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A new implicit and compact optimization-based method is presented for high order

derivative calculation for finite-volume numerical method on unstructured meshes. High-

order approaches to gradient calculation are often based on variants of the Least-Squares

(L-S) method, an explicit method that requires a stencil large enough to accommodate the

necessary variable information to calculate the derivatives. The new scheme proposed here

is applicable for an arbitrary order of accuracy (demonstrated here up to 3rd order), and

uses just the first level of face neighbors to compute all derivatives, thus reducing stencil

size and avoiding stiffness in the calculation matrix.

Preliminary results for a static variable field example and solution of a simple scalar

transport (advection) equation show that the proposed method is able to deliver numerical

accuracy equivalent to (or better than) the nominal order of accuracy for both 2nd and 3rd

order schemes in the presence of a smoothly distributed variable field (i.e., in the absence

of discontinuities).



This new Optimization-based Gradient REconstruction (herein denoted OGRE) scheme

produces, for the simple scalar transport test case, lower error and demands less computa-

tional time (for a given level of required precision) for a 3rd order scheme when compared

to an equivalent L-S approach on a two-dimensional framework. For three-dimensional

simulations, where the L-S scheme fails to obtain convergence without the help of limiters,

the new scheme obtains stable convergence and also produces lower error solution when

compared to a third order MUSCL scheme.

Furthermore, spectral analysis of results from the advection equation shows that the

new scheme is better able to accurately resolve high wave number modes, which demon-

strates its potential to better solve problems presenting a wide spectrum of wavelengths,

for example unsteady turbulent flow simulations.

Key words: high order schemes, gradient reconstruction, finite volume method
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CHAPTER 1

INTRODUCTION

The use of unstructured meshes for complex flow field simulations is often preferred

over structured meshes because of their local mesh adaptation and boundary fitting capa-

bility. Some scientific applications require the use of high precision numerical methods,

but most robust, well tested/validated high precision methods to date have been developed

using structured meshed-based solvers. Such a combination of factors makes the devel-

opment of robust high order accurate methods for unstructured meshed-based solvers a

technological necessity.

In a typical flow field simulation, the distribution of an unknown dependent variable

must be computed based on a known discrete flow field. For reconstruction-based finite-

volume methods of order greater than one, a numerical derivative calculation is usually

a necessary step in this process. If a high order scheme ( > 2) is desired, a high order

gradient calculation must be performed.

Several high order schemes have been developed, and Section 2.1.1 gives a general

overview. To date, the most common scheme used to perform high order gradient calcula-

tion on structured/unstructured meshes is the Least-Squares (L-S) scheme (or its variants).

One key attribute of the Least-Squares scheme is that it requires the expansion of the sten-

cil support to account for the extra information required for high order calculation, which

1



causes some known numerical problems, i.e., stability problems due to the increase in

stiffness in the matrix of calculation, and increase of computational memory expense. In

addition, expansion of the stencil leads to a large effective mesh size, which adversely

impacts the error magnitude as the order of the scheme is increased.

The main goal of the work proposed in this dissertation is to develop a new scheme to

address the difficulties mentioned above. This new scheme is an optimization-based high

order method that is implicit and compact, and that can be used for unstructured meshed-

based solvers. The primary conceptual idea behind this new Optimization-based Gradient

REconstruction (herein denoted OGRE) scheme is to arrive at a specific objective func-

tion, through geometrical and numerical reasoning, that can be minimized to determine the

values of the derivatives. One key aspect of this method is that it relies on stencils com-

prised only of immediate neighbors, but includes higher-order information via an iterative

solution of a system of equations. This approach can be summarized as the minimization

of a global objective function that defines the degree to which the individual cell recon-

structions (of a variable and its derivatives) match the reconstructions of their immediate

neighbors.

The new scheme is implemented as an User Defined Function (UDF) in the commercial

solver Ansys FLUENT (v.12.0) for both 2nd and 3rd orders of accuracy, and it is evaluated

for some specific two and three-dimensional test cases.

The new methodology, the boundary condition implementation, and the results for sim-

ple 2D and 3D test cases are shown in Chapters 2 and 3, respectively (which were already

2



submitted as articles [4] and [5] to peer-reviewed journals). Chapter 4 draws conclusions

and describes future work.
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CHAPTER 2

A 2D OPTIMIZATION-BASED METHOD FOR HIGH ORDER GRADIENT

CALCULATION ON UNSTRUCTURED MESHES

2.1 Introduction

2.1.1 Background

Calculation of local derivatives in discrete variable fields is an essential step in many

different numerical methods, which are used in a wide range of application fields includ-

ing computer graphics, electro-magnetics, solid mechanics, and fluid mechanics. Com-

putational fluid dynamics (CFD), for example, often employs either a finite-difference or

finite-volume methodology, either of which requires computation of local derivatives, up

to order n, to obtain a solution order of accuracy equal to n+ 1. Furthermore, for a numer-

ical method with order of accuracy n+ 1, each derivative calculation of order p ≤ n must

itself be accurate to order n+ 1−p. To be useful in practical applications, methods for nu-

merical gradient calculation should be accurate, stable, and computationally efficient. This

paper presents a new method for high-order gradient calculation on unstructured meshes.

Because of the authors’ background, the study is motivated by a goal to improve finite-

volume CFD simulations. However, the method is a general approach that can be used for

any of the methods and applications mentioned above.

High-order-accurate schemes for gradient calculation on structured meshes have been

4



systematically studied for decades, using finite-difference (FD), finite-element (FE) and

finite-volume (FV) methods. An interested reader can refer to the comprehensive review

article by Ekaterinaris [10] for a thorough discussion of high-order schemes on structured

grids, with a focus on CFD applications.

For FV schemes on unstructured meshes, high-order derivative calculation has been

studied less extensively, and most applications make use of 2nd-order schemes, which re-

quire calculation of only the first derivative in continuous regions of the variable field. Two

of the most common approaches for derivative calculation in such 2nd-order schemes are

the Green-Gauss (G-G) method and the Least-Squares (L-S) method [7]. For high-order

computations, Barth and Jespersen [3] introduced a multidimensional gradient reconstruc-

tion procedure for inviscid higher-order monotonicity preserving (enforcing slope limiter)

simulations, employing both cell-center and cell-vertex formulations on unstructured grids.

A majority of the subsequent studies on higher order accurate unstructured mesh computa-

tions reported in the literature can be seen as a continuation of this initial multidimensional

approach. The high-order k-exact method was developed by Barth and Frederickson [2].

They derived general conditions for a scheme to be higher-order accurate by developing

a reconstruction procedure satisfying the following three criteria: conservation of mean,

k-exactness and compact support.

Methods traditionally known in the structured-grid CFD community as Essentially

Non-Oscillatory (ENO) schemes were also extended to unstructured meshes [1, 9, 22, 27],

initially based on stencil searching. ENO schemes were developed to ensure uniform high-

order accuracy for regions of the domain in the neighborhood of smooth variations of the

5



dependent variable. Later, Weighted Essentially Non-Oscillatory (WENO) schemes were

also extended to unstructured meshes [11,13]. WENO schemes help in the convergence of

the solution to a numerical steady-state (a known numerical problem for ENO schemes),

and improve accuracy versus the ENO scheme for computation on an equivalent stencil.

Ollivier-Gooch [22] proposed a variation on the WENO method by introducing an extra

weight (of the order of the truncation error of the approximation) to the data that presents

a discontinuous variation on the stencil of the least-squares implementation. An interested

reader can refer to [26] for a review of ENO and WENO methods.

High-order methods have also been applied using Discontinuous Galerkin (DG) [6]

and Spectral Volume (SV) [12] methods. Unlike FV (but similar to FE), in DG and SV

methods each simplex element or cell has multiple degrees of freedom (DOF), depending

on the order of accuracy. High-order spatial derivatives are required to reconstruct the

dependent variable within each simplex element.

It is known that using explicit methods for high-order calculations presents a numeri-

cal problem in which the allowable CFL number must be much smaller than for low-order

ones, especially for cases with viscous boundary layers, where the computational mesh

must be highly clustered near solid boundaries. Many implicit algorithms have been devel-

oped and, in the past decades, adapted for unstructured mesh based solvers, e.g., Jacobi,

Gauss-Seidel (GS), preconditioned GMRES, matrix-free Krylov, lower-upper symmetric

Gauss-Seidel (LUSGS), line-implicit algorithms, etc. Many of them have been success-

fully applied to run in high-order simulations [30]. In almost all implicit approaches, the
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resulting non-linear system of equations is linearized and then solved with an iterative

solution algorithm.

Ollivier-Gooch [23] presented results showing the importance of using high-order rep-

resentation for the domain boundaries as well as the interior regions of the domain. Since

most grid generation packages were developed for low-order schemes, it was recommended

that high order capabilities should be added to these tools to generate at least quadratic (or

higher) reconstruction at boundaries.

While much progress has been made to date, there remains significant room for im-

provement with regard to robust and efficient high-order methods on unstructured meshed-

based solvers. For CFD applications, for example, many of the approaches mentioned

above are based on the L-S approach for local gradient calculation, but they tend to be-

come numerically stiff as the order of accuracy increases. Because unstructured meshes

are often desired for their improved ability to simulate flow fields using complex geome-

tries and for permitting flexible mesh adaptation near regions of interest, improved methods

for high-order gradient calculation can lead to significant improvements in these schemes.

Nonetheless, even after decades of advances, unstructured-mesh based solvers still present

limitations both in terms of accuracy and efficiency, especially for simulations of complex

flow fields.

2.1.2 Error Considerations

The numerical error in any simulation may be expressed in the form

E ∝ hk, (2.1)
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where E is the numerical error, h is a characteristic mesh length scale and k is the order

of accuracy of the discretization scheme. Based on this, two approaches may be used to

decrease the error of any numerical simulation: refining (globally or locally) the mesh (h-

refinement) or increasing the order of the discretization scheme. The number of solution

unknowns in a simulation is normally referred to as the number of degrees of freedom

(NDOF ). In the FV method (using a cell centered solver) each mesh cell has one DOF and

the total NDOF is related to the mesh size according to

NDOF ∝ 1

hd
, (2.2)

where d is the physical dimension (1, 2 or 3). So, for example, in a 2D problem, it is

possible to relate the numerical error and NDOF according to

E ∝
(

1

NDOF

) k
2

. (2.3)

Taking the logarithm of this equation results in

log(E) ∝ −k log(NDOF )

2
. (2.4)

This relation shows that, in 2D, by applying successive h-refinement of the mesh, and then

plotting the graph log(E) vs [log(NDOF )]/2, one should get an algebraic convergence

for the numerical solution where the plot slope will ideally approach the nominal order

of accuracy of the scheme. It is clear that for a very fine mesh, higher-order schemes

will produce less numerical error than their lower-order counterparts. If that is the case,

why are they not more widely used compared to lower-order schemes? One of the main

reasons is the associated costs, both human and numerical [30]. In the example of CFD,
8



most second-order codes have already been heavily tested and validated and can provide

acceptable results for most complex flow field problems the CFD community currently

faces, so the human cost to switch to a higher-order code may not pay off if the need for

high accuracy is not critically important. Furthermore, a higher-order scheme normally

increases the stencil (compact support) required to compute the derivatives, making the

higher-order solutions more costly regardless of the implementation costs.

One simple analysis to relate numerical error with numerical cost may be obtained

using the following reasoning. Let us assume that the cost to converge a flow simulation to

steady state is related to the NDOF by

Cost ∝ NDOF c(k) (2.5)

where c (k) ≥ 1. Then

log(E) ∝ − k

2c (k)
log(Cost). (2.6)

It is possible from this equation to deduce that for a low accuracy requirement, a lower-

order scheme may provide an acceptable solution with smaller cost than a higher-order

scheme. As the required accuracy increases, however, a high-order scheme will deliver a

solution with smaller associated cost.

Similarly, observing the analogous relationship given by Eq. (2.4), in theory a lower-

order scheme will result in a more accurate solution than a higher order one on a very

coarse grid and vice versa as the grid is refined. In practice, however, low- and high-

order schemes often yield similar results on very coarse meshes. This is due to the fact

that numerical solutions only approach the nominal order of accuracy in the limit of mesh
9



refinement, and high-order schemes tend toward low-order analogs in the coarse mesh

limit.

Most of currently popular commercial CFD codes use second-order schemes. They are

capable of producing design-quality Reynolds Averaged Navier-Stokes (RANS) results us-

ing a mesh with several million cells on commercial clusters after a few hours of simulation

time. Second-order solvers present some known numerical problems. First, their solution

tends to smear high gradients in convection dominated regions of the flow and do not cap-

ture well the total pressure in isentropic regions of the flow field. Second, this smearing

feature acts like a numerical diffusivity, which is in effect equivalent to adding extra viscos-

ity in the governing equations. Furthermore, in flows dominated by propagating vortices

or acoustic waves, such as resolved turbulence or aero-acoustics simulations, second-order

solvers are usually too dissipative to adequately resolve these effects [29]. High-resolution

schemes have the potential to correct or mitigate these undesirable numerical features.

However, high resolution schemes need to add more information (from more cells) than

lower resolution ones to calculate a more accurate approximation of the variable gradi-

ent. This normally adds complexity and stiffness to the system of equations, often causing

convergence problems and/or substantially increasing computational expense.

2.1.3 Paper Outline

This paper presents a proposed contribution to the problem of high-order derivative

computation on unstructured meshes. Specifically, a method is developed which in the-

ory allows arbitrary order derivative calculation based on an implicit, compact scheme.
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Stencils are constructed only from nearest neighbors, and the gradient field is obtained

through an iterative solution process. The method is based on minimization of an objec-

tive function that reflects the degree of mismatch between reconstructions in neighboring

computational control volumes. The paper is organized as follows. Section 2.2 outlines

a simple test application for the high-order scheme, namely finite-volume solution of a

scalar advection equation, and briefly describes the least-squares methodology for deriva-

tive calculation. Section 2.3 presents the development of the new methodology up to 3rd

order accuracy. Section 2.4 describes the method for boundary condition implementation.

Section 2.5 presents numerical validation and initial results. Chapter 4 draws conclusions

and describes future work.

2.2 Sample Application and Derivative Calculation

2.2.1 Finite-Volume Solution of Scalar Advection Equation

This section seeks to provide context with regard to derivative computation, using the

example of least-square (L-S) schemes for finite-volume (FV) CFD methods. Consider

steady-state convective transport of a passive scalar variable, φ, in a known velocity field

~U(x). The conservation equation is given by:

∇ ·
(
ρ~Uφ

)
=

∂

∂xj
(ρujφ) = 0, (2.7)

where ρ is the fluid density, ~U (or uj) is the fluid velocity vector, and φ is an arbitrary

scalar variable. In order to apply the FV method, the flow domain is discretized into non-

overlapping control volumes, and Eq. (2.7) is integrated over each control volume (cell).

Applying the Gauss divergence theorem yields
11



∫
Ω

∇ ·
(
ρ~Uφ

)
dV =

∫
∂Ω

ρφ~U · n̂ dA =

∫
∂Ω

ρφ (ujnj) dA = 0, (2.8)

where Ω denotes volume integration over the cell, ∂Ω denotes area integration over the

bounding surface of the cell, and n̂ is the outward-pointing unit normal vector on the cell

surface. For general polygonal cells (in 2D), the bounding surface is comprised of a finite

number of discrete faces (defined as line segments in 2D). The integral may therefore be

expressed as

∫
∂Ω

ρφ (ujnj) dA =

Nf∑
f=1

∫
∂Ωf

ρfφf (ujnj)f dAf = 0. (2.9)

The surface integration is performed as the sum of integrals over each face, Nf is the

number of faces bounding the cell, and ∂Ωf denotes integration over the face area. To

simplify notation, we further adopt the conventional definition of the convective face flux,

Ff , defined for each face as

Ff =

∫
∂Ωf

ρfφf (ujnj)f dAf . (2.10)

The goal of numerical discretization is to approximate the integral in Eq. (2.10) based on

available cell data, since the discrete values of the dependent variable φ (as well as ρ and

~U in general) are stored at the control volume centers.

For the purpose of developing a new discretization scheme based on the proposed gra-

dient calculation scheme, an upwind method can be used to determine the face fluxes based

on the neighbor cell variable reconstructions. For a known velocity field, the convective

flux can be expressed as

12



Ff ≈ ṁf φ̄f , (2.11)

where ṁf is the mass flow rate across the given face, given by

ṁf =

∫
∂Ωf

ρf (ujnj)f dAf , (2.12)

and φ̄f is the mass-averaged value of the transport scalar φ on face f , which can be ex-

pressed as

φ̄f =
1

ṁf

∫
∂Ωf

ρfφf (ujnj)f dAf . (2.13)

For a pure upwind convective scheme, the value of φ at any point on face f can be recon-

structed by projection from the upwind cell centroid as

φf = φU +

(
∂φ

∂xi

)
U

xi,f +H.O.T., (2.14)

where H.O.T. here represents the high order terms of the expansion. The integral in Eq.

(2.13) may be evaluated using any appropriate quadrature method of sufficiently high order,

in combination with Eq. (2.14). For example, Gauss quadrature is used for the test cases

in this paper.

It is possible to rewrite (2.11) as

Ff ≈ ṁf φ̄f = ṁfφU + ṁf

(
φ̄f − φU

)
. (2.15)

For an implicit upwind solution method, the first term on the right hand side can be treated

implicitly during the linear solve step, and the second term, incorporating the numerical

derivatives, can be treated explicitly. As a result, the contribution of all terms of order

greater than one is included as a source term during each outer (Newton) iteration. This

approach has been found to be stable in all of the test cases considered.
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2.2.2 Derivative Calculation Methods

The approach outlined above for solution of the scalar advection equation requires

numerical computation of first derivatives for a second-order scheme, and first and second

derivatives for a third order scheme, etc. The derivatives are computed at the centroid

of each computational cell. The necessary error order of accuracy for a scheme of order

k and derivative of order m is equal to k − m. The test application described above is

one situation in which accurate derivative calculation methods are desired, but that need

is not unique to finite volume numerical methods. For example, computer graphics and

image processing applications make use of local gradient information [8,15], as do remote

sensing and topography applications [14].

To compute first derivatives to first order accuracy, the discrete form of the so-called

Green-Gauss theorem may be used. For higher-order gradient calculations, the most com-

mon method is the cell-based Least-Squares (L-S) method. The L-S scheme is based on a

Taylor Series expansion about the centroid of the cell in which the gradient is being com-

puted. Denoting the neighbors of this cell by the index n, and given N total neighbors, the

expansion to each neighbor is expressed as

φn = φc +

(
∂φ

∂xi

)
c

xi,n +O(h2), (2.16)

where xi,n represents the component of the connecting vector between the cell centroids,

the index c represents the center cell information, and O(h2) indicates the truncation error

in the expansion. The concept of neighbor is here defined as “face neighbor” instead

of “node neighbor”, which means that the neighbors of a given cell are assumed to be
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as the set of all cells that share a face with the cell of interest. In scalar notation, Eq.

(2.16) is alternately expressed using the individual components of the derivative vector.

For example, in 2-D, one obtains

φn = φc +

(
∂φ

∂x

)
c

xn +

(
∂φ

∂y

)
c

yn +O(h2). (2.17)

Applying Eq. (2.17) to each neighbor cell yields N equations for the two unknowns(
∂φ

∂x

)
c

and
(
∂φ

∂y

)
c

. Since this is an over-determined linear system, it can be solved

using a least-square approach to determine the derivative components in each cell.

A similar approach can be used to develop higher-order schemes that include deriva-

tives of the dependent variable greater than one. To implement such a scheme, the neighbor

stencil can be increased to include second-level cell neighbors (i.e., neighbors of neigh-

bors), third-level, etc., so that there is sufficient neighbor information in the region of the

cell of interest to calculate all of the necessary derivatives for a given reconstruction order.

Recent research efforts (publications by Ollivier-Gooch and his co-workers [16–24])

highlight the inherent challenges of this approach. First, as both the order of the scheme

and the dimension of the problem are increased, the size of the stencil may become quite

large, with the associated costs in terms of memory and calculation speed. Second, the

scheme may become stiff, and require great care to ensure that it is possible to converge to

a solution. One such requirement is that a fourth-order scheme must use a full Jacobian to

construct the coefficient matrix during the linear solve step in order to get a well-behaved

scheme, or else the time-stepping scheme must be carefully controlled to preserve stability.

For incompressible flow solutions using segregated solution methods, such an approach is
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undesirable, and it would be better suited to use only first-order Jacobians, analogous to the

approach shown in Eq. (2.15), even for simulations that do not incorporate time-stepping.

The L-S method can be classified as one type of optimization (minimum energy) based

method, in which the (local) objective function is a measure of the degree of mismatch

between the values of φ obtained from a reconstruction (polynomial expansion) about the

cell centroids, and the values of φ in the neighbors making up the stencil support.

The new method for derivative calculation proposed in this paper seeks to address the

difficulties mentioned above, and is herein referred to as the Optimization-based Gradient

REconstruction (OGRE) method. The key aspect of the approach is that it relies on sten-

cils comprised only of immediate neighbors, but includes higher-order information via an

iterative solution of a system of equations. This has the potential to facilitate (speed up)

convergence, by substantially reducing the total cost of calculations for the same level of

accuracy versus traditional (i.e. least squares) approaches. Conceptually, the approach can

be summarized as the minimization of a global objective function that defines the degree

to which the individual cell reconstructions (a variable and its derivatives) match the re-

constructions of their immediate neighbors. Like the L-S approach, the new method is an

optimization based method. In contrast to L-S, the mismatch used to define the objective

function is based on the values of φ as well as its derivatives, resulting in a smaller re-

quired stencil, and potentially increasing the absolute accuracy of the scheme versus the

conventional L-S approach.
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2.3 OGRE Scheme Methodology

This section presents the derivation of the OGRE scheme for calculating derivatives of

arbitrary order on structured or unstructured computational meshes. The development is

presented for the 2nd and 3rd order variants of the new scheme; extension to higher order

follows the approach shown here, and is relatively straightforward. We focus specifically

on a 2D implementation for simplicity of presentation and validation, however extension to

3D is likewise relatively straightforward. The development is presented in a comprehensive

fashion in order to clearly indicate the reasoning behind the final equations used in the

algorithm.

2.3.1 Second Order Scheme

For a second order finite-volume scheme, the goal of the method is to find the first order

spatial derivatives (in x and y) for a given transport variable φ at the centroid of each control

volume, with an error order of accuracy equal to one. The primary conceptual idea behind

the OGRE method is to arrive at a specific objective function, through geometrical and

numerical reasoning, that then can be minimized to determine the values of the derivatives.

Figure 2.1 shows an example of a 2D unstructured cell arrangement. The connecting

vector between the center cell centroid o and the face centroid j1, is given by ~rj1, and the

connecting vector between face centroid j1 and the neighbor cell centroid nj, is given by

r̃j1. Those connecting vectors are defined by:

~rj1 = ~Xj1 − ~Xo = ∆xj1~ix + ∆yj1~iy, (2.18)
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r̃j1 = ~Xj1 − ~Xnj = ∆̃xj1~ix + ∆̃yj1~iy.

