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Görtler vortices evolve in boundary layers over concave surfaces as a result of the 

imbalance between centrifugal forces and radial pressure gradients. Depending on 

various geometrical and free-stream flow conditions, these instabilities may lead to 

secondary instabilities and early transition to turbulence. In this thesis, a control 

algorithm based on the boundary region equations is applied to reduce the strength of the 

Görtler instabilities by controlling the energy of the fully developed vortices, using either 

local wall deformations or blowing/suction at the wall. A proportional-integral control 

scheme is utilized to deform the wall or to provide transpiration velocity, where the 

inputs are either the wall-normal or streamwise velocity components in a plane that is 

parallel to the wall. The results show that the control based on wall deformation using 

wall-normal velocity components is more effective in tempering the vortex during its 

streamwise growth by almost one or two orders of magnitude. 
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CHAPTER I 

INTRODUCTION 

1.1 Introduction 

Prandtl was the first to introduce the concept of boundary layer in a fluid flow 

over a surface [1-2]. He assumed that the fluid inside the boundary layer, a thin viscous 

region near the surface, sticks to the surface due to friction effects.  Therefore the flow 

over a surface comprises two parts; a viscous region inside the boundary layer and an 

inviscid flow outside the boundary layer (figure1.1).  

 

Figure 1.1 Flow over an airfoil [2]. 

The fluid flow over an airfoil comprises two parts. The thin boundary layer (blue) near 
the surface experiences high friction. The velocity, v, changes as a function of normal 
distance, n, from zero at the surface (no slip condition) to the full inviscid-flow value at 
the outer edge.   
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In his work, Prandtl also described flow separation. At the separation point, the 

momentum of the fluid particles in the boundary layer is no longer sufficient to allow the 

flow to proceed into regions of high pressure. This can be seen in the velocity profile 

illustrated in figure 1.2. At the separation point (B), the velocity profile has an inflection 

point and the boundary layer detaches from the surface [1-2]. The flow is then reversed 

and vortices are formed. Hence, the smooth laminar flow breaks down and separates from 

the wall.   

 

Figure 1.2 Boundary layer separation initiated by local flow reversal [3] 

 

Focused studies on transition in boundary layers from laminar to turbulent flow 

are motivated by a need to fully understand this physical process and to predict and 

control the transition of boundary layers over flat or concave surfaces [4]. Concave 

surface boundary layer flows are subjected to centrifugal instability due to the imbalance 

between the radial pressure gradient and centrifugal force of the fluid particles. Laminar-

turbulent transition in these boundary layers, which is influenced by free-stream 
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turbulence or surface imperfections, is preceded by the growth of elongated streaky 

structures. These streaks are the result of three-dimensional disturbances growing 

transiently in the boundary layer or the existence of roughness elements on the surface. 

They are the result of the acceleration (high speed streaks) or deceleration (low speed 

streaks) of the fluid particles. These two types of streaks may be correlated with counter-

rotating vortices moving downward inside the boundary layer. These vortices are named 

after Görtler [5] who first analytically predicted their occurrence. Depending on various 

geometrical and free-stream flow conditions, these instabilities may lead to secondary 

instabilities, breakdown and eventually burst into turbulence [6-12].  

From a drag reduction standpoint, it is desirable to delay transition. The main 

approach for reducing the drag (especially skin friction drag) is delaying the transition to 

turbulence in boundary layers. This can be achieved by removing or controlling the 

streaks and vortices that are excited by either free stream disturbances or surface 

imperfections. Various laminar flow control strategies have been proposed during the last 

few decades.  

It has been found that, among numerous turbulence control strategies investigated 

so far that, the application of steady wall suction and blowing to attenuate the boundary 

layer disturbances is one of the most practical control methods for reducing skin friction 

drag. It significantly weakens the strength of the streamwise vortices near the wall 

responsible for the production of turbulence, leading to drag-reduction [13-14]. 

Researchers also focused on using surface effects to control the boundary layer. The basic 

idea is to suppress boundary layer streaks that break down into turbulences using 
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streamwise elongated surface streaks. It was shown that these surface streaks reduce the 

vortices energy and thus the disturbances amplitude [15-18]. 

The research in this thesis is focused on the control of Görtler vortices using 

surface deformations in the form of streamwise elongated surface streaks and 

blowing/suction. The objective is to use active control of the boundary layer by wall 

deformation and blowing/suction in order to achieve a reduction of the energy associated 

with the disturbances. The basic idea is to use the surface streaks and the blowing/suction 

to reduce the energy of Görtler vortices that may experience secondary instabilities and 

eventually contribute to the transition into turbulence. The analysis is performed using a 

high Reynolds number asymptotic framework where the boundary layer growth is 

described by the boundary region equations (BRE) [19]. The BRE are parabolic in the 

streamwise coordinate and the wall deformation is incorporated using a Prandtl 

transformation. Görtler vortices are excited using an array of roughness elements that are 

introduced via a previously derived asymptotic solution [19] and the BRE are solved 

numerically. The secondary instabilities are then determined by solving the generalized 

Rayleigh pressure equation, which is an eigenvalue problem for the growth rate of a 

small perturbation about the Görtler vortex [20]. Results will show that surface streaks 

can significantly reduce the energy of Görtler vortices.  

1.2 Thesis organization 

This thesis is structured as follows. Following the introduction in this chapter, a 

literature review about transition from laminar to turbulence in boundary layers, Görtler 

vortices and their instabilities, secondary instabilities and proposed flow control 

techniques especially blowing/suction method and the wall deformation method is 
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presented in CHAPTER II. After presenting the relevant background, the method is 

developed along with the proportional control scheme in CHAPTER III. The descriptions 

of the test problems and a discussion of the results are given in CHAPTER IV. Finally, 

conclusions are discussed in CHAPTER V.  
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CHAPTER II 

LITERATURE REVIEW 

2.1 Transition in boundary layers 

The problem of transition from laminar flow to turbulent flow in boundary layers 

is of great practical interest. For example, the low skin friction coefficient of laminar 

boundary layer flow is very attractive to those who design high performance automobiles 

and aircraft. On the other hand, there are many cases in which the high mixing and heat-

transfer rates of turbulent boundary layer are desirable. There are also occasions in which 

the transition zone itself needs to be understood, for instance in a turbine blade channel. 

Transition studies are motivated by a need to understand fully this physical process, and 

to apply the knowledge to the prediction and control of transition in practice. 

Reynolds and, later, Rayleigh were the first to develop a hypothesis on the 

mechanism of transition from laminar to turbulent flow; they assumed the transition as a 

consequence of evolving instabilities in laminar boundary layers. This hypothesis 

triggered many theoretical and experimental works to further understand this process. 

Years later, Schlichting presented a theoretical approach to the transition phenomenon 

through the stability theory [1]. This theory explains the behavior of small disturbances in 

the laminar boundary layer; if they will amplify or damp out as they travel downstream. 

If these disturbances, named Tollmein-Schlichting (T-S) waves, amplify as they travel 

downstream, the study reveals that they ultimately break up into turbulent spots which 
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grow in size and finally merge to form a turbulent region [21] (see figure 2.1).According 

to the stationary-wave-dominated transition experiments, the breakdown to turbulence 

occurs very rapidly along a jagged front [22]. This behavior is illustrated in flow-

visualization studies such as that by Dagenhart and Saric [23]. These studies suggest that 

the final stage of transition occurs over a very short streamwise distance and is the result 

of a secondary instability initially described experimentally by Kohama et al. [24] and 

Kawakami et al. [25] and analytically and computationally by Malik et al. [26] and Janke 

and Balakumar [27].  

 

Figure 2.1 Transition process on a flat plate: spatial development [28] 

 

In boundary-layer flows, transition can proceed in two different ways, depending 

on the level of external disturbances. The first type of transition, natural transition, occurs 

when the environmental perturbations, in the form of surface roughness, free streamwise 

turbulence, acoustic waves, model vibration, etc., are low. In this case, the transition 
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process undergoes these following stages: instability, secondary instability, nonlinear 

interaction and final laminar breakdown. Natural transition occurs in most controlled 

transition experiments [1-4-29-30]. If the external perturbations are strong enough, 

however, the transition will go into the nonlinear interaction stage directly. The T-S 

wave’s instability is not directly involved and the initial linear instability stage is 

bypassed. This phenomena was named bypass transition by Morkovin [31]. In both 

natural and bypass transition, vortices are generated inside the flow. Therefore, many 

studies have been conducted to understand and study the vortices inside boundary layers. 

2.2 Görtler vortices 

Görtler vortices are generated due to the imbalance between pressure and 

centrifugal forces of fluid particles in laminar boundary layers that develop along 

concave walls (see Figure 2.2). These counter-rotating streamwise vortices are one of the 

main instabilities that lead to boundary layer transition. These vortices were first 

predicted and theoretically analyzed by Görtler [5] after whom the non dimensional 

stability parameter G is named.   

 𝐺 =
𝑈∞𝛿𝑡

𝑣
(𝛿, 𝐾)

1
2⁄ = 𝑅𝑒𝜃√

𝜃

𝑅
 (2.1) 

where 𝑈∞ is the freestream velocity, 𝛿𝑡 is the boundary layer thickness, 𝑣 is the 

kinematic viscosity,𝐾 =
1

𝑅
 is the curvature of the wall, 𝑅𝑒𝜃 is the Reynolds number,𝜃 is 

the boundary layer momentum thickness and R is radius of the curvature.  

