aeris® treated Phy 499 had the highest 

number of R. reniformis juveniles recovered regardless of Aeris® treatment or Pi.  This 

was also observed in the untreated Phy 499 at Pi 5,000.  Aeris® treated Phy 375 had the 

lowest recovered nematodes as R. reniformis population increased to Pi 5,000.  Within 

Aeris® treated varieties at Pi 2,500, juvenile numbers recovered were higher in Phy 499 

suggesting Aeris® increased tolerance to R. reniformis.  Possibly, this is due to Phy 499’s 

indeterminate nature possessing a slow developing root system.  Untreated Phy 499, Stv 

5288, and Stv 5458 had the highest numbers of juveniles recovered compared to Phy 375 

or FM 1740 at Pi 2,500.  Treated and untreated Stv 5458 and Stv 5288 had no differences 

within varieties in juveniles recovered indicating these varieties at this population 

benefited little from the nematicide treatment.   

A decline in juvenile numbers recovered occurred at Pi 5,000 without NST use, 

regardless of variety.  This supports previous research by Lawrence & McLain (1996) 

indicating greater nematode juvenile populations occur at higher root biomass.  Treated 

Stv 5458 had more juveniles recovered indicating root mass probably benefited from the 

nematicide.  At Pi 5,000, Stv 5288 juvenile recovery declined due to restricted root 

development compared to lower Pi resulting from increased feeding.  Treated FM 1740, 
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despite being different from treated Stv 5458, declined as R. reniformis population 

increased. 

All varieties benefitted from Aeris® treatment at Pi 7,500.  Within this population, 

treated or untreated FM 1740 were comparable to treated or untreated Phy 499 in 

juveniles recovered while treated Stv 5288 and Stv 5458 did not differ from Phy 375.   

Recovered R. reniformis egg numbers by variety  

The same pattern occurring in juveniles was observed in egg production 

indicating reproduction was reduced as root biomass declined (Tables 4.19 and 4.20).    

Evaluation of untreated varieties for egg recovery across varieties show-cases 

reproduction of R. reniformis effects by variety.  Under low nematode populations, root 

growth of Phy 375 was reduced and complete reproduction of R. reniformis declined 

further indicating sensitivity to R. reniformis.  Untreated FM 1740 and Stv 5288 followed 

in this reproduction pattern, but did differ from each other and had more eggs recovered 

than Phy 375.  At this population Stv 5288 had greater egg recovery than FM 1740.  

Untreated Phy 499 and Stv 5458 had greatest egg recovery indicating greater 

reproduction.  As population increased to Pi 5,000, Phy 375 had continued low egg 

recovery indicating further increased sensitivity to R. reniformis.  Remaining untreated 

varieties continued supporting nematode reproduction as they did not differ from each 

other and had greater egg recovery than Phy 375.  The greatest egg recovery at Pi 7,500 

occurred in treated Phy 499, Stv 5458 and FM 1740 varieties.  Varieties had different 

tolerances to R. reniformis with tolerance enhanced with use of a nematicide.  This 

synergistic relationship can be used to improve crop yield and improve profitability. 
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Effect of R. reniformis population on growth of G. hirsutum varieties  

Effect of R. reniformis on plant height  

In absence of R. reniformis, plant height was greatest in Phy 499 and Stv 5458 

compared to FM 1740, a genetically shorter variety (Table 4.21).  Stv 5288 did not differ 

from Phy 375.  Comparison of Aeris® treated plants to untreated indicated increased 

height even in absence of R. reniformis. As R. reniformis population increased, plant 

height decreased.  Plant height of Aeris® treated plants at Pi 2,500 was greater than the 

untreated for all varieties.  Aeris® treated Phy 499, Stv 5458 and Stv 5288 were taller 

than FM 1740 and Phy 375 but did not differ from each other. Untreated Phy 375 was 

shorter than all other untreated varieties at Pi 2,500, except FM 1740.  As the inoculated 

treatment population increased to 5,000 R. reniformis, a similar pattern of height was 

observed to that observed at Pi 2,500 with Aeris® treatment and continued through Pi 

7,500 R. reniformis population.  Untreated Phy 499 and Stv 5458 at Pi 5,000 population 

did not differ from each other, but did display greater plant height compared to Phy 375 

and Stv 5288.  At Pi 7,500, untreated Phy 499 and Stv 5458 were similar in height and 

were taller than Phy 375 and Stv 5288. 

Treated and untreated FM 1740 had the smallest change in plant height as R. 

reniformis populations increased indicating its ability to not deviate greatly from its 

genetically governed plant height in the presence of R. reniformis.  In addition, Aeris® 

treated Stv 5288 did not differ in plant height from FM 1740 at Pi 7,500.  All varieties 

were reduced in plant height at Pi 7,500 compared to Pi 2,500 and did benefit from the 

nematicide application.  Interestingly, treated FM 1740 had no difference when compared 
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to untreated while Stv 5288 and Phy 499 were different in height. Stv 5288 is tolerant to 

low to moderate R. reniformis populations while Phy 375 is intolerant at all populations.   

Effect of R. reniformis population on total node production  

In absence of R. reniformis, Aeris® treated plants had greater total node 

production compared to untreated plants for all varieties except Phy 499 (Table 4.21).  

Total node production was reduced compared to treated as Pi increased for all varieties 

when untreated except Phy 499.  Node number for all Aeris® treated varieties at Pi 2,500 

were the same as with no nematodes.  While total node number at Pi 5,000 remained the 

same for Phy 499, all other Aeris® treated varieties had fewer nodes than at Pi 0.  As with 

plant height, Phy 499 had the greatest tolerance to nematode populations.  At the highest 

nematode population there was no difference in total node number between treated Phy 

499 and Stv 5458.  Aeris® treatment improved total node production compared to 

untreated plants, and variety tolerance was observed in absence of nematicides.   

Effect of R. reniformis population on HNR (Height to Node Ratio)  

Stv 5288 HNR increased when treated with Aeris® at Pi 0 and Pi 5,000 while Phy 

375 only increased with treatment at Pi 5,000.  All Aeris® treated varieties had greater 

HNR than Phy 375 at Pi 2,500.  At Pi 5,000, Aeris® treated Phy 375 had lower HNR than 

other varieties.  Aeris® treated varieties Stv 5288 and Phy 375 had lower HNRs at Pi 

7,500 compared to Phy 499.   Phy 375 intolerance to R. reniformis was further 

demonstrated and began losing tolerance at Pi 2,500.  Another variety possessing low to 

moderate tolerance was Stv 5288 which declined in HNR at Pi 5,000.  Phy 499, Stv 5458 
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and FM 1740 continued to show tolerance in R. reniformis infested soils beyond Pi 5,000 

based on HNR. 

Effect of R. reniformis population on NFFB (Node of First Fruiting Branch)  

Node of first fruiting branch (NFFB) is a good indicator of initiation of cotton 

harvest maturity.  Higher NFFB above what is genetically governed is an expression of 

early stress that can lead to higher fruit initiation on the main axis and encourage lateness 

in G. hirsutum development delaying harvest maturity (Mauney, 1986).  However, since 

there is a strong genetic influence, response at Pi 7,500 compared to Pi 0 only increased 

for FM 1740 regardless of Aeris® treatment or Phy 375 and Stv 5288 when untreated.  

However, severity of delayed fruiting was greatly accentuated where a nematicide was 

not used especially at higher R. reniformis populations (Table 4.22).  

In summary, initiation of fruiting is hastened with higher R. reniformis 

populations when a nematicide is used demonstrating value of using a nematicide in early 

growth and development of G. hirsutum.  However, nematode tolerance as measured by 

fruit initiation is being exhibited within a variety as observed in untreated plants.  Longer 

season varieties, Stv 5458 and Phy 499 tolerated nematode populations until Pi 7,500. 

