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Additively manufactured fuels are becoming more common in the area of hybrid 

rockets due to the enhanced possibilities provided by computer aided design and improved 

additive material technology. When integrated with a highly compliant yet energetic 

paraffin wax, the additive manufactured material can help support the paraffin wax during 

the burn, and improve overall performance. This study investigates thin-walled 

acrylonitrile butadiene styrene structures that separate paraffin wax into azimuthally 

partitioned cells. The fuel grains are tested using a vertical test stand, custom nitrous 

system, and data acquisition system.  The computer program Chemical Equilibrium with 

Applications is used to compare common hybrid fuels such as sorbitol, polybutadiene 

acrylic acid acrylonitrile, and poly(methyl methacrylate) along with the manufactured fuel. 

The experimental results indicate the promise of higher performance using paraffin.  The 

analyses, however, show that refinements in grain design are necessary to fully realize the 

advantages of paraffin. 
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CHAPTER I 

INTRODUCTION   

Since the early 1930s, hybrid rocket motors combined the advantages and 

disadvantages of the growing market of solid and liquid propellants. The first hybrid 

recorded work was made by Sergie Korolev and Mikhail Tikhonravov in 1933 using gelled 

gasoline and liquid oxygen [1].  From this early work hybrid motors have progressed 

slowly when compared to their solid and liquid counterparts due to the research required 

and the disadvantage of low-burn, or regression rates. Increase in hybrid development of 

the motor occurred in the 1960s, but the regression rate problem was still a concern until 

the late 1980s. When the challenger disaster occurred, NASA supported research to replace 

the solid rocket boosters with hybrid boosters. This renewed interest in hybrid motors led 

to several advancements of fuels including: hydroxyl-terminated polybutadiene (HTPB), 

polybutadiene acrylic acid acrylonitrile (PBAN), poly(methyl methacrylate) (PMMA), and 

paraffin wax. Of these fuels paraffin wax appears to be the most energetic, but loses its 

performance due to its physical characteristics when burned. These advancements 

ultimately lead to the commercialization of hybrid rocket motors. Scaled Composites' 

SpaceShipOne, which won the Ansari X Prize, was the first successful manned rocket using 

hybrid propulsion. SpaceShipOne and Virgin Galactic’s SpaceShipTwo use a form of 

HTPB as the fuel with nitrous oxide as the oxidizer. Virgin Galactic considered using an 
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improved nylon fuel to replace HTPB in 2014, but later claimed the original HTPB fuel to 

be more efficient than the nylon fuel [2].  

Virgin Galactic’s switch to the plastic fuel nylon was not unprecedented. During 

the past 20 years, universities and research groups have experimented with nylon, PMMA, 

and 3D-printed materials such as Acrylonitrile Butadiene Styrene (ABS). ABS shows 

regression rates similar to HTPB, but with slightly reduced overall performance [3]. In 

contrast, early research with paraffin wax as a hybrid fuel showed to be highly energetic 

when compared to the rubber and plastic analogs. Space Propulsion Group (SPG) is 

currently experimenting with a paraffin-based fuel for which the regression rate is 3-5 times 

higher than HTPB [4].  However, paraffin loses its structural integrity when burned which 

ultimately leads to a loss of performance of the fuel.   

The proposed research will try to enhance the paraffin fuel by adding a plastic 

structure to increase the structural integrity of the fuel.   The plastic structure would first 

be 3D printed, and the paraffin would later be cast inside the structure using a custom 

vacuum chamber. Chemical Equilibrium Analysis (CEA) will be used to predict the 

performance of ABS and paraffin, and then compare them to other hybrid fuels.  The ABS 

and paraffin dual fuel would then be test fired. A data acquisition system will gather thrust 

values and these values would then be compared to the theoretical calculations. 
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CHAPTER II 

FUEL MANUFACTERING 

2.1 Fuel Selection 

The hybrid fuels chosen for this study was selected for the following reasons: 

affordability, readily available, historically used as fuel for hybrids, and easily maintained. 

These desired characteristics led to the selection of using two hybrid fuels: additive 

manufacturing material and paraffin wax. Additive manufacturing is the process of creating 

an object from a 3D model usually using a layer by layer process; it allows one to create 

almost any geometry for the fuel with some slight limitations in regard to the equipment 

capabilities [5]. While additive manufactured materials such as metals or plastics would 

allow one to create any geometry for fuel, the material itself is not that energetic when 

compared to other hybrid fuels. In contrast, paraffin wax has been regarded as one of the 

most energetic hybrid fuels, but is hard to form as a fuel and maintained.  If combined 

together, an additive manufactured material and paraffin wax would make an ideal fuel 

combination for a hybrid motor.  

2.2 Additive Material Selection 

Since affordability and practicality were main characteristic for fuel selection, 

metals, thermosetting resins, and glass additive materials were excluded in the fuel 

selection.  This exclusion left the following thermoplastics as the frontrunners: polyatic 

acid (PLA), acrylonitrile butadiene styrene (ABS), polyvinyl alcohol (PVA), and high 
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impact polystyrene (HIPS).  Table 2.1 shows the thermal properties and costs of these three 

plastics.  

Table 2.1 PLA, ABS, and HIPS Thermal Properties and Cost  

Characteristic PLA ABS HIPS 
Extrusion 

Temperature 
(°C) 

175 -200 230 - 240  230 - 250 

Bed 
Temperature 

(°C) 
45 - 70 225 50 - 60 

Price* 

(USD/kg) $43 $43 $25 

Note: * values from Village Plastics [6].   

PLA is made from either sugar cane or a starch which allows it to be an 

environmentally favorable biodegradable print, but it is known to be very brittle when 

impacted. In contrast, HIPS is derived from polystyrene and typically used for prototyping 

parts due to its low cost, structural characterizes, and aesthetic properties. Of the three 

plastics, ABS was chosen due to its overall structural advantages and thermal properties 

than the other two plastics; however, ABS does contain acrylonitrile and butadiene which 

are anticipated or known to be carcinogenic to humans. [7] [8] The possible carcinogens 

would be a threat during fuel combustion only, and not while printing/manufacturing the 

fuel; ABS’s extrusion temperature is lower than the temperature at which ABS fully 

decomposes into acrylonitrile and butadiene above 400°C.  [9] 

2.2.1 3D Printer 

The ABS structure of the fuel was formed in the Mississippi State University 

(MSU) Aerospace Rapid Prototyping Advance Lab (ARPAL). ARPAL was outfitted with 
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two new three-dimensional (3D) printers purchased specifically to manufacture fuel grains 

that could be 11 in (279 mm) in height and 3.85 in (98 mm) in diameter. The printers chosen 

were LULZBOT’s TAZ 5 and TAZ 6 3D printers. The TAZ printers have the capability to 

print in many plastic materials with options of water soluble material and dual extrusion 

capabilities [10]. Figure 2.1 shows a TAZ 6 after finishing a test print. Table 2.2 lists the 

specifications for both TAZ printers.  

 

Figure 2.1 TAZ 6 by LULZBOT 

Note: Image from reference [10]. 

  



 

6 

Table 2.2 TAZ 5/6 Specifications 

Physical 

Dimensions 

(in) 

Print Bed 

Dimensions 

(in) 

Weight 

(lbf) 

Average 

Print Speed 

(in/s) 

Materials 

Used 

26  x 20.47  x 

20.47  

11  x 11  x 

9.8  
43 1.18 – 1.97 

ABS, HIPS, 

PLA, NGEN 

Note: Specifications from reference [10]. 

The two printers are virtually identical, although with a few operational differences. 

The newer model, TAZ 6, automatically cleans the extruder, levels the bed, and informs 

the operator when the print is ready for bed removal. The TAZ 5 does not perform any of 

these automatic features, but still maintains ease of operation. 

2.2.2 3D Printer File Settings 

Once the plastic material is selected, and the printer’s extruder and bed plate are 

preheated to the proper temperature for a specific material, a G-code file must be uploaded 

to the TAZ printer to initiate the print. In order to create a G-code file, computer aided 

drawing (CAD) software can be used to create a model, but the stereolithography (STL) 

file from the CAD program must then be sent to a slicing software program. The slicing 

program used by the TAZ printers, CURA, allows the printer settings to be applied to the 

model which in turn creates the G-code file.  

CURA allows the user to select the following parameters:  shell thickness, fill type, 

support type, removal of top and bottom layers, and print speed.  Some parameters such as 

print speed can directly affect the quality of the part (i.e., the higher the speed the lower 

the quality of the part, and vice versa).  The constant factory recommended speed of 25 
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mm/s was used for all fuel prints to ensure the highest quality part. Once the final part 

configuration was defined, the cura model file is then saved and uploaded to the printer for 

manufacturing.  

2.3 Fuel Geometry 

The ABS fuel geometry considered in this study primarily focused on a center bore 

geometry with ABS partitions which were thereafter filled with paraffin wax. The fuel 

geometry was selected to be 9 in (228.6 mm) in height and 1.91 inches (48.5 mm) in 

diameter so that it could be enclosed in a standardized 54mm hybrid casing. Even though 

the height of the fuel could have been increased to 10 or 11 inches, the printer’s quality for 

these part dimensions degraded and therefore a 9 in tall fuel was chosen.  

2.3.1 Rectilinear (Printer Defined) Geometry 

A rectilinear pattern was derived using CURA’s built in percentage fill patterns to 

automatically create ABS partitions for the paraffin. These patterns were initially designed 

to reduce the amount of material required to create the part, while keeping the structural 

integrity.  Many 3D printer hobbyists use this tool to lower both the cost to print each part 

and the time required to print each part [11]. Figure 2.2 shows an example of the fuel 

modeled at 20% fill. The yellow squares represent the toolpath of the print extruder that 

define the ABS partitions. The volume between partitions will be filled with paraffin.  
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Figure 2.2 Rectilinear Fuel Modeled in CURA at 20% ABS Fill  

 

The rectilinear ABS cell wall geometry allowed an automated grid system that 

would change with the varying fill in density of ABS.  Initially the concept was to print 

90%, 50%, 25%, and 10% ABS fuel with 10%, 50%, 75%, and 90% paraffin, respectively. 

100% ABS fuel were excluded due to its excessive print time (i.e. over 24 hours) as 

opposed to the 18 hours of a 90% ABS fuel. However, the ABS fuel’s 90% rectilinear grid 

was filled solid due to the small tolerance of the printer extruder and very small partitions. 

Therefore, a 75% grain replaced the 90% grain in the sample selection. 5.5 in (139.7 mm) 

fuel samples were printed and then weighed to verify the 3D printer’s weight calculation 

was accurate. Unfortunately, the actual mass of each fuel sample was not equal to the 

estimated mass, raising the question of whether the printer’s percent fill calculations were 

accurate. Figure 2.3 shows each type of grain not filled with paraffin while Table 2.3 shows 

the weight comparison of the estimated prints and the actual weight.  
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Figure 2.3 Printed Rectilinear Fuel at Different ABS Percent Fills 

 

Table 2.3 Printer Estimated and Actual Mass Comparison  

ABS Percent Fill 
(%) 

Printer Mass 
(g) 

Actual Mass 
(g) 

Error 
(%) 

10 54 51 5.6 
20 72 68 5.6 
25 81 76 6.2 
50 125 117 6.4 
75 170 158 7.1 

 

Due to the inaccuracy of CURA’s calculation of the ABS’s mass, a volume 

displacement study was performed to ensure the ABS percent fill calculated by CURA was 

accurate. A 2.2 inch (55.88 mm) diameter graduated cylinder was used to verify the 

percentage fill.  The cylinder was first filled with 500 mL of room temperature water, and 

the solid fuel was submerged into the cylinder and agitated until air bubbles were not 

present. The change in volume was recorded which represented the actual volume of the 
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ABS fuel. This value was then divided by the calculated volume of a 100% ABS cylinder 

(187.45 mL) and multiplied by 100 to find the actual ABS percent fill. Additionally, the 

volume of the paraffin partitions was calculated by subtracting the actual volume of the 

ABS fuel from the calculated volume of a 100% fill ABS fuel. Table 2.4 shows the results 

of this experiment. 

