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The nonparametric confidence interval for an unknown function is quite a useful tool

in statistical inferential procedures; and thus, there exists a wide body of literature on the

topic. The primary issues are the smoothing parameter selection using an appropriate cri-

terion and then the coverage probability and length of the associated confidence interval.

Here our focus is on the interval length in general and, in particular, on the variability in the

lengths of nonparametric intervals for probability density and hazard rate functions. We

start with the analysis of a nonparametric confidence interval for a probability density func-

tion noting that the confidence interval length is directly proportional to the square root of a

density function. That is variability of the length of the confidence interval is driven by the

variance of the estimator used to estimate the square-root of the density function. There-

fore we propose and use a kernel-based constant variance estimator of the square-root of a

density function. The performance of confidence intervals so obtained is studied through



simulations. The methodology is then extended to nonparametric confidence intervals for

the hazard rate function.

Changing direction somewhat, the second part of this thesis presents a statistical study

of daily snow trends in the United States and Canada from 1960-2009. A storage model

balance equation with periodic features is used to describe the daily snow depth process.

Changepoint (inhomogeneities features) are permitted in the model in the form of mean

level shifts. The results show that snow depths are mostly declining in the United States.

In contrast, snow depths seem to be increasing in Canada, especially in north-western areas

of the country. On the whole, more grids are estimated to have an increasing snow trend

than a decreasing trend. The changepoint component in the model serves to lessen the

overall magnitude of the trends in most locations.

Key words: Confidence Interval, Kernel Density, Hazard Rate, Variance Transformation
,Nonparametric Estimation, Snow Trend, Changepoint, Climate Change, Genetic Algo-
rithm, Storage Model.
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CHAPTER 1

INTRODUCTION AND PRELIMINARIES

1.1 Hazard Function

Let T denote the lifetime of a component that is being manufactured and thus it

is a non-negative random variable. One of the obvious questions of interest in reliability

analysis is to understand the longevity of the component. For this, choosing an appropriate

probability model to describe the random variation in T is important. Thus, one observes

the lifetime of n components, and let those lifetimes be T1, T2 . . . , Tn. It seems reasonable

to assume that Ti’s are independent and identically distributed.

The most important question that one may ask is this: what is the probability that a

given component that is working until time t will stop functioning at the next moment.

That is,

P (t < T ≤ t+ h|T > t)

1



where h is very small. For this let f(t), F (t) denote the probability density and cumulative

distribution functions of T , respectively. Then the instantaneous probability of failure can

be written as

lim
h→0

P (t < T ≤ t+ h | T > t)

h

= lim
h→0

P (t < T ≤ t+ h)

P (T > t)h

= lim
h→0

F (t+ h)− F (t)

h

1

1− F (t)
.

Since

lim
h→0

F (t+ h)− F (t)

h
= f(t)

then

lim
h→0

P (t < T ≤ t+ h | T > t)

h
=

f(t)

1− F (t)
and F (t) < 1 .

Set

λ(t) =
f(t)

1− F (t)
,

λ(t) is called the hazard rate function, and it plays a vital role in survival and reliability

analysis. There is another function which also plays an equally important role and it is the

cumulative hazard rate function, defined as

Λ(x) =

∫ x

0

λ(t)dt

=

∫ x

0

f(t)

1− F (t)
dt

= −
∫ x

0

1

1− F (t)
d(1− F (t))

= − log(1− F (x)) .

2



The above concepts and their formulation can be given in the multivariate setup. How-

ever, in the present thesis we confine ourselves to the univariate failure rate. As mentioned

above, the hazard rate is used to model the failure times of manufactured items as well as

failure times of repaired items. In medical statistics, the hazard rate is used to model the

survival times of individuals following certain treatments. Thus, estimating the hazard rate

function is very important in reliability and survival analysis. In broad terms there are two

methods to estimate the hazard rate function and those are parametric and nonparametric.

We will first introduce the parametric estimation of the hazard rate in the next section.

Since it is easier to understand nonparametric kernel-based density estimator, we first dis-

cuss kernel density estimator in section 1.3 and then explain the nonparametric hazard rate

estimator as an extension to kernel-based density estimator. There is another kernel-based

approach to estimate density and hazard rate via nonparametric regression. To define this

estimator, we first describe nonparametric regression function estimator in the first two

subsections of section 4. Then explain how this approach leads to another nonparametric

kernel-based estimation of density and hazard rate in the last two subsections of section 4.

In the last section, we briefly describe the problem that we address in this dissertation.

1.2 Parametric Estimation of Hazard Rate

Let f(t, θ) be the model which describes the random variation in T and is assumed

to be known up to parameter vector θ. Then, obviously the hazard rate function λ(t) will

also depend on the same unknown parameter vector θ, and hence we will write it as λ(t, θ).

Now the unknown parameter vector θ can be estimated by the standard estimation methods

3



like maximum likelihood or method of moments, etc. Let θ̂ be such an estimator, then the

parametric estimator of λ(t, θ) is simply λ(t, θ̂).

In reliability as well as in survival analysis, certain parametric models have been found

more useful than others like exponential and Weibull distributions. These distributions

admit closed-form expressions for survival probabilities and therefore for the hazard rate

functions. For example in the one-parameter exponential distribution, then

F (t) = 1− e−αt , f(t) = αe−αt, t ≥ 0 and λ(t) = α, t > 0.

It means the instantaneous probability of failure, λ(t), is independent of t. That is the

conditional chance of failure in a time interval of specified length is the same regardless of

how long the individual has been under study; this is referred to as the memoryless property

of the exponential distribution. If we consider the two-parameter Weibull distribution, then

F (t) = 1− e−(αt)k , f(t) = αk(αt)k−1e−(αt)k , t ≥ 0 and λ(t) = αk(αt)k−1, t > 0.

Here, hazard rate function is a polynomial.

In Figure 1.1 we illustrate the shapes of hazard rate for exponential, Weibull and log-

normal models. For Weibull hazard rate, the shape parameter k is set to be 1.5 and 0.5,

respectively. For the lognormal hazard rate, µ = − logα and σ = 1.

The parametric methods for hazard rate estimation are very powerful when the model

assumption correctly describes the variation in T . However, the drawn inference is mean-

ingless if the assumed model is far away from the reality. Therefore it is necessary to

search for alternative ways to estimate hazard rate when one is not certain about the true

model. This led to the development of nonparametric procedures to estimate the hazard
4



Figure 1.1

Examples of parametric form of hazard rate function

rate function. There are a wide variety of nonparametric methods. For example, spline

and wavelet techniques have been used in developing nonparametric models. However,

here we will only consider kernel based methods. Since the basic kernel method is much

easier to understand for density function estimation, in the next section we first describe

the kernel-based nonparametric procedure for density estimation. And then describe the

kernel-based estimation of hazard rate.

1.3 Nonparametric Estimation

1.3.1 Kernel Density Estimation

Kernel-based estimation is one of the most commonly used methods in nonpara-

metric curve estimation which we now illustrate. Let x1, x2, · · · , xn be the realization of

5



a random sample X1, X2, · · · , Xn from a density function f(x) and let F (x) denote the

corresponding cumulative distribution. Then, consider the probability

P (x− h < X ≤ x+ h) = F (x+ h)− F (x− h) .

Note that

lim
h→0

P (x− h < X < x+ h)

2h
= lim

h→0

F (x+ h)− F (x− h)

2h
= f(x) .

That is

f(x) ' F (x+ h)− F (x− h)

2h

when h is very small. Since F (x + h) − F (x − h) can be estimated by the number of

observations in the interval (x− h, x + h) divided by the sample size n, then, an estimate

of f(x) will be

f̂(x) =
1

2nh
[Number of x1, . . . , xn in (x− h, x+ h)]

=
1

2nh

n∑
i=1

I[x− h < xi < x+ h]

=
1

nh

n∑
i=1

K
(x− xi

h

)
whereK(·) is the probability density function of the uniform random variable over (−1, 1).

That is, an estimator of f(x) is

1

nh

n∑
i=1

K
(x−Xi

h

)
.

The above estimator is the average of all xi’s in the neighborhood (x−h, x+h] with equal

weights. But it makes sense to have higher weights for xi’s closer to x and lower weights

6



if xi’s are away from x. It means instead of K(·) being a uniform density, one can take K

to be any symmetric density such that its mode is at the center and, in both directions away

from center, K(·) is a decreasing function. For example

K1(x) =


1− |x| if |x| < 1

0 otherwise

or

K2(x) =


15
16

(1− x2)2 if |x| < 1

0 otherwise .

Thus the kernel estimator with kernel K is defined by following

f̂(x) =
1

nh

n∑
i=1

K(
x−Xi

h
) ,

where K is a symmetric probability density function and h is referred to as window width.

In terms of computation, it means that drawing a kernel density centered at each sample

point xi, scaled by 1/n and then adding these densities to get f̂(x).

Figure 1.2 is an example of kernel density estimation with a Gaussian kernel

K(x) =
1√
2π
e−(1/2)x2 .

for two different values of h. There, the solid line is the estimated function f̂(x), the

dashed line functions are the kernels at each observation and the vertical lines at the bottom

represent the sampled observations. One is able to observe that for a given sample, different

h provides slightly different f̂(x) function.

7



Figure 1.2

kernel estimate with Gaussian kernel. (a) h=0.4, (b) h=0.2

1.3.2 Kernel Hazard Rate Estimation

Once we have a kernel density estimator, it is easy to define kernel based estimate of

a hazard rate function λ(x). Note that

λ(x) =
f(x)

1− F (x)
.

Since we have already estimated the numerator f(x), we can plug the kernel estimator

of f and an estimator of F in the ratio f/(1 − F ) to obtain a hazard rate estimator. The

cumulative distribution function can be estimated either by integrating the f̂(x) or by using

the empirical cumulative distribution function. Let

F̂1(x) =
1

n

n∑
i=1

I{Xi≤x} ,

F̂2(x) =

∫ x

−∞
f̂(u)du

8



where I is the indicator function. Since the life time variables are always positive, the

integral in the definition of F̂2 is actually taken from 0. Thus a kernel estimate of the

hazard rate as a ratio is

λ̂(x) =
f̂(x)

1− F̂ (x)

where f̂(x) is the kernel density estimate and F̂ (x) could be either F̂1 or F̂2. Note that if

we let F̂ = F̂1 then hazard rate estimate λ̂(x) is undefined for X(n) = x, where X(n) is the

nth order statistic. So generally a little adjustment is made to F̂ by defining

Fn(x) =
n

n+ 1
F̂1(x) .