Effect of R. reniformis population on basal stalk development  

Basal stalk diameter becomes important as G. hirsutum incurs heavy boll load and 

is predisposed to lodging prior to harvest (Mauney, 1986).  Aeris® treatment increased 

basal stalk diameter in all varieties compared to untreated plants.  This further supports 

plant health benefits from nematicide seed treatment.  Within Aeris® treated plants in 

absence of R. reniformis, the only varieties with reduced basal diameter were Phy 375 
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and FM 1740 compared to Phy 499, Stv 5288, or Stv 5458 (Table 4.22).  Basal stalk 

diameter remained larger at the Pi 2,500 in Stv 5288 compared to all other Aeris® treated 

varieties except Phy 499.  Within this population, all varieties were increased in basal 

diameter when compared to untreated plants with exception of Stv 5458.  No difference 

between varieties were observed between Aeris® treated plants at Pi 5,000 and 7,500.  To 

determine strengths by variety in R. reniformis infested soils relative to basal stalk 

diameter, evaluation of untreated varieties across populations was conducted.  Basal stalk 

development of Aeris® treated Stv 5288 was greater at Pi 2,500 compared to other 

varieties while there were no differences between Stv 5458, Phy 499 or FM 1740.  

Untreated Phy 375 produced smaller basal stalk diameters at Pi 2,500 and 5,000, 

indicating its lack of tolerance to R. reniformis.  Basal stalk development at Pi 7,500 was 

greater in untreated Stv 5458 and Phy 499 compared to the remaining varietietis.   

Conclusion 

Commercially available varieties have some tolerance to R. reniformis. 

Understanding their growth characteristics allows for proper variety selection and 

mangement.  Nematicide treatments did improve growth and yield of varieties in 

presence of R. reniformis.  From these findings, Phy 375 was sensitive to R. reniformis, 

with improved growth when treated with a nematicide.  Greenhouse studies further 

verified this variety’s intolerance to R. reniformis as it began root biomass loss at Pi of 

2,500.  Stv 5288 followed a similar pattern, but was not affected as severely as Phy 375.  

In the greenhouse, Stv 5288 root biomass began deminishing at Pi 5,000.  However, in 

the field, this variety in an untreated state out-yielded Phy 375 and showed smaller yield 

differences.  From in the field studies, Phy 499 provided moderate tolerance to R. 
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reniformis, but did have positive performance in greenhouse study as R. reniformis 

populations began to increase.  A primary characteristic of Phy 499 that could have 

negatively impacted field performace was its natural late maturity making it difficult to 

manage in small plot environments.  Phy 499 did perform well across both locations 

indicating its possible use across soils.  Stv 5458 F and FM 1740 showed excellent 

performance in the field in presence of R. reniformis populations as well as under 

greenhouse environments.  Stv 5458 performed well across both locations with the least 

differences between Aeris® treated and untreated varieties indicating its tolerance of R. 

reniformis.  FM 1740 also demonstrated good performance in R. reniformis infested soils 

in the field and in the greenhouse.  This variety had greatest yield at the Leeper silty clay 

loam location, but lower differences between Aeris® treated and untreated at the 

Marrietta fine sandy loam location tolerance in R. reniformis.  Ranking of performance 

from most R. reniformis tolerant to least tolerant are as follows; Phy 499, FM 1740, Stv 

5458, Stv 5288 and Phy 375.  Those commercially available varieties showing the 

greatest tolerance are later maturing varieties having lower initial root growth.  Under 

low populations of R. reniformis, these varieties could successfully produce adequate 

yield with only a nematicide.  

In conclusion most varieties benefited from the presence of a nematicide (Phipps 

and Eisenback, 2005) but at varying degrees and performance can be improved by 

selecting the correct variety for the appropriate environment (Legee et al., 2007; Blessitt 

et al., 2012). 
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Table 4.1 In the field treatments of five commercial G. hirsutum varieties (Phy 375 
WRF, Phy 499 WRF, Stv 5458 B2RF, Stv 5288 B2RF, FM 1740 B2RF) 
treated and untreated with Aeris® seed treatment in R. reniformis infested 
soils. 

Variety Treatmentz Variety Maturity 

 

PHY 375 WRFy 

Aeris® @ 0.075 mg ai/seed rate  

Early Untreated 

 

PHY 499 WRFy 

Aeris® @ 0.075 mg ai/seed rate  

Full Untreated 

 

STV 5458 B2RFx 

Aeris® @ 0.075 mg ai/seed rate  

Mid Untreated 

 

STV 5288 B2RFx 

Aeris® @ 0.075 mg ai/seed rate  

Early Untreated 

 

FM 1740 B2RFx 

Aeris® @ 0.075 mg ai/seed rate  

Mid Untreated 

z Aeris® was applied to the seed prior to planting by Bayer Crop Science (Raleigh, North 
Carolina) 

y Variety derivations:  Phytogen (Phy) a subsidiary of Dupont.   
X Stoneville (Stv) and Fibermax (FM) subsidiaries of Bayer Crop Sciences (Raleigh, 

North Carolina). 
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Table 4.2 Five commercial G. hirsutum varieties (Phy 375 WRF, Phy 499 WRF, Stv 
5458 B2RF, Stv 5288 B2RF, FM 1740 B2RF) treated and untreated with 
Aeris® grown in varying populations of R. reniformis under greenhouse 
environment 

Variety Initial Nematode 
Population 

Treatment 

 PHY 375 WRFz 0 
2,500 
5,000 
7,500 

Aeris® @ 0.075 mg ai/seed rate Untreated 

 PHY 499 WRF 0 
2,500 
5,000 
7,500 

Aeris® @ 0.075 mg ai/seed rate Untreated 

 STV 5458 B2RFy 0 
2,500 
5,000 
7,500 

Aeris® @ 0.075 mg ai/seed rate Untreated 

 STV 5288 BwRF 0 
2,500 
5,000 
7,500 

Aeris® @ 0.075 mg ai/seed rate Untreated 

 FM 1740 B2RF 0 
2,500 
5,000 
7,500 

Aeris® @ 0.075 mg ai/seed rate Untreated 

.  Nematodes were pipetted in graduated fashion to autoclaved soils. 
z Variety derivations:  Phytogen (Phy) a subsidiary of Dupont.  Stoneville (Stv) and 

Fibermax (FM) subsidiaries of Bayer Crop Sciences (Raleigh, North Carolina). 
y Aeris® was applied to the seed prior to planting by Bayer Crop Science (Raleigh, North 

Carolina).  
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Table 4.3 Seasonal population progression of R. reniformis across G. hirsutum 
varieties and soil types sampled at six cores per plot during four growth 
stages at Mississippi State University. 

 
 

Treatment 

Marrietta Fine Sandy Loam Leeper Fine Sandy Clay 
Reniform Nematode Numbers/500ccv,w Reniform Nematode Numbers/500ccv,w 
May 

(0 DAEx)  
June 

(40 DAE)  
July 

(70 DAE) 
Sept 

(100 DAE) 
May 

(0 DAE) 
June 

(40 DAE) 
July 

(70 DAE) 
Sept 

(100 DAE) 
Phy 375 UTy 516.0bz 516.0c 1548.0d 26402.0ab 481.6ab 849.4cd 4289.2de 11029.6c 
Phy 375 Trty 1032.0ab 2365.0a 13351.6a 46762.4a 447.2ab 505.2de 9108.0c 21575.2a 
Stv 5288 UT 580.6b 548.4c 1150.2d 11813.4b 825.6ab 1338.6b 2808.6ef 6493.0d 
Stv 5288 Trt 680.6b 1580.2b 4912.8c 36786.6ab 481.6ab 559.0de 5074.0de 9546.0c 
FM 1740 UT 516.0b 516.0c 2217.2d 16899.0b 1032.0a 2074.8a 1298.0f 5676.0d 
FM 1740 Trt 548.3b 516.0c 559.0d 17834.2b 619.2ab 1032.0c 5504.0d 7256.2d 
Phy 499 UT 548.2b 516.0c 1368.0d 29081.8ab 756.8ab 1419.0b 4450.6de 3751.8e 
Phy 499 Trt 516.0b 1967.2ab 8127.0b 37377.8ab 412.8b 591.2de 13590.8a 22462.2a 
Stv 5458 UT 516.0b 516.0c 1548.0d 26402.0ab 481.6ab 849.4cd 4289.2de 11029.6c 
Stv 5458 Trt  1032.0ab 2365.0a 13351.6a 46762.4a 447.2ab 505.2de 9108.0c 21575.2a 
LSD(0.05) 359.6 637.1 1726.2 17057.3 368.1 249.5 1893.4 1756.2 

z Means within columns followed by the same letter are not different according to the 
Least Significant Difference means separation test Pα=0.05. 

