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A general expression for quantum transmission of non-interacting spinless electrons

through models of a fully connected network of sites that canbe regarded as a nanoparticle

is obtained using matrix algebra. This matrix algebra method leads to the same results

given by the Green’s function method without requiring the mathematical sophistication

as required by the later. The model of the nanoparticle in this study comprises a single

linear array of atoms that profile the input and output leads connected to a fully connected

blob of atoms. A simple tight-binding Hamiltonian motivates the quantum transmission

in the discrete lattice system. If there aren atoms in the nanoparticle, the methodology

requires the inverse of an × n matrix. The solution is obtained analytically for different

cases: a single atom in the nanoparticle, a single dangle atom, n fully connected atoms

in a mean-field type cluster with symmetric input and output connections, and the most

general case where then fully connected atoms can be connected arbitrarily to the input

and output leads. A numerical solution is also provided for the case where the intra-bonds



among the atoms in the nanoparticle are varied (a case with not-fully connected atoms).

The expression for the transmission coefficient thus obtained using the matrix method is

compared with the transmission coefficients derived using the real space Renormalization

Group method and the Green’s function method.

Key words: Nanosystems, transport, transmission coefficient



DEDICATION

This thesis is dedicated to my mother, Pramila and in honor ofthe memory of my late

father, S. S. SunderRaj, sisters, Vinolia and Catherine, brothers, Charles and Samuel, sons,

Evan and Navin, and to my dear wife Layla. Thank you for your love and support.

ii



ACKNOWLEDGMENTS

I would like to express my very sincere gratitude to my research and thesis advisor,

Dr. Mark A. Novotny whose expertise, understanding, and incredible patience has added

considerably to my graduate school experience. I appreciate his vast knowledge and skills

and the demeanor with which he guided me through this project. I am gratefully indebted

to him for my successful completion of the doctoral program.

Thanks to Dr. Seong-Gon Kim, Dr. R. Torsten Clay, Dr. Yaroslav Koshka, and Dr. Ru-

pak Gautam for consenting to be members of the dissertation committee and the valuable

suggestions to the making of this document. Their patience and advice is appreciated.

Thanks to my wife Layla who has been a constant support without which I could not

have come thus far. Thanks to my boys Evan and Navin who are always a source of joy

that kept my good sense prevailing during this journey through graduate school.

I thank the Department of Physics and Astronomy for the financial support, as well as

partial support from grants from the National Science Foundation.

The findings and opinions in this thesis belong solely to the author, and are not neces-

sarily those of the sponsor.

Permission to reproduce the MSU logo was given by Mississippi State University.

Unix R© is a registered trademark of The Open Group.

iii



TABLE OF CONTENTS

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF SYMBOLS, ABBREVIATIONS, AND NOMENCLATURE . . . . . . . viii

CHAPTER

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Nanotechnology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Quantum Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Transport Calculations - Continuous . . . . . . . . . . . . . . . .. 5
1.4 The Propagation Matrix . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5 Calculation of Finite Temperature Conductance . . . . . . .. . . . . 14
1.6 Green’s Function Method . . . . . . . . . . . . . . . . . . . . . . . 16
1.7 Method of Finite Differences . . . . . . . . . . . . . . . . . . . . . . 20
1.8 The Tight Binding Approximation . . . . . . . . . . . . . . . . . . . 23
1.9 Matrix Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2. TRANSMISSION CALCULATIONS . . . . . . . . . . . . . . . . . . . . 30

2.1 Transmission Coefficient Calculations from (n + 2) Matrix . . . . . . 30
2.2 Then-Matrix Transmission . . . . . . . . . . . . . . . . . . . . . . 35
2.3 Fully Connected Blob,n > 2 . . . . . . . . . . . . . . . . . . . . . 36
2.4 Decimation Renormalization Group - Matrix . . . . . . . . . . .. . 40
2.5 Transmission for a Single Site Blob using different methods . . . . . 41

2.5.1 Single Site: Continuous . . . . . . . . . . . . . . . . . . . . 42
2.5.2 Single Site: Green’s Function (Discrete) . . . . . . . . . .. . 43
2.5.3 Single Site: (3 × 3) Matrix . . . . . . . . . . . . . . . . . . . 45
2.5.4 Single Site: (1 × 1) Matrix . . . . . . . . . . . . . . . . . . . 47

iv



2.5.5 Single Site: RG . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.6 Transmission for Single Site Dangle using different methods . . . . . 54

2.6.1 Single Site Dangle: Matrix Formalism . . . . . . . . . . . . . 54
2.6.2 Single Site Dangle: Green’s Function Formalism . . . . .. . 55
2.6.3 Single Site Dangle: RG Formalism . . . . . . . . . . . . . . 56

3. APPLICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.1 General Solution: Fully connected 5 Equations 5 Unknowns case . . 59
3.1.1 5-Equation-5-Unknown: Matrix Formalism . . . . . . . . . .60
3.1.2 5-Equation-5-Unknown: RG Formalism . . . . . . . . . . . . 63

3.2 General Solution: Fully connected 10 Equations 10 Unknowns case . 70
3.2.1 10-Equation-10-Unknown: Matrix Formalism . . . . . . . .. 70
3.2.2 10-Equation-10-Unknown: RG formalism . . . . . . . . . . . 78

3.3 Missing Bonds in Fully Connected Blob . . . . . . . . . . . . . . . 80

4. CONCLUSIONS AND DISCUSSION . . . . . . . . . . . . . . . . . . . 84

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

APPENDIX

A. EASY JAVA SIMULATION CODE: SINGLE IMPURITY TRANSPORT . 90

B. EASY JAVA SIMULATION CODE: 5-EQUATIONS-5-UNKNOWNS . . 107

C. MATHEMATICA CODE: 10-EQUATION-10-UNKNOWNS CASE . . . . 121

v



LIST OF TABLES

3.1 The forty terms of the productMM−1. . . . . . . . . . . . . . . . . . . . . . 76

3.2 The forty terms of productMM−1 modified with constants. . . . . . . . . . . 77

vi



LIST OF FIGURES

1.1 Potential barrier with propagation directions. . . . . . .. . . . . . . . . . . . 5

1.2 1-D step potential. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 8

1.3 Smoothly varying 1-D potential discretized into seriesof potential steps. . . 9

1.4 Fermi function in the degenerate limit. . . . . . . . . . . . . . .. . . . . . . 15

1.5 (a) Retarded and (b) advanced Green’s function for infinite 1-D wire. . . . . . 18

