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I monitored cause-specific mortality and factors influencing mortality risk for 

white-tailed deer in the Upper Peninsula of Michigan, USA, during two high mortality 

risk periods: adult female deer during Feb–May, and fawns from birth to 6 months. I 

observed high rates of predation and starvation for adult female deer during Apr–May, 

suggesting that late winter represents a survival bottleneck due to nutritional declines. A 

strong negative relationship existed between snow free days during late winter and 

mortality risk. Predation was the dominant mortality source for fawns but predation risk 

decreased with larger birth mass. Black bears and coyotes accounted for most fawn kills 

at the population level, but wolves and bobcats had greatest per-individual fawn kill rates. 

My results suggest predation was the dominant mortality source for fawns and adult 

female deer, but multiple predator species were important and nutritional condition of 

deer influenced their vulnerability to predation. 



 

 

ii 

 

DEDICATION 

To Mom, for teaching me all I know about determination, hard work, dinosaurs, 

and vocabulary. To Matt, Jill, Tuck, and Jeff, for adventures in creeks, ponds, and 

hedgerows. To Dad, for his unfailing curiosity and support in his children’s interests, and 

for always stopping the tractor so that I could slide off the fender and move toads to 

safety.



 

iii 

ACKNOWLEDGEMENTS 

For providing me this opportunity, all of their instruction, and patiently waiting 

for me to write this thesis, I thank J. Belant, D. Beyer, and B. Strickland. For conducting 

the field work to make this study possible and making my life in Michigan infinitely 

more memorable, I thank C. Wright, O. Montgomery, M. Peterson, T. Wolf, E. Robbe, 

M. Stallard, B. Kidder, C. Eckloff, P. Chen, M. Nichols, A. Washakowski, T. Frank, J. 

Roughgarden, D. Tomasetti, E. Shields, B. Matykiewicz, A. Patterson, D. Lyons, D. 

Rogers, L. Thompson, K. Deweesee, A. Roddy, S. Peterson, K. Harmon, P. Mumford, G. 

Schmidt, A. Hirschy, S. Wendt, C. Boyce, J. Boone, J. Grauer, K. Smith, J. Jeffery, S. 

Harrington, Z. Farley, S. Summers, K. Hines, K. Haase, J. Lombardi, T. Lacerda, M. 

Picon, G. Price, C. Kyle, E. Perez, C. Almond, W. Tucker, K. Travis, M. Oberly, J. 

LaRose, K. Torreano, E. Moberg, B. Skelly, M. Liskiewicz, C. Maynard, and C. Wright 

for field assistance. For help with experimental design and every aspect of field work, I 

am indebted to T. Petroelje, N. Fowler, A. Lutto, J. Duquette, N. Svoboda, E. Largent, J. 

Lukowski, D. C. Norton, D. Martell, and N. Libal. I am grateful to many amazing 

graduate students at Mississippi State University, and particularly the past and present 

members of the CEL lab, for making me feel at home as I drifted on and off campus over 

the past 5 years. Funding and material support was provided by the Michigan Department 

of Natural Resources, Safari Club International Foundation, Safari Club International 

Michigan Involvement Committee, Federal Aid in Wildlife Restoration Act (W-147-R) 

and the Forest and Wildlife Research Center at Mississippi State University.



 

iv 

TABLE OF CONTENTS 

LIST OF TABLES ............................................................................................................. vi 

LIST OF FIGURES .......................................................................................................... vii 

I. INTRODUCTION AND BASIS FOR RESEARCH ............................................1 

II. INFLUENCE OF BIOLOGICAL AND ENVIRONMENTAL 

CONDITIONS ON WINTER MORTALITY RISK OF A 

NORTHERN UNGULATE: EVIDENCE  FOR A LATE-

WINTER SURVIVAL BOTTLENECK...................................................3 

Introduction ...........................................................................................................3 
Study area ..............................................................................................................6 

Methods .................................................................................................................7 

Deer capture and handling ...............................................................................7 
Weather data ....................................................................................................9 
Survival analysis ............................................................................................10 

Results  .................................................................................................................12 
Discussion ............................................................................................................13 

Influence of winter weather on mortality risk ...............................................13 
Cause-specific mortality and survival rates ...................................................17 

Conclusions .........................................................................................................19 

III. PREDATOR DENSITIES, KILL-RATES, AND BIRTH MASS 

DESCRIBE WHITE-TAILED DEER FAWN SURVIVAL IN A 

MULTI-PREDATOR SYSTEM .............................................................27 

Introduction .........................................................................................................27 
Study Area ...........................................................................................................30 
Methods ...............................................................................................................31 

Population density estimates .........................................................................31 
Fawn capture and monitoring ........................................................................35 
Fawn survival models and kill rate estimates ................................................36 

Results  .................................................................................................................38 

Population density estimates .........................................................................38 
Fawn capture and monitoring ........................................................................39 
Fawn survival and kill rate estimates ............................................................40 

Discussion ............................................................................................................41 



 

v 

Conclusions .........................................................................................................49 

REFERENCES ..................................................................................................................57 

 



 

vi 

LIST OF TABLES 

 2.1  Summary of captured sample and survival covariates for radio-collared 

adult female white-tailed deer, Upper Peninsula of Michigan, 

USA, 1 Feb–31 May, 2009–2015. .......................................................21 

2.2  Known fates of radio-collared adult female white-tailed deer, Upper 

Peninsula of Michigan, USA, 1 Feb–31 May, 2009–2015. .................22 

2.3  Model selection results using Akaike’s Information Criterion adjusted 

for small sample sizes (AICc) for Cox-proportional hazards 

generalized linear mixed models estimating survival of radio-

collared adult female white-tailed deer, Upper Peninsula of 

Michigan, USA, 1 Feb–31 May, 2009–2015. SFD represents 

cumulative snow free days, and WSI represents cumulative 

winter severity index. All models included study area as a 

random effect. ......................................................................................23 

2.4  Estimates of scaled and centered covariates from the top-ranked Cox-

proportional hazards generalized linear mixed model for 

weekly survival of radio-collared adult female white-tailed 

deer, Upper Peninsula of Michigan, USA, 2009–2015. Model 

included study area as a random effect. ...............................................24 

3.1  Density estimates (individuals/ 100km2 [95% confidence interval]) for 

white- tailed deer and predator species, Upper Peninsula of 

Michigan, USA, 2013–2015. ...............................................................51 

3.2  Known fates of 100 radio-collared white-tailed deer fawns from birth 

to 26 weeks old, Upper Peninsula of Michigan, USA, 2013–

2015......................................................................................................52 

3.3  Estimates of fawn mortality risk from 100 radio-marked fawns in 

response to birth mass, sex, and date of birth, Upper Peninsula 

of Michigan, USA, 2013–2015. ...........................................................53 

 



 

vii 

LIST OF FIGURES 

2.1  Location of low-snowfall (1) and mid-snowfall (2) study areas within 

the Upper Peninsula of Michigan, USA, 2009–2015. .........................25 

2.2  Weekly Kaplan-Meier survival estimates for adult female white-tailed 

deer (dotted line) and daily snow depth (shaded area) from 1 

Feb to 31 May, Upper Peninsula of Michigan, USA, 2009–

2015......................................................................................................26 

3.1  Locations of white-tailed deer fawn capture sites (A), deer camera 

survey sites (B), black bear hair snare sites (C), bobcat hair 

snare sites (D), coyote howl survey sites (E), and 95% 

utilization distribution fixed kernel home ranges of 4 wolves 

(solid outlines) along with historic VHF telemetry range of one 

pack (dotted outline) representative of packs used for track 

surveys (F), Upper Peninsula of Michigan, USA, 2013–2015. ...........54 

3.2  Kaplan-Meier survival probability from birth to 26 weeks old for 100 

radio-collared fawns, Upper Peninsula of Michigan, USA, 

2013–2015. Dashed lines represent 95% confidence intervals. ...........55 

3.3  Weekly number of predations by predator species for 100 white-tailed 

deer fawns from birth to 26 weeks old, Upper Peninsula of 

Michigan, USA, 2013–2015. ...............................................................56 

 

 



 

1 

CHAPTER I 

INTRODUCTION AND BASIS FOR RESEARCH 

 

White-tailed deer (Odocoileus virginianus) are an important game species in 

Michigan and are also considered a keystone herbivore and have important impacts 

throughout their range by influencing the distribution, abundance, and ecosystem 

functions of other species (Paine 1969, Waller and Alverson 1997). In the mid-1990s, 

two consecutive severe winters in the Upper Peninsula of Michigan (UP) led to a decline 

in deer numbers, and the population has not since recovered. This sustained low 

abundance of deer in the UP has been correlated with evidence for concurrent increases 

in black bear (Ursus americanus), gray wolf (Canis lupus), and coyote (Canis latrans) 

abundance (MDNR, unpublished data). As these species are known to prey on white-

tailed deer, it is important to understand their role in limiting deer abundance in the UP.  

 Additionally, winter temperature and snowfall varies considerably throughout the 

UP, with greater deer abundance generally associated with milder winter conditions 

(MDNR 2010). This suggests that white-tailed deer populations in the UP could be 

limited by winter weather (e.g. starvation during winter and spring; DePerno et al. 2002), 

or by factors influenced by winter weather (e.g. predation influenced by deer nutritional 

condition; Delguidice et al. 2000). Consequently, my goal was to evaluate survival and 

cause-specific mortality in adult and juvenile white-tailed deer in areas of the UP with 
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low and moderate snowfall, and estimate how survival was influenced by weather and 

individual life history. 

This research is part of an ongoing project titled “Role of predators, winter 

weather, and habitat on white-tailed deer fawn survival in the Upper Peninsula of 

Michigan”. Other research being conducted on the project includes measuring the dietary 

habits and abundance of black bear, gray wolf, coyote, and bobcat (Lynx rufus); as well 

as measuring the movements, resource selection, and annual abundance of white-tailed 

deer. Ultimately, this thesis will be combined with other results from this project to better 

understand the complex ecology of deer and predators in Michigan. 
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CHAPTER II 

INFLUENCE OF BIOLOGICAL AND ENVIRONMENTAL CONDITIONS ON 

WINTER MORTALITY RISK OF A NORTHERN UNGULATE: EVIDENCE  

FOR A LATE-WINTER SURVIVAL BOTTLENECK. 