The following notation is also used throughout the derivation calculation (for both 2nd and

3rd order schemes):

o - center cell centroid.

j - face index.

nj - index for neighbor cell centroid.

φ∗a
∣∣
b

- projection of the value of φ (or its gradients) from a to b, through Taylor series
expansion (these expansions must follow the given order of accuracy of the scheme).

A second order finite-volume scheme enforces that all polynomial expansions of the

dependent variable are truncated at the first order derivatives. In order to calculate the first

derivatives needed for the second order scheme, two measures of disagreement between

neighboring cell expansions are postulated:

1) Measure of disagreement between the scalar value projections from each cell at the face

quadrature point (centroid):

(∆φ)j1 = φ∗o
∣∣(new)

j1
− 1

2

(
φ∗o
∣∣
j1

+ φ∗nj
∣∣
j1

)(current)

, (2.19)

2) Measure of disagreement between the first derivative projections from each cell at the

face quadrature point (centroid):

∆ (∇φ)j1 · ~rj1 =

(
∇φ∗o

∣∣(new)

j1
− 1

2

(
∇φ∗o

∣∣
j1

+∇φ∗nj
∣∣
j1

)(current)
)
· ~rj1. (2.20)

These two measures can be analyzed separately, starting with the first measure of disagree-

ment.
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2.3.1.1 First Measure of Disagreement

Expanding the first term on the RHS of Eq. (2.19) yields

φ∗o
∣∣
j1

= φo +∇φ
∣∣
o
· ~rj1 = φo +

∂φ

∂x

∣∣∣∣
o

∆xj1 +
∂φ

∂y

∣∣∣∣
o

∆yj1. (2.21)

Also, the second term on RHS of Eq. (2.19) can be denoted F̃j1 , which represents an

average of the (first-order) Taylor Series expansions of the variable from each of the cells

on either side of the face to the face integration point:

F̃j1 =
1

2

(
φ∗o
∣∣
j1

+ φ∗nj
∣∣
j1

)(current)

=
1

2

(
φo +∇φ

∣∣
o
· ~rj1 + φnj +∇φ

∣∣
nj
· r̃j1

)(curr)

=
1

2

(
φo +

∂φ

∂x

∣∣∣∣
o

∆xj1 +
∂φ

∂y

∣∣∣∣
o

∆yj1 + φnj +
∂φ

∂x

∣∣∣∣
nj

∆̃xj1 +
∂φ

∂y

∣∣∣∣
nj

∆̃yj1

)(curr)

.

(2.22)

Redefining the first measure of disagreement as fj1 and substituting Eq. (2.22), (2.19)

results in

fj1 = φo +
∂φ

∂x

∣∣∣∣
o

∆xj1 +
∂φ

∂y

∣∣∣∣
o

∆yj1 − F̃j1. (2.23)

2.3.1.2 Second Measure of Disagreement

Based on a zero-order Taylor Series expansion for the gradients:

∇φ∗o
∣∣
j1

= ∇φo (2.24)

and

∇φ∗nj
∣∣
j1

= ∇φnj, (2.25)
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since the 2nd order (and higher) derivatives are considered to be zero in a second order

scheme. This reduces (2.20) to simply

∆ (∇φ)j1 · ~rj1 =

(
∇φ(new)

o − 1

2
(∇φo +∇φnj)(current)

)
· ~rj1, (2.26)

which, after redefining the second measure of disagreement as gj1, (2.20) can be rewritten

as

gj1 =
∂φ

∂x

∣∣∣∣
o

∆xj1 +
∂φ

∂y

∣∣∣∣
o

∆yj1 − G̃j1, (2.27)

where G̃j1 is given by

G̃j1 =
1

2

(
(∇φo +∇φnj)(current)

)
· ~rj1

=
1

2

(
∂φ

∂x

∣∣∣∣
o

∆xj1 +
∂φ

∂y

∣∣∣∣
o

∆yj1 +
∂φ

∂x

∣∣∣∣
nj

∆xj1 +
∂φ

∂y

∣∣∣∣
nj

∆yj1

)(current)

. (2.28)

Equations (2.23) and (2.27) are used to develop an optimization procedure that is de-

scribed in the following section.

2.3.2 Optimization Procedure for the Second Order Scheme

The goal of the optimization procedure is to minimize, in a least-squares sense, the

disagreement between neighbor projections at each face represented by Eqs. (2.23) and

(2.27). One consideration is the relative weight to be given to those two measures. In order

to control the accuracy of the method, a tuning parameter is incorporated through the use

of a weighting coefficient σ. The parameter σ modifies the relative weight given to the

two measures of disagreement defined by Eqs. (2.23) and (2.27). It is expected that, in

general, decreasing the value of σ should make the scheme more stable, while increasing
20



its value should improve the accuracy. To include this parameter, the two measures fj1 and

gj1, given by Eqs. (2.23) and (2.27), respectively, can be rewritten as

f ∗j1 = σfj1 = σ

[
φo +

∂φ

∂x

∣∣∣∣
o

∆xj1 +
∂φ

∂y

∣∣∣∣
o

∆yj1 − F̃j1
]

(2.29)

and

g∗j1 = gj1 =
∂φ

∂x

∣∣∣∣
o

∆xj1 +
∂φ

∂y

∣∣∣∣
o

∆yj1 − G̃j1, (2.30)

where again F̃j1 and G̃j1 are given by Eqs. (2.22) and (2.28), respectively.

By using (2.29) and (2.30), it is possible to construct the following quadratic functional

F =

#neig∑
j=1

(
f ∗j1

2 + g∗j1
2
)
, (2.31)

which must be minimized in order to find the values of the first order derivatives at any

cell centroid. F represents a local objective function for a particular cell. Summing over

all cells yields a convex global objective function that can be minimized to find all cell

(control volume) derivatives. Minimization of the function F is straightforward, producing

the following two equations:

∂F

∂

(
∂φ

∂x

∣∣∣∣
o

) = 0 (2.32)

and

∂F

∂

(
∂φ

∂y

∣∣∣∣
o

) = 0. (2.33)

Those equations can be expressed as

∂F

∂

(
∂φ

∂x

∣∣∣∣
o

) = 2

#neig∑
j=1

f ∗j1
∂f ∗j1

∂

(
∂φ

∂x

∣∣∣∣
o

) + g∗j1
∂g∗j1

∂

(
∂φ

∂x

∣∣∣∣
o

)
 = 0, (2.34)
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and

∂F

∂

(
∂φ

∂y

∣∣∣∣
o

) = 2

#neig∑
j=1

f ∗j1
∂f ∗j1

∂

(
∂φ

∂y

∣∣∣∣
o

) + g∗j1
∂g∗j1

∂

(
∂φ

∂y

∣∣∣∣
o

)
 = 0, (2.35)

where the internal partial derivatives are given by:

∂f ∗j1

∂

(
∂φ

∂x

∣∣∣∣
o

) = σ∆xj1, (2.36)

∂g∗j1

∂

(
∂φ

∂x

∣∣∣∣
o

) = ∆xj1, (2.37)

∂f ∗j1

∂

(
∂φ

∂y

∣∣∣∣
o

) = σ∆yj1, (2.38)

∂g∗j1

∂

(
∂φ

∂y

∣∣∣∣
o

) = ∆yj1. (2.39)

Substituting those partial derivatives into (2.34) and (2.35), and dividing all equations

by 2, yields

#neig∑
j=1

{
f ∗j1σ∆xj1 + g∗j1∆xj1

}
= 0. (2.40)

and

#neig∑
j=1

{
f ∗j1σ∆yj1 + g∗j1∆yj1

}
= 0. (2.41)

Finally, by substituting (2.29) and (2.30) into Eqs. (2.40) and (2.41) and rearranging

the terms, one arrives at the system of equations As = B, where the matrix of coefficients

A is given by

A =


∑(

σ2 + 1
)

∆x2
j1

∑(
σ2 + 1

)
∆xj1∆yj1∑(

σ2 + 1
)

∆xj1∆yj1
∑(

σ2 + 1
)

∆y2
j1

 , (2.42)
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the solution vector s, with the values of the center cell derivatives, is given by

s =

[
∂φ

∂x

∣∣∣∣
o

∂φ

∂y

∣∣∣∣
o

]T
, (2.43)

the RHS vector B is given by

B =


∑(

σ2∆xj1

(
F̃j1 − φo

)
+ ∆xj1G̃j1

)
∑(

σ2∆yj1

(
F̃j1 − φo

)
+ ∆yj1G̃j1

)
 , (2.44)

and the simplification
∑

=

#neig∑
j=1

is used. The summation here is performed over each

of the immediate face neighbors. The values of F̃j1 and G̃j1 contain the center cell and

neighbor’s scalar value and derivatives, and so the set of Eqs. given by (2.42), (2.43) and

(2.44) for all cells yields a 2N×2N linear system of equations (where N here is the total

number of control volumes) that can be solved for
∂φ

∂x
and

∂φ

∂y
in every control volume.

The method is therefore implicit and compact.

2.3.3 Simple Comparison between OGRE and L-S 2D Second Order Schemes

Considering that the L-S scheme uses the connecting vectors between center cell cen-

troids:

~rj = ~Xnj − ~Xo = ∆xj~ix + ∆yj~iy, (2.45)

but OGRE uses the connecting vectors between center cell/neighbor centroids and face

centroid:

~rj1 = ~Xj1 − ~Xo = ∆xj1~ix + ∆yj1~iy, (2.46)

r̃j1 = ~Xj1 − ~Xnj = ∆̃xj1~ix + ∆̃yj1~iy,
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it is possible to make a simple comparison between the two schemes for the special case

where the mesh is regular (all cells are equilateral triangles), and also considering σ = 1.

For this case:

~rj1 = −r̃j1 = ~Xj1 − ~Xo = ∆xj1~ix + ∆yj1~iy =
∆xj

2
~ix +

∆yj
2
~iy, (2.47)

which would produce a system of equations As = B, where the matrix of coefficients for

both cases would be given by:

A =


∑

∆x2
j

∑
∆xj∆yj∑

∆xj∆yj
∑

∆y2
j

 , (2.48)

and the R.H.S. for the L-S scheme would be given by:

B =


∑

∆xj (φj − φo)∑
∆yj (φj − φo)

 , (2.49)

while the R.H.S. for the OGRE scheme would be given by:

B =


∑

∆xj
1

2

(
φj − φo +

∂φ

∂x

∣∣∣∣
o

∆xj +
∂φ

∂y

∣∣∣∣
o

∆yj

)
∑

∆xj
1

2

(
φj − φo +

∂φ

∂x

∣∣∣∣
o

∆xj +
∂φ

∂y

∣∣∣∣
o

∆yj

)
 . (2.50)

As it can be seen in Eqs. (2.49) and (2.50), the R.H.S. of the OGRE scheme contains

derivative terms, making OGRE an implicit scheme, whereas L-S is an explicit scheme.

Furthermore, Eq. (2.50) is also consistent with the Taylor Series expansion:

φj − φo =
∂φ

∂x

∣∣∣∣
o

∆xj +
∂φ

∂y

∣∣∣∣
o

∆yj, (2.51)

which makes OGRE scheme equivalent to L-S scheme for this special case.
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2.3.4 Third Order Scheme

A third order finite-volume scheme enforces that all polynomial expansions of the

dependent variable are truncated at the second order derivatives. To retain third order

accuracy in reconstruction of the face fluxes, two quadrature points (in 2D) must be used

to perform the integration over each face. Measures of disagreement are therefore defined

at each face quadrature point, denoted for each face by the index m (=1, 2). As above, j

indicates face indexing. The relevant projection vectors are therefore defined by:

~rjm = ~Xjm − ~Xo = ∆xjm~ix + ∆yjm~iy, (2.52)

r̃jm = ~Xjm − ~Xnj = ∆̃xjm~ix + ∆̃yjm~iy.

In order to calculate the first and second derivatives needed for the third order scheme,

three measures of disagreement between neighboring cell expansions are postulated for

each face integration point:

1) Measure of disagreement between the scalar value projections from each cell at the face

quadrature point:

(∆φ)jm = φ∗o
∣∣(new)

jm
− 1

2

(
φ∗o
∣∣
jm

+ φ∗nj
∣∣
jm

)(current)

, (2.53)

2) Measure of disagreement between the first derivative projections from each cell at the

face quadrature point:

∆ (∇φ)jm · ~rjm =

(
∇φ∗o

∣∣(new)

jm
− 1

2

(
∇φ∗o

∣∣
jm

+∇φ∗nj
∣∣
jm

)(current)
)
· ~rjm, (2.54)
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3) Measure of disagreement between the second derivative projections from each cell at

the face quadrature point:

(
∆ (∇∇φ)jm · ~rjm

)
· ~rjm =

((
∇∇φ∗o

∣∣(new)

jm
− 1

2

(
∇∇φ∗o

∣∣
jm

+∇∇φ∗nj
∣∣
jm

))
· ~rjm

)
· ~rjm, (2.55)

where again the second term on the RHS is constructed using current values of the scalar

variable and its derivatives.

2.3.4.1 First Measure of Disagreement

Denoting the second term on the RHS of Eq. (2.53) as F̃jm, a third order accurate

expansion of both terms using the connecting vectors between the center cell and neigh-

bor centroids to the integration points at their connecting face may be defined, and after

redefining the first measure of disagreement as fjm, Eq. (2.53) it can be rewritten as

fjm = φo +
∂φ

∂x

∣∣∣∣
o

∆xjm +
∂φ

∂y

∣∣∣∣
o

∆yjm+

1

2

(
∂2φ

∂x2

∣∣∣∣
o

∆x2
jm + 2

∂2φ

∂x∂y

∣∣∣∣
o

∆xjm∆yjm +
∂2φ

∂y2

∣∣∣∣
o

∆y2
jm

)
− F̃jm, (2.56)

where F̃jm is given by

F̃jm =
1

2

[
φo +

∂φ

∂x

∣∣∣∣
o

∆xjm +
∂φ

∂y

∣∣∣∣
o

∆yjm+

1

2

(
∂2φ

∂x2

∣∣∣∣
o

∆x2
jm + 2

∂2φ

∂x∂y

∣∣∣∣
o

∆xjm∆yjm +
∂2φ

∂y2

∣∣∣∣
o

∆y2
jm

)
+

φnj +
∂φ

∂x

∣∣∣∣
nj

∆̃xjm +
∂φ

∂y

∣∣∣∣
nj

∆̃yjm+ (2.57)

1

2

(
∂2φ

∂x2

∣∣∣∣
nj

∆̃x
2

jm + 2
∂2φ

∂x∂y

∣∣∣∣
nj

∆̃xjm∆̃yjm +
∂2φ

∂y2

∣∣∣∣
nj

∆̃y
2

jm

)](current)

.
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2.3.4.2 Second Measure of Disagreement

Based on first-order Taylor Series expansions for the gradients and redefining (2.54)

as gjm, one obtains

gjm =


∂φ

∂x

∣∣∣∣
o

+
∂2φ

∂x2

∣∣∣∣
o

∆xjm +
∂2φ

∂x∂y

∣∣∣∣
o

∆yjm

∂φ

∂y

∣∣∣∣
o

+
∂2φ

∂x∂y

∣∣∣∣
o

∆xjm +
∂2φ

∂y2

∣∣∣∣
o

∆yjm

 ·


∆xjm

∆yjm

− G̃jm, (2.58)

where G̃jm is given by

G̃jm =
1

2




∂φ

∂x

∣∣∣∣
o

+
∂2φ

∂x2

∣∣∣∣
o

∆xjm +
∂2φ

∂x∂y

∣∣∣∣
o

∆yjm

∂φ

∂y

∣∣∣∣
o

+
∂2φ

∂x∂y

∣∣∣∣
o

∆xjm +
∂2φ

∂y2

∣∣∣∣
o

∆yjm

 ·


∆xjm

∆yjm

+ (2.59)


∂φ

∂x

∣∣∣∣
nj

+
∂2φ

∂x2

∣∣∣∣
nj

∆̃xjm +
∂2φ

∂x∂y

∣∣∣∣
nj

∆̃yjm

∂φ

∂y

∣∣∣∣
nj

+
∂2φ

∂x∂y

∣∣∣∣
nj

∆̃xjm +
∂2φ

∂y2

∣∣∣∣
nj

∆̃yjm

 ·


∆xjm

∆yjm




(current)

.

2.3.4.3 Third Measure of Disagreement

Based on the zero-order expansions for the gradients of the gradients and redefining

(2.55) as hjm, one obtains

hjm =

(
∂2φ

∂x2

∣∣∣∣
o

∆x2
jm + 2

∂2φ

∂x∂y

∣∣∣∣
o

∆xjm∆yjm +
∂2φ

∂y2

∣∣∣∣
o

∆y2
jm

)
− H̃jm, (2.60)

where H̃jm, whose expansions must be truncated at the second derivatives, is given by

H̃jm =
1

2

(
∂2φ

∂x2

∣∣∣∣
o

∆x2
jm + 2

∂2φ

∂x∂y

∣∣∣∣
o

∆xjm∆yjm +
∂2φ

∂y2

∣∣∣∣
o

∆y2
jm+

∂2φ

∂x2

∣∣∣∣
nj

∆x2
jm + 2

∂2φ

∂x∂y

∣∣∣∣
nj

∆xjm∆yjm +
∂2φ

∂y2

∣∣∣∣
nj

∆y2
jm

)(current)

. (2.61)
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2.3.5 Optimization Procedure for the Third Order Scheme

As above for the second-order version, all three measures of disagreement can be

rescaled to control the accuracy and stability of the method through the use of the σ pa-

rameter. To do so, the three measures of mismatch: fjm, gjm and hjm , given by (2.56),

(2.58) and (2.60), respectively, are rewritten as

f ∗jm = σ2fjm = σ2

[
φo +

∂φ

∂x

∣∣∣∣
o

∆xjm +
∂φ

∂y

∣∣∣∣
o

∆yjm+ (2.62)

1

2

(
∂2φ

∂x2

∣∣∣∣
o

∆x2
jm + 2

∂2φ

∂x∂y

∣∣∣∣
o

∆xjm∆yjm +
∂2φ

∂y2

∣∣∣∣
o

∆y2
jm

)
− F̃jm

]
,

g∗jm = σgjm = σ

[(
∂φ

∂x

∣∣∣∣
o

+
∂2φ

∂x2

∣∣∣∣
o

∆xjm +
∂2φ

∂x∂y

∣∣∣∣
o

∆yjm

)
∆xj+(

∂φ

∂y

∣∣∣∣
o

+
∂2φ

∂x∂y

∣∣∣∣
o

∆xjm +
∂2φ

∂y2

∣∣∣∣
o

∆yjm

)
∆yj − G̃jm

]
, (2.63)

h∗jm = hjm =

(
∂2φ

∂x2

∣∣∣∣
o

∆x2
jm + 2

∂2φ

∂x∂y

∣∣∣∣
o

∆xjm∆yjm +
∂2φ

∂y2

∣∣∣∣
o

∆y2
jm

)
− H̃jm,

(2.64)

where again F̃jm, G̃jm and H̃jm are given by Eqs. (2.57), (2.59) and (2.61), respectively.

By using (2.62), (2.63) and (2.64), it is possible to construct the following quadratic

functional

F =

#neig∑
j=1

2∑
m=1

(
f ∗jm

2 + g∗jm
2 + h∗jm

2
)
, (2.65)

which must be minimized in order to find the values of the first and second order derivatives

at any given cell centroid. As above, minimization of the function F is straightforward,

producing the following five equations (one for each derivative component sought):
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∂F

∂

(
∂φ

∂x

∣∣∣∣
o

) = 0,
∂F

∂

(
∂φ

∂y

∣∣∣∣
o

) = 0,
∂F

∂

(
∂2φ

∂x2

∣∣∣∣
o

) = 0,

∂F

∂

(
∂2φ

∂x∂y

∣∣∣∣
o

) = 0,
∂F

∂

(
∂2φ

∂y2

∣∣∣∣
o

) = 0. (2.66)

The first equation in (2.66) can be expressed as

∂F

∂

(
∂φ

∂x

∣∣∣∣
o

) = 2

#neig∑
j=1

2∑
m=1

f ∗jm
∂f ∗jm

∂

(
∂φ

∂x

∣∣∣∣
o

) + g∗jm
∂g∗jm

∂

(
∂φ

∂x

∣∣∣∣
o

)+

h∗jm
∂h∗jm

∂

(
∂φ

∂x

∣∣∣∣
o

)
 = 0, (2.67)

and the other equations are expressed in a similar manner. The internal partial derivatives

are given by:

∂f ∗jm

∂

(
∂φ

∂x

∣∣∣∣
o

) = σ2∆xjm,
∂g∗jm

∂

(
∂φ

∂x

∣∣∣∣
o

) = σ∆xjm,
∂h∗jm

∂

(
∂φ

∂x

∣∣∣∣
o

) = 0,

∂f ∗jm

∂

(
∂φ

∂y

∣∣∣∣
o

) = σ2∆yjm,
∂g∗jm

∂

(
∂φ

∂y

∣∣∣∣
o

) = σ∆yjm,
∂h∗jm

∂

(
∂φ

∂y

∣∣∣∣
o

) = 0,

∂f ∗jm

∂

(
∂2φ

∂x2

∣∣∣∣
o

) =
σ2∆x2

jm

2
,

∂g∗jm

∂

(
∂2φ

∂x2

∣∣∣∣
o

) = σ∆x2
jm,

∂h∗jm

∂

(
∂2φ

∂x2

∣∣∣∣
o

) = ∆x2
jm, (2.68)

∂f ∗jm

∂

(
∂2φ

∂x∂y

∣∣∣∣
o

) = σ2∆xjm∆yjm,
∂g∗jm

∂

(
∂2φ

∂x∂y

∣∣∣∣
o

) = 2σ∆xjm∆yjm,

∂h∗jm

∂

(
∂2φ

∂x∂y

∣∣∣∣
o

) = 2∆xjm∆yjm,
∂f ∗jm

∂

(
∂2φ

∂y2

∣∣∣∣
o

) =
σ2∆y2

jm

2
,

∂g∗jm

∂

(
∂2φ

∂y2

∣∣∣∣
o

) = σ∆y2
jm,

∂h∗jm

∂

(
∂2φ

∂y2

∣∣∣∣
o

) = ∆y2
jm.

29



Substituting Eqs. (2.68) into the Eqs. (2.66), dividing all equations by 2, and rearranging

terms, the system of equations (2.66) can be rewritten in matrix form asAs = B, where the

components of the matrix of coefficients A and the RHS vector B are given in Appendix

A.1.

It is worthwhile to reinforce at this point that the cell neighbors over which the sum-

mation is performed in the OGRE third order scheme takes into account just the first level

of face neighbors (e.g., 3 face neighbors for an internal control volume in a triangle-based

2D unstructured mesh). This is in significant contrast to a L-S third order scheme, which

would require the summation over a larger stencil made up of at least 5 neighbor cells

(in 2D), typically constructed of both first and second level face neighbors. Higher-order

implementations of the OGRE method would similarly require only the immediate face

neighbors of each cell to populate the computational stencil.