The hazard rate estimator mentioned above can then be rewritten as

λ̂1(x) =
f̂(x)

1− Fn(x)
.

In the above construction of estimates of λ, we treated λ(x) as a ratio of f to 1 − F .

However, there is another estimator of λ discussed in the literature, which is obtained by

treating λ(x) as a function by itself. For that, define the approximattion to λ(x) by

λ(x) '
∫

1

h
K(

x− u
h

)λ(u)du =

∫
1

h
K(

x− u
h

)dΛ(u) ,

where K is a kernel function as before. Let Λn(u) be the empirical version of Λ(u), for

example

Λn(x) = − log(1− Fn(x)) .

9



Then we write

λ(x) '
∫

1

h
K(

x− u
h

)λ(u)du

=

∫
1

h
K(

x− u
h

)dΛ(u)

=

∫
1

h
K(

x− u
h

)dΛn(u) +

∫
1

h
K(

x− u
h

)d[Λ(u)− Λn(u)] . (1.1)

The integral of the first term in (1.1) provides an estimator of λ(x) say, λ̂2(x) and is given

as

λ̂2(x) =

∫
1

h
K(

x− u
h

)dΛn(u) =
1

n

n∑
i=1

1
h
K(x−Xi

h
)

1− Fn(Xi)
=

n∑
i=1

1
h
K(x−Xi

h
)

n− i+ 1
.

The second term in (1.1) represents the noise.

1.4 Nonparametric Regression

As mentioned in section 1.1, one can estimate the hazard rate using a nonparametric

regression approach. To define such an estimator, we first describe nonparametric kernel-

based regression estimators.

1.4.1 Nadaraya-Watson Estimation

There exist several approaches to nonparametric regression estimation, for example,

kernel smoothing, spline smoothing and wavelets. Each of these approaches has its own

particular strengths and weaknesses, although for being easy to understand and for its

mathematical simplicity compared to other methods, kernel methods are most commonly

used.

Suppose we have a bivariate sample (xi, Yi), i = 1, 2, · · · , n on bivariate random vari-

able (X, Y ) and is modeled as
10



Yi = m(xi) + εi, i = 1, 2, · · · , n

wherem(·) is a smooth function, conditioning onX1, · · · , Xn, εi’s are independent random

variables such that

E(εi) = 0, V ar(εi) = σ2
ε .

The interest here is to estimate m(xi) = E[Y |X = xi].

The Nadaraya-Watson approach is to estimate m(x) at point x0 by taking means of all

those Y ′i s corresponding x′is which are in a close neighborhood of x0 assuming that m(x)

is constant in that small neighborhood . That is Nadaraya-Watson estimator at x0 defined

by

m̂(x0) =

∑n
i=1 I[x0 − h < Xi < x0 + h]Yi∑n
i=1 I[x0 − h < Xi < x0 + h]

. (1.2)

Here, in the local average around point x0, each observation is given equal weight regard-

less of its distance from the point of estimation x0. Again as explained in kernel density

estimation, it seems more natural to have weighted average with more weight to the obser-

vation closer to x0. That leads to the modified estimator which is defined as

m̂(x0) =

∑n
i=1 YiKh(xi − x0)∑n
i=1 Kh(xi − x0)

(1.3)

where Kh(·) = 1
h
K( ·

h
) is taken to be a symmetric probability density function.

1.4.2 Local Linear Fitting

With the same model and assumptions described in 1.4.1, assuming m(x) to be a

smooth function and by using Taylor expansion, we can write that

m(x) ' m(x0) + (x− x0)m′(x0) +
(x− x0)2

2
m′′(x0) + . . .+

(x− x0)p

p!
m(p)(x0) .

11



Now define

Q =
n∑
i=1

(
Yi −m(x0)−m′(x0)(xi − x0)− · · · − m(p)(x0)

p!
(xi − x0)p

)2
Kh(xi − x0) .

Let βr = m(r)(x0)
r!

, and rewrite the above equation as

Q =
n∑
i=1

(
Yi − β0 − β1(xi − x0)− β2(xi − x0)2 − · · · − βp(xi − x0)p

)2
Kh(xi − x0)

where p is the degree of the polynomial being fit. So now the task is to minimizeQ and find

least squares estimators of β0, β1, · · · , βp. In that, one can easily see that the Nadaraya-

Watson estimator described in the last subsection is obtained by letting p = 0. That is

β̂0 = m̂(x) =

∑n
i=1 YiKh(xi − x0)∑n
i=1 Kh(xi − x0)

, (1.4)

which is exactly the same as (1.2). If we set p = 1 then

Q =
n∑
i=1

(Yi − β0 − β1(xi − x0))2Kh(xi − x0) (1.5)

then the estimator of m(x) will be m̂(x0) = β̂0 referred as the local linear estimator. The

estimator of m′(x) will be m̂′(x0) = β̂1. Now by minimizing Q with respect to β0 and β1

we have

β̂0 = m̂(x) = n−1

n∑
i=1

{ŝ2(x0;h)− ŝ1(x0;h)(xi − x0)}Kh(xi − x0)Yi
ŝ2(x0;h)ŝ0(x0;h)− ŝ1(x0;h)2

where

ŝr(x0;h) = n−1

n∑
i=1

(xi − x0)rKh(xi − x0) .

For a detailed discussion including the properties of the local polynomial smoothing esti-

mators, see Fan and Gijbels (1998) [14].
12



1.4.3 Density Estimation Through Regression

One can use regression methodology, described in the last subsection to estimate

a probability density function. This approach is of interest because of the nice proper-

ties such as no boundary bias that local polynomial estimators possess. To illustrate the

local linear regression approach to estimate a probability density function, suppose that

X1, . . . , XN is a random sample from a distribution with the probability density func-

tion f and that the density function f is compactly supported on an interval, say the

unit interval [a, b]. Divide this interval into t subintervals {Ik, k = 1, · · · , t} with equal

length ∆ = (b − a)/t and let xk be the center of Ik and qk be the proportion of the data

{Xi, i = 1, · · · , N} in the interval Ik, divided by the bin length ∆. Then it is obvious that

the bin counts N∆qk follow a binomial distribution

N∆qk ∼ Binomial(N, pk) with pk =

∫
Ik

f(x)dx . (1.6)

When N →∞, ∆→ 0 from (1.6) we can show that

E(qk) ≈ f(xk), V ar(qk) ≈
f(xk)

N∆
. (1.7)

So, with data (qk, xk), k = 1, . . . , t we can treat the density estimation problem as a non-

parametric regression problem such that

qk = m(xk) + σ(xk)εk, k = 1, 2, · · · , t

with m(x) = f(x) and σ(x) = f(x)
N∆

. Thus, the nonparametric regression techniques intro-

duced in the last section can be used to obtain a density estimator.

13



1.4.4 Hazard Rate Estimation Using Local Linear Fit

In the last subsection we have explained how to use the local linear regression

methodology to estimate a probability density function. One can apply the same tech-

nique to estimate a hazard rate function as well. Suppose that we are interested in esti-

mating the hazard rate function λ(x) on an interval [0, b] where b > 0 given the sample

points X1, · · · , XN from density function f . First, we divide the interval into n bins, say

I1, I2, · · · , In each of width ∆ = b/n and let xi, i = 1, · · · , n, be the center of the interval

Ii. Then construct appropriate estimators for the hazard rate, say Yi, at each bin center xi

such that

E(Yi) ' λ(xi), V ar(Yi) ' σ(xi).

Then we have the data (xi, Yi) which can be modeled as

Yi = m(xi) + σ(xi)εi, i = 1, 2, · · · , n

with m(xi) = λ(xi) and εi being independent r.v. with mean 0 and variance 1.

There are a number of ways to construct empirical estimators Yi of the hazard rate.

The most natural one is the hazard histogram estimator which is the ratio of relative fre-

quency to the empirical survival function. By choosing the bin center xi which is the point

of estimation, and the hazard histogram estimator Yi, we could treat the hazard estima-

tion problem as an heteroscedastic nonparametric regression problem based on the data

{xi, Yi, i = 1, · · · , n}.

14



Associated with each xi, the center of the interval Ii, i = 1, 2, · · · , n, define

Yi =
{# of Xi∈Ii}

N∆

1−
i∑

j=1

{# of Xi∈Ij}
N

=
fi/∆

N −
i∑

j=1

fj

where fi = {# of Xi ∈ Ii}. Note that if i = n then

N −
n∑
j=1

fj = 0

In order to avoid denominator to be zero, we redefine Yi as

Yi =
1

∆

fi

N −
i∑

j=1

fj + 1

, i = 1, 2, · · · , n.

and also define

ci =
fi

N −
i∑

j=1

fj + 1

, i = 1, 2, · · · , n.

Note that,

fi ∼ binomial(N, pi), pi =

∫
Ii

f(x)dx.

It is easy to see that

E(Yi) = E(
1

∆
ci) ' λ(xi)

V ar(Yi) = V ar(
1

∆
ci) '

1

N∆

λ(xi)

1− F (xi)

Thus the data{xi, Yi, i = 1, · · · , n} can be used to provide a hazard rate estimator based

on the local linear method.

1.5 Outline of the Dissertation

The nonparametric confidence interval for an unknown function is quite an useful tool

in statistical inferential procedures and thus there exists a wide body of literature on the
15



topic. The primary issues are the smoothing parameter selection using appropriate criterion

and then the coverage probability and length of the associated confidence interval. In this

dissertation our focus is on the interval length in general and, in particular, on the variability

in the length of nonparametric intervals for probability density and hazard rate functions.