Introduction 

 

Identifying limiting factors for animals with seasonally dynamic life histories 

sometimes requires understanding intra-annual periods of resource scarcity (e.g., 

Ashmole 1963). For ungulates living in northern environments, winter is generally a 

period of negative energy budget when forage provides some energetic intake but most 

individuals rely heavily on fat stores accumulated during the previous summer and fall to 

survive until spring green-up (hereafter the nutritional integration model; Mautz 1979, 

Parker et al. 2009). Following this model, an annual survival bottleneck around the time 

of snowmelt could occur if the intensity and duration of winter are sufficient to exceed 

the energetic reserves of a substantial portion of the population (Parker et al. 2009).  

An important prediction of the nutritional integration model is that the magnitude 

of late winter survival bottlenecks are influenced by multiple mechanisms: winter 

severity (usually measured by depth of snow and temperature) determines rate of 

energetic expenditure, duration of snow cover determines how long a negative energy 

budget persists, and body fat reserves carried into the winter from previous foraging 
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seasons determine how much energy is available to lose before succumbing to mortality 

from starvation or other causes affecting weak animals (Parker et al. 2009). The 

importance of late winter survival for population dynamics of northern ungulates has 

been recognized (Clutton-Brock et al. 1991, Metz et al. 2012), yet determining which 

individual or environmental factors limit wild ungulate populations during late winter 

remains difficult due to the possible role of biological (e.g., nutritional status) and 

environmental (e.g., weather) conditions.  

In most large ungulate species, adult female survival is typically higher, more 

stable, and less sensitive to environmental change than juvenile or adult male survival 

(McCullough 1979, Gaillard and Yoccoz 2003). In natural systems, female ungulates can 

have a life span exceeding 15 years (Loison et al. 1999), but generally succumb to one of 

numerous mortality agents (e.g., predation, starvation, disease, injury, exposure) before 

reaching their maximum potential longevity (Delguidice et al. 2006). The magnitude and 

timing of mortality for adult female free-ranging ungulates in temperate regions is 

influenced by habitat, predators, and weather with greatest non-hunting mortality often 

occurring during winter (Gaillard et al. 1998, Forrester and Wittmer 2012). 

Consequently, identifying which conditions result in high mortality risk for ungulates 

during winter is key to understanding what mechanisms are potentially limiting 

population growth. 

For white-tailed deer (Odocoileus virginianus (Zimmerman, 1780)) populations 

near the northern edge of the species’ range, late winter is a period of resource scarcity 

characterized by poor forage, low fat reserves, and highly concentrated deer densities 

within suitable winter habitat (Mautz 1978, DelGuidice et al. 2013, Nelson 1995, Dumont 
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et al. 2005). Consequently, adult mortality from predation and malnutrition is generally 

greatest in northern deer populations during winter, particularly during Mar–Apr (Van 

Deelen et al. 1997, Whitlaw et al. 1998, DePerno et al. 2000, Dumont et al. 2000, 

DelGuidice et al. 2002).  

The relationship between winter weather and survival of northern deer has led 

many natural resource agencies to adopt annual winter severity indexes (WSI) to predict 

deer population trends (Verme 1968, Leckenby and Adams 1986, Chadwick 2002, 

DelGuidice et al. 2002, Duquette et al. 2014b). These indexes attempt to relate one or 

more weather variables to deer population growth. Generally, snow depth and 

temperature have been considered important predictors of deer mortality, with wind 

sometimes playing an important role in more open habitats. Although ignoring the middle 

period of winter and considering only the early and late months of winter can result in a 

better index of weather effects on deer (Verme 1977), spring snowmelt date has not been 

considered as a predictor in adult deer survival models. Yet, spring snow depths appear to 

influence aspects of northern white-tailed deer ecology including migration behavior 

(Nelson 1995), habitat selection (Beier and McCullough 1990), and natal mortality 

(Verme 1977). 

The Upper Peninsula of Michigan, USA, has a geographic gradient of snow 

conditions that is highly variable among years due to the climatic influence of the Great 

Lakes. Historically, deer population growth in the Upper Peninsula has been linked to 

variation in winter weather temporally and geographically (Leopold 1947, Doepker et al. 

1996). The Upper Peninsula deer population declined due to consecutive severe winters 

in 1995–1996 and 1996–1997, but did not recover over the next 15 years while the 
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recolonizing gray wolf (Canis lupus (L., 1758)) population increased during this same 

period (MDNR 2010, 2015).  

Our goal was to use a mechanistic approach to test whether patterns of deer 

survival within late winter follows predictions from the nutritional integration model and 

determine which mechanisms most strongly influence survival. Cause-specific mortality 

of adult female white-tailed deer was investigated in relation to deer age, body mass, 

snow depth, cumulative WSI, and snowmelt timing in two areas with differing amounts 

of snowfall. We predicted that deer mortality risk would increase with greater snow 

depth, fewer snow free days during Feb–May, and decreasing body mass. These 

predictions were based on the hypothesis that deer generally maintain a negative energy 

balance during winter at northern latitudes, that weather conditions shape the rate of this 

nutritional decline, and that survival is dependent on conserving energetic stores until 

spring snow melt. 

Study area 

 

Data were collected from two study areas in the Upper Peninsula of Michigan, 

hereafter referred to as low-snowfall and mid-snowfall study areas. Both study areas 

contained populations of gray wolf, coyote (Canis latrans (Say, 1823)), and bobcat (Lynx 

rufus (Schreber, 1777)). The low-snowfall study area encompassed 319 km² in 

Menominee County (45°24'00" N 87°30'00" W; Fig. 1.1). Mean annual precipitation was 

72.5 cm of rain and 128.8 cm of snow (1971–1996 averages, Michigan Climatology 

Office 2013a). Mean Jan and Jul temperatures were –8° C and 19° C, respectively 

(PRISM Climate Group 2016). Dominant land-covers included woody wetlands (52%), 
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deciduous forest (14%), and agricultural (14%). The remaining 20% consisted of conifer 

forest, mixed forest, developed areas, herbaceous wetlands, shrub, and open water (Fry et 

al. 2011).  

 The mid-snowfall study area included 341 km2 near the Michigamme Reservoir 

(46°14'00" N 88°13'00" W; Fig. 1.1) and was 65 km northwest of the low-snowfall study 

area. Mean annual precipitation was 52 cm of rain and 179 cm of snow (1951–1980 

averages, Michigan Climatology Office 2013b). Mean Jan and Jul temperatures were –

13° C and 18° C, respectively (PRISM Climate Group 2016). Land cover was 

predominantly deciduous forest (38%), woody wetland (29%), mixed forest (13%), and 

evergreen forest (6%) (Fry et al. 2011). 

Methods 

Deer capture and handling 

 

Adult female white-tailed deer were captured during Feb–Apr 2009–2011 in the 

low snowfall study area and Feb–Mar 2013–2015 in the mid-snowfall study area. We 

captured deer primarily using Clover traps (Clover 1956) baited with shelled corn, alfalfa, 

and/or molasses, and occasionally used cannon nets. Deer were restrained, blindfolded, 

and immobilized with an intramuscular injection of ketamine hydrochloride (Putney, Inc., 

Portland, ME, USA) and xylazine hydrochloride (Lloyd Laboratories, Shenandoah, IA, 

USA) mixed at a 4:1 ratio and concentration of 100 mg/ml (Duquette et al. 2013). For 

each deer, body mass was recorded and age estimated by extracting a lower incisiform 

canine to age deer for counts of cementum annuli (Gilbert 1966, Nelson 2002) at the 

MDNR Diagnostic Center for Population and Animal Health (Lansing, MI, USA). Each 
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deer was fitted with a VHF collar with an 8-hour movement mortality switch (Model 

M2510B; Advanced Telemetry Systems, Isanti, Minnesota, USA), and a vaginal implant 

transmitter with temperature switch and precise event transmitter to record time of 

temperature drop at half-hour intervals for up to 128 hours (Model M3930; Advanced 

Telemetry Systems, Isanti, Minnesota, USA). Before release, each deer received an 

intravenous or intramuscular injection of yohimbine hydrochloride (ZooPharm, Laramie, 

WY, USA) to reverse the effects of xylazine hydrochloride (Kreeger et al. 2002, 

Duquette et al. 2013). All animal handling procedures were approved by the Institutional 

Animal Care and Use Committee of Mississippi State University, Mississippi State, MS, 

USA.  

 Deer were monitored weekly using aerial- or ground-based telemetry. When a 

mortality signal was detected, the date and cause of mortality was determined based on 

deer remains and sign found at the mortality site. For predation events, evidence at the 

site (e.g., tracks, scat, canine puncture wounds, and site disturbance) was compared to 

published reports of predator-specific kills to estimate predator species (Cook et al. 1971, 

Mech et al. 1971, Nelson and Mech 1986). Mortalities were classified as unidentified 

predations if the mortality site showed evidence of predation (e.g., blood in surrounding 

snow, hemorrhaging on hide or tissue), but evidence was insufficient to assign a predator 

species or evidence of multiple predator species was present. Malnutrition status of 

mortalities was assessed using rump fat and bone marrow condition (Mech 2007) or by 

submitting carcasses for lab necropsy by a wildlife pathologist. In 68% of mortalities, 

investigations occurred <5.3 days after the time of mortality and date of mortality was 

determined to the nearest half hour using the precise event transmitter code of vaginal 
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implant transmitters. For the remaining 32% of mortality events in which >5.3 days had 

passed, date of mortality was estimated using a combination of carcass decomposition, 

snow cover conditions, and telemetry records. 