The global system of equations obtained using the OGRE method can be solved using

an iterative procedure. The local system in each cell (e.g. 5x5 for a third-order 2D imple-

mentation) can be solved using any appropriate technique, for example simple Gaussian

Elimination. The derivative values can be sequentially calculated and updated for each

cell, thus producing a Gauss-Seidel-type of iterative procedure. For a fixed variable field,

the gradient values will converge toward the values which minimize the objective function.

When the OGRE scheme is used within numerical schemes which are themselves iterative

in nature, for example implicit finite volume simulations, the gradient field may be updated

once per outer (Newton) iteration. Therefore, within each time step (or during a steady-
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state simulation), the variable field and the gradient field converge simultaneously towards

the solution.

2.4 Boundary Condition Implementation

The previous section describes in detail the procedure for computing derivatives in

interior cells, i.e. cells for which each bounding face is in the interior of the domain.

A modified procedure must be used for boundary cells (i.e. cells for which at least one

bounding face lies on the domain boundary). The boundary condition method proposed

here first computes values of φ and its derivatives at the boundary face centroids. Boundary

cells then use a procedure similar to that outlined above, but with matching conditions

defined based on projections from the face centroids. The boundary conditions themselves

are imposed as constraints in the optimization problem, and a procedure based on Lagrange

multipliers is adopted. Two general types of boundary conditions are addressed: given

boundary value (Dirichlet) and given normal gradient at the boundary (Neumann). The

former yields a constraint on the value of φ at the boundary face, and the latter yields a

constraint on the value of ∇φ · n̂, where n̂ is the unit normal vector at the boundary face.

The constraints are applied at the boundary face quadrature points.

Figure 2.2 illustrates in general how the procedure is implemented. For the 2nd order

scheme, the face centroid denoted by b is the only face integration point; for the 3rd order

scheme, the two integration points are denoted by b1 and b2. The values of φ and its

derivatives must be defined at the boundary location b (face centroid). They are calculated

using information from two layers of neighbor cells, for example the cells 0, 1 and 2 in
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Figure 2.2. One exception occurs if the face is located at a corner and its adjacent cell is

also facing a different boundary type. In this case, just two cells (the adjacent cell and its

first face neighbor) are used to calculate the values at b instead of three. Similar to what

is done for the internal cell calculations, measures of disagreement are defined at each of

the face integration points, and the gradients and/or variable values determined based on a

minimization of those measures.

2.4.1 BC Implementation for the Second Order Scheme

For the 2nd order scheme the values of φ and its gradient are expanded (in general)

from the three closest cells 0, 1 and 2 to the face centroid b (which is the face integration

location for the second order scheme) where two measures of disagreement are formed.

The measures of disagreement for φ and its gradient in each cell k (= 0, 1, 2) are given by:

R1k = σ

(
φ

(new)
b − 1

2

(
φb + φ∗k

∣∣
b

)(current)
)
, (2.69)

and

R2k =

(
∇φ(new)

b − 1

2

(
∇φb +∇φ∗k

∣∣
b

)(current)
)
· ~rk1, (2.70)

where

~rk1 = ~Xb − ~Xk = ∆xk1
~ix + ∆yk1

~iy (2.71)

(notice here again the inclusion of the tuning parameter σ).

The vector used for the dot product in (2.70), if following the same approach as for

the internal cells calculation, should be the connecting vector between the position where
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the new values are being sought and the face integration points, but since for 2nd order

the face centroid and the face integration point are the same, it was decided instead to use

the connecting vector between the center cell centroid k and the face integration point. To

maintain consistency, the same approach is used for the 3rd order case as well. Another

reason for doing so is that, if the vector chosen for the dot product was the connecting

vector between the face centroid and the face integration points (for 3rd order scheme), the

scheme would not converge. The cause for that probably is in the fact that, since the linear

combination of those vectors would produce just one direction in 2D (always parallel to

the boundary face) and this would create a geometrical inconsistency in the boundary face

calculation.

The disagreement measures in Eq. (2.69) and (2.70) are squared to create a quadratic

functional, which has the form

F (x∗) =
2∑

k=0

(
R2

1k +R2
2k

)
, (2.72)

where x∗ is the solution vector containing the values of φ and its two first derivatives at the

boundary face centroid b.

The additional constraint for a Dirichlet BC is given by:

qb : φb − φBC = 0, (2.73)

and the additional constraint for a Neumann BC is given by:

qb : (∇φ · n̂)b − |∇φ|BC = 0, (2.74)
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where the vector n̂ represents the unit normal vector for the boundary face. The boundary

condition values φBC or |∇φ|BC may be constant or vary as a function of position on the

boundary. For a zero-flux condition, the Neumann condition is expressed as

qb : (∇φ · n̂)b = 0. (2.75)

This boundary condition may be applied, for example, at a symmetry plane in finite-volume

simulations.

The Lagrangian function is defined in terms of the objective function and the constraint

as follows:

L (x∗, λ) = F (x∗) + λqb. (2.76)

To minimize the Lagrangian it is necessary to solve the following system of equations:

∂L

∂x∗j
= 0 : j = 1, 2, 3, (2.77)

∂L

∂λ
= 0. (2.78)

Applying Taylor Series expansions of appropriate order for (2.69) and (2.70), they can

be substituted into (2.76) so the system of equations defined by (2.77) – (2.78) can be

obtained. After rearranging the terms, one arrives at the system of equations As = C,

where the matrix of coefficients A for the Dirichlet type of BC is given by

A =



∑(
2σ2
)

0 0 1

0
∑(

2∆x2
k1

) ∑
(2∆xk1∆yk1) 0

0
∑

(2∆xk1∆yk1)
∑(

2∆y2
k1

)
0

1 0 0 0


, (2.79)
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the expanded solution vector s is now given by

s =

[
φb

∂φ

∂x

∣∣∣∣
b

∂φ

∂y

∣∣∣∣
b

λ

]T
, (2.80)

and the RHS vector C is given by

C =



∑
2σ2φbk∑

2∆xk1∇φbk · ~rk1∑
2∆yk1∇φbk · ~rk1

φBC


. (2.81)

The averaged values on the RHS are given by

φbk =
1

2

(
φb + φk +

∂φ

∂x

∣∣∣∣
k

∆xk1 +
∂φ

∂y

∣∣∣∣
k

∆yk1

)
(2.82)

and

∇φbk · ~rk1 =
1

2

(
∂φ

∂x

∣∣∣∣
b

∆xk1 +
∂φ

∂y

∣∣∣∣
b

∆yk1 +
∂φ

∂x

∣∣∣∣
k

∆xk1 +
∂φ

∂y

∣∣∣∣
k

∆yk1

)
(2.83)

and the simplification
∑

=
1 or 2∑
k=0

is used.

The following substitution on the fourth row/column of A (since A is symmetric) pro-

duces the matrix of coefficients for the Neumann type of BC

A(4, :) = A(:, 4)T =

[
0 nx ny 0

]
, (2.84)

where nx and ny are the components of the normal unit vector for the boundary face. Also,

the fourth component in C must be changed such that C(4) = |∇φ|BC .
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2.4.2 BC Implementation for the Third Order Scheme

For the 3rd order scheme the values of φ, the gradient of φ and the gradient of the

gradient of φ are expanded from the three closest cells k (= 0, 1, 2) and from the boundary

face centroid to each one of the two face integration points, thus forming three measures

of disagreement. In this way, 9 terms are created for each one of the two face integra-

tion points. The three measures of disagreement for a given cell k on the boundary face

integration point bm are given by:

R1km = σ2

(
φ∗b
∣∣(new)

bm
− 1

2

(
φ∗b
∣∣
bm

+ φ∗k
∣∣
bm

)(current)
)
, (2.85)

R2km = σ

(
∇φ∗b

∣∣(new)

bm
− 1

2

(
∇φ∗b

∣∣
bm

+∇φ∗k
∣∣
bm

)(current)
)
· ~rkm, (2.86)

R3km =

((
∇∇φ∗b

∣∣(new)

bm
− 1

2

(
∇∇φ∗b

∣∣
bm

+∇∇φ∗k
∣∣
bm

)(current)
)
· ~rkm

)
· ~rkm,

(2.87)

where the index m here represents boundary face integration point location and

~rkm = ~Xbm − ~Xk = ∆xkm~ix + ∆ykm~iy (2.88)

represents the connecting vector between the cell centroid k and the boundary face inte-

gration point bm.

Those 18 terms (when all 3 cells are used) are squared to create a quadratic functional,

which has the form

F (x∗) =
2∑

m=1

2∑
k=0

(
R2

1km +R2
2km +R2

3km

)
, (2.89)

where x∗ is the solution vector containing the values of φ and its first and second derivatives

at the boundary face centroid.
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The additional constraints for a Dirichlet BC are given by:

q1 : φ∗b
∣∣
b1
− φb1 = 0, (2.90)

q2 : φ∗b
∣∣
b2
− φb2 = 0, (2.91)

and the additional constraints for a Neumann BC are given by:

q1 : (∇φ · n̂)∗b
∣∣
b1
− |∇φ|b1 = 0, (2.92)

q2 : (∇φ · n̂)∗b
∣∣
b2
− |∇φ|b2 = 0. (2.93)

Notice that the constraints are always applied at the boundary face integration points. In

the previous section, it was applied at the boundary face centroid only because that is the

position for the boundary face integration point for a 2nd order scheme.

The Lagrangian function is defined as follows

L (x∗, λ) = F (x∗) + λ1q1 + λ2q2. (2.94)

To minimize the Lagrangian it is necessary to solve the following system of equations:

∂L

∂x∗j
= 0 : j = 1, 6, (2.95)

∂L

∂λl
= 0 : l = 1, 2. (2.96)

Using third order expansions on (2.85), (2.86) and (2.87), they can be substituted into

(2.94) so the system of equations (2.95) – (2.96) can be calculated. After rearranging the

terms, one arrives at the system of equations As = C, whose components, the matrix of

coefficients A and the RHS vector C, for the Dirichlet and Neumann types of BC, are

given in the Appendix A.2.
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2.5 Results

The OGRE algorithm was implemented as a User Defined Function (UDF) into the

commercial flow solver Ansys Fluent v12.0. Two-dimensional versions of both the 2nd

and 3rd order schemes were implemented. Results were obtained for several test cases and

compared to 2nd and 3rd order least-squares methods. Test cases were performed with

two objectives. The first objective was to check if the OGRE scheme is able to deliver

a numerical solution with measured accuracy comparable with the nominal order of the

defined scheme for two different cases: a static variable field test case and a finite-volume

scalar advection case where a variable flow field is smoothly distributed throughout the

domain. Both quantitative and qualitative analyses were performed. The second objective

was to determine how effectively the OGRE scheme is able to reconstruct a variable field

with a wide spectrum of wavelengths. The result sheds light on the spectral behavior of the

scheme, which could indicate its potential ability to deal with problems that require low

numerical dissipation and/or energy preservation.

2.5.1 Static Variable Field Test Case

The first test case is straightforward. Given a distribution of a (fixed) arbitrary vari-

able, reconstruct the gradients of the variable at each point in the domain. This test case

has relevance to, for example, image processing or data analysis applications. The ob-

jective is to show that the OGRE scheme is able to reproduce the gradients to the correct

(nominal) order of accuracy. The computational geometry for this case is shown in Fig-

ure 2.3. All boundary faces are treated identical to the interior faces by setting them to be
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of periodic/shadow type. The distribution of scalar φ throughout the domain is given by

the following analytical function

φ (x, y) = sin(8π(x− 0.5)) cos(8π(y − 0.5)). (2.97)

In order to assess the numerical accuracy of this methodology, it is important to first define

how the errors are quantified. The error norms in a numerical calculation are the most

common metric for accuracy assessment. For 2D formulations, the general form of the

error norm can be defined as

Lp =


Ncv∑
i=1

Ai
∣∣Ēi∣∣p

Ncv∑
i=1

Ai


1
p

, (2.98)

where

Ēi = φi,exact − φi,calculated, (2.99)

p is the norm index, Ncv is the total number of control volumes in the domain, Ai is the

area of the control volume i, and Ēi is the solution error in the control volume i. While L1

and L2 are global norms, L∞ is a local error indicator since it shows the largest magnitude

of the error in the solution domain. It is defined as

L∞ = max
∣∣Ēi∣∣ . (2.100)

To test the numerical order of accuracy of the proposed method, five different unstruc-

tured triangular meshes were created using the commercial mesh generation system Ansys

Gambit. The coarsest mesh is denoted Mesh2D 1 and contains 506 cells. To create the
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second mesh (Mesh2D 2), all faces on the boundaries were decreased to half of their ini-

tial size, resulting in twice as many boundary faces/nodes. Mesh2D 2 was then generated,

and the number of cells increased by a factor of approximately 4 (as expected). The pro-

cedure was repeated until five successively finer meshes were created. The numbers of

cells/faces/nodes for these five meshes (and Mesh2D 6 which is used in the spectral reso-

lution test case) are given in Table 2.1. For illustration purposes, Mesh2D 1 (the coarsest

mesh) is shown in Figure 2.4. It is expected that by refining the mesh, the error in the

solution should follow the relation given by Eq. (2.4). Alternatively, between any two

different meshes (in 2D) with a number of cells equal to NDOF1 and NDOF2, respectively,

the numerical accuracy can be approximated by

k =
2 log (Lp1/Lp2)

log (NDOF2/NDOF1)
, (2.101)

where Lp1 and Lp2 are the respective error norms (p = 1, 2, ∞) for the solution on each

mesh.

For the test case considered here, the 2nd order OGRE scheme with σ = 1.1 is used

to obtain the values for
∂φ

∂y
, and the 3rd order OGRE scheme with σ = 1.4 is used to

obtain the values of
∂φ

∂y
and

∂2φ

∂x2
. The results for the L2 error norms of

∂φ

∂y
and

∂2φ

∂x2
in

comparison with their L-S counterparts are shown in Figures 2.5 and 2.6, respectively. The

numerical error accuracy orders for the different schemes, obtained from the results for the

two finest meshes, are indicated in the plots. Most importantly, all error orders of accuracy

compare well with the nominal accuracy of the given schemes. The results for
∂φ

∂y
using

the 2nd order OGRE scheme compare almost exactly to the L-S 2nd order results. For the
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3rd order OGRE scheme the error in the first derivative is smaller when compared to the

L-S results, however the results for
∂2φ

∂x2
show a higher numerical error when compared to

L-S. This is due to the fact that the L-S scheme indicates order of accuracy in the second

derivatives significantly greater than the nominal accuracy of one. The other first- and

second-derivative components showed similar behavior to the ones shown here.

A qualitative examination of the results on the coarsest mesh (Mesh2D 1) when using

OGRE and L-S methods for the third-order scheme is provided in Figures 2.7, 2.8 and 2.9,

showing the distribution of
∂φ

∂y
for the OGRE 3rd order scheme, for exact (analytical) val-

ues, and for the L-S 3rd order scheme, respectively. Both the OGRE and L-S schemes yield

a close approximation of the analytical result, with the OGRE scheme showing slightly

better agreement, at least in the first derivative. To evaluate the differences in performance

between the two schemes, it is necessary to investigate results from the sample applica-

tion (finite-volume solution of advection equation), and these results are presented in the

following subsections.

Because the OGRE scheme is implicit, the gradient field must be found through an

iterative procedure. It was found that about 10 iterations were sufficient to obtain a gradient

solution which presents no more than 10% of difference of the fully converged one for a

static variable field. The L-S method, however, is an explicit scheme, and only one iteration

is required to obtain the gradients in each cell. For the 3rd order scheme, this represents a

tradeoff in terms of computational expense, since the stencil support is reduced in OGRE

but multiple iterations are required for gradient convergence.
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2.5.2 Simple Scalar Transport Test Case

The first finite-volume test case examines simple advection of a smoothly distributed

profile of an arbitrary scalar transport variable φ. The geometry and boundary conditions

for this case are shown in Figure 2.10. The domain extends one unit length in the x and y

directions. A uniform convective velocity in the x-direction (ux = 1) is applied throughout

the domain. In this example, the left boundary is a flow inlet (Dirichlet-type boundary

condition), the top and bottom boundaries are defined as symmetry conditions (zero-flux

Neumann boundary condition), and the right boundary is defined as a flow outlet. The inlet

profile of φ is given by the so-called “Mexican Hat” function:

φ (0, y) =

(
1− 200

(
y − 1

2

)2
)
e

(
−100(y− 1

2)
2
)
. (2.102)

The inlet profile is shown graphically in Figure 2.11. The exact solution for this test case

is simple advection of the profile in the x-direction, i.e. φ(x, y) = φ(0, y). The same five

meshes utilized in Section 2.5.1 are used here for this test case.

To determine the optimum values to be used for σ in all test cases, the code was first run

on Mesh2D 1 with different σ values and the results for total number of iterations (needed

for convergence at Residual < 10−16) and L2 error norms were obtained. These were

plotted in Figures 2.12 and 2.13, for OGRE 2nd and 3rd order schemes, respectively. As

expected, there is a small tradeoff in choosing the value for the tuning coefficient σ. The

results shown that a higher value for the tuning coefficient σ degrades stability (by taking

more iterations to get convergence) but at the same time improves numerical accuracy. On

the other hand, a very small σ value also produces a decay in stability. From the plots,
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it is apparent that, for the OGRE 2nd order scheme, values ranging from 0.9 to 1.2 seem

adequate, and for the OGRE 3rd order scheme, values ranging from 1.4 to 1.8 seem ac-

ceptable, depending on needs of accuracy and computational resources. Specifically, the

optimum value of σ for the 2nd order scheme in terms of accuracy is 1.1. The optimum

value of 3rd order scheme in terms of stability is 1.4, while a value representing a reason-

able tradeoff between stability and accuracy is 1.8. These values are used for the test cases

presented.

The results for L1 and L2 error norms for the different meshes using the OGRE 2nd

and 3rd order schemes, L-S 2nd and 3rd order schemes, and the Green-Gauss cell-based

and node-based schemes (which are of only 2nd order accuracy) are shown in Figures 2.14

and 2.15, respectively, and in Table 2.2. The numerical accuracy orders for the different

error norms, obtained from a linear fit of the results on the two finest meshes, are shown in

the Table 2.3 and indicated in the plots.

The transport scalar solution on Mesh2D 1, using OGRE 3rd order scheme and L-S

3rd order scheme is shown in Figures 2.16 and 2.17. These figures show that the OGRE

scheme produces a smoother distribution of the solution throughout the domain when com-

pared to the solution obtained using the L-S scheme, which clearly seems to produce more

numerical dissipation.

The global error norms (L1 and L2) listed in Table 2.3 indicate that the new method-

ology (OGRE) yields measured numerical order of accuracy equal to or higher than the

nominal order of accuracy for both 2nd and 3rd order schemes, for all but the L∞ norm.

This is also clearly shown in the plots of L1 and L2 norms in Figures 2.14 and 2.15. The
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overall error for the 2nd order OGRE scheme is approximately equal to the other 2nd order

schemes, all of which show better than expected order of accuracy in the L1 and L2 norms.

The error order is almost exactly equal between the OGRE and L-S 2nd order schemes.

The results therefore suggest that there is no real advantage to using the 2nd-order OGRE

scheme versus the 2nd-order L-S scheme. This is not surprising, since in the 2nd order

versions the two schemes use identical stencils and similar methodologies (minimizing an

objective function to solve for derivatives).

For the 3rd-order results, however, the observation is quite different. The L-S scheme

yields an order of accuracy almost exactly equal to 3, while the OGRE scheme yields a

significantly higher measured order for both the L1 and L2 norms. The more rapid decrease

in numerical error as mesh size is increased is clearly apparent in Figures 2.14 and 2.15. In

addition, the overall error level in the OGRE scheme is consistently lower, by a significant

amount, for all mesh sizes including the coarsest. As a result, theL2 error using OGRE 3rd-

order scheme is an order of magnitude lower than the equivalent L-S scheme by Mesh2D

2, and almost two orders of magnitude lower by Mesh2D 5. This highlights one of the

primary advantages of the OGRE scheme, namely the use of a stencil comprised only

of immediate neighbors, rather than a larger stencil as required by L-S for higher order.

As discussed in Section 1, error is proportional to hk, where h is the characteristic mesh

size and k is the order of accuracy. When the stencil size is increased, the effective mesh

size h is likewise increased. The results in Figures 2.14 and 2.15 show the effect of both

contributions in the OGRE scheme: higher k and lower h. It is expected that this advantage
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– smaller effective mesh size due to smaller stencil – will become even more pronounced

in contrast to the L-S scheme as the nominal order of the scheme is increased beyond 3.

As discussed in the previous subsection, the OGRE scheme is implicit, and multiple

iterations are required to converge the gradient field. This requirement led to an increase

in computational expense versus the L-S scheme for the static variable case. In the finite-

volume simulations, however, this expense is mitigated. Because the solution algorithm

is itself implicit, the gradient field was simply updated once per iteration. Because the

convergence rate for the gradients is much more rapid than for the solution of φ itself, this

was sufficient to allow both the variable and gradient fields to converge together. As a

consequence, the overall cost per iteration using OGRE was effectively equal to the cost

per iteration using L-S.

As a comparison to evaluate the effect of changing the σ value, using the OGRE 3rd

order scheme on Mesh2D 3 and for σ = 1.8, 694 iterations were needed to obtain full

convergence (Residual < 10−16), taking 0.1172s per iteration (average), for a total time for

convergence of 81.35s; on the other hand, the L-S 3rd order scheme, running on Mesh2D

5, needs 271 iterations to obtain the same convergence, taking 0.5100s per iteration (av-

erage), which means a total time for convergence of 138.21s. This shows that OGRE 3rd

order scheme obtains a 41.1% reduction in total computational time (81.35s compared to

138.21s) when compared to L-S 3rd order scheme to produce a solution with equivalent

precision (e.g. for L2, 8.01187e-05 compared to 8.65664e-05). Furthermore, using the

OGRE 3rd order scheme with σ = 1.4 on Mesh2D 3 produces a result only slightly worse

than L-S 3rd order on Mesh2D 5 (e.g. for L2, 0.00011227 compared to 8.65664e-05, which
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is 29.7% bigger), but requires just 426 iterations to obtain convergence (total computational

time of 49.93s), or in other words, a 63.9% reduction in computational time.

2.5.3 Spectral Resolution Test Case

The second transport test case seeks to assess the spectral behavior of the new gradient

calculation scheme. The case used the same computational geometry described in Section

2.5.2, with a uniform x-direction velocity field. The inlet and outlet boundary condition

types are the same as above, but the top and bottom surfaces are assumed to be periodic.

A different mesh (mesh2D 6) was created for which each bounding side has 128 equally

distributed faces, for the purposes of performing Fourier analysis of the inlet and outlet

variable profiles to compare their spectral content. In order to test the new scheme for

situations which contain a wide range of scales, an inlet profile for the transport scalar φ

was synthesized as a sum of Fourier modes. The inlet profile was defined as

φ (0, y) =
63∑
k=1

[ak cos (wky) + bk sin (wky)] . (2.103)

In Eq. (2.103), the phases of the Fourier modes were randomly chosen, and the amplitude

for each mode was equal to 1.0, i.e. (a2
k + b2

k = 1) and wk = 2πk. As in the previous

subsection, the exact solution is given by φ(x, y) = φ(0, y). The simulation was run using

each of the different gradient calculation schemes, and the solution profile at the outlet was

compared to the profile at the inlet. In both cases, the discrete values φ(y) were transformed

to wavenumber space using the Fast Fourier Transform.