His analysis of boundary layer instabilities along a concave wall was conducted 

by assuming a parallel flow, which was similar to Taylor’s analysis of the Couette flow 
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between concentric rotating cylinders [33]. Görtler found a critical value for the stability 

parameter G above which disturbances to the basic state are amplified.  

 

Figure 2.2 Schematic of Görtler vortices in the boundary layer over a concave surface 
[32]. 

 

Liepmann [34] was the first to experimentally confirm that the boundary layer 

instability along concave walls is governed by the Görtler parameter. Later, Smith [35] 

derived a set of modified equations including higher-order curvature terms and terms 

accounting for the non-parallel nature of the boundary layer. Moreover, unlike Görtler 

who investigated the temporal growth of these disturbances, Smith formulated the 
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problem to study their spatial growth. Since then, a number of theoretical [36-38] and 

experimental [39] studies have been devoted to the investigation of Görtler instability. 

2.3 Görtler stability analysis 

Görtler's original numerical analysis [5] is similar to a stability analysis for 

boundary layer flows over a flat plate with a few simple modifications taking into 

account the curvature of the wall. His analysis provides a good foundation for 

understanding work related to stability that has been done for flow over concave surfaces. 

In his stability analysis, Görtler formulated the Navier-Stokes equations in curvilinear 

coordinates for a constant radius of curvature, R, and assumed that R is much larger than 

δ. He used a two-dimensional perturbation of the form: 

 𝜓(𝑥, 𝑦, 𝑡) = 𝜙(𝑦)𝑒𝑖(𝛼𝑥−𝛽𝑡) (2.2) 

where β is a complex number and indicates whether or not there is amplification or 

damping with increasing time. The results of the linearization and non-

dimensionalization are grouped in three dimensionless characteristics of the flow. The 

first one is Görtler number, G in equation (2.1), which expresses the ratio of centrifugal 

effects to viscous effects. The second is a dimensionless wave number given by: 

 𝛼𝜃 =
2𝜋

𝜆
𝜃 (2.3) 

where α is disturbance wavenumber, θ is boundary layer momentum thickness and λ is 

disturbance wavelength that has been non-dimensionalized to become the boundary layer 

thickness, δ. Görtler found that θ had smaller effects in his final results than δ. So he 

found a third dimensionless parameter τ,  

 𝜏 = √𝛼²𝛿²
𝛽𝛿²

𝑣
 (2.4) 
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that he called the amplification factor, where β is the amplification coefficient. The case 

when β= 0 is called neutral stability because there is no amplification or damping of the 

disturbances at this point. In other words, along this curve the only amplification that 

occurs is due to boundary layer growth; therefore, the Görtler number is at its smallest 

value. 

Görtler solved these equations for 3-D, laminar, incompressible flow with the 

Blasius boundary layer as the basic boundary layer profile. He imposed small 

perturbations, in the form of two-dimensional vortices, on the basic boundary layer 

profile and examined the response of the flow field to these disturbances. He observed 

that as Görtler number increases, the flow becomes more susceptible toboth larger and 

smaller disturbances in the flow. The minimum Görtler number at whichthe flow can 

become unstable is the critical Görtler number, Gc,, 𝐺𝑐 =
𝑈0𝜃

𝑣
√
𝜃

𝑅
= 0.58 and is shown as 

aminimum on the neutral stability curve. It is. Below this point the flow is always stable. 

Many improvements have been incorporated into Görtler’s original analysis. 

Some researchers focused on using more accurate coordinate systems. Floryan and Saric 

[9] used a general orthogonal curvilinear system to formulate the Görtler problem. The 

results from their stability study of Görtler vortex flow over a convex curved wall showed 

the stabilizing effect of convex curvature on the Görtler vortex boundary layer flow. 

In a series of studies on Görtler instability, Hall [36-38] has shown that the linear 

stability equations governing the Görtler instability cannot be reduced to ordinary 

differential equations, but instead must be solved by a set of partial differential equations, 

which is parabolic in the streamwise direction. He argues that the effect of the non-
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parallel nature of the basic flow in which the Görtler vortices develop is not negligible, 

and the approximations that reduce the governing equations to in ordinary differential 

equations cannot be justified; and that the parallel flow theories are mathematically valid 

only at large wavelengths. He also showed that the main problem associated with the 

parallel flow theories arises from their inability to describe appropriately the decay of the 

vortices at the edge of the boundary layer. Hall concludes this to be the cause of the wide 

variation in the neutral curves predicted by parallel flow theories. Hall [8] then solved the 

governing partial differential equations as an initial value problem using a finite 

difference marching scheme. The main result of this study was that the growth (and thus 

the position of neutral stability) of the Görtler vortices depends crucially on how and 

where the boundary layer was perturbed. 

Day, Herbet and Saric [44] compared the growth rates of the parallel and non-

parallel marching scheme for stability analysis. They first performed a parallel flow 

analysis to determine the most unstable modes and then used these results as initial 

conditions to the non-parallel flow numerical scheme. They found that the parallel flow 

analysis predicts higher growth rates of the vortices than the non-parallel technique. 

2.4 Secondary instabilities analysis 

According to the linear stability theory, if the initial environmentally-generated 

disturbance is small enough, the primary mode growth stage is observed in the transition 

process [45]. These primary modes do not directly burst into breakdown, but instead lead 

to the generation of secondary instabilities. When the primary modes grow, they distort 

the mean flow, which creates inflection points in the velocity profile. They thereafter 
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begin to exhibit nonlinearities and the linear theory no longer applies. These secondary 

instabilities lead rapidly to breakdown due to their higher frequencies [24-26-27].  

Many researchers have attempted a non-linear analysis about the flow over 

concave surfaces. Sabry et al.[46] solved computationally the fully non-linear equations 

to examine the breakdown of the fully developed Görtler vortices. They found that a 

sinuous secondary instability would destabilize the Görtler vortices and eventually leads 

to breakdown and fully turbulent flow.  Hall and Horsman investigated the inviscid 

instability of a longitudinal vortex structure within a steady boundary layer. They solved 

a general Rayleigh equation and solved it for the case when the vortices are generated by 

curvature. They found that the instability has a wavelength of the same order of the 

boundary layer thickness, which justifies the use of the quasi-parallel technique to the 

instability problem of Görtler vortices [47]. 

2.5 Flow control techniques 

Various laminar flow control strategies have been proposed during the last two 

decades to reduce the skin friction drag, especially in the aeronautics field. These 

methods are classified into passive and active control. Passive control techniques involve 

geometrical modifications of the surface whereas the active control approach involves 

adding energy or momentum to the flow.  

Several researchers focused on avoiding separation by using the motion of the 

solid wall. Hack and Zaki [48] modeled the growth of boundary-layer streaks generated 

over a spanwise oscillating flat plate. Galionis and Hall [49] found a reduction in the 

growth rate of Görtler vortices by considering the growth above a spanwise oscillating 

surface that is concave in the streamwise direction. Other experimental 
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(Laadharietal.[50]), numerical (Quadrio and Ricco[51]) and modeling (Dhanak and 

Si[52]) studies were conducted using spanwise wall oscillations. They have all shown to 

attenuate effectively the turbulence intensity in wall bounded flows and produce a 

reduction of turbulent wall friction.  

Another popular technique is the use of compliant coatings to reduce the energy 

of the boundary layer streaks. The main challenge is to find an appropriate coating with 

the optimum physical properties to achieve the desired target. After early observations by 

Kramer [53] on exceptional swimming capabilities of dolphins, there was a long series of 

experimental attempts to verify the effectiveness of compliant wall technology. This 

work is described in Bushnell et al.[54]. Results from numerical studies of  laminar-to-

turbulent flow transition delay (involving compliant walls) were reported by Carpenter 

and Morris[55] and by Davies and Carpenter[56].  

Other studies focused on controlling a supersonic boundary layer by injecting a 

gas different from the external stream through a porous surface into the boundary layer. 

This method reduces the heat exchange between the wall and the stream and provides 

thermal protection at high supersonic velocities [1]. Another method is cooling the wall. 

It was shown that in a specific range of high Mach numbers, the boundary layer can be 

stabilized by cooling the surface and that this method can preserve the vehicle itself [57].   

2.6 Blowing/ Suction control technique 

In order to reduce the skin friction drag, many studies were conducted to 

minimize the energy associated with disturbances inside both laminar and turbulent 

boundary layers. Regardinglaminar boundary layer flow control, most studies have 

focused on controlling T-S waves by a periodic suction, removal of decelerated fluid 
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particles from the boundary layer before they cause separation shown in figure 2.3c, or a 

periodic blowing that adds energy to those particles near the wall shown in figure 2.3a,b. 

 

Figure 2.3 Different arrangements for boundary layer control. 

a) Discharge of fluid, b) slotted wing, c) suction [1]. 