In Chapter 2 we start with the analysis of a nonparametric confidence interval for a

probability density function. The bias and standard error of a nonparametric kernel density

estimator is of the same order when mean square error optimal bandwidth is used. It is,

therefore, known that a standard confidence interval of the form ‘density estimate plus or

minus constant multiple of its standard error provides a confidence for the density func-

tion plus bias rather than the density function only. To remedy the situation Hall (1992)

[17] has proposed two different solutions C bias corrected and under-smoothing meth-

ods. Of course, interest there is coverage accuracy. Our starting point is these solutions

but instead of coverage probability we address the issue of the variability in the length

of the confidence interval. This variability depends on the variability of the estimator of

the square-root of the density function. To control the variability we propose to use an

estimator of the square-root of a density function which has constant variance. For that

we use a regression based approach to estimate the unknown density function. Once the

data is created to estimate the density function using a regression approach, we transform

the response variable so that we get an estimated square-root of the density function with

constant variance, irrespective of the point of estimation. We then use this estimator in the

confidence intervals proposed by Hall (1992) [17] and then through simulation investigate

its effect on the variability of the confidence intervals.
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In Chapter 3 , we extend the methodology to the settings of hazard rate estimation.

Very similar to the case of kernel density estimation, standard deviation of the standard

kernel based nonparametric hazard rate estimator depends on the square root of hazard

rate divided by cumulative distribution function. To estimate this standard deviation we

propose two estimators. In the first, using the approach used in Chapter 2, we find an

estimate of the square-root of the hazard rate which has a constant variance. Then to obtain

the estimate of the standard deviation of the standard kernel-based hazard rate estimator

we divide the estimate of the square-root of hazard rate by the square-root of the empirical

distribution function. In the other, we obtain the constant variance estimator of the square

root of the ratio of hazard rate to cumulative distribution function. These estimators are

then used in the existing nonparametric confidence intervals for hazard rate function to

investigate their effect on the variability of the confidence intervals.

17



CHAPTER 2

NONPARAMETRIC CONFIDENCE INTERVAL FOR AN UNKNOWN DENSITY

FUNCTION

2.1 Introduction

The main focus of this chapter is the nonparametric confidence intervals for a density

function f(x). The problem of constructing a nonparametric confidence interval has been

widely discussed in the literature and the main two issues associated with it are the cov-

erage accuracy and the length of the confidence interval. Here our interest is in the latter

issue and for that we will confine our attention to the bias correction and under-smoothing

methods discussed in Hall (1992) [17]. First, in section 2.2, we describe these two meth-

ods in detail. We know that the length of the confidence interval depends on the standard

deviation of the density estimator. But, its estimate, that is the standard error of density

estimator, varies with the point of estimation. Thus the variability of the interval length

depends on the variance of the standard error of density f(x) at point x. Therefore, it

is essential to have an estimate of the standard error of f̂(x) with “nice” properties, e.g.

constant variance.

Towards this end, in section 2.3, we consider an estimator of the standard error of

f̂(x) which has a constant variance. The advantage is that the variability of confidence

interval length is a constant regardless of the estimation point x. If we were to use such an

18



estimator, we show that it will lead to the confidence intervals with the property that the

variances of their lengths is smaller than the initial estimator mentioned in section 2.2.

2.2 Constructing Density Confidence Intervals

2.2.1 Estimators of Bias and Variance

Let f̂ denote the kernel density estimator mentioned in (1.3.1)

f̂(x) =
1

nh

n∑
i=1

K(
x−Xi

h
) .

The standard calculations show that

E(f̂(x)) = f(x) +
1

2
h2f ′′(x)

∫
y2K(y)dy + o(h2) (2.1)

and

V ar(f̂(x)) =
1

nh
f(x)

∫
K2(y)dy + o(

1

nh
), (2.2)

see for example Silverman (1988) [36]. If we assume that

f̂ − E(f̂)√
V ar(f̂)

∼ N(0, 1)

and if SE(f̂) denotes the standard error of f̂ , then the nominal 100(1 − α)% confidence

interval of true density f can be given as

(
f̂ − SE(f̂) ∗ zα/2, f̂ + SE(f̂) ∗ zα/2

)
, (2.3)

where zα/2 is such that Φ(zα/2) = 1− (1/2)α with Φ being the distribution function of the

standard normal random variable.
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From (2.1) it is clear that since f̂ is not an unbiased estimator of f , the confidence

interval in (2.3) is not exactly for f(x); instead it provides confidence interval for “f(x) +

bias”. Hall (1992) [17] addressed this problem and proposed two methods to deal with it.

One of them is referred to as bias correction and the other under-smoothing. Of the two

methods, we first describe the bias correction method.

Let K be a rth order kernel r ≥ 1, then we have the following

∫
yiK(y)dy


= 1, if i = 0,

= 0, if 1 ≤ i ≤ r − 1,

6= 0, if i = r.

For r = 2, the kernel K will usually be a symmetric probability density function, for

example the normal density. The bias of f̂ is given by

b(x) = Ef̂(x)− f(x)

=

∫
h−1K{(x− u)/h}f(u)du− f(x).

If we let

y =
x− u
h

then the bias can be written as

b(x) =

∫
K(y)f(x− hy)dy − f(x)

=

∫
K(y){f(x− hy)− f(x)}dy.

A Taylor series expansion gives

f(x− hy) = f(x)− hyf ′(x) +
1

2
h2y2f ′′(x) + · · ·
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so that,

b(x) = κrh
rf (r)(x) + o(hr) (2.4)

as h→ 0, assuming f (r) is bounded and continuous where

κr = (−1)r(r!)−1

∫
yrK(y)dy.

Because f̂ is a biased estimator of f as mentioned before, the interval in (2.3) is actually

a confidence interval for “f(x) + bias”. Then the first method to get confidence interval

for f(x) requires one to estimate the bias in f(x) and then adjust the interval and thus it is

called bias correction method. Now if the bias correction method is to be used, then one

needs to estimate b(x). Typically then one estimates the dominant term in the (2.4). For

example, let f̃ (r)(x) be an estimate of f (r)(x) where

f̃ (r)(x) =
1

nhr+1
1

n∑
i=1

L(r)
{x−Xi

h1

}
,

where L is an sth order kernel having at least r derivatives. So the estimator of b(x) in

(2.4) is

b̂(x) = κrh
rf̃ (r)(x) . (2.5)

The explicit bias correction method uses the estimator of the bias in (2.5) by way of sub-

tracting b̂(x) from both end points of the interval in (2.3).

For estimator of the standard error of f̂(x), first note that the variance of f̂(x) is

σ2(x) =(nh2)−1

∫
K2{(x− y)/h}f(y)dy

− n−1[h−1

∫
K{(x− y)/h}f(y)dy]2.
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We consider two different estimators of σ2(x). The first of the two, denoted by σ2
1 is

obtained by replacing the first term in the σ2(x) by its moment estimator and noting the

fact that the second term is n−1f̂ 2(x). That is

σ2
1(x) =

1

nh2
E[K2(

x− y
h

)]− n−1f̂ 2(x)

and the estimator is written as

σ̂2
1(x) =

1

nh
[

1

nh

n∑
i=1

K2{x−Xi

h
} − hf̂ 2(x)] (2.6)

and then the standard error of f̂(x) can be written as

SE(f̂(x)) =
√
σ̂2

1(x) .

Alternatively, note that for large n, we may approximate σ2(x) by using Taylor Series to

obtain that

σ2
2(x) =

1

nh
f(x)

∫
K2(t)dt+ o(

1

nh
),

and then we define our second estimator as

σ̂2
2(x) =

1

nh
f̂(x)

∫
K2(t)dt. (2.7)

Then by using σ̂2
2 , the standard error of f̂(x) is

SE(f̂(x)) =
√
σ̂2

2(x).

Thus the bias corrected confidence interval will be

(
f̂(x)− b̂(x)−

√
σ̂2(x) ∗ zα/2, f̂(x)− b̂(x) +

√
σ̂2(x) ∗ zα/2

)
(2.8)

where
√
σ̂2(x) is either

√
σ̂2

1(x) or
√
σ̂2

2(x).
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Now to describe the under-smoothing method, from equation (2.4), note that the smaller

the h the smaller will be the bias. Therefore, if we choose a relatively small value of h such

that the bias term in (2.4) is negligible, then the kernel density estimator f̂(x) will be very

close to unbiased estimator of f(x). Then the confidence interval defined in (2.3) is written

as (
f̆(x)−

√
σ̂2(x) ∗ zα/2, f̆(x) +

√
σ̂2(x) ∗ zα/2

)
, (2.9)

where f̆(x) is the under-smoothing kernel density estimator with a smaller bandwidth, say

h′, which makes (2.4) negligible. Again, in (2.9),
√
σ̂2(x) is either

√
σ̂2

1(x) or
√
σ̂2

2(x).

For the critical value in (2.3), we initially used standard normal distribution. Alterna-

tively, one can use bootstrap to find the critical value. Hardle and Bowman (1988) [18]

have analyzed properties of bootstrap confidence intervals in nonparametric regression in

terms of the consistency problem which ensures that the coverage error converged to 0.

However, Hall (1992) [17] is the first to use bootstrap to address the effect of both the bias

estimation and bandwidth choice on coverage accuracy of a two sided confidence interval.

We are using the same strategy here to find the critical value for the confidence interval

instead of the standard normal distribution.

2.2.2 Bootstrap Confidence Intervals

First, we describe the construction of bootstrap confidence intervals for E(f̂). Let

{X∗1 , . . . , X∗n} denote a resample drawn randomly, with replacement, from

X = {X1, . . . , Xn}. We have

f̂ ∗(x) =
1

nh

n∑
i=1

K{x−X
∗
i

h
},
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σ̂∗(x)2 =
1

nh
[

1

nh

n∑
i=1

K{x−X
∗
i

h
}2 − hf̂ ∗(x)2],

S∗(x) =
f̂ ∗(x)− f̂(x)

σ̂∗(x)
.

Here, for convenience, we shall use f, f̂ , σ̂ for f(x), f̂(x), σ̂(x) respectively.

To construct a confidence interval for E(f̂), we would ideally wish to know the dis-

tribution of S = (f̂ − Ef̂)/σ̂, from which we would compute the quantile uα defined by

P (S ≤ uα) = α and the bootstrap estimate of uα could be defined as ûα such that

P (S∗ ≤ ûα|X) = α.

Thus, one can use uα instead of zα/2 in (2.3) to give the confidence interval for both bias

correction and under-smoothing.