Figure 2.18 shows the transformed profile at the outlet for five different cases: 1st

order upwind, L-S 2nd and 3rd order schemes, and OGRE 2nd (with σ = 1.1) and 3rd
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(with σ = 1.8) order schemes. For all cases, the curves represent an average between

four different reconstructed solutions (to minimize random oscillations in the results due

to solution on an unstructured mesh). The plot clearly shows the lack of effectiveness

in resolving higher wavenumber modes of the solution when using low order schemes.

The 1st order upwind cannot even reconstruct completely the lowest wavenumber mode.

Consistent with previous results, both of the 2nd order schemes yield very similar results,

and are able to resolve at least 90% of the amplitude of modes up to about k = 11. As

in the previous subsection, a significant improvement in accuracy is apparent between the

OGRE and L-S 3rd order versions. OGRE resolves approximately twice the wavenumber

modes compared to L-S. While the L-S scheme can resolve about 90% of the amplitudes

up to about wavenumber 12, OGRE can do the same up to wavenumber 27.

Figures 2.19 and 2.20 show the transport scalar solution on Mesh2D 6 for the spectral

resolution test case, using OGRE (with σ = 1.8) and L-S 3rd order schemes, respectively.

The inlet profiles are the same for both cases. Again, it is clear the lower-dissipative feature

of the OGRE scheme when compared to the L-S scheme.

These results not only reinforce those shown in Figures 2.12 and 2.13, they also have

important implications for applications requiring high-resolution solution algorithms for

a range of spatial scales. For example, in finite-volume CFD applications, these results

suggest that the OGRE scheme may provide better numerical accuracy in large-eddy sim-

ulations.
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Table 2.1

Mesh specifications used in all 2D test cases.

Mesh # # of cells # of faces # of nodes
Mesh2D 1 506 789 284
Mesh2D 2 2,030 3,075 1,076
Mesh2D 3 8,110 12,285 4,176
Mesh2D 4 32,450 48,915 16,466
Mesh2D 5 129,758 195,117 65,360
Mesh2D 6 36,880 55,448 18,697

Table 2.2

Error norms for the 2D simple scalar transport test case on different schemes and meshes.

Mesh - G-G G-G L-S OGRE L-S OGRE OGRE
error norm 2nd O 2nd O 2nd O 2nd O 3rd O 3rd O 3rd O

(cell-based) (node-based) σ = 1.1 σ = 1.4 σ = 1.8
M1 - L1 0.0724981 0.0670649 0.0695438 0.072058 0.0618172 0.0197917 0.0171327
M1 - L2 0.124949 0.120423 0.119616 0.123871 0.106475 0.0361609 0.030788
M1 - L∞ 0.503589 0.579264 0.517218 0.530855 0.465877 0.177237 0.154563
M2 - L1 0.0241229 0.0222775 0.0228861 0.0229495 0.0167143 0.00144461 0.00104648
M2 - L2 0.0476369 0.0454491 0.0448132 0.0450637 0.0339241 0.00305462 0.0022206
M2 - L∞ 0.227741 0.235695 0.215202 0.212498 0.17096 0.0180364 0.0132212
M3 - L1 0.00436268 0.00407342 0.00407909 0.00406447 0.00247131 5.18089e-05 3.83393e-05
M3 - L2 0.00912019 0.00876585 0.00846534 0.00844122 0.00538231 0.00011227 8.01187e-05
M3 - L∞ 0.0520212 0.0585791 0.050249 0.0490998 0.0313586 0.000848392 0.000725849
M4 - L1 0.000848163 0.000617576 0.000707685 0.000705312 0.000300152 3.12048e-06 2.82242e-06
M4 - L2 0.00177065 0.00133975 0.00147935 0.00147122 0.000673436 7.05356e-06 6.68157e-06
M4 - L∞ 0.0155317 0.0106224 0.00902852 0.00857651 0.00422446 9.21876e-05 0.000108515
M5 - L1 0.000189212 0.00011939 0.000139151 0.000138738 3.90086e-05 2.64245e-07 2.81981e-07
M5 - L2 0.000387949 0.000253956 0.00027875 0.000277532 8.65664e-05 7.05961e-07 7.49947e-07
M5 - L∞ 0.00740028 0.00200627 0.00162878 0.00155126 0.000551608 1.39749e-05 1.35922e-05

Table 2.3

Numerical orders of accuracy for the error in each scheme between the two finest meshes
for the 2D simple scalar transport test case.

error G-G G-G L-S OGRE L-S OGRE OGRE
norm 2nd O 2nd O 2nd O 2nd O 3rd O 3rd O 3rd O

(cell-based) (node-based) σ = 1.1 σ = 1.4 σ = 1.8
L1 2.16 2.37 2.35 2.35 2.94 3.56 3.32
L2 2.19 2.40 2.41 2.41 2.96 3.32 3.16
L∞ 1.07 2.40 2.47 2.47 2.94 2.72 3.00
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Figure 2.1

2D OGRE implementation for interior cells: center cell centroid, face neighbor centroid
and face integration point (just one, for the 2nd order case), with respective connecting

vectors.

Figure 2.2

2D boundary condition implementation.
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Figure 2.3

2D geometry and boundary conditions for the static variable test case.

Figure 2.4

Mesh2D 1.
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Figure 2.5

L2 error norm values of
∂φ

∂y
for the 2D static variable test case.

Figure 2.6

L2 error norm values of
∂2φ

∂x2
for the 2D static variable test case.
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Figure 2.7

OGRE 3rd order solution of
∂φ

∂y
using σ = 1.4 for the static variable test case on Mesh2D

1.

Figure 2.8

Analytical solution of
∂φ

∂y
for the static variable test case on Mesh2D 1.
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Figure 2.9

L-S 3rd order solution of
∂φ

∂y
for the static variable test case on Mesh2D 1.

Figure 2.10

2D geometry and boundary conditions for the simple scalar transport test case.
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Figure 2.11

2D inlet profile: Mexican Hat function.

Figure 2.12

σ effect on OGRE 2nd order, Mesh2D 1.
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Figure 2.13

σ effect on OGRE 3rd order, Mesh2D 1.

Figure 2.14

L1 error norms for the 2D simple scalar transport test case.
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Figure 2.15

L2 error norms for the 2D simple scalar transport test case.

Figure 2.16

φ distribution throughout the domain on Mesh2D 1 using OGRE 3rd order scheme,
σ=1.4, for the simple scalar transport test case.
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Figure 2.17

φ distribution throughout the domain on Mesh2D 1 using L-S 3rd order scheme, for the
simple scalar transport test case.

Figure 2.18

FFT outlet reconstruction using different schemes for the 2D spectral analysis test case.

57



Figure 2.19

φ distribution throughout the domain on Mesh2D 6 using OGRE 3rd order scheme with
σ = 1.8, for the 2D spectral analysis test case.

Figure 2.20

φ distribution throughout the domain on Mesh2D 6 using L-S 3rd order scheme, for the
2D spectral analysis test case.
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CHAPTER 3

A 3D OPTIMIZATION-BASED METHOD FOR HIGH ORDER GRADIENT

CALCULATION ON UNSTRUCTURED MESHES

3.1 Introduction

3.1.1 Background

In a wide range of application fields (e.g., computer graphics, electro-magnetics, solid

mechanics, and fluid mechanics), an essential step in many different numerical methods is

the precise calculation of local derivatives in discrete variable fields.

Methods for numerical gradient calculation should be accurate, stable, and computa-

tionally efficient to be useful in practical applications. This paper presents the 3D extension

of a new method for high-order gradient calculation on unstructured meshes initially de-

veloped in [4]. Because of the authors’ background, the study is motivated by a goal to

improve finite-volume CFD simulations. However, the method is a general approach which

can be used for any of applications mentioned above.

For structured meshes, the application of high-order-accurate schemes for gradient cal-

culation have been systematically studied for decades, using finite-difference (FD), finite-

element (FE) and finite-volume (FV) methods. An interested reader can refer to the com-

prehensive review article by Ekaterinaris [10] for a thorough discussion of high-order

schemes on structured grids, with a focus on CFD applications.
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High-order derivative calculation on unstructured meshes has been studies less exten-

sively. Two of the most common approaches for derivative calculation in 2nd-order numer-

ical schemes are the Green-Gauss (G-G) method and the Least-Squares (L-S) method [7].

For higher order, important contributions on unstructured-meshed based computations can

be found in Barth and Jespersen [3] and Barth and Frederickson [2], who proposed k-

exact schemes using a stencil variable values in the neighborhood of an area of inter-

est. The use of non-fixed stencils were applied when Essentially Non-Oscillatory (ENO)

schemes, traditionally used in the structured grid community, were extended to unstruc-

tured meshes [1,9,22,27]. Later, Weighted Essentially Non-Oscillatory (WENO) schemes

were also extended to unstructured meshes [11, 13]. An interested reader can refer to [26]

for a review of ENO and WENO methods. High-order methods have also been applied

using Discontinuous Galerkin (DG) [6] and Spectral Volume (SV) [12] methods. Ollivier-

Gooch [23] presented results for finite-volume simulations using high-order reconstruc-

tions. The authors recommended that high order capabilities should be included in numer-

ical schemes to ensure at least quadratic (or higher) reconstruction at boundaries. A more

detailed discussion is available in [4].

While much progress has been made to date, there is still for improvement with re-

gard to robust and efficient high-order methods in unstructured meshed-based solvers. For

CFD applications on unstructured meshes, for example, many of the approaches mentioned

above are based on the L-S scheme or its variants for local gradient calculation, but they

tend to become numerically stiff as the order of accuracy (as well size of the numerical

stencil) increases. Because unstructured meshes are often desired for their improved abil-
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ity to simulate flow fields on using complex geometries and for permitting flexible mesh

adaptation near specific regions of interest, improved methods for high-order gradient cal-

culation can lead to significant improvements in these schemes. Nonetheless, even after

decades of advances, unstructured-meshed based solvers still present limitations both in

terms of accuracy and efficiency, especially for simulations of complex flow fields. De-

spite the potential advantages of high-order methods, the majority of CFD simulations

remain second order.

3.1.2 Paper Outline

This paper presents a 3D extension to the problem of high-order derivative computa-

tion on unstructured meshes developed in [4]. Specifically, an implicit, compact scheme

has been proposed which in theory allows derivative calculations to arbitrary order. Sten-

cils are constructed only from nearest neighbors, and the gradient field is obtained through

an iterative solution process. The method is based on minimization of an objective function

that reflects the degree of mismatch between reconstructions in neighboring computational

control volumes. The paper is organized as follows. Section 3.2 outlines a simple test

application for the high-order scheme, namely finite-volume solution of a 3D scalar ad-

vection equation, and briefly describes the role of the calculated numerical derivatives in

the solution of the problem. Section 3.3 presents the development of the new methodology

up to 3rd order accuracy. Section 3.4 describes the method for boundary condition imple-

mentation. Section 3.5 presents numerical validation and initial results. Chapter 4 draws

conclusions and describes future work.
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3.2 Sample Application and Derivative Calculation

3.2.1 Finite-Volume Solution of Scalar Advection Equation

This section seeks to provide context with regard to derivative calculation, using the

example of least-square (L-S) schemes for finite-volume (FV) CFD methods. Consider

a steady-state convective transport equation of a passive scalar variable, φ, in a known

velocity field ~U(x). The conservation equation is given by:

∇ ·
(
ρ~Uφ

)
=

∂

∂xj
(ρujφ) = 0, (3.1)

where ρ is the fluid density, ~U (or uj) is the fluid velocity vector, and φ is an arbitrary

scalar variable. In order to apply the FV method, the flow domain is discretized into non-

overlapping control volumes (cells), and Eq. (3.1) is integrated over each control volume.

Applying the Gauss divergence theorem yields

∫
Ω

∇ ·
(
ρ~Uφ

)
dV =

∫
∂Ω

ρφ~U · n̂ dA =

∫
∂Ω

ρφ (ujnj) dA = 0, (3.2)

where Ω denotes volume integration over the cell, ∂Ω denotes area integration over the

bounding surface of the cell, and n̂ is the outward-pointing unit normal vector on the cell

surface. For general polyhedron cells (in 3D), the bounding surface is comprised of a finite

number of discrete (polygonal) faces. The integral may therefore be expressed as

∫
∂Ω

ρφ (ujnj) dA =

Nf∑
f=1

∫
∂Ωf

ρfφf (ujnj)f dAf = 0. (3.3)

The surface integration is performed as the sum of integrals over each polygonal face, Nf

is the number of faces bounding the cell, and ∂Ωf denotes integration over the face area.
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To simplify notation, we further adopt the conventional definition of the convective face

flux, Ff , defined for each face as

Ff =

∫
∂Ωf

ρfφf (ujnj)f dAf . (3.4)

The goal of numerical discretization is to approximate the integral in Eq. (3.4) based on

available cell data, since the discrete values of the dependent variable φ (as well as ρ and

~U in general) are stored at the control volume centers (for a cell-centered algorithm, the

control volume centers are the same as the cell centroids).

For the purpose of developing a new discretization scheme based on the proposed gra-

dient calculation scheme, a simple upwind method can be used to determine the face fluxes

based on the neighbor cell variable reconstructions. For a known velocity field, the con-

vective flux can be expressed as

Ff ≈ ṁf φ̄f , (3.5)

where ṁf is the mass flow rate across the given face, given by

ṁf =

∫
∂Ωf

ρf (ujnj)f dAf , (3.6)

and φ̄f is the mass-averaged value of the transport scalar φ on face f , which can be ex-

pressed as

φ̄f =
1

ṁf

∫
∂Ωf

ρfφf (ujnj)f dAf . (3.7)

For a pure upwind convective scheme, the value of φ at any point on face f can be recon-

structed by projection from the upwind cell centroid as

φf = φU +

(
∂φ

∂xi

)
U

xi,f +H.O.T., (3.8)
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where H.O.T. here represents the high order terms of the expansion. The integral in Eq.

(3.7) may be evaluated using any appropriate quadrature method of sufficiently high order,

in combination with Eq. (3.8). For example, Gauss quadrature ( [25]) is used for the test

cases in this paper.

It is possible to rewrite (3.5) as

Ff ≈ ṁf φ̄f = ṁfφU + ṁf

(
φ̄f − φU

)
. (3.9)

For an implicit upwind solution method, the first term on the right hand side can be treated

implicitly during the linear solve step, and the second term, incorporating the numerical

derivatives, can be treated explicitly. As a result, the contribution of all terms of order

greater than one is included as a source term during each outer (Newton) iteration. This

approach has been found to be stable in all of the test cases considered.

3.2.2 Derivative Calculation Methods

The approach outlined above for solution of the scalar advection equation requires

numerical computation of first derivatives for a second-order scheme, and first and second

derivatives for a third order scheme, etc. Since our approach uses a cell-centered method,

the derivatives are computed at the centroid of each computational cell. The necessary error

order of accuracy for a scheme of order k and derivative of order m is equal to k −m. As

discussed above, necessity of accurate derivative calculation is not unique to FV methods.

Several other applications [8, 14, 15] also make use of local gradient calculation.

For higher-order gradient calculations, perhaps the most common method is the cell-

based Least-Squares (L-S) method. The L-S scheme is based on a Taylor Series expansion
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about the centroid of the cell in which the gradient is being computed. In order to develop

higher-order schemes using L-S, the Taylor series expansion includes derivatives of the de-

pendent variable greater than one. To implement such a scheme, the neighbor stencil can be

increased to include second-level cell neighbors (i.e., neighbors of neighbors), third-level,

etc., so that there is sufficient neighbor information to create a system that is mathemat-

ically consistent (i.e., a determined or over-determined system) in the region of the cell

of interest, in order to calculate all of the necessary derivatives for a given reconstruction

order.

As shown in recent publications by Ollivier-Gooch and his co-workers [16–24], there

are some inherent challenges with this approach related to memory cost, calculation speed,

matrix stiffness, and stability.

The L-S method can be classified as one type of optimization (minimum energy) based

method, in which the (local) objective function is a measure of the degree of mismatch

between the values of φ obtained from a reconstruction (polynomial expansion) about the

cell centroids, and the values of φ in the neighbors making up the stencil support. The new

method for derivative calculation proposed in this paper seeks to address the difficulties

mentioned above, and is herein referred to as the Optimization-based Gradient REcon-

struction (OGRE) method. The key aspect of the approach is that it relies on stencils

comprised only of immediate neighbors, but includes higher-order information via an it-

erative solution of a system of equations. This has the potential to facilitate (speed up)

convergence, by substantially reducing the total cost of calculations for the same level of

accuracy versus traditional (i.e. least squares) approaches. Conceptually, the approach can
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be summarized as the minimization of a global objective function that defines the degree

to which the individual cell reconstructions (a variable and its derivatives) match the re-

constructions of their immediate neighbors. Like the L-S approach, the new method is an

optimization based method. In contrast to L-S, the mismatch used to define the objective

function is based on the values of φ as well as its derivatives, resulting in a smaller re-

quired stencil, and potentially increasing the absolute accuracy of the scheme versus the

conventional L-S approach.

3.3 OGRE Scheme Methodology

This section shows the derivation of the OGRE scheme to calculate derivatives of

arbitrary order on structured or unstructured computational meshes. The development for

the 2nd and 3rd order variants of the new scheme is presented; extension to higher order

follows the approach presented here, and is relatively straightforward. This work is the 3D

extension of the 2D methodology presented in [4]. The development and implementation

are demonstrated in detail in order to clarify the reasoning behind the final equations used

in the algorithm.

Figure 3.1 shows an example of a 3D unstructured cell arrangement for the 3rd order

variant of the scheme.

3.3.1 Second Order Scheme

For a 2nd order FV scheme, it is necessary to approximate the first order spatial deriva-

tives (in x, y and z) for a given transport variable φ at the centroid of each control volume

(cell), with an error order of accuracy equal to one. The main conceptual goal behind the
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OGRE method is to obtain a specific objective function, through geometrical and numerical

reasoning, that then can be minimized to determine the values of the derivatives.

The connecting vector between the center cell centroid o and the face centroid j1

(which is the face quadrature location for a second order scheme), is given by ~rj1, and

the connecting vector between face centroid j1 and the neighbor cell centroid nj, is given

by r̃j1. Those connecting vectors are defined by:

~rj1 = ~Xj1 − ~Xo = ∆xj1~ix + ∆yj1~iy + ∆zj1~iz, (3.10)

r̃j1 = ~Xj1 − ~Xnj = ∆̃xj1~ix + ∆̃yj1~iy + ∆̃zj1~iz.

The following notation is also used throughout the derivation calculation (for both 2nd and

3rd order schemes):

o - center cell centroid.

j - face index.

nj - neighbor cell centroid.

φ∗a
∣∣
b

- projection of the value of φ (or its gradients) from a to b, through Taylor series
expansion

(these expansions must follow the given order of accuracy of the scheme).

For a 2nd order error scheme, all polynomial expansions of the dependent variable

must be truncated at the first order derivatives. In order to calculate the first derivatives

needed for the 2nd order scheme, two measures of disagreement between neighboring cell

expansions are postulated:

1) Measure of disagreement between the scalar value projections from each cell at the face

quadrature point (face centroid):

(∆φ)j1 = φ∗o
∣∣(new)

j1
− 1

2

(
φ∗o
∣∣
j1

+ φ∗nj
∣∣
j1

)(current)

, (3.11)
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2) Measure of disagreement between the first derivative projections from each cell at the

face quadrature point (face centroid):

∆ (∇φ)j1 · ~rj1 =

(
∇φ∗o

∣∣(new)

j1
− 1

2

(
∇φ∗o

∣∣
j1

+∇φ∗nj
∣∣
j1

)(current)
)
· ~rj1. (3.12)

These two measures are analyzed now separately, starting with the first measure of dis-

agreement.

3.3.1.1 First Measure of Disagreement

Expanding the first term on the RHS of Eq. (3.11) produces

φ∗o
∣∣
j1

= φo +∇φ
∣∣
o
· ~rj1 = φo +

∂φ

∂x

∣∣∣∣
o

∆xj1 +
∂φ

∂y

∣∣∣∣
o

∆yj1 +
∂φ

∂z

∣∣∣∣
o

∆zj1. (3.13)

Also, the second term on RHS of Eq. (3.11) can be denoted F̃j1 , which represents an

average of the (first-order) Taylor Series expansions of the variable from each of the cells

on either side of the face to the face integration point:

F̃j1 =
1

2

(
φ∗o
∣∣
j1

+ φ∗nj
∣∣
j1

)(current)

=
1

2

(
φo +∇φ

∣∣
o
· ~rj1 + φnj +∇φ

∣∣
nj
· r̃j1

)(curr)

=
1

2

(
φo +

∂φ

∂x

∣∣∣∣
o

∆xj1 +
∂φ

∂y

∣∣∣∣
o

∆yj1 +
∂φ

∂z

∣∣∣∣
o

∆zj1+

φnj +
∂φ

∂x

∣∣∣∣
nj

∆̃xj1 +
∂φ

∂y

∣∣∣∣
nj

∆̃yj1 +
∂φ

∂z

∣∣∣∣
nj

∆̃zj1

)(current)

. (3.14)

Redefining the first measure of disagreement as fj1 and substituting Eq. (3.14), (3.11)

results in

fj1 = φo +
∂φ

∂x

∣∣∣∣
o

∆xj1 +
∂φ

∂y

∣∣∣∣
o

∆yj1 +
∂φ

∂z

∣∣∣∣
o

∆zj1 − F̃j1. (3.15)
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3.3.1.2 Second Measure of Disagreement

Based on a zero-order Taylor Series expansion for the gradients:

∇φ∗o
∣∣
j1

= ∇φo (3.16)

and

∇φ∗nj
∣∣
j1

= ∇φnj, (3.17)

since the 2nd order (and higher) derivatives are considered to be zero in a second order

scheme. This reduces (3.12) to simply

∆ (∇φ)j1 · ~rj1 =

(
∇φ(new)

o − 1

2
(∇φo +∇φnj)(current)

)
· ~rj1, (3.18)

which, after redefining the second measure of disagreement as gj1, (3.12) can be rewritten

as

gj1 =
∂φ

∂x

∣∣∣∣
o

∆xj1 +
∂φ

∂y

∣∣∣∣
o

∆yj1 +
∂φ

∂z

∣∣∣∣
o

∆zj1 − G̃j1, (3.19)

where G̃j1 is given by

G̃j1 =
1

2

(
(∇φo +∇φnj)(current)

)
· ~rj1

=
1

2

(
∂φ

∂x

∣∣∣∣
o

∆xj1 +
∂φ

∂y

∣∣∣∣
o

∆yj1 +
∂φ

∂z

∣∣∣∣
o

∆zj1+

∂φ

∂x

∣∣∣∣
nj

∆xj1 +
∂φ

∂y

∣∣∣∣
nj

∆yj1 +
∂φ

∂z

∣∣∣∣
nj

∆zj1

)(current)

. (3.20)

Equations (3.23) and (3.19) are used to develop an optimization procedure that is de-

scribed in the following section.
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3.3.2 Optimization Procedure for the Second Order Scheme

The goal of the optimization procedure is to minimize, in a least-squares sense, the dis-

agreement between neighbor projections at each face centroid represented by Eqs. (3.23)

and (3.19). One consideration is the relative weight to be given to those two measures. In

order to control the accuracy of the method, a tuning parameter is incorporated through the

use of a weighting coefficient σ. The parameter σ modifies the relative weight given to the

two measures of disagreement defined by Eqs. (3.23) and (3.19). It is expected that, in

general, within an acceptable range, increasing the value of σ should improve the scheme

accuracy, while decreasing its value should make the scheme more stable. To include this

parameter, the two measures fj1 and gj1, given by Eqs. (3.23) and (3.19), respectively, can

be rewritten as

f ∗j1 = σfj1 = σ

[
φo +

∂φ

∂x

∣∣∣∣
o

∆xj1 +
∂φ

∂y

∣∣∣∣
o

∆yj1 +
∂φ

∂z

∣∣∣∣
o

∆zj1 − F̃j1
]

(3.21)

and

g∗j1 = gj1 =
∂φ

∂x

∣∣∣∣
o

∆xj1 +
∂φ

∂y

∣∣∣∣
o

∆yj1 +
∂φ

∂z

∣∣∣∣
o

∆zj1 − G̃j1, (3.22)

where again F̃j1 and G̃j1 are given by Eqs. (3.14) and (3.20), respectively.