Weather data 

 

The area of data collection for weather variables was determined by calculating 

the minimum convex polygon of mid-Mar aerial telemetry locations of deer, composite 

for all years within each study area. Ninety-two percent of deer telemetry locations 

collected during periods of snow cover between Nov and May occurred within these 

polygons. Daily snow depth estimates from 1 Nov to 31 May for each winter were 

obtained using 0.4-km resolution data from the National Snow and Ice Data Center Snow 

Data Assimilation System (National Operational Hydrologic Remote Sensing Center 

2004) and averaged daily snow depth estimates within each study area. Daily minimum 

temperature values were obtained via remote sensing estimates from the PRISM climate 

group (2016) at the centroid of each study area. A daily winter severity index was 

calculated by first assigning each day one point if minimum temperature was < −17.8o C 

and one point if snow depth was >38.1 cm (DelGuidice et al. 2002). From this, a 

cumulative winter severity index was calculated by summing daily values for each winter 

beginning 1 Nov. 

 Snow free days were defined as days from 1 Feb to 31 May when mean snow 

depth was <7 cm, a depth at which deer move from winter to spring range (Beier and 

McCullough 1990). Because mass gains for white-tailed deer during spring are gradual 

(DelGuidice et al. 1992), the number of snow free days were summed into cumulative 
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snow free days each year to reflect a possible lag effect in the relationship between deer 

mortality risk and spring snowmelt.  

Survival analysis 

 

Factors were assessed for influence on adult female deer weekly survival from 1 

Feb to 31 May using Cox proportional hazards mixed effects models in the package 

coxme (Therneau 2015) for program R (R version 3.4.1, www.r-project.org, accessed 15 

Mar 2018). Because deer captured using clover traps and rocket nets can experience 

capture myopathy-related mortality (Beringer et al. 1996), deer were not included in 

survival models until 2 weeks post-capture. As yearling deer captured in this study had 

different patterns in body mass and pregnancy rates than older deer (Duquette et al. 

2012), survival analysis was limited to deer >2.5 years old. 

Biological covariates of deer mortality risk included age (years) and body mass. 

Adult female survival was expected to follow a parabolic trend peaking at 5–6 years of 

age before declining (Delguidice et al. 2006) and so it was modeled as a quadratic term. 

Because deer body mass declined with capture date, slope estimates from linear 

regressions of adult female body mass by capture date for each year were used to 

standardize body mass to 1 Feb (Festa-Bianchet and Jorgenson 1998).  

Time-specific covariates were included for cumulative winter severity index, 

cumulative snow-melt days, and snow depth, estimated for each week within years by 

averaging daily values over each weekly survival interval. Time-specific covariates can 

be incorporated into Cox proportional hazards models without confounding individual 

effects because the likelihood-estimation for a given interval is independent of other time 
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intervals (Therneau et al. 2016). A staggered entry design was used to account for 

varying capture dates of deer (Pollock et al. 1989).  

Low-snowfall or mid-snowfall study area were included as a random effect in all 

models to account for variation in predator populations, land-cover, and other factors 

which may influence deer mortality risk among study areas (Pankratz et al. 2005). Multi-

collinearity among covariates was tested for using Spearman’s rank correlation tests, and 

considered any covariates with |r| < 0.7 suitable for inclusion in the same model 

(Dormann et al. 2013). Although Cox proportional hazards models have fewer 

assumptions than parametric survival models, an important assumption is that the 

baseline hazard ratio for each covariate remains constant over time. Violations of this 

assumption were tested for by including a time interaction with each predictor covariate 

(Bellera et al. 2010), and in cases where the predictor covariates showed evidence of non-

proportional hazards, the interaction term was included in final model selection to 

account for temporal change in hazard rate (Fox and Weisberg 2011). The final candidate 

model set included 24 candidate models with non-collinear covariate combinations of 6 

factors: age, body mass, body mass:time interaction, weekly average snow depth, 

cumulative winter severity index, cumulative snow-free days. Because the goal was to 

explore the relative predictive value of model covariates on weekly deer survival, all 

candidate models were evaluated using backwards step-wise model ranking based on 

Akaike’s Information Criterion adjusted for small samples, where candidate models <2 

∆AICc of the top-ranked model were considered competing models (Burnham and 

Anderson 2002, Symonds and Mouselli 2011). Statistical significance was established at 

α < 0.05. 
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Results 

 

One hundred fifty adult female deer (>2.5 years old) were captured, representing 

1,784 deer-weeks of monitoring. Median date of capture was 10 Feb (interquartile range 

= 21 Jan–25 Feb). Estimated age of captured deer ranged from 2.5 to 16.5 years old 

(median = 6, interquartile range = 3–8). Annual mean body mass of captured adult female 

deer ranged from 54.3 to 64.0 kg, and mean body mass within the mid-snowfall study 

area (64.0 kg, SD = 5.8) was greater than the low-snowfall study area (57.9 kg, SD = 7.2; 

t(116) = 5.57, P ≤ 0.001; Table 2.1). Pooled across all years, mean weekly mortality rate 

during Feb–May (2.1%) was 3.5 times greater than mean weekly mortality during Jun–

Jan (0.6%). 

 Annual cumulative winter severity index values ranged from 11 to 167 (mean = 

84.3, SD = 66.1) and annual cumulative snowmelt days ranged from 33 to 81 days (mean 

= 58, SD = 20; Table 2.1). Annual Feb–May survival estimates ranged from 0.24 to 0.89 

(mean = 0.69, SD = 0.23). Weekly mortality rates were generally highest near the timing 

of snow-melt (Fig. 2.2). We observed 44 mortality events which we attributed to 

predation (n = 31), malnutrition (n = 8), drowning (n = 1), and unknown cause (n = 4; 

Table 2.2). Coyote (n = 12) and wolf (n = 11) were the most common predators of adult 

female deer, followed by unidentified predator (n = 6) and bobcat (n = 2). Of the 8 

malnutrition mortalities, 6 occurred during the winter with greatest winter severity (2014; 

WSI = 167). No deer were censored due to radio collar failure or other reasons during the 

study interval. 
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 Snow depth and cumulative snow free days were collinear (r = 0.92) and were not 

included in the same model. In the global model, body mass had a significant time-

interaction (P = 0.028), so a body mass-time interaction was included in all candidate 

models to ensure that the proportional hazards assumption was not violated. After 

accounting for multi-collinear covariates and time interactions, we compared 24 

candidate models. The best-supported model included body mass, body mass-time 

interaction, cumulative winter severity index, and cumulative snow free days; there were 

no competing models (Table 2.3). Mortality risk increased 1.7% with each unit increase 

of cumulative winter severity index (P = 0.003), decreased 7.2% with each cumulative 

snow free day (P = 0.002), and decreased 11.9% with each kg body mass greater than the 

population average (P = 0.011; Table 2.4). The interaction of time and body mass (P = 

0.077) and age (P = 0.890) did not influence deer mortality risk at a significant level in 

the best-supported model. Scaled and centered covariate estimates of the top-ranked 

model suggested that deer survival was most sensitive to cumulative snow free days 

(coeff. = −1.72, SE = 0.55), with cumulative winter severity (coeff. = 0.91, SE = 0.30) 

and body mass (coeff. = −0.84, SE = 0.33) having similar predictive value. 

Discussion 

Influence of winter weather on mortality risk 

 

The influence of winter weather on white-tailed deer winter survival is consistent 

with other studies of deer survival in northern climates (e.g., Nelson and Mech 1986, 

Dumont et al. 2000, DelGuidice et al. 2002). Our results indicated that the most critical 
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period of winter deer survival is late winter-early spring (Apr and May) when snow melt 

occurs, but mortality risk varied widely depending on weather conditions. Our best-

ranked model predicted that mortality risk was greatest immediately before snow spring 

snow melt, but mortality risk during this period varied considerably depending on 

weather conditions. For example, the maximum predicted mortality risk for a deer of 

average body mass varied from a 21-fold increase during 2014 (greatest winter severity) 

to a 1.2-fold increase in 2010 (least winter severity). Similarly, we observed a wide range 

of Feb–May adult female deer survival rates among years (Table 2.1), although the 

survival of 0.24 during 2014 was markedly lower than other winters. While our model 

predicted mortality risk to be greatest immediately before snow melt, observed mortality 

rates during 2013 and 2014, the two years with latest snow melt, remained high for 1-2 

weeks following snow melt (Fig. 2.2). This could indicate a lag effect of snow conditions 

on deer mortality risk which our model did not account for. Such a lag effect may be 

expected because following snow melt deer physical condition is likely at an annual nadir 

and nutritional recovery from winter is a process which takes several weeks to begin 

(DelGuidice et al. 1992). Both our model estimates and observed patterns of mortality are 

consistent, however, in suggesting that after 3 weeks of snow free conditions, deer 

mortality risk is greatly reduced even following relatively severe winters. 

A survival advantage for individuals with greater body mass has been noted in 

other ungulate populations with winter nutritional deficits (e.g., red deer (Cervus 

elaphus); Liosson et al. 1999). Increased seasonality in large homeothermic vertebrates is 

positively correlated with body mass, presumably because larger individuals are able to 

carry more energy reserves to endure longer periods of fasting (Lindstesdt and Boyce 
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1985, Boyce 1979). We believe that the positive relationship between survival and deer 

body mass, along with the larger average body mass of adult female deer within the mid-

snowfall area, reflect a selective pressure for larger-bodied animals during prolonged 

winters. This provides further evidence that it is common for some northern ungulate 

populations to experience late winter and early spring conditions where nutritional 

margins for survival are thin.  

The number of snow free days during Feb–May had an effect size on weekly 

mortality risk about twice as large as cumulative winter severity or body mass. Our best 

supported model estimated that deer mortality risk was reduced by 56% after 10 snow-

free days, and 98% after 30 snow-free days. The number of snow free days in Feb–May 

is likely correlated to total winter severity index on an annual scale, but two winters can 

have similar WSIs with notable differences in spring snow melt. For example, winter 

2012–2013 (winter severity index = 108; 33 snow-free days) had a lesser total winter 

severity index but 15 more days of snow cover during Feb–May than winter 2014-15 

(winter severity index = 145; 48 snow-free days).  