Table 2.4 ABS Volume Displacement Study for Rectilinear Pattern 

Estimated 
Printer ABS 
Percent Fill 

(%) 

Actual 
ABS 

Percent Fill 
(%) 

Error of 
Percent Fill 

(%) 

Actual  
ABS 

Volume 
(mml) 

Actual 
Paraffin 
Volume 
(mml) 

10 27 167 50 137 
20 37 87 70 117 
25 48 92 90 97 
50 64 28 120 67 
75 85 14 160 27 

 

The study showed CURA’s method of calculating the ABS percent fill of the fuel 

is incorrect. Table 2.4 shown above, depicts the deviation of the estimated ABS percent 

fills of 75%, 50%, 25%, 20%, and 10% were off from the actual ABS percent fills by 85%, 

64%, 48%, 37% and 27% respectively. Since this study required a wide range of percent 

fills, high ABS content/low paraffin content and low ABS content/ high paraffin content, 

a new practice to create fuel grains was needed to satisfy this requirement.  

While this new practice was under development, preliminary tests were conducted 

with the rectilinear pattern fills. These tests included: verifying print qualities between 

parts, filling the ABS partitions with paraffin, and testing the fuel.  From print to print the 

parts never changed mass or percent fill. Filling the partitions with paraffin proved to be a 

challenge at first. Directly poring the paraffin into the ABS structure allowed air pockets 
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to exist. A vacuum method of casting the paraffin inside the ABS structure was created to 

mitigate the air pockets inside the fuel. The test firing of these fuels did reveal some 

interesting characteristic of ABS and paraffin which can be seen in Figure 2.4. 

 

Figure 2.4 Sample Rectilinear Fuel at 10% ABS after Test Fire 

 

The tests fires of these fuel patterns were performed using nitrous oxide, N2O, as 

the oxidizer. The tests showed that the combustion of the fuel was both incomplete and 

asymmetric, seen in Figure 2.4. The lower ABS partitions in the images of Figure 2.4 were 

unburnt compared to the upper ABS partitions. The injector end of the ABS/paraffin fuel 

did not completely burn, which was expected, but did reveal a problem with this fuel 

geometry. When the fuel is burning, the rectilinear geometry forces the oxidizer to first 

burn the ABS circular port layer, then the first of many paraffin layers, and then the ABS 

partitions to the subsequent paraffin layers.  This layering of different materials created an 

instability while burning and an inefficacy of nitrous use.  
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2.3.2 Radial Azimuthally Geometry 

Due to the unpredictable rectilinear geometry and burning characteristics, a new 

geometry was developed in order to accurately measure the percent fill of ABS and ensure 

a complete stable burn of the fuel. This new geometry incorporated a radial cell pattern 

centered on the azimuthal axis of the fuel. This pattern allows one to manually integrate 

multiple cell geometries while at the same time incorporating lessons learned from the 

rectilinear pattern. Figure 2.5 shows a cross sectional view of the 3D models made in 

CATIA while Figure 2.6 shows a 4 cell design in CURA.  

 

Figure 2.5 2D Models of the Four, Eight, Sixteen, and Thirty-Two Cell Design 

Notes: Each fuel’s CAD file was constructed by using the defined outer and inner diameter 
constraint of 48.514 mm (1.91 in) and 25.4 mm (1.00 in). Using these diameters, the cells 
were constrained by the number of partitions required and the required angular spacing. 
The cells depicted above have the following cell numbers and angular spacing: 4 cells at 
90 degrees, 8 cells at 45 degrees, 16 cells at 22.5 degrees, and 32 cells at 11.25 degrees, 
respectively.  
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Figure 2.6 4 Cell CURA Model 

 

The radial azimuthal geometry allowed one to completely customize the percent 

fill by changing the number of partitions. A sample percent fill calculations with a 1 mm 

wall thickness can be seen in Appendix A for a 4 cell design.  Another ABS volume 

displacement study was performed using a 4, 8, 16, and 32 cell designs to ensure an 

accurate representation of percent fill and also to find the volume of the paraffin inside 

each cell. Table 2.5  shows the percent fill cell study.  

Table 2.5 ABS Volume Displacement Study for Cell Pattern 

Cell 
Instances 

Calculated 
ABS 

Percent 
Fill 
(%) 

Actual  
ABS 

Percent 
Fill  
(%) 

Error 
(%) 

Actual  
ABS 

Volume 
(ml) 

Actual 
Paraffin 
Volume 

(ml) 

4 20 21 6 40 147 
8 23 27 16 50 137 
16 28 32 11 60 127 
32 40 42 6 80 107 
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The ABS volume displacement study shows that 4, 8, 16, and 32 cell geometries 

have a percent fill of 21%, 27%, 32%, and 43%. A 2 cell geometry was calculated to have 

a percent fill of 18.7% which is the lowest percent fill possible between these geometries. 

After the ABS volume displacement study was completed a similar test fire was performed 

to ensure a symmetric burn was achieved. An 8 cell grain was test fired with a ABS 

partition wall thickness to be 1 mm while the ABS shell thickness of the entire fuel grain 

was 1.5 mm.  The shell thickness main purpose for any 3D printed part is to increase the 

outer surface thickness to ensure the parts durability when being handled. Figure 2.7 shows 

the 8 cell fuel grain after the burn. 

 

Figure 2.7 Sample 8 Cell Pattern after Test Fire 

 

Shown in the left image of Figure 2.7, the injector end of the fuel grain shows the 

fuel grain’s structure remained mostly unburned while continuing towards the nozzle more 

material was burned away.  Further inspection of the grain showed several of the partitions 

towards the nozzle were unburned. The unburnt portions of the fuel were contributed by 

an irregular flow from the injector and the inner and outer shell thickness of the motor 
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being 1.5 mm.  The injector’s flow was altered due to the separation and ignition 

mechanism’s failure to sever and ignite the N2O supply line. This failure was later 

addressed to ensure separation and ignition of the oxidizer line and oxidizer, respectively. 

The irregular flow caused 1 in of the injector side of the fuel grain to not burn while the 

ABS inner shell thickness prevented paraffin burning throughout the fuel similar to the 

rectilinear case. The ABS inner and outer shell thickness was later reduced to 1 mm in 

order to ensure the inner walls of the fuel burns quickly, but also maintain structural 

integrity for the outer walls while burning. 

2.4 Paraffin Wax Selection and Processing  

The wax pertaining to this study will exclusively be petroleum based paraffin wax. 

This particular type of wax was chosen due to both its inherent properties as a solid at room 

temperature and thermodynamic properties when heated.  The paraffin wax was purchased 

from McMaster Carr in a small pellet form and would only be melted by an indirect heat 

source.  Since the paraffin will be injected into the ABS via a vacuum, additives could be 

intermixed within the paraffin prior to injection to improve performance. Carbon black to 

the mixture to reduce the thermal radiation through the fuel [12]. Figure 2.8 shows the 

pellet paraffin from McMaster Carr (A) and the carbon black (B) and Table 2.6 describes 

the physical properties of this paraffin wax.  



 

16 

 

Figure 2.8 A) Paraffin Wax and B) Carbon Black 

Notes: Paraffin Wax figure from reference [13] 

Table 2.6 Paraffin Wax Physical Characteristics  

Melting Point 
(°C) 

Flash Point 
(°C) 

Room Temperature 
Density 
(kg/m3) 

45 – 76 [13] 190 [13] 865– 913 [14] 
 

2.5 ABS/Paraffin Fuel Integration 

To ensure the ABS fuel grains were completely filled with paraffin with no voids, 

the paraffin wax was cast under a vacuum while the wax solidified.  The paraffin was 

heated in a double boiler at a constant temperature of 60°C to ensure all contents including 

the additive were melted and intermixed. The carbon black was added to the mixture once 

the wax was fully melted, and the additive would be heavily concentrated in the solution.   

2.5.1 First Generation Paraffin Casting Assembly 

Since it was unknown if the ABS was porous enough for the paraffin to soak into 

ABS when heated, one end of the fuel would be submerged into a double boiler while the 

top portion of the fuel was attached to a customized vacuum chamber. The centerbore of 
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the fuel was not to be filled with paraffin, so a plug was created from D312 vacuum bag 

sealant tape sourced from Jamestown Distributors. The sealant tape was also used to seal 

the joint between the vacuum chamber and the fuel grain. Figure 2.9 shows a 2D schematic 

of this concept.  

 

Figure 2.9 First Generation Paraffin/ABS Integration System 2D Schematic 

 

The vacuum chamber was constructed using a repurposed 4 in inner diameter 

acrylic tube, a top acrylic plate fitted with a ¼ in NPTF male hose coupling, and a bottom 

3D printed plate to connect the vacuum chamber and fuel grain. The vacuum chamber 

assembly was held together using threaded rods, wing nuts, and O-rings to ensure a tight 

seal.  The ABS fuel was then positioned inside the vacuum chamber and then temporarily 

sealed using the sealant tape. The complete assembly was placed directly over the double 

boiler using a composite support structure, and the vacuum pump was attached using a ¼ in 
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female vacuum hose.  Preliminary tests fills excluded carbon black for a better 

understanding of how paraffin behaves by itself when heated and under vacuum.  

To begin fill operations, a one pound bag of paraffin was poured into the preheated 

double boiler and agitated to decrease the melting time. The ABS fuel mass was recorded 

and then the ABS fuel was inserted to the bottom vacuum plate. After attaching the ABS 

fuel and sealing it with sealant tape, the entire vacuum assembly with air hose and vacuum 

pump was integrated and checked for air escaping the system. Finally, the complete system 

was then placed on top of the double boiler, excluding the vacuum pump, to fill the fuel 

grain. All fuel grains were submerged just above the bottom of the paraffin section of the 

boiler so that the grain would not be drawing in air. Figure 2.10 shows the entire assembly 

before, during, and after the fill.  
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Figure 2.10 First Generation Casting System Before, During, and After Fill 

 

Once the paraffin was melted, its viscosity was comparable to that of room 

temperature water.  The paraffin was rapidly drawn through the ABS partitions by the 

vacuum pump until no paraffin remained in the double boiler.  The vacuum would then 

only draw in air which was not desired.  To fix this oversight, the vacuum pump’s pressure 

was decreased, and a new identical ABS fuel replaced the previous ABS fuel to begin a 

new fill. This fill was performed with better results; however, once the pump was off the 

paraffin started leaking back into the double boiler.  The leaking posed a major problem 
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because the paraffin was still hot; by the time the paraffin cooled the ABS fuel would not 

be filled completely with paraffin. Another major problem in this casting system was that 

the vacuum chamber was directly above the double boiler which by itself is not a hazard, 

but when not properly secured and with liquid hot paraffin inside could pose as a hazard.  

The last problem was that a large quantity of paraffin was used to fill a 4 in diameter 

vacuum chamber when only a 2 in diameter vacuum could be used to fill the ABS fuel. 

These three problems lead to a redesign of a new safe casting system that could fill an ABS 

fuel every time without voids and requires less paraffin to fill.  

2.5.2 Second Generation Paraffin Casting Assembly 

From the lessons learned of the first generation casting system, a similar casting 

system was quickly designed and fabricated to ensure safe, without voids, and economical 

fills every time. The new design reused similar concepts including using an acrylic tube 

enclosed by 3D-printed plates as a vacuum chamber, incorporating a double boiler as the 

reservoir to hold and heat the paraffin, and a regulating/filtered vacuum pump. However, 

this design included several modifications from the first casting system. The ABS fuel was 

still attached and sealed to the vacuum chamber via 3D-printed plates and vacuum sealant 

tape in between the seals of the vacuum tube and plates. The ABS fuel also incorporated a 

3D-printed plug that would seal the center bore entirely instead of using the sealant tape. 

The 3D-printed plug was created by using two identical parts that are held together in 

compression by threaded rods and wing nuts.  Next, a 3D-printed injector is attached to the 

bottom of the ABS fuel to direct the flow of the paraffin into the ABS fuel.  The injector 

allows flow from a paraffin reservoir using a ¼ in polyurethane tubing which will be 

attached at the bottom portion of the injector.  The addition of the injector allowed a valve 



 

21 

to be installed into the system. The valve was placed in between the injector and the 

paraffin reservoir to seal the vacuum chamber from the paraffin reservoir. Once closed, the 

valve restricted the paraffin from leaving the vacuum chamber, and allowing the paraffin 

to be cooled without creating voids in the fuel.  Figure 2.11 shows a 2D drawing of the new 

system.  

 

Figure 2.11 2nd Generation ABS/Paraffin Integration System 2D Schematic 

 

The design change allowed most of the parts to be easily printed including the 

vacuum plate, fuel mounting plate, fuel grain plug, and paraffin injector while a new 

vacuum tube, polyurethane tubing, and a PVC ball valve was purchased from McMaster 
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Carr. The new vacuum tube was chosen to be a 2 in inner diameter by 1 ft tall acrylic tube 

to decrease the amount of paraffin required to fill a fuel grain by half. The polyurethane 

tubing and PVC ball valve were selected to use a ¼ in diameter tubing to create uniformity 

in tubing size throughout the casting system. In addition, if a smaller tube diameter was 

used the paraffin would have a higher chance of cooling before getting to the injector. 