y UT=Untreated; Trt=Aeris®. 
x DAE=Days After Emergence. 
w Samples taken at rate of six per plot using a fluted probe from side of planted row. 
v Samples taken at depth of 4.0 inches.  
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Table 4.4 Influence of variety treated with Aeris® nematicide (Trt) and untreated (UT) 
in R. reniformis infested soils on plant population, node of first fruiting 
branch, vigor and hypocotyl length (14 days after emergence) grown at the 
Marrietta fine sandy loam location. 

 
Treatment 

 
Plants/acre v 

 
Node of First 

Fruiting Branch 

 
Vigor 
(1-5) x 

 
Hypocotyl Length 

(inches) y 
 Phy 375 UT 44,979.1b z 6.8cz 1.4bc  3.8c  
 Phy 375 Trt  42,782.8bc  6.6c  1.0c  4.3ab 
 Stv 5288 UT 44,230.4b 6.4c 1.4bc 4.1b 
 Stv 5288 Trt 43,781.3b 6.2c 1.0c 4.5a 
 FM 1740 UT 43,944.5b 6.4c 1.5b 3.7c 
 FM 1740 Trt 41,657.4c 6.2c 1.3bc 4.1b 
 Phy 499 UT 45,088.1b 8.8a 2.3a 3.7c 
 Phy 499 Trt 44,434.6b 7.9b 1.3bc 4.2ab 
 Stv 5458 UT 47,266.2a 7.9b 1.1bc 4.2ab 
 Stv 5458 Trt  47,211.8a 6.8c 1.1bc 4.2ab 
 LSD(0.05) 1799.2 0.8 0.3 0.2 

z Means within columns followed by the same letter are not different according to the 
Least Significant Difference means separation test Pα=0.05. 

y Hypocotyl measured from point of seed attachment to cotyledon. 
x Visual vigor scale 1-5 where 1 had larger leaves and was taller while 5 was stunted. 
v Plants/ac was conducted by counting all plants per plot with expanded cotyledons. 

Table 4.5 Influence of variety treated with Aeris® nematicide (Trt) or untreated (UT) 
in R. reniformis soils on plant population, node of first fruiting branch, vigor 
and hypocotyl length (14 days after emergence) grown at Leeper silty clay 
loam location. 

 
Treatment 

 
Plants/ac v 

 
Node of First 

Fruiting Branch 

 
Vigor 
(1-5) x 

 
Hypocotyl Length 

(inches) y 
 Phy 375 UT  32,345.8d z 8.30b  3.10a  3.70b  
 Phy 375 Trt 29,822.7ef 7.40c 1.20cd 4.40a 
 Stv 5288 UT 31,184.1de 7.50c 3.00a 4.60a 
 Stv 5288 Trt 28,207.3f 7.40c 1.20cd 3.80b 
 FM 1740 UT 29,133.0ef 6.40d 2.90a 3.70b 
 FM 1740 Trt 28,370.6f 6.40d 1.40c 4.30a 
 Phy 499 UT 41,330.7a 10.0a 2.20b 4.50a 
 Phy 499 Trt 34,905.1c 8.40b 1.40c 3.70b 
 Stv 5458 UT 38,535.4b 10.1a 1.10cd 4.20a 
 Stv 5458 Trt  38,335.7b 8.5b 1.00d 4.40a 
 LSD(0.05) 1972.5 0.7 0.3 0.3 

z Means within columns followed by the same letter are not different according to the 
Least Significant Difference means separation test Pα=0.05. 

y Hypocotyl measured from point of seed attachment to cotyledon at 14 DAE. 
x Visual vigor evaluation in ranking of 1-5 where 1 was best and 5 was worst at 14 DAE. 
v Plants/ac was conducted by counting all plants per plot.  
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Table 4.6 Gossypium hirsutum variety growth regarding growth parameters, total 
nodes, plant height, height to node ratio during square, bloom and open boll, 
in R. reniformis infested soils at the Marrietta fine sandy loam location. 

 
Treatment 

Square 
(40 DAEw) 

Bloom 
(70 DAEw) 

Open Boll 
(100 DAEw) 

 
TNx 

Plant Htx 
 (inches) 

HNRx 
(inches) 

 
TN 

Plant Ht 
(inches) 

HNR 
(inches) 

 
TN 

Plant Ht 
(inches) 

HNR  
(inches) 

 Phy 375 UTy 14.0b z 14.9b  1.1b 20.8ab  28.6e  1.4e  19.1e  32.6e  1.7c  
 Phy 375 Trt y 14.0b 16.02a 1.1b 20.0abc 34.4a 1.7a 21.2c 39.3c 1.9b 
 Stv 5288 UT 14.0b 13.7d 0.98cd 19.8bc 28.8e 1.45d 20.4d 34.3d 1.7c 
 Stv 5288 Trt 13.0c 14.2c 1.1b 20.6ab 31.6c 1.5c 21.5bc 39.6c 1.8b 
 FM 1740 UT 15.0a 13.4d 0.89e 19.2c 30.3d 1.5c 20.0d 34.4d 1.7c 
 FM 1740 Trt 14.8a 14.1c 0.95d 19.8bc 32.1c 1.7b 21.7bc 36.1d 1.7c 
 Phy 499 UT 13.2c 13.2d 1.0c 20.8ab 31.8c 1.5c 18.7e 34.5d 1.8b 
 Phy 499 Trt 13.8b 13.5d 0.98cd 21.0a 34.5a 1.7b 22.0bc 39.5c 1.8b 
 Stv 5458 UT 15.0a 15.2b 1.0c 19.0c 31.8c 1.67b 22.3ab 41.5b 1.9b 
 Stv 5458 Trt 15.0a 15.8a 1.10b 20.0abc 33.0b 1.65b 23.1a 47.1a 2.0a 
 LSD(0.05) 0.3 0.5 0.04 0.7 0.6 0.04 0.6 0.8 0.04 

z Means within columns followed by the same letter are not different according to the 
Least Significant Difference means separation test Pα=0.05. 

y Trt= Aeris® seed treatment by Bayer Crop Science; UT=Untreated seed 
x Average six consecutive plants destructively sampled . 
w DAE=Days After Emergence. 

Table 4.7 Gossypium hirsutum variety growth regarding growth parameters, total 
nodes, plant height, height to node ratio during square, bloom and open boll, 
in R. reniformis infested soils at the Leeper silty clay loam location. 