The greatest snow depths and coldest temperatures observed during this study 

occurred during Feb and early Mar, yet most deer mortality occurred during late Mar–

early May. Additionally, weekly snow depth did not predict weekly deer survival. If the 

immediate physical effects of deep snow influenced deer mortality risk by impeding the 

ability to escape predators, snow depth would be positively correlated with deer mortality 

risk. In Minnesota, wolf predation rates on yearling and adult white-tailed deer were 

greatest during months with the deepest snow (Nelson and Mech 1986), and daily wolf 

kill rates of deer in a high snowfall area of Michigan were highly correlated to snow 
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depth in a previous study (Vucetich et al. 2012). These studies suggest that the immediate 

effects of deep snow can increase predation on deer in some circumstances, but our 

results suggest that the gradual nutritional decline throughout winter was the primary 

mechanism influencing mortality risk during our study. A similar nutritional influence on 

white-tailed deer mortality was observed in South Dakota, where poor winter range 

conditions resulted in Apr–Jun adult female mortality rates exceeding 20% in 3 of 4 years 

(DePerno et al. 2000). 

There are several possible explanations why deer mortality risk is strongly 

influenced by snow cover during late winter. First, pregnant female deer have a 45% 

increase in metabolic demands entering the third trimester of pregnancy (Pekins et al. 

1998), which could result in a greater energy deficit for pregnant females during Apr and 

May even if dietary quality is similar during early winter. Likely as a result of pregnancy, 

declining forage, and cumulative energetic expenditure since the onset of winter, adult 

female northern deer are at an annual nutritional nadir during May (DelGuidice et al. 

1992). Finally, crusted snow conditions during spring facilitate deer predation by wolves 

and coyotes because of heavier foot-loading in deer (Telfer and Kelsall 1984, Vucetich et 

al. 2012). With many deer in poor physical condition and snow conditions which favor 

predator movement, among-year differences of several weeks in the timing of spring 

snow melt could have a substantial effect on deer vulnerability to predation or 

malnutrition mortality.  

A decrease in deer mortality risk following snow melt may be the result of several 

processes. First, deer foraging during deep snow conditions are limited to food available 

along established trails, where preferred browse species become depleted throughout 
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winter (DelGuidice et al. 2013). Hobbs (1989) predicted that the energetic losses due to 

reduced forage intake and locomotion in deep snow were 5.4 times greater than losses 

due to increased thermoregulatory expenses in cold temperatures for mule deer (O. 

hemonius). Conditions of little or no snow depth facilitate movements and allow deer 

access to additional woody browse and ground forages. However, even with a positive 

energy budget, spring body mass gains by deer is a gradual process of weeks or months 

(DelGuidice et al. 1992). Consequently, deer may remain in relatively poor condition for 

several weeks following snow melt before making a nutritional recovery. In addition to 

nutritional gains, many deer in Michigan’s Upper Peninsula undergo spring migration of 

up to 80 kilometers to traditional summer ranges shortly after snowmelt (Van Deelen et 

al. 1998). Possibly, the return of deer to more widely dispersed summer ranges from 

concentrated winter ranges could reduce predation risk by reducing predator encounter 

rates. 

Cause-specific mortality and survival rates 

 

Coyote and wolf predation were the leading mortality sources, accounting for 

30% and 28%, respectively, of known cause mortalities. This is consistent with the 

general observation that where deer and large predators co-occur, predation tends to be 

the leading source of mortality (Ballard et al. 2001). Estimated coyote densities were 

0.32–0.37 individuals/km2 in the low snowfall study area and 0.19–0.24 individuals/km2 

in the mid snowfall study area (Petroelje et al. 2014, T. Petroelje unpublished data). 

Estimated wolf densities from winter track surveys were much lower, 0.012 

individuals/km2 in the low snowfall study area and 0.023–0.033 individuals/km2 in the 
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mid snowfall study area (MDNR, unpublished data). Thus, despite a similar number of 

adult female deer killed by coyotes and wolves, the number of deer killed per individual 

predator was probably much lower for coyotes and likely reflected greater densities of 

coyotes than wolves.  

Elevated predation risk for prey with poor body condition has been commonly 

observed (e.g., Errington 1946, Murray 2002), and could result from both physical 

weakness in prey and increased foraging risks taken by starving individuals (predation-

sensitive food hypothesis, Sinclair and Arcese 1995). Although our results suggest a link 

between deer nutritional condition and mortality risk, the greater question of additive vs. 

compensatory mortality from predators is beyond the scope of our study because it would 

require consideration of population growth rate and separate evaluation of mortality risk 

from predation and other causes. 

 The mean Feb–May survival of 0.69 in our study was notably low, considering 

that adult female annual survival in wild ungulates typically exceeds 0.80 (Gaillard and 

Yoccoz 2003). Low survival observed in our study was likely in part a consequence of 

severe winter conditions in the mid-snowfall study area, where the mean survival among 

3 winters was 0.59. Observed survival within the low-snowfall area in our study was 

much greater (0.78), though lower than the estimated Jan–May survival of 0.89 for adult 

female deer in a low-snowfall area of the Upper Peninsula of Michigan during 

consecutive mild winters (Van Deelen et al. 1997). A possible source of additional 

mortality in our study was an increase in the estimated wolf population within the Upper 

Peninsula, from 80 to 637 individuals from 1995 to 2014 (MDNR 2015). However, the 

presence of wolves and severe winters does not always result in mortality rates as high as 



 

19 

we observed. In Minnesota, USA, mean Nov–May survival of adult female deer 

sympatric with wolves, but not coyotes, was 0.91, with winter severity ranging from mild 

to historically severe (DelGuidice 2004). Though differences in habitat, predator density 

and composition, and deer density make direct comparison of winter mortality rates 

among studies difficult, low adult female winter survival in our study was a direct 

consequence of predation which we suggest was indirectly influenced by the effects of 

nutrition and weather. 

Conclusions 

 

We based our predictions on the hypothesis that deer generally maintain a 

negative energy balance during winter at northern latitudes, and survival is dependent on 

conserving energetic stores until spring snow melt. The positive relationship between 

cumulative winter severity index and mortality risk suggests that winters with deep snow 

and cold temperatures accelerate the decline of deer condition. The negative relationship 

between body mass and mortality risk suggests that larger deer are less susceptible to 

nutritional decline during late winter. Finally, the negative relationship between snow 

free days and mortality risk suggests that late-persisting deep snow conditions at the end 

of winter will strongly increase mortality risk, but risk will subside within 14–20 days 

after snow melt. Taken together, these conclusions suggest that deer in this population 

have a relatively low risk of mortality even under conditions of deep snow, as long as 

adequate nutritional reserves remain. However, once nutritional reserves are depleted, 

female deer of all age classes can experience high mortality rates from predation or 

starvation, especially during Apr–May, resulting in a survival bottleneck. 
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Evidence suggests that winter weather influences population dynamics of 

northern ungulates at annual and multi-year scales, likely though nutritional processes 

(Post and Stenseth 1998, Patterson and Power 2002), and our results suggest that similar 

interactions between nutrition and weather shape the short-term mortality risk of deer 

within winter and early spring. Overall, this supports the nutritional integration model of 

northern ungulate ecology suggested by Mautz (1979) and Parker et al. (2009). In future 

studies of northern ungulates with a negative energy budget during periods of snow 

cover, including snow free days during late winter or a similar measure of spring 

snowmelt timing in models may improve model accuracy and provide new insights into 

the timing, magnitude, and mechanisms of mortality.  
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Table 2.1 Summary of captured sample and survival covariates for radio-collared 

adult female white-tailed deer, Upper Peninsula of Michigan, USA, 1 Feb–

31 May, 2009–2015. 

Winter Study area N Survival 

Mean 

body mass 

(SE)a 

Cumulative 

winter 

severityb 

Cumulative 

snow free 

daysb 

2009 Low snowfall 25 0.89 54.3 (1.2) 60 74 

2010 Low snowfall  20 0.72 59.7 (1.2) 11 81 

2011 Low snowfall  18 0.74 57.6 (2.1) 15 74 

2013 Mid snowfall 37 0.70 64.0 (0.9) 108 33 

2014 Mid snowfall 27 0.24 63.6 (1.2) 167 38 

2015 Mid snowfall 23 0.82 62.6 (1.4) 145 48 
aBody mass adjusted to 1 Feb using regression by capture date. 
bCumulative values reflect values at the end of the monitoring period (31 May). 
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Table 2.3 Model selection results using Akaike’s Information Criterion adjusted for 

small sample sizes (AICc) for Cox-proportional hazards generalized linear 

mixed models estimating survival of radio-collared adult female white-

tailed deer, Upper Peninsula of Michigan, USA, 1 Feb–31 May, 2009–

2015. SFD represents cumulative snow free days, and WSI represents 

cumulative winter severity index. All models included study area as a 

random effect. 

Covariate   

Age Age2 Mass 

Snow 

depth SFDa WSIb Mass:Time df ∆AICc Wi 

  -0.143  -0.083 0.018 0.010 4 0.00 0.122 

-0.011 0.006 -0.155  -0.079 0.018 0.010 6 2.17 0.041 

    -0.085 0.019  2 3.82 0.018 

-0.173 0.015   -0.085 0.020  4 5.99 0.006 

  -0.165  -0.061  0.012 3 7.86 0.002 

0.095 -0.001 -0.180  -0.063  0.012 5 9.58 0.001 

  -0.180   0.014 0.013 3 11.44 0 

0.048 0.003 -0.198   0.016 0.014 5 12.02 0 

  -0.171 -0.001  0.015 0.012 4 13.03 0 

    -0.071   1 13.07 0 

0.050 0.003 -0.189 -0.001  0.017 0.013 6 13.52 0 

-0.100 0.010   -0.063   3 16.00 0 

     0.014  1 17.18 0 

   -0.001  0.015  2 18.20 0 

-0.123 0.013    0.016  3 18.78 0 

-0.105 0.012  -0.001  0.017  4 19.80 0 

  -0.184    0.014 2 21.48 0 

  -0.177 -0.001   0.013 3 22.65 0 

0.157 -0.006 -0.209    0.015 4 22.82 0 

0.151 -0.005 -0.201 -0.001   0.014 5 23.73 0 

       0 27.77 0 

   -0.001    1 28.46 0 

-0.027 0.005      2 30.81 0 

-0.022 0.005  -0.001    3 31.30 0 
aCumulative snow free days from 1 Nov to 31 May 
bCumulative winter severity index from 1 Nov to 31 May (DelGuidice et al. 2002). 
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Table 2.4 Estimates of scaled and centered covariates from the top-ranked Cox-

proportional hazards generalized linear mixed model for weekly survival of 

radio-collared adult female white-tailed deer, Upper Peninsula of 

Michigan, USA, 2009–2015. Model included study area as a random effect. 