Figure 2.12 shows a 3D model of the new vacuum system (left) and the cross sectional 

flow path of the paraffin (right).  

 

Figure 2.12 3D CAD Drawing of the Second Generation Fuel ABS/Paraffin Casting 
System 
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The casting assembly was first integrated by aligning the vacuum plate and fuel 

plate with the vacuum chamber with respect to the threaded rod guide holes. The ABS fuel 

was then inserted, with plug already installed, one in into the vacuum chamber. The 

paraffin injector was the attached to the bottom of the fuel grain and aligned to the other 

threaded rod guide holes.  The sealant tape was then adhered to the fuel grain plate/fuel 

grain joint and the paraffin injector/fuel grain joint, and the threaded rods and wing nuts 

were used to compress the entire structure. Aluminum tubes were added in between the 

fuel grain plate and injector to help compress the entire system. After the casting assembly 

was integrated, the assembly was then attached to a vertical mounting bracket.  Once 

attached to the structure, the polyurethane tubing and PVC ball valve were then connected 

and tested to ensure there were no leaks in the system. Finally, the tubbing was placed 

inside the paraffin reservoir and the vacuum hose was attached to the vacuum hose coupler. 

 The fill process for the new system was kept similar to the previous system with 

minor changes.  The system was first checked with no leaks and the fuel grain was 

inspected beforehand.  The paraffin wax was melted at 60°C and mixed with the carbon 

black. The polyurethane tubing was then placed inside the paraffin/carbon black solution, 

and the solution was agitated to ensure all contents going into the fill are completely mixed. 

The vacuum pump was then turned on and the paraffin/carbon black filled the polyurethane 

tubing and enter the vacuum chamber.  Once enough paraffin/carbon black has been filled 

into the chamber, the PVC valve was then closed and the vacuum chamber was then turned 

off. The joints of chamber and fuel grain were then inspected for any leaks of 

paraffin/carbon black and the assembly was set to cool at room temperature.  Figure 2.13 

shows the entire system while Figure 2.14 shows a time lapse of the fill.  
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Figure 2.13 Second Generation Casting System Overview  

 



 

25 

 

Figure 2.14 2nd Generation Casting System Time-lapse 

 

Once cooled the grain was then extracted from the vacuum chamber by hand. First 

the threaded rods and sealant tape were removed which allowed the vacuum plate and 

injector to be removed. Next, the vacuum chamber was easily removed by torqueing it 

azimuthally. The vacuum chamber removal was surprisingly easy since paraffin’s physical 

characteristics allow it to be removed when adhered to the inner glossy finished surface of 

the vacuum chamber. The paraffin injector was removed a similar fashion. Figure 2.15 
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shows the removal of all the vacuum assembly and the paraffin filled ABS fuel waiting to 

be processed.  

 

Figure 2.15 Unprocessed ABS/Paraffin Fuel Grain Extraction  

 

After the paraffin/ABS fuel was removed from the vacuum assembly, the fuel was 

processed manually to meet testing standards. These standards were defined as follows: the 

grain must have a clean center bore, with no voids in the fuel grain, and not show physical 

damage. At the ends of each fuel, excess paraffin was removed using a sharp blade to the 
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ABS mold and then the fuel was inspected for voids. Next the centerbore was inspected 

and trimmed by using a 3D printed plunger. Finally, the fuels were weighed and cataloged 

in Table 2.7. Figure 2.16 shows the 4, 8, and 16 cell fuels after processing.  

Table 2.7 Filled Grain Masses 

Fuel Geometry ABS Printed Mass 
(grams) 

ABS/ Paraffin  
Average Filled Mass 

(grams) 
4 Cell 67 290 
8 Cell 77 285 
16 Cell 96 285 

 

 

Figure 2.16 Processed Fuel Grains 

 

Though each fuel has a different printed mass shown in Table 2.7, when injected 

with paraffin and carbon black the average mass of each type of grain was very similar. 

This similarity in mass was due to paraffin’s ability to bleed into any cracks of the printed 

ABS structure. The bleeding of the paraffin occurred inside the partitions as well as the 

outside of the fuel grain. Fortunately when the outside bleeding occurred, the paraffin 

would quickly cool and seal when in contact of ambient room temperature.   
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CHAPTER III 

TEST HARDWARE  

3.1 Propellant Integration 

A commercially available hybrid casing was used to integrate the ABS/paraffin fuel 

with a predefined nozzle, injector, and oxidizer tank.  The hybrid casing chosen was 

Contrail Rocket’s 54mm diameter and 48 in length hybrid motor casing; it was chosen for 

its simplicity and ease of use. The 48 in casing uses an interchangeable design containing 

a nozzle, fuel, injector, and vent bulkhead which are held inside using snap rings. The 

casing also uses a built in oxidizer reservoir where the oxidizer can be fed through the 

injector. The casing’s original purpose was to house a 12 in tall fuel; however, since the 

3D printers limited the fuel’s height to 9 in, the oxidizer reservoir of the casing increased 

in volume. An exploded CAD drawing of the system can be seen in Figure 3.1 and the 

nozzle, injector size, vent bulkhead, and casing specifications used can be seen in Table 

3.1. 

 

Figure 3.1 Exploded and Assembly CAD Drawing 
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Table 3.1 Nozzle, Injector, Relief Bulkhead, and Casing Selection 

Nozzle  
Outer Diameter (mm) 48.9 
Combustion Diameter (mm) 34.1 
Exit Diameter (mm) 36.3 
Length (mm) 64.4 
Number of O-Rings 1 

Injector Bulkhead 
Outer Diameter (mm) 48.9 
Length (mm) 38.1 
Number of O-Rings 2 

Parker Valve and Tubing 
Valve Threading  1/8 NPT 
Tube OD (in) 1/4 
Tubing Size (in) 0.17 
Tubing Burst Pressure (psi) 1000 

Relief Bulkhead 
Outer Diameter (mm) 48.9 
Total Length (mm) 50.8 
Inside Length (mm) 22.0 
Number of O-Rings 2 

Parker Valve and Tubing 
Valve Threading  1/8 NPT 
Tube OD (in) 1/4 
Tubing Size (in) 0.17 
Tubing Burst Pressure (psi) 1000 

Casing 
Length (m) 1.219 
Outer Diameter (mm) 54.585 
Inner Diameter (mm) 48.9 

With 12 inch Fuel Grain 
Oxidizer Volume (mL) 324.4 

With 9 inch Fuel Grain 
Oxidizer Volume (mL) 356.0 

 

The integration of the fuel grain and motor assembly followed Contrail Rocket’s 

hybrid motor reload assembly manual [15]. Before integrating the motor assembly, all parts 

(including the fuel) were inspected and cleaned to eliminate unwanted debris inside the 

combustion chamber. O-rings were first installed onto the nozzle, injector, and vent 
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bulkhead, and then coated with KrytoxTM to ensure each part would give a proper seal to 

the system. Next the feed/ignition system was to be constructed by using the injector 

bulkhead, a ¼ in to ⅛ in NPT Parker press lock valve, and a ¼ inch tubing. The press lock 

valve was threaded into the ⅛ in NPT injector bulkhead, and the ¼ inch nylon tubing was 

pushed into to the Parker valve. Each fitting was checked to ensure a tight fit otherwise a 

misfire would occur. Next using electrical tape, two Pyrodex pellet charge assemblies were 

attached to the nylon tubing as close as possible to the valve/hose joint and perpendicularly 

from the feed tubing. A Pyrodex pellet charge assembly contained two 50/50 caliber 

Pyrodex pellets and an electrical match. The manual [15] advises one Pyrodex pellet charge 

assembly per firing, but early testing showed that misfires or improver oxidizer flow would 

occur when only one charge assembly was used. After the feed/ignition system was created 

a small coat of white lithium synthetic grease was applied to the injector bulkhead and was 

inserted at one end of the motor casing. The fuel and nozzle were then coated with Mobil 

1 synthetic grease and inserted after the feed/ignition bulkhead. The feed/ignition bulkhead, 

fuel, and nozzle were then sealed in place with the snap ring. Finally, the vent bulkhead 

was attached to a ⅛ in to ⅛ in NPT Parker press lock valve which will later be attached to 

a ⅛ in nylon tubing to release the oxidizer to atmosphere. The vent bulkhead was then 

coated with white lithium grease, inserted into the opposing end of the nozzle section of 

the casing, and sealed using a snap ring. 

3.2 Multipurpose Solid/Hybrid Vertically Integrated Test Stand 

To test the manufactured fuel grains, Mississippi State University’s Multipurpose 

Solid/Hybrid Vertically Integrated Test Stand (MSHVITS) and commercial 54mm hybrid 

casings were used to facilitate all hybrid testing. The test stand has the capability of firing 
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38 - 98 mm diameter hybrid or solid propellant motors, and was outfitted with a new data 

acquisition system to measure the thrust of the hybrid fuel and an oxidizer flow control 

system.   

3.2.1 Test Stand Hardware 

 MSHVITS was designed in 2009 with the purpose of vertically testing solid and 

hybrid motors of various sizes [16].  MSHVITS contains an all steel vertical frame that can 

be constrained to a concrete platform using ratchet straps.  A frictionless motor mounting 

system was attached on the outer steel frame to allow a solid/hybrid motor to be integrated 

to MSHVITS, but also to allow the motor vertical translation.  The motor mounting system 

uses two steel ball bearing rails mounted to the vertical outer-facing surfaces of the main 

support structure, and four linear ball bearings attached to a rocket motor mounting plate 

to ensure a frictionless vertical translation. Stops were also added as a safety and 

convenience to the top and bottom of both rails to prevent undesired motion of the rocket 

motor mounting plate. A worm gear winch pulley system was chosen to move the rocket 

motor mounting plate due to the winches high gear ratio and self-locking ability [16]  .  The 

high gear ratio allows the mounting plate to be adjusted with high precision so a force 

sensor can be loaded with just a few pounds of force. On top of the steel frame and on the 

same side as the ball bearing system, an aluminum top plate was mounted and outfitted 

with a force sensor mounting system that allows various motor sizes to be fired. The 

aluminum top plate was slotted down the center to allow the sensor to be positioned for a 

particular motor size.  This sensor mounting assembly and top mounting was updated 

during testing to a more practical and stronger all carbon steel design due to an unexpected 

malfunction of one the experimental fuel grains. The new sensor mounting assembly used 
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three plates place held in compression by hexagonal screws (set A shown in Figure 3.2) 

while a second set of hexagonal screws (set B also shown in Figure 3.2) would be adjusted 

to translate the sensor mounting assembly along the top mounting plate. Once set to the 

desired position the second set of hexagonal screws were then compressed into the top 

mounting plate. Figure 3.2 shows 3D-CAD drawings of the MSHVITS system and Figure 

3.3 shows test stand front (left) and side (right) view after the hybrid motor is integrated. 

 

Figure 3.2 MSHVITS Top Plate CAD Assembly  

Notes: The left image depicts the force sensor assembly and the force sensor being able to 
translate along the center of the top plate while the right image shows the two different sets 
of hexagonal screw to compress the sensor platform together and to set the platform in a 
fixed positon.  
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Figure 3.3 MSHVITS Assembly Before Testing 

 

3.2.2 Oxidizer Flow Control System 

To convert the solid vertical test stand to a hybrid vertical test stand, a new ground 

support system and an oxidizer flow control system was developed to manually feed and 

purge the hybrid motor of nitrous oxide, N2O. The feed/purge system allowed ground 

personal to manually fill the on board N2O tank reservoir and purge the entire system in 

case of any potential hazards to the test stand or surrounding facilities. The oxidizer flow 

control system’s components were designed with liquid and gaseous N2O, and used 

automotive racing solenoids, high-pressure hoses, and appropriately rated plumbing 

fittings. Inside the flow control system were two high-pressure solenoids that could 

independently be actuated via the ground support control system. The solenoid 

configuration was chosen from the automotive racing field where a high-flow purge and 

standard-flow fill solenoid are placed in parallel. Before the fill solenoid was opened to 
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allow motor oxidizer filling, the purge solenoid was first used to purge any air or moisture 

from the lines. After the purge, the fill valve was open to fill in the motor casing’s on-board 

N2O reservoir.  The addition of a purge solenoid gave the oxidizer control flow system the 

ability to quickly release and depressurize oxidizer lines in the case of a motor burn 

anomaly, with complete supply tank discharge if needed. Any purged oxidizer was bled 

off through low-pressure lines away from both the vertical test stand and ground control 

personnel. Figure 3.4 shows a 2D schematic of the oxidizer flow system. 