Treatment Square 
(40 DAEx) 

Bloom 
(70 DAEx) 

Open Boll 
(100 DAEx) 

 
TNw 

Plant Htw 
 (inches) 

HNR  
(inches) 

 
TN 

Plant Ht 
(inches) 

HNR 
(inches) 

 
TN 

Plant Ht 
(inches) 

HNR  
(inches) 

 Phy 375 UT y 13.3a z 14.1de  1.0cd  17.9bc  30.6e  1.70cd  24.8a  40.7c  1.60de  
 Phy 375 Trt y 13.3a 14.8b 1.10b 18.8a 33.0c 1.76c 23.5b 43.7a 1.90a 
 Stv 5288 UT 13.2a 13.4fg 1.00de 17.8c 27.5g 1.54f 22.5cd 38.5d 1.70cd 
 Stv 5288 Trt 12.9a 14.6bc 1.10b 18.4abc 32.2d 1.70c 22.7cd 42.5b 1.90a 
 FM 1740 UT 13.2a 13.2g 0.99e 18.2abc 26.5h 1.50g 22.1d 35.7e 1.50e 
 FM 1740 Trt 13.3a 13.5f 1.09de 18.8a 28.7f 1.53f 23.10bc 42.8ab 1.70cd 
 Phy 499 UT 13.3a 16.4a 1.20a 18.5ab 34.1b 1.80b 24.6a 44.0a 1.80b 
 Phy 499 Trt 13.5a 16.4a 1.20a 18.3abc 34.8a 1.90a 23.0bc 44.1a 1.90a 
 Stv 5458 UT 13.6a 13.9e 1.00de 18.5ab 30.5e 1.65e 23.5b 40.6c 1.60de 
 Stv 5458 Trt 13.3a 14.3cd 1.10c 18.8a 31.7d 1.69d 25.0a 42.1b 1.70cd 
 LSD(0.050) 0.4 0.3 0.04 0.5 0.8 0.04 0.6 0.8 0.04 

z Means within columns followed by the same letter are not different according to the 
Least Significant Difference means separation test Pα=0.05. 

y Trt= Aeris® seed treatment by Bayer Crop Science; UT=Untreated seed. 
x DAE=Days After Emergence. 
w Six consecutive plants destructively sampled. 
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Table 4.8 Average plant height (inches) at each node culminating in total height 
(inches) of G. hirsutum measured during square (40 days after emergence) 
in R. reniformis infested soils at the Marrietta fine sandy loam location at 
Mississippi State University. 

Treatment Plant height at each node (inches)w 
Node Number 

1 x 3 5 7 9 11 13 15 
 Phy 375 UTy 1.5b z 4.5ab  6.5a  9.1a  12.5a  14.4b 14.7c  14.9c  
 Phy 375 Trt y 1.7b 4.4abc 6.5a 9.2a 12.5a 15.1a 15.9a 16.0a 
 Stv 5288 UT 2.1a 4.5ab 6.1ab 8.3c 10.8d 12.5e 13.5ef 13.7d 
 Stv 5288 Trt 2.2a 4.6a 6.2ab 8.5c 11.5bc 13.5d 14.2d 14.2c 
 FM 1740 UT 1.6b 3.8d 5.5c 7.6d 10.5de 12.4e 13.2f 13.6f 
 FM 1740 Trt 1.7b 3.7d 6.0b 8.4c 11.3bc 13.3d 13.8de 14.1c 
 Phy 499 UT 1.8b 4.1c 5.6c 7.5ab 10.4e 12.0f 13.1f 13.2f 
 Phy 499 Trt 1.7b 4.2bc 6.5a 9.0ab 11.4bc 12.7e 13.4ef 13.5d 
 Stv 5458 UT 1.7b 4.4abc 6.5a 8.5c 11.2c 14.0c 14.9c 15.2b 
 Stv 5458 Trt 1.8b 4.2bc 6.3ab 8.8bc 11.7b 14.4b 15.4b 15.8a 
 LSD(0.05) 0.2 0.3 0.3 0.4 0.3 0.3 0.5 0.5 

z Means within columns followed by the same letter are not different according to the 
Least Significant Difference means separation test Pα=0.05. 

y Trt= Aeris® seed treatment by Bayer Crop Science; UT=Untreated seed. 
x Odd node measurements are shown to facilitate reporting. 
w Average of six consecutive plants destructively harvested. 
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Table 4.9 Average plant height (inches) at each node culminating in total height 
(inches) of G. hirsutum measured during square (40 days after emergence) 
in R. reniformis infested soils at the Leeper silty clay loam location at 
Mississippi State University. 

 
Treatment 

Plant height at each node (inches)w 
Node Number 

1x 3 5 7 9 11 13 15 
  Phy 375 UTy 1.7cd z 4.3ab 6.6b  8.7b 11.5b 13.4c  13.9b  14.1c  
  Phy 375 Trty 1.7cd 4.4ab 6.5b 8.5b 11.2b 13.8b 14.7a 15.1a 
  Stv 5288 UT 2.0bc 4.4a 6.5b 8.3b 10.7c 12.3e 12.8d 12.8e 
  Stv 5288 Trt 2.3a 4.4ab 6.5b 8.6b 11.5b 12.9d 13.4c 13.4d 
  FM 1740 UT 2.0b 4.1b 5.9c 7.6c 10.5d 12.5e 13.4c 13.7d 
  FM 1740 Trt 2.4a 4.3ab 6.3b 8.4b 11.2b 13.3c 14.2b 14.4b 
  Phy 499 UT 1.6c 3.7c 5.7c 7.8c 10.4d 11.8f 12.1e 12.1f 
  Phy 499 Trt 1.8bc 3.6c 5.7c 7.7c 10.2d 12.3e 13.2c 13.4d 
  Stv 5458 UT 1.9bc 4.2bc 6.2b 8.6b 11.4b 12.7de 13.3c 13.5d 
  Stv 5458 Trt 2.0b 4.6a 7.2a 9.4a 12.2a 14.4a 15.0a 15.2a 
  LSD(0.05) 0.3 0.3 0.3 0.4 0.3 0.4 0.3 0.3 

z Means within columns followed by the same letter are not different according to the 
Least Significant Difference means separation test Pα=0.05. 

y Trt= Aeris® seed treatment by Bayer Crop Science; UT=Untreated seed. 
x Odd node measurements are shown to facilitate reporting. 
w Average of six consecutive plants destructively harvested. 
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Table 4.10 Average plant height (inches) at each node culminating in total height of G. 
hirsutum measured during bloom (70 days after emergence) in R. reniformis 
infested soils at Marrietta fine sandy loam locations at Mississippi State 
University. 

 
Treatment 

     Plant height at each node (inches)w 
Node Number  

11x 13 15 17 19 21 
Phy 375 UT y 14.5e z 19.4  24.8g  27.9e  28.8e  29.1d  
Phy 375 Trt y 20.5b 27.2a 31.5a 33.3a 34.3a 34.1a 
Stv 5288 UT 17.3d 22.6de 25.6f 28.1e 28.7e 28.7d 
Stv 5288 Trt 18.6c 22.6de 26.6e 29.9d 31.4c 31.9b 
FM 1740 UT 16.8d 22.6de 26.8e 29.9d 30.4d 30.5c 
FM 1740 Trt 21.3a 26.4b 30.4b 31.9b 32.3bc 32.3b 
Phy 499 UT 16.9d 22.2e 28.3d 30.9c 32.1bc 32.2b 
Phy 499 Trt 18.3c 23.2d 28.6d 32.4b 33.8a 34.1a 
Stv 5458 UT 18.6c 24.0c 29.5c 31.8b 32.3bc 32.3b 
Stv 5458 Trt 18.3c 24.4c 29.3c 32.1b 32.8b 33.0b 
LSD(0.05) 0.5 0.7 0.5 0.7 0.9 0.9 

z Means within columns followed by the same letter are not different according to the 
Least Significant Difference means separation test Pα=0.05. 

y Trt= Aeris® seed treatment by Bayer Crop Science; UT=Untreated seed. 
x Odd node measurements used to facilitate reporting. 
w  Average of six consecutive plants destructively harvested. 
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Table 4.11 Average plant height (inches) at each node culminating in total height 
(inches) of G. hirsutum measured during bloom (70 days of emergence) in 
R. reniformis infested soils at the Leeper silty clay loam location at 
Mississippi State University. 