When trying to control bypass transition or fully-developed turbulent boundary 

layer flows, the streamwise-oriented structures of high and low-velocity streaks in the 

near wall region, which are assumed to be the starting points for the bursting sequence, 

are the primary focus. Usually the strategy employed is to decrease the spanwise 

variation of streamwise velocity and thereby decrease the number or strength of the 

bursting sequences. This can be achieved by placing localized suction regions below low-

velocity streaks and blowing regions below high-velocity streaks. An attractive 
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technique(termed opposition control) to reduce the skin friction drag in a turbulent 

channel flow was introduced by Choi et al. [58]. They performed direct numerical 

simulations with active wall control based on blowing and suction by placing various 

indicators inside the flow, and found that a detection plane close to the wall 

(approximately 10 wall units) can provide a drag reduction of approximately 25%. From 

a practical standpoint, it is difficult to place sensors in the flow because they may 

interfere with the disturbances. In this study, they also investigated the same control 

algorithm but with sensors placed at the wall and achieved a reduction of approximately 

only 6%. Koumoutsakos [59] introduced a feedback control algorithm using wall 

information that was applied in simulations of turbulent channel flow at low Reynolds 

number. By using the vorticity flux components that can be obtained as a function of tim 

eby measuring the instantaneous pressure at the wall and calculating its gradient, he 

claimed a skin friction reduction of 40%. 

2.7 Wall deformation method 

Controlled wall deformations to counteract boundary layer streaks have been used 

in the context of turbulent boundary layers to reduce the skin friction at the wall. One 

important characteristic of streaks generated by roughness elements in boundary layers is 

the associated steadiness. According to the upstream steadiness, these streaks from the 

surface by setting appropriate surface streaks can possibly be controlled as wall 

conditions [16]. These results show that the surface streaks with a maximum amplitude 

10-15% higher than the spanwise separation can reduce significantly the amplitude of the 

disturbances. Endo et al. [17] performed DNS studies with feedback control of 

deformable walls to reduce the skin friction in a turbulent channel flow. The control 
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scheme was based on physical arguments pertaining to the near-wall coherent structures. 

A 10% friction drag reduction was obtained. Endo et al. [16] also pointed out that the 

energy input required to deform the wall is much smaller than the pumping power 

involved in blowing/suction. Kang and Choi [60] investigated the potential of reducing 

the skin-friction drag in a turbulent channel flow via active wall motions. They noticed 

that the instantaneous shapes at the wall took the form of elongated streaks. A reduction 

of the friction drag by the order of 13-17% was realized. Koberg [61] experimentally 

developed an approach for the reduction of skin friction in turbulent flow via active wall 

deformation. The method aimed to match the velocity sensed away from the wall by 

imposing a velocity of the opposite direction at the wall; a skin friction reduction of 15% 

was obtained. 
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CHAPTER III 

COMPUTATIONAL METHODOLOGY 

3.1  Mathematical model 

This study considers an incompressible boundary layer flow over a concave 

surface. The spanwise length scale of the roughness row, Λ, is of the same order of 

magnitude as the local boundary-layer thickness δ∗ ≡ 𝑥0∗/√𝑅 = 𝑥0∗δ at the roughness 

location x = 𝑥0∗, where R = 𝑥0∗U∞/ν* is the Reynolds number based on 𝑥0∗and U∞ is the free 

stream velocity, with ν* being the kinematic viscosity, and δ ≡ R−1/2 =𝜀3 being the scaled 

boundary layer thickness.  

 

Figure 3.1 Sketch of the boundary layer over concave surface with distributed 
roughness elements [63]. 
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The three-dimensional Navier-Stokes equations with the origin located at the 

leading edge of the plate, the x-axis aligned with the wall in the streamwise direction, y-

axis perpendicular to the wall, and z-axis aligned with the spanwise direction, are 

considered. The spatial coordinates are scaled by the spanwise length scale, Λ, as (x, y, z) 

= (x ∗, y∗, z∗)/Λ. For the curved surface case, the streamwise streaks are expected to 

develop when x∼ 2π/k1∼ ΛRΛ which suggests the introduction of the slow streamwise 

variable X = x/RΛ, based on the Reynolds number RΛ = U∞Λ/v (k1is the wavenumber 

corresponding to the streamwise direction). The dimensionless velocity components and 

pressure are  

 𝑢 =
𝑢∗

𝑈∞
, 𝑣 = 𝑅𝛬𝑢

∗

𝑈∞
, 𝑝 =

𝑅²𝛬𝑝
∗

(𝜌𝑈∞)𝑢
 (3.1) 

where (u ∗, v∗, w∗) is the dimensional velocity vector, and ρ is the density. The flow 

variables will become 

 {𝑢∗, 𝑣∗, 𝑤∗, 𝑝∗}  =  {𝑢(𝑋, 𝑦, 𝑧), 𝜀𝑣(𝑋, 𝑦, 𝑧), 𝜀𝑤(𝑋, 𝑦, 𝑧), 𝜀² 𝑝(𝑋, 𝑦, 𝑧)} + . ..  (3.2) 

where ε = 1/RΛ. Substituting the dimensionless independent and dependent variables into 

the Navier- Stokes equations, and using the appropriate Lamé coefficients, h1 = (R0 − 

y)/R0, h2 = 1 in the assumption that the curvature is much larger than the spanwise 

separation (Wu et al.41), and h3 = 1, the nonlinear boundary region equation (BRE) are 

obtained as 

 𝑢𝑋 + 𝑣𝑦  +  𝑤𝑧  =  0, (3.3) 

 𝑢𝑢𝑋 +  𝑣𝑢𝑦  +  𝑤𝑢𝑧  =  𝑢𝑌𝑌 + 𝑢𝑧𝑧 , (3.4) 

 𝑢𝑣𝑋  +  𝑣𝑣𝑦  +  𝑤𝑣𝑧 + 𝐺𝛬𝑢² =  −𝑝𝑦  + 𝑣𝑦𝑦  + 𝑣𝑧𝑧 , (3.5) 

 𝑢𝑤𝑋 +  𝑣𝑤𝑦  +  𝑤𝑤𝑧 = − 𝑝𝑧  +  𝑤𝑌𝑌  +  𝑤𝑧𝑧 (3.6) 
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 where the subscripts(X, y, z) represent partial derivatives and the effect of the curvature is 

contained in the fourth term of the left hand side of equation (3.5), GΛ = R²Λ /R0 being the 

global Görtler number. Since the streamwise second order derivatives were eliminated 

from the original Navier-Stokes equations, the BRE set of equations (3.3-3.6) is parabolic 

in the streamwise direction. The surface deformations are considered on the surface 

starting at a location upstream of the initiation of the streamwise streak (such a location 

can be determined from the solution to the BRE for a boundary layer flow over a smooth 

surface, with appropriate disturbances imposed through initial/upstream conditions). It 

was found that the way the surface deformations are initiated in the upstream is important 

because these deformations can generate streamwise pressure gradients that may impact 

the development of downstream instabilities. This issue was not addressed in the previous 

studies involving turbulent boundary layer control via wall deformations since periodic 

boundary conditions were imposed in the streamwise direction for both the flow and the 

wall deformations. Here we employ a ramping function in the form 

 𝐹𝑟(𝑥)  =  0.5[1 –  𝑐𝑜𝑠 (
𝜋(𝑥 − 𝑥1)

(𝑥2 − 𝑥1)
)] applied between x1 and x2.  

The boundary conditions at the wall are given as 

 𝑢(𝑋, 𝑦𝑟 , 𝑧) =  𝑤(𝑋, 𝑦𝑟 , 𝑧) =  0,    𝑣(𝑋, 𝑦𝑟 , 𝑧)  =  𝑣𝑤 (3.7) 

where the surface of the wall is described by the function yr = G(X, z), and vw is the 

vertical velocity at the wall in the case of blowing/suction control. The Prandtl 

transformation can be used to incorporate the surface streaks into the BRE equations, by 

defining the new independent and dependent variables, 

 𝑌 =  𝑦 − ℎ𝑠𝐺 (3.8) 

 𝑣̂ =  𝑣 − ℎ𝑠(𝑢𝐺𝑋  +  𝑣𝐺𝑧), (3.9) 
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respectively. Working out the transformations of derivatives in equations (3-6) using the 

chain-rule, a new set of equations in Cartesian coordinates is obtained as  

 𝑢𝑋 + 𝑣̂𝑌  +  𝑤𝑧  =  0, (3.10) 

 𝑢𝑢𝑋 +  𝑣̂𝑢𝑌  +  𝑤𝑢𝑧  =  𝑢𝑌𝑌 + (𝜕𝑧  −  ℎ𝑠𝐺𝑧𝜕𝑌)²𝑢, (3.11) 

 𝑢𝑣𝑋  +  𝑣̂𝑣𝑌 +  𝑤𝑣𝑧  +  𝐺𝛬𝑢² =  −𝑝𝑌  + 𝑣𝑌𝑌 + (𝜕𝑧  −  ℎ𝑠𝐺𝑧𝜕𝑌)²𝑣, (3.12) 

 𝑢𝑤𝑋 +  𝑣̂𝑤𝑌 + 𝑤𝑤𝑧 = − (𝜕𝑧 − ℎ𝑠𝐺𝑧𝜕𝑌) 𝑝 + 𝑤𝑌𝑌 + (𝜕𝑧  − ℎ𝑠𝐺𝑧𝜕𝑌)²𝑤 (3.13) 

Since equations (3.10-3.13) are parabolic in the X -direction, the receptivity of the 

boundary layer flow to surface roughness elements will enter the problem through initial 

(or upstream) conditions. Under the assumption that a generic roughness element is much 

smaller than the local radius of curvature R0, the local asymptotic high Reynolds number 

solution in the vicinity of the roughness element as derived previously for the flat plate 

case in Goldstein et al.[19] (hereafter referred to as GSDC), is used. As in GSDC, the 

boundary layer flow is divided into an inner region in the vicinity of the roughness 

elements and an outer region that extends further downstream shown in figure (3.1). The 

amplitudes of the surface streaks are magnified by a factor of three, and the streamwise 

length is decreased by a factor of two (see figure3.2).  