 

Figure 3.4 Oxidizer Control Flow System 2D Diagram 

 

3.3 Thrust Data Acquisition System 

The data acquisition (DAQ) system used in all testing was an improved version of 

the system used in previous hybrid testing [16].  The data acquisition system uses a custom 

LABVIEW program and user interface that records the thrust data from a PCB Piezotronics 
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force sensor. The DAQ system, oxidizer flow control system, and vertical test stand was 

then tested to verify the MSHVITS’s safety. The validity of the test stand and motor was 

then compared to commercially available solid and hybrid data. 

3.3.1 Hardware/Sensor Package 

The previous DAQ system and components used in the 2009 hybrid tests [16] was 

either repurposed or found to be nonfunctional; it was decided a new DAQ system was 

needed. Similar to the 2009 setup, a PCB Piezotronics’ 208C04 ICP force sensor was 

chosen to measure the thrust profile of the motors due to its compression range and high 

frequency range of 1000 lbf (4.448 kN) and 36 kHz, respectively. Since PCB Piezoelectric 

force sensors operate on a standard bias voltage, a DC-coupled signal conditioner was 

required to operate the force sensor. When a force is applied to the force sensor, the 

piezoelectric crystal inside the sensor produces a small voltage and when added to the bias 

voltage yields the signal voltage. This signal voltage, q, decays as a function of time which 

can be seen in equation 3.1. [17] 

 𝑞 = 𝑄 ∙ 𝑒(
−𝑡

𝐷𝑇𝐶
)  (3.1) 

Equation 3.1 shows the signal voltage is equal to the initial signal voltage, Q, 

multiplied by an exponential time, t, divided by the discharge time constant, DTC term. 

The DTC, measured in seconds, represents the time required for the sensor to discharge to 

37% of the initial voltage [17]. To account for the DTC, a PCB Piezotronics’ 484B06 signal 

conditioner was acquired since it had both capabilities of being AC-coupling and DC-

coupling capabilities, and system has a DTC greater than 2000 seconds. The discharge time 

constant is appropriate for the considered solid and hybrid motor tests since the signal 
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decay during a single test will be less than 0.25% if most solid and hybrid motors of this 

size fires for 5 seconds.  The chosen signal conditioner was used in the DC-coupling to 

avoid further DTC to the DAQ system and connected to a National Instruments (NI) I/O 

connector block, NI CB-68LP which was then wired to the USB DAQ device, NI USB-

6251. After, preliminary testing a grounding issue was found and solved by adding a 

5kOhm resistor to the I/O connector block. Figure 3.5 shows the DAQ hardware and sensor 

package. All equipment shown in Figure 3.5 was connected with the appropriate shielded 

cabling and connected to an MSU lab computer as shown in Figure 3.6. 

 

Figure 3.5 DAQ Hardware and Sensor Package 

Notes: 1 – USB DAQ system [18], 2 – I/O Connector Block [19], 3 – Signal Conditioner 
[20], 4 – Force Sensor [17]  

 

Figure 3.6 Functional Block Diagram 
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3.3.2 DAQ Software 

LabVIEW 2016 was used to ensure all hardware would communicate properly and 

data acquisition transpired. To do so the 2009 Thrust Acquisition Program (TAP) was used 

to record and save the voltages sent by the force sensor into a comma separated value 

(CSV) file. The program only requires an input sample frequency which was left at 

1000 Hz for all test fires and only outputs the voltage which can be later converted into 

pounds-force.  

TAP contains three frames inside the LabVIEW program’s block diagram: the first 

frame initializes the array for the voltage from the load cell, the second frame uses the 

DAQ Assistant function to continuously read the differential voltage from the load cell and 

creates the front panel, and the third frame stores and writes the voltages onto CSV file. 

Figure 3.7 shows the three frames inside the block diagram. The front panel of TAP allows 

the input of the desired sampling rate and view the voltage data live for preloading purposes 

and during testing. Once the voltage data has been collected, the stop button, shown in 

Figure 3.8, stops the data acquisition and allows the user to save the voltage data. [16] 
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Figure 3.7 Block Diagram of Thrust Acquisition Program  

Note: Figure from reference [16] 

 

Figure 3.8 Front Panel of the Thrust Acquisition Program 

Note: Figure from reference [16] 

3.4 Solid and Hybrid Test Procedures  

Once the ground support systems were updated, a set of solid/hybrid test fire 

procedures were developed which can be seen in Appendix B.  All solid/hybrid tests were 



 

39 

performed at Mississippi State University using the commercially available hardware, 

MSHVTS, oxidizer flow control system, and the data acquisition system. To ensure the 

motor’s thrust force was equally distributed to the force sensor, an aluminum cap with the 

same surface area as the load cell was attached to the forward section of the motor casing. 

Four ratchet straps were also attached to MSHVTS’s structure and to the concrete ground 

support so no unwanted movement would be present in the system. After a failure in one 

of the hybrid test fires, the ratchet straps were later protected with ablative PVC insulation 

and Nomex material to mitigate damage.  
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CHAPTER IV 

 CHEMICAL EQUILIBRIUM WITH APPLICATOIN ANALYSIS 

4.1 Introduction to CEA 

Chemical Equilibrium with Applications (CEA) is a NASA Graphical User 

Interface (GUI) program that can determine chemical equilibrium compositions and 

properties of complex mixtures. The program’s architecture is based on the Gordon and 

McBride assumptions and calculations to determine: the conditions for chemical 

equilibrium, rocket performance, shocks, and detonations. To help with these calculations, 

CEA includes thermodynamic and thermal transport property libraries [21]. CEA can be 

can used to compare solid, liquid, and hybrid fuels performance.  

4.1.1 Program Input 

CEA is divided into three primary sections: problem, reactant, and output. Also, 

CEA is divided into three secondary sections: only, omit, and insert. Two of the secondary 

or minor sections, only and omit, do not have to be used for CEA to run, but they allow the 

user to select specific chemical species to be considered exclusively or omitted from the 

calculation.  If convergence does not occur, then the user can insert possible condensed 

chemical species to aid in the convergence process.  For the program to run successfully, 

the three primary sections need to be completed before the program’s input file is finished.  
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4.1.1.1 Problem Section 

To create the input file, the type of problem must be defined in CEA.  CEA offers 

multiple types of problems including: assigned temperature and pressure, combustion 

(enthalpy and pressure), assigned temperature and volume, combustion (internal energy 

and volume), rocket, shock tube, shock, Champman-Jouquet detonation, assigned entropy 

and pressure, and assigned entropy and volume. The combustion (enthalpy and pressure), 

hp, and the rocket, rkt, problem types were used to characterize the performance for 

considered propellants. As seen in Figure 4.1, these problem types can be selected, as well 

as, how the user wants the oxidizer and fuel (O/F) ratio to be handled. Only the O/F weight 

ratio was used.  

 

Figure 4.1 CEA Problem Selection Screen With Oxidizer Dataset 
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Once the problem is defined, another window will open referencing the selected 

problem. For the hp case, the user only has to input a range of pressures in the given units 

of bar, atm, psia, or mmhg.  The hp case also allows inputs of an estimated temperature 

and an assigned enthalpy to determine if these values are used to facilitate convergence. 

These optional conditions were not used since the study at hand is observing generic 

combinations of fuels and oxidizers and these values were not known. Figure 4.2 represents 

the hp window described above.  

 

Figure 4.2 CEA Hp Case 

 

The rkt problem expands more of what the hp problem accomplishes by adding the 

nozzle and chamber conditions. To redefine a new problem, the user simply selects the 
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reset button shown in Figure 4.1. After this is completed, the screen will be wiped clean of 

all work and the user can now select a new problem. Once cleared, the rkt problem can 

now be selected allowing a new window to appear, as shown in Figure 4.3. This window 

allows the user to input a range of pressures, combustion chamber characteristics, and exit 

conditions. The primary difference between hp and rkt problems is the new addition of the 

combustion chamber.  This part of the program follows the Gordon and McBride rocket 

performance calculations at the injector, combustion chamber, nozzle, and exit. The user 

can define an infinite area combustion chamber that can be at equilibrium and/or if it’s 

frozen at the combustor, throat, or the exit. The user can also define a finite area combustion 

chamber inputting the contraction ratio or the mass flow rate per chamber area. Only the 

finite area conditions were used. The optional conditions contain user assigned enthalpy, 

combustion temperature, and exit conditions.  The user assigned enthalpy and combustion 

temperature was neglected, but the exit conditions were used.  The exit conditions allow 

the user to select a range of initial and exit pressure ratios (Pi/Pe), subsonic exit and throat 

areas (Ae/At), and supersonic Ae/At. Figure 4.3 represents the rocket problem window 

described above.  
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Figure 4.3 CEA Rocket Problem Window 

 

4.1.1.2 Reactant Section 

After the any problem is defined, the reactants must now be defined in CEA. CEA 

has a wide variety of potential reactants that the user can select from its thermodynamic 

library. To enter a built-in reactant into the interface, the user must first select if the 

substance is an oxidizer or a fuel from the “Ident” column shown in Figure 4.4. Next, the 

user is required to select a row in “Name” column. A new window appears and the reactant 

can now be chosen from an interactive periodic table database, as shown in Figure 4.5. 

Finally, under the “Amount” and “Temperature”, a relative weight amount or a mole 

amount and a reference temperature are required to be inputted.   
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Figure 4.4 CEA Reactant Window 

 

 

Figure 4.5 CEA Reactant Selector Window 
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If a reactant is not in the database, the user can define it manually into the second 

and third tables, as shown in Figure 4.4. The reactant will be entered normally, containing 

an identity, reference amount, and reference temperature; however, the user will be 

required to define a custom name for the chemical species, the heat of formation or the 

internal energy of the reactant, and the chemical structure of the reactant. Both the built-in 

and user defined reactants were used in this study and will be explicitly explained.  

4.1.1.3 Output 

The last section, output, formats the results of CEA.  When running any problem 

type of CEA, the output tab does not change. It allows the user to customize the output file 

and plot file for their specific case. The output file shows all thermodynamic results, as 

well as the chemical composition of the products.   The output file can be shortened to not 

show the iteration process or lengthened to show every detail in the calculation. The plot 

file summarizes the output file, and arranges each user selected variable into columns so it 

can easily be plotted in Microsoft Excel. Figure 4.6 shows the output window with no 

current selections.  



 

47 

 

Figure 4.6 Output Window 

 

4.2 Heat of Formation 

As previously stated, either the heat of formation, ΔHf, or the internal energy, ΔU, 

is required to run any CEA simulation.  When discussing the energy of a molecular 

substance, most resources provide the heat of formation, but not internal energy; therefore, 

heat of formation will be used. Heat of formation, or standard enthalpy of formation, is a 

measure of the energy consumed or released when one mole of a substance is created under 

standard atmospheric conditions from its pure elements [22]. 

4.2.1 Group Addition Method 

The heat of formation of many common compounds are known thorough 

experimentation or calculation. These heats of formations can be found in various sources 

such as the National Institute of Standards and Technology’s (NIST) database or the 
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Polymer handbook [23] [24]. However, for complex structures with little known data about 

them, the heat of formation must be estimated. One method to do this is by the group 

addition method. One of the first and is most popular forms of this method was developed 

by Van Krevelen and Chermin, shown in equation 4.1. This method defines  ∆𝐺𝑓
° as the 

free enthalpy (heat) of formation, R as the gas constant, T as the temperature, and σ as the 

degree of symmetry correction of the molecule [25]. 

 ∆𝐺𝑓
° = ∑

𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑠 𝑜𝑓
𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑔𝑟𝑜𝑢𝑝𝑠

+ ∑ 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙 
𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑠

+ 𝑅 ∙ 𝑇 ∙ 𝑙𝑛 ( 𝜎) (4.1) 

Van Krevelen and Chermin later reduced this equation to: 

  ∆𝐺𝑓
° = ∑

𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑠 𝑜𝑓
𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑔𝑟𝑜𝑢𝑝𝑠

+ ∑ 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙 
𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑠

 (4.2) 

Equation 4.2  includes equation 4.1’s last term inside the structural corrections summation. 

This reduced equation was then assumed to consist of linear functions of temperature 

shown in equations 4.3 and 4.4 where the enthalpy and entropy coefficients can be seen in 

Table 4.1 [26]. 