 
Treatment 

    Plant height at each node (inches) w  
Node Number 

11x 13 15 17 19 21 
 Phy 375 UTy 14.4f z 19.1h 24.6g  26.4g  28.8d  30.2bc  
 Phy 375 Trty 21.4a 28.1a 32.4a 33.5a 33.7a 33.7a 
 Stv 5288 UT 14.7f 20.1g 25.2g 26.9g 27.5e 27.7e 
 Stv 5288 Trt 18.5c 21.7f 25.3g 28.5c 29.6d 29.9cd 
 FM 1740 UT 17.0f 21.7g 26.3e 29.1d 30.3c 31.9b 
 FM 1740 Trt 18.9c 25.0c 29.60b 32.2b 33.1ab 33.3a 
 Phy 499 UT 16.4e 22.2e 28.2d 30.1d 30.6c 30.7c 
 Phy 499 Trt 20.5b 25.6b 28.8c 30.5d 30.9c 31.2bc 
 Stv 5458 UT 16.9d 21.1f 26.0f 27.9f 29.0d 29.4d 
 Stv 5458 Trt 18.5c 24.1d 29.6b 32.0b 32.7b 32.9a 
 LSD(0.05) 0.5 0.4 0.3 0.6 0.7 0.8 

z Means within columns followed by the same letter are not different according to the 
Least Significant Difference means separation test Pα=0.05. 

y Trt= Aeris® seed treatment by Bayer Crop Science; UT=Untreated seed. 
x Odd node measurements are shown to facilitate reporting. 
w  Average of six consecutive plants destructively harvested. 
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Table 4.12 Percent (%) fruit retentionu at sympodial positions 1, 2 and > 2 during 
square (40 DAE w), bloom (70 DAE w) and open boll (100 DAE w) at the 
Marrietta fine sandy loam location infested with R. reniformis at Mississippi 
State University. 

 
Treatment 

Square 
% Retentionv 

Bloom 
% Retention 

Open Boll 
% Retention 

Pos 1x Pos 2  Pos >2  Pos 1  Pos 2  Pos >2  Pos 1  Pos 2  Pos >2  
 Phy 375 UTy 97.5a z 59.2c  24.1c  81.6b  52.9a  23.1d  33.9c  13.2c  10.0a  
 Phy 375 Trty 100.0a 70.7ab 30.6c 88.7a 51.9a 42.1b 41.7b 20.4a 2.7c 
 Stv 5288 UT 98.9a 76.6a 52.7a 80.0bc 55.3a 52.2a 36.6c 9.2d 4.6b 
 Stv 5288 Trt 100.0a 71.3ab 42.8b 81.2b 51.1a 32.7c 42.4b 13.3c 4.6b 
 FM 1740 UT 99.2a 75.9a 52.9a 73.8cd 44.8c 22.9d 35.0c 15.0bc 0.4d 
 FM 1740 Trt 100.0a 75.1a 53.9a 77.6bc 45.8bc 24.6d 37.1c 16.4b 1.5cd 
 Phy 499 UT 95.9a 45.0d 30.2c 72.3d 45.9bc 19.9d 38.7bc 13.1c 2.5c 
 Phy 499 Trt 100.0a 69.7ab 29.7c 88.5a 50.1ab 30.6c 47.3a 16.5b 2.2c 
 Stv 5458 UT 95.9a 66.7b 51.3a 74.7cd 44.2c 19.5d 37.1c 8.7d 1.7cd 
 Stv 5458 Trt 98.6a 74.0a 42.1b 81.3b 55.7a 51.3a 46.9a 12.5c 2.2c 
 LSD(0.05) 3.2 5.6 6.5 3.7 4.3 5.5 3.7 2.3 1.3 

z Means within columns followed by the same letter are not different according to the 
Least Significant Difference means separation test Pα=0.05. 

y Trt= Aeris® seed treatment by Bayer Crop Science; UT=Untreated seed. 
x Pos=Sympodial (fruiting) position. 
w DAE=Days after Emergence. 
v % retention was by fruiting position across the whole plant. 
u Average of six consecutive plants destructively harvested.  
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Table 4.13 Percent (%) fruit retentionu at sympodial positions 1, 2 and > 2 during 
square (40 DAEv), bloom (70 DAEv) and open boll (100 DAEv) at the 
Leeper silty clay loam location infested with R. reniformis. 

 
Treatment 

Square 
% Retentionw 

Bloom 
% Retentionw 

Open Boll 
% Retentionw 

Pos 1 x Pos 2 Pos >2  Pos 1   Pos 2  Pos >2   Pos 1   Pos 2   Pos> 2   
 Phy 375 UT y 70.3c z 41.1c  7.1e  67.0d  39.9d  12.1g  32.4f  18.1c  4.9d  
 Phy 375 Trt y 81.5bc 52.9bc 9.4e 84.2b 48.8bc 15.0f 43.8b 23.2a 3.7e 
 Stv 5288 UT 90.3ab 62.6ab 19.9bcd 76.8c 47.4c 20.8d 36.7e 17.6c 6.1c 
 Stv 5288 Trt 100.0a 66.0ab 29.5b 78.1c 49.2bc 50.4a 44.8b 18.9c 5.5d 
 FM 1740 UT 100.0a 71.3a 14.7de 76.2c 33.7f 24.5c 32.8f 14.1d 3.1f 
 FM 1740 Trt 100.0a 75.7a 26.4bc 90.3a 59.9a 26.4c 47.7a 18.6c 7.8a 
 Phy 499 UT 96.5a 69.2a 28.3b 85.5b 37.3e 25.9c 33.7f 14.3d 6.7b 
 Phy 499 Trt 100.0a 70.7a 37.4a 91.1a 47.2c 38.2b 39.6d 20.9b 4.2e 
 Stv 5458 UT 73.7c 42.0c 17.6cd 78.7c 40.8d 15.6f 36.7e 14.0d 5.4d 
 Stv 5458 Trt 77.3bc 47.5c 26.1bc 85.4b 51.5b 17.7e 41.6c 18.4c 4.2e 
 LSD(0.05) 12.5 13.1 7.7 3.5 3.0 2.4 1.6 1.2 0.6 

z Means within columns followed by same letter are not different according to Least 
Significant Difference means separation test Pα=0.05. 

y Trt= Aeris® seed treatment by Bayer Crop Science; UT=Untreated seed. 
x Pos=Sympodial (fruiting) position. 
w % retention was by fruiting position across the whole plant. 
v DAE=Days after Emergence. 
u Average of six consecutive plants destructively harvested. 
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Table 4.14 Gossypium hirsutum maturity measured by nodes above white flower 
(NAWF), nodes above cracked boll (NACB) and percent open boll (open 
boll), as affected by variety treated with Aeris® seed treatment compared to 
no nematicide during bloom (70 DAEx) and open boll (100 DAEx) in R. 
reniformis infested soils at the Marrietta fine sandy loam location. 

Treatment NAWFv 
(Num) 

NACBv 
(Num) 

 Open Bollv 
(%)y 

 Phy 375 UTw 8.8abcz 9.4b 10.4ef 

 Phy 375 Trtw 8.0h 7.3d 28.4a 
 Stv 5288 UT 8.7abcd 10.5a 9.3f 
 Stv 5288 Trt 8.5cdef 8.2c 17.5c 
 FM 1740 UT 9.1a 9.4b 13.5de 
 FM 1740 Trt 8.6bcde 9.3b 22.0b 
 Phy 499 UT 8.4defg 10.4a 14.7cd 
 Phy 499 Trt 8.2fg 7.2d 24.0b 
 Stv 5458 UT 8.9ab 10.8a 6.9f 
 Stv 5458 Trt 8.3efgh 8.9b 15.1cd 
 LSD(0.05) 0.3 0.8 3.8 

z Means within columns followed by the same letter are not different according to the 
Least Significant Difference means separation test Pα=0.05. 

y % open boll derived from open first position bolls/total number of first position bolls 
retained.  

x DAE=Days after Emergence. 
w Trt= Aeris® seed treatment by Bayer Crop Science; UT=Untreated seed. 
v Average of six consecutive plants destructively harvested.  
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Table 4.15 Gossypium hirsutum maturity measured by nodes above white flower 
(NAWF) (70 DAEv), nodes above cracked boll (NACB) (100 DAEv) and 
percent open boll (100 DAEv) as affected by variety treated with Aeris® 
seed treatment compared to no nematicide during bloom and open boll in R. 
reniformis infested soils at the Leeper silty clay loam location. 