 

Figure 3.2 Sketch of the boundary layer and the surface streaks in the downstream. 
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Goldstein et al. [61] have performed a detailed analysis of the inner region in 

GSDC, however, the focus of this paper is on the latter region, where Görtler vortices are 

expected to develop as a result of receptivity to the roughness elements located in the 

upstream region.  

We consider an asymptotic expansion of the velocity and pressure in the 

proximity of the roughness element, as in GSDC, in the form 

{𝑢,
𝑣

𝑅Λ
,
𝑤

𝑅Λ
,
𝑝

𝑅Λ²
}=  {𝑈𝐵(𝜂𝐵), 𝛿𝑉𝐵(𝑋 , 𝜂𝐵), 0, 0}  +  𝜀 3{ũ  (𝑋 , ӯ), 𝛿ṽ  (𝑋 , ӯ), 0, 𝑝  (𝑋 , ӯ)}+ . . . 

𝜀3𝛼 − 4{𝑢 ( 𝑋 , ӯ, 𝑧 ), 𝛿𝑣 (𝑋 , ӯ, 𝑧 ), 𝛿𝑤 (𝑋 , ӯ, 𝑧 ), 𝛿²𝑝 (𝑋 , ӯ, 𝑧 )} + … (3.14) 

where 𝑋̄ =  (
𝛬

𝑥0
∗)𝑅𝛬𝑋, ӯ =  (

𝛬

𝛿∗
) 𝑦, 𝑧 =  (

𝛬

𝛿∗
) 𝑧 since the slow variable X̄ and the 

transverse coordinates, ӯ and z̄, are defined differently in GSDC, α = 8/3, and the 

denominators on the left hand side were introduced to link the dependent variables in 

equation (A.25) of GSDC to the dependent variables in the nonlinear BRE (3.10)-(3.13). 

The base flow is just the solution to the Blasius equation in terms of the function F(ηB), 

𝐹’’’(𝜂𝐵) +  1/2 𝐹(𝜂𝐵) 𝐹’’(𝜂𝐵) =  0, with boundary conditions, 𝐹(0) = 𝐹’(0) = 0,

𝐹’(∞) = 1, where λ ≡ F’’(0) ≈ 0.33206, ηB ≡ ӯ /√𝑋 . The second term on the right hand 

side of the expansion (3.14) is the spanwise-uniform component, which is separated out 

from the spanwise-dependent component because of the difference in order of magnitude. 

It is determined from the two-dimensional constant pressure linearized boundary layer 

equations and has the form given in Appendix A.  

The spanwise variable perturbations {ũ, v ̃, w̃,p̃} are found from the linearized 

boundary region (LBR) equations  
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 𝑢 𝑋 + 𝑣 𝑦 + 𝑤 𝑧  =  0, (3.15) 

 𝑈𝐵𝑢 𝑋 + 𝑉𝐵𝑢 𝑦 +  𝑢 𝑈𝐵,𝑋 + 𝑣 𝑈𝐵,𝑦  =  𝑢 𝑦 𝑦  +  𝑢 𝑧 𝑧 , (3.16) 

 𝑈𝐵𝑣 𝑋 + 𝑉𝐵𝑣 𝑦 +  𝑢 𝑉𝐵,𝑋 + 𝑣 𝑉𝐵,𝑦  =  −𝑝 
𝑦
 +  𝑣 𝑦 𝑦  +  𝑣 𝑧 𝑧 , (3.17) 

 𝑈𝐵𝑤 𝑋 + 𝑉𝐵𝑤 𝑦 = −𝑝 
𝑧
 +  𝑤 𝑦 𝑦 + 𝑤 𝑧 𝑧 , (3.18) 

applied in the vicinity of the roughness elements, where the curvature term has been 

neglected, subject to the transverse boundary conditions 

 𝑢̃, 𝑣̃, 𝑤̃ = 0;  𝑓𝑜𝑟 𝑦 =  0;  𝑎𝑛𝑑 𝑢 , 𝑣 , 𝑤 , 𝑝  →  0, 𝑎𝑠 𝑦  →  ∞ (3.19) 

and appropriate upstream matching conditions represented by the uniformly valid 

composite expansion of the upstream matching conditions as X̄ → 1 for the LBR 

equations, as derived in GSDC ( Appendix A). To avoid numerical instabilities, a linear 

buffer region that connects the upstream conditions with the solution to the nonlinear 

equations is considered, where the linear BRE (3.15-3.18) starting with the upstream 

conditions (34-37) are solved see Sescu and Thompson [62]. Then, the numerical solution 

to the linear equations is used as an upstream condition to the nonlinear BRE via the 

expansion (3.14). As an example, figure 2 shows the energy associated with the first 

mode as a function of the streamwise coordinate in the downstream of the roughness 

element for four numerical solutions: a) the linear BRE solution for the entire range of X, 

without curvature effect; b) the linear BRE solution in the buffer region (enclosed by the 

vertical dashed lines) and the nonlinear BRE solution in the downstream, without 

curvature effect; c) and iv) the linear BRE solution in the buffer region and the nonlinear 

BRE solution in the downstream, respectively, with curvature effect and for two different 

Görtler numbers (5,2 and 7,3, respectively) based on the momentum displacement 

thickness, θ. All four solutions match in the buffer region, while the solutions to the 
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nonlinear BRE with curvature effect do show an increase in energy in the outer region 

due to the Görtler term on the left side of the second momentum equation. 

 

Figure 3.3 Energy associated with the first mode for four cases. 

i) the linear BRE solution for the entire range of X, without curvature effect; ii) the linear 
BRE solution in the buffer region and the nonlinear BRE solution in the downstream, 
without curvature effect; iii) and iv) the linear BRE solution in the buffer region and the 
nonlinear BRE solution in the downstream.[18]respectively, with curvature effect. The 
buffer region is located between the two vertical dashed lines on the left. 

At y = 0, Dirichlet conditions are imposed for u, v and win equations (3.10-3.13) 

in the form  

 𝑢(𝑋, 𝑦 = 0, 𝑧) = 𝑣(𝑋, 𝑦 = 0, 𝑧) = 𝑤(𝑋, 𝑦 = 0, 𝑧) = 0, (3.20) 

while, at the upper boundary, the flow matches the free stream conditions. Equations 

(3.10-3.13) and the corresponding initial and boundary conditions will be solved 

numerically using a marching technique in the streamwise direction, taking advantage of 

the parabolic character of the equations. A staggered grid was used to avoid decoupling 

between the velocity and pressure, and second order accurate difference schemes were 
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employed along both y and z directions. Since the equations are nonlinear, convergence is 

achieved by a relaxation method; this was done by including time derivative terms in the 

equations that were converged to zero, using an appropriate preconditioning technique 

applied to the continuity equation.  

 Hall and Horseman [47] showed that the leading order secondary instability 

modes whose amplitude are of the same order as the local boundary layer thickness are 

governed by the two-dimensional Rayleigh stability equation, 

 (𝜕𝑦𝑦  +  𝜕𝑧𝑧 –  𝛼²)𝑝  −   
2

(𝑢 − 𝑐) 
 (𝜕𝑦𝑢𝜕𝑦  +  𝜕𝑧𝑢𝜕𝑧)𝑝  =  0 (3.21) 

on a streamwise flow u(y, z; x), where p̃ is the normal mode subject to the associated 

boundary conditions 𝑝 (𝑦, 𝑧;  𝑥)  →  0 𝑎𝑠 𝑦 →  ∞; 𝜕𝑦𝑝 (0, 𝑧;  𝑥)  =  0, 𝜕𝑦𝑝 (𝑦, 𝑧;  𝑥)  =

 𝜕𝑦𝑝 (𝑦, 𝑧 +  𝛬;  𝑥), and Λ is the wavelength along the spanwise direction which is in this 

case the spanwise separation of roughness elements. Equation (3.21) can be regarded as 

an eigenvalue problem. For temporal stability, α is real, and the phase speed c is sought 

as a complex eigenvalue, while the eigensolution is p̃(y, z). Velocity modes can be 

obtained by considering a velocity perturbation of the form (𝑢’, 𝑣’, 𝑤’)  =

 (𝑢 , 𝑣 , 𝑤 )𝑒𝑖(𝛼𝑥−𝜔𝑡), which, together with the pressure mode substituted into the 

perturbation equations, leads to the equations (Hall and Horseman [47], Li and Malik 

[26]) 

 𝑖𝛼𝑈 + 𝜕𝑦𝑣  +  𝜕𝑧𝑤 =  0 (3.22) 

 𝑖𝛼(𝑈 −  𝑐)𝑢  +  𝑣 𝜕𝑦𝑈 =  −𝑖𝛼𝑝  (3.23) 

 𝑖𝛼(𝑈 −  𝑐)𝑣  =  −𝜕𝑦𝑝  (3.24) 

 𝑖𝛼(𝑈 −  𝑐) 𝑤  +  𝑤 𝜕𝑧𝑈 =  −𝜕𝑧𝑝  (3.25) 
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Using a finite difference to discretize the Rayleigh pressure equation (3.21, a generalized 

eigenvalue problem can be obtained in the form 𝐴𝑟 =  𝜔𝐵𝑟, which is solved using a QR 

method that yields all eigenvalues and eigenfunctions. 