 ∆𝐺𝑓,𝑔𝑟𝑜𝑢𝑝
° =  ∑ (𝑛

𝑖=0 𝐴𝑖 + 𝐵𝑖 ∙ 𝑇𝑖) (4.3) 

 ∆𝐺𝑓,𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑠
° =  ∑ (𝑛

𝑗=0 𝑎𝑗 + 𝑏𝑗 ∙ 𝑇𝑗) (4.4) 

Table 4.1 Enthalpy and Entropy Coefficients 

Coefficient Meaning 
Ai Enthalpy of polymerization for group contributions 
Bi Entropy of polymerization for group contributions 
aj Enthalpy of polymerization for structural corrections 
bj Entropy of polymerization for structural corrections 

 

These two equations can then can be written as: 
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 ∆𝐺𝑓 
° =  ∑ (𝑛

𝑖=0 𝐴𝑖 + 𝐵𝑖 ∙ 𝑇𝑖) +  ∑ (𝑛
𝑗=0 𝑎𝑗 + 𝑏𝑗 ∙ 𝑇𝑗) (4.5) 

and can be reduced to equation 4.6 if the structural corrections are ignored. 

  ∆𝐺𝑓 
° =  ∑ (𝑛

𝑖=0 𝐴𝑖 + 𝐵𝑖 ∙ 𝑇𝑖) (4.6) 

When compared to the Gibbs’s free energy equation, equation 4.7 and T can be assumed 

to be in the range of 300K-600K.  [26] 

 ∆𝐺 = ∆𝐻 − ∆𝑆 ∙ 𝑇 (4.7) 

Equation 4.6 is an approximation since complex molecules required specific 

structural corrections that may not be known for a particular compound. The simplicity of 

the equation outweighs its approximate nature and allows it to be a useful expression. A 

list of small molecules and related group contributions to the heat of formation of large 

molecules can be seen in Appendix C. 

4.3 Propellant Types  

Multiple fuel types were examined with the program CEA to determine the 

chemical performance characteristics with varied oxidizer to fuel (O/F) ratios. Sorbitol, 

poly(methyl methacrylate) (PMMA), polybutadiene acrylic acid acrylonitrile (PBAN), 

paraffin wax, and ABS plastic were chosen in the CEA calculations as the fuel types 

because of their cost, availability as household goods, and historic use as hybrids. The 

oxidizer was always nitrous oxide, N2O. For each of these reactants, the chemical structure, 

initial amount, initial temperature, and heat of formation are needed for CEA. These 

properties and the method by which they are input will next be described.  
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4.3.1 Nitrous Oxide  

CEA has a wide variety of potential oxidizers that the user can select from its vast 

thermodynamic library. The library includes but is not limited to: liquid oxygen, nitric 

oxide, nitrogen dioxide, nitrous oxide, dinitrogen tetroxide, red fuming nitric acid, and 

many more.  As previously stated, the oxidizer chosen was nitrous oxide, N2O, due to its 

availability, cost, and easy to maintain.   

The input values for N2O for all cases were a relative weight amount of 100 and a 

reference temperature of 298.15 K. With these values CEA reported N2O’s heat of 

formation to be 81.6 kJ/mol which is very close to the National Institute of Standards and 

Technology’s (NIST) heat of formation of 82.5 kJ/mol. [27]   

4.3.2 Sorbitol  

Sorbitol, a sugar, is similar in appearance and physical characteristics to both 

sucrose and dextrose, but is classified as a hexahydric alcohol, or an “alcohol sugar” [28]. 

Sorbitol is found in nature in various fruits and berries, but can be made by the 

decomposition of dextrose [29]. Figure 4.7 represents sorbitol’s chemical structure. Each 

vertex represents a carbon. 

 

Figure 4.7 Sorbitol’s Chemical Structure C6H14O6  
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Since sorbitol was not found in CEA’s thermodynamic data base, the substance was 

defined manually in the user-provided reactant section. The chemical formula was obtained 

from NIST’s database and the heat of formation was found to be -1353.7 kJ/mol [30]. 

4.3.3 Poly(methyl methacrylate) (PMMA) 

PMMA is a thermoplastic and is soft and malleable when heated and hard when 

cooled. It is commonly known as Plexiglas and has been used as a hybrid rocket fuel. 

PMMA is created synthetically from the monomer methyl methacrylate where the structure 

is a polymer. Figure 4.8 depicts PMMA’s chemical structure. PMMA consists of an “n” 

identical, repeating subunits. The smallest repeating unit of PMMA is found within the 

brackets.    

 

Figure 4.8 PMMA’s Chemical Structure. (C5O2H8)n  

Starting from the top CH3 and working down, the first carbon is single-bonded to an 
oxygen. This oxygen is bonded to another carbon, which is also double bonded to another 
oxygen. That same carbon is also single bonded to another carbon, which is located in the 
4-line junction towards the bottom. That carbon is bonded to two other carbons in addition 
to the one connected to the oxygens. 

Since PMMA’s heat of formation was not included in the CEA’s database, and no 

official source has documented it, the group addition method was implemented to estimate 
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the heat of formation.  PMMA’s structure was broken down by the types of bonds that are 

present in a single molecule of PMMA, n =1. Next, using reference [31]  the equations for 

the bond energies were found and then calculated at standard temperature and pressure. 

CEA reported the heat of formation of -184.48 kJ/mol Table 4.2 summarizes these 

calculations.  

Table 4.2 PMMA  Heat of Formation Calculations 

Number 
of Bonds 

Type of  
Bonds 

Equation 
(J/mol) 

Heat of Formation 
 (kJ/mol) 

1 – C – 1 x (20,000 +140T) 61.72 
1 – O – 1 x (120,000 +70T) -99.14 
1 C=O 1 x (132,000 +40T) -120.08 
1 CH2 1 x (-22,000 +102T) 8.40 
2 CH3 2 x (-46,000 +95T) -35.38 

Total Heat of Formation,  (kJ/mol) -184.48 
 

4.3.4 Polybutadiene Acrylic Acid Acrylonitrile (PBAN) 

Used as the binder for most composite propellants such as TP-H-1011, the space 

shuttle solid rocket boosters, PBAN can also be used as a hybrid rocket fuel on its own. 

Initially, the company Thiokol investigated whether liquid polybutadiene polymers could 

replace the current standard of polysulfide to increase the performance.  In doing so, they 

developed a copolymer of butadiene and acrylic acid, PBAA; however, it was found to 

have poor tear strength. This was later changed to include acrylonitrile, which formed what 

today is known as PBAN [32].  Contrail Rockets, a hobby hybrid rocket company, uses 

similar formulations of PBAN in their hybrid fuel grains. When PBAN is used as a binder, 

it does give a slightly higher specific impulse, density, and burn rate than equivalent 

formulations using HTPB, a similar binder [33] . Chemically, PBAN is a copolymer of 
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butadiene, acrylonitrile, and acrylic acid, which allows this polymer to have a wide range 

of heats of formation depending on the relative amounts of each major ingredient. Figure 

4.9 shows the chemical structure of PBAN. 

 

Figure 4.9 PBAN Chemical Structure, C10H13NO2 

Notes: In the n1 bracket (polybutadiene), there are four carbons. The second and third 
carbons in the n1 bracket are double bonded together. In the n2 bracket (acrylic acid), there 
are three carbons. There are two in the lower half of the n2 bracket, and then the third 
carbon is connected to two oxygens. In the n3 bracket (acrylonitrile), there are three 
carbons. Two of the carbons are in the lower half of the bracket. The third carbon is in the 
top half of the n3 bracket, and it is triple bonded to a nitrogen. 

Since PBAN has primarily been used as a binder, little information is known about 

the heat of formation. However, the heat of formation could be found using the group 

addition method. Further research did discover the heat of formation was found to 

6544.81 kJ/mol with the chemical formula to be C654H848N8904 from the program 

PropPep3, based on an early Lockheed Martian program that calculated the propellant 

performance [34].  It was chosen not to calculate the heat of formation by group addition 

method since this PropPe3 source is reliable and the heat of formation would have been an 

approximation.    
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4.3.5 Paraffin Wax  

One of the primary components of a household candle is paraffin wax, a white 

malleable odorless substance that can be derived from petroleum.  Paraffin consists of 

primarily of carbon and hydrogen atoms classifying it as a hydrocarbon.  Specifically in 

chemistry, paraffin is also known as an alkane due to its chemical structure of CnH2n+2. 

Paraffin’s chemical can structure vary depending on how many molecules of carbon and 

hydrogen it contains. However, in the case for paraffin the chemical structure is CnHn+2 

where n is from 19 to 36 [14]. For instance, methane (CH4) is an alkane because it has the 

structure of CnH2n+2, but since n is equal to one methane is not a paraffin.   Since for any 

given paraffin, the number of n can vary, an averaged value off n = 25 was used since very 

little data is known.  Figure 4.10 shows the chemical structure of paraffin wax with n equal 

to 25. 

 

Figure 4.10 Paraffin Wax Chemical Structure C25H52 

 

To estimate the heat of formation of paraffin, it was calculated by using the heat 

addition method. Paraffin’s chemical formula was broken down to CH2 and CH3 bonds. 

This breakdown becomes 

 – CH3 – CH2 – CH3 – (4.8) 
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where CH2‘s heat of formation contribution depends on the n value. Figure 4.11 shows 

the generic structure of paraffin wax. 

 

Figure 4.11 Paraffin’s Generic Chemical Structure, CnH2n+2 

 

Since the chemical structure of the paraffin contained multiple bonds, it was 

decided not to use bond energy calculations to find the heat of formation, but to obtain a 

more precise heat of formation for paraffin by using experimental data. The resource 

material used experimental values of several forms of paraffin to obtain the heat of 

formation and combustion of paraffin at any n value. First, balanced chemical equations, 

equation 4.9 through 4.12, were written in terms of n so an iteration process could be 

formed to find the heat of formation and combustion of paraffin in gas and liquid form 

[35].  

 𝐶𝑛𝐻2∙𝑛+2(𝑔𝑎𝑠) +
3∙𝑛+1

2
𝑂2(𝑔𝑎𝑠) → 𝑛 ∙ 𝑂2(𝑔𝑎𝑠) + (𝑛 + 1) ∙ 𝐻2𝑂(𝑙𝑖𝑞𝑢𝑖𝑑) (4.9) 

 𝐶𝑛𝐻2∙𝑛+2(𝑙𝑖𝑞) +
3∙𝑛+1

2
𝑂2(𝑔𝑎𝑠) → 𝑛 ∙ 𝑂2(𝑔𝑎𝑠) + (𝑛 + 1) ∙ 𝐻2𝑂(𝑙𝑖𝑞𝑢𝑖𝑑) (4.10) 

 𝑛 ∙ 𝐶(𝑐, 𝑔𝑟𝑎𝑝ℎ𝑖𝑡𝑒) + (𝑛 + 1) ∙ 𝐻2(𝑔𝑎𝑠) → 𝐶𝑛𝐻2∙𝑛+2(𝑔𝑎𝑠) (4.11) 

  𝑛 ∙ 𝐶(𝑐, 𝑔𝑟𝑎𝑝ℎ𝑖𝑡𝑒) + (𝑛 + 1) ∙ 𝐻2(𝑔𝑎𝑠) → 𝐶𝑛𝐻2∙𝑛+2(𝑙𝑖𝑞𝑢𝑖𝑑) (4.12) 
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These equations were then evaluated with experimental data [35] and to give the heat of 

formation in equations 4.13 through 4.16 with their corresponding uncertainty values.  

 ∆𝐻𝑐𝑜𝑚𝑏𝑢𝑠𝑡𝑖𝑜𝑛(𝑔𝑎𝑠) = (57.909 + 157.443 ∙ 𝑛)
𝑘𝑐𝑎𝑙

𝑚𝑜𝑙
  (4.13) 

 ∆𝐻𝑐𝑜𝑚𝑏𝑢𝑠𝑡𝑖𝑜𝑛(𝑙𝑖𝑞𝑢𝑖𝑑) = (57.430 + 156.263 ∙ 𝑛)
𝑘𝑐𝑎𝑙

𝑚𝑜𝑙
 (4.14) 

 ∆𝐻𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛(𝑔𝑎𝑠) = (−10.887 − 4.926 ∙ 𝑛)
𝑘𝑐𝑎𝑙

𝑚𝑜𝑙
 (4.15) 

  ∆𝐻𝑓𝑜𝑟𝑚𝑎𝑖𝑡𝑜𝑛(𝑔𝑎𝑠) = (−10.887 − 6.106 ∙ 𝑛)
𝑘𝑐𝑎𝑙

𝑚𝑜𝑙
 (4.16) 

Finally, the heat of formation was calculated at n values of 15, 20, and 25 as shown in 

Table 4.3. Appendix D shows the heat of formation of paraffin calculations including the 

heat of combustion calculations.   