1.6 Section of infinite chain of atoms, each with ans-like orbital. . . . . . . . . . 24

1.7 Two-site blob with input and output semi-infinite chainsof atoms in 1-D. . . 28

2.1 Transmission vs. Energy forn-site blob withǫ = t = tw = tu = 1. . . . . . . 39

2.2 A one-atom “device” connected to input and output leads.. . . . . . . . . . . 43

2.3 Easy Java Simulation of single atom blobT vsE. . . . . . . . . . . . . . . . 48

2.4 Two sites: Dangle blob. . . . . . . . . . . . . . . . . . . . . . . . . . . . .54

2.5 A single site dangle (a) before decimation, (b) after decimation. . . . . . . . 57

3.1 A fully-connectedn=5 site blob, with all sites connected to input and output. 59

3.2 Easy Java Simulation ofT vsE for the 5-Equation-5-Unknown case. . . . . . 63

3.3 Plots for the matrix and RG methods, 5-Equation-5-Unknown case . . . . . . 69

3.4 Fully-connectedn=7 sites, not all symmetrically connected to input, output.. 71

3.5 Comparison of the Matrix and RG methods, 10-Equation-10-Unknown case. . 78

3.6 Transmission versus energy for decreasing number of inter-blob connections. 82

vii



LIST OF SYMBOLS, ABBREVIATIONS, AND NOMENCLATURE

E Energy of particle

Ec Conduction band edge

G Conductance

GA Advanced Green’s function

GR Retarded Green’s function

Hop Hamiltonian operator

H Hamiltonian

h Planck’s constant

~ = h/2π

I Identity matrix

J Matrix with all elements equal to 1

kB Boltzmann constant

kf Fermi wavenumber

M Number of transverse modes

R Reflection coefficient

r Amplitude of reflected wave

T Transmission coefficient

T Product of number of modes

t Hopping/overlap energy parameter

ta,b Hopping energy parameter between sitesa andb

tT Amplitude of transmission

viii



tu Output connection parameter

tw Input connection parameter

U Time-independent potential energy

~u Output coupling vector

v Velocity of particle

vf Fermi velocity

~w Input coupling vector

Γ Energy broadening

ǫ Onsite potential energy

µ Electrochemical potential

Σ Self-energy

ix



CHAPTER 1

INTRODUCTION

1.1 Nanotechnology

Nanotechnology has become popular not only by name but in extensive research and

promises a lot of opportunities and benefits in every area of life. In its original sense, ‘nan-

otechnology’ refers to the projected ability to construct items from a bottom up fashion,

using techniques and tools being developed to make high performance products. In the not

too far future the manufacturing establishments will yieldto a paradigm shift that this new

technology will demand. Nanotechnology focuses on constructing structures of clusters

atoms at a scale of a billionth of a meter abbreviated as1 nm. The characteristic dimen-

sions are less than about1, 000 nanometers. To get a sense of the nanoscale, a human hair

measures50, 000 nanometers across [39].

In one of his talks given on December 29, 1959, at the annual meeting of the American

Physical Society at the California Institute of Technology, the 1965 Nobel Prize winner in

Physics, Richard P. Feynman has said, “the principles of physics, as far as I can see, do

not speak against the possibility of maneuvering things atom by atom.” The effort is on

to apply at the molecular scale the concept that has demonstrated its effectiveness at the

macroscopic scale: making parts go to locations where it is needed [14, 27].
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Properties that are of interest with respect to the objective of this research in particular,

and to the larger interests of the broad area of nanoscience in general, are the electronic

transport and other transport properties at nanoscale dimensions. The focus in this treatise

will primarily be that of an alternative transport coefficient derivation to those derived

using standard conventional methods.

The systems of interest to nanoscience are the isolated nanostructures and their prop-

erties of conductivities. The modeling of these nanostructures and a convenient method

in deriving a transmission expression is the essence of thisdissertation. Transport theory

lays the foundation of theoretical materials design. The questions to ask then are:

• How does one derive a transmission expression? Is there another method?

• If there is one, is it rigorous?

• Can it be implemented?

• Does the method yield the same results as other standard methods?

• Is it applicable to more difficult systems?

The answers to these questions set the tone of this dissertation.

1.2 Quantum Transport

Transport in nanosystems is currently a subject of intense experimental and theoretical

investigations because of their possible applications in electronic devices. This ongoing

research concerns with transport properties of various systems such as nanowires, single

2



atoms, molecules, quantum, dots, nanotubes. Technological advancements in recent times

have permitted fabrication of devices and enabled control over matters of small dimen-

sions. Under those circumstances, the behavior of individual atoms and electrons become

important and quantum effects become very crucial. These fundamentally alter the optical,

electrical and magnetic properties of materials. Many of the rules applied in the macro-

scopic realm do not hold in the mesoscopic realm. Certain fundamental limits have to be

set on how small the electronic devices should be. Theoretical predictions along with ex-

periments are part of that process. In the classical case, a particle or molecule is transported

through the device by diffusion, a time-dependent random process, such as heat diffusion,

molecular diffusion, and Brownian motion. This type of motion encounters frequent col-

lisions and the net transport of particles takes place because of a concentration gradient,

that is, from a region of higher concentration to one of a lower concentration. Diffusion

is relevant in the lengths between the nanometer and millimeter scale. Unlike this clas-

sical type, when the dimensions of the device approach the mean free path, the transport

mechanism changes from diffusive to ballistic. In this nanometer regime quantum effects

become significant and using quantum principles becomes central. The nanometer scale

regime’s imperative requirement is that the transport of particles be governed by the quan-

tum mechanical wave propagation. Transport is no longer dependent on the dimensions of

the device, and the macroscopic “Ohm’s law” falls short. In such a case the conductance

through a narrow constriction formed between two electrodes in general is given by the

Landauer formula [24, 25]

G =
2e2

h
MT, (1.1)

3



wheree is the electronic charge,h is Planck’s constant,M is the number of transverse

modes, andT is the transmission probability that an electron injected at one end will

emerge at the other end.T = 1 for ballistic transport.

Much of the discussion in this thesis will be utilizing the single-band, effective-mass

Schrödinger equation. The solutions of this problem provide one of the fundamental tools

available to understand and predict the behavior of quantumdevices.

A large number of works in the area of quantum transport have dealt with conditions

very near to thermal equilibrium and low bias. This ‘very near to thermal equilibrium’

and low bias condition is also referred to as the “linear-response regime,” implying the

current and voltage relationship is linear. Theoretical descriptions are much easier in this

case than otherwise. The Kubo formula for conductivity is one approach in studying linear

response theory [22, 23]. Another approach to the linear response transport is the Landauer

transport formula Eq. (1.1) [24]. The conductance formula is expressed in terms of the

quantum mechanical transmission coefficients for a system at absolute zero temperature,

where the Fermi-Dirac distribution (Eq. 1.29) is a step function. When conditions are

not too far removed from thermal equilibrium, then equilibrium statistical physics can be

applied treating the departure from equilibrium as a small perturbation on the equilibrium

state.

One approach to more sophisticated problems in quantum transport theory is the Green’s

function formalism. The basis of this approach is its concurrence with the progress of

quantum electrodynamics. The non-equilibrium Green’s function theory is described by

Kadanoff and Baym [18] and by Keldysh [19]. The non-equilibrium functions are defined

4



as expectation values of single-particle creation and annihilation operators and they de-

scribe the state and time evolution of the system. The Green’s functions are determined

by solving a set of Dyson equations which are an integral formof Schrödinger’s equa-

tion. The Dyson’s equations form a convenient starting point for the development of a

perturbation expansion [15].

1.3 Transport Calculations - Continuous

x

a

E

U(x)

U0

A exp(ik1x)

B exp (-ik1x)

F exp(ik1x)

Figure 1.1

Potential barrier with propagation directions.

The simplest quantum transport problem is in terms of scattering of the electron wave-

functionψ(x) in one-dimension by a spatially varying potentialU(x), a one-dimensional

5



scattering problem that will aid in the understanding of basic transport calculations. The

dynamics of a quantum particle of massm in one-dimension is given by the time-independent

Schrödinger equation

− ~
2

2m

d2ψ(x)

dx2
+ U(x)ψ(x) = Eψ(x), (1.2)

where~ is the Planck’s constant, andE is the total energy of a localized wave packet mov-

ing from the left towards a one-dimensional potential barrier U(x), (Fig. 1.1) satisfying

the condition

U(x) =































0 x < 0

U0 0 ≤ x ≤ a

0 x > a.