3.2 Feedback control algorithm 

A control algorithm is utilized here to determine the optimum shape of the wall 

deformations that provides the lowest growth rate of energy associated with the boundary 

layer streaks. The input to the control loop is the streamwise velocity disturbance 

distribution in a 𝑦 = 𝑐𝑜𝑛𝑠𝑡 plane, at a specified distance from the wall. Alternatively, an 

integral over the wall-normal direction (from 0 to 1 or to a specified 𝑦 = 𝑐𝑜𝑛𝑠𝑡) of the 

streamwise velocity disturbance can be used to determine the control input. 

A typical proportional-integral (PI) controller is used here of the form  

 𝐴(𝑋, 𝑧) =  𝐾𝑝 ∗ 𝑒(𝑋, 𝑧) + 𝐾𝑖 ∫ 𝑒(𝑋, 𝑧, 𝑡′)𝑑𝑡′
𝑡

0
 (3.26) 

where t is a variable defining the iterative direction of the controller. 𝑒(𝑋, 𝑧)is the error 

signal which is definedhere as the difference between the streamwise velocity solution as 

obtained from BRE and the Blasius streamwise velocity component at a specified yc 

distance from the wall, 𝑒(𝑋, 𝑧)  =  𝑢(𝑋, 𝑦𝑐, 𝑧)  − 𝑈𝐵(𝑋, 𝑦𝑐).  

An alternative is to consider the integrated streamwise velocity disturbance along 

the wall-normal direction, 

 𝑒(𝑋, 𝑧) = ∫ [𝑢(𝑋, 𝑦′, 𝑧) − 𝑈𝐵(𝑋, 𝑦′)] 𝑑𝑦′
𝑡

0
 (3.27) 

However, this is only effective if the boundary layer disturbances are close to the wall, 

and there is no sign change in the streamwise velocity disturbance along the vertical 

direction (in such cases replacing the upper limit of the integral with a finite number may 
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provide a better solution). The amplitude and the shape of the wall deformations can be 

updated at each iteration based on the control signal as 𝐺(𝑋, 𝑧)  =  𝐺(𝑋, 𝑧)  + 𝐴(𝑋, 𝑧). 

The proportional and the integral gains, Kp and Ki, respectively, are determined here using 

the popular frequency response method of Ziegler [63]. 

Briefly, the control algorithm steps are: 

 First step: numerically solve the BRE for the initial flat wall surface; 

 Second step: deform the wall surface using the streamwise velocity disturbance 

distribution on a control plane; 

 Third step: solve the BRE with the new deformed wall surface; 

 Fourth step: repeat the previous two steps until convergence is achieved (e.g., 

when the boundary layer streak energy or amplitude does not change significantly 

from one step to the other). 
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CHAPTER IV 

RESULTS AND DISCUSSION 

In this chapter, the results of various numerical simulations are presented and 

discussed. First, contour plots of the streamwise velocity and the corresponding velocity 

profiles for each case are plotted. Then, results from the stability analysis are provided 

including plots of the energy disturbance and the growth rates from the secondary 

instability analysis.  

4.1 Procedures 

In this work, a row of roughness elements located at a distance of 0.5 m from the 

leading edge, with three different spanwise separations of 1.2, 1.8 and 2.4 cm and two 

different curvature radii 0.5 m and 1 m, is considered. The functional form describing the 

roughness element is given by the localized function 

 𝐹̃(𝑥, 𝑧) = 𝑒
−
𝑥²+(𝑧−𝜋𝑙)²

(𝑑/2)²  (4.1) 

where d is small enough (in the calculations included in this work) to diminish potential 

discontinuities in the first derivative with respect to z (at the midpoint between two 

adjacent roughness elements) to negligible levels. The Görtler number based on the 

momentum displacement thickness is 10.8, and the freestream velocity is 5 m/s, which 

gives a Blasius boundary layer thickness of 0.7 cm (note that the spanwise separation is 

on the order of the boundary layer thickness). Either the streamwise velocity disturbance 
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u’ or the wall-normal velocity disturbance v’ is used as input to the feedback control 

algorithm. The input velocities are taken from a sectional plane y = yc inside the 

boundary layer, where three elevations are considered: yc = 0.1 cm, yc = 0.2 cm and yc= 

0.3 cm. The control is performed using both wall deformations and blowing/suction, and 

the results in terms of streamwise velocity contours, energy of the vortices and growth 

rates from the secondary instability analysis are compared. 

The 72 run cases performed in this work are given in the three tables 4.1, 4.2 and 

4.3. 

Table 4.1 Run cases for spanwise separation 1.2 cm. 

Case 
number Method Radius (m) Plane elevation 

(cm) 
Control 
inputs 

1 

Wall 
deformations 

0.5 

0.1 u' 
2 v' 
3 0.2 u' 
4 v' 
5 0.3 u' 
6 v' 
7 

1 

0.1 u' 
8 v' 
9 0.2 u' 
10 v' 
11 0.3 u' 
12 v' 
13 

Blowing/suction 

0.5 

0.1 u' 
14 v' 
15 0.2 u' 
16 v' 
17 0.3 u' 
18 v' 
19 

1 

0.1 u' 
20 v' 
21 0.2 u' 
22 v' 
23 0.3 u' 
24 v' 



 

30 

Table 4.2 Run cases for spanwise separation 1.2 cm. 

Case 
number Method Radius (m) Plane elevation 

(cm) 
Control 
inputs 

25 

Wall 
deformations 

0.5 

0.1 u' 
26 v' 
27 0.2 u' 
28 v' 
29 0.3 u' 
30 v' 
31 

1 

0.1 u' 
32 v' 
33 0.2 u' 
34 v' 
35 0.3 u' 
36 v' 
37 

Blowing/suction 

0.5 

0.1 u' 
38 v' 
39 0.2 u' 
40 v' 
41 0.3 u' 
42 v' 
43 

1 

0.1 u' 
44 v' 
45 0.2 u' 
46 v' 
47 0.3 u' 
48 v' 
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Table 4.3 Run cases for spanwise separation 1.8 cm. 

Case 
number Method Radius (m)  

Plane elevation 
(cm)  

Control 
inputs 

49 
Wall 

deformations 0.5 
0.1 u' 

50 v' 
51 

0.2 u' 
52 v' 

Case 
number Method Radius (m)  

Plane elevation 
(cm)  

Control 
inputs 

53 

Wall 
deformations 

0.5 0.3 u' 
54 v' 
55 

1 

0.1 u' 
56 v' 
57 

0.2 u' 
58 v' 
59 

0.3 u' 
60 v' 
61 

Blowing/suction 

0.5 

0.1 u' 
62 v' 
63 

0.2 u' 
64 v' 
65 

0.3 u' 
66 v' 
67 

1 

0.1 u' 
68 v' 
69 

0.2 u' 
70 v' 
71 

0.3 u' 
72 v' 

 

4.2 Streamwise velocity 

The following figures show contours of streamwise velocity at a cross-section 

through the Görtler vortex after the energy of the vortex reached its maximum, and 
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streamwise velocity profiles at a spanwise location corresponding to the center of the 

“mushroom” shape.  

The contour plots and velocity profiles for two different curvature radii, R=0.5 m 

and R=1 m for both wall deformation and blowing/ suction using both u and v control are 

presented. Figure 4.1 shows contour plots for control based on wall deformations for 

curvature radius of0.5 m. At the top (4.1a), the original vortices developing over the 

undeformed surface reveal fully-developed ‘mushroom’ shapes with alternating low-

speed streaks(in blue) and high-speed streaks (in red) in the spanwise direction. Within 

the control algorithm, the wall surface is gradually moved downward at the spanwise 

location corresponding to the low-speed streak, while at the same time it is moved 

upward at the spanwise location where there are high-speed streaks. This change in the 

geometry of the wall surface enhances or decreases the momentum of the flow, thus 

reducing the energy associated with the Görtler vortices, and eventually delaying 

breakdown into turbulence. This is shown in the next parts of the figures, corresponding 

to different geometrical and flow conditions. Figure 4.1b shows a controlled boundary 

layer using u’ as the input “measured” from a control plane located at yc = 0.1 cm from 

the wall, while figure 4.1c shows the same result, the input is v’ taken from control planes 

at yc = 0.1 cm. Similar results are shown in figures 4.1d and 4.1e, where the control plane 

is taken at yc = 0.2 cm for u’ and v’ control respectively. And similarly figures 4.1f and 

4.1g show results for both u’ and v’ control taken at yc = 0.3 cm. It can be noted that the 

best results (the contours are closest to the Blasius solution) are obtained when the 

control is performed based on v’. On the left side of figures 4.1b, 4.1c, 4.1d, 4.1e, 4.1f, 
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4.1g, streamwise velocity profiles are included to show that the inflection point vanishes 

when control is applied. 