By using (3.21) and (3.22), it is possible to construct the following quadratic functional

F =

#neig∑
j=1

(
f ∗j1

2 + g∗j1
2
)
, (3.23)

which must be minimized in order to find the values of the first order derivatives at any cell

centroid. F represents a local objective function for any given cell. Summing over all cells

yields a convex global objective function that can be minimized to find all cell (control
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volume) derivatives. Minimization of the function F is straightforward, producing the

following three equations:

∂F

∂

(
∂φ

∂x

∣∣∣∣
o

) = 0 (3.24)

∂F

∂

(
∂φ

∂y

∣∣∣∣
o

) = 0. (3.25)

and

∂F

∂

(
∂φ

∂z

∣∣∣∣
o

) = 0 (3.26)

Those equations can be expressed as

∂F

∂

(
∂φ

∂x

∣∣∣∣
o

) = 2

#neig∑
j=1

f ∗j1
∂f ∗j1

∂

(
∂φ

∂x

∣∣∣∣
o

) + g∗j1
∂g∗j1

∂

(
∂φ

∂x

∣∣∣∣
o

)
 = 0, (3.27)

∂F

∂

(
∂φ

∂y

∣∣∣∣
o

) = 2

#neig∑
j=1

f ∗j1
∂f ∗j1

∂

(
∂φ

∂y

∣∣∣∣
o

) + g∗j1
∂g∗j1

∂

(
∂φ

∂y

∣∣∣∣
o

)
 = 0, (3.28)

and

∂F

∂

(
∂φ

∂z

∣∣∣∣
o

) = 2

#neig∑
j=1

f ∗j1
∂f ∗j1

∂

(
∂φ

∂z

∣∣∣∣
o

) + g∗j1
∂g∗j1

∂

(
∂φ

∂z

∣∣∣∣
o

)
 = 0, (3.29)

where the internal partial derivatives are given by:
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∂f ∗j1

∂

(
∂φ

∂x

∣∣∣∣
o

) = σ∆xj1, (3.30)

∂g∗j1

∂

(
∂φ

∂x

∣∣∣∣
o

) = ∆xj1, (3.31)

∂f ∗j1

∂

(
∂φ

∂y

∣∣∣∣
o

) = σ∆yj1, (3.32)

∂g∗j1

∂

(
∂φ

∂y

∣∣∣∣
o

) = ∆yj1. (3.33)

∂f ∗j1

∂

(
∂φ

∂z

∣∣∣∣
o

) = σ∆zj1, (3.34)

∂g∗j1

∂

(
∂φ

∂z

∣∣∣∣
o

) = ∆zj1. (3.35)

Substituting those partial derivatives into (3.27), (3.28) and (3.29), and dividing all

equations by 2, yields

#neig∑
j=1

{
f ∗j1σ∆xj1 + g∗j1∆xj1

}
= 0. (3.36)

#neig∑
j=1

{
f ∗j1σ∆yj1 + g∗j1∆yj1

}
= 0. (3.37)

and

#neig∑
j=1

{
f ∗j1σ∆zj1 + g∗j1∆zj1

}
= 0. (3.38)

Finally, by substituting (3.21) and (3.22) into Eqs. (3.36), (3.37) and (3.38) and rear-

ranging the terms, one arrives at the system of equations As = B, where the matrix of

coefficients A is given by
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A =



∑(
σ2 + 1

)
∆x2

j1

∑(
σ2 + 1

)
∆xj1∆yj1

∑(
σ2 + 1

)
∆xj1∆zj1∑(

σ2 + 1
)

∆yj1∆xj1
∑(

σ2 + 1
)

∆y2
j1

∑(
σ2 + 1

)
∆yj1∆zj1∑(

σ2 + 1
)

∆zj1∆xj1
∑(

σ2 + 1
)

∆zj1∆yj1
∑(

σ2 + 1
)

∆z2
j1

 ,

(3.39)

the solution vector s, with the values of the center cell derivatives, is given by

s =

[
∂φ

∂x

∣∣∣∣
o

∂φ

∂y

∣∣∣∣
o

∂φ

∂z

∣∣∣∣
o

]T
, (3.40)

the RHS vector B is given by

B =



∑(
σ2∆xj1

(
F̃j1 − φo

)
+ ∆xj1G̃j1

)
∑(

σ2∆yj1

(
F̃j1 − φo

)
+ ∆yj1G̃j1

)
∑(

σ2∆zj1

(
F̃j1 − φo

)
+ ∆zj1G̃j1

)


, (3.41)

and the simplification
∑

=

#neig∑
j=1

is used. The summation here is performed over each

of the immediate face neighbors. The values of F̃j1 and G̃j1 contain the center cell and

neighbor’s scalar value and derivatives, and so the set of Eqs. given by (3.39), (3.40) and

(3.41) for all cells yields a 3N×3N linear system of equations (where N here is the total

number of control volumes) that can be solved for
∂φ

∂x
,
∂φ

∂y
and

∂φ

∂z
in every control volume.

The method is therefore implicit and compact.

3.3.3 Third Order Scheme

A third order finite-volume scheme enforces that all polynomial expansions of the

dependent variable are truncated at the second order derivatives. To retain third order ac-

curacy in reconstruction of the face fluxes, three quadrature points (for tetrahedral meshes
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in 3D) must be used to perform the integration over each face. Measures of disagreement

are therefore defined at each face quadrature point, denoted for each face by the index

m (=1, 2, 3). As above, j indicates face indexing. The relevant projection vectors are

therefore defined by:

~rjm = ~Xjm − ~Xo = ∆xjm~ix + ∆yjm~iy + ∆zjm~iz, (3.42)

r̃jm = ~Xjm − ~Xnj = ∆̃xjm~ix + ∆̃yjm~iy + ∆̃zjm~iz.

In order to calculate the first and second derivatives needed for the third order scheme,

three measures of disagreement between neighboring cell expansions are postulated for

each face integration point:

1) Measure of disagreement between the scalar value projections from each cell at the face

quadrature point:

(∆φ)jm = φ∗o
∣∣(new)

jm
− 1

2

(
φ∗o
∣∣
jm

+ φ∗nj
∣∣
jm

)(current)

, (3.43)

2) Measure of disagreement between the first derivative projections from each cell at the

face quadrature point:

∆ (∇φ)jm · ~rjm =

(
∇φ∗o

∣∣(new)

jm
− 1

2

(
∇φ∗o

∣∣
jm

+∇φ∗nj
∣∣
jm

)(current)
)
· ~rjm, (3.44)

3) Measure of disagreement between the second derivative projections from each cell at

the face quadrature point:

(
∆ (∇∇φ)jm · ~rjm

)
· ~rjm =

((
∇∇φ∗o

∣∣(new)

jm
− 1

2

(
∇∇φ∗o

∣∣
jm

+∇∇φ∗nj
∣∣
jm

))(curr)
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· ~rjm

)
· ~rjm. (3.45)

Those three measures are now analyzed separately.

3.3.3.1 First Measure of Disagreement

Denoting the second term on the RHS of Eq. (3.43) as F̃jm, a third order accurate

expansion (i.e., by truncating the Taylor series expansions at the second derivatives) of

both terms using the connecting vectors between the center and neighbor cell centroids

to the integration (quadrature) points at their connecting face may be defined, and after

redefining the first measure of disagreement as fjm, Eq. (3.43) it can be rewritten as

fjm = φo +
∂φ

∂x

∣∣∣∣
o

∆xjm +
∂φ

∂y

∣∣∣∣
o

∆yjm +
∂φ

∂z

∣∣∣∣
o

∆zjm+ (3.46)

1

2

(
∂2φ

∂x2

∣∣∣∣
o

∆x2
jm +

∂2φ

∂y2

∣∣∣∣
o

∆y2
jm +

∂2φ

∂z2

∣∣∣∣
o

∆z2
jm

)
+

∂2φ

∂x∂y

∣∣∣∣
o

∆xjm∆yjm +
∂2φ

∂x∂z

∣∣∣∣
o

∆xjm∆zjm +
∂2φ

∂y∂z

∣∣∣∣
o

∆yjm∆zjm − F̃jm,

where F̃jm is given by

F̃jm =
1

2

[
φo +

∂φ

∂x

∣∣∣∣
o

∆xjm +
∂φ

∂y

∣∣∣∣
o

∆yjm +
∂φ

∂z

∣∣∣∣
o

∆zjm+

1

2

(
∂2φ

∂x2

∣∣∣∣
o

∆x2
jm +

∂2φ

∂y2

∣∣∣∣
o

∆y2
jm +

∂2φ

∂z2

∣∣∣∣
o

∆z2
jm

)
+

∂2φ

∂x∂y

∣∣∣∣
o

∆xjm∆yjm +
∂2φ

∂x∂z

∣∣∣∣
o

∆xjm∆zjm +
∂2φ

∂y∂z

∣∣∣∣
o

∆yjm∆zjm+

φnj +
∂φ

∂x

∣∣∣∣
nj

∆̃xjm +
∂φ

∂y

∣∣∣∣
nj

∆̃yjm +
∂φ

∂z

∣∣∣∣
nj

∆̃zjm+ (3.47)
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1

2

(
∂2φ

∂x2

∣∣∣∣
nj

∆̃x
2

jm +
∂2φ

∂y2

∣∣∣∣
nj

∆̃y
2

jm +
∂2φ

∂z2

∣∣∣∣
nj

∆̃z
2

jm

)
+

∂2φ

∂x∂y

∣∣∣∣
nj

∆̃xjm∆̃yjm +
∂2φ

∂x∂z

∣∣∣∣
nj

∆̃xjm∆̃zjm +
∂2φ

∂y∂z

∣∣∣∣
nj

∆̃yjm∆̃zjm

](curr)

.

3.3.3.2 Second Measure of Disagreement

Based on first-order Taylor Series expansions for the gradients and redefining (3.44)

as gjm, one obtains

gjm =



∂φ

∂x

∣∣∣∣
o

+
∂2φ

∂x2

∣∣∣∣
o

∆xjm +
∂2φ

∂x∂y

∣∣∣∣
o

∆yjm +
∂2φ

∂x∂z

∣∣∣∣
o

∆zjm

∂φ

∂y

∣∣∣∣
o

+
∂2φ

∂x∂y

∣∣∣∣
o

∆xjm +
∂2φ

∂y2

∣∣∣∣
o

∆yjm +
∂2φ

∂y∂z

∣∣∣∣
o

∆zjm

∂φ

∂z

∣∣∣∣
o

+
∂2φ

∂x∂z

∣∣∣∣
o

∆xjm +
∂2φ

∂y∂z

∣∣∣∣
o

∆yjm +
∂2φ

∂z2

∣∣∣∣
o

∆zjm


·


∆xjm

∆yjm

∆zjm


− G̃jm, (3.48)

where G̃jm is given by

G̃jm =
1

2





∂φ

∂x

∣∣∣∣
o

+
∂2φ

∂x2

∣∣∣∣
o

∆xjm +
∂2φ

∂x∂y

∣∣∣∣
o

∆yjm +
∂2φ

∂x∂z

∣∣∣∣
o

∆zjm

∂φ

∂y

∣∣∣∣
o

+
∂2φ

∂x∂y

∣∣∣∣
o

∆xjm +
∂2φ

∂y2

∣∣∣∣
o

∆yjm +
∂2φ

∂y∂z

∣∣∣∣
o

∆zjm

∂φ

∂z

∣∣∣∣
o

+
∂2φ

∂x∂z

∣∣∣∣
o

∆xjm +
∂2φ

∂y∂z

∣∣∣∣
o

∆yjm +
∂2φ

∂z2

∣∣∣∣
o

∆zjm


·


∆xjm

∆yjm

∆zjm


+



∂φ

∂x

∣∣∣∣
nj

+
∂2φ

∂x2

∣∣∣∣
nj

∆̃xjm +
∂2φ

∂x∂y

∣∣∣∣
nj

∆̃yjm +
∂2φ

∂x∂z

∣∣∣∣
nj

∆̃zjm

∂φ

∂y

∣∣∣∣
nj

+
∂2φ

∂x∂y

∣∣∣∣
nj

∆̃xjm +
∂2φ

∂y2

∣∣∣∣
nj

∆̃yjm +
∂2φ

∂y∂z

∣∣∣∣
nj

∆̃zjm

∂φ

∂z

∣∣∣∣
nj

+
∂2φ

∂x∂z

∣∣∣∣
nj

∆̃xjm +
∂2φ

∂y∂z

∣∣∣∣
nj

∆̃yjm +
∂2φ

∂z2

∣∣∣∣
nj

∆̃zjm


·


∆xjm

∆yjm

∆zjm





(curr)

.

(3.49)
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3.3.3.3 Third Measure of Disagreement

Based on the zero-order expansions for the gradients of the gradients and redefining

(3.45) as hjm, one obtains

hjm =

(
∂2φ

∂x2

∣∣∣∣
o

∆x2
jm +

∂2φ

∂y2

∣∣∣∣
o

∆y2
jm +

∂2φ

∂z2

∣∣∣∣
o

∆z2
jm+

2
∂2φ

∂x∂y

∣∣∣∣
o

∆xjm∆yjm + 2
∂2φ

∂x∂z

∣∣∣∣
o

∆xjm∆zjm + 2
∂2φ

∂y∂z

∣∣∣∣
o

∆yjm∆zjm

)
− H̃jm, (3.50)

where H̃jm, whose expansions must be truncated at the second derivatives, is given by

H̃jm =
1

2

(
∂2φ

∂x2

∣∣∣∣
o

∆x2
jm +

∂2φ

∂y2

∣∣∣∣
o

∆y2
jm +

∂2φ

∂z2

∣∣∣∣
o

∆z2
jm+

2
∂2φ

∂x∂y

∣∣∣∣
o

∆xjm∆yjm + 2
∂2φ

∂x∂z

∣∣∣∣
o

∆xjm∆zjm + 2
∂2φ

∂y∂z

∣∣∣∣
o

∆yjm∆zjm+

∂2φ

∂x2

∣∣∣∣
nj

∆x2
jm +

∂2φ

∂y2

∣∣∣∣
nj

∆y2
jm +

∂2φ

∂z2

∣∣∣∣
nj

∆z2
jm+ (3.51)

2
∂2φ

∂x∂y

∣∣∣∣
nj

∆xjm∆yjm + 2
∂2φ

∂x∂z

∣∣∣∣
nj

∆xjm∆zjm+

2
∂2φ

∂y∂z

∣∣∣∣
nj

∆yjm∆zjm

)(curr)

.

3.3.4 Optimization Procedure for the Third Order Scheme

As before for the second-order version, the three measures of disagreement can be

rescaled to control the accuracy and stability of the method through the use of the tuning

parameter, σ. To do so, the three measures of mismatch: fjm, gjm and hjm , given by

(3.47), (3.49) and (3.51), respectively, are rewritten as

77



f ∗jm = σ2fjm = σ2

[
φo +

∂φ

∂x

∣∣∣∣
o

∆xjm +
∂φ

∂y

∣∣∣∣
o

∆yjm +
∂φ

∂z

∣∣∣∣
o

∆zjm+

1

2

(
∂2φ

∂x2

∣∣∣∣
o

∆x2
jm +

∂2φ

∂y2

∣∣∣∣
o

∆y2
jm +

∂2φ

∂z2

∣∣∣∣
o

∆z2
jm

)
+

∂2φ

∂x∂y

∣∣∣∣
o

∆xjm∆yjm +
∂2φ

∂x∂z

∣∣∣∣
o

∆xjm∆zjm+

∂2φ

∂y∂z

∣∣∣∣
o

∆yjm∆zjm − F̃jm
]
, (3.52)

g∗jm = σgjm = σ

[(
∂φ

∂x

∣∣∣∣
o

+
∂2φ

∂x2

∣∣∣∣
o

∆xjm +
∂2φ

∂x∂y

∣∣∣∣
o

∆yjm +
∂2φ

∂x∂z

∣∣∣∣
o

∆zjm

)
∆xjm+(

∂φ

∂y

∣∣∣∣
o

+
∂2φ

∂x∂y

∣∣∣∣
o

∆xjm +
∂2φ

∂y2

∣∣∣∣
o

∆yjm +
∂2φ

∂y∂z

∣∣∣∣
o

∆zjm

)
∆yjm+(

∂φ

∂z

∣∣∣∣
o

+
∂2φ

∂x∂z

∣∣∣∣
o

∆xjm +
∂2φ

∂y∂z

∣∣∣∣
o

∆yjm +
∂2φ

∂z2

∣∣∣∣
o

∆zjm

)
∆zjm

−G̃jm

]
, (3.53)

h∗jm = hjm =

(
∂2φ

∂x2

∣∣∣∣
o

∆x2
jm +

∂2φ

∂y2

∣∣∣∣
o

∆y2
jm +

∂2φ

∂z2

∣∣∣∣
o

∆z2
jm+

2
∂2φ

∂x∂y

∣∣∣∣
o

∆xjm∆yjm + 2
∂2φ

∂x∂z

∣∣∣∣
o

∆xjm∆zjm+

2
∂2φ

∂y∂z

∣∣∣∣
o

∆yjm∆zjm

)
− H̃jm, (3.54)

where again F̃jm, G̃jm and H̃jm are given by Eqs. (3.47), (3.49) and (3.51), respectively.

By using (3.52), (3.53) and (3.54), it is possible to construct the following quadratic

functional

F =

#neig∑
j=1

3∑
m=1

(
f ∗jm

2 + g∗jm
2 + h∗jm

2
)
, (3.55)
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which must be minimized in order to find the values of the first and second order derivatives

at any given cell centroid. As above, minimization of the function F is straightforward,

producing the following five equations (one for each derivative component sought):

∂F

∂

(
∂φ

∂x

∣∣∣∣
o

) = 0,
∂F

∂

(
∂φ

∂y

∣∣∣∣
o

) = 0,
∂F

∂

(
∂φ

∂z

∣∣∣∣
o

) = 0,

∂F

∂

(
∂2φ

∂x2

∣∣∣∣
o

) = 0,
∂F

∂

(
∂2φ

∂y2

∣∣∣∣
o

) = 0,
∂F

∂

(
∂2φ

∂z2

∣∣∣∣
o

) = 0, (3.56)

∂F

∂

(
∂2φ

∂x∂y

∣∣∣∣
o

) = 0,
∂F

∂

(
∂2φ

∂x∂z

∣∣∣∣
o

) = 0,
∂F

∂

(
∂2φ

∂y∂z

∣∣∣∣
o

) = 0.

The first equation in (3.56) can be expressed as

∂F

∂

(
∂φ

∂x

∣∣∣∣
o

) = 2

#neig∑
j=1

3∑
m=1

f ∗jm
∂f ∗jm

∂

(
∂φ

∂x

∣∣∣∣
o

) + g∗jm
∂g∗jm

∂

(
∂φ

∂x

∣∣∣∣
o

)+

h∗jm
∂h∗jm

∂

(
∂φ

∂x

∣∣∣∣
o

)
 = 0, (3.57)

and the other equations are expressed in a similar manner. The internal partial derivatives

are given by:

∂f ∗jm

∂

(
∂φ

∂x

∣∣∣∣
o

) = σ2∆xjm,
∂g∗jm

∂

(
∂φ

∂x

∣∣∣∣
o

) = σ∆xjm,
∂h∗jm

∂

(
∂φ

∂x

∣∣∣∣
o

) = 0,

∂f ∗jm

∂

(
∂φ

∂y

∣∣∣∣
o

) = σ2∆yjm,
∂g∗jm

∂

(
∂φ

∂y

∣∣∣∣
o

) = σ∆yjm,
∂h∗jm

∂

(
∂φ

∂y

∣∣∣∣
o

) = 0,

∂f ∗jm

∂

(
∂φ

∂z

∣∣∣∣
o

) = σ2∆zjm,
∂g∗jm

∂

(
∂φ

∂z

∣∣∣∣
o

) = σ∆zjm,
∂h∗jm

∂

(
∂φ

∂z

∣∣∣∣
o

) = 0,
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∂f ∗jm

∂

(
∂2φ

∂x2

∣∣∣∣
o

) =
σ2∆x2

jm

2
,

∂g∗jm

∂

(
∂2φ

∂x2

∣∣∣∣
o

) = σ∆x2
jm,

∂h∗jm

∂

(
∂2φ

∂x2

∣∣∣∣
o

) = ∆x2
jm, (3.58)

∂f ∗jm

∂

(
∂2φ

∂y2

∣∣∣∣
o

) =
σ2∆y2

jm

2
,

∂g∗jm

∂

(
∂2φ

∂y2

∣∣∣∣
o

) = σ∆y2
jm,

∂h∗jm

∂

(
∂2φ

∂y2

∣∣∣∣
o

) = ∆y2
jm,

∂f ∗jm

∂

(
∂2φ

∂z2

∣∣∣∣
o

) =
σ2∆z2

jm

2
,

∂g∗jm

∂

(
∂2φ

∂z2

∣∣∣∣
o

) = σ∆z2
jm,

∂h∗jm

∂

(
∂2φ

∂z2

∣∣∣∣
o

) = ∆z2
jm,

∂f ∗jm

∂

(
∂2φ

∂x∂y

∣∣∣∣
o

) = σ2∆xjm∆yjm,
∂g∗jm

∂

(
∂2φ

∂x∂y

∣∣∣∣
o

) = 2σ∆xjm∆yjm,

∂h∗jm

∂

(
∂2φ

∂x∂y

∣∣∣∣
o

) = 2∆xjm∆yjm,
∂f ∗jm

∂

(
∂2φ

∂x∂z

∣∣∣∣
o

) = σ2∆xjm∆zjm,

∂g∗jm

∂

(
∂2φ

∂x∂z

∣∣∣∣
o

) = 2σ∆xjm∆zjm,
∂h∗jm

∂

(
∂2φ

∂x∂z

∣∣∣∣
o

) = 2∆xjm∆zjm,

∂f ∗jm

∂

(
∂2φ

∂y∂z

∣∣∣∣
o

) = σ2∆yjm∆zjm,
∂g∗jm

∂

(
∂2φ

∂y∂z

∣∣∣∣
o

) = 2σ∆yjm∆zjm,

∂h∗jm

∂

(
∂2φ

∂y∂z

∣∣∣∣
o

) = 2∆yjm∆zjm.