(1.3)

This repulsive potential supports no bound states. We assume a particle comes in from

x = −∞ and is either reflected by or transmitted through the barrier. In this case where

E < U0, classically, every particle that arrives at the barrier at(x = 0) will be reflected

back. Quantum mechanically the wave function is not zero beyond the barrier, implying

that there is some probability of transition. The wave equation is solved by the standard

text book presentation of this scattering phenomenon of thetime-independent Schrödinger

equation Eq. (1.2). It requires a solution ofHψ = Eψ. The Schrödinger equation in the

three regions yields the expressions [40, 45]

ψ(x) =































ψ1(x) = Aeik1x +Be−ik1x x ≤ 0

ψ2(x) = Cek2x +De−k2x 0 < x < a

ψ3(x) = Feik1x x ≥ a,

(1.4)
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wherek2
1 = 2mE/~2 andk2

2 = 2m(U0 − E)/~2, A eik1x andF e−ik1x represent the

incident andtransmitted waves respectively moving in the positivex direction,B e−ik1x

corresponds to thereflected wave moving in the negativex direction. Using the continuity

of ψ(x) and its first derivative atx = 0 andx = a, the constantsB,C,D, andF can be

obtained in terms ofA.

Thereflection andtransmission coefficients,R andT can now be evaluated as [45]

R =

∣

∣

∣

∣

∣

reflected current density

incident current density

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

Jreflected

Jincident

∣

∣

∣

∣

∣

, T =

∣

∣

∣

∣

∣

Jtransmitted

Jincident

∣

∣

∣

∣

∣

. (1.5)

Since the incident wave isψi = Aeik1x, the incident current density is given by

Jincident =
i~

2m

(

ψi(x)
dψ∗

i (x)

dx
− ψ∗

i (x)
dψi(x)

dx

)

=
~k1

m

∣

∣A
∣

∣

2
, (1.6)

and similarly, since the reflected and transmitted waves areψr(x) = Be−ik1x andψt(x) =

Ceik1x respectively, then the reflected and transmitted fluxes are

Jreflected = −~k1

m

∣

∣B
∣

∣

2
, Jtransmitted =

~k2

m

∣

∣F
∣

∣

2
. (1.7)

Thus the transmission coefficient is

T =
k1|F |2
k1|A|2

. (1.8)

ConstantF can be calculated in terms ofA and hence the transmission probabilityT .
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1.4 The Propagation Matrix

A B C D

j j+1

x = xj +1

Uj

Uj+1

Figure 1.2

1-D step potential.

This section motivates the tight-binding approximation and the matrix method, which

is the theme of this dissertation. Consider a step potentialshown in Fig. (1.2). Any po-

tential of arbitrary shape can be approximated as a series ofpotential steps,i.e. it can be

discretized, as shown in Fig. (1.3). The transmission and reflection coefficients are cal-

culated at the first potential step for a particle energyE incident from the left as shown

in Fig. (1.2). The transmitted particle propagating to the next potential step, where it

again has a probability of being transmitted or reflected. For every potential step and the

8



j j +1

xj xj
+ 1Lj = xj+1 - xj

x

U(x)
transmission / reflection  

step boundary
potential U(x)

Figure 1.3

Smoothly varying 1-D potential discretized into series of potential steps.

free propagation of the wavefunction to the next potential step can be associated with a

2 × 2 matrix. This matrix carries all the amplitude and phase information on transmission

and reflection at each potential step and the propagation to the next step. The total one-

dimensional propagation probability for a potential consisting of a number of potential

steps can be calculated by taking the product of each2 × 2 matrix associated with each

transmission and reflection at each step. This approach works well for a series of potential

steps approximating a smoothly varying potential, by whichit can be assumed that the

errors are small if the step spacing is small compared to the wavelength of the particle.

The steps [26] implemented to calculate the transmission probability are:

1. Calculate the propagation matrixpstep for transmission and reflection of the wave

function representing a particle of energyE incident on a single potential step at

xj+1 as shown in Fig. (1.3).

9



2. Calculate the propagation matrixpfree for propagation of the wave function between

steps. The free propagation region is betweenxj andxj+1, with distanceLj .

3. Calculate the propagation matrix for thej-th region. This is obtained by multiplying

pstep andpfree to get matrixpj for thej-th region of the discretized potential.

4. Calculate the total propagation matrixP for the complete potential by multiplying

together the propagation matrices for each region of the discretized potential.

The particle has wave vector

k2
j =

2m(E − Uj)

~2
. (1.9)

The propagation between steps separated by distanceLj carries a phase so thatψAj e
ikjLj =

ψCj andψBj e
−ikjLj = ψDj, which in matrix form is









Aj

Bj









= pjfree









Cj+1

Dj+1









, (1.10)

where the free propagation matrix is

pjfree =









e−ikjLj 0

0 eikjLj









(1.11)

while the step matrix is

pjstep =
1

2









(

1 +
kj+1

kj

) (

1 − kj+1

kj

)

(

1 − kj+1

kj

) (

1 +
kj+1

kj

)









. (1.12)
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The propagating matrixpj for thej-th region is the combined effect, which is a product

of pjfree andpjstep matrices, that is,

pj = pjfree pjstep =









p11 p12

p21 p22









, (1.13)

where

p11 =
1

2

(

1 +
kj+1

kj

)

exp(−ikjLj)

p12 =
1

2

(

1 − kj+1

kj

)

exp(−ikjLj)

p21 =
1

2

(

1 − kj+1

kj

)

exp(ikjLj)

p22 =
1

2

(

1 +
kj+1

kj

)

exp(ikjLj), (1.14)

note thatp11 = p∗22 andp21 = p∗12.

For the general case ofN potential steps, the total propagation matrix is the product of

the propagation matrix for each region

P = p1p2 . . .pj . . .pN =

N
∏

j=1

pj .

Since the particle is introduced from the left, the incidentcoefficient is taken to beA = 1.

If there is no incoming particle from the right, thenD = 0. Consequently








A

B









=

(

N
∏

j=1

pj

)









C

D









= P









C

D









(1.15)

can be written as








1

B









=









p11 p12

p21 p22

















C

0









. (1.16)
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The transmission probability in this case is

|C|2 =

∣

∣

∣

∣

1

p11

∣

∣

∣

∣

2

. (1.17)

The transmission probability for a rectangular potential barrier as shown in Fig. (1.1),

which can be considered as composed of two parts where the wave vector changes from

k1 to k2 due to the potential step-up atx = 0 and a step-down atx = L = a where

the vector changes fromk2 to k1, which is symmetry. The corresponding wave function

changes fromψ1 toψ2 for the part step up and fromψ2 toψ1 for the part step down, where

ψ1 =
A√
k1

eik1x +
B√
k1

e−ik1x

ψ2 =
C√
k2

eik2x +
D√
k2

e−ik2x. (1.18)

Using constraints that the wave functions and their first derivatives are continuous at the

boundaries, in matrix form this becomes

1√
k1









1 1

1 −1

















A

B









=
1√
k2









1 1

k2

k1
−k2

k1

















C

D









(1.19)

Thus








A

B









=
1

2
√
k1k2









k1 + k2 k1 − k2

k1 − k2 k1 + k2

















C

D









. (1.20)

The total propagation matrix for the rectangular potentialbarrier of thicknessL is the

product of the step-up matrix and the step-down matrix, which is

P =
1

4k1k2









(k1 + k2)e
−ik2L (k1 − k2)e

ik2L

(k1 − k2)e
−ik2L (k1 + k2)e

ik2L

















k2 + k1 k2 − k1

k2 − k1 k2 + k1









. (1.21)
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Multiplying out the matrices gives the elements of the matrix P. The transmission proba-

bility for a particle incident on the potential barrier is given by|1/p11|2, where here

p11 =
(k2

2 + k2
1 + 2k1k2)e

−ik2L − (k2
1 + k2

2 − 2k1k2)e
ik2L

4k1k2
. (1.22)

With some rearrangement

p11 = −(k2
1 + k2

2)(e
ik2L − e−ik2L)

2 · 2k1k2
+

1

2
(e−ik2L + eik2L). (1.23)

For the caseE ≥ U0, when the energy of the incident particle is greater than thepotential

barrier energy, using the above equation results in

p11 = −i(k
2
1 + k2

2)

2k1k2

sin(k2L) + cos(k2L).