Figure 4.2 shows contours of streamwise velocity at a cross-section through the 

Görtler vortex and streamwise velocity profiles for wall deformation for a surface with 

curvature radius equal to 1 m. As in figure 4.1, contour plots of the streamwise velocity 

are on the left and their velocity profiles are on the right. Following the same order for 

figures 4.2b, 4.2c, 4.2d, 4.2e, 4.2f, 4.2g, as in figure 4.1, it can be observed that the 

curvature radius affects the vortices and that the best control is given by v’ control.  

Figure 4.3 and 4.4 show contour plots and velocity profiles for blowing and 

suction control methods for a curvature radius of 0.5 m and 1 m, respectively, with a 

roughness spanwise separation of 1.2 cm. The two figures show a reduction in the energy 

of the Görtler vortices that does not differ significantly for the two cases. However, 

control based on wall deformations is much more effective than the control based on 

blowing and suction, especially in the case where v’ is used as the control input.  

Similarly, the results corresponding to a roughness spanwise separation of 1.8cm, 

illustrated in figures 4.5, 4.6, 4.7 and 4.8 show that similar conclusions hold: the control 

based on wall deformations and using v’ as the input are the most effective. An even 

larger spanwise separation 2.4 cm is considered in figures 4.9, 4.10, 4.11 and 4.12, where 

the control is based again in wall deformations and blowing/suction for radius curvature 

values 0.5 m and 1 m.  
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a) 

 

b) 

 

c) 

 

d) 

Figure 4.1 Stream wise velocity contours (left column) and profiles (right) for control 
based on wall deformations for radius 0.5 m; spanwise separation is 1.2 cm. 
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e) 

 

f) 

 

g) 

Figure 4.1 (continued). 

a) smooth surface; b) control based on u and control plane at y = 0.1; c) control based on 
v and control plane at y = 0.1; d) control based on u and control plane at y = 0.2; e) 
control based on v and control plane at y = 0.2; f) control based on u and control plane at 
y = 0.3; g) control based on v and control plane at y = 0.3. 
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a) 

 
b) 

 
c) 

 
d) 

 
e) 

Figure 4.2 Stream wise velocity contours (left column) and profiles (right) for control 
based on wall deformations for radius 1 m; spanwise separation is 1.2 cm. 
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f) 

 
g) 

Figure 4.2 (continued). 

a) smooth surface; b) control based on u and control plane at y = 0.1; c) control based on 
v and control plane at y = 0.1; d) control based on u and control plane at y = 0.2; e) 
control based on v and control plane at y = 0.2; f) control based on u and control plane at 
y = 0.3; g) control based on v and control plane at y = 0.3. 
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a) 

 
b) 

 
c) 

 
d) 

 
e) 

Figure 4.3 Stream wise velocity contours (left column) and profiles (right) for control 
based on blowing and suction for radius 0.5 m; spanwise separation is 1.2 
cm. 
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f) 

 
g) 

Figure 4.3 (continued). 

a) smooth surface; b) control based on u and control plane at y = 0.1; c) control based on 
v and control plane at y = 0.1; d) control based on u and control plane at y = 0.2; e) 
control based on v and control plane at y = 0.2; f) control based on u and control plane at 
y = 0.3; g) control based on v and control plane at y = 0.3. 
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a) 

 
b) 

 
c) 

 
d) 

 
e) 

Figure 4.4 Stream wise velocity contours (left column) and profiles (right) for control 
based on blowing and suction for radius 1 m; spanwise separation is 1.2 
cm. 
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f) 

 
g) 

Figure 4.4 (continued). 

a) smooth surface; b) control based on u and control plane at y = 0.1; c) control based on 
v and control plane at y = 0.1; d) control based on u and control plane at y = 0.2; e) 
control based on v and control plane at y = 0.2; f) control based on u and control plane at 
y = 0.3; g) control based on v and control plane at y = 0.3. 
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a) 

 
b) 

 
c) 

 
d) 

 
e) 

Figure 4.5 Stream wise velocity contours (left column) and profiles (right) for control 
based on wall deformation for radius 0.5 m; spanwise separation is 1.8 cm. 
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f) 

 
g) 

Figure 4.5 (continued). 

a) smooth surface; b) control based on u and control plane at y = 0.1; c) control based on 
v and control plane at y = 0.1; d) control based on u and control plane at y = 0.2; e) 
control based on v and control plane at y = 0.2; f) control based on u and control plane at 
y = 0.3; g) control based on v and control plane at y = 0.3. 

         
a) 

 
b) 

Figure 4.6 Stream wise velocity contours (left column) and profiles (right) for control 
based on wall deformation for radius 1 m; spanwise separation is 1.8 cm. 
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c) 

 
d) 

 
e) 

 
f) 

 
g) 

Figure 4.6 (continued). 

a) smooth surface; b) control based on u and control plane at y = 0.1; c) control based on 
v and control plane at y = 0.1; d) control based on u and control plane at y = 0.2; e) 
control based on v and control plane at y = 0.2; f) control based on u and control plane at 
y = 0.3; g) control based on v and control plane at y = 0.3. 
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a) 

 
b) 

 
c) 

 
d) 

 
e) 

Figure 4.7 Stream wise velocity contours (left column) and profiles (right) for control 
based on blowing/suction for radius 0.5 m; spanwise separation is 1.8 cm. 
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f) 

 
g) 

Figure 4.7 (continued). 

a) smooth surface; b) control based on u and control plane at y = 0.1; c) control based on 
v and control plane at y = 0.1; d) control based on u and control plane at y = 0.2; e) 
control based on v and control plane at y = 0.2; f) control based on u and control plane at 
y = 0.3; g) control based on v and control plane at y = 0.3. 

         
a) 

 
b) 

Figure 4.8 Stream wise velocity contours (left column) and profiles (right) for control 
based on blowing/suction for radius 1 m; spanwise separation is 1.8 cm. 

 



 

47 

 
c) 

 
d) 

 
e) 

 
f) 

 
g) 

Figure 4.8 (continued). 

a) smooth surface; b) control based on u and control plane at y = 0.1; c) control based on 
v and control plane at y = 0.1; d) control based on u and control plane at y = 0.2; e) 
control based on v and control plane at y = 0.2; f) control based on u and control plane at 
y = 0.3; g) control based on v and control plane at y = 0.3. 
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a) 

 
b) 

 
c) 

 
d) 

 
e) 

Figure 4.9 Stream wise velocity contours (left column) and profiles (right) for control 
based on wall deformation for radius 0.5 m; spanwise separation is 2.4 cm. 
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f) 

 
g) 

Figure 4.9 (continued). 

a) smooth surface; b) control based on u and control plane at y = 0.1; c) control based on 
v and control plane at y = 0.1; d) control based on u and control plane at y = 0.2; e) 
control based on v and control plane at y = 0.2; f) control based on u and control plane at 
y = 0.3; g) control based on v and control plane at y = 0.3. 

         
a) 

 
b) 

Figure 4.10 Stream wise velocity contours (left column) and profiles (right) for control 
based on wall deformation for radius 1 m; spanwise separation is 2.4 cm. 
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c) 

 
d) 

 
e) 

 
f) 

 
g) 

Figure 4.10 (continued). 

a) smooth surface; b) control based on u and control plane at y = 0.1; c) control based on 
v and control plane at y = 0.1; d) control based on u and control plane at y = 0.2; e) 
control based on v and control plane at y = 0.2; f) control based on u and control plane at 
y = 0.3; g) control based on v and control plane at y = 0.3. 
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a) 

 
b) 

 
c) 

 
d) 

 
e) 

Figure 4.11 Stream wise velocity contours (left column) and profiles (right) for control 
based on blowing/suction for radius 0.5 m; spanwise separation is 2.4 cm. 
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f) 

 
g) 

Figure 4.11 (continued). 

a) smooth surface; b) control based on u and control plane at y = 0.1; c) control based on 
v and control plane at y = 0.1; d) control based on u and control plane at y = 0.2; e) 
control based on v and control plane at y = 0.2; f) control based on u and control plane at 
y = 0.3; g) control based on v and control plane at y = 0.3. 

          
a) 

 
b) 

Figure 4.12 Stream wise velocity contours (left column) and profiles (right) for control 
based on blowing/suction for radius 1 m; spanwise separation is 2.4 cm. 
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c) 

 
d) 

 
e) 

 
f) 

 
g) 

Figure 4.12 (continued). 

a) smooth surface; b) control based on u and control plane at y = 0.1; c) control based on 
v and control plane at y = 0.1; d) control based on u and control plane at y = 0.2; e) 
control based on v and control plane at y = 0.2; f) control based on u and control plane at 
y = 0.3; g) control based on v and control plane at y = 0.3. 
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4.3  Energy growth rates 

Figures 4.13, 4.14 and 4.15 show the kinetic energy of the disturbance, calculated 

according to 

𝐸(𝑥) = ∫ ∫ [|𝑢(𝑥, 𝑦, 𝑧) − 𝑢𝑚(𝑥, 𝑦)|
2 + |𝑣(𝑥, 𝑦, 𝑧) − 𝑣𝑚(𝑥, 𝑦)|

2 + |𝑤(𝑥, 𝑦, 𝑧) −
∞

0

2𝜋𝑙

0

𝑤𝑚(𝑥, 𝑦)|
2]𝑑𝑧𝑑𝑦,  (4.2) 

Where um(x; y), vm(x; y), and wm(x; y) are the spanwise mean components of velocity. In 

the three figures below, the energy associated with the disturbances has been significantly 

reduced by almost one or two orders of magnitude. 