Covariate Coeff SE Z P 

Body mass −0.840 0.331 −2.54 0.011 

Cumulative winter severity index 0.914 0.302 3.03 0.003 

Cumulative snow free days −1.719 0.551 −3.12 0.002 

Body mass:time 0.062 0.035 1.77 0.077 
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Figure 2.1 Location of low-snowfall (1) and mid-snowfall (2) study areas within the 

Upper Peninsula of Michigan, USA, 2009–2015. 
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Figure 2.2 Weekly Kaplan-Meier survival estimates for adult female white-tailed deer 

(dotted line) and daily snow depth (shaded area) from 1 Feb to 31 May, 

Upper Peninsula of Michigan, USA, 2009–2015.
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CHAPTER III 

PREDATOR DENSITIES, KILL-RATES, AND BIRTH MASS DESCRIBE WHITE-

TAILED DEER FAWN SURVIVAL IN A MULTI-PREDATOR SYSTEM 

Introduction 

In ungulate populations, juvenile survival generally has greater variability and 

influence on population growth than adult survival (Gaillard et al. 2000), with predation 

typically the primary mortality source for neonatal ungulates where predators are present 

(Linnell et al. 1997). Because high neonatal predation rates can result in population 

declines (Kilgo et al. 2012), understanding how predator species assemblages influence 

neonatal ungulate survival is important for managing wild ungulate populations. For 

white-tailed deer (Odocoileus virginianus), predation is the dominant mortality source for 

fawns <6 months old throughout North America (Gingery et al. 2018), although natural 

causes other than predation or anthropogenic causes can sometimes be a leading mortality 

source in areas where predators are present (Pusateri Burroughs et al. 2006, Warbington 

et al. 2017). 

To date, most research on neonatal survival in white-tailed deer has occurred in 

systems with 3 or fewer predator species, typically American black bear (Ursus 

americanus), coyote (Canis latrans), and/or bobcat (Lynx rufus; Gingery et al. 2018). 

Yet, some areas of white-tailed deer range have > 3 predator species, indicating a need 

for further research in these systems. Griffin et al. (2011) reported North American elk 
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(Cervus canadensis) calf survival was reduced in areas with 4 or 5 predator species as 

opposed to 3. Additionally, density estimates for predator species are seldom reported in 

white-tailed deer fawn survival studies with 3 or more predator species present (e.g., 

Vreeland et al. 2004, Warbington et al. 2017). Estimates of cause-specific mortality 

attributed to predators are more meaningful when combined with predator density 

estimates, because this allows insights into kill rates (Gervasi et al. 2012).  

Among the primary neonatal predators of white-tailed deer, 4 species are present 

in the Upper Peninsula of Michigan, USA: American black bear, coyote, bobcat, and gray 

wolf (C. lupus). Black bear predation on neonatal white-tailed deer and other ungulates is 

primarily opportunistic and generally occurs within the first weeks after birth (Zager and 

Beecham 2006). Coyotes are a generalist predator able to exploit many food sources to 

meet dietary needs (MacCracken and Hansen 1987), and neonatal ungulates are optimal 

prey for coyotes, especially when fawn mobility is limited (Sacks and Neale 2002). 

Indeed, in multi-predator systems throughout North America coyote predation tends to 

dominate white-tailed deer mortality during the first 6 months after birth (Gingery et al. 

2018). Bobcats are obligate carnivores which may specialize in certain prey types 

regionally (Newbury 2013), but will generally exploit a range of species including white-

tailed deer fawns (VanGilder 2008). Bobcat predation may be a predominant source of 

white-tailed deer fawn mortality in some areas (Roberts 2007, Kilburn 2018), but 

generally coyote predation exceeds bobcat predation in areas where both species are 

present (Gingery et. al. 2018). Wolves generally rely on ungulate prey for most of their 

diet, but can also derive a substantial portion of their diet from rodents, lagomorphs, 
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domestic cattle, and other sources (Newsome et al. 2016). Although the typical optimal 

prey size for wolves (e.g. red deer [Cervus elaphus]; Jędrzejewski et al. 2002) is larger 

than a neonatal white-tailed deer fawn, wolves may switch foraging strategies during 

summer from killing fewer large prey items to killing greater numbers of small prey, 

including neonatal ungulates (Metz et al. 2012). Thus, based on their foraging habits, it is 

likely that each of these predator species would consume deer fawns when available. Yet, 

estimating the relative importance of each predator species as a fawn predator in a shared 

system is difficult because of differences in predator densities, along with the potential 

for differing kill rates of fawns among species. 

In addition to the possible influence of predator species assemblages and densities 

on neonatal fawn survival, intrinsic factors within ungulate populations may also affect 

susceptibility to mortality from predation or other causes. For example, late-born 

neonatal ungulates may have increased mortality risk from predation or starvation 

(Clutton-Brock et al. 1987, Testa 2002, Kilgo et al. 2012). In some cases, fawns with 

lower body mass at birth were more susceptible to predation, starvation, or maternal 

abandonment (Verme 1977, Kunkel and Mech 1997). Finally, researchers have reported 

sex-biased differences in juvenile mortality in many vertebrates, including ungulates 

(Clutton-Brock et al. 1985).  

Our goal was to measure fawn survival and cause-specific mortality risk from 

predation, other natural causes, and anthropogenic sources within a partially-migratory 

deer population sympatric with American black bear, coyote, bobcat, and wolf in the 

Upper Peninsula of Michigan, USA. We also examined the importance of intrinsic deer 
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population factors of sex, birth mass, and timing of birth. Finally, we estimated densities 

of deer and predator species to provide context for the relative contribution of predators 

to fawn mortality. We predicted predation would be the primary mortality source for 

fawns due to the number of predator species present. We also predicted predator species 

with greater densities would consume more fawns at the population level because of 

increased opportunistic encounters or active foraging. We also predicted body mass of 

fawns would be negatively correlated with predation risk because smaller fawns are 

likely more vulnerable to predation. Finally, we predicted fawns born later in the season 

would be more susceptible to predation because predators would have refined search 

images to locate fawns, while earlier-born fawns would have greater mobility to avoid 

predators. 

Study Area 

 

The study area included 1,000 km2 within the Upper Peninsula of Michigan 

(46°14'00" N 88°13'00" W; Fig. 3.1). Mean annual precipitation was 52 cm of rain and 

179 cm of snow (1951–1980 averages, Michigan Climatology Office 2013). Mean Jan 

and Jul temperatures were 13° C and 18° C, respectively (PRISM Climate Group 2016). 

Land cover was predominantly deciduous forest (38%), woody wetland (29%), mixed 

forest (13%), and evergreen forest (6%) (Fry et al. 2011). Deer predators include black 

bear, coyote, bobcat, and wolves. As moose occur at low density (~2/100 km2; D. Beyer, 

unpublished data), deer are the primary ungulate prey species available in Michigan’s 

Upper Peninsula (Delguidice et al. 2009). 
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Methods 

Population density estimates 

 

We estimated deer densities during Aug–Sep each year using occupancy 

modelling derived from unmarked deer observed at 64 baited camera sites within an 8 x 8 

grid with 6.25 km2 cells spaced >2.0 km from the nearest neighboring site to avoid 

detecting the same deer at multiple sites. We baited sites with 7.5 L of whole kernel corn 

at 3-day intervals during the 10-day pre-baiting period and 10-day survey. Cameras 

recorded 1 image when triggered at 5-minute intervals and we categorized deer in images 

as adult female, fawn, or adult male. We estimated abundance of adult female deer from 

daily occupancy of unmarked individuals along with space use estimates from radio-

collared deer, using the Royle-Nichols model (Royle and Nichols 2003) fit to a Poisson 

distribution in the function OccuRN within package unmarked (Fiske and Chandler 2011) 

for program R (R version 3.4.1, www.r-project.org, accessed 15 Mar 2018; Duquette et 

al. 2014). We extrapolated abundance estimates at camera sites to density by assuming a 

detection radius equivalent to the average adult female home range during the survey 

interval (Keever et al. 2017), which we estimated to be 1.02 km2 by calculating the 95% 

fixed kernel home range of 31 VHF and GPS collared adult female deer within the study 

area during 10–31 Aug 2015 (J. Belant, unpublished data). 

We estimated the number of fawns born each year from the adult female deer 

density estimates from the fall camera survey by assuming an average fecundity of 1.41 

fawns per doe ≥1 year old. We were confident adult female deer densities during the 
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camera survey reflected adult female densities during May–Jul parturition because 

apparent survival of 118 radio-collared adult (≥2 years old) female deer within the study 

was 99.1% from 20 May to 6 Sep during 2013–2015 (J. Belant, unpublished data).  

To reach the assumed fecundity of 1.41 fawns per doe, we estimated the 

proportion of 1, 2, and ≥3 year-old female deer within the population and calculated a 

weighted average fecundity based on published fecundity rates for each age class from 

the Upper Peninsula of Michigan (Verme 1969, Ozoga 1987). We estimated that 1- and 

2-year-old deer comprised 13% and 11% of the adult female population, respectively, 

based on cementum annuli age estimates from 133 winter captures of adult female deer 

within the study area during 2013–2015 (J. Belant, unpublished data). We used average 

birth rates of 1.13 fetuses per doe for 2 year-old deer and 1.69 fawns per doe for ≥3 year 

old deer based on white-tailed deer fecundity ranges within Michigan’s Upper Peninsula 

of 1.58–1.80 fawns/doe for female deer ≥3 years old in Jun, and 0.62–1.63 for females 2 

years old in Jun (Verme 1969). Although deer commonly breed as fawns in some parts of 

the Midwest (e.g. Southern Michigan; Verme 1989), fertility of doe fawns in the Upper 

Peninsula is <1% even with maximum nutritional intake (Ozoga 1987), so we considered 

1-year-old deer to be non-reproductive in our study area.  