From the discussion in 2.2.1, we construct the two sided confidence interval of f̂ by

using both bias correction and under-smoothing methods. Let f̂1 be the kernel density

estimator used in the under-smoothing method with bandwidth hus and f̂2 be the kernel

density estimator used in the bias correction method with bandwidth hbc. For the standard

error term, we can use either σ̂1 or σ̂2 on both methods mentioned above. That is σ̂u = σ̂1

or σ̂2 and similarly σ̂b = σ̂1 or σ̂2. That leads to the confidence intervals

Ĵus = (f̂1 − σ̂uû(1+α)/2, f̂1 − σ̂uû(1−α)/2) (2.10)

Ĵbc = (f̂2 − σ̂bû(1+α)/2 − b̂, f̂2 − σ̂bû(1−α)/2 − b̂), (2.11)
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where Ĵus refers to the confidence interval obtained using under smoothing and Ĵbc refers

to the confidence interval obtained by the bias correction method; and both confidence

intervals given above have nominal coverage probability α.

2.2.3 Variability of the Confidence Interval

From (2.10) and (2.11), one can notice that the variability of the interval length stems

from the standard error terms for both the bias correction and under-smoothing methods.

For example, the length of the confidence interval for the bias correction approach is

σ̂bû(1+α)/2 − σ̂bû(1−α)/2 .

Since û(1+α)/2 and û(1−α)/2 are the critical values and σ̂b is the only term which affects the

interval length and the same is true for the under-smoothing approach. That is, σ̂u is the

only term which affects the length of the interval in (2.10).

We noted that σ̂b could be either σ̂1 or σ̂2 which are defined in (2.6) and (2.7), respec-

tively, and the same is true for σ̂u. In either the case of σ̂1 or σ̂2, the variance of the standard

error of f̂ varies depending on the estimated point. In the next section, we use a variance

stabilization transformation to propose an estimate of the standard error of f̂ such that the

variance of the standard error of f̂ is constant for all x1, · · · , xn.

2.3 Variance Stabilization Methodology

2.3.1 Variance Stabilizing Transformation

In applied statistics, a variance stabilizing transformation is a data transformation

that is specifically chosen to simplify either on consideration in data analysis or the ap-
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plication of regression based analysis. Variance stabilizing transformations, and closely

related transformations to approximate normality, have been used in many statistical con-

texts. Suppose a r.v. X has mean 0 and variance equal to σ2q(θ). The goal behind the

choice of a variance stabilizing transformation is to find a simple function g such that

variability of the transformed r.v. Y = g(X) does not vary with θ.

2.3.2 Root-Unroot Transformation

The literature gives us a number of ways to stabilize variance by using the transfor-

mation technique. Bartlett (1936) [5] was the first to propose the root transformation
√
X

in a homoscedastic linear model. Anscombe (1948) [2] proposed improving the variance

stabilizing properties by using
√
X + 3

8
instead of

√
X . The constant 3

8
is chosen to op-

timally stabilize the variance using the Taylor expansion. Brown and Cai (2009) [7] have

shown that if X ∼ Poisson(λ) with λ > 0, then

E
(√

X +
1

4

)
= λ

1
2 − 1

64
λ−

3
2 +O(λ−

5
2 ) (2.12)

V ar
(√

X +
1

4

)
=

1

4
+

1

32
λ−1 +

3

64
λ−2 +O(λ−3). (2.13)

That is, variance of X varies with λ but variance of
√
X + 1/4 is almost constant for large

λ. We will apply this technique to the density estimation via nonparametric regression

mentioned in section 1.4.3. But before that notice that if we use σ̂2 for say σ̂u then

26



σ̂u(x) =

√
1

nhus
f̂(x)

∫
K2(t)dt

=

√
1

nhus

∫
K2(t)dt

√
f̂(x)

= Cu ×
√
f̂(x) (2.14)

where

Cu =

√
1

nhus

∫
K2(t)dt.

Table 2.1

Variance Comparison

X -1.5 -0.75 0 0.75 1.5
Variance of

Square Root of
Kernel Density

0.011 0.0048 0.0061 0.0095 0.017

Variance via
Transformation &

Nonparametric
Regression

0.00021 0.00018 0.00016 0.00018 0.00022

To illustrate the effect of the the point estimation on σ̂u(x), suppose r.v. X follows

the standard normal distribution and take 300 samples each of size 100 from f(x). We

will have 300 estimates of f at the designated points, say x1, x2, . . . , xd. One is able to

calculate V ar(
√
f̂(xi)), i = 1, 2, . . . , d according to the 300 samples. Table 2.1 shows

the simulation numbers of V ar(
√
f̂(xi)), i = 1, 2, . . . , 5. First row lists all the estimation

points and the second row shows the variance of
√
f̂(x) by using kernel density estimation
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mentioned above. The third row shows the variance of
√̂
f(x) through nonparametric

regression estimator of
√
f(x) as discussed below.

Apparently, the variances introduced in the third row are close to each other and also

smaller compared to the second row. We then illustrate this method by applying the root-

unroot transformation to estimate
√
f via regression and have the new estimator

√̂
f so that

the variance of this term will be a constant as we see in table 2.1, and it makes the variance

of confidence interval length constant as well.

We now refer to the density estimation through nonparametric regression approach

discussed in section 1.4.3. Let yi and xi be the observations and the center of the bins

respectively. N is the number of total observations and ∆ is the bin length and suppose

qi is the proportion of the observations in the bin divided by the bin length ∆. We have

shown that

N∆qi ∼ Binomial(N, pi) with pi =

∫
Ii

f(x)dx

where Ii is the bin. When N →∞, ∆→ 0 we have

E(qi) ≈ f(xi), V ar(qi) ≈
f(xi)

N∆
.

So, here we define

Mi =

√
yi + 1

4

N∆
.

Then,

E(Mi) ≈
√
f(xi), V ar(Mi) = σ2(xi),
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Thus, the problem of estimating
√
f(x) can be seen as a nonparametric regression problem

based on data (xi,Mi) with the model,

Mi = m(xi) + σ(xi)εi, i = 1, · · · , n.

where m(xi) =
√
f(xi) and εi being independent r.v. with mean 0 and unit variance.

m̂(x0) =
√̂
f(x0) = n−1

n∑
i=1

{ŝ2(x0;h)− ŝ1(x0;h)(xi − x0)}Kh(xi − x0)Yi
ŝ2(x0;h)ŝ0(x0;h)− ŝ1(x0;h)2

where

ŝr(x0;h) = n−1

n∑
i=1

(xi − x0)rKh(xi − x0) .

One may notice that from (2.13), asymptotically,

σ2(xi) =
1

4
∗ Cσ (2.15)

where Cσ is a constant depending on the sample size. Thus, based on this nonparametric

regression, we have m̂ =
√̂
f as an estimate of

√
f , and by taking advantage of this

variance stabilization technique it essentially gives us a confidence interval of f with a

nice variance property of interval length. We write

√̂
f(x) = m̂(x) . (2.16)

In the nonparametric local linear regression, if one considers the fixed equally spaced de-

sign, it has been shown by Wand and Jones (1995) [37] that

V ar(m̂(x)) ' 1

nh

∫
K2(z)dz σ2(x)
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which is a constant based on (2.15). Thus instead of σ̂u(x) we can use the estimator with

constant variance, that is,

σ̂vs = Cu ∗ m̂(x) . (2.17)

Note that the standard error acquired in (2.17) is not related to the kernel density estimator

at point x and also the variance of standard error is a constant, thus we can use
√̂
f(x) for

bias correction method as well and one is able to rewrite both (2.10) and (2.11) as

J̃us = (f̂1 − Cu
√̂
f(x)û(1+α)/2, f̂1 − Cu

√̂
f(x)û(1−α)/2) (2.18)

J̃bc = (f̂2 − Cb
√̂
f(x)û(1+α)/2 − b̂, f̂2 − Cb

√̂
f(x)û(1−α)/2 − b̂). (2.19)

2.4 Numerical Results

2.4.1 Summary

In this section we report details of a simulation study which exhibits performance of

the variance stabilization technique on both under-smoothing and bias correction methods.

We first simulate the confidence intervals which are mentioned in (2.10) and (2.11) and

compute the variability in the lengths of the confidence intervals. Then we compute the

confidence intervals in (2.10) and (2.11) again but replacing σ̂µ or σ̂b by the new estimator

σ̂vs, and also compute the variability in the lengths of those intervals. Throughout, the

intervals are two-sided. Bootstrap approximations are based on B = 299 resamples, and

the approximate coverage probabilities are based on 300 independent samples.
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2.4.2 Performance of Variance Stabilization Method on both Undersmoothing and
Explicit Bias Correction

For the bias correction confidence interval, let kernel K denote Epanechnikov’s kernel

K(u) =


(3/4)5−1/2{1− (u2/5)} if |u| ≤

√
5

0 otherwise

for which κr = 1/2 and r = 2 in the bias formula (2.4). To estimate f (2) we use the

(2, 4)th order optimal kernel suggested by Gasser, Muller, and Mammitzsch given by

L(2)(u) =


(105/16)(6u2 − 5u4 − 1) if |u| ≤ 1

0 otherwise.

We take h = 1.05τ̂n−1/5 where τ̂ 2 denotes sample variance and h1 = 2.70τ̂n−1/9, which

are asymptotically optimal if the data are normal.

For the under-smoothing confidence interval, we take K to be the optimal fourth order

kernel defined by

K1(u) =


(15/32)(7u4 − 10u2 + 3) if |u| ≤ 1

0 otherwise.

When the true density f is that of an N(0, τ 2) distribution, the bandwidth which asymptot-

ically minimizes mean integrated squared error is 5.05τn−1/5. This suggests the empirical

version, 5.05τ̂n−1/5, where τ̂ 2 denotes sample variance. To assess the effect of under-

smoothing we take h = 5.05cτ̂n−1/5, where 0 < c ≤ 1. The numerical performance is

summarized in Table 2.2 and Table 2.3.

In Table 2.2, the simulation is based on the distribution N(0, 1) and sample size is 50

by using R [28]. Coverage probabilities is p; w is the interval widths and s is the width
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standard deviations. The first three row in the first block shows the performance of bias

correction without specifying the value of c. From block 2 to block 7, it shows the out-

comes of under-smoothing by assigning different values of c of nominal 95% confidence

intervals constructed by the methods described above. In the table, at each point x, left

column is the number generated by (2.10) and the column on the right is the number gen-

erated by the variance stabilization methodology. From Table 2.2, for the bias correction

method, it seems like the variance stabilization method does not improve the standard de-

viation of the interval width. However, one can see that as c becomes smaller and smaller,

the standard deviation of interval length is much stable than the original method especially

when c = 0.1 even though we sacrifice some accuracy on the coverage probabilities.