Table 4.3 Heat of Formation of Paraffin Wax CnH2n+2 

“n”  
Value 

Heat of Formation, Gas 
(kJ/mol) 

Heat of Formation, Liquid 
(kJ/mol) 

15 -352.94 -429.05 
20 -456.06 -556.87 
25 -559.18 -684.70 

 

Since paraffin will be in both liquid and gaseous states during combustion, average 

values for n = 25 giving -621.94 kJ/mol were chosen. This compares favorably to other 

sources such as [36] where ΔH = -598 kJ/mol where n = 23.  

4.3.6 Acrylonitrile Butadiene Styrene (ABS) 

The final fuel to be discussed is ABS plastic. ABS is classified as a thermoplastic 

polymer due its moldable nature. This characteristic allows it to be used in many 

applications such as appliances, toys, household piping, automotive components, and 3D 
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printing [37]. Chemically, this plastic is comprised of three monomers: acrylonitrile, 1,3 

butadiene, and styrene to create the terpolymer, a copolymer consisting of three monomers 

[38]. Acrylonitrile, 1,3 butadiene, and styrene monomer chemical structures can be seen in 

Figure 4.12  

 

Figure 4.12 ABS Chemical Structure, (C3H3N C4H6 C8H8)n 

Notes: Starting from the n1 bracket is acrylonitrile (C3H3N) where there are three carbons. 
A carbon is triple bonded to a nitrogen and then single bonded to a carbon. This carbon is 
single bonded to two hydrogens and another carbon atom. This carbon is then bonded to 
the n2 bracket which is butadiene 1,3 (C4H6). Butadiene 1,3 contains a chain of four carbons 
to of which are double bonded. One carbon, as previously discussed, attaches to the 
acrylonitrile while another attaches to the styrene, n3 bracket. Styrene (C8H8) contains eight 
carbons and hydrogens; six of each are in a benzene ring structure (C6H6). 

Due to ABS’s complex chemical structure, the group addition method must be used 

to estimate the heat of formation.  To do so the following information is required: heat of 

formation of the monomer, ΔHf,monomer, heat of formation of polymerization, 

ΔHf,polymerization, heat of formation of the polymer, ΔHf,polymer, and the mole fraction of each 

monomer. ΔHf,monomer and ΔHf,polymerization values were found using the NIST website [23] 

and the polymer handbook [24], respectively.  Once these values were found, ΔHf,polyomer 
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was calculated by subtracting ΔHf,polymerization from ΔHf,monomer. This principle was described 

by Van Krevelen and shown in equation 4.17 [26]. 

 ∆𝐺 = ∆𝐻 − ∆𝑆 ∙ 𝑇 = 𝐺𝑝𝑜𝑙𝑦𝑚𝑒𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛 − 𝐺𝑚𝑜𝑛𝑜𝑚𝑒𝑟  (4.17) 

Next, the mole fractions were calculated from the weight percentages that were 

given by the manufacturer. CHEI MEI Corporation, one of the main sources for plastic and 

rubber material supplies in the United States, quotes the following weight percentages of 

their black ABS: acrylonitrile 20 – 40 %, butadiene 19 – 23 %, styrene 54 – 58 %, and 

additive 1 – 2 %. The data sheet appears in Appendix E [39]. The additive is more than 

likely the coloring of this particular ABS plastic which was neglected from these 

calculations. The average percentage of each monomer was taken to calculate the molar 

fraction of each monomer. Table 4.4 shows the mole fractions and the results of heat of 

formation calculations.  

Table 4.4 Heat of Formation of ABS Calculation 

Monomer ΔHf
°
,monomer 

(kJ/mol) 

ΔHf
°
,polymerization 

(kJ/mol)  
ΔHf

°
,polymer 

(kJ/mol) 

ABS 
Mole 

Fraction 

ΔHf
°
,subtotal

 

(kJ/mol) 

Acrylonitrile 176.6 [40] 76.5 [41] 100.1 0.421 42.14 
Butadiene 108.8 [42] 73.0 [41] 36.7 0.394 14.46 
Styrene 146.9 [43] 74.5 [41] 62.31 0.541 33.71 

ΔGf°,ABS 90.312 
 

Finally, using the mole fractions, the heat of formation and the chemical formula 

for ABS were found to be 90.312 kJ/mol and C17.03H18.9N respectively.  Similar ABS heat 

of formation calculations were performed [3], and yielded 62.62 kJ/mol and a chemical 

equation of C8.95H11.28N [3]. These calculations are only different due to different source 

of materials and the quote on mole fractions. These differences can be seen in Table 4.5. 
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The chemical structure and heat of formation of all selected fuels that will be tested in CEA 

are summarized in 0. 

Table 4.5 MSU and USU ABS Heat of Formation Calculations Comparison  

Monomer ΔHf
°
,MSU 

(kJ/mol) 
ΔHf

°
, [3] 

 
(kJ/mol) 

Acrylonitrile  42.14 42.27 
Butadiene 14.46 16.0 
Styrene 33.71 4.36 

Total 90.31 62.63 
 

Table 4.6 User Selected CEA Fuel Characteristic  

Characteristic Sorbitol PMMA PBAN Paraffin  ABS 
Heat of 

Formation  
(kJ/mol) 

-1353.7 -184.48 6544.8054 -621.94 90.31 

Chemical 
Structure C6H14O6 C5O2H8 C654H848N89O4 C25H52 C17.03H18.9N 

 

4.4 Similar Hybrid Studies Using CEA 

CEA has been used in solid, liquid, and hybrid propulsion applications from 

classroom demonstrations to publications from several universities. Utah State and 

Stanford University papers have used the hp case and the rocket case, respectively, to gain 

a better understanding of the chemical reactants inside the combustion and performance 

characteristic of a nitrous oxide fed hybrid motor [3] [36] [44]. These references were 

studied, accurately reproduced, and expanded upon using the current study’s findings of 

the five chosen fuels.  
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4.4.1 CEA Enthalpy and Pressure Simulations    

Reference [3] approximated the heat of formation and then calculated the chemical 

compositions of HTPB, ABS, and paraffin, which were then entered into CEA’s 

combustion enthalpy and pressure case to find the thermodynamic and transport properties 

of a hybrid motor using nitrous oxide. The computations used at pressures of 100 kPa, 

500 kPa, 1500 kPa, 4000 kPa, and 75000 kPa with a range of oxidizer/fuel ratios from 1 to 

11. These simulations provided the following data sets: specific heat ratio, molecular 

weight, characteristic exhaust velocity, adiabatic flame temperature, viscosity, and Prandtl 

number [3] [36]. It was decided to rerun these simulations to include O/F ratios below 1, 

and to only focus on the adiabatic flame temperature T0, specific heat ratio γ, molecular 

weight Mw. These runs were used to ensure validity of all future CEA runs, and to gain a 

better understanding how the difference of inputs, heat of formation and chemical formula, 

would affect the output. The reference ABS and Paraffin was rerun only. HTPB wasn’t 

considered since PBAN is very similar HTPB. Table 4.7 reviews reference [3] as well as 

the current experiments inputs into CEA.  
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Table 4.7 Enthalpy and Pressure CEA Input  

Pressure Range (kPa) 100, 500, 1500, 4000, 7500 
O/F Ratio 0.5 – 11 (increments of 0.5) 
Temperature (oxidizer and fuel) (K) 298.15 
Relative Weight Amount  100 
Oxidizer (built into CEA) N2O 

Fuel Heat of Formation 
(kJ/mol) Chemical Formula 

Paraffin [3]  -598 C23H48 
 ABS [3] 62.63 C8.955H11.28N  

Paraffin -621.94 C25H52 
ABS 90.31 C17.03H18.903N 

Notes: Reference [3] calculated the heat of formation for a paraffin n=23, but states that 
n=25 was chosen. Assuming that the calculations were supposed to n=23 be for the 
simulations were run accordingly.  

The combustion chamber pressure is not currently known for the present 

experiments so an estimation of 4000 kPa (580 psi) was chosen to serve as a middle ground 

for a comparison. Figure 4.13 - Figure 4.15 shows the reference ABS and Paraffin and the 

current experiments ABS and paraffin calculated in CEA at 4000 kPa.  

 

Figure 4.13 CEA Hp: Adiabatic Flame Temperature for Paraffin and ABS 
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Figure 4.14 CEA Hp: Molecular Weight for Paraffin and ABS 

 

 

Figure 4.15 CEA Hp: Specific Heat Ratio for Paraffin and ABS 

 

The hp CEA simulations showed some interesting results. All of reference [3] and 

current paraffin curves are almost identical, which means that a slight change of “n” and a 

higher heat of formation doesn’t affect the thermal properties that much. The changes of 
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the ABS is more noticeable when observing the temperature and the specific heat ratio 

curves. For instance, at an O/F of 3 the specific heat ratio and molecular weight are larger 

in the current ABS when compared to the reference ABS while the temperature is higher 

for the reference ABS.  This information could aid propellant manufactures on how certain 

mixtures of fuel change the performance properties of their propellant. 

4.4.2 CEA Rocket Problem Simulations  

NASA Ames conducted simulations with CEA’s rocket problem simulation to 

characterize four specific fuels: sorbitol, HDPE, HTPB, and PMMA [44]. These 

simulations assumed equilibrium combustion at 500 psia and expanding to sea level 

conditions. NASA Ames’s atmospheric, combustion chamber, and nozzle conditions were 

re-simulated in CEA’s rocket problem section, but the fuels HDPE and HTPB were 

excluded from the analysis. The simulation did included sorbitol, PMMA, paraffin, ABS, 

and PBAN. The simulation’s purpose was to find the combustion chamber’s specific 

impulse, Isp, of each of the 5 fuels at a varying O/F ratio.  Table 4.8 shows the CEA inputs 

for this NASA Ames case and Figure 4.16 shows the results of the NASA Ames rocket 

problem simulation. The simulation was accurately reproduced for sorbitol, and were 

within tolerance of PMMA. [44] 

Table 4.8 NASA Ames Rocket Problem Conditions 

Initial Pressure 
(kPa) Ac/At Pi/Pe 

3447.4 3.917 34.014 
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Figure 4.16 [44] Specific Impulse with Selected Fuels 

 

This NASA Ames rocket problem simulation shows how to properly use CEA’s 

performance prediction while achieving some knowledge how the fuels will act in the 

combustion chamber. When the O/F increases the Isp for each fuel increases, but then peaks 

and slowly decreases. Sorbitol and PMMA increase very quickly while paraffin, ABS, and 

PBAN increase at a slower rate but become at top off at a higher Isp in the range of O/F 6 -

8.  

4.5 Performance Predications 

After the reference simulations concluded, simulations were ran to estimate the 

performance characteristics of each fuel at the conditions at which they would operate. The 

initial pressure was varied from 3200 kPa (464.12 psi), 4000 kPa (580.15 psi), and 4200 

kPa (609.16 psi) since the pressure at the injector was estimated to be below the vapor 

pressure of N2O.  The nozzle’s combustion, throat, and exit areas were calculated to find 

Ac/At and Ae/At then were inputted into CEA shown in Table 4.9.  The simulations 
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calculated pressure, temperature, specific impulse, specific heat ratio, and molecular 

weight at the combustion chamber, throat, and exit. Figure 4.17 shows the 4000 kPa exit 

condition results.   

Table 4.9 MSU Rocket Problem 

Initial Pressure 
(kPa) 

Area of 
Combustion 

(mm2) 

Area of 
Throat 
(mm2) 

Area of  
Exit 

(mm2) 
Ac/At Supersonic  

Ae/At 

3200, 4000, 4200 913.92 142.33 1036.17 6.421 7.28 
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Figure 4.17 Exit Performance Conditions at 4000 kPa 
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These simulations gave valuable insight to how each fuel behaves at a varying O/F 

ratio. The simulations show that pressure, temperature, and ISP at an O/F between 3.5 and 

7, PMMA, PBAN, ABS, and paraffin, increase, peak, and the decrease. PMMA does peak 

earlier between all three fuels followed by PBAN, ABS, and then paraffin.  
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CHAPTER V 

TEST RESULTS 

5.1 Data Extraction Software 

A Mathcad code was developed to extract the thrust curve from the raw voltage 

data gathered from the DAQ system. The code was designed to calculate an average of the 

initial voltage to zero out the preloading, convert the voltage to pound-force, find the 

ignition time using a standard deviation function and  threshold while loop, allow the user 

to manually set when the data set will end, and output the data into a csv file.  The code 

can be seen in Appendix F.  