We estimated black bear density via non-invasive genetic sampling combined 

with spatial capture-recapture modelling (Efford 2004, Royle et al. 2014). For bears, we 

collected samples at 64 hair-snare sites within 6.25 km2 grid cells, checked on 5 

occasions at 10-day intervals during May–Jul 2013–2015 (Fig. 3.1). Each site consisted 

of a single strand of 4-pronged barbed wire placed around 3–4 trees 50 cm above ground 
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to create an enclosure. We baited snares by placing 0.5 L of fish oil on a pile of dead 

wood in the center of each enclosure and sprayed anise or raspberry oil on each of the 

trees 2 m above ground. Sample collection and handling procedures for black bear hair-

snares followed those described by Belant et al. (2005).  

We sampled bobcats  using 64 break-away hair snare sites within 6.25 km2 grid 

cells, checked on 8 occasions at 7-day intervals during 5 Jan–8 Mar 2013–2015 (Fig. 

3.1). Each site consisted of an enclosure built with brush containing 4 openings at which 

snares were set (Stricker et al. 2012). Sites were baited using partial white-tailed deer 

carcasses obtained from local game processors, or whole skinned beaver carcasses. Baits 

were replaced each 7 days, as needed. Each site was lured with commercial lure placed 

on a tree 2 m above ground. Sample collection and handling procedures for bobcat hair-

snares followed those described by Stricker et al. (2012). 

Multilocus genotyping of black bear and bobcat hair samples was performed by 

Wildlife Genetics International (Nelson, BC, Canada) using 7 loci to identify individual 

bears and 8 loci to identify individual bobcats. From genetic samples, annual black bear 

and bobcat density was estimated using an open population spatial capture-recapture 

model (Gardner et al. 2010, Whittington and Sawaya 2015). Spatial capture-recapture 

models use individual and trap level detection data to estimate density while accounting 

for imperfect detection (i.e., the probability that individuals in the population are not 

detected during sampling), as well as variation in the probability of detecting individuals 

stemming from their differential exposure to sampling effort. Open population SCR 

models can be used to analyze multiple surveys, allowing for populations to change (i.e., 
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animals to die and be recruited) between surveys. In addition to survey specific estimates 

of density, these models estimate survival probability and recruitment rate. SCR models 

include estimating the location of individual activity centers (conceptually, the average 

location of an individual during a survey); open population SCR models, therefore, also 

need to describe how activity centers change over time. We opted for a model where 

activity centers remain fixed across all three surveys, because this model is parsimonious 

and was shown to perform well for short time series (Gardner et al. in press). We 

implemented models in a Bayesian framework, using the software JAGS (Plummer 

2003), accessed through R v. 3.4.1 (R Core Team, R version 3.4.1, www.r-project.org 

accessed 2017) using the package rjags (Plummer 2016).   

 We estimated coyote density during Jul–Oct, 2013 and 2014, using occupancy 

modelling derived from howl responses at 40 sites during 8 survey occasions conducted 

at 10-day interval (Fig. 3.1). We assumed a 2-km detection radius and buffered sites with 

a non-overlapping 3 km radius to avoid detection of the same individual at multiple sites 

during a survey (Petroelje et al. 2013). At each survey occasion, we broadcasted a pre-

recorded coyote group-yip howl and defined a detection as at least one individual coyote 

response. From binary detection/non-detection data, we fit an abundance mixture model 

(Royle and Nichols 2003) within package unmarked (Fiske and Chandler 2011) for 

program R (R version 3.4.1, www.r-project.org, accessed 15 Mar 2018) with date as a 

covariate of detection and proportion of forest and herbaceous cover (Jin et al. 2013) as a 

covariate of abundance. Sampling and statistical analysis methods followed those 

described by Petroelje et al. (2013).  
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We identified wolf packs residing in a 1000 km2 section of the study area using 

pack movements from GPS locations of collared individuals during 2013–2015, along 

with VHF collar data from long-term wolf population monitoring (D. Beyer, unpublished 

data). Wolves were fitted with GPS collars (model Lotek 7000SU GPS, Lotek Wireless, 

Newmarket, Ontario, Canada), which collected GPS locations at 15-minute intervals 

from May–Oct. From GPS locations, we calculated pack home ranges using a 95% fixed-

kernel estimator within package adehabitat (Calenge 2006) for Program R (R version 

3.4.1, www.r-project.org, accessed 15 Mar 2018) .  We estimated wolf density each year 

during Jan–Mar using repeated track surveys within each wolf pack in the 1000 km2 wolf 

survey area (Fig. 3.1; Becker et al 1998, Beyer et al. 2009).  

Fawn capture and monitoring 

 

We captured fawns during May–Jul 2013–2015 using gridded searches at birth 

sites determined from adult female deer with vaginal implant transmitters (VIT; model 

3930, Advanced Telemetry Systems Inc., Isanti, MN, USA) and opportunistic encounters 

which occurred primarily along roads and trails. Birth dates of fawns captured using VITs 

were known, and birth dates of fawns captured opportunistically were estimated by 

measuring hoof growth at capture and back-calculating birth date using the equation 

described by Sams et al. (1996a). Body mass at birth was considered to be the same as 

capture mass for fawns <1 day old. For fawns known or estimated to be >1 day old, birth 

mass was estimated by subtracting an average neonatal white-tailed deer mass gain rate 

of 0.2 kg/day (Carstenson et al. 2009). Each fawn was fitted with an expandable VHF 
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collar with 8-hour mortality switch (model 4210, Advanced Telemetry Systems, Inc., 

Isanti, MN, USA), and released at the capture site. 

We monitored fawn survival daily using ground and aerial telemetry from capture 

until 31 Aug, then weekly from 1 Sep to 31 Dec. When a collar mortality signal was 

detected, we determined cause of mortality based on remains and evidence found at the 

site. For predation events, we determined predator species using sign (e.g., tracks, scat, 

carcass hemorrhaging, and site disturbance). We considered mortalities as predation 

based on the presence of hemorrhaged wounds, but in some cases fawns were nearly 

completely consumed with only a few bone shards or portions of hide remaining. 

Therefore, we also classified mortalities as predation if the time elapsed between 

mortality and investigation was <48 hours and predator sign was present at the site, but 

carcass remains were too scant to detect fatal wounds. We classified mortalities as 

unidentified predation in cases where predation was indicated as the cause of mortality 

but sign at the site did not indicate a single predator species, or indicated that multiple 

predator species had visited the carcass. 

Fawn survival models and kill rate estimates 

 

We assessed factors that could influence fawn weekly survival from birth to 26 

weeks of age using mixed-effects Cox proportional hazards regression models in the 

package survival (Therneau 2018) for program R (R version 3.4.1, www.r-project.org, 

accessed 15 Mar 2018) . We divided known fates into three competing risk categories: 1) 

predation, including mortalities classified as predation by a known or unidentified 



  

37 

 

predator species; 2) other natural causes, including mortalities attributed to starvation, 

maternal abandonment, disease, exposure, or unidentified natural non-predation; and 3) 

anthropogenic causes consisting of mortalities attributed to vehicle collisions.  

For each competing risk category, we included individual covariates for date of 

birth (formatted as Julian day within each year), birth mass, and sex. We also included a 

random effect for year of birth within each model to account for various environmental 

factors (e.g. weather, vegetative phenology) which were not represented in our model but 

likely resulted in annual cohort survival effects. We established statistical significance at 

α < 0.05. We calculated effect sizes of significant covariates in respective global models 

to assess their importance in explaining fawn survival. 

 We estimated population level kill rate for each predator species by extrapolating 

proportions of species-specific predation mortality from the collared fawn sample to the 

estimated density of fawns born. Fawn mortality rates were estimated using a Kaplan-

Meier estimator within package survival (Therneau 2018) for program R (R version 

3.4.1, www.r-project.org, accessed 15 Mar 2018). We then estimated the per-individual 

predation rate for each predator species by dividing the population level kill rate by the 

estimated density of that predator species (Swenson et al. 2007). Because fawn mortality 

sample sizes were small within years, we computed kill rates using the average predator 

densities during 2013–2015 and pooled fawn mortality among years. Consequently, 

estimated kill rate for each predator species represented the period average during 2013–

2015. 



  

38 

 

Results 

Population density estimates 

 

We obtained 8,192 images of adult female deer and detected adult female 

occupancy on 68%, 56%, and 52% of survey days at baited camera sites during 2013, 

2014, and 2015, respectively. Adult female density estimates ranged from 210/100km2 to 

260/100km2 (Table 3.1). Corresponding fawn density estimates ranged from 299/100km2 

to 367/100km2 (Table 3.1). 

During 2013–2015, we collected 584 hair samples from bobcat hair snares, of 

which 269 were identified as bobcat through genetic analyses. We detected 29 

individuals (14 female, 15 male) 62 times. Twenty-two individuals were detected in one 

year only, and 7 individuals were detected in two or more years. Number of detections 

for individuals within year ranged from 1 to 5. Estimated bobcat density increased from 

2.35/100km2 in 2013 to 5.39/100km2 in 2015 (Table 3.1). 

During 2013–2015, we collected 1,296 black bear hair samples from black bear 

hair snares, from which genetic analyses identified 238 unique bears (117 females, 212 

males); 171 were detected in one year only, 42 were detected in 2 years, and 24 in 3 

years. Number of detections for individual bears within year ranged from 1 to13. 

Estimated bear density was similar over years ranging from 23.2/100km2 in 2014 to 

28.8/100km2 in 2015 (Table 3.1). 