In table 2.3, we use the normal mixture 1/2×N(0, 1)+ 1/2×N(3, 1). From both bias

correction and variance stabilization method, we can see that the variance of the interval

length is smaller than the original method which explained the proposal we show in the

previous sections.
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Table 2.2

Simulation on N(0,1)

N(0,1) n=50
x=0 x=0.75 x=1.5

p 87.6 83.6 87 84 89.6 82.3
w 0.17577 0.17318 0.1758 0.17479 0.15137 0.14287
s 0.02067 0.02111 0.02042 0.02233 0.01962 0.01913

c=1 p 26.7 33.3 90 92 71 63
w 0.07755 0.0739 0.09762 0.09559 0.10841 0.10772
s 0.01122 0.0105 0.01449 0.01444 0.01141 0.00986

c=0.75 p 79 83.3 97.6 95.3 89 84.3
w 0.13539 0.13032 0.14704 0.1444 0.14035 0.13759
s 0.01745 0.01564 0.01911 0.01819 0.01382 0.01455

c=0.5 p 94.6 92.3 94 93 97.3 91.7
w 0.22945 0.22365 0.22666 0.22158 0.18453 0.1749
s 0.02881 0.0264 0.02797 0.02627 0.02332 0.02534

c=0.3 p 95.3 93.6 95 92.3 96.3 89.6
w 0.36136 0.34865 0.33522 0.32134 0.28054 0.22691
s 0.04773 0.04901 0.04582 0.04353 0.07309 0.05256

c=0.2 p 96.7 95 97.3 94.6 93.3 88.6
w 0.4899 0.45588 0.44859 0.40267 0.44381 0.27811
s 0.0684 0.06774 0.07159 0.06809 0.27583 0.07943

c=0.1 p 96.3 91 95.6 88.3 82.6 79.7
w 0.86331 0.67029 0.89485 0.58228 1.51034 0.36371
s 0.22732 0.15289 0.39229 0.16388 5.85617 0.17278
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Table 2.3

Simulation on 1/2×N(0, 1) + 1/2×N(3, 1)

1/2*N(0,1)+1/2*N(3,1) n=50
x=0 x=0.75 x=1.5

p 88.6 87.3 41 33.3 46.3 37.3
w 0.13922 0.13859 0.13707 0.13827 0.11276 0.11343
s 0.1575 0.01532 0.017 0.0162 0.01168 0.01256

c=1 p 50.6 65 19.6 10 0 0
w 0.0791 0.07907 0.05759 0.05731 0.03916 0.03979
s 0.00707 0.00757 0.00785 0.00805 0.00655 0.00608

c=0.75 p 86.3 85.7 58 40.3 0 0
w 0.11296 0.1123 0.10018 0.09961 0.08914 0.08854
s 0.00917 0.00923 0.0102 0.01111 0.00951 0.00941

c=0.5 p 92.7 88 70.6 60.7 71.3 61
w 0.15602 0.15624 0.14912 0.15001 0.15016 0.15273
s 0.01314 0.01329 0.01562 0.0155 0.01561 0.01607

c=0.3 p 97.3 94.3 90.3 89.3 87 86
w 0.26024 0.2465 0.26518 0.25915 0.21942 0.21479
s 0.03483 0.03483 0.0355 0.0356 0.02797 0.02789

c=0.2 p 97.3 92.6 92 91.3 92.3 92.7
w 0.35368 0.31195 0.35143 0.3176 0.29307 0.26317
s 0.06619 0.06022 0.06133 0.05794 0.0465 0.0467

c=0.1 p 94 89.3 94 90.6 93.7 91.3
w 0.81412 0.44217 0.96729 0.13139 0.63585 0.35949
s 1.53151 0.13322 2.83142 0.4445 0.49083 0.10488
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CHAPTER 3

CONFIDENCE INTERVAL ON HAZARD RATE

3.1 Introduction

A variety of methods of constructing nonparametric confidence intervals for the

hazard rate have been discussed in the literature. See for example, Cheng and Hall (2006)

[10],who provide the nonparametric confidence intervals for hazard rate function under

censorship model and references in there. The main issues discussed in those articles

include choice of smoothing parameter, coverage accuracy and the length of a confidence

intervals. Here, however, we confine our attention to the length of confidence interval of

hazard rate.

In the last chapter, we discussed the effect of an estimator of the standard error of f̂

which has the constant variance, on the length of the nonparametric confidence intervals for

f obtained by bias correction and under smoothing methods. In this chapter, our primary

aim is to carry out similar investigation for the nonparametric confidence intervals for

hazard rate function. For that, first we propose an estimator of square root of the hazard
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rate which will have a constant variance. For that, in section 3.2, we consider the following

two estimators of hazard rate functions

λ̂1(x) =
f̂(x)

1− Fn(x)
(3.1)

λ̂2(x) =
n∑
i=1

1
h
K(x−Xi

h
)

n− i+ 1
. (3.2)

For their motivation see [29]. We then use regression approach to obtain an estimator of

√
λ and then the confidence interval of hazard rate. In section 3.3, we introduce the hazard

rate confidence interval proposed by Cheng and Hall (2006) [10]. In the section 3.4, we

show the performance of the confidence intervals which use constant variance estimator of

the standard deviation of the hazard rate estimator.

3.2 An Estimator of Square Root of Hazard Rate

In section 2.3, we have discussed root-unroot transformation in nonparametric re-

gression context. There by using the local linear regression, we applied root-unroot trans-

formation to estimate
√
f which is in the standard error term the nonparametric kernel

density estimator. We now apply this methodology to estimate the standard error of hazard

rate estimator. For that note that asymptotic variance of the either estimator in (3.1) or (3.2)

is given by

1

nh

λ(x)

1− F (x)
.

Notice that, n is the number of observations, h is the bandwidth and F is the cumulative

distribution function which can be estimated by the empirical distribution function. There-

fore standard error will depend on estimate of
√
λ(x), and hence here we will obtain an
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estimate of
√
λ(x) with constant variance. In section 1.4.4, we have discussed the hazard

rate estimation by using local linear fit. Define

Yi =
1

∆

fi

N −
i∑

j=1

fj + 1

, i = 1, 2, · · · , n (3.3)

where ∆ is the length of the interval and fi is the number of observations in ith interval.

N is the total counts of observations. We have shown that

E(Yi) ' λ(xi)

V ar(Yi) '
1

N∆

λ(xi)

1− F (xi)
.

However, in order to take advantage of the root-unroot transformation to stabilize the vari-

ance of the confidence interval length, one need to normalize Yi in (3.3). After the normal-

ization the new estimator will be similar to the density estimator discussed in the chapter

2. It is mentioned in section (1.1) that

Λ(x) =

∫ x

0

λ(t)dt = − log(1− F (x)) . (3.4)

If we let Λ(x) be the integral of hazard rate on the entire data range, say [0, xmax] then we

can rewrite Λ(xmax) = Ch where Ch is a constant. Define

Hi =
√
Yi/Ch + 1/4

=

√√√√√ 1

∆

fi

N −
i∑

j=1

fj + 1

1

Ch
+

1

4

=

√
Gi +

1

4
(3.5)
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where

Gi =
1

∆

fi

N −
i∑

j=1

fj + 1

1

Ch

is the normalized hazard rate estimator. Apply local linear nonparametric regression to the

binned center xi and transformed data Hi and note that

E(Hi) '

√
λ(xi)

Ch
, V ar(Hi) = σ2(xi).

One can show that asymptotically,

V ar(Hi) = σ2(xi)

and it is constant. In this fixed design nonparametric regression problem, we have data

(xi, Hi) such that

Hi = m(xi) + σ(xi)εi, i = 1, · · · , n

where

m(xi) =

√
λ(xi)

Ch

and εi is independent r.v. with mean 0 and unit variance. Now let m̂(x0) be usual local

linear estimator of m(x0) then

m̂(x0) =

√̂
λ(x0)

Ch
.

Notice that Ch is a constant and the estimator of λ̂ can be written as

√̂
λ(x0) = m̂(x0) ∗

√
Ch
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where m̂(x0) is local linear estimator at x0 mentioned in section 1.4.2. Similarly to what

we discussed in (2.17). One can show that

V ar
(√̂

λ(x0)
)
' 1

nh

∫
K2(z)dz σ2(x0) ∗ Ch .

3.2.1 Estimation of the Standard Deviation of Nonparametric Hazard Rate Estima-
tor

Recall that asymptotically, standard deviation of either λ̂1 or λ̂2 is determined by√
λ(x)

1− F (x)
. (3.6)

Thus instead of obtaining a constant variance estimator of
√
λ(x), we propose a constant

variance estimator of √
λ(x)

1− F (x)
.

Recall the empirical estimators of f and F by using the local linear fit in section 1.4.4.

At point xi, we have

f̂(xi) =
fi
N∆

, F̂ (xi) =
i∑

j=1

fj
N
,

so one can write the estimator of (3.6) at xi as following√
λ̂(xi)

1− F̂ (xi)
=

√
f̂(xi)

(1− F̂ (xi))2

=

√√√√√ fi/N∆

(1−
i∑

j=1

fj
N

)2

'
√√√√√ fiN/∆

(N −
i∑

j=1

fj + 1)2

=
√
Si , (3.7)
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where

Si =
fiN/∆

(N −
i∑

j=1

fj + 1)2

and it is an empirical estimator of

λ(x)

1− F (x)
.