Therefore the transmission probability forE ≥ U0 is

T =
1

|p11|2
=

[

(

k2
2 + k2

1

2k1k2

)2

sin2(k2L) + cos2(k2L)

]−1

(1.24)

or

T =

[

1 +

(

(

k2
2 + k2

1

2k1k2

)2

− 1

)

sin2(k2L)

]−1

. (1.25)

For the case whenE < U0

T =

[

1 +

(

(

k2
2 + k2

1

2k1k2

)2

− 1

)

sinh2(k2L)

]−1

. (1.26)

Transmission as a function of energy can be expressed using the transmission for the case

E ≥ U0 with the use of the relationsk2
1 = 2mE/~2 andk2

2 = 2m(E − U0)/~
2 giving

T (E) =



1 +
1

4

(

E − (E − U0)
√

E(E − U0)

)2

sin2(k2L)





−1

(1.27)

or

T (E) =

[

1 +
1

4

(

U0
2

E(U0 −E)

)

sinh2 (k2L)

]−1

. (1.28)
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1.5 Calculation of Finite Temperature Conductance

The zero temperature conductance is a Fermi surface property since the current is

carried by a few electrons near the Fermi energy, and can be considered to be diffusion

from a region of higher electrochemical potentialµ1 to a region of lower electrochemical

potentialµ2. At zero temperature transport of electrons takes place in the energy range

µ1 > E > µ2.

When the temperature is raised, the Fermi function

f0(E) = (1 + exp [(E − Ef)/kβT ])−1 (1.29)

changes smoothly over an energy range, instead of the abruptdiscontinuous change from

one to zero (Fig. 1.4). At finite temperatures, slightly above zero, the kinetic energy of

the electrons are raised thereby causing some redistribution. Some levels that were vacant

at absolute zero are now occupied, and some levels that were occupied at absolute zero

are vacant. The electro-chemical potentialµ, which is a function of temperature, causes

the redistribution. The discontinuous change at absolute zero in the Fermi function is

due toµ = ǫ = ǫF . When the quantityµ changes due to a change in temperature, then

ǫ− µ > kBT and is not zero.

The conductance of a one-dimensional quantum mechanical system at absolute zero is

given by the well established Landauer equation Eq. (1.1) inwhich the currentI flowing

at any point in the device is given by [12]

I = (2e/h)MT [µ1 − µ2].
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1.0

f

Ef
E

Figure 1.4

Fermi function in the degenerate limit.

This current equation shows that at zero temperature the transport is due entirely to the

influx of electrons at the Fermi energy that is assumed constant over the rangeµ1 > E >

µ2, where the transmission functionT (E) = M(E)T (E) with T (E) as the transmission

probability andM(E) as the number of transverse modes in the conductor.

As the temperature is increased from absolute zero, the effective transmission coeffi-

cient is drastically modified almost immediately. If inelastic scattering effects inside the

device are not important, then the Landauer relation between conductivity and transmis-

sion remains valid providedT is replaced by
∫

dE
(

−∂f0

∂E

)

T (E). Here,f0 is the Fermi

distribution at temperatureT . The physics behind this is that the carriers are assumed to

suffer no inelastic scattering inside the sample. Thus within the sample the temperature is

effectively zero. However, the sources and sinks for carriers which are metallic conductors
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attached to the ends of the device are in thermal equilibrium; hence the carriers available

for conduction through the device, instead of being confinedto Ef itself, have a thermal

distribution around it given by∂f0/∂E [5].

The shift in the energy levels provide multiple energy pathsand transport can take

place through these paths. The Landauer formula for finite-temperature, also called multi-

channel conduction through transverse modes, is given by

G =
2e2

h

∫

dE

(

− ∂f

∂E

)

T (E). (1.30)

1.6 Green’s Function Method

The Green’s function method plays a vital role in condensed matter physics and parti-

cle physics. It is used in solving inhomogeneous boundary value problems and provides

an effective method for analyzing the local density of states, conductance, quantum the-

ory of scattering, and other transport-related propertiesof semi-conductors. In modern

theoretical physics, Green’s functions are used as propagators of Feynman diagrams. A

brief introduction [12] to the Green’s function and some of its properties will provide an

understanding of the concepts of this methodology.

A responseR due to an excitationS is related by means of a differential operatorDop,

DopR = S. (1.31)

The response due to an excitation for instance, could be a change in the current due to a

change in the potential. The Green’s function can be defined in the form

R = D−1
op S = GS, (1.32)
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whereG ≡ D−1
op . The case of a non-interacting transport problem can be expressed in the

form

[E −Hop]Ψ = S, (1.33)

whereΨ is the wave function andS is an equivalent excitation term due to a wave incident

from one of the leads. The corresponding Green’s function can be written as

G = [E −Hop]
−1, (1.34)

whereHop is the Hamiltonian operator:

Hop ≡
(i~∆)2

2m
+ U(r). (1.35)

The inverse of a differential operator can be obtained when the boundary conditions are

set, without which the system is an infinite one and the inverse of a differential operator of

an open system without boundary conditions would be impossible since a real and proper

solution is bounded.

As an example [12], a simple one-dimensional wire is considered with a constant po-

tential energyU0. From Eqs. (1.34, 1.35),

G =

[

E − U0 +
~

2

2m

∂2

∂x2

]−1

, (1.36)

which is
(

E − U0 +
~

2

2m

∂2

∂x2

)

G(x, x
′

) = δ(x− x
′

), (1.37)

similar to the Schrödinger equation

(

E − U0 +
~

2

2m

∂2

∂x2

)

Ψ(x) = 0, (1.38)
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except for the source termδ(x − x
′

) on the right. The Green’s functionG(x, x
′

) can be

viewed as the wavefunction atx resulting from a unit excitation applied atx
′

. Such an

excitation gives rise to two waves traveling outwards from the point of excitation, with

amplitudesA+ andA− as shown in Fig. (1.6).

x

x

A
-

A
+

A
-

A
+

Figure 1.5

(a) Retarded and (b) advanced Green’s function for infinite 1-D wire.

The solutions

G(x, x
′

) = A+ exp[ik(x− x
′

)], x > x
′

G(x, x
′

) = A− exp[−ik(x − x
′

)], x < x
′

(1.39)
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regardless of whatA+ andA− might be, satisfy Eq. (1.37) at all points other thanx = x
′

.

In order to satisfy Eq. (1.37) atx = x
′

, the Green’s function must be continuous

[G(x, x
′

)]x=x′+ = [G(x, x
′

)]x=x′
− (1.40)

while the derivative must be discontinuous by2m/~2

[

∂G(x, x
′

)

∂x

]

x=x′+

−
[

∂G(x, x
′

)

∂x

]

x=x′
−

=
2m

~2
. (1.41)

With the substitution of the solutions into the continuous and discontinuous conditions the

Green’s function is given by

GA(x, x
′

) = +
i

~v
exp[−ik|x− x

′ |]

GR(x, x
′

) = − i

~v
exp[ik|x− x

′|] (1.42)

called the advanced and retarded Green’s function respectively. The former corresponds

to incoming waves and the later corresponds to outgoing waves. They satisfy Eq. (1.37).