Substituting Eqs. (3.58) into the Eqs. (3.56), dividing all equations by 2, and rearranging

terms, the system of equations (3.56) can be rewritten in matrix form asAs = B, where the
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components of the matrix of coefficients A and the RHS vector B are given in Appendix

B.1.

It is worthwhile to reinforce at this point that the cell neighbors over which the sum-

mation is performed in the OGRE third order scheme represent just the first level of face

neighbors (e.g., 4 face neighbors for an internal control volume in a tetrahedra-based 3D

unstructured mesh). This is in significant contrast to a L-S third order scheme, which

would (mathematically) require the summation over a larger stencil made up of at least

9 neighbor cells (in 3D), typically constructed of both first and second level face neigh-

bors. This smaller stencil translates into memory savings in either sequential or parallel

calculations. For example, in parallel calculations using a 3rd order scheme, instead of

each core having to store two levels of neighbors for each subdomain, OGRE would re-

quire just one level. Also, by not using the second level of face neighbors, OGRE avoids

(by not increasing the stencil size) additional stiffness in the matrix calculation, a known

problematic by-product of the L-S scheme. Higher-order implementations of the OGRE

method would similarly require only the immediate face neighbors of each cell to populate

the computational stencil.

The global system of equations obtained using the OGRE method can be solved using

an iterative procedure. The local system in each cell (e.g. 9x9 for a third order 3D imple-

mentation) can be solved using any appropriate technique, for example simple Gaussian

Elimination. The derivative values can be sequentially calculated and updated for each

cell, thus producing a Gauss-Seidel-type of iterative procedure. For a fixed variable field,

the gradient values of the transport scalar will converge toward the values which minimize
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the objective function. When the OGRE scheme is used within numerical schemes which

are themselves iterative in nature, for example implicit finite volume simulations, the gra-

dient field may be updated once per outer (Newton) iteration. Therefore, within each time

step (or during a steady-state simulation), the variable field and the gradient field converge

simultaneously towards the solution.

For the scalar transport example cases in this study, since the focus is on a steady-state

calculation, just one inner-iteration (Newton sub-iteration) is used to update the derivative

values, because there is no need to converge the derivatives for a non-converged scalar flow

field during a steady-state calculation.

3.4 Boundary Condition Implementation

The previous section describes in detail the procedure to be applied for computing

derivatives in interior cells, i.e. cells for which each bounding face is in the interior of the

domain. A modification is necessary for boundary cells (i.e. cells for which at least one

bounding face lies on the domain boundary). The boundary condition method proposed

here first computes values of φ and its derivatives at the boundary face centroids. Boundary

cells then use a procedure similar to that outlined above, but with matching conditions

defined based on projections from the face centroids (instead of from a neighbor centroid).

Similar to what is done for the internal cell calculations, measures of disagreement are

defined at each of the face integration points, and the gradients and/or variable values are

determined based on a minimization of those measures. The boundary conditions them-

selves are imposed as constraints in the optimization problem, and a procedure based on
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Lagrange multipliers is adopted. Two general types of boundary conditions are addressed:

given boundary value (Dirichlet) and given normal gradient at the boundary (Neumann).

The former yields a constraint on the value of φ at the boundary face, and the latter yields

a constraint on the value of∇φ · n̂, where n̂ is the unit normal vector at the boundary face.

The constraints are always applied at the boundary face quadrature (integration) points.

The following analysis is presented based on a tetrahedral-based 3D unstructured mesh,

although the methodology can be adopted in a straightforward manner to arbitrary mesh

types. Figure 3.2 illustrates in general how the BC procedure is implemented. It shows one

(center) cell (denoted cell 0) containing a bounding face (shown shadowed in the figure)

which lies on the domain boundary, and two cells (denoted 1 and 2) of the three first-face

neighbor cells for this center cell. For the 2nd order scheme, the face centroid denoted

by b is the only face integration point, while for the 3rd order scheme, three integration

points are needed and denoted as bm (m = 1, 2, 3), which locations are described in [25].

The values of φ and its derivatives must be calculated at the boundary location b (face

centroid). Using a similar analysis as before (for internal cells), for a 2nd order scheme

in 3D, 4 variables (φ and its three derivatives) are sought at b, which means that just the

information provided by the measures of mismatch derived from the two expansions (φ

and its gradient) at the center cell 0 plus the BC constraint at the quadrature point (face

centroid) are not enough to create a numerically consistent problem, so other cells must be

added to the problem (analogous idea works for 3rd order scheme). This extra information

comes from expansions (measures of mismatch) from the three first-face-neighbors of the

center cell. In Figure 3.2 (that shows the 3rd order variant of the scheme), two (cells 1
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and 2) of those three first-face neighbors are shown. For clarity, cell 3 is not shown in the

figure. This general procedure is explained in detail in the next two sections (for 2nd and

3rd order schemes).

Two modifications in this procedure occur if a cell has two or three faces lying on

domain boundaries. For a cell containing two faces lying on domain boundaries, using a

2nd order scheme, the 4 variables to be sought at face centroid b can be found with the

information of the (six) expansions coming from the center cell and its two first-neighbor

cells plus the information on the BC constraint, while by using a 3rd order scheme, the 10

variables to be sought at face centroid b can be found with the information of the (nine)

expansions coming from the center cell and its two first-neighbor cells plus the (three) BC

contraints. For a cell containing three faces lying on domain boundaries, using a 2nd order

scheme, the 4 variables to be sought at face centroid b can be found with the information

of the (four) expansions coming from the center cell and its first-neighbor cell plus the

information on the BC constraint. But a new layer of neighbors must be added in the

calculation for the case of a cell containing three faces lying on domain boundaries and the

3rd order scheme is being used. In this special case, 10 variables are sought at face centroid

b, but by adding the information of the (three) expansions coming from the center cell, the

(three) expansions coming from its only first-neighbor cell, plus the (three) BC contraints,

all add up to just 9 data points, which enforces the need of adding in the calculation an extra

layer of neighbors (three second-face-neighbors) for the center cell, thus guaranteeing that

the system of equations is not under-determined.
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3.4.1 BC Implementation for the Second Order Scheme

For the 2nd order scheme the values of φ and its gradient are expanded (in general)

from the four closest cells (center cell and its three first-face-neighbors) to the face centroid

b (which is the only face integration location for the second order scheme) where two

measures of disagreement per cell are formed. So, 8 terms (in general) are created (four

for the φ measure and four for their gradient measure). The measures of disagreement for

φ and its gradient for the cell k (= 0, 1, 2, 3) are given by:

R1k = σ

(
φ

(new)
b − 1

2

(
φb + φ∗k

∣∣
b

)(current)
)
, (3.59)

and

R2k =

(
∇φ(new)

b − 1

2

(
∇φb +∇φ∗k

∣∣
b

)(current)
)
· ~rk1, (3.60)

where

~rk1 = ~Xb − ~Xk = ∆xk1
~ix + ∆yk1

~iy + ∆zk1
~iz (3.61)

(notice here again the inclusion of the tuning parameter σ).

If following the same approach as for the internal cells calculation, the vector used

for the dot product in (3.60) should be the connecting vector between the position where

the new values are being sought and the face integration points, but since, for 2nd or-

der scheme, the face centroid and the face integration point are the same, it was decided

instead to use the connecting vector between the center cell centroid k and the face in-

tegration point. The same approach is used for the 3rd order case as well to maintain

consistency. Another reason for doing so is that, if the vector chosen for the dot product
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was the connecting vector between the face centroid and the face integration points (for 3rd

order scheme now), the scheme does not converge. The likely cause is that, since the linear

combination of those vectors would produce just a plane (always parallel to the boundary

face), this would create a geometrical inconsistency in the boundary face calculation, since

the measures involving the dot product between the gradient of φ and those vectors would

discard any component normal to this plane.

The disagreement measures in Eq. (3.59) and (3.60) are squared to create a quadratic

functional, which has the form

F (x∗) =
3∑

k=0

(
R2

1k +R2
2k

)
, (3.62)

where x∗ is the solution vector containing the values of φ and its three first derivatives at

the boundary face centroid b. The additional constraint for a Dirichlet BC is given by:

qb : φb − φBC = 0, (3.63)

and the additional constraint for a Neumann BC is given by:

qb : (∇φ)b · n̂− |∇φ|BC = 0, (3.64)

where the vector n̂ represents the unit normal vector for the boundary face. The boundary

condition values φBC or |∇φ|BC may be constant or vary as a function of position on the

boundary. For a zero-flux condition, the Neumann condition is expressed as

qb : (∇φ · n̂)b = 0. (3.65)

This boundary condition may be applied, for example, at a symmetry plane in finite-volume

simulations.
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The Lagrangian function is defined in terms of the objective function and the constraint

as follows:

L (x∗, λ) = F (x∗) + λqb. (3.66)

To minimize the Lagrangian it is necessary to solve the following system of equations:

∂L

∂x∗j
= 0, j = 1, 4, (3.67)

∂L

∂λ
= 0. (3.68)

Applying Taylor Series expansions of appropriate order for (3.59) and (3.60), they can

be substituted into (3.66) so the system of equations defined by (3.67) – (3.68) can be

obtained. After rearranging the terms, one arrives at the system of equations As = C,

where the matrix of coefficients A for the Dirichlet type of BC is given by

A =



∑(
2σ2
)

0 0 0 1

0
∑(

2∆x2
k1

) ∑
(2∆xk1∆yk1)

∑
(2∆xk1∆zk1) 0

0
∑

(2∆yk1∆xk1)
∑(

2∆y2
k1

) ∑
(2∆yk1∆zk1) 0

0
∑

(2∆zk1∆xk1)
∑

(2∆zk1∆yk1)
∑(

2∆z2
k1

)
0

1 0 0 0 0


,

(3.69)

the expanded solution vector s is now given by

s =

[
φb

∂φ

∂x

∣∣∣∣
b

∂φ

∂y

∣∣∣∣
b

∂φ

∂z

∣∣∣∣
b

λ

]T
, (3.70)
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and the RHS vector C is given by

C =



∑
2σ2φbk∑

2∆xk1∇φbk · ~rk1∑
2∆yk1∇φbk · ~rk1∑
2∆zk1∇φbk · ~rk1

φBC



. (3.71)

The averaged values on the RHS are given by

φbk =
1

2

(
φb + φk +

∂φ

∂x

∣∣∣∣
k

∆xk1 +
∂φ

∂y

∣∣∣∣
k

∆yk1 +
∂φ

∂z

∣∣∣∣
k

∆zk1

)
(3.72)

and

∇φbk · ~rk1 =
1

2

(
∂φ

∂x

∣∣∣∣
b

∆xk1 +
∂φ

∂y

∣∣∣∣
b

∆yk1 +
∂φ

∂z

∣∣∣∣
b

∆zk1+

∂φ

∂x

∣∣∣∣
k

∆xk1 +
∂φ

∂y

∣∣∣∣
k

∆yk1 +
∂φ

∂z

∣∣∣∣
k

∆zk1

)
(3.73)

and the simplification
∑

=

1, 2 or 3∑
k=0

is used.

The following substitution on the fifth row/column of A (since A is symmetric) pro-

duces the matrix of coefficients for the Neumann type of BC

A(5, 1 : 4) = A(1 : 4, 5)T =

[
0 nx ny nz

]
, (3.74)

where nx, ny and nz are the components of the normal unit vector for the boundary face.

Also, the fifth component in C must be changed such that C(5) = |∇φ|BC .

3.4.2 BC Implementation for the Third Order Scheme

For the 3rd order scheme the values of φ, the gradient of φ and the gradient of the gra-

dient of φ are expanded from the four closest cells k (= 0, 1, 2, 3) and from the boundary
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face centroid to each one of the three face integration points, thus forming three measures

of disagreement. In this way, 12 terms are created for each one of the three face integra-

tion points. The three measures of disagreement for a given cell k on the boundary face

integration point bm (m = 1, 2, 3) are given by:

R1km = σ2

(
φ∗b
∣∣(new)

bm
− 1

2

(
φ∗b
∣∣
bm

+ φ∗k
∣∣
bm

)(current)
)
, (3.75)

R2km = σ

(
∇φ∗b

∣∣(new)

bm
− 1

2

(
∇φ∗b

∣∣
bm

+∇φ∗k
∣∣
bm

)(current)
)
· ~rkm, (3.76)

R3km =

((
∇∇φ∗b

∣∣(new)

bm
− 1

2

(
∇∇φ∗b

∣∣
bm

+∇∇φ∗k
∣∣
bm

)(current)
)
· ~rkm

)
· ~rkm,

(3.77)

where the index m here represents boundary face integration point location and

~rkm = ~Xbm − ~Xk = ∆xkm~ix + ∆ykm~iy + ∆zkm~iz (3.78)

represents the connecting vector between the cell centroid k and the boundary face inte-

gration point bm.

Those 36 terms (when 4 cells are used) are squared to create a quadratic functional,

which has the form

F (x∗) =
3∑

m=1

1,2,3 or 4∑
k=0

(
R2

1km +R2
2km +R2

3km

)
, (3.79)

where x∗ is the solution vector containing the values of φ and its first and second derivatives

at the boundary face centroid. The additional constraints for a Dirichlet BC are given by:

qm : φ∗b
∣∣
bm
− φbm = 0, (3.80)

and the additional constraints for a Neumann BC are given by:

qm : (∇φ · n̂)∗b
∣∣
bm
− |∇φ|bm = 0, (3.81)
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Notice that the constraints are always applied at the boundary face integration points. In

the previous section, it was applied at the boundary face centroid only because that is the

position for the boundary face integration point for a 2nd order scheme.

The Lagrangian function is defined as follows

L (x∗, λ) = F (x∗) + λ1q1 + λ2q2 + λ3q3. (3.82)

To minimize the Lagrangian it is necessary to solve the following system of equations:

∂L

∂x∗j
= 0, j = 1, 10, (3.83)

∂L

∂λl
= 0, l = 1, 3. (3.84)

Using third order expansions on (3.75), (3.76) and (3.77), they can be substituted into

(3.82) so the system of equations (3.83) – (3.84) can be calculated. After rearranging the

terms, one arrives at the system of equations As = C, whose components, the matrix of

coefficients A and the RHS vector C, for the Dirichlet and Neumann types of BC, are

given in the Appendix B.2.

3.5 Results

The OGRE algorithm was implemented as a User Defined Function (UDF) into the

commercial flow solver Ansys Fluent v12.0. Three-dimensional versions of both the 2nd

and 3rd order schemes were implemented. Results were obtained for several test cases

and compared to 2nd and 3rd order other methods (mainly the least-squares method). Test

cases were performed with two objectives. The first objective was to check if the OGRE

scheme is able to deliver a numerical solution with measured accuracy comparable with the
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nominal order of the defined scheme for two different cases: a static variable field test case

and a finite-volume scalar advection case where a variable flow field is smoothly distributed

throughout the domain. Both quantitative and qualitative analyses were performed. The

second objective was to determine how effectively the OGRE scheme is able to reconstruct

a variable field with a wide spectrum of wavelengths. The result analyzes the spectral

behavior of the scheme, which could indicate its potential ability to address problems that

require low numerical dissipation and/or energy preservation.

3.5.1 Static Variable Field Test Case

The first test case is straightforward. Given a distribution of a (fixed) arbitrary vari-

able, reconstruct the gradients of the variable at each point in the domain. This test case

has relevance to, for example, image processing or data analysis applications. The ob-

jective is to show that the OGRE scheme is able to reproduce the gradients to the correct

(nominal) order of accuracy. The computational geometry for this case is shown in Fig-

ure 3.3. All boundary faces are treated identical to the interior faces by setting them to be

of periodic/shadow type. The distribution of scalar φ throughout the domain is given by

the following analytical function

φ (x, y, z) = cos(4π(x− 0.5)) sin(4π(y − 0.5)) cos(4π(z − 0.5)). (3.85)

In order to assess the numerical accuracy of this methodology, it is important to first

define how the errors are quantified. The error norms in a numerical calculation are the
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most common metric for accuracy assessment. For 3D formulations, the general form of

the error norm can be defined as

Lp =


Ncv∑
i=1

Vi
∣∣Ēi∣∣p

Ncv∑
i=1

Vi


1
p

, (3.86)

where

Ēi = |φi,exact − φi,calculated| , (3.87)

p is the norm index, Ncv is the total number of control volumes in the domain, Vi is the vol-

ume of the control volume i, and Ēi is the solution error in the control volume i. While L1

and L2 are global norms, L∞ is a local error indicator since it shows the largest magnitude

of the error in the solution domain. It is defined as

L∞ = max
∣∣Ēi∣∣ . (3.88)

To test the numerical order of accuracy of the proposed method, four different unstructured

(tetrahedral-based) meshes were created using the commercial mesh generation system

Ansys Gambit. The coarsest mesh is denoted Mesh3D 1 and contained 7595 tetrahedral

cells. The mesh was created such that opposite domain faces possess matching node/edge

positions to permit periodic/shadow BC effectiveness. To create the second mesh (Mesh3D

2), all cell edges on the domain edges were decreased to half of their initial size, result-

ing in four times as many boundary domain faces/nodes. Mesh3D 2 was then generated,

and the number of cells increased by a factor of approximately 8 (as expected). The pro-

cedure was repeated until four successively finer meshes were created. The numbers of
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cells/faces/nodes for these four meshes (and Mesh3D 5 which is used in the spectral reso-

lution test case) are given in Table 3.1. For illustration purposes, Mesh3D 1 (the coarsest

mesh) is shown in Figure 3.4.

It is expected that by successively refining the mesh, the error in the solution should

follow the relation given by

log(E) ∝ −k
3

log(NDOF ) (3.89)

(see [4] for more details), where E is the error (in some given norm), NDOF is the number

of solution unknowns (which for the FV method, it is the total number of control volumes)

and k is the numerical accuracy. Or alternatively, between any two different meshes (in 3D)

with a number of cells equal to NDOF1 and NDOF2, respectively, the numerical accuracy

can be approximated by

k =
3 log (Lp1/Lp2)

log (NDOF2/NDOF1)
, (3.90)

where Lp1 and Lp2 are the respective error norms (p = 1,2,∞) for the solution on each

mesh.

For the test case considered here, the 2nd order OGRE scheme is used with a value

σ = 1.0 and the 3rd order OGRE scheme is used with σ = 1.7. To assess performance,

values for
∂φ

∂y
(2nd order) for

∂φ

∂y
and

∂2φ

∂x2
3rd order) are compared for different schemes.

The results for theL2 error norms of
∂φ

∂y
and

∂2φ

∂x2
in comparison with their L-S counterparts

are shown in Figures 3.5 and 3.6, respectively. The numerical error accuracy orders for the

different schemes, obtained from the results for the two finest meshes, are indicated in the

plots, and they compare well with the nominal accuracy of the given schemes. The results
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for
∂φ

∂y
using the 2nd order OGRE scheme compare well to the L-S 2nd order results. For

the 3rd order OGRE scheme the error in the first derivative is smaller when compared to

the L-S results, however the results for
∂2φ

∂x2
show a smaller numerical order of accuracy

when compared to L-S. The other first- and second-derivative components showed similar

behavior to the ones shown here.

A qualitative examination of the results on the coarsest mesh (Mesh3D 1) when using

OGRE and L-S methods for the third-order scheme is provided in Figures 3.7, 3.8 and 3.9,

showing the distribution of
∂φ

∂y
for the OGRE 3rd order scheme (with σ = 1.7), for exact

(analytical) values, and for the L-S 3rd order scheme, respectively. Both the OGRE and

L-S schemes yield a close approximation of the analytical result, with the OGRE scheme

showing slightly better agreement, at least in the first derivative. The results show that

OGRE is able to better capture the extreme (maximum and minimum) values for the first

derivatives in a static variable field. To evaluate the differences in performance between

the two schemes, it is necessary to investigate results from the sample application (finite-

volume solution of advection equation), and these results are presented in the following

subsections.

Because the OGRE scheme is implicit, the gradient field must be found through an

iterative procedure. It was found that about 26 iterations were sufficient to obtain a gradient

solution which presents no more than 10% of difference of the fully converged one for a

static variable field. The L-S method, however, is an explicit scheme, and only one iteration

is required to obtain the gradients in each cell. For the 3rd order scheme, this represents a
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tradeoff in terms of computational expense, since the stencil support is reduced in OGRE

but multiple iterations are required for gradient convergence.

3.5.2 Simple Scalar Transport Test Case

The first finite-volume test case examines simple advection of a smoothly distributed

profile of an arbitrary scalar transport variable φ. The geometry and boundary conditions

for this case are shown in Figure 3.10. The domain extends one unit length in all directions.

A uniform convective velocity in the z-direction (uz = 1) is applied throughout the domain.

In this example, the z = 0 boundary is a flow (velocity) inlet (Dirichlet-type boundary

condition), the z = 1 boundary is defined as a flow (pressure) outlet, and all the other four

remaining domain boundaries are defined as symmetry conditions (zero-flux Neumann

boundary conditions). The inlet profile of φ is given by the so-called 3D “Mexican Hat”

function:

φ (x, y, 0) =

(
1− 200

((
x− 1

2

)2

+

(
y − 1

2

)2
))

e

(
−100

(
(x− 1

2)
2
+(y− 1

2)
2
))
.

(3.91)

The inlet profile is shown graphically in Figure 3.11. The exact solution for this test

case is simple advection of the profile in the z-direction, i.e. φ(x, y, z) = φ(x, y, 0). The

same set of four meshes used in the Section 2.5.1 is utilized here, but with the appropriate

boundary conditions given in Figure 3.10.

To determine the optimum values to be used for σ in all test cases, the code was run

on Mesh3D 1 with different σ values and the results for total number of iterations (needed

for convergence at Residual < 10−10) and L2 error norms were obtained. These are
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plotted in Figures 3.12 and 3.13, for OGRE 2nd and 3rd order schemes, respectively. As

expected, there is a small tradeoff in choosing the value for the tuning coefficient σ. The

results show that a higher value for the tuning coefficient σ degrades stability (indicating

by taking more iterations to obtain convergence) but at the same time improves numerical

accuracy. On the other hand, a very small σ value also produces a decay in stability. From

the plots, it is apparent that, for the OGRE 2nd order scheme, values ranging from 0.8 to

1.2 seem adequate, and for the OGRE 3rd order scheme, the choice for σ depends on the

needs of accuracy and computational resources. A reasonable tradeoff between stability

and accuracy is obtained with σ = 1.0 for OGRE 2nd order scheme and σ = 1.7 for

OGRE 3rd order scheme. These values are used for all of the test cases presented.