The left figure of each energy plot is given for the entire domain and a zoomed-in 

version is shown on the right side and shows the energy reduction. For example, in figure 

4.13, the control algorithm reduced the energy of the vortices significantly when v’ was 

used as the control input for wall deformations. In the case of a spanwise separation of 

1.8 cm, shown in figure 4.14, unexpectedly, the control based on blowing and suction 

with v’ as the control input seems to provide the best results for the three control plane 

locations 0.1, 0.2 and 0.3. In contrast, figure 4.15, which corresponds to a spanwise 

separation of 2.4, for a curvature radius 0.5 m (left column), the wall deformation with v’ 

as the control input gives more reduction than the blowing/suction method. For the case 

of a curvature radius of 1 m (right column), the energy of the disturbances is more 

reduced by the blowing/suction method for both u’ and v’ control than by the wall 

deformations. 
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a) 

 
b) 

Figure 4.13 Energy of disturbances for spanwise separation 1.2 cm; with curvature 
radius 0.5 m (left) and 1 m radius (right). 
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c) 

Figure 4.13 (continued). 

a) for control plane at y=0.1, b) for control plane at y=0.2 and c) for control plane at 
y=0.3.  

 
a) 

Figure 4.14 Energy of disturbances for spanwise separation 1.8 cm; with curvature 
radius 0.5 m (left) and 1 m radius (right). 
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b) 

 
c) 

Figure 4.14 (continued). 

a) for control plane at y=0.1, b) for control plane at y=0.2 and c) for control plane at 
y=0.3.  
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a) 

 
b) 

Figure 4.15 Energy of disturbances for spanwise separation 2,4cm; with curvature 
radius 0,5m (left) and 1 m radius (right). 
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c) 

Figure 4.15 (continued). 

a) for control plane at y=0.1, b) for control plane at y=0.2 and c) for control plane at 
y=0.3.  

4.4  Growth rates 

The following figures show growth rates from the secondary instability analysis, 

in which a temporal stability problem is considered. The wavenumber α is considered 

real and the phase speed c is complex. The growth rate is then given by the imaginary 

part of the frequency 𝜔 = 𝑐𝛼 as a function of α. In figures 4.16, 4.17 and 4.18, that the 

results are consistent with the energy distributions in section 4.3.  Moreover, the 

wavenumber of the maximum growth rate is much smaller than the one corresponding to 

the undeformed surface about one-half of the value in some cases.  The wavenumber for 

the maximum growth rates shifts to the left by 50%. This means that the wavelengths are 

smaller as the wall deformations and the blowing/suction methods are introduced. Also, 

comparing the left and right columns, it is clear that as the radius of the curvature 

increases, the wavenumber of the growth rates decreases.  
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a) 

 
b) 

Figure 4.16 Growth rates for spanwise separation 1,2cm; with curvature radius 0,5m 
(left) and 1 m radius (right). 
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c) 

Figure 4.16 (continued) 

a) for control plane at y=0,1, b) for control plane at y=0,2 and c) for control plane at 
y=0,3.  

 
a) 

Figure 4.17 Growth rates for spanwise separation 1,8cm; with curvature radius 0,5m 
(left) and 1 m radius (right). 
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b) 

 
c)  

Figure 4.17 (continued) 

a) for control plane at y=0,1, b) for control plane at y=0,2 and c) for control plane at 
y=0,3.  
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a) 

 
b)  

Figure 4.18 Growth rates for spanwise separation 2,4cm; with curvature radius 0,5m 
(left) and 1 m radius (right). 
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c) 

Figure 4.18 (continued) 

a) for control plane at y=0,1, b) for control plane at y=0,2 and c) for control plane at 
y=0,3.  

The results from simulations show that for a spanwise separation of 1.2 cm a 

higher reduction of the vortices is achieved when wall deformations using v’ as a feed 

back control input (case 3) is used (see Table 4.1). Similarly for spanwise separation of 

2.4 cm, the results follow the same trend and wall deformations using surface streaks for 

a curvature radius of 0.5 cm and v’ as the input for the control at a plane elevation of 

0.2cm performed in case 52 (Table 4.3) reduces the energy associated with the 

disturbances by almost two orders of magnitudes. Unexpectedly, blowing/suction method 

is more effective for a spanwise separation of 1.8 cm especially for case 46 (Table 4.2) 

where a curvature radius of 1 m and the feedback control is performed using v’ at a plane 

elevation of 0.2 cm. 

Contour plots of velocity modescorresponding to all control schemes used in this 

work are shown in appendix B They all show that the regions of intense instability 
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revealed by patches of yellow or blue - are moved toward the wall as the control is 

applied. 
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CHAPTER V 

CONCLUSIONS 

The effect of controlled wall deformation and blowing/suction on the secondary 

instability of Görtler vortices in boundary layers developing on concave surfaces has 

been investigated. The problem was formulated in a high Reynolds asymptotic 

framework in which the streamwise vortex flow is determined by the boundary region 

equations (equations (3.3)-(3.6)) together with appropriate upstream boundary conditions. 

The upstream conditions were derived previously using an asymptotic analysis in the 

vicinity of the roughness element. The Rayleigh pressure equation was used to determine 

the growth rates associated with the secondary instability of the vortices. The effect of 

wall deformations was incorporated into the model using a Prandtl transformation applied 

to the boundary region equations. An arbitrary function G(X; z) representing the local 

surface deformation was included in the transformed equations (3.10)-(3.13). These 

equations were then used within a closed loop control strategy that attempted to minimize 

the vortex associated energy for a given G(X; z). A proportional integral (PI) controller 

was employed, with the input being the streamwise velocity disturbance distribution in a 

plane parallel to the wall. The input to the control algorithm was either the streamwise 

velocity disturbance u’ or the wall-normal velocity disturbance v’. 
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The simulation results- streamwise velocity contours, disturbance energy and 

secondary instability growth rates - obtained in this study lead to the following 

conclusions:  

 Both the surface deformations and the blowing/suction modify the streamwise 

development of the streaks for a given spanwise wavelength and control plane. 

 The energy of the vortices was shown to decrease by one or even two orders of 

magnitude from the original amplitude, which corresponds to the undeformed 

surface. 

 The growth rate of secondary instability is reduced corresponding to the 

minimization of the vortex energy.  

Future efforts will focus on a more in depth investigation of the effect of a 

combination of wall deformation and blowing/suction methods on the secondary 

instability of Görtler vortices in developing the boundary layers on concave surfaces in 

order to achieve a higher reduction of skin friction drag. 
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The spanwise-mean component is determined as:  

 ū̃(𝑋̂, ӯ) =  𝑈′
𝐵(ӯ)𝐴(𝑋̂), 𝑣̄̃(𝑋̂, ӯ) = −𝑈′

𝐵(ӯ)
𝑑𝐴(𝑋̂)

𝑑𝑋
, 𝑝̄(𝑋̂) →

𝑝̄0

𝑋𝛽0
 (A.1) 

 𝑋̂ ≡ (𝑥∗ − 𝑥0
∗) 𝑥0

∗𝛿3/4⁄ , (A.2) 

 𝐴(𝑋̂) →  𝑎0𝜆
2

3𝐹̂0(0) +
𝑝̄0

𝑖(𝛽0−1)𝑋
𝛽0−1

 𝑎𝑠𝑋̂ → 0, (A.3) 

 𝑎0 = −3(−3𝐴𝑖′(0)/4)3/4cos (𝜋/8) (A.4) 

 𝑝̄̂0 =
√3𝛤(2/3)

𝛤(1/3)
91/3𝜆5/3𝐹̂0(0) (A.5) 

where 𝛽0 = 2/3, and 𝐹̂0 is determined from the Fourier expansion  

 ∑ ∫ 𝐹̂𝑛(𝑘)𝑒
𝑖(
𝑛𝑧

𝑙
+𝑘𝑥)𝑑𝑘,

∞

−∞
𝑛=∞
𝑛=−∞  (A.6) 

The initial conditions for the linear BRE are given by 

 ũ → 1

(𝑋̄)−1)2/3
[ũ0

(0)(ӯ, 𝑧 ) +
𝑈̃0(𝜂,𝑧 )
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−

9

10ӯ𝜆

𝛿2𝑝̃0
(0)(0,𝑧 )

𝜕𝑧 2
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1

(𝑋̄)−1)1/3
[ũ0

(1)(ӯ, 𝑧 ) +
𝑈̃1(𝜂,𝑧 )
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−

9

4ӯ𝜆

𝛿2𝑝̃0
(1)

(0,𝑧 )

𝜕𝑧 2
+
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2

3
)(3𝜆)1/3
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(1)(0,𝑧 )

𝜕𝑧 2
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where 
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 𝑝0
(0)(ӯ, 𝑧 ) =
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2

3
)

9𝛤(
1

3
)

9
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With 𝜋𝑛(ӯ, 0) determined from the boundary value problem 

 𝑈2
𝐵(ӯ)