Treatment NAWFx 
(Num) 

NACBv 
(Num) 

Open Bollv 
(%)y 

 Phy 375 UTw 8.2bcz 10.5a 12.3d 
 Phy 375 Trtw 8.0bc 7.3d 22.7a 
 Stv 5288 UT 8.6ab 8.3c 7.4f 
 Stv 5288 Trt 8.2bc 7.5d 14.6c 
 FM 1740 UT 8.4abc 8.9b 8.1e 
 FM 1740 Trt 7.9c 8.3c 18.8b 
 Phy 499 UT 8.9a 8.5b 12.6d 
 Phy 499 Trt 8.2bc 7.5d 15.3c 
 Stv 5458 UT 8.0bc 8.3c 6.6g 
 Stv 5458 Trt 7.90c 7.8d 14.7c 
 LSD(0.05) 0.6 0.4 0.8 

z Means within columns followed by the same letter are not different according to the 
Least Significant Difference means separation test Pα=0.05. 

y % open boll derived from open first position bolls/total number of first position bolls 
retained.  

x Average of six consecutive plants destructively harvested. 
w Trt= Aeris® seed treatment by Bayer Crop Science; UT=Untreated seed. 
v DAE=Days after Emergence. 
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Table 4.16 Monopodial (vegetative) branch and boll production at Mississippi State 
University collected during open boll (100 days after emergence) comparing 
Aeris® seed treatment and no treatment in R. reniformis infested soils at the 
Marrietta fine sandy loam and the Leeper silty clay loam locations. 

 
Treatment 

Marrietta fine sandy loam Leeper silty clay loam 
Monopodial Branchy Monopodial Bolly Monopodial Branchy Monopodial Bolly 

(Num/plant) (Num/plant) (Num/plant) (Num/plant) 
 Phy 375 UTx 1.0dez 2.0d 4.0b 3.5cd 
 Phy 375 Trtx 3.0ab 4.0a 5.0a 8.4a 
 Stv 5288 UT 1.0e 2.0cd 3.0d 2.5d 
 Stv 5288 Trt 3.0bc 2.0bcd 5.0a 3.2cd 
 FM 1740 UT 2.0cde 2.0cd 3.0d 3.3cd 
 FM 1740 Trt 2.0bcd 3.0bc 3.0d 3.5cd 
 Phy 499 UT 2.0cde 2.0cd 4.0b 3.4cd 
 Phy 499 Trt 3.0a 3.0ab 5.0a 5.7b 
 Stv 5458 UT 2.0bcd 2.0bcd 3.0cd 4.4c 
 Stv 5458 Trt 3.0a 3.0ab 3.0bc 6.5b 
 LSD(0.05) 0.7 0.8 0.5 0.9 

z Means within columns followed by same letter are not different according to Least 
Significant Difference means separation test Pα=0.05. 

y Six plants with normal terminal sampled per plot. 
x UT=Untreated; TRT=Aeris® seed treatment. 

Table 4.17 Basal stalk and boll diameter (mm) taken at ninth and twelfth node below 
terminal (70 days after emergence) comparing Aeris® seed treatment 
compared to no nematicide in R. reniformis infested at the Marrietta fine 
sandy loam and the Leeper silty clay loam locations. 

Treatment Marrietta 
fine sandy 

loam 

Leeper silty 
clay loam 

Marrietta fine sandy loam Leeper silty clay loam 

Basal Stalk 
Dia y  

Basal Stalk 
Dia 

Boll 
Dia 

Node 9x 

Boll 
Dia 

Node 12  

Boll Dia 
Diff 

Boll 
Dia 

Node 9x 

Boll 
Dia 

Node12x 

Boll Dia 
Diff 

 Phy 375 UTw 9.5ez 9.8cd 17.1g 31.2bc 14.2a 27.3de 32.5de 6.7c 
 Phy 375 Trtw 10.7bc 10.3bcd 28.6a 32.8a 3.6f 28.0de 34.0bc 4.5d 
 Stv 5288 UT 9.8de 9.6d 21.3e 28.7d 7.3b 21.2g 31.7e 10.5a 
 Stv 5288 Trt 10.7bc 11.1ab 21.3e 31.6abc 10.3b 29.8c 33.2cd 4.3d 
 FM 1740 UT 10.4c 11.1ab 17.8g 32.3ab 15.0a 28.4d 34.2bc 6.4c 
 FM 1740 Trt 10.6bc 11.3ab 23.4d 32.3ab 8.9c 30.8bc 34.8b 3.5e 
 Phy 499 UT 11.2b 10.7bc 20.4e 30.8c 10.8b 31.3b 34.1bc 2.8f 
 Phy 499 Trt 11.3b 12.1a 26.4b 31.5abc 5.2e 32.9a 36.6a 3.6e 
 Stv 5458 UT 10.2c 10.4bcd 19.4f 30.7c 11.4b 23.4f 32.5de 9.1b 
 Stv 5458 Trt 12.3a 12.1a 24.4c 31.3bc 6.3d 26.6e 34.1bc 6.5c 
 LSD(0.05) 0.6 1.0 1.0 1.0 1.3 1.1 1.1 0.8 

z Means within columns followed by the same letter are not different according to the 
Least Significant Difference means separation test Pα=0.05 

y Diameters taken with digital calipers at boll center and cotyledonary node for stalk. 
x Bolls at node 12 from terminal are the oldest boll and bolls at node 9 are the youngest. 
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Table 4.18 Yield (Lbs Lint Cotton/Ac) of G. hirsutum varieties grown in R. reniformis 
infested soils of the Marrietta fine sandy loam and Leeper silty clay loam 
locations treated with Aeris® seed treatment or untreated. 

Treatment Marrietta fine sandy loam Leeper silty clay loam 
Lbs Lint/Ac y Yield Difference w Lbs Lint/Ac y Yield Difference w 

 Phy 375 UT x 1384.0f z 430.0  1482.0f  173.0 
 Phy 375 Trt x 1814.0a  1538.0de  
 Stv 5288 UT 1482.0de 203.0 1524.0ef 94.0 
 Stv 5288 Trt 1685.0b  1624.0c  
 FM 1740 UT 1508.0d 28.0 1580.0cd 121.0 
 FM 1740 Trt 1536.0cd  1624.0c  
 Phy 499 UT 1457.0de 177.0 1719.0ab 167.0 
 Phy 499 Trt 1634.0bc  1768.0a  
 Stv 5458 UT 1435.0e 60.0 1624.0c 90.0 
 Stv 5458 Trt 1495.0de  1689.0b  
 LSD(0.05) 62.6  55.2  

z Means within columns followed by the same letter are not different according to the 
Least Significant Difference means separation test Pα=0.05. 

y Lbs lint cotton formulated using harvested seed cotton weights x established lint % for 
cited varieties taken from MSU Official Variety Trials (OVT). 

x Trt= Aeris® seed treatment by Bayer Crop Science; UT=Untreated seed. 
w Yield differences represents difference between statistically derived varieties treated 

with Aeris® seed treatment nematicide and untreated check. 
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Table 4.19 Shoot and root biomass development of five G. hirsutum varieties grown in 
R. reniformis infested soils relative to at varying populations grown under a 
greenhouse environment at 90 days after emergence. 