The initial intention was to compare OGRE results with those using the standard L-S

scheme. Unfortunately, the L-S scheme (2nd and 3rd order), without the use of any slope

limiter, was unable to obtain convergence for this test case. The comparison is therefore

performed with two pre-defined schemes inside Ansys Fluent (v. 12.0): the L-S cell based

2nd order upwind and 3rd order MUSCL scheme [28]. Fluent’s 2nd order upwind scheme

is used with the Default (TVD) Slope Limiter in combination with the Cell to Face Limiting

Direction option, where the limited value of the reconstruction gradient is determined at

cell face centers. Fluent’s 3rd order MUSCL scheme blends a central differencing scheme

and a second-order upwind scheme, and it does not contain any gradient/flux limiter. The

results for L1 and L2 error norms for the different meshes using the different schemes are

shown in Figures 3.14 and 3.15, respectively, and in Table 3.2. The numerical accuracy
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orders for the different error norms, obtained from a linear fit of the results on the two

finest meshes, are shown in the Table 3.3 and indicated in the plots.

The transport scalar solutions on Mesh3D 2 for x = 0.5 cross section, using OGRE

3rd order scheme (with σ = 1.7) and Fluent’s 3rd order MUSCL scheme, are shown

in Figures 3.16, 3.17, 3.18 and 3.19. These figures show that the OGRE 3rd order

scheme produces a less dissipative distribution of the variable field throughout the domain

when compared to the solution obtained using the Fluent 3rd order MUSCL scheme, which

clearly seems to produce more numerical dissipation.

The global error norms (L1 and L2) listed in Table 3.3 indicate that the new method-

ology (OGRE) yields a measured numerical order of accuracy equal to or higher than the

nominal order of accuracy for both the 2nd and 3rd order schemes, for all L norms. This is

also clearly shown in the plots of L1 and L2 norms in Figures 3.14 and 3.15. On the other

hand, the Fluent L-S 2nd order scheme and 3rd order MUSCL scheme produce a measured

numerical order of accuracy much smaller than their nominal order of accuracy. The results

therefore demonstrate that there is a clear advantage to using the OGRE (2nd and 3rd or-

der) schemes versus Fluent’s L-S 2nd-order L-S (with slope limiter) and Fluent’s 3rd order

MUSCL schemes, respectively, for this test case. Based on 2D results presented in [4], it is

expected that the unlimited L-S results would have demonstrated accuracy orders consis-

tent with their nominal order, however as mentioned above converged results were unable

to be obtained. Not only the error order, but the overall error level in the OGRE scheme

is also consistently lower, by a significant amount, for all mesh sizes. As a result, the L2

error using OGRE 3rd-order scheme is about an order of magnitude lower than the equiv-
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alent L-S scheme by Mesh3D 2, and two orders of magnitude lower by Mesh3D 5. This

highlights one of the primary advantages of the OGRE scheme, namely the use of a stencil

comprised only of immediate neighbors, rather than a larger stencil as required by L-S for

higher order. As discussed in [4], error is proportional to hk, where h is the characteristic

mesh size and k is the order of accuracy. When the stencil size is increased, the effective

mesh size h is likewise increased. The results in Figures 3.14 and 3.15 show the effect

of both contributions in the OGRE scheme: higher k and lower h. It is expected that this

advantage – smaller effective mesh size due to smaller stencil – will become even more

pronounced in contrast to the L-S scheme as the nominal order of the scheme is increased

beyond 3.

As discussed in the previous subsection, the OGRE scheme is implicit, and multiple

iterations are required to converge the gradient field. This requirement led to an increase

in computational expense versus the L-S scheme for the static variable case. In the finite-

volume simulations, however, this expense is mitigated. Because the solution algorithm

is itself implicit, the gradient field was simply updated once per iteration. Because the

convergence rate for the gradients is much more rapid than for the solution of φ itself, this

was sufficient to allow both the variable and gradient fields to converge together. As a

consequence, the overall cost per iteration using OGRE was effectively equal to the cost

per iteration using L-S.

Convergence for all cases was defined by Residual < 10−10. All OGRE results are

fully converged results. None of the Fluent schemes were able to converge to that level,

due to the necessity of including a slope limiter. It was observed that these schemes could
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not obtain residuals smaller than 10−5 or 10−6, depending on the mesh and/or the order of

the scheme.

3.5.3 Spectral Resolution Test Case

The second transport test case was performed to assess the spectral behavior of the new

gradient calculation scheme. The case used the same computational geometry described

in Section 2.5.2, with a uniform z-direction velocity field. The inlet and outlet boundary

condition types are the same as above, but the other four boundary surfaces are assumed

to be periodic. In order to apply 2D Fast Fourier Transform (2D FFT) on the outlet, two

approaches could be used. One approach could be to use a fully tetrahedral mesh, where

the outlet solution should be interpolated to a structured (2D) solution, and then the 2D FFT

could be applied on it. A second approach could be to create a hybrid mesh where both

inlet and outlet surface meshed were Cartesian structured (2D). This yields a 3D mesh

where two layers of pyramids (at the inlet and at the outlet) are combined with interior

tetrahedral elements. The first approach introduces interpolation errors, which would be

difficult to distinguish from errors arising from the numerical scheme itself. The second

approach slightly decreases mesh quality, but is expected to have little effect on the final

result. Therefore the second approach was chosen for the test case.

A new mesh (Mesh3D 5) was created for which the inlet and outlet faces are comprised

of 64×64 equally distributed quadrilateral cells, for the purposes of performing Fourier

analysis of the inlet and outlet variable profiles in terms of their spectral content. In order

to test the new scheme for situations which contain a wide range of scales, an inlet profile
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for the transport scalar φ was synthesized as a sum of Fourier modes. The inlet profile was

defined as

φ (x, y, 0) =

(N,N)∑
~K=(1,1)

[
a ~K cos

(
2π ~K · ~x

)
+ b ~K sin

(
2π ~K · ~x

)]
. (3.92)

In Eq. (3.92), the phases of the Fourier modes were randomly chosen, and the amplitude

for each mode was equal to 1.0, i.e. (a2
~K

+ b2
~K

= 1) and N = 31 (= Nyquist frequency

- 1). As in the previous subsection, the exact solution is given by φ(x, y, z) = φ(x, y, 0).

The simulation was run using each of the different gradient calculation schemes, and the

solution profile at the outlet was compared to the profile at the inlet. In both cases, the

discrete values φ(y) were transformed to wavenumber space using the 2D Fast Fourier

Transform. Figure 3.20 shows the transformed profile at the outlet for five different cases:

1st order upwind, Fluent’s L-S 2nd order and 3rd order MUSCL schemes, and OGRE 2nd

(with σ = 1.0) and 3rd (with σ = 1.7) order schemes. The plot clearly shows the lack of

effectiveness in resolving higher wavenumber modes of the solution when using low order

schemes. The 1st order upwind cannot even reconstruct completely the lowest wavenumber

mode. Consistent with previous results, both Fluent schemes yield similar results, and are

able to resolve at least 90% of the amplitude of modes up to about wavenumber 2. As in

the previous subsection, a significant improvement in accuracy is apparent when using the

new scheme.

OGRE 2nd order scheme resolves about 90% of the amplitudes up to about wavenum-

ber 5, and OGRE 3rd order scheme can do the same up to wavenumber 8. This corresponds

to resolving variable modes with a spatial period equal to approximately eight character-
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istic cell sizes. Just as a comparison, in [4], it is shown that OGRE 3rd order scheme

(2D) was able to resolve 90% of the amplitudes up to wavenumber 27 (over the total 63),

which corresponded to structures of about five characteristic cell sizes. This relative de-

crease in accuracy when comparing 2D and 3D results is expected since not only there is

a natural decay in general mesh quality when going from a triangle-based 2D mesh to a

tetrahedral-based 3D mesh, but also since there was the need to introduce two layers of

pyramids (at inlet and outlet), the decay in mesh quality was accentuated. Nevertheless,

the results clearly show that the OGRE scheme is able to resolve significantly more of the

variable spectrum than the other methods, and that the resolution improves as the order of

the scheme is increased.

These results not only reinforce those shown in Figures 3.14 and 3.15, they also have

important implications for applications requiring high-resolution solution algorithms for

a range of spatial scales. For example, in finite-volume CFD applications, these results

suggest that the OGRE scheme may provide better numerical accuracy in large-eddy sim-

ulations by producing less numerical dissipation.

Table 3.1

Mesh specifications used in all 3D test cases.

Mesh # # of cells # of faces # of nodes
Mesh3D 1 7595 15,872 1,637
Mesh3D 2 61,423 125,532 11,633
Mesh3D 3 425,174 861,124 76,325
Mesh3D 4 3,558,515 7,117,030 614,602
Mesh3D 5 1,233,466 2,475,124 220,330
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Table 3.2

Error norms for the 3D simple scalar transport test case on different schemes and meshes.

Mesh - OGRE OGRE FLUENT’s FLUENT’s
error norm 2nd Order 3rd Order L-S 3rd Order

σ = 1.0 σ = 1.7 2nd Order MUSCL
M1 - L1 0.0198994 0.0113373 0.0220121 0.0217875
M1 - L2 0.0607814 0.0345558 0.0724993 0.0704919
M1 - L∞ 0.858366 0.532718 1.02486 0.981531
M2 - L1 0.00629042 0.00146902 0.0101475 0.0115058
M2 - L2 0.0235183 0.00609128 0.0389089 0.0430283
M2 - L∞ 0.436463 0.124493 0.692294 0.716423
M3 - L1 0.00142081 0.000154042 0.0035416 0.00508348
M3 - L2 0.00552696 0.000630339 0.0143198 0.0193745
M3 - L∞ 0.145242 0.0178307 0.340436 0.416208
M4 - L1 0.000277256 1.742e-05 0.00140122 0.00238814
M4 - L2 0.00109886 7.04784e-05 0.00553681 0.00909881
M4 - L∞ 0.0336132 0.00212322 0.167604 0.219004

Table 3.3

Numerical orders of accuracy for the error in each scheme between the two finest meshes
for the 3D simple scalar transport test case.

error OGRE OGRE FLUENT’s FLUENT’s
norm 2nd Order 3rd Order L-S 3rd Order

σ = 1.0 σ = 1.7 2nd Order MUSCL
L1 2.31 3.08 1.31 1.07
L2 2.28 3.09 1.34 1.07
L∞ 2.07 3.00 1.00 0.91
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Figure 3.1

3D OGRE implementation for interior cells: center cell centroid, face neighbor centroid
and face quadrature (integration) points (three, for the 3rd order case), with respective

connecting vectors over generic face quadrature point jm.

Figure 3.2

3D boundary condition implementation.
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Figure 3.3

3D geometry and boundary conditions for the static variable test case.

Figure 3.4

Mesh3D 1.

104



Figure 3.5

L2 error norm values of
∂φ

∂y
for the 3D static variable test case.

Figure 3.6

L2 error norm values of
∂2φ

∂x2
for the 3D static variable test case.
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Figure 3.7

OGRE 3rd order solution of
∂φ

∂y
using σ = 1.7 for the static variable field test case on

Mesh3D 1.

Figure 3.8

Analytical solution of
∂φ

∂y
for the static variable test case on Mesh3D 1.
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Figure 3.9

L-S 3rd order solution of
∂φ

∂y
for the static variable test case on Mesh3D 1.

Figure 3.10

3D geometry and boundary conditions for the simple scalar transport test case.
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Figure 3.11

3D inlet profile: Mexican Hat function.

Figure 3.12

σ effect on OGRE 2nd order, Mesh3D 1.
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Figure 3.13

σ effect on OGRE 3rd order, Mesh3D 1.

Figure 3.14

L1 error norms for the 3D simple scalar transport test case.
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Figure 3.15

L2 error norms for the 3D simple scalar transport test case.

Figure 3.16

φ distribution throughout the domain on Mesh3D 2 for x = 0.5 cross section using OGRE
3rd order scheme, σ=1.7, for the simple scalar test case.
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Figure 3.17

φ distribution throughout the domain on Mesh3D 2 for x = 0.5 cross section using Fluent
3rd order MUSCL scheme, for the simple scalar test case.

Figure 3.18

φ distribution throughout the domain on Mesh3D 2 for x = 0.5 cross section using OGRE
3rd order scheme, σ=1.7, for the simple scalar test case – inlet/outlet comparison.
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Figure 3.19

φ distribution throughout the domain on Mesh3D 2 for x = 0.5 cross section using Fluent
3rd order MUSCL scheme, for the simple scalar test case – inlet/outlet comparison.

Figure 3.20

2D FFT outlet reconstruction using different schemes for the 3D spectral analysis test
case.
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CHAPTER 4

CONCLUSIONS

4.1 Contributions

A new scheme (Optimization-based Gradient Reconstruction – OGRE) was presented

for calculating gradients to arbitrarily high order on unstructured meshes. The development

included both 2nd and 3rd order variants of the scheme for two and three-dimensional

meshes. The key aspect of the new scheme is that only first-level neighbors are used in the

solution stencil, which minimizes the effective mesh spacing for high-order (greater than

one) gradient calculations. This is in contrast to the more commonly used least-squares (L-

S) approach. Preliminary results show the proposed method is able to deliver a numerical

accuracy equivalent to (or better than) the nominal order of accuracy for both 2nd and 3rd

order schemes. The order of accuracy was confirmed for a static variable test case, by

examining the order of accuracy of the computed gradients, and for a sample application –

finite-volume solution of a scalar advection equation – by examining the order of accuracy

of the variable field solution.

The results from finite-volume simulations showed that the tuning parameter (σ) in the

new scheme can be adjusted to effect a tradeoff between accuracy and stability/convergence

rate. This feature of the scheme may be useful for stabilization on low-quality meshes.
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For 2D implementation, in the case of the finite-volume simulation of a simple advec-

tion transport problem, the 2nd order variant of the new scheme showed almost identical

results to the L-S scheme, and exhibited approximately the same level of computational

expense. For the 3rd order variant, however, the new scheme had significantly lower nu-

merical error regardless of grid resolution, as well as a higher measured order of accuracy.

As a consequence, the new method was able to reproduce results to the same level of accu-

racy as the L-S method using a grid with 1/16th the number of cells. The static variable test

case results showed the first derivatives calculated using OGRE 3rd order scheme possess a

consistently lower numerical error compared to the ones using L-S scheme for all meshes.

For 3D implementation, in the case of the finite-volume simulation of a simple advec-

tion transport problem, both variants of the novel scheme obtained full convergence, while

the L-S scheme could not obtain full convergence (without using any limiter). When com-

pared to the Fluent L-S 2nd order and 3rd order MUSCL schemes, both variants of the new

scheme had significantly lower numerical error regardless of grid resolution, as well as a

higher measured order of accuracy. Therefore, the OGRE 3rd order scheme using a grid

with about 1/64th the number of cells was able to produce results with smaller error than

those produced by the 3rd order MUSCL scheme. As in 2D, the 3D static variable test

case results showed the first derivatives calculated using OGRE 3rd order scheme possess

a consistently lower numerical error compared to the ones using L-S scheme in either mesh

resolution.

Spectral analysis shows that the new scheme possesses a desirable ability to better

capture small scales (higher wavenumber modes) of the numerical solution, in comparison
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with the L-S results in 2D, and in comparison with the Fluent L-S 2nd order and 3rd order

MUSCL schemes in 3D. This behavior is presumably due to the use of a smaller stencil

in the formulation. The results demonstrate the schemes potential to address problems

presenting a wide spectrum of wavelengths, for example unsteady turbulent flows.

The OGRE scheme was shown to produce equivalent 2nd order results as those ob-

tained by the L-S scheme for the 2D test cases presented here. For 3D, 2nd order of accu-

racy, the OGRE scheme produced more stable results when applied for the simple scalar

transport test case, since its equivalent L-S 2nd order of accuracy scheme without any lim-

iter could not obtain convergence. OGRE also produced more effective higher-order (3rd

order) numerical results in terms of error accuracy, stability and memory/computational

cost (for a given level of required precision) when compared to the Least-Squares scheme

in 2D and 3rd order MUSCL scheme in 3D, for the simple scalar transport test cases.

4.2 For Further Research

Future research efforts will include development and implementation of the OGRE

scheme for 3D unsteady calculations, and application of the new scheme to more realistic

problems, for example Reynolds-averaged Navier-Stokes (RANS) and large-eddy simula-

tions (LES) of turbulent flows.
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APPENDIX A

2D OGRE THIRD ORDER SCHEME
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A.1 2D Implementation of OGRE Third Order Scheme

The matrix of coefficients A is symmetric and is given by the block matrix:

A5x5 =

 C2×2 D2×3

DT
3×2 E3×3

 , (A.1)

where

cik =
∑∑(

σ4 + σ2
)

∆xi,jm∆xk,jm, (A.2)

dik =
∑∑

2 (1− |k − 2|)
(
σ4

2
+ σ2

)
∆x

5−(i+k)
1,jm ∆x

−2+(i+k)
2,jm , (A.3)

eik =
∑∑

22−(|i−2|+|k−2|)
(
σ4

4
+ σ2 + 1

)
∆x

6−(i+k)
1,jm ∆x

−2+(i+k)
2,jm , (A.4)

the coordinates are given by (x, y) = (x1, x2), and the following simplification is used:∑∑
=

#neig∑
j=1

2∑
m=1

. The components of the RHS vector B, containing just current values,

are given by the block matrix:

B5x1 =


P2×1

Q3×1

 , (A.5)

where

pi1 =
∑∑

σ4∆xi,jm

(
F̃jm − φo

)
+ σ2∆xi,jmG̃jm, (A.6)

qi1 =
∑∑

2 (1− |i− 2|) ∆x3−i
1,jm∆x−1+i

2,jm

[
σ4

2

(
F̃jm − φo

)
+ σ2G̃jm + H̃jm

]
,

(A.7)

and where the averaged values F̃jm, G̃jm and H̃jm, are given by (2.57), (2.59) and (2.61),

respectively. The solution vector s with the values of the derivatives at the center cell

centroid is given by:

s =

[
∂φ

∂x

∣∣∣∣
o

∂φ

∂y

∣∣∣∣
o

∂2φ

∂x2

∣∣∣∣
o

∂2φ

∂x∂y

∣∣∣∣
o

∂2φ

∂y2

∣∣∣∣
o

]T
. (A.8)
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A.2 2D BC Implementation of OGRE Third Order Scheme

The following simplification is used:
∑∑

=
2∑

k=0

2∑
m=1

. Since the matrix of coef-

ficients A is symmetric, just the upper diagonal components, for the Dirichlet boundary

condition case, are given here:

a11 =
∑∑(

2σ4
)
, a12 =

∑∑(
2σ4∆xbm

)
, a13 =

∑∑(
2σ4∆ybm

)
,

a14 =
∑∑(

σ4∆x2
bm

)
, a15 =

∑∑(
2σ4∆xbm∆ybm

)
,

a16 =
∑∑(

σ4∆y2
bm

)
, a17 = 1, a18 = 1,

a22 =
∑∑(

2σ4∆x2
bm + 2σ2∆x2

km

)
,

a23 =
∑∑(

2σ4∆xbm∆ybm + 2σ2∆xkm∆ykm
)
,

a24 =
∑∑(

σ4∆x3
bm + 2σ2∆xbm∆x2

km

)
,

a25 =
∑∑(

2σ4∆x2
bm∆ybm + 2dσ2∆xkm

)
,

a26 =
∑∑(

σ4∆xbm∆y2
bm + 2σ2∆ybm∆xkm∆ykm

)
, (A.9)

a27 = ∆xb1, a28 = ∆xb2,

a33 =
∑∑(

2σ4∆y2
bm + 2σ2∆y2

km

)
,

a34 =
∑∑(

σ4∆x2
bm∆ybm + 2σ2∆xbm∆xkm∆ykm

)
,

a35 =
∑∑(

2σ4∆xbm∆y2
bm + 2dσ2∆ykm

)
,

a36 =
∑∑(

σ4∆y3
bm + 2σ2∆ybm∆y2

km

)
, a37 = ∆yb1, a38 = ∆yb2,

a44 =
∑∑(

σ4

2
∆x4

bm + 2σ2∆x2
bm∆x2

km + 2∆x4
km

)
,

a45 =
∑∑(

σ4∆x3
bm∆ybm + 2dσ2∆xbm∆xkm + 4∆x3

km∆ykm
)
,

a46 =
∑∑(

σ4

2
∆x2

bm∆y2
bm + 2σ2∆xbm∆ybm∆xkm∆ykm + 2∆x2

km∆y2
km

)
,
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a47 =
∆x2

b1

2
, a48 =

∆x2
b2

2
,

a55 =
∑∑(

2σ4∆x2
bm∆y2

bm + 2d2σ2 + 8∆x2
km∆y2

km

)
,

a56 =
∑∑(

σ4∆xbm∆y3
bm + 2dσ2∆ybm∆ykm + 4∆xkm∆y3

km

)
,

a57 = ∆xb1∆yb1, a58 = ∆xb2∆yb2,

a66 =
∑∑(

σ4

2
∆y4

bm + 2σ2∆y2
bm∆y2

km + 2∆y4
km

)
, a67 =

∆y2
b1

2
, a68 =

∆y2
b2

2
,

a77 = a78 = a88 = 0,

The components of the RHS vector C for the Dirichlet boundary condition case are

given by:

c1 =
∑∑(

2σ4φbmk
)
,

c2 =
∑∑(

2σ4∆xbmφbmk + 2σ2∆xkm∇φbmk · ~rkm
)
,

c3 =
∑∑(

2σ4∆ybmφbmk + 2σ2∆ykm∇φbmk · ~rkm
)
, (A.10)

c4 =
∑∑(

σ4∆x2
bmφbmk + 2σ2∆xbm∆xkm∇φbmk · ~rkm+

2∆x2
km

(
∇∇φbmk · ~rkm

)
· ~rkm

)
,

c5 =
∑∑(

2σ4∆xbm∆ymφbmk + 2dσ2∇φbmk · ~rkm+

4∆xkm∆ykm
(
∇∇φbmk · ~rkm

)
· ~rkm

)
,

c6 =
∑∑(

σ4∆y2
bmφbmk + 2σ2∆ybm∆ykm∇φbmk · ~rkm+

2∆y2
km

(
∇∇φbmk · ~rkm

)
· ~rkm

)
,

c7 = φb1,

c8 = φb2,

122



where d = ∆xbm∆ykm + ∆ybm∆xkm, the vector connecting the face centroid b and the

face integration point bm is defined as ~rbm = ~Xbm − ~Xb = ∆xbm~ix + ∆ybm~iy, and the

averaged values on the RHS are given by:

φbmk =
1

2

[
φb +

∂φ

∂x

∣∣∣∣
b

∆xbm +
∂φ

∂y

∣∣∣∣
b

∆ybm+

1

2

(
∂2φ

∂x2

∣∣∣∣
b

∆x2
bm + 2

∂2φ

∂x∂y

∣∣∣∣
b

∆xbm∆ybm +
∂2φ

∂y2

∣∣∣∣
b

∆y2
bm

)
+ (A.11)

φk +
∂φ

∂x

∣∣∣∣
k

∆xkm +
∂φ

∂y

∣∣∣∣
k

∆ykm+

1

2

(
∂2φ

∂x2

∣∣∣∣
k

∆x2
km + 2

∂2φ

∂x∂y

∣∣∣∣
k

∆xkm∆ykm +
∂2φ

∂y2

∣∣∣∣
k

∆y2
km

)](current)

.