Intuitively, we want to normalize the empirical estimator term in (3.7) to utilize variance

stabilization transformation. Thus define

β(x) =

∫ x

0

λ(t)

1− F (t)
dt

=

∫ x

0

f(t)

(1− F (t))2
dt

=
1

1− F (x)
. (3.8)

Suppose the integral above is on the data range from 0 to x′max, hence β(x′max) is a constant

and let C ′h = β(x′max). In order to apply it to the local linear regression, set

Di =
√
Si/C ′h + 1/4

=

√√√√√ fiN/∆

(N −
i∑

j=1

fj + 1)2

1

C ′h
+

1

4

=

√
Ei +

1

4
, (3.9)

where

Ei =
fiN/∆

(N −
i∑

j=1

fj + 1)2

1

C ′h

is the normalized estimator of

λ(x)

1− F (x)
.
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Therefore, one can use the data (xi, Di) where xi is the binned center and Di is the trans-

formed count to fit the local linear nonparametric regression. Note

E(Di) '

√
λ(xi)

1− F (xi)

1

C ′h
, V ar(Di) = σ2(xi),

and asymptotically one can show that V ar(Di) is constant. For this local linear regression,

one can write

Di = m(xi) + σ(xi)εi, i = 1, · · · , n

where

m(xi) =

√
λ(xi)

1− F (xi)

1

C ′h

and εi is independent r.v. with mean 0 and unit variance. Then the local linear estimator of

m(x) is m̂(x0) and

m̂(x0) =

̂√
λ(xi)

1− F (xi)

1

C ′h
.

Thus, the estimator of (3.6) is

̂√
λ(xi)

1− F (xi)
= m̂(x0) ∗

√
C ′h, (3.10)

and the variance of (3.10) is a constant.

3.3 Hazard Rate Confidence Interval

3.3.1 Hazard Rate Estimator

For the hazard rate confidence interval estimation, a number of methods have been

discussed in the literature. Even if we confine our attention to smoothing, there still exists

a wide range of different methods. We focus our attention to the recently proposed method

which forms the basis for our investigation.
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Let X denote the true survival time and write f and F for the density and distribution

functions, respectively, of X . The hazard rate is given by

λ(x) =
f(x)

1− F (x)
.

Also, let F̂ be the standard empirical estimator of F , computed from the data x1, · · · , xn.

Then writing h for a bandwidth and taking the kernel, K, to be a bounded, compactly

supported, symmetric probability density, we define

λ̂(x) =
1

h

n∑
i=1

K
(x−X(i)

h

) 1

n− i+ 1
=

1

nh

n∑
i=1

K
(x−Xi

h

) 1

1− F̂ (Xi) + n−1
(3.11)

to be our hazard estimator.

3.3.2 Hazard Confidence Interval

In nonparametric estimation of density confidence interval described in the last

chapter, we focus on two approaches, namely explicit bias correction and under-smoothing

to reduce the effects of bias. To construct the confidence interval for the hazard rate, exactly

similar approach can be followed.

In addition, Hall (1992) [17] showed that under-smoothing generally gives better per-

formance than bias correction. To tackle the problem of choosing the extent of under-

smoothing, Cheng and Hall (2006) [10] suggest a simple, practical method for locally-

adaptive bandwidth choice.

42



Assume that t ∈ (0, T ] and if K is standardized so that
∫
K2 = 1. It has been shown

in the literature that for the estimator define in (3.11)

E
(
λ̂(x)

)
= λ+O(h2) (3.12)

Var
(
λ̂(x)

)
=

1

nh

λ(x)

1− F (x)
+ o(

1

nh
) . (3.13)

Muller and Wang (1990) [27] show that the distribution of (λ̂−E(λ̂))/

√
var(λ̂) converges

to the standard normal as n increases. Let Φ denote the standard normal distribution func-

tion and assume 0 < α < 1/2. We can define Φ(zα/2) = 1 − (1/2)α. The two sided

confidence interval for λ(x) discussed above can be written as

Jhazard = (λ̂− 1√
nh

√
λ̂(x)

1− F̂ (x)
zα/2, λ̂+

1√
nh

√
λ̂(x)

1− F̂ (x)
zα/2), (3.14)

with nominal coverage 1 − α. It has been discussed that the coverage error of Jhazard is

minimized by choosing the bandwidth, h, to be of size of n−1/3. Hence, one can treat

bandwidth hopt = Bn−1/3 where B is a constant. If we consider both bias-ignored and

bias-corrected version of confidence intervals discussed in the literature, given a band-

width, h, these two confidence intervals with coverage of (1 − α)100% can be written

as

(λ̂− 1√
nh

√
λ̂(x)

1− F̂ (x)
zα/2, λ̂+

1√
nh

√
λ̂(x)

1− F̂ (x)
zα/2), (3.15)

(λ̂− B̂ias− 1√
nh

√
λ̂(x)

1− F̂ (x)
zα/2, λ̂− B̂ias+

1√
nh

√
λ̂(x)

1− F̂ (x)
zα/2), (3.16)
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where B̂ias is the bias estimator introduced by Muller and Wang (1990) [27]. Now to

stabilize the variance of the confidence interval length. From either (3.15) or (3.16), the

length is only related to the standard error term

1√
nh

√
λ̂(x)

1− F̂ (x)
. (3.17)

Thus now can get confidence intervals if we replace√
λ

1− F
by

√̂
λ√

1− Fn

obtaining the confidence interval

(λ̂− 1√
nh

√̂
λ(x)√

1− F̂ (x)
zα/2, λ̂+

1√
nh

√̂
λ(x)√

1− F̂ (x)
zα/2) , (3.18)

or if we replace √
λ

1− F
by

√̂
λ

1− F

obtaining the confidence interval

(λ̂− 1√
nh

̂√
λ(xi)

1− F (xi)
zα/2, λ̂+

1√
nh

̂√
λ(xi)

1− F (xi)
zα/2) . (3.19)

In the next section, we perform the simulation by using the three confidence intervals

mentioned above in (3.15), (3.18) and (3.19) to show the effect of using constant estimator

on the variability of the length of the confidence interval.

3.4 Numerical Results

In this section, we report the numeric performance of the variance stabilization in the

nonparametric hazard confidence interval discussed above. In order to show the property
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of variance stabilization in the confidence interval length, we first discussed the confidence

interval introduced by Cheng and Hall [10] in (3.15) denoted as M1 and then compare

to both confidence intervals of variance stabilization on the standard error introduced in

(3.18) and (3.19) denoted as M2 and M3 respectively. The coverage of confidence intervals

is based on nominal 95% with z0.025 and 1000 simulated sets of data with sample size 200.

For the λ̂ described in (3.15), we use Epanechnikov kernel mentioned in section 2.4.2

and choose the bandwidth to be of size n−1/3. Consider the binned data when applying

nonparametric local linear regression and let fn be the number of observations in the last

bin. Then one can use fn/N to estimate 1− F (x) getting the constant Ch and C ′h in (3.5)

and (3.9) respectively. The simulation performance is summarized in Table 3.1 and Table

3.2. In both tables, p is the coverage probabilities; w is the average interval width based on

1000 simulated data sets and s is the standard deviation of the interval length. M1, M2 and

M3 are the three confidence interval methodologies mentioned in (3.15), (3.18) and (3.19)

respectively.

In table 3.1, the result is based on exponential distribution with λ = 0.8. At these four

points (x = 0.6, x = 0.8, x = 1, x = 1.2), p, s and w have the same trend from M1 to

M3. The initial method (3.15) has a very nice coverage probabilities compared to the two

other confidence intervals. Since we apply the variance stabilization transformation to the

standard error in the confidence interval, M2 and M3 have a smaller standard deviation

on the length of the confidence intervals and also the average lengths of the confidence

interval are shorter than M1. In table 3.2, the performance is from weibull distribution

with scale parameter equals 0.5 and shape parameter equals 5. The conclusion we have
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from Table 3.2 is very similar to Table 3.1 that is M2 and M3 have a better performance

on the variance of the interval length and both intervals are shorter than the one from M1.

However, from both Table 3.1 and Table 3.2, one can see that we sacrifice some coverage

probabilities to stabilize the confidence interval length by using the variance stabilization

transformations.

Table 3.1

Simulation on Exponential Distribution

Exponential Distribution
x=0.6 x=0.8

M1 M2 M3 M1 M2 M3
p 94.3 93.4 90.5 95 93.4 93
s 0.03531 0.02594 0.02411 0.04321 0.03036 0.02962
w 0.54573 0.45906 0.36006 0.62861 0.49335 0.37431

x=1.0 x=1.2
M1 M2 M3 M1 M2 M3

p 95 94.7 87.3 95 92 88.3
s 0.05389 0.03767 0.03734 0.06269 0.04481 0.04291
w 0.68153 0.52852 0.40942 0.73728 0.56837 0.45025
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Table 3.2

Simulation on Weibull Distribution

Weibull Distribution
x=1.2 x=1.4

M1 M2 M3 M1 M2 M3
p 94.7 93.8 92.1 95 92.7 91.2
s 0.16947 0.04917 0.04656 0.18373 0.06007 0.06214
w 0.98002 0.81919 0.65624 1.43731 1.01628 0.87375

x=1.6 x=1.8
M1 M2 M3 M1 M2 M3

p 95 94 94 95 80.6 84.7
s 0.22646 0.09087 0.08442 0.38313 0.17468 0.16385
w 2.11295 1.36125 1.27534 3.33795 2.07941 2.07328
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CHAPTER 4

NORTH AMERICAN SNOW TRENDS

4.1 Introduction to Snow Trend Estimation

The second part of this thesis provides a statistical study of temporal trends in daily

snow depths in a gridded data set covering the United States and Canada. Snow is an vital

environmental and geophysical quantity and is sensitive to climate change since its mag-

nitude depends on both temperature and precipitation [4] [20]. Climate change is believed

to be most prominent during the cold season in the mid and high latitudes [25]. Global

climate models indicate that snow cover changes will considerably impact the cryopsheric

portion of the water budget [3].

A daily snow depth is the measured (or estimated) depth of the snow pack at a particular

location, whereas snow cover refers to the regions in the study that are not snow-bare.

Satellite data over the northern hemisphere suggest that snow cover has lessened since the

mid-1980s [33] [35] [34] [16] [19]. It is not known how this influences snow depths. Snow

depth analyses complement snow cover change studies, providing further information on

hydrological resources, surface energy, soil processes, and ecological systems [13]. Snow

depth trend estimates over Canada have been previously made [8] and related to climate

variability [1] [9]; however, no statistically detailed study of the daily snow depths in the

US and Canada as a whole has been conducted.
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Changepoint issues arise and are important in snow trend studies. A changepoint is

a time where the structural pattern of a time series shifts, often attributed to station loca-

tion moves or instrumentation (measuring) changes. Changepoints can profoundly affect

temperature and snow trend estimates [39]. While our data has been quality checked for

outliers and scaling issues [34], changepoints and their effects will still play a key role in

trend inferences. Mitchell (1953) [26] estimates that US stations experience six location

or instrumentation changes per century on average. Any detailed snow trend study account

should consider changepoint (inhomogeneity) effects. This paper represents a first attempt

to include changepoints into a region-wide assessment of snow depth trends.