 
 

Treatment 

 
Inoculated 

Populationuw 

Root Biomass 
(grams)y 

Shoot Biomass 
(grams)y 

Aeris® Treated Untreated Aeris® Treated Untreated 
 FM 1740 0 55.9bcz 44.1fg 77.1ab 45.6i-l 
 PHY 375 0 64.5a 45.7ef 60.8d-g 53.9g-j 
 PHY 499 0 64.4a 44.8f 84.7a 53.0g-k 
 STV 5288 0 53.8bc 35.3ijk 86.3a 64.6c-g 
 STV 5458 0 56.8b 42.6fgh 70.9b-e 54.3g-j 
 FM 1740 2,500 51.4bcd 35.1ijk 63.1c-g 45.8i-l 
 PHY 375 2,500 50.4cde 24.9l 52.4g-k 40.6klm 
 PHY 499 2,500 56.7b 42.3fgh 72.6bcd 59.1e-h 
 STV 5288 2,500 53.9bc 24.5l 73.6bc 47.2h-l 
 STV 5458 2,500 54.1bc 39.4ghi 71.4bcd 52.7g-k 
 FM 1740 5,000 38.5hij 26.5l 55.7f-j 35.1lm 
 PHY 375 5,000 25.1l 12.9m 51.6g-k 42.7i-m 
 PHY 499 5,000 55.0bc 45.8ef 70.0b-e 51.9g-k 
 STV 5288 5,000 37.6ijk 25.1l 54.5g-j 37.9lm 
 STV 5458 5,000 46.4def 27.5l 67.7b-f 44.2i-l 
 FM 1740 7,500 35.8ijk 13.1m 53.4g-j 38.7lm 
 PHY 375 7,500 14.1m 8.4n 32.6m 23.2n 
 PHY 499 7,500 43.8fgh 13.9m 66.6b-f 42.6j-m 
 STV 5288 7,500 25.0l 14.8m 45.3i-l 23.5n 
 STV 5458 7,500 25.9l 13.4m 46.3i-l 25.8n 
 LSD(0.05)  4.0v 7.7 

z Means within columns and rows followed by the same letter for each measured 
parameter are not different according to the Least Significant Difference means 
separation test Pα=0.05. 

y Shoot and root biomass was acquired from the one plant grown in a 3.0 inch pot. 
x Two seed per pot planted 0.5 inches deep and one removed after emergence. 
w 3.0 inch pot represented 500 cc of soil. 
v LSD values of 4.0 and 7.7 represent all LSDs for both columns since run together as 

RCB. 
u R. reniformis added to soil at planting using a pipette via a graduated factor. 
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Table 4.20 Reproduction (recovered egg and juvenile numbers) of R. reniformis across 
five G. hirsutum varieties treated and not treated with Aeris® seed treatment 
under greenhouse environments at 90 days after emergence.  

Treatment Inoculated 
Populationv,x 

Juvenile Numbersy Egg Numbersy 
Aeris® Treated Untreated Aeris® Treated Untreated 

 FM 1740 0 0.0nz 0.0n 0q 0q 
 PHY 375 0 0.0n 0.0n 0q 0q 
 PHY 499 0 0.0n 0.0n 0q 0q 
 STV 5288 0 0.0n 0.0n 0q 0q 
 STV 5458 0 0.0n 0.0n 0q 0q 
 FM 1740 2,500 15,991.0d 12,741.0efg 9,116.0g 5,312.0k 
 PHY 375 2,500 13,861.0e 11,119.0ghi 7,977.0h 2,284.0mno 
 PHY 499 2,500 36,729.0a 17,484.0cd 21,522.0b 15,090.0d 
 STV 5288 2,500 18,406.0c 16,995.0cd 13,751.0e 9,924.0g 
 STV 5458 2,500 18,728.0c 17,304.0cd 16,841.0c 14,678.0d 
 FM 1740 5,000 10,928.0ghi 6,953.0k 6,587.0ijk 6,257.0ijk 
 PHY 375 5,000 6,046.0kl 3,651.0m 3,600.0l 1,437.0n-q 
 PHY 499 5,000 14,124.0e 11,866.0fgh 13,184.0e 6,850.0h-k 
 STV 5288 5,000 9,806.0ij 6,033.0kl 7,192.0hi 5,614.0jk 
 STV 5458 5,000 13,596.0ef 9,167.0j 11,621.0f 6,201.0ijk 
 FM 1740 7,500 8,807.0j 4,069.0m 5,377.0k 1,411.0n-q 
 PHY 375 7,500 3,515.0m 77.0n 876.0opq 258.0q 
 PHY 499 7,500 8,652.0j 4,450.0lm 5,871.0ijk 2,016.0nop 
 STV 5288 7,500 4,759.0lm 1,494.0n 2,446.0mn 646.0pq 
 STV 5458 7,500 5,253.0klm 1,622.0n 3,909.0l 1,862.0nop 
 LSD (0.05)  1,478.6w 1,099.5 

z Means followed by same letter are not different according to Least Significant 
Difference means separation test Pα=0.05. 

y Acquired from the one plant grown in a 3.0 inch pot. Two seed per pot planted 0.5 
inches deep and one removed after emergence. 

x 3.0 inch pot represented 500 cc of soil. 
w LSD values of 4.0 and 7.7 represent all LSDs for both columns since run together as 

RCB. 
v R. reniformis added to soil at planting using a pipette via a graduated factor. 
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Table 4.21 Plant height, total nodes and height to node ratio of five G. hirsutum 
varieties treated and not treated with Aeris® at varying R. reniformis 
populations grown under a greenhouse environment at 90 days after 
emergence. 

Treatment Inoculated 
Populationvx 

Plant Height 
(inches)y 

Total Nodesy HNR 
(inches) 

Aeris® Untreated Aeris® Untreated Aeris® Untreated 
 FM 1740 0 24.7d-hz 21.6j-o 13.0cde 11.8f-j 2.1b-g 2.0b-j 

 PHY 375 0 26.1b-e 23.6f-k 13.3bcd 11.8f-j 2.2b-e 2.0b-j 
 PHY 499 0 28.8a 23.9e-j 13.0cde 12.0e-i 2.2bc 2.1b-f 
 STV 5288 0 28.0ab 23.1g-l 14.3a 12.5d-g 2.4a 2.0b-i 
 STV 5458 0 28.7a 23.8e-j 14.0ab 12.3e-h 2.1b-f 2.1b-g 
 FM 1740 2,500 23.2g-l 20.2m-r 12.3e-h 11.0ijk 2.0b-j 1.8j-p 
 PHY 375 2,500 23.1g-l 18.9o-r 13.3bcd 11.8f-j 1.7k-p 1.7k-p 
 PHY 499 2,500 27.1abc 22.5h-m 13.0cde 12.0e-i 2.1b-f 2.0c-k 
 STV 5288 2,500 26.4bcd 22.5h-m 14.0ab 12.3e-h 2.1b-h 1.9f-m 
 STV 5458 2,500 26.2bcd 21.2k-p 13.8abc 11.8f-j 2.0b-j 1.9e-k 
 FM 1740 5,000 23.2g-l 19.8n-r 11.3hij 11.0ijk 1.9e-l 1.8h-n 
 PHY 375 5,000 20.9l-q 16.7s 12.0e-i 11.0ijk 1.7m-p 1.4q 
 PHY 499 5,000 26.9a-d 22.0j-n 13.0cde 11.3hij 2.1b-g 1.9f-m 
 STV 5288 5,000 25.8c-f 19.2pqr 12.5d-g 11.0ijk 2.0b-j 1.6opq 
 STV 5458 5,000 26.8a-d 21.3j-o 13.0cde 11.8f-j 2.0b-j 1.9f-m 
 FM 1740 7,500 21.6j-o 19.4o-r 11.3hij 10.8jk 1.8i-o 1.7k-p 
 PHY 375 7,500 19.8n-r 14.3s 12.0e-i 10.0l 1.6n-q 1.4q 
 PHY 499 7,500 25.4c-g 21.6j-o 13.0cde 11.3hij 2.0c-k 1.8h-n 
 STV 5288 7,500 23.9e-j 18.3r 11.0ijk 11.0ijk 1.7l-p 1.5pq 
 STV 5458 7,500 24.7d-l 20.9l-q 12.3e-h 10.3kl 1.9e-l 1.8g-n 
 LSD (0.05)  1.5w 0.6 0.2 

z Means followed by same letter are not different according to Least Significant 
Difference means separation test Pα=0.05. 

y Plant height and total nodes was acquired from the one plant grown in a 3.0 inch pot. 
Two seed per pot planted 0.5 inches deep and one removed after emergence. 

x 3.0 inch pot represented 500 cc of soil. 
w LSD values of 4.0 and 7.7 represent all LSDs for both columns since run together as 

RCB. 
v R. reniformis added to soil at planting using a pipette via a graduated factor. 
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Table 4.22 Node of first fruiting branch and basal stalk diameter of five G. hirsutum 
varieties treated and not treated with Aeris® at varying populations grown 
under a greenhouse environment at 90 days after emergence. 