To accommodate the boundary conditions, an imaginary infinitesimal termiη (η > 0) is

added to the energy part in Eq. (1.37), resulting in

(

E − U0 +
~

2

2m

∂2

∂x2
+ iη

)

GR(x, x
′

) = δ(x − x
′

), (1.43)

then the associated wave number is

κ =

√

2m(E + iη − U0)

~

≈
√

2m(E − U0)

~

[

1 +
iη

2(E − U0)

]

≡ k(1 + iδ). (1.44)
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This imaginary part makes the advanced function grow indefinitely moving away from the

source of excitation which is divergent and therefore not anacceptable solution. Hence the

retarded function is accepted as the solution, since it is convergent (or bounded). A similar

argument for the advanced function makes it the only acceptable solution of the equation

(

E − U0 +
~

2

2m

∂2

∂x2
− iη

)

GA(x, x
′

) = δ(x − x
′

). (1.45)

Thus a general Green’s function is given as

G± = [E −Hop ± iη]−1, (1.46)

whereG+ = GA is the advanced Green’s function, andG− = GR is the retarded Green’s

function. The transmission in terms of the Green’s functionis given as

T ≡ Tr[Γ1G
−Γ2G

+] = Tr[Γ2G
−Γ1G

+], (1.47)

whereΓ1 = i[
∑−

1 −
∑+

1 ] is the coupling of the conductor to the lead1, and Γ2 =

i[
∑−

2 −
∑+

2 ] is the coupling of the conductor to lead 2. The terms
∑± are the advanced

and retarded self energy terms which are Hermitian conjugates of each other.

1.7 Method of Finite Differences

The method of finite differences is another approach in obtaining a numerical solution

of the Schrödinger equation, and subsequently deals with transport and transport properties

in the regime of quantum effects. The steps are [13]

1. Convert an infinite dimensional open system, such as the infinite leads, to one of a

finite dimensional closed system with boundaries.
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2. Choose discrete lattice points atx = na, wheren is an integer, anda, the lattice

constant,

3. Convert the Hamiltonian operatorHop into a matrix[H ].

4. Convert the wave functionΨ(x) into a column vector{ψ}.

The Schrödinger equation gets converted from a partial differential equation into a matrix

equation:

i~
∂

∂x
Ψ(x) = HopΨ(x) −→ i~

d

dx
{ψ(x)} = [H ]{ψ(x)}. (1.48)

The matrix representation for a 1-D system is obtained by considering the Hamiltonian

operator

Hop = − ~
2

2m

d2

dx2
+ U(x) (1.49)

and a discrete lattice (as in Fig. 2.2) whose points are located atx = na, n being an integer.

The matrix can be written as

[Hopψ]x=na =

[

− ~
2

2m

d2ψ

dx2

]

x=na

+ Unψn, (1.50)

whereψn → ψ(x = na), Un → U(x = na). The method of finite differences can be

applied to approximate the operatord2ψ/dx2 as

d2ψ

dx2
→ 1

a
[ψn+1 − 2ψn + ψn−1]. (1.51)

Then

[Hopψ]x=na = (Un + 2t)ψn − tψn−1 − tψn=1, (1.52)
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wheret ≡ ~
2/2ma2. The above equation can be written as

[Hopψ]x=na =
∑

[(Un + 2t)δn,m − tδn,m+1 − tδn,m−1], (1.53)

whereδn,m is the Kronecker delta, which is one ifn andm are equal and zero otherwise.

Thus the elements of the matrixH operator for a 1-D linear chain can be written as

H =

































. . . −t 0 0 0

−t U−1 + 2t −t 0 0

0 −t U0 + 2t t 0

0 0 −t U1 + 2t −t

0 0 0 −t . . .

































. (1.54)

Each site is linked to its nearest neighbor by the elementt, while elements along the di-

agonal are the potential energyUn and2t. The dispersion relation for the 1-D discrete

lattice with a constant potentialU(x) = U0 is obtained using the plane wave eigenfunc-

tionsψk(x) = exp[ikx] andE = U0 + (~2k2)/2m. The Schrödinger equation can be

written using equation Eq. (1.52) as

Eψn = (U0 + 2t)ψn − tψn−1 − tψn+1. (1.55)

This is satisfied by the solution of the formψn = exp[ikxn], wherexn = na, anda is the

lattice constant. Substituting these wavefunctions into Eq. (1.55) results in

E = U0 + 2t (1 − cos(ka)) , (1.56)

which is the dispersion relation for the 1-D lattice. This condition imposes onE the 1-D

energy band limits

U0 ≤ E ≤ U0 + 4t. (1.57)
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1.8 The Tight Binding Approximation

The Schrödinger equation even in one dimension provides few analytic solutions.

Therefore numerical methods are sought to solve most problems. Most often the 1-D

discrete Schrödinger equation is presented as the inferior numerical approximation to the

‘true’ continuous equation, which is exact only in the limitof infinitesimal lattice spac-

ing. While such a position is correct mathematically, the continuous Schrödinger equa-

tion is not the most physically reasonable choice for realistic modeling of semiconductor

quantum wells and other nanoelectronic devices because when applied to semiconductor

quantum wells the continuous Schrödinger equation is actually an equation for the wave-

function envelope and therefore its solutions are meaningless at lengths smaller than the

lattice constant [7]. The discrete modeling is more appropriate in portraying the physics

of a crystal than is the continuous model. Discrete Schrödinger picture is provided by

the equivalent tight-binding model for a crystalline solid[6]. Numerical results for both

continuous and discrete models cannot be interpreted without the analytical results. Sim-

ple 1-D time-independent quantum mechanical models are based on Eq. (1.2), wherem

represents the effective mass andψ the wave function. Equation (1.2) must be solved nu-

merically for all but the simplest potentialsU . This numerical solution is achieved using

the standard finite difference method or equivalently the central difference formula for the

second derivative. The difference equation is obtained by considering the spatial variation

of the wave functionψj and using Taylor expansions.
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Figure 1.6

Section of infinite chain of atoms, each with ans-like orbital.

Fig. (1.6) shows a section of an infinite chain of atoms, each with ans-like orbital, of

lattice spacinga. The top row shows the nearest neighbor matrix elementt and the kets

|j〉 represent one orbital per atom. The difference equation used is

d2ψ

dx2
≈ 1

a2
[ψ(x− a) − 2ψ(x) + ψ(x+ a)], (1.58)

wherea is the lattice space constant. Evaluating the functions andderivatives at points

xj = ja gives

(

~
2

2ma2

)

ψj−1 +

[

~
2

ma2
+ Uj − E

]

ψj +

(

− ~
2

2ma2

)

ψj+1 = 0, (1.59)

whereUn = U(xn), ψn = ψ(xn). Eq. (1.59) is essentially the tight-binding approximation

H =
∑

i

ǫi(|i〉〈i|) +
∑

〈ij〉
tij(|i〉〈j| + |j〉〈i|), (1.60)

whereǫi and tij are the are the on-site atomic energy and the overlap integrals of the

atomic orbitals at sitesi andj, respectively. The tight-binding hopping matrix elements

tij , also called the perturbative potential, are usually assumed to be non-zero only between

24



pairs of nearest-neighbor lattice sites〈ij〉. Located on sitesi andj are the tight-binding

basis functions|i〉 and|j〉 respectively, applied to a chain of atoms with spacinga and one

orbital per atom (site) shown in Fig.(1.6).