5.2 Results 

When analyzing the solid and hybrid test fires, measured and video data were taken 

and compared to understand how the fuel behaves during operation. As previously 

discussed, the force sensor would capture the thrust measurements for each fuel at a 

function of time while high definition cameras captured videos and photography images. 

The test fires were recorded and logged into Table 5.1.  
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Table 5.1 Solid/Hybrid Test Fire Log 

# Date Propellant Designation Comments 

1 9/26/2015 Cesaroni  
Solid J760 

Tested vertical stand and 
experimental blast deflector no 

data 

2 11/21/2015 Cesaroni  
Solid J760 Data recorded and verified 

3 2/27/2016 ABS/Paraffin 
Rectilinear 
10% Fill 
(concept) 

Tested nitrous system and fuel 
concept. System deemed safe. No 

data. 

4 3/4/2016 ABS/Paraffin 16 Cell 
(concept) 

Tested final configuration of test 
hardware and new fuel concept. 

No data. 

5 3/4/2016 Cesaroni 
Solid J760 Data recorded and verified with 

final test setup. 

6 5/10/2016 Contrail 
PBAN K-321 Data recorded. 

7 5/10/2016 Contrail 
PBAN K-321 Data recorded. 

8 5/19/2016 Contrail 
PBAN 

K-321 
(9 inch) Data recorded. 

9 5/19/2016 Contrail 
PBAN 

K-321 
(9 inch) Data recorded. 

10 5/19/2016 ABS/Paraffin 4 Cell Test fire success. Data failed to 
capture.  

11 5/19/2016 ABS/Paraffin 4 Cell Misfire. Motor tube ruptured near 
nozzle due to an injector failure.  

12 5/28/2016 ABS/Paraffin 4 Cell Data recorded. 
13 5/28/2016 ABS/Paraffin 4 Cell Misfire. Snap ring failure.  
14 6/22/2016 ABS/Paraffin 4 Cell Data recorded.  
15 6/22/2016 ABS/Paraffin 8 Cell Data recorded. 
16 6/22/2016 ABS/Paraffin 16 Cell Data recorded. 
17 6/24/2016 ABS/Paraffin 4 Cell Data recorded. 
18 6/24/2016 ABS/Paraffin 8 Cell Misfire. Snap ring failure. 

19 6/28/2016 ABS/Paraffin 8 Cell Misfire. Motor tube failed 
towards nitrous vent.  

20 9/11/2016 Cesaroni 
Solid J760 Updated test stand and verified. 

Data recorded.  
21 9/22/2016 ABS/Paraffin 16 Cell Success 

22 9/22/2016 ABS/Paraffin 16 Cell Preloading lost due to failed 
ratchet straps 

23 9/22/2016 ABS/Paraffin 8 Cell Tube Failure 
24 9/22/2016 ABS/Paraffin 8 Cell Tube Failure 
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5.2.1 Preliminary Test Fire Results 

Before testing the ABS/paraffin fuel, multiple commercially available solid and 

hybrid motors were test fired to verify the validity of the system and to create a baseline 

comparison.  Cesaroni’s J760 solid propellant motors were selected as the solid propellant 

comparison due to similar peak thrust and average thrust that was to be expected from the 

tested hybrid motors. Contrail’s K321 PBAN hybrid motor was chosen for its nozzle and 

injector selection. The K321’s nozzle and injector would be the exact same as the 

ABS/paraffin fuel. The J760’s and K321’s test thrust curve and manufacturer thrust curve 

can be seen in Figure 5.1 and Figure 5.2. 

 

Figure 5.1 J760 Thrust Curve Comparison  

Note: The manufacturer curve can be found in reference [45]. 



 

71 

 

Figure 5.2 K321 Thrust Curve Comparison [46] 

 

Figure 5.1 shows that the DAQ system and MSHVITS captured the thrust curve of 

the J760’s shape accurately with slight differences. These differences can be attributed to 

differences in motor performance and small losses caused by the test stand. Repeated test 

fires of the J760 motors were performed and the same thrust curve was shown throughout 

all tests. The K321 thrust curves shown in Figure 5.2 show greater differences in regards 

to the basic shape and peak thrust, but the total impulse was only off by a 2% difference 

between the two curves. Comparing the K321 test data and the manufacturer data shows a 

quick rise to peak thrust for the test data while the manufacturer data shows a rate of 

decrease in thrust. The K321 tests were repeated, but the shape remained the same. The 

rate of decrease in thrust of the manufacture’s K321 curve can be attributed to how the 

N2O was handled when tested for certification. Therefore, the manufacturer data was not 

used as a comparison for this study.  
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After the preliminary solid and hybrid test fires concluded, more of the same 

commercially available K321 PBAN grains were then reduced in length from 12 in to 9 in 

to compare to the ABS/paraffin fuel grains.  Shown in Figure 5.3, these PBAN fuels were 

designated K321 Short and would be the control for future hybrid tests.  Both test fire’s 

shapes were very similar with each other with slight differences to peak thrust, 290 lbf and 

226.3 lbf respectively, but total impulses were within 0.17% each other. 

 

Figure 5.3 “K321 Short” Thrust Curves 

 

5.2.2 ABS/Paraffin Test Fire Results 

The four cell design was first selected to be fired due to its higher paraffin 

composition followed by the eight and sixteen cell designs. After the four cell fuel test fires 

concluded, the thrust data was found to be very noisy so a moving average of the data was 
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done to clean up the noise. Figure 5.4 shows the unfiltered thrust curves while Figure 5.5 

shows the filtered thrust curves.   

 

Figure 5.4 Unfiltered Four Cell Fuel Thrust Curves  

 

 

Figure 5.5 Filtered Four Cell Fuel Thrust Curves 
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All three four cell fuel test fires were considered a success. However, the second 

test fire failed to burn some of the ABS/paraffin fuel when ignited. This failure to burn 

could have been an improper separation and ignition of the N2O line from the injector, or 

the ABS structure of the fuel failed sooner than expected.  

The eight and sixteen cell test fires were then tested. Unfortunately during the 

beginning of the eight and sixteen test fires, several snap ring and casing failures occurred. 

These hardware failures ultimately stopped further testing of these two cell configurations 

and other planned tests such as PMMA fuel test and different ABS/paraffin fuel designs.  

Figure 5.6 and Figure 5.7 shows the eight and sixteen cell data.  

 

Figure 5.6 Eight Cell Filtered Thrust Curve  

 



 

75 

 

Figure 5.7 Sixteen Cell Filtered Thrust Curve 

 

The eight cell data shown in Figure 5.6 coincides with the four cell 3 data from 

Figure 5.5 with respect to burn time and average thrust. The sixteen cell data has a lower 

overall average thrust, but consistent burn time of that of both four and eight cell 

geometries. The sixteen cell 2 data set stops abruptly at 3.5 seconds due to a ratchet strap 

failure, although the burn lasted approximately 4 seconds. The sixteen cell 3 data shows a 

significant decrease in burn time which was due to an incomplete burn of the ABS/paraffin 

fuel. Figure 5.8 shows the best test data of the four, eight, and sixteen cell geometries. The 

comparison shows that the four cell geometry does provide the best thrust when compared 

to the eight, sixteen, and K321 short test fires. 
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Figure 5.8 Four, Eight, Sixteen Cell Thrust Comparison  

 

  Equation 5.1  was used to find the total impulse, I, using the thrust data, F, and the 

change in time, Δt, of each test fire. The results were recorded in Table 5.2.  

  𝐼 = ∫ 𝐹 𝑑𝑡 (5.1) 

Table 5.2 Hybrid Test Results  

Test 
Number 

Motor 
Designation 

Fuel Mass 
(lbm) 

Peak 
Thrust 
(lbf) 

Burn 
Time 

(s) 

Total Impulse 
(lbf*s) 

8 K321 Short 0.503 290 4.16 285 
9 K321 Short 0.485 226 4.23 286 
12 4 Cell 0.639 380 4.03 390 
13 4 Cell 0.626 196 2.84 231 
14 4 Cell 0.631 179 3.57 321 
15 8 Cell 0.637 255 3.30 297 
23 8 Cell 0.639 N/A N/A N/A 
24 8 Cell 0.646 N/A N/A N/A 
16 16 Cell 0.633 233 3.79 225 
21 16 Cell 0.639 390 3.50 255 
22 16 Cell 0.628 238 113.85 129 
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5.2.3 Specific Impulse Estimation  

To gain a measure of performance, the amount of oxidizer was needed to be found 

to calculate the Isp. The hybrid test fire video footage for all fuel configurations was 

examined to find the average amount of oxidizer used for each fuel. From cold flow testing, 

it was found when the casing was loaded with a 9 inch grain with a volume of 21.7 in3 (356 

mL) to be 2.98 lbm (1.35 kg). Audio and visual ques from the GoPro camera were used to 

detect ignition time, burnout time, N2O flow after firing time, and N2O flow end time. The 

burn time of the motor and the N2O flow after burn time were found using these instances. 

Figure 5.9 shows a four cell test fire while Appendix G shows the eight and sixteen cells. 

Table 5.3 shows the results from the video footage.  

 

Figure 5.9 Images from Video Footage of the Four Cell Test Fire 
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Table 5.3 Burn Time and Post Burn Nitrous Flow Time Comparison  

Fuel  
Geometry 

Burn Time 
(s) 

Post Burn Nitrous Flow 
Time (s) 

K321 Short 4.23 0.00 
Four  3.67 3.77 
Eight 3.62 3.92 

Sixteen 5.26 1.77 
 

The burn time and post burn N2O time of all ABS/paraffin configurations show that 

not all of the oxidizer was used during the test fire while the commercially available motor 

did use all of the available oxidizer. To estimate the Isp for all four configurations, it was 

assumed that the mass flow rate of the nitrous during burn and after burn was constant. For 

instance, the four cell was found to have a burn time and a post burn N2O flow time of 

3.67s and 3.77s respectively. These times were then used with the amount of the oxidizer 

in the tank, 2.98 lbm, to find the burn oxidizer mass. Finally, equation 5.2 was used to find 

the Isp using the mass of fuel, mfuel, mass of oxidizer, moxidizer, and gravitational constant, g, 

were used, and the results were recorded into Table 5.4.  

  𝐼𝑠𝑝 =  
𝐼𝑚𝑝𝑢𝑙𝑠𝑒

(𝑚𝑓𝑢𝑒𝑙+ 𝑚𝑜𝑥𝑖𝑑𝑖𝑧𝑒𝑟) ∙𝑔
 (5.2) 
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Table 5.4 Performance Calculations  

Test 
Number 

Motor 
Designation 

Fuel Mass 
(lbm) 

Oxidizer 
Mass 
(lbm) 

O/F 
Ratio 

Specific 
Impulse 

(s) 
8 K321 Short 0.503 2.98 5.93 86.8 
9 K321 Short 0.485 2.98 6.14 86.8 
12 4 Cell 0.639 1.47 2.30 185 
13 4 Cell 0.626 1.47 2.35 110 
14 4 Cell 0.631 1.47 2.33 153 
15 8 Cell 0.637 1.43 2.25 144 
23 8 Cell 0.639 N/A N/A N/A 
24 8 Cell 0.646 N/A N/A N/A 
16 16 Cell 0.633 2.23 3.52 78.8 
21 16 Cell 0.639 2.23 3.49 89.2 
22 16 Cell 0.628 2.23 3.55 45.3 

 

Table 5.4 shows the four cell and eight cell geometries had a higher performance 

than the sixteen cells and the PBAN control. However, for the ABS/Paraffin fuel all of 

these values are far less than what CEA predicted in Figure 4.17.  This can easily be seen 

in Figure 5.10. 
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Figure 5.10 CEA Impulse and Tested Impulse Comparison  

Notes: The J760 O/F ratio was provided from manufacturer data. The line illustrated for 
J760 shows the Isp at all O/F ratios due to the lack of information. [45] 

The ABS and paraffin test fires were found to be in the O/F range of approximately 

2.3 – 3.5 range while the PBAN test fires had an O/F of approximately 6. The CEA 

calculations do not show these results when using the current nozzle conditions and an 

assuming chamber pressure from 3200kpa - 4800k Pa. Also, the ABS/paraffin fuel grain’s 

lack of performance was due to the sloughing of the paraffin fuel during the test fire which 

was clearly visible after some test fires. After some of the eight and sixteen fires, melted 

paraffin would drip from the nozzle and pool under the test stand which showed some 

paraffin did not burn in the combustion chamber.  
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CHAPTER VI 

LESSONS LEARNED 

6.1 Hardware Modifications 

After completing the hybrid test fires, several modifications were considered to 

improve the future testing of hybrid motors on the existing test stand.  The hardware 

modifications would include a more robust and reliable motor casing, a new ignition 

device, and a pressurized N2O system. Finally, these modifications could be used on a 

horizontal test stand which would allow and a simpler method of motor casing alignment, 

but would require more raw material to change the current stand’s configuration.   