∇φbmk · ~rkm =
1

2




∂φ

∂x

∣∣∣∣
b

+
∂2φ

∂x2

∣∣∣∣
b

∆xbm +
∂2φ

∂x∂y

∣∣∣∣
b

∆ybm

∂φ

∂y

∣∣∣∣
b

+
∂2φ

∂x∂y

∣∣∣∣
b

∆xbm +
∂2φ

∂y2

∣∣∣∣
b

∆ybm

 ·


∆xkm

∆ykm

+


∂φ

∂x

∣∣∣∣
k

+
∂2φ

∂x2

∣∣∣∣
k

∆xkm +
∂2φ

∂x∂y

∣∣∣∣
k

∆ykm

∂φ

∂y

∣∣∣∣
k

+
∂2φ

∂x∂y

∣∣∣∣
k

∆xkm +
∂2φ

∂y2

∣∣∣∣
k

∆ykm

 ·


∆xkm

∆ykm




(curr)

.

(A.12)

(
∇∇φbmk · ~rkm

)
· ~rkm =

1

2

(
∂2φ

∂x2

∣∣∣∣
b

∆x2
km + 2

∂2φ

∂x∂y

∣∣∣∣
b

∆xkm∆ykm +
∂2φ

∂y2

∣∣∣∣
b

∆y2
km+

∂2φ

∂x2

∣∣∣∣
k

∆x2
km + 2

∂2φ

∂x∂y

∣∣∣∣
k

∆xkm∆ykm +
∂2φ

∂y2

∣∣∣∣
k

∆y2
km

)(curr)

.

(A.13)

For the Neumann boundary condition, the following changes must be performed to rep-

resent the new constraints: c7 = |∇φ|b1 and c8 = |∇φ|b2, and the 7th and 8th row/column

must be changed for:
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A(7 : 8, 1 : 8) =

 0 nx ny ∆xb1nx ∆yb1nx + ∆xb1ny ∆yb1ny 0 0

0 nx ny ∆xb2nx ∆yb2nx + ∆xb2ny ∆yb1ny 0 0

 . (A.14)

The solution vector s is given by:

s =

[
φb

∂φ

∂x

∣∣∣∣
b

∂φ

∂y

∣∣∣∣
b

∂2φ

∂x2

∣∣∣∣
b

∂2φ

∂x∂y

∣∣∣∣
b

∂2φ

∂y2

∣∣∣∣
b

λ1 λ2

]T
. (A.15)
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APPENDIX B

3D OGRE THIRD ORDER SCHEME
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B.1 3D Implementation of OGRE Third Order Scheme

The matrix of coefficients A is symmetric and is given by the block matrix:

A9x9 =


C3×3 D3×3 E3×3

DT
3×3 O3×3 N3×3

ET
3×3 NT

3×3 L3×3

 , (B.1)

where

cik =
∑∑(

σ4 + σ2
)

∆x
−1+|i−5/2|+|k−5/2|
jm ∆y

2−|i−2|−|k−2|
jm ∆z

−1+|i−3/2|+|k−3/2|
jm ,

dik =
∑∑(

σ4

2
+ σ2

)
∆x
−3/2+|i−5/2|+|2k−5|
jm ∆y

3−|i−2|−|2k−4|
jm ∆z

−3/2+|i−3/2|+|2k−3|
jm ,

eik =
∑∑(

σ4 + 2σ2
)

∆x
−3/2+|i−5/2|+|2k−5|
jm ∆y

3−|i−2|−|2k−4|
jm ∆z

−3/2+|i−3/2|+|2k−3|
jm ,

oik =
∑∑(

σ4

4
+ σ2 + 1

)
∆x
−2+|2i−5|+|2k−5|
jm ∆y

4−|2i−4|−|2k−4|
jm ∆z

−2+|2i−3|+|2k−3|
jm ,

nik =
∑∑(

σ4

2
+ 2σ2 + 2

)
∆x

1/2+|2i−5|−|k−3/2|
jm ∆y

2−|2i−4|+|k−2|
jm ∆z

1/2+|2i−3|−|k−5/2|
jm ,

lik =
∑∑(

σ4 + 4σ2 + 4
)

∆x
3−|i−3/2|−|k−3/2|
jm ∆y

|i−2|+|k−2|
jm ∆z

3−|i−5/2|−|k−5/2|
jm , (B.2)

and it is used the following simplification:
∑∑

=

#neig∑
j=1

3∑
m=1

. The components of the

RHS vector B, containing just current values, are given by the block matrix:

B9x1 =


P3×1

Q3×1

W3×1


, (B.3)

where

pi1 =
∑∑

∆xi,jm

[
σ4
(
F̃jm − φo

)
+ σ2G̃jm

]
, (B.4)

qi1 =
∑∑

∆x2
i,jm

[
σ4

2

(
F̃jm − φo

)
+ σ2G̃jm + H̃jm

]
, (B.5)
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and

W3x1 =



∑∑
∆xjm∆yjm

[
σ4
(
F̃jm − φo

)
+ 2σ2G̃jm + 2H̃jm

]
∑∑

∆xjm∆zjm

[
σ4
(
F̃jm − φo

)
+ 2σ2G̃jm + 2H̃jm

]
∑∑

∆yjm∆zjm

[
σ4
(
F̃jm − φo

)
+ 2σ2G̃jm + 2H̃jm

]


, (B.6)

and where the averaged values F̃jm, G̃jm and H̃jm, are given by (2.57), (2.59) and (2.61),

respectively. The solution vector s with the values of the derivatives at the center cell

centroid is given by:

s =

[
∂φ

∂x

∣∣∣∣
o

∂φ

∂y

∣∣∣∣
o

∂φ

∂z

∣∣∣∣
o

∂2φ

∂x2

∣∣∣∣
o

∂2φ

∂y2

∣∣∣∣
o

∂2φ

∂z2

∣∣∣∣
o

∂2φ

∂x∂y

∣∣∣∣
o

∂2φ

∂x∂z

∣∣∣∣
o

∂2φ

∂y∂z

∣∣∣∣
o

]T
.

(B.7)

B.2 3D BC Implementation of OGRE Third Order Scheme

It is used the following simplification:
∑∑

=

1, 2 or 3∑
k=0

3∑
m=1

. Since the matrix of

coefficients A is symmetric, just the upper diagonal components, for the inlet boundary

condition case, are given here:

a11 =
∑∑(

2σ4
)
, a12 =

∑∑(
2σ4∆xbm

)
, a13 =

∑∑(
2σ4∆ybm

)
,

a14 =
∑∑(

2σ4∆zbm
)
, a15 =

∑∑(
σ4∆x2

bm

)
, a16 =

∑∑(
σ4∆y2

bm

)
,

a17 =
∑∑(

σ4∆z2
bm

)
, a18 =

∑∑(
2σ4∆xbm∆ybm

)
,

a19 =
∑∑(

2σ4∆xbm∆zbm
)
, a1,10 =

∑∑(
2σ4∆ybm∆zbm

)
,

a1,11 = 1, a1,12 = 1, a1,13 = 1,

a22 =
∑∑(

2σ4∆x2
bm + 2σ2∆x2

km

)
,

127



a23 =
∑∑(

2σ4∆xbm∆ybm + 2σ2∆xkm∆ykm
)
,

a24 =
∑∑(

2σ4∆xbm∆zbm + 2σ2∆xkm∆zkm
)
,

a25 =
∑∑(

σ4∆x3
bm + 2σ2∆xbm∆x2

km

)
,

a26 =
∑∑(

σ4∆xbm∆y2
bm + 2σ2∆ybm∆xkm∆ykm

)
,

a27 =
∑∑(

σ4∆xbm∆z2
bm + 2σ2∆zbm∆xkm∆zkm

)
, (B.8)

a28 =
∑∑(

2σ4∆x2
bm∆ybm + 2σ2d1∆xkm

)
,

a29 =
∑∑(

2σ4∆x2
bm∆zbm + 2σ2d2∆xkm

)
,

a2,10 =
∑∑(

2σ4∆xbm∆ybm∆zbm + 2σ2d3∆xkm
)
,

a2,11 = ∆xb1, a2,12 = ∆xb2, a2,13 = ∆xb3,

a33 =
∑∑(

2σ4∆y2
bm + 2σ2∆y2

km

)
,

a34 =
∑∑(

2σ4∆ybm∆zbm + 2σ2∆ykm∆zkm
)
,

a35 =
∑∑(

σ4∆x2
bm∆ybm + 2σ2∆xbm∆xkm∆ykm

)
,

a36 =
∑∑(

σ4∆y3
bm + 2σ2∆ybm∆y2

km

)
,

a37 =
∑∑(

σ4∆ybm∆z2
bm + 2σ2∆zbm∆ykm∆zkm

)
,

a38 =
∑∑(

2σ4∆xbm∆y2
bm + 2σ2d1∆ykm

)
,

a39 =
∑∑(

2σ4∆xbm∆ybm∆zbm + 2σ2d2∆ykm
)
,

a3,10 =
∑∑(

2σ4∆y2
bm∆zbm + 2σ2d3∆ykm

)
,

a3,11 = ∆yb1, a3,12 = ∆yb2, a3,13 = ∆yb3,

a44 =
∑∑(

2σ4∆z2
bm + 2σ2∆z2

km

)
,

a45 =
∑∑(

σ4∆x2
bm∆zbm + 2σ2∆xbm∆xkm∆zkm

)
,
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a46 =
∑∑(

σ4∆y2
bm∆zbm + 2σ2∆ybm∆ykm∆zkm

)
,

a47 =
∑∑(

σ4∆z3
bm + 2σ2∆zbm∆z2

km

)
,

a48 =
∑∑(

2σ4∆xbm∆ybm∆zbm + 2σ2d1∆zkm
)
,

a49 =
∑∑(

2σ4∆xbm∆z2
bm + 2σ2d2∆zkm

)
,

a4,10 =
∑∑(

2σ4∆ybm∆z2
bm + 2σ2d3∆zkm

)
,

a4,11 = ∆zb1, a4,12 = ∆zb2, a4,13 = ∆zb3,

a55 =
∑∑(

σ4

2
∆x4

bm + 2σ2∆x2
bm∆x2

km + 2∆x4
km

)
,

a56 =
∑∑(

σ4

2
∆x2

bm∆y2
bm + 2σ2∆xbm∆ybm∆xkm∆ykm + 2∆x2

km∆y2
km

)
,

a57 =
∑∑(

σ4

2
∆x2

bm∆z2
bm + 2σ2∆xbm∆zbm∆xkm∆zkm + 2∆x2

km∆z2
km

)
,

a58 =
∑∑(

σ4∆x3
bm∆ybm + 2σ2d1∆xbm∆xkm + 4∆x3

km∆ykm
)
,

a59 =
∑∑(

σ4∆x3
bm∆zbm + 2σ2d2∆xbm∆xkm + 4∆x3

km∆zkm
)
,

a5,10 =
∑∑(

σ4∆x2
bm∆ybm∆zbm + 2σ2d3∆xbm∆xkm + 4∆x2

km∆ykm∆zkm
)
,

a5,11 =
∆x2

b1

2
, a5,12 =

∆x2
b2

2
, a5,13 =

∆x2
b3

2
,

a66 =
∑∑(

σ4

2
∆y4

bm + 2σ2∆y2
bm∆y2

km + 2∆y4
km

)
,

a67 =
∑∑(

σ4

2
∆y2

bm∆z2
bm + 2σ2∆ybm∆zbm∆ykm∆zkm + 2∆y2

km∆z2
km

)
,

a68 =
∑∑(

σ4∆xbm∆y3
bm + 2σ2d1∆ybm∆ykm + 4∆xkm∆y3

km

)
,

a69 =
∑∑(

σ4∆xbm∆y2
bm∆zbm + 2σ2d2∆ybm∆ykm + 4∆xkm∆y2

km∆zkm
)
,

a6,10 =
∑∑(

σ4∆y3
bm∆zbm + 2σ2d3∆ybm∆ykm + 4∆y3

km∆zkm
)
,

a6,11 =
∆y2

b1

2
, a6,12 =

∆y2
b2

2
, a6,13 =

∆y2
b3

2
,
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a77 =
∑∑(

σ4

2
∆z4

bm + 2σ2∆z2
bm∆z2

km + 2∆z4
km

)
,

a78 =
∑∑(

σ4∆xbm∆ybm∆z2
bm + 2σ2d1∆zbm∆zkm + 4∆xkm∆ykm∆z2

km

)
,

a79 =
∑∑(

σ4∆xbm∆z3
bm + 2σ2d2∆zbm∆zkm + 4∆xkm∆z3

km

)
,

a7,10 =
∑∑(

σ4∆ybm∆z3
bm + 2σ2d3∆zbm∆zkm + 4∆ykm∆z3

km

)
,

a7,11 =
∆z2

b1

2
, a7,12 =

∆z2
b2

2
, a7,13 =

∆z2
b3

2
,

a88 =
∑∑(

2σ4∆x2
bm∆y2

bm + 2d2
1σ

2 + 8∆x2
km∆y2

km

)
,

a89 =
∑∑(

2σ4∆x2
bm∆ybm∆zbm + 2d1d2σ

2 + 8∆x2
km∆ykm∆zkm

)
,

a8,10 =
∑∑(

2σ4∆xbm∆y2
bm∆zbm + 2d1d3σ

2 + 8∆xkm∆y2
km∆zkm

)
,

a8,11 = ∆xb1∆yb1, a8,12 = ∆xb2∆yb2, a8,13 = ∆xb3∆yb3,

a99 =
∑∑(

2σ4∆x2
bm∆z2

bm + 2d2
2σ

2 + 8∆x2
km∆z2

km

)
,

a9,10 =
∑∑(

2σ4∆xbm∆ybm∆z2
bm + 2d2d3σ

2 + 8∆xkm∆ykm∆z2
km

)
,

a9,11 = ∆xb1∆zb1, a9,12 = ∆xb2∆zb2, a9,13 = ∆xb3∆zb3,

a10,10 =
∑∑(

2σ4∆y2
bm∆z2

bm + 2d2
3σ

2 + 8∆y2
km∆z2

km

)
,

a10,11 = ∆yb1∆zb1, a10,12 = ∆yb2∆zb2, a10,13 = ∆yb3∆zb3,

a11,11 = a11,12 = a11,13 = a12,12 = a12,13 = a13,13 = 0.

The components of the RHS vector C for the Dirichlet boundary condition case are

given by:

c1 =
∑∑(

2σ4φbmk
)
,

c2 =
∑∑(

2σ4∆xbmφbmk + 2σ2∆xkm∇φbmk · ~rkm
)
,
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c3 =
∑∑(

2σ4∆ybmφbmk + 2σ2∆ykm∇φbmk · ~rkm
)
, (B.9)

c4 =
∑∑(

2σ4∆zbmφbmk + 2σ2∆zkm∇φbmk · ~rkm
)
,

c5 =
∑∑(

σ4∆x2
bmφbmk + 2σ2∆xbm∆xkm∇φbmk · ~rkm+

2∆x2
km

(
∇∇φbmk · ~rkm

)
· ~rkm

)
,

c6 =
∑∑(

σ4∆y2
bmφbmk + 2σ2∆ybm∆ykm∇φbmk · ~rkm+

2∆y2
km

(
∇∇φbmk · ~rkm

)
· ~rkm

)
,

c7 =
∑∑(

σ4∆z2
bmφbmk + 2σ2∆zbm∆zkm∇φbmk · ~rkm+

2∆z2
km

(
∇∇φbmk · ~rkm

)
· ~rkm

)
,

c8 =
∑∑(

2σ4∆xbm∆ymφbmk + 2σ2d1∇φbmk · ~rkm+

4∆xkm∆ykm
(
∇∇φbmk · ~rkm

)
· ~rkm

)
,

c9 =
∑∑(

2σ4∆xbm∆zmφbmk + 2σ2d2∇φbmk · ~rkm+

4∆xkm∆zkm
(
∇∇φbmk · ~rkm

)
· ~rkm

)
,

c10 =
∑∑(

2σ4∆ybm∆zmφbmk + 2σ2d3∇φbmk · ~rkm+

4∆ykm∆zkm
(
∇∇φbmk · ~rkm

)
· ~rkm

)
,

c11 = φb1,

c12 = φb2,

c13 = φb3,

where d1 = ∆xbm∆ykm+∆ybm∆xkm, d2 = ∆xbm∆zkm+∆zbm∆xkm and d3 = ∆ybm∆zkm+

∆zbm∆ykm. The vector connecting the face centroid b and the face integration point bm is
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defined as ~rbm = ~Xbm − ~Xb = ∆xbm~ix + ∆ybm~iy + ∆zbm~iz, and the averaged values on

the RHS vector are given by:

φbmk =
1

2

[
φb +

∂φ

∂x

∣∣∣∣
b

∆xbm +
∂φ

∂y

∣∣∣∣
b

∆ybm +
∂φ

∂z

∣∣∣∣
b

∆zbm+

1

2

(
∂2φ

∂x2

∣∣∣∣
b

∆x2
bm +

∂2φ

∂y2

∣∣∣∣
b

∆y2
bm +

∂2φ

∂z2

∣∣∣∣
b

∆z2
bm

)
+ (B.10)

∂2φ

∂x∂y

∣∣∣∣
b

∆xbm∆ybm +
∂2φ

∂x∂z

∣∣∣∣
b

∆xbm∆zbm +
∂2φ

∂y∂z

∣∣∣∣
b

∆ybm∆zbm+

φk +
∂φ

∂x

∣∣∣∣
k

∆xkm +
∂φ

∂y

∣∣∣∣
k

∆ykm +
∂φ

∂z

∣∣∣∣
k

∆zkm+

1

2

(
∂2φ

∂x2

∣∣∣∣
k

∆x2
km +

∂2φ

∂y2

∣∣∣∣
k

∆y2
km +

∂2φ

∂z2

∣∣∣∣
k

∆z2
km

)
+

∂2φ

∂x∂y

∣∣∣∣
k

∆xkm∆ykm +
∂2φ

∂x∂z

∣∣∣∣
k

∆xkm∆zkm +
∂2φ

∂y∂z

∣∣∣∣
k

∆ykm∆zkm

](curr)

.

∇φbmk · ~rkm =
1

2





∂φ

∂x

∣∣∣∣
b

+
∂2φ

∂x2

∣∣∣∣
b

∆xbm +
∂2φ

∂x∂y

∣∣∣∣
b

∆ybm +
∂2φ

∂x∂z

∣∣∣∣
b

∆zbm

∂φ

∂y

∣∣∣∣
b

+
∂2φ

∂x∂y

∣∣∣∣
b

∆xbm +
∂2φ

∂y2

∣∣∣∣
b

∆ybm +
∂2φ

∂y∂z

∣∣∣∣
b

∆zbm

∂φ

∂z

∣∣∣∣
b

+
∂2φ

∂x∂z

∣∣∣∣
b

∆xbm +
∂2φ

∂y∂z

∣∣∣∣
b

∆ybm +
∂2φ

∂z2

∣∣∣∣
b

∆zbm


·


∆xkm

∆ykm

∆zkm


+



∂φ

∂x

∣∣∣∣
k

+
∂2φ

∂x2

∣∣∣∣
k

∆xkm +
∂2φ

∂x∂y

∣∣∣∣
k

∆ykm +
∂2φ

∂x∂z

∣∣∣∣
k

∆zkm

∂φ

∂y

∣∣∣∣
k

+
∂2φ

∂x∂y

∣∣∣∣
k

∆xkm +
∂2φ

∂y2

∣∣∣∣
k

∆ykm +
∂2φ

∂y∂z

∣∣∣∣
k

∆zkm

∂φ

∂z

∣∣∣∣
k

+
∂2φ

∂x∂z

∣∣∣∣
k

∆xkm +
∂2φ

∂y∂z

∣∣∣∣
k

∆ykm +
∂2φ

∂z2

∣∣∣∣
k

∆zkm


·
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
∆xkm

∆ykm

∆zkm





(curr)

. (B.11)

(
∇∇φbmk · ~rkm

)
· ~rkm =

1

2

(
∂2φ

∂x2

∣∣∣∣
b

∆x2
km +

∂2φ

∂y2

∣∣∣∣
b

∆y2
km +

∂2φ

∂z2

∣∣∣∣
b

∆z2
km+

∂2φ

∂x∂y

∣∣∣∣
b

∆xkm∆ykm +
∂2φ

∂x∂z

∣∣∣∣
b

∆xkm∆zkm+

∂2φ

∂y∂z

∣∣∣∣
b

∆ykm∆zkm+

∂2φ

∂x2

∣∣∣∣
k

∆x2
km +

∂2φ

∂y2

∣∣∣∣
k

∆y2
km +

∂2φ

∂z2

∣∣∣∣
k

∆z2
km+

∂2φ

∂x∂y

∣∣∣∣
k

∆xkm∆ykm +
∂2φ

∂x∂z

∣∣∣∣
k

∆xkm∆zkm+

∂2φ

∂y∂z

∣∣∣∣
k

∆ykm∆zkm

)(cur.)

. (B.12)

For the Neumann boundary condition, the following changes must be performed to

represent the new constraints: c11 = |∇φ|b1, c12 = |∇φ|b2 and c13 = |∇φ|b3, and the 11th,

12th and 13th rows/columns must be changed for:

A(11 : 13, 1 : 10) =


0 nx ny nz ∆xb1nx ∆yb1ny ∆zb1nz

0 nx ny nz ∆xb2nx ∆yb2ny ∆zb2nz

0 nx ny nz ∆xb3nx ∆yb3ny ∆zb3nz

...

...

∆yb1nx + ∆xb1ny ∆zb1nx + ∆xb1nz ∆zb1ny + ∆yb1nz

∆yb2nx + ∆xb2ny ∆zb2nx + ∆xb2nz ∆zb2ny + ∆yb2nz

∆yb3nx + ∆xb3ny ∆zb3nx + ∆xb3nz ∆zb3ny + ∆yb3nz

 .

(B.13)
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The solution vector s is given by:

s =

[
φb

∂φ

∂x

∣∣∣∣
b

∂φ

∂y

∣∣∣∣
b

∂φ

∂z

∣∣∣∣
b

∂2φ

∂x2

∣∣∣∣
b

∂2φ

∂y2

∣∣∣∣
b

∂2φ

∂z2

∣∣∣∣
b

...

...
∂2φ

∂x∂y

∣∣∣∣
b

∂2φ

∂x∂z

∣∣∣∣
b

∂2φ

∂y∂z

∣∣∣∣
b

λ1 λ2 λ3

]T
. (B.14)
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