The tight-binding Hamiltonian is another way to calculate the electron dispersion re-

lation in periodic potentials. It is widely used to describethe electronic band structure

in condensed matter. Unlike the free electron theory, the tight-binding method describes

the electronic structure in terms of localized atomic orbitals which overlap due to bonding

between the neighboring valance atoms [16, 37]. The propagating Bloch states, which are

responsible for electronic transport in metals, can be built up from the atomic orbitals by

solving the appropriate Schrödinger equation. The tight-binding approach is very suited

to numerical calculations of the conductance because it discretizes the spatial continuum

in terms of the atomic sites.

Noting that solids are made up of atoms, the electron moves locally in the lowest

energys-state or thes-atomic orbital of an isolated atom. The electronic structure of a

periodic array of such atoms is then developed by allowing a small overlap of electronic

wavefunctions between adjacent atoms. The Hamiltonian is represented in a basis of singly

occupied states, a subset of states of Fock space where all states are multiply occupied. Its

matrix representation is easy to construct. The simplest isthe tridiagonal matrix in the

position-occupation basis. Using this tight-binding formalism for an infinite 1-D linear
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chain of atoms (Fig. 1.6) with site-labeling in discrete space, the left-hand side part of the

Schrödinger equation(H − E)ψ = 0 can be written in the site basis:

























































. . .
...

...
...

...
...

...

. . . ǫ−2 − E t 0 0 0 0 . . .

. . . t ǫ−1 − E t 0 0 0 . . .

. . . 0 t ǫ− E t 0 0 . . .

. . . 0 0 t ǫ1 −E t 0 . . .

. . . 0 0 0 t ǫ2 − E t . . .

. . . 0 0 0 0 t ǫ3 − E . . .

...
...

...
...

...
...

. . .

























































. (1.61)

1.9 Matrix Formalism

Most descriptions of electronic transport through nanosystems use the Green’s function

formalism. The matrix method is another approach in obtaining numerical solution to the

Schrödinger equation. Daboulet al. [11] have described the matrix method in quantum

percolation studies. The method transforms the infinitely sized Hamiltonian matrix into

a reduced matrix that is finite and involves semi-infinite linear chains of atoms using an

ansatz. The method uses the tight-binding Hamiltonian and Bloch type wave functions.

This approach provides less mathematical sophistication than its counterpart, the Green’s

function, which involves many terms in the transport calculations that obscures the real

physics. In this approach to studying transport problems, matrix algebra is used for the

same reason it is for a transfer matrix calculation [21, 29, 30, 33, 34] in statistical physics,
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that is to study a system with an infinite number of particles but where computations only

using a finite matrix is sought. In statistical physics the transfer matrix calculations will

ultimately lead to the calculation of the trace of an infinitematrix. And for isotropic

systems the problem is one of simply finding the trace of a power of a finite-dimensional

matrix [31, 32]. For electronic transport problems the inverse of an infinite matrix are

required. The system in this approach will reduce to the calculation of the inverse of

a finite matrix that will provide the wavefunctions for an infinite number of values of the

positionx. Then the numerical calculation of the probability of transmission and reflection

would be possible.

The basis of the matrix formalism is in considering the discrete lattice structure, incor-

porating the tight-binding model, also called the finite difference method.

Consider a system where two atomsa andb located atx = 0, called a “blob” whose

wavefuntions areψa andψb respectively. Attached to the blob on the left atx = −1

are the semi-infinite 1-D linear chain of atoms labeledx = −∞, . . . ,−4,−3,−2,−1,

and connected to the blob on right atx = 1 is the semi-infinite chain of atoms labeled

x = 1, 2, 3, . . .∞ (Fig. 1.7). The Hamiltonian of the whole system includes theinput and

output chains of atoms, as well as the blob atoms.

The Schrödinger equationH∞(x)Ψ(x) = EΨ(x) can be written in matrix form where

the random hopping integralt is given a value of1 (or −1 only in the 1-dimensional

case), and the onsite energyǫ = 0 for each site in the semi-infinite chains of atoms except
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t-1,a t1,a

t-1,b t1,b

b

a

input connection            

strength at x = -1

output connection  

strength at x = +1

onsite potential

ta,b

ta,b - hopping parameter between blob atoms 

Figure 1.7

Two-site blob with input and output semi-infinite chains of atoms in 1-D.
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for the sites in the blob whose onsite energies areǫa and ǫb. The Schrödinger equation

(H− E)~Ψ = 0 in matrix form is









































































. . .
...

...
...

...
...

...
...

...

· · · −E 1 0 0 0 0 0 0 · · ·

· · · 1 −E 1 0 0 0 0 0 · · ·

· · · 0 1 −E t−1,a t−1,b 0 0 0 · · ·

· · · 0 0 t−1,a ǫa − E ta,b ta,1 0 0 · · ·

· · · 0 0 t−1,b ta,b ǫb −E tb,1 0 0 · · ·

· · · 0 0 0 ta,1 tb,1 −E 1 0 · · ·

· · · 0 0 0 0 0 1 −E 1 · · ·

· · · 0 0 0 0 0 0 1 −E · · ·
...

...
...

...
...

...
...

...
. . .

















































































































































...

ψ−3

ψ−2

ψ−1

ψa

ψb

ψ1

ψ2

ψ3

...









































































=









































































...

0

0

0

0

0

0

0

0

...









































































,

(1.62)

where~Ψ(x) is the column vector of site wavefunctions. The Hamiltonianis an infinite-

dimensional matrix. In Sec. (2.2) the solution to this matrix will be reduced to the solution

for an inverse of a finite-dimensional matrix.
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CHAPTER 2

TRANSMISSION CALCULATIONS

2.1 Transmission Coefficient Calculations from (n + 2) Matrix

The Schrödinger equation in matrix form (Eq. 1.62) for a system that includes the input

wire, the blob of two atoms, and the output wire, is an infinite-dimensional matrix equa-

tion that is to be solved for the column vector{Ψ}. The equation has to be reduced first

to a finite-dimensional one so that the inverse and hence the solution could be determined

numerically. Electrons are sent fromx = −∞ so the wavefunction forx < 0 are the in-

cident wave and reflected wave with amplituder, represented by the ansatz [11] (physical

guess)

ψ−(n+1) = e−i n q + rei n q (2.1)

and the ansatz for the transmitted wave traveling tox = ∞ is

ψ(n+1) = tT e
inq (2.2)

wheretT is the amplitude. The sites of the system are now labeledn = 0, 1, 2, . . .∞

implying discretization of the one-dimensional space. These physical ansatz can also be

written for the negative values withm = −n− 1 for x < 0 as

ψm = ei(m+1)q + re−i(m+1)q m = −∞, · · · ,−2,−1 (2.3)
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and for the positive values withm = n + 1 as

ψm = tT e
i(m−1)q m = 1, 2, · · · ,+∞. (2.4)

This wavefunction with unit amplitude traveling in fromx = −∞, is partially reflected

with an amplituder to x = −∞, and partially transmitted with amplitudetT to x = +∞.

The energyE of the injected electron is the same at any location in the system, which is

eiq + e−iq = E ↔ E = 2 cos(q) ↔ q = arccos

(

E

2

)

. (2.5)

This condition imposes a limit on the energyE of the incoming electron of

−2 ≤ E ≤ 2. (2.6)

This is the dispersion relation of Eq. (1.57) witht = 1 andU0 = −2t soǫ = U0 + 2t = 0.

In matrix notation for the two-site blob and the two semi-infinite leads theansatzis








































































...