Station moves and instrumentation change times are not included in our data; these

times need to be estimated before making trend inferences. Estimation of multiple change-

point times via genetic algorithms (GA) has become increasingly popular in climate ho-

mogenization pursuits [22]. Here, a GA is applied to the snow depth time series at each

data grid to estimate times where changepoints occurred. These changepoints are subse-

quently used in a stochastic storage model to estimate snow depth trends.

Estimation of daily snow depth trends is difficult for several reasons. First, snow is

seasonal, mostly absent during the summer months at all but Arctic or high alpine locations.

Second, daily snow depths are highly correlated in time: tomorrow’s snow depth depends

on today’s snow depth. Statistical inferences that ignore correlation will yield artificially

high levels of confidence [24]. Third, as pointed out by Marsh (1999), snow depths cannot

be negative — this ”zero modified support set issue” must be addressed. Fourth, as will

become apparent here, one should allow for changepoints in trend analyses.
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The storage model approach used here was introduced in Woody et al. (2009) [39]

and stems from queuing theory. Snow is a natural storage phenomena: the snow depth

today is the snow depth yesterday, plus any new snow that has fallen, minus any melt off

or compaction. Perona et al. (2007) [30] also use storage models to describe inter-annual

snow depths, but do not allow for trends, melting in the fall and winter, or snow increases

during spring ablation.

4.2 The Data

Snow depths for each grid were generated from US and Canadian daily snow depth

observations taken from the US National Climatic Data Center (NCDC; http://www.

ncdc.noaa.gov) and the Meteorological Service of Canada [6]. Further information

on these data sources, including station distribution, station density, and measurement pro-

cedures, can be found in Dyer and Mote (2006) [13]. The data were quality controlled via

the methods in Robinson (1989) [32], which involved comparing daily snow depths with

associated extreme daily snow depths, snow fall, maximum and minimum temperature,

and precipitation data for the associated state or province. In this pursuit, extremes were

based on existing quality controlled data (Environment Canada, Canadian climate normal

or averages 1971-2000, available at http://climate.weatheroffice.ec.gc.

ca/climate_normals/index_e.html; National Climatic Data Center, Local cli-

matological data annual summary, http://www.ncdc.noaa.gov). Any snow depth

that did not meet all quality control criteria were flagged as inconsistent and excluded in

our analysis.
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To maintain geographic consistency in the data, a spherically-based inverse-distance

algorithm was used to interpolate depths before projecting onto a Cartesian plane (Willmott

et al., 1984) [38]. Our algorithm uses a maximum of 25 different station observations to

calculate snow depths at each grid and time, with a maximum search radius of 100 km

from each grid center. If less than 25 station observations were available within the 100

km radius, only those depths within the radius were used for interpolation. Should no

observations reside within the 100-km search radius, the nearest available observation was

used as the snow depth at that grid point and time. This approach is advantageous in

high station density areas, such as the Eastern US, where the search radius needed to find

25 stations is typically small. In areas with lower station density, such as Central and

Northern Canada, the 100-km maximum search radius minimizes biases from using non-

local observations. Our interpolation algorithm was used to construct daily 0.250× 0.250

degree longitude by latitude snow depth grids over an extent of 530 − 1680 W longitude

and 200 − 710 N latitude, which were then averaged to develop daily snow depth grids.

This scheme minimizes the impact of inconsistent observations on interpolated grid depths.

The primary disadvantages of this approach include terrain influences within mountainous

regions, where snow depth is dependent on slope, aspect, and altitude, and low station

density on interpolated values.
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4.3 Changepoint Detection via Genetic Algorithm

This section discusses our multiple changepoint homogenization methods. As an ex-

ample, the methods are applied to a series from a grid centered at latitude 46.5N, Longitude

-99.5W (near Wishek, North Dakota).

Genetic algorithms (GA) have been successfully used in recent climate homogeniza-

tion studies [22] [21]. GAs use principles of genetic selection and biological mutation

to intelligently search for the best possible (as defined below) changepoint configuration.

While trends in daily depths are our objective, changepoints in yearly average snow depth

series are first sought. Homogenization for daily series is significantly more involved due

to long series lengths [31]. Any changepoint detected in the yearly series is assigned to the

first day of the year.

Let {Xt}Nt=1 denote the snow depth series at a fixed grid for days t = 1, . . . , N . Winter

centered years (WCY) are analyzed here. The starting observation for a WCY is 1 July;

30 June of the subsequent calendar year is the last day. WCYs prevent a single winter

season from straddling two distinct years. To have 1960 commence our study, t = 1 will

correspond to 1 July 1959; t = N = 14, 600 corresponds to 30 June 2000, the study

end date. Leap year data are handled by deleting the 30 June observation within the same

calendar year that 29 February occurs — this has virtually no impact on results. There are

n = 41 years in our study.

For a periodic notation, write time t as t = dT + ν where d ∈ {0, . . . , n − 1} is the

WCY and ν ∈ {1, . . . , T = 365} represents the day of the WCY. The actual data set spans

1 January 1960 – 31 December 2000.
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At a given grid, define Yd = #(W)−1
∑

ν∈W XdT+ν as the average depth for WCY

d ∈ {0, . . . , n − 1}, where #(A) is the number of elements in the set A and W denotes

the snow season for this grid. The snow season is taken to start on the first day in the

Fall/Winter on which snow is present on at least 20 percent of the WCY years in the study;

the last day of the WCY is the latest day in the Winter/Spring on which at least 20 percent

of the WCY years report some snow. Since the entire winter is not observed when d = 0

and d = 40, Y0 and Y40 are considered missing. For the grid centered near Wishek, North

Dakota, the snow season spans 1 Nov to 27 April, a length of 117 days.

We now describe our changepoint homogenization methods. From the yearly averaging

(the central limit theorem), Yd is approximately normally distributed. Hence, the change-

point techniques for normal data from Li and Lund (2012) [22] apply. Trend components

must be included in the changepoint detection methodology to avoid identifying spurious

changepoints caused by the presence of non-zero trends [15]. Our basic model for the

yearly average snow depths {Yd}n−1
d=0 is the time series regression

Yd = α + γd+ µd + εd. (4.1)

Here, α models the overall mean, γ is a linear trend parameter, µd is a changepoint effect

described further below, and {εd}n−1
d=0 is a zero-mean first order autoregressive (AR(1))

error process that allows for temporal correlation in the yearly averages. The AR(1) errors

obey εd = φεd−1 + Zd, where {Zd} is a zero-mean white noise process with variance σ2,

and φ ∈ (−1, 1) is the correlation between consecutive years of average snow depths. The

changepoint effect µd entails k mean (level) shifts at times τ1 < τ2 < . . . < τk:
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µd =



∆0 = 0, τ0 < d < τ1

∆1, τ1 ≤ d < τ2

...
...

∆k, τk ≤ d < τk+1

,

where τ0 = 0 and τk+1 = n+ 1 by convention. Here, ∆` is interpreted as the changepoint

effect of the `th regime.

This model contains the regression parameters α, γ, k,∆1, . . . ,∆k, the changepoint

times τ1, τ2, . . . , τk, and the time series parameters φ and σ2. For a given configuration of

k changepoints occurring at the times τ1, . . . , τk, the regression parameters are estimated

using standard linear regression methods; Yule-Walker estimators are fitted to linear re-

gression residuals to estimate the time series parameters φ and σ2.

Estimation of the best changepoint configuration of a time series is a statistical model

selection problem. Popular model selection criteria include the Akaike Information Crite-

rion (AIC), the Bayesian Information (BIC), and Minimum Description Lengths (MDLs).

To date, MDL methods have produced superior empirical results [11] [23]. MDL methods

minimize an objective function of form MDL = − ln(Lopt) + P over all possible change-

point configurations. Here, − ln(Lopt) is an optimal model likelihood given the number

of changepoints k and their locations τ1, . . . , τk, and P , which depends on the number of

changepoints are their location times, is a penalty term to prevent overfitting. Unlike AIC

and BIC penalties, MDL penalties are more complex than a multiple of the number of
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changepoints. The MDL penalty, in fact, penalizes changepoint times that are relatively

closer together more than sparsely spaced changepoints.

The Innovations form of the multivariate Gaussian likelihood is used:

L(φ, σ, α, γ,∆1, . . . ,∆k) = (2π)−
N
2

(
N−1∏
t=0

vt

)− 1
2

exp

(
−1

2

N∑
t=1

(Yt − Ŷt)2

vt−1

)
. (4.2)

Here, Ŷt is the one-step-ahead predictor of Yt and vt = E[(Yt+1 − Ŷt+1)2] is its mean

squared prediction error. For an AR(1) series, Ŷt = m̂t + φ̂(Yt−1 − m̂t−1), where m̂t =

α̂ + γ̂d + µ̂d, and vt ≡ σ̂2. Parameter estimates for φ and σ are calculated from the Yule-

Walker equations for {ε̂d}n−1
d=0 . Substituting the estimators of φ, σ, α, γ; k,∆2, . . . ,∆k+1

into (4.2) numerically gives ln(Lopt) for the changepoint configuration with k changepoints

at locations τ1, . . . , τk.

The penalty term for the changepoint configuration is the same as that in [21]:

P = P (k, τ1, . . . , τk) =
1

2

k+1∑
`=2

log (τ` − τ`−1) +
k∑
`=2

log (τ`) + log2(k + 1).

The best changepoint model is estimated as the one that minimizes the MDL score.

As an exhaustive search for the best changepoint configuration(s) requires evaluation of

2N−1 MDL scores, an arduous task on the world’s fastest computers for even moderately

large N . Here, a GA was devised to perform the minimization. GAs have recently been

employed for multiple changepoint detection in climate data [22] [21]. See Davis (1991)

[12] for more on genetic algorithms.
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As an example, when these methods are applied to the Wishek, North Dakota grid, one

changepoint is declared in 1969. Panel 1 of Figure 1 graphically depicts the fit to {Yd}n−1
d=0 .