We detected coyote responses on 25.0% and 31.5% of howling occasions and 

detected coyotes at least once at 83% and 85% of survey sites during 2013 and 2014, 
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respectively. Estimated detection (10.0% during 2013 and 2014) was not influenced by 

date. Estimated coyote abundance was not influenced by proportion of forest or 

herbaceous cover and was similar at 23.1/100km2 in 2013 and 24.4/100km2 in 2014 

(Table 3.1). 

We identified 5 wolf packs each year of the study. We captured 4 wolves during 

2013, 5 wolves during 2015, and 4 wolves during 2015 such that 4 of the packs present 

had ≥1 individuals GPS-collared from Jun–Sep during ≥1 years of the study. VHF 

telemetry was used to define the home range of home one pack which not have any GPS-

collared individuals during the study period. We estimated a mean of 5.6 individuals/pack 

(SD = 1.8 individuals). Mean estimated annual wolf density was 2.80 individuals/100km2 

and did not change during 2013–2015 (Table 3.1). 

Fawn capture and monitoring 

 

We captured and radio-collared 100 fawns (42 females, 58 males), with 43, 25, 

and 32 fawns captured during 2013, 2014, and 2015, respectively. Of these, 37 fawns 

were captured using VITs and 63 were captured opportunistically. Mean estimated birth 

mass of fawns was 3.1 (95% CI = 2.8–3.4) kg during 2013, 3.5 (95% CI = 2.9–4.1) kg 

during 2014, and 3.1 (95% CI = 3.5–4.4) kg during 2015. Average fawn birth date among 

years combined was 7 Jun.  

Overall 6-month fawn survival was 39% (95% CI = 30–51%; Fig. 3.2), and 

within year survival was 20% (95% CI = 9–46%) during 2013, 58% (95% CI = 41–82%) 

during 2014, and 42% (95% CI = 28–64%) during 2015. Fifty-six mortalities were 
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documented, which included 11 coyote predations, 11 black bear predations, 6 bobcat 

predations, 4 wolf predations, 13 unidentified predations, 3 weak fawn syndrome, 1 

maternal abandonment unrelated to capture, 1 pulmonary edema, 3 vehicle collisions, and 

3 unidentified trauma (Table 3.2). Most (76%) predations occurred within 6 weeks of 

birth (Fig. 3.3). Twenty-two fawns were censored within survival analyses as a result of 

failed collar attachment hardware that caused collars to drop off (n = 9), slipped collars (n 

= 10) or radio-collar signal loss (n = 3). Mean age at time of censor was 10.6 weeks (SD 

= 7.5 weeks). 

Fawn survival and kill rate estimates 

 

Our mortality event sample sizes for competing risk categories were 45 for 

predation, 8 for other natural causes, and 3 for anthropogenic causes. From model 

estimates, the only significant relationship was between birth mass and predation risk, 

where risk of mortality due to predation decreased by 24% (95% CI = 1–43%; P = 0.048) 

with each 1 kg increase in birth mass relative to the population average (Table 3.3). 

Extrapolating from radio-collared fawn mortality and deer/predator density 

estimates, we estimated that black bear, coyote, bobcat, wolf, and unidentified predation 

accounted for the fates of 12%, 12%, 7%, 4%, and 14%, respectively, of the total fawn 

population. Estimated individual kill rates of fawns from birth to 26 weeks (6 months) 

was 1.6 fawns/black bear, 1.7 fawns/coyote, 5.5 fawns/bobcat, and 5.2 fawns/wolf. At the 

population level, the minimum annual estimated fawn consumption by predator species 



  

41 

 

was 40.0 fawns/100 km2 for black bear, 40.0 fawns/100 km2 for coyote, 21.8 fawns/100 

km2 for bobcat, and 14.6 fawns/100 km2 for wolf.   

Discussion 

 

As we predicted, predation of fawns was the dominant source of mortality and 

accounted for 80% of all deaths. This is largely consistent with studies of white-tailed 

deer and other ungulate species where predators are present (Linnell et al. 1997, Gingery 

et al. 2018). In Louisiana, Shuman et al. (2017) found that a 3-predator system had fawn 

predation rates similar to those in 2-predator systems in the southern United States, and 

suggested there may be an upper limit to predation rates on white-tailed deer fawns at 

which additional predator species have little effect. Our results lend support to their 

hypothesis and despite the presence of 4 predator species in our study area, our overall 

fawn survival from birth to 6 months old of 39% was similar to the average estimated 

white-tailed deer survival from birth to 3–6 months of 41.4% within North American 

forested landscapes (Gingery et al. 2018). Predation rates on white-tailed deer fawns vary 

among species within the same predator assemblage. In northern Wisconsin, the greatest 

proportion of known-predator fawn kills was attributed to black bear, followed by bobcat 

and coyote, with no fawn mortalities attributed to wolf despite numerous wolf packs 

within their study area (Warbington et al. 2017). In the southcentral Upper Peninsula of 

Michigan, most fawn mortality was attributed to coyote, followed by bobcat, and finally 

black bear and wolf (Duquette et al. 2014). Considering that our study and these previous 

studies (Duquette et al. 2014, Warbington et al. 2017) contained the same 4-species 
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predator assemblage and occurred within 300 km of each other, the observed differences 

among predator species contributions to fawn mortality warrants further investigation. 

Differing fawn predation patterns in multiple systems with the same predator species are 

likely related to the densities of predators and fawns, the kill rates of predators, or both 

(Gervasi et al. 2011, Melis et al. 2013, Kilgo et al. 2014).  We recommend future studies 

of cause-specific mortality of deer or other prey species estimate predator and prey 

densities to improve our mechanistic understanding of variation in predation rates. 

Twenty-nine percent of fawn predation mortalities were not accounted for in our 

estimates of kill rates because we were unable to identify the predator species involved. 

Consequently, our reported fawn kill rates for predator species are minimum estimates. 

The extent to which kill rates were underestimated may vary among predator species due 

to bias in identifying predator species with sign left at the carcass. For example, bobcats 

may be more likely to be identified at a kill site because they often return to the carcass 

multiple times to feed (Beale and Smith 1973) and have distinct habits of covering 

carcasses with plucked fur and scraped debris in many cases (Labisky and Boulay 1998). 

We observed that black bear kill sites were often easily identified by sign because they 

are large and leave identifiable tracks in most substrates, and often left one or more scats 

at kill sites. Coyotes and wolves have relatively light foot-loading (Telfer and Kelsall 

1984), making tracks unlikely to register in many substrates. At kill sites with tracks 

present, coyotes and wolves in our study had similar consumption patterns of neonatal 

fawns where most of the carcasses were consumed while mandibles, long bones, and 

lower legs commonly remained; none of which were likely to have distinct canine 
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puncture spacing. Therefore, distinguishing kills among coyotes and wolves was often 

difficult, and in 4 of 13 unidentified predations we determined the predator was a canid 

based on hair or scat, but could not determine which species. Consequently, we suspect 

most of the unidentified predator kills were by coyotes and wolves. Assuming the 13 

fawns killed by unidentified predators were killed by coyotes and wolves in proportion to 

their known number of kills would result in 10 additional coyote kills and 3 additional 

wolf kills.  The subsequent estimated proportion the total fawn population consumed by 

coyotes and wolves, respectively, would be 23% and 8%, the individual kill rates would 

be 3.2 fawns/coyote and 9.1 fawns/wolf, and the estimated fawn consumption (fawns/100 

km2) would be 76 and 25. Hence, even when accounting for the bias from unidentified 

predations, our conclusions regarding densities and kill rates hold in that coyotes and 

black bears were the most prevalent fawn predators while bobcats and wolves had the 

greatest estimated per-individual fawn kill rates.  

Recent advances in identifying predators of neonatal deer using DNA swabs from 

carcass wounds have been effective (Kilgo et al. 2012, Shuman et al. 2017). Shuman et 

al. (2017) found a high level of agreement between predator species identified using 

DNA swabs and sign at the mortality site for black bears, coyotes, and bobcats, 

suggesting that using tracks, scat, and other sign at kill sites is reliable for identification 

for those species. However, we recommend that future cause-specific mortality studies in 

systems with coyotes and wolves use DNA-based evidence to reduce the number of 

unidentified predators at kill sites. 
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Coyote and black bear had low estimated per-individual kill rates, but existed at 

high densities which resulted in a large population-level contribution to fawn mortality. 

Black bears and coyotes are both generalist predators which have wide, omnivorous 

dietary niches (Litvaitis and Harrison 1989, Romain et al. 2013). Across North America, 

black bear predation of neonatal ungulates is opportunistic, and generally occurs in the 

first few weeks of life (Zager and Beecham 2006, Bastille-Rousseau et al. 2011). 

Nonetheless, bears can be an important source of neonatal ungulate mortality which can 

be additive (Griffin et al. 2011). Although coyotes would be expected to select neonatal 

ungulates over most other foods when available (Sacks and Neale 2002), coyotes adapt 

their foraging and target diverse prey items to maximize energetic return (MacCracken 

and Hansen 1987). In our study area fawns may not have been abundant enough to 

facilitate prey switching by coyotes, potentially exacerbated by the presence of three 

other predator species.  

The individual bobcat kill rate was >3 times greater than black bears or coyotes, 

suggesting bobcat predation of fawns was not opportunistic. This result is contrary to 

previous studies where bobcats consumed less ungulate prey than sympatric coyotes 

during summer in Alabama, (VanGilder 2008), California (Neale and Sacks 2001), and 

Maine (Litvaitis and Harrison 1989). However, Svoboda et al. (2013) identified 37 fawn 

kills made by 7 bobcats during May–Aug 2009–2011 in the Upper Peninsula of 

Michigan, suggesting bobcats in this area may be more specialized at targeting neonatal 

deer than other bobcat populations. Wolves also had a greater estimated per-individual 

kill rate than black bears or coyotes in our study, and can specialize in hunting neonatal 
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ungulates during summer (Metz et al. 2012, Newsome et al. 2016). Where wolves and 

coyotes co-occur, wolves tend to derive a greater portion of their diet from ungulate prey 

(Arjo et al. 2002, Benson et al 2017). Despite greater individual fawn kill rates by 

bobcats and wolves, the overall contribution to fawn mortality was low in comparison to 

black bears and coyotes, a consequence of low bobcat and wolf densities.  