𝑑

𝑑ӯ
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1
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𝐵(ӯ)
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)²𝜋𝑛(ӯ, 0) (A.13) 

which is the result of Fourier transforming the Poisson equation for pressure, satisfying 

the boundary conditions 

 𝜋𝑛(0,0) = 1, 𝜋𝑛(ӯ, 0) → 0, ӯ → ∞ (A.14) 

In the above equations, 
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Where 𝑉̂𝑗 is determined from 
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Also, j=1,2, and 
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𝜂3

9
)] (A.23) 

Where 𝛤(𝑎) is the well-known gamma function, and 𝑀(𝑎, 𝑏; 𝑧) is the confluent 

hypergeometric function. 
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√3

3.3
1
3
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3
9𝜂

0
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𝜂3

3
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3
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3
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It should be mentioned that the asymptotic solution given by (A.7) - (A.10) is only valid 

aroundX = 1, and itbreaks down for X − 1 ≫ 0. 
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VELOCITY MODES 
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The following figures show the contour plots of the first stability modes for u 

velocity (on the left) and v velocity (on the right) at a certain streamwise position for both 

wall deformation and blowing/suction methods using three different spanwise 

seperations1.2, 1.8 and 2.4 cm for two different curvature radii 0.5 m and 1 m where a 

feedback control using u and v is considered. These figures show the stability of the flow 

and describe how and where the instabilities are generated for both u and v velocities. 

 
a) 

 
b) 

Figure B.1 First stability modes of the streamwise velocity for control based on wall 
deformation for radius 0.5 m and spanwise separation is 1.2 cm; U modes 
(left column) and V modes(right). 
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c) 

 
d) 

 
e) 

 
f) 

Figure B.1 (continued). 
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g) 

Figure B.1 (continued). 

a) smooth surface; b) control based on u and control plane at y = 0.1; c) control based on 
v and control plane at y = 0.1; d) control based on u and control plane at y = 0.2; e) 
control based on v and control plane at y = 0.2; f) control based on u and control plane at 
y = 0.3; g) control based on v and control plane at y =0.3. 

 
a) 

 
b) 

Figure B.2 First stability modes of the streamwise velocity for control based on wall 
deformation for radius 1 m and spanwise separation is 1.2 cm; U modes 
(left column) and V modes(right). 
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c) 

 
d) 

 
e) 

 
f) 

Figure B.2 (continued). 
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g) 

Figure B.2 (continued). 

a) smooth surface; b) control based on u and control plane at y = 0.1; c) control based on 
v and control plane at y = 0.1; d) control based on u and control plane at y = 0.2; e) 
control based on v and control plane at y = 0.2; f) control based on u and control plane at 
y = 0.3; g) control based on v and control plane at y =0.3. 

 
a) 

 
b) 

Figure B.3 First stability modes of the streamwise velocity for control based on 
blowing/suction for radius 0.5 m and spanwise separation is 1.2 cm; U 
modes (left column) and V modes(right). 
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c) 

 
d) 

 
e) 

 
f) 

Figure B.3 (continued). 
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g) 

Figure B.3 (continued). 

a) smooth surface; b) control based on u and control plane at y = 0.1; c) control based on 
v and control plane at y = 0.1; d) control based on u and control plane at y = 0.2; e) 
control based on v and control plane at y = 0.2; f) control based on u and control plane at 
y = 0.3; g) control based on v and control plane at y =0.3. 

 
a) 

 
b) 

Figure B.4 First stability modes of the streamwise velocity for control based on 
blowing/suction  for radius 1 m and spanwise separation is 1.2 cm; U 
modes (left column) and V modes(right). 
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c) 

 
d) 

 
e) 

 
f) 

Figure B.4 (continued). 
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g) 

Figure B.4 (continued). 

a) smooth surface; b) control based on u and control plane at y = 0.1; c) control based on 
v and control plane at y = 0.1; d) control based on u and control plane at y = 0.2; e) 
control based on v and control plane at y = 0.2; f) control based on u and control plane at 
y = 0.3; g) control based on v and control plane at y =0.3. 

 
a) 

 
b) 

Figure B.5 First stability modes of the streamwise velocity for control based on wall 
deformation for radius 0.5 m and spanwise separation is 1.8 cm; U modes 
(left column) and V modes(right). 
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c) 

 
d) 

 
e) 

 
f) 

Figure B.5 (continued). 
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g) 

Figure B.5 (continued). 

a) smooth surface; b) control based on u and control plane at y = 0.1; c) control based on 
v and control plane at y = 0.1; d) control based on u and control plane at y = 0.2; e) 
control based on v and control plane at y = 0.2; f) control based on u and control plane at 
y = 0.3; g) control based on v and control plane at y =0.3. 

 
a) 

 
b) 

Figure B.6 First stability modes of the streamwisevelocityfor control based on wall 
deformation  for radius1 m and spanwise separation is 1.8 cm; U modes 
(left column) and V modes(right) 



 

89 

 
c) 

 
d) 

 
e) 

 
f) 

Figure B.6 (continued). 
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g) 

Figure B.6 (continued). 

a) smooth surface; b) control based on u and control plane at y = 0.1; c) control based on 
v and control plane at y = 0.1; d) control based on u and control plane at y = 0.2; e) 
control based on v and control plane at y = 0.2; f) control based on u and control plane at 
y = 0.3; g) control based on v and control plane at y =0.3. 

 
a) 

 
b) 

Figure B.7 First stability modes of the streamwise velocity for control based on 
blowing/suction for radius 0.5 m and spanwise separation is 1.8 cm; U 
modes (left column) and V modes(right). 
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c) 

 
d) 

 
e) 

 
f) 

Figure B.7 (continued). 
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g)  

Figure B.7 (continued). 

a) smooth surface; b) control based on u and control plane at y = 0.1; c) control based on 
v and control plane at y = 0.1; d) control based on u and control plane at y = 0.2; e) 
control based on v and control plane at y = 0.2; f) control based on u and control plane at 
y = 0.3; g) control based on v and control plane at y =0.3. 

 
a) 

 
b) 

Figure B.8 First stability modes of the streamwise velocity for control based on 
blowing/suction  for radius1 m and spanwise separation is 1.8 cm; U modes 
(left column) and V modes(right). 
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c) 

 
d) 

 
e) 

 
f) 

Figure B.8 (continued). 
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g) 

Figure B.8 (continued). 

a) smooth surface; b) control based on u and control plane at y = 0.1; c) control based on 
v and control plane at y = 0.1; d) control based on u and control plane at y = 0.2; e) 
control based on v and control plane at y = 0.2; f) control based on u and control plane at 
y = 0.3; g) control based on v and control plane at y =0.3. 

 
a) 

Figure B.9 First stability modes of the streamwise velocity for control based on wall 
deformation for radius 0.5 m and spanwise separation is 2.4 cm; U modes 
(left column) and V modes(right). 
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b) 

 
c) 

 
d) 

 
e) 

Figure B.9 (continued). 



 

96 

 
f) 

 
g) 

Figure B.9 (continued). 

a) smooth surface; b) control based on u and control plane at y = 0.1; c) control based on 
v and control plane at y = 0.1; d) control based on u and control plane at y = 0.2; e) 
control based on v and control plane at y = 0.2; f) control based on u and control plane at 
y = 0.3; g) control based on v and control plane at y =0.3. 

 
a) 

Figure B.10 First stability modes of the streamwise velocity for control based on wall 
deformation for radius 1 m and spanwise separation is 2.4 cm; U modes 
(left column) and V modes(right). 
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b) 

 
c) 

 
d) 

 
e) 

Figure B.10 (continued). 
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f) 

 
g) 

Figure B.10 (continued). 

a) smooth surface; b) control based on u and control plane at y = 0.1; c) control based on 
v and control plane at y = 0.1; d) control based on u and control plane at y = 0.2; e) 
control based on v and control plane at y = 0.2; f) control based on u and control plane at 
y = 0.3; g) control based on v and control plane at y =0.3. 

 
a) 

Figure B.11 First stability modes of the streamwise velocity for control based on 
blowing/suction  for radius 0.5 m and spanwise separation is 2.4 cm; U 
modes (left column) and V modes(right). 
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b) 

 
c) 

 
d) 

 
e) 

Figure B.11 (continued). 
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f) 

 
g) 

Figure B.11 (continued). 

a) smooth surface; b) control based on u and control plane at y = 0.1; c) control based on 
v and control plane at y = 0.1; d) control based on u and control plane at y = 0.2; e) 
control based on v and control plane at y = 0.2; f) control based on u and control plane at 
y = 0.3; g) control based on v and control plane at y =0.3. 

 
a) 

Figure B.12 First stability modes of the streamwise velocity for control based on 
blowing/suction  for radius 1 m and spanwise separation is 2.4 cm; U 
modes (left column) and V modes(right). 
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b) 

 
c) 

 
d) 

 
e) 

Figure B.12 (continued). 
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f) 

 
g) 

Figure B.12 (continued). 

a) smooth surface; b) control based on u and control plane at y = 0.1; c) control based on 
v and control plane at y = 0.1; d) control based on u and control plane at y = 0.2; e) 
control based on v and control plane at y = 0.2; f) control based on u and control plane at 
y = 0.3; g) control based on v and control plane at y =0.3. 
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