Treatment Inoculated 
Populationvx 

NFFBy Basal Stalk Diameter (mm)v 

Aeris® Treated Untreated Aeris® Treated Untreated 
 FM 1740 0 7.0i-lz 8.3fgh 6.5e-i 5.6k-n 

 PHY 375 0 6.3kl 7.8hij 6.7c-g 5.1no 
 PHY 499 0 8.0ghi 9.0d-g 7.1bcd 6.5e-i 
 STV 5288 0 6.0l 7.0i-l 7.7a 6.0h-i 
 STV 5458 0 6.8jkl 8.8e-h 7.5ab 6.4e-i 
 FM 1740 2,500 8.0ghi 9.3def 6.4e-i 5.6k-n 
 PHY 375 2,500 6.8jkl 8.33fgh 6.6d-i 4.7op 
 PHY 499 2,500 8.0ghi 9.0d-g 7.0b-e 5.9i-l 
 STV 5288 2,500 6.0l 7.0i-l 7.2bc 5.5mn 
 STV 5458 2,500 7.0i-l 9.0d-g 6.5e-i 6.2f-j 
 FM 1740 5,000 8.0ghi 9.5cde 6.4e-i 5.4lmn 
 PHY 375 5,000 7.0i-l 10.0bcd 6.6d-i 4.6op 
 PHY 499 5,000 8.3fgh 10.3bc 6.4e-i 5.6k-n 
 STV 5288 5,000 6.5kl 9.8cde 6.3f-j 5.3mn 
 STV 5458 5,000 7.3ijk 8.0ghi 6.4e-i 6.1g-k 
 FM 1740 7,500 9.8cde 10.0bcd 6.0h-l 4.7op 
 PHY 375 7,500 7.0i-l 11.3a 6.4e-i 4.3p 
 PHY 499 7,500 8.8e-h 10.0bcd 6.4e-i 5.3mn 
 STV 5288 7,500 6.8jkl 10.0bcd 6.5e-i 4.4p 
 STV 5458 7,500 7.8hij 9.3def 6.5e-i 5.4lmn 
 LSD(0.05)  0.6w 0.4 

z Means followed by same letter are not different according to Least Significant 
Difference means separation test Pα=0.05. 

y Node of first fruiting branch and basal diameter were acquired from the one plant 
grown in a 3.0 inch pot. Two seed per pot planted 0.5 inches deep and one removed 
after emergence. 

x 3.0 inch pot represented 500 cc of soil. 
w LSD values of 4.0 and 7.7 represent all LSDs for both columns since run together as 

RCB. 
v R. reniformis added to soil at planting using a pipette via a graduated factor. 
 

  



 

161 

 

 Seasonal progression of R. reniformis populations sampled during May (at-
planting), June (square), July (bloom) and August (open boll) across five 
G. hirsutum varieties (Stv 5458 B2RF, Stv 5288 B2RF, FM 1740 B2RF) 
grown at Mississippi State University locations across varieties. 

z  Samples acquired on a per plot basis and averaged across all plots to display population 
dynamics of R. reniformis at each cotton growth stage. 

y Six samples per plot were acquired using a fluted probe from six inches from the row middle in 
a manner to obtain three samples from each of the two rows plots. 

x Sample depth was approximately three inches deep per sample. 
w Samples were bagged and cooled away from direct sunlight until sample processing using the 

elutriator/centrifuge system.  
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CHAPTER V 

CONCLUSIONS 

Reniform nematode (Rotylenchulus reniformis Linford and Oliveira) infests 36% 

of the Mississippi cotton acres causing a $130 million national loss annually.  

Rotylenchulus reniformis was previously controlled using at-planting treatments of 

Temik 15G or other soil fumigants.  With Temik 15G being removed from the market 

and fumigant expense increasing, there was need to evaluate integrated crop management 

options involving Nematicide Seed Treatment (NST) efficacy with and without foliar 

applications of Vydate C-LV® and the role of commercially available varieties treated 

with Aeris® relative to tolerance in R. reniformis infested soils. 

In greenhouse and field studies at the R. R. Foil Plant Science Research Center of 

Mississippi State University in Starkville, Mississippi, and the Tennessee Valley 

Research and Extension Center (TVREC) of Auburn University (AU) in Belle Mina, 

Alabama, effects of R. reniformis populations upon growth and development of Phy 375 

were assessed.  Of the NSTs tested in the greenhouse, Aeris® + Votivo® provided better 

nematode management for plants in terms of shoot and root biomass compared to Aeris® 

at higher nematode populations.  Plants treated with Aeris® + Votivo® did maintain 

comparable shoot biomass in comparison to plants treated with Temik 15G, but root mass 

was reduced, suggesting nematode populations were impacting those roots. Field plant 

mapping at MSU indicated node of first fruiting branch (NFFB) was reduced and plant 
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height (PH) and height to node ratio (HNR) at open boll was increased for all plants 

treated with nematicides.  Vydate C-LV® applications improved performance of 

nematicide treatments on plants at open boll in regards to PH, but plant HNR exhibited 

no clear advantage.  Field plant mapping at TVREC also indicated that NFFB of plants 

was reduced and PH and HNR of plants at open boll increased with all nematicides, but 

PH and HNR of plants indicated no clear advantage due to Vydate C-LV® applications.   

At the final MSU evaluation, Vydate C-LV® improved retention of key fruiting sites (Pos 

1 and Pos 2 measured 100 DAE), improved harvest maturity (Pos 1 and Pos 2 measured 

100 DAE) and improved yields (Lb Lint/Ac) of plants treated with Aeris® or Aeris® + 

Votivo®NSTs making them equal or superior to plants grown using Temik 15G.  These 

results suggest that producers do have viable NST options with the loss of Temik 15G.  

Commercial variety tolerance to R. reniformis is important since no true 

resistance exists today in the industry. Little tolerance to R. reniformis has been reported 

in G. hirsutum varieties, however, studies indicate some varieties perform better than 

others in R. reniformis infested soils.  Greenhouse studies indicated that plants treated 

with Aeris® almost always had increased root and shoot biomass, PH, TN, and basal stalk 

diameters with reduced egg and juvenile nematode counts and NFFB numbers compared 

to untreated plants, regardless of variety. However, there were many varietal differences 

in growth in response to nematode populations.  Untreated varieties had lower fruit 

retention delaying harvest maturity, displayed as greater number of nodes above cracked 

boll, lower percent open boll and greater boll diameter differences.  Some commercial 

varieties (Phy 499, Stv 5458 and FM 1740) evaluated showed good tolerance in R. 

reniformis infested soils.   
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At low to moderate R. reniformis populations, it is possible to use tolerant G. 

hirsutum varieties without a nematicide and reduce production costs.  However, this data 

does agree with other findings where nematicides can be beneficial despite some varietal 

tolerances and can have a synergistic effect.  Additionally, NST’s have performed very 

well when compared to Temik 15G.  A producer needs to understand how varietal 

characteristics and NST’s affect yield, know their nematode species and population, and 

use sound agronomic practices to have an integrated and successful nematode 

management plan. 
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