Contrary to our predictions and observations by Kilgo et al. (2012), we observed 

no effect of birth date on fawn mortality risk. This could be due to less variation in birth 

dates for deer in our study, where the average range of birth dates within years was 36 

days, in comparison to an average range of 57 days reported by Kilgo et al (2012). 

Furthermore, most (82%) births in our study occurred within an 18-day period from 26 

May to 14 Jun. Likely, this contracted birthing period is a consequence of winter weather 

in our study area; ungulates in northern climates often have a short optimal window for 

birth timing due to constraints of spring vegetative phenology set against necessary time 

for growth to survive winter as a juvenile (Gaillard et al. 1993, Cook et al. 2004). 

The increased predation risk we observed for fawns with lower birth mass 

suggests predators had greater success in capturing weak fawns, supporting our 

prediction and previous studies demonstrating weaker individuals were more susceptible 

to predation (Errington 1946, Genovart et al. 2010). As white-tailed deer fawns which are 

small at birth are more likely to come from weaker mothers and tend to be smaller at 5–6 

months of age (Michel et al. 2015, 2018), it is plausible birth mass remained correlated to 

fawn condition throughout the 6 month age class in which we monitored survival. White-

tailed deer fawns with low birth mass can have increased mortality risk from predation 
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(Kunkel and Mech 1994) or combined causes (Verme 1977, Saalfeld 2006, Therrien et al. 

2007, Shuman et al. 2012), but other studies have found no relationship (Grovenburg et 

al. 2012, Kilgo et al. 2012) or context-dependent relationships. Vreeland (2002) reported 

fawns with lighter birth mass were more susceptible to mortality overall, but found no 

relationship within predation mortality. Wright (2018) reported fawn mortality risk 

increased with lower birth mass for female fawns, but not male fawns.  The slope of the 

relationship between fawn birth mass and mortality risk was lesser in our study (24% 

decrease in risk/kg) than that reported in Louisiana where predation was the dominant 

mortality source (81% decrease in risk/kg; Shuman et al. 2017), but both studies 

suggested reduced predation risk for larger fawns. Taken together, this evidence suggests 

a relationship between fawn birth mass and survival is context-dependent among white-

tailed deer populations, but where such a relationship exists, smaller fawns are generally 

at greater risk of mortality. 

White-tailed deer fawn predation rates tend to decline as fawns age, with the 

greatest decline within the first 3 weeks after birth (Vreeland 2002, Kilgo et al. 2012, 

Chitwood et al. 2015a). This suggests fawn growth and body size influence susceptibility 

to predation. The average daily rate of neonatal white-tailed deer fawn mass gain is 0.2 

kg (Carstenson et al. 2009), and the standard deviation of birth mass for fawns in our 

sample for all years combined was 1.3 kg. Hence, variation in fawn birth mass within this 

population could represent up to 1 week of post-birth growth. Increased body size at birth 

may give fawns a “head-start” toward achieving a threshold of size and speed which 
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facilitates predator escape. Additionally, fawns which are born weak may be more vocal 

and could be at increased risk of predation by attracting predators (Chitwood et al. 2014). 

Wolves contributed little to fawn mortality in other areas with 4 predator species 

(Duquette et al. 2014, Warbington et al. 2017). In contrast, Kunkel and Mech (1994) 

attributed 51% of May–Oct white-tailed deer fawn mortality to wolf predation, and 

although the estimated wolf density within their study area was similar to ours (2.6 and 

2.8 wolves/100 km2, respectively), their fawn survival sample was small (21 fawns, 9 

mortalities). As wolves in our study area are not legally harvested and wolf densities in 

the Upper Peninsula have been stable since 2013 (O’Neil et al. 2017), our findings 

suggest observed wolf predation on fawns was at or near maximum levels for this area. 

Our estimated wolf density of 2.8 individuals/100 km2 was well within the range 

reported for North America, which can achieve densities ≥4 individuals/100 km2 (Fuller 

et al. 2002). At higher densities, wolves may become a major fawn predator. Worldwide, 

wolf presence is correlated with reduced ungulate densities (Ripple and Beshta 2012), 

and wolves are a primary predator of older white-tailed deer (DelGuidice et al. 2002). 

Within our study area during 2013–2016, wolves accounted for 28% of all adult female 

deer mortality (J. Belant, unpublished data) and we suggest that wolf effects on white-

tailed deer are primarily manifested through predation of deer >6-months old. In contrast, 

coyotes may limit deer populations through high predation rates on fawns <6 months old, 

even in areas where they rarely kill adult deer (Kilgo et al. 2012, 2016; Chitwood et al. 

2015b).  
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Studies of white-tailed deer fawn survival sometimes report qualitative predator 

densities (e.g., Vreeland et al. 2004, Warbington et al. 2017), or provide quantitative data 

for only some predator species (e.g., Kunkel and Mech 1994, Kilgo et al. 2012, Shuman 

et al. 2017). We recognize the difficulties of simultaneously estimating deer and multiple 

predator densities but suggest that our understanding of predator-prey relationships will 

be limited unless studies include densities of predators and prey, particularly in multiple 

predator systems.  

Although we did not observe any relationship between mortality risk from non-

predation natural causes or anthropogenic causes, our sample sizes for these risk 

categories were small (8 and 3 mortalities, respectively). However, these risk categories 

were also relatively unimportant for fawns in our study when compared with predation 

(45 mortalities observed), which supports predation as the dominant mortality source in 

white-tailed deer fawn survival (Gingery et al. 2018). Where non-predation natural 

causes were an important source of fawn mortality, smaller birth mass tended to be 

associated with increased mortality risk from emaciation or disease (Verme 1977, Sams 

et al. 1996b). Considering these previous studies, our observation that smaller fawns tend 

to have greater mortality risk from predators suggests that predation may be partially 

compensatory to other natural causes of mortality for neonatal fawns in this population.  

We were unable to determine at-birth fecundity rates and sibling status of fawns. 

Capturing multiple fawns from litters of white-tailed deer is difficult because fawns 

within litters are generally separated and can move >100 meters from the birth site within 

13 hours post-parturition; even fawn searches conducted <12 hours postpartum are often 
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unsuccessful at finding one or more fawns (Haskell et al. 2007). Although we captured at 

least one fawn from most implanted does, many sibling fawns likely were undetected. 

Similarly, only 2 of 61 opportunistic fawn captures consisted of twin fawns captured 

together. As litter size has been related to neonatal survival in other wild ungulates (e.g., 

mule deer (O. hemionus; Johnstone-Yellin et al. 2009), our limited ability to capture 

complete litters may have influenced our estimates of survival and cause-specific 

mortality. 

Conclusions 

 

 Predation was the dominant source of mortality of white-tailed deer fawns from 

birth to 6 months, but was distributed among 4 predator species with no single predator 

species accounting for >34% of known-species predation mortality. Hence, manipulating 

the density of any single predator species will likely have limited effects on overall fawn 

survival. Furthermore, our results suggest that predator species with low per-individual 

fawn kill rates but high densities (i.e., coyote and black bear) may contribute more to 

fawn mortality than predator species with high per-individual kill rates and low densities 

(i.e., bobcat and wolf). Consequently, focusing efforts on coyotes or black bears will 

likely yield greater effects if predator removal is used as a strategy to increase fawn 

survival. Finally, because fawn birth mass was negatively correlated with predation risk, 

increasing the nutritional condition of deer within this population may result in lower 

fawn predation rates even if predator densities remain stable. Broad-scale habitat 

management strategies which increase the nutritional carrying capacity for deer may be 
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the best option for managers to influence deer condition, because supplemental feeding of 

deer can increase risk of disease transmission at concentrated feed sites (Sorenson et al. 

2014). 
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Table 3.1  Density estimates (individuals/ 100km2 [95% confidence interval]) for 

white- tailed deer and predator species, Upper Peninsula of Michigan, 

USA, 2013–2015. 

Population 
Year 

2013 2014 2015 Average 

White-tailed deer  

adult female 261 (194–384) 238 (172–334) 211 (158–320) 237 

White-tailed deer fawn 368 (273–541) 336 (243–471) 298 (223–451) 334 

Coyote 23.1 (10.4–51.9) 24.4 (11.5–51.9) NA 23.8 

Bobcat 2.4 (0.7–4.0) 4.3 (2.0–6.5) 5.4 (3.0–7.8) 4.0 

Black bear 25.2 (21.2–29.2) 23.2 (19.7–26.7) 28.8 (24.6–33.0) 25.7 

Wolf 2.8 2.8 2.8 2.8 
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Table 3.2 Known fates of 100 radio-collared white-tailed deer fawns from birth to 26 

weeks old, Upper Peninsula of Michigan, USA, 2013–2015. 

 

 

 Year   

Fate 2013 2014 2015 Pooled 

Black bear 2 4 5 11 

Coyote 6 2 3 11 

Bobcat 2 1 3 6 

Wolf 3 1 0 4 

Unidentified predator 7 1 5 13 

Abandonment 1 0 0 1 

Pulmonary edema 1 0 0 1 

Unidentified trauma 2 1 0 3 

Weak fawn syndrome 3 0 0 3 

Vehicle collision 1 0 2 3 

Censored 12 6 4 22 

Survived period 3 9 10 22 

Total 43 25 32 100 
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Figure 3.2 Kaplan-Meier survival probability from birth to 26 weeks old for 100 

radio-collared fawns, Upper Peninsula of Michigan, USA, 2013–2015. 

Dashed lines represent 95% confidence intervals. 
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Figure 3.3 Weekly number of predations by predator species for 100 white-tailed deer 

fawns from birth to 26 weeks old, Upper Peninsula of Michigan, USA, 

2013–2015. 
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