6.1.1 Hybrid Motor Casing 

The current motor casings were adequate for a couple of test fires, but since they 

were designed for in-flight use for hobby rockets and not for experimental fuel 

development, the casings reached the end of their useful life faster than expected. Other 

drawbacks included, but were not limited to: inability to attach pressure sensors and 

thermo-couples, the unreliable motor hardware integration using the snap ring design, and 

uncertainty of ignition of the oxidizer. These drawbacks lead to the design of a custom 

hybrid casing that would solve all of these problems. Figure 6.1 illustrates the concept for 

the design.  
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Figure 6.1 New Hybrid Casing Concept 

 

To ensure the new casing would have a longer life cycle than the current casing’s 

design, it should have a ¼ in wall thickness and use 4340 alloy steel. The new design uses 

hardware similar to commercially available Cesaroni solid motor casings, such as threaded 

forward and aft closures and slightly larger casing inner diameter. Both closures will 

compress all motor hardware inside the hybrid casing with no gaps. Forward closure will 

contain a Swagelok male connector, ¼ inch tube outer diameter x ⅛ inch male NPT, to 

allow N2O to be injected into the pre-combustion chamber. The pre-combustion chamber 

will give the system the ability of a more reliable ignition system using another Swagelok 

male connector. The ignition system, illustrated in Figure 6.2, uses nichrome wire dipped 

in pyrogen that will be potted with epoxy resin and sealed inside the Swagelok connector. 

The external lead wires will pass through a crimped section of tubing, and attach to a power 

source [44]. Pressure taps, and thermocouples would also be added to the system in the 
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pre-combustion chamber.  The new casing requires further research and design, but will 

offer a more robust and reliable design than the current casing.  

 

Figure 6.2 Igniter System  

Note: This design was used by NASA Ames Research Center. [44]  

6.1.2 Nitrogen Oxide Feed System 

The new casing design incorporates a top-fed nitrous system as opposed to the 

current bottom-fed N2O system. The new N2O configuration allows the design to be 

directly fed from an external nitrous system, and would eliminate the presence of an on 

board N2O reservoir. The new feed system would require an inert pressurant gas, most 

likely helium, to ensure an accurate mass flow rate measurements, and pneumatically 

actuated ball valves to control the oxidizer flow.  Further research and design are required 

to accomplish this task, but could be easily integrated with the current system.  

6.1.3 Horizontal Test Stand 

Though the MSHVITS system works and could be easily integrated with the new 

design changes, loading and aligning the motor is difficult and could be simplified if a new 

horizontal test stand was used. The proposed horizontal test stand would allow an easier 

integration process using C-clamps and slotted aluminum railing to fix the motor in 

designated positions. A commercial system from Aerocon Inc uses this design [47], 
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illustrated in Figure 6.3, and could easily be purchased and modified. Aerocon Systems’ 

test stand is rated for thrust values of 1500 lbf and is designed for 38 – 98 mm diameter 

motors to be used. The test stand would have to be mounted to the current ground support 

system or a fixed to a platform.  

 

Figure 6.3 Aerocon Systems’ Horizontal/Vertical Test Stand 

Note: Image from reference [47].  

6.2 Fuel Modifications 

The current experiments show that the proposed fuel geometries do not use all of 

the available paraffin which, in turn, hinders the performance. Also, the radial azimuthal 

geometry’s thin outer wall could contribute to unintended burning of the casing which can 

lead to a rupture. With a new casing design, a thicker outer wall geometry or a phenolic 

liner could prevent the rupture. To improve performance of the current geometry, the ABS 

structure would have to become more complex to prevent the sloughing of the paraffin.  

Previously, the acquired 3D printers couldn’t print these complex structures with the single 

extruder, but with the addition of the dual extruder it is now possible. 
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6.2.1 Azimuthally and Axially Partitioned Cells 

Keeping the same azimuthally design for the four, eight, and sixteen cell geometries 

but incorporating axial partitions could help contain the paraffin from sloughing and 

dripping during the burn of the motor. To prevent the loss of the paraffin, the ABS fuel 

would be partitioned, as shown in Figure 6.4. The ABS partitions would create segments 

of paraffin fuel which would be similar to the hobby solid propellant fuel grains, but would 

be held in a single ABS structure. The ABS structure could vary the number of segments 

and the length of each segment.  A small hole will be centered in each partition to allow 

paraffin to flow in between each segments to initially be filled, but would later be sealed 

by acetone welding plugs to the exterior fill holes of the motor. Since the TAZ6 now has 

the capability of a dual extruder, this model could be made using dissolvable build material.    

 

Figure 6.4 Isometric and Cross-sectional View of the Azimuthally and Axially Four 
Cell Partitioned Design 
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6.2.2 Helical Design 

A helical design was originally the first concept of this project, but due to printer 

capabilities it was postponed. The design incorporates the same azimuthal design as 

previously discussed, but follows a spiral pattern. The spiral pattern could contain one or 

more or less rotations pending on the user’s input. Each rotation would affect how the 

propellant burns, but could improve the structural integrity of the overall grain and may 

prevent the sloughing of the paraffin. Figure 6.5 shows a four cell geometry with the helical 

design. 

 

Figure 6.5 Four Cell Helical Design  
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6.3 Conclusion 

It can be concluded that the ABS/paraffin fuel can be used as a successful hybrid 

fuel. The test fires show the promise of these fuel designs for improved thrust and specific 

impulse when compared to classic hybrid fuels. To increase the performance, a more 

complex ABS geometry is required to mitigate the sloughing of the paraffin fuel during the 

burn. More additives could also be added to the paraffin such as aluminum to increase the 

performance.  It was also found that a more robust and refined test system with more 

control and measurement capability is needed.   
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RADIAL FUEL GRAIN CALCULATIONS 
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Figure A.1 Radial Fuel Grain Calculations 
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SOILD/HYBRID TEST PROCEDURES 
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Solid/Hybrid Test Procedures 
Mississippi State Propulsion Team 

Mississippi State University, Mississippi State, MS, 39762 

The below procedures are for the 2016 MSHVITS system only.  The hybrid or solid 

motor should be assembled and checked before these procedures are started. The initial 

part of each section can be performed at the same time, but require multiple ground support 

personal. Follow all procedures to ensure a safe and reliable test.  

Multipurpose Solid/Hybrid Vertically Integrated Test Stand: 

 Place test stand on test platform 
o The stand should be placed in the center of the platform  

 Secure stand to platform via ratchet straps 
o Each strap should be tight as possible to ensure unwanted movement 
o Place thermal protection over straps  

 Integrate rocket to stand 
 Tighten top clamp 

o If the clamp is too wide/narrow, loosen the allen bolts, and rotate the cylindrical 
knob on the back until positioning is correct, and re-tighten allen bolts. 

 Tighten center ratchet strap 
 Align top of rocket cap with force sensor. 
 Tighten bottom U-bolt (if required) 
 Align the force sensor front to back with the cap 

o To move this, first, loosen the alignment allen bolts on the force sensor assembly. 
 Pre-tension should be done after nitrous testing and performed slowly applying tension 

(see data section for further instructions) 

Nitrous System: 

 Only applicable for hybrid testing. If testing solid skip to the next section.  
 Fill the bottles by first freezing the smaller bottle.  Connect both hose ends, and open the 

mother bottle first.  Then open daughter bottle.  Wait until gas transfer is no longer heard.  
Close the daughter and then mother bottle, and slowly detach the hose, allowing pressure 
to release. 

o If mass does not transfer, the mother bottle may be empty, or the daughter bottle 
full. 

 Setup the solenoids in-between the test stand and the steel pole next to the door.   
 Roll out the power cables from the door to the test stand.  Cable ends with clips should be 

away from the solenoids.   
 Attach the wire to the solenoids by screwing the wire nuts onto the wires.  The black and 

white wire connect to the flow solenoid (has a blue screw-on output) while the pink and 
green connect to the purge solenoid (has a silver barb output). 
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 Place the control box on top of the battery.  Connect the wires inside the box horizontally 
with the bolts.  The left-most wire is a common ground, and connects to the right, black 
ground side of the battery.  The shorter, middle wire connects to the red, positive on the 
left.   

 Connect the wires to the back of the control box using the wing nuts.  Both the smaller 
yellow and larger blue connector are connected to the common ground, the larger bolt on 
the left near the edge of the box.   

 Connect the positive for the flow solenoid, the second larger blue connector, to the larger 
bolt near the center of the box.  It doesn’t matter which of the two blue connectors is 
attached. 

 Connect the positive for the purge solenoid, the second smaller yellow connector, to the 
smaller bolt in between the two larger bolts.  It doesn’t matter which yellow end is 
attached to positive or ground. 

 Put the bottle in the bucket and strap down to the pole.  Attach the bottle to the solenoids. 
 Connect the nitrous fill line to the solenoids.  DO NOT YET CONNECT ROCKET FILL 

LINE TO NITROUS LINE.  Secure the end of the nitrous fill line. 
 Connect the purge line. 
 Open up the bottle, pressurizing the line.  Test the fill (Right, silver switch) and purge 

(middle, covered switch). 
 CLOSE THE BOTTLE.  PURGE THE LINE, OR DISCONNECT BOTTLE UNTIL 

JUST BEFORE TESTING. 
 Connect the rocket fill line to the nitrous fill line.  The bottle should NOT be open yet. 
 Have all personal leave the area.  Reconnect (if disconnected before) and reopen the 

bottle. 
 Test firing:  Flip the fill switch on.  Leave on until just after ignition. Once ignition has 

occurred turn fill line off. 
 After test fire has completed: close the bottle and purge the system at which point the 

nitrous bottle could be disconnected for replacement if necessary. 

Data Acquisition System: 

 Open the labview file.  Running it should make data appear on the voltage graph.  Ensure 
that the daq is plugged in and running, and is connected to the output of the signal 
conditioner.  If the force sensor is not yet attached, the graph should be reading out a 
constant 11v.   

o If the program has an error, it most likely hasn’t identified the daq.  Make sure 
the daq is detected by the computer.   

o If spikes occur during testing, ensure that the three connections (signal 
conditioner output and ground, and resistor) are sound.  Reset, re-calibrate, and 
self-test the daq using NI Max. 

o If the daq has to be swapped out, the sub-vi used to pull information from the daq 
will have to be rebuilt.  Open the back panel, and click on the daq assistant.  
Look under voltage channels, and right-click the voltage measurement.  Select 
“change physical channel” and select channel a0 on the new daq. 
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 Attach the force sensor.  Ensure that the force sensor is properly screwed into the sensor 
plate, and that the white force sensor cable is properly positioned, protected from thrust 
and thrust stand hardware, and attached.  

o The pad on top of the force sensor and the screw on the bottom of the force 
sensor can both become loose.  This is okay, just hand-tighten the pad, and use a 
screwdriver to tighten the screw. 

 Check to see that the force sensor responds appropriately on the graph.  Press the sensor 
and the stand to check for force increases. 

 Clear the graph by pressing the stop-sign ICON (not stop button).  Restart the program 
and watch for an average value on the right side set of values.  Choose this as a starting 
point for adding pre-tension.  

o The starting value at 1.  If values are below the x-axis before tensioning, merely 
twist the knob on the front of the conditioner until it is a tenth of a volt or two 
above 0.  Use this value as the pretension starting point.  Do not use the knob 
during pretension.   

 Add 50 lb*0.005 to this value, since each pound is equal to 5 milivolts. The target value 
is 1.25.  Add tension until the graph or value array reaches approximately this target 
value. More pretension can be added to the system if required, but all testing should stay 
consistent.  

 Restart the program to clear the graph before testing. 
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VAN KREVLAN GROUP CONTRIBUTIONS 
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PARAFFIN HEAT OF FORMATION CALCULATIONS 
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CHIMEI CORPORATION PA-747 GENERAL ABS 
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THRUST EXTRACTION MATHCAD PROGRAM 
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EIGHT AND SIXTEEN CELL TEST FIRE  
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Figure G.1 Eight Cell Test Fire 

 

 

Figure G.2 Sixteen Cell Test Fire 
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