ψ−3

ψ−2

ψ−1

ψa

ψb

ψ1

ψ2

ψ3

...









































































=









































































...

ei(−2)q + re−i(−2)q

ei(−1)q + re−i(−1)q

ei0q + re−i0q

ψa

ψb

tT e
0iq

tT e
1iq

tT e
2iq

...









































































=









































































...

e−2iq + re2iq

e−1iq + re1iq

1 + r

ψa

ψb

tT

tT e
1iq

tT e
2iq

...









































































. (2.7)
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Substituting Eq. (2.7) in Eq. (1.62) gives the matrix equation









































































. . .
...

...
...

...
...

...
...

...

· · · −E 1 0 0 0 0 0 0 · · ·

· · · 1 −E 1 0 0 0 0 0 · · ·

· · · 0 1 −E t−1,a t−1,b 0 0 0 · · ·

· · · 0 0 t−1,a ǫa − E ta,b ta,1 0 0 · · ·

· · · 0 0 t−1,b ta,b ǫb − E tb,1 0 0 · · ·

· · · 0 0 0 ta,1 tb,1 −E 1 0 · · ·

· · · 0 0 0 0 0 1 −E 1 · · ·

· · · 0 0 0 0 0 0 1 −E · · ·
...

...
...

...
...

...
...

...
. . .

















































































































































...

e−2iq + re2iq

e−1iq + re1iq

1 + r

ψa

ψb

tT

tT e
1iq

tT e
2iq

...









































































=









































































...

0

0

0

0

0

0

0

0

...









































































.

(2.8)

From the product on the left side of the above matrix for sitesn > 1 (m < −2) for the

incoming sites (negative) there is

ψm−1 −Eψm + ψm+1 = ei(m+1)q
[

e−iq −E + eiq
]

+ re−i(m+1)q
[

eiq − E + e−iq
]

= ei(m+1)q [ 0 ] + re−i(m+1)q [ 0 ] = 0 . (2.9)

Similarly for the sites withn > 1 (m < −2) for the outgoing sites (positive) this gives

ψm−1 −Eψm + ψm+1 = tT e
i(m−2)q − tTEe

i(m−1)q + tT e
i(m)q

= tT e
i(m−1)q

[

e−iq − E + eiq
]

= tT e
i(m−1)q [ 0 ] = 0. (2.10)
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Hence the equation(H∞ − E)Ψ = 0 is satisfied everywhere except (so far) in the central

part of the matrix that pertains to the blob atoms. The central part of the matrix requires

that

















1−E ~wT 0 0

~0 ~w H− EI ~u ~0

0 0 ~uT −E1

















































e−iq + reiq

1 + r

~ψ

tT

tT e
iq

































=

















e−iq + reiq − E − rE + ~wT ~ψ

~w + r ~w + H~ψ − EI~ψ + tT~u

~uT ~ψ − EtT + tT e
iq

















=

















0

~0

0

















.

(2.11)

HereH is the portion of the Hamiltonian that governs the interactions within the blob in

terms of the onsite energiesǫ and hopping parameterst, bothǫ andt are taken to be real

numbers. The size of the matrixH is equal to the number of sites within the blob.I is the

identity matrix of the same dimension. The vectors~w and~u and their transposes also have

the same dimension as the dimension ofH. The vector~w that couples the site atx = −1

to the blob is

~w =

















t−1,a

t−1,b

...

















(2.12)

and the vector~u (standing for the wordut in Norwegian, which means out) that couples

the site atx = +1 to the blob is

~u =

















t1,a

t1,b

...

















. (2.13)
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The equation Eq. (2.11) can be written as
















−E + eiq ~wT 0

~w H−EI ~u

0 ~uT −E + eiq

































1 + r

~ψ

tT

















−

















eiq − e−iq

~0

0

















=

















0

~0

0

















, (2.14)

which when multiplied out results in
















e−iq + reiq − E − rE + ~wT ~ψ

~w + r ~w + H~ψ − EI~ψ + tT~u

~uT ~ψ −EtT + tT e
iq

















=

















0

~0

0

















, (2.15)

which is the same as Eq. (2.11).

The equation
















−E + eiq ~wT 0

~w H− EI ~u

0 ~uT −E + eiq

































1 + r

~ψ

tT

















=

















eiq − e−iq

~0

0

















. (2.16)

is thus the key equation to solve forr and tT . This finite and reduced matrix whose

dimension is equal to the number of sitesn in the blob plus 2 is the key to solve the

Schrödinger equation and hence determine the coefficientsof reflectionR = |r|2 and

transmissionT = |tT |2. By conservation of the number of electrons, the relationship

R + T = |r|2 + |tT |2 = 1 must always hold. The solution also yields the eigenvector~ψ

within the blob.
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2.2 Then-Matrix Transmission

The equation to solve is Eq. (2.16), which can be solved formally as

















1 + r

~ψ

tT

















=

































−E + eiq ~wT 0

~w H− EI ~u

0 ~uT −E + eiq

































−1















eiq − e−iq

~0

0

















. (2.17)

The energy isE = e−iq + eiq = 2 cos(q) with −2 ≤ E ≤ 2. Also note that

−E + e±iq = − e∓iq. (2.18)

The wave vectorq can be regarded as an angle, with

cos(q) =
E

2
(2.19)

and

sin(q) =

√
4 −E2

2
. (2.20)

Thus one can use

e±iq = cos(q) ± i sin(q) =
E

2
± i

√
4 − E2

2
. (2.21)

Define

S = −E + eiq = −E +
E

2
+ i

√
4 − E2

2
= −E

2
+ i

√
4 −E2

2
. (2.22)

Then Eq. (2.17) can be shown by direct matrix multiplicationto be

































S ~wT 0

~w H−EI ~u

0 ~uT S

































−1

=

















1
S

+ 1
S2 ~w

TL~w − 1
S
~wTL 1

S2 ~w
TL~u

− 1
S
L~w L − 1

S
L~u

1
S2~u

TL~w − 1
S
~uTL 1

S
+ 1

S2~u
TL~u

















(2.23)
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with the definition of the matrix

L =

[

H−EI − 1

S
~u~uT − 1

S
~w~wT

]−1

. (2.24)

Multiplying through the general form of the matrix inverse in Eq. (2.17) gives the result
















1 + r

~ψ

tT

















=

















1
S

+ 1
S2 ~w

TL~w − 1
S
~wTL 1

S2 ~w
TL~u

− 1
S
L~w L − 1

S
L~u

1
S2~u

TL~w − 1
S
~uTL 1

S
+ 1

S2~u
TL~u

































2i sin(q)

~0

0

















(2.25)

or
















1 + r

~ψ

tT

















=

















2i sin(q)
S

+ 2i sin(q)
S2 ~wTL~w

−2i sin(q)
S

L~w

2i sin(q)
S2 ~uTL~w

















. (2.26)

The finite matrix to solve has now been reduced in size by two. The only requirement is

to solve the matrixL analytically or numerically finding the inverse of a matrix of sizen

equal to the number of sites in the blob. From Eq. (2.26), the transmission coefficient [35]

is

T = |tT |2 =

∣

∣

∣

∣

2i sin(q)

S2
~uTL~w

∣

∣

∣

∣

2

. (2.27)

2.3 Fully Connected Blob,n > 2

Consider a blob withn sites located atx = 0, in which all sites are identical andn > 1.

Assume an on-site energyǫ and all blob sites are equally connected to the input lead at site

x = −1 with strengthtw and to the output lead at sitex = +1 with strengthtu. Introduce
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a vector~e of lengthn whose elements are all1, the identity matrixI of sizen× n, and the

n× n matrixJ whose elements are all1. For example, forn = 3

~e =

















1

1

1

















, I =

















1 0 0

0 1 0

0 0 1

















, J =

















1 1 1

1 1 1

1 1 1

















. (2.28)

RelationsJẽ = n ẽ, ~e~eT = J andJ2 = nJ can be proved by matrix multiplication.