4.4 The Storage Model

Woody et al. (2009) [39] introduce a storage model to estimate trends in daily snow

depths in the presence of changepoints. This model was fitted to a time series from

Napoleon, North Dakota. For each fixed grid, estimates of the number of mean shifts k

and their times τ1, . . . , τk are now in place. Our model for the daily snow depths is based

on the storage equation

Xt = max{Xt−1 + Ct, 0},

where Ct quantifies the random change in the snow pack from day t − 1 to day t. The

max term prevents the snow depths from becoming negative. Here, the depth change Ct is

assumed statistically independent of X1, . . . , Xt−1.

For features, we posit that E[Ct] = mt has a periodic component, possibly multiple

changepoints, and a linear trend. The variance Var(Ct) = w2
t is assumed periodic with

period T = 365. For computational convenience, Ct is assumed normally distributed:

Ct ∼ N(mt, w
2
t ); other distributions can be easily used if desired. Specifically, mt is

parameterized as

mt = Pν

[
A+B cos

(
2π(ν − ζ)

T

)
+ δt + γt

]
,

where the mean shifts are estimated as in the last section:
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δ̂t =



0, t ∈ {1, . . . , τ̂1T − 1}

∆̂1, t ∈ {τ̂1T, . . . , τ̂2T − 1}

...
...

∆̂k̂, t ∈ {τ̂k̂T, . . . , dn}

.

The term Pν is a zero/one indicator that is unity when ν ∈ W .

To estimate the storage model parameters (this is not the same task as estimating

changepoint parameters), we minimize the weighted sum of squared one-step-ahead pre-

diction errors

S(θ) =
n−1∑
d=0

T∑
ν=1

(XdT+ν − X̂dT+ν)
2

w2
ν

.

Here, θ = (A,B, ζ, γ,∆2, . . . ,∆k−1)′ is a vector containing all model parameters and

X̂t := Eθ[Xt+1|Xt] is the one-step-ahead prediction, calculated in Woody et al. (2009)

[39] as

Eθ[Xt+1|Xt] = [Xt +mt+1]

[
1− Φ

(
−Xt −mt+1

wt+1

)]
+ wt+1φ

(
Xt +mt+1

wt+1

)
, (4.3)

where Φ(·) and φ(·) are the cumulative distribution and density functions, respectively,

of a standard normal random variable. Because snow is highly seasonal, weighted least

squares is used, where the weight wν is set to Var(Zν) (while it is important to weight,

optimal weightings are not needed). To estimate wν , first calculate a point estimate of the

mean change from day ν−1 to day ν via êν = n−1
∑n−1

d=0(XdT+ν−XdT+ν−1). The estimate

of wν is then simply
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ŵ2
ν =

n−1∑
d=0

[(XdT+ν −XdT+ν−1)− êν ]2 .

We smooth these daily variances via the Matlab function ”cfit” before using them to

minimize variability. The bottom panel in Figure 1 showswν for the Wishek grid. Here, the

variance peaks in the late snow season at the end of March. This method appears visually

reasonable, capturing the increased volatility in the snow pack in the early and late portions

of the snow season.

While the parameter γ controls the trend and is the object of our study, it is not easily

interpretable within the storage equation. For example, because of the maximum in the

storage equation, γ̂ = 50 does not imply a depth change of 50 units per time. A quantity

that does have interpretable units of depth change per time is the linear trend statistic in the

presence of changepoints:

β̂ =

∑k
r=1

∑
n∈Hr

∑T
ν=1

(
XnT+ν − X̄r(ν)

)
(nT + ν − t̄r(ν))∑k

r=1

∑
n∈Hr

∑T
ν=1 (nT + ν − t̄r(ν))2

, (4.4)

whereHr = {t : τr−1T ≤ t < τrT} denotes the set of times where the series was in the rth

segment (regime), X̄r(ν) denotes the average snow depth on day ν of regime r, and t̄r(ν)

denotes the average time during the rth regime and day ν. See Lund et al. (2001) [24] for

more on this statistic. In this context, β̂ estimates the mean change in the snow depth per

unit of time (scaled to cm per century below). To obtain standard errors for β̂, we simply

simulate 1000 independent realizations of the storage model with parameters as estimated

from the data for each grid, and then compute the sample mean and standard deviations of
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the 1000 trend estimates in (4.4). Simulation is used since no explicit forms exist for the

mean of a storage equation model.

At Wishek, parameter estimates are Â = −0.5510, B̂ = 0.7501, ζ̂ = 182.96, γ̂ =

−0.0638, and ∆̂1 = 0.4386. The negative γ̂ suggests declining snow; the positive ∆̂1

moved the station to a snowier location in 1969. The thousand simulations of the storage

model with these parameters report an average trend statistic of β̂ = −1.4904 cm/Century,

with a standard error of 0.7947 cm/Century. This yields a z-score of−1.8756 when testing

the null hypothesis that β = 0 (a one-sided p-value of 0.0304).

4.5 Results

Results are described for two cases: 1) changepoints ignored and 2) changepoints in-

cluded. The average number of changepoints in the 2,831 grids with a non-empty WCY

is 1.593. More specifically, 197 (7.0%) of the grids are changepoint free and 1176 grids

(41.5%) have only one changepoint. The maximum number of changepoints in a grid is

five (this occurred in six grids). The average grid trend is 3.774 cm/Century with change-

points and 9.742 cm/Century without changepoints. More grids have an increasing trend

than decreasing trend: 1690 grids (59.7%) have a positive trend when changepoints are

taken into account and 2254 grids (79.6%) have a positive trend when changepoints are

ignored. The average trend standard deviation is 0.947 cm/Century when changepoints

are taken into account and 1.91 cm/Century when changepoints are ignored. The standard

error is smaller when changepoints are accounted for because this component significantly

explains much of the data (i.e., a better model is obtained).
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Figure 4.2 shows spatially smoothed trends, in cm/Century, with and without change-

points. Elaborating, the β̂s from each grid are spatially smoothed with the head-banging

algorithm with 30 triples. Head-banging is a robust median-polished smoother, capable of

identifying rough structure (ridges and boundaries) while eschewing outliers. Figure 4.3

depicts head-banging smoothed z-scores. The z-scores are computed for each grid assum-

ing a null hypothesis that the trend is zero: this is the trend β̂ at each station divided by the

standard error of the trend estimate.

Overall, the estimated snow depth trends over North America without changepoints in-

dicate a general increase from northern Alaska and Western Canada (above roughly 55N)

through eastern Canada and into Maine in the US (Figure 2). There are no areas with a

strong negative trend, although much of the US shows a slight decrease in snow depths.

When changepoints are included in the trend estimates, the primary area of increasing

trends is northwestern Canada, centered over The Northwest Territories, with lower posi-

tive trends (and some slight negative trends) through central Canada and into the US. More

importantly, however, with the inclusion of changepoints, a substantial area of negative

trends in western Quebec through Ontario (Figure 2) arises. This is likely a result of the

poor station density in this region [13]. The low station density increases sensitivity to

individual stations during the generation of the gridded data, which leads to a numerically

unstable interpolation if stations have intermittent missing data. Inclusions of changepoints

addresses this issue, leading to a more reasonable estimation of trends.

When changepoints are included, the trend estimates show an overall shift of snow

depth from east to west across Canada, which could stem from a change in extra-tropical
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cyclone tracks and/or intensity over the study period. Such a westward shift of cyclone

tracks coming off the North Pacific would lead to an increase in snow depth over the north-

western edges of North America as the systems carry oceanic moisture inland. At the same

time, a decrease in snowfall through Eastern Canada would result as the cyclones traverse

further into the Great Lakes region of the US. The increasing trends over New England and

the far eastern Canadian provinces could be a result of cyclone track variations, specifically

a change in frequency and/or intensity of NorEasters. Such an interpretation was offered

by Dyer and Mote (2006) [13]; however, it is interesting to note that the results from that

analysis, which utilized the same snow depth dataset (albeit with a simpler linear trend es-

timate), showed somewhat different trend patterns over North America. Additionally, the

spatial distribution of areas with significant snow depth trends (p-value less than 0.05) in

the Dyer and Mote (2006) [13] study was somewhat different than those found in this study.

This lends credence to the necessity for the more robust statistical methodology utilized in

this research. The z-scores in Figure 3 provide additional information regarding the spatial

distribution of positive and negative snow depth trends across North America. Namely,

they highlight the location of relatively weak (though still significant) trends, which is use-

ful in areas where trends exist but are small due to an inherently shallower snow pack.

This is especially true in the US, where small changes in the snow pack can have drastic

influences on spring and summer water budgets despite having lower overall snow depths

relative to regions in northern Canada.

Interpretation of the z-scores across the US without changepoints indicates regionally

varying depth trends across the mountainous west, with generally negative z-scores in the
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Pacific Northwest (Figure 3). It is difficult to offer definite justification for these patterns,

however, as the mountainous regions in Canada show no such pattern. This discrepancy

is possibly a result of the greater station density used in the generation of the snow depth

grids in the US, as illustrated in Dyer and Mote (2006) [13]. Focusing on the Eastern US,

there are large negative z-scores from Tennessee through Pennsylvania, with the exception

of weak positive z-scores through the southern Appalachians.

Taking changepoints into account produces high positive z-scores through Northwest

Territories and far eastern Canada and into New England, while the highest negative z-

scores occur in western Quebec and northern Ontario (Figure 3). Again, the inclusion of

changepoints in the trend estimates minimizes the sensitivity of the calculations resulting

from interpolation bias related to factors such as station density; therefore, the extent and

magnitude of extreme high z-scores is drastically reduced while the extent and magnitude

of negative z-scores is increased. Of interest, however, is the area of higher positive z-

scores through the central Great Plains of the US and negative z-scores along the East Coast

from Virginia through Pennsylvania. Since this area roughly coincides with the southern

extent of the continental winter snow pack, the results indicate a decrease in the extent

of the snow pack over the study period through coastal locations and an increase through

interior continental locations with respect to the maximum seasonal extent of snow cover

over North America.
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Figure 4.1

The Wishek, North Dakota grid. Top: the MDL fit to the average yearly snow depths.
Bottom: seasonal variance estimates.
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Figure 4.2

North America Trend Estimates.
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Figure 4.3

North America Trend Z-Score Estimates.
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