The input and output coupling vectors in Eq. (2.26) in terms of ~e, and coupling strength

parameter can be written as

~w = tw~e, ~u = tu~e. (2.29)

The matrix equation Eq. (2.26) in original form isH − EI = (ǫ − E − t)I + tJ, where

each of then blob sites is coupled with a hopping parametert to each of the othern − 1

blob sites. As an example forn = 3 they are

~w = tw

















1

1

1

















, ~u = tu

















1

1

1

















, H−EI =

















ǫ− E t t

t ǫ− E t

t t ǫ− E

















. (2.30)

Eq. (2.24) is now written as

L−1 = (ǫ−E − t)I + [t− S∗(t2w + t2u)]J (2.31)

whereS = −E + exp(iq) = −E
2

+ i
√

4−E2

2
defined in Eq. (2.22). The matrixL can be

written as

L = XII +XJJ, (2.32)

37



whereXI = (ǫ−E − t) andXJ = t− S∗(t2w + t2u). Its inverse is

L−1 =

(

1

XI

I + YJJ

)

, (2.33)

then

(XII +XJJ)

(

1

XI
I + YJJ

)

= I (2.34)

provided that

YJ = − XJ

XI(XI + nXJ )
, (2.35)

which when substituted in Eq. (2.34) along with the propertiesI2 = I, JI = IJ = J, and

J2 = nJ, results in

[

XJ

XI
+XJYJn+XIYJ

]

J =

[

XJ

XI
+ YJ (XJn +XI)

]

J = 0. (2.36)

The matrix cannot be singular (XI 6= 0) for a plausible solution. Therefore the inverse

L−1 provides a general solution for any number of sitesn. The solution for the generaln

site case using Eq. (2.34) is

L =
1

ǫ− E − t
I − t− S∗(t2w + t2u)

(ǫ− E − t)[ǫ− E + (n− 1)t− nS∗(t2w + t2u)
J. (2.37)

Thus the solution [35] to find for the transmission is,

tT = 2i(S∗)2 sin(q)~uTL~w = 2i(S∗)2twtu sin(q)~eTL~e. (2.38)

Using the propertiesJ~e = n~e, ~eT~e = n, and~eTI~e = n in the transmission amplitudetT

above yields

tT = 2i(S∗)2 sin(q)twtu

[

n

ǫ− E − t
− n2 [t− S∗(t2w + t2u)]

(ǫ−E − t)[ǫ− E + (n+ 1)t− nS∗(t2w + t2u)]

]

.

(2.39)
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This solution is valid forn > 2, a non-singular matrix soǫ − E − t 6= 0, and then the

physically measurable probabilityT = |tT |2.

00 . 20 . 40 . 60 . 81

	 2 	 1 0 1 2
n = 2n = 4n = 8n = 6 4n = 1 0 2 4

E

T

= 1, tw = tu = 1, t = 1

Figure 2.1

Transmission vs. Energy forn-site blob withǫ = t = tw = tu = 1.

Fig. (2.1) illustrates how transmission changes with the number of atoms in the blob.

For more than about four atoms in the blob the transmission does not significantly change.

The argument for such a behavior is that as more atoms are added to the blob the sum of

input and output hopping strengthstw = tu = 1 increases accordingly and so does the

sum of strengths of the intra-blob bond hopping parameterst.
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2.4 Decimation Renormalization Group - Matrix

One of the most basic themes in theoretical physics is the idea that nature is described

locally. The basic equations of all physics is local. In order to be able to specify lo-

cal equations it is necessary to define continuum limits, including the limits that define

derivatives. The idea of the derivative and a continuum is important in all of physics. A

group of continuum limits is called the statistical continuum limit that has a very broad

range of applications in physics. The functions of a continuous variable are themselves

independent in a statistical continuum limit. If the continuum were to be replaced by dis-

crete lattice points, the field averages would consist of integrals over the value of the field

at each lattice siten. Thus for the discrete lattice case one has a multiple integration, where

the variables of the integration are the fields at each site. Aprocedure to understand the

statistical continuum limit is called the renormalizationgroup RG [43]. Renormalization

refers to a mathematical tool that allows one to change a physical system as one views

it at differentdistance scales. It is a strategy for dealing with problems involving many

scale lengths. The RG method is intimately related to “scaleinvariance,” a symmetry by

which the system appears the same at all scales. It brings to light the scale invariance

in the neighborhood of a critical point. In the real space transformation, one eliminates

certain degrees of freedom which are defined on a lattice, andthus carries out a partial

trace operation on the partition function. The lattice constant of the resulting system is

then readjusted and the interval variables are renormalized in such a manner that the new

Hamiltonian corresponds to the original one in its form. Theapproach is to integrate out
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the fluctuations in sequence, starting with fluctuations on an atomic scale and then moving

on until enough scales have been averaged out [41, 43, 44].

The central equation used in the RG type of solutions here forann× n matrixA is

∫ ∞

−∞
. . .

∫ ∞

−∞
d~x exp[−~xTAx̃ + b̃x̃ ] =

πn/2

√

det |A|
exp

[

1

4
b̃TA−1b̃−1

]

. (2.40)

The matrixA is symmetric, and Eq. (2.40) holds for a positive-definite matrix A. It

can, however, be assumed that the equation holds as long asA is symmetric even if it is

complex. The complex entries are only along the diagonal in the cases to be considered in

the forthcoming sections and chapters applying RG type of solutions. Having thus made

this assumption, the determinant

det|A| =
πn exp

[

1
2
~bTA−1~b

]

(

∫∞
−∞ . . .

∫∞
−∞ d~x exp

[

−~xTA~x+~b~x
])2 (2.41)

can be utilized. The inverse of a matrix can be achieved usingCramer’s rule for a square

matrix such as forA as

A−1 =
adj(A)

det(A)
, (2.42)

whereadj(A) = CT, that is, the adjugate ofA is the transpose of the cofactor ofA. The

cofactor beingCij = (−)i+jMij , and(i, j) the minor ofA denoted byMij the determinant

of the(n− 1)× (n− 1) matrix that results from the deletion of rowi and columnj of the

matrixA: Mij = det(ij minor of A).

2.5 Transmission for a Single Site Blob using different methods

This section deals with the simple and special case where there is a single atom in the

blob. The transmission equations are compared using different methods using solutions in
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continuous space, the discrete Green’s function method, the (3 × 3) and(1 × 1) matrices,

and the RG method.

2.5.1 Single Site: Continuous

From Sec. (1.3), Fig. (1.1), Eq. (1.7), constantsF andA are found using boundary

conditions for the one-dimensional potential barrier. Theconstraints are thatψ anddψ/dx

must be continuous atx = 0 and x = a. Implementing for the constants yields the

following relationship between them [45]

A+B = C +D, ik1(A−B) = ik2(C −D), (2.43)

and

Ceik2a +De−ik2a = Feik1a, ik2(Ce
ik2a −De−ik2a) = ik1Fe

ik1a. (2.44)

Solving forF results in

F = 4k1k2Ae
−ik1a

[

4k1k2 cos(k2a) − 2i
(

k2
1 − k2

2

)

sin(k2a)
]

. (2.45)

The transmission coefficient Eq. (1.7) is then

T =

[

1 +
1

4

(

k2
1 − k2

2

k1k2

)

sin2(k2a)

]−1

=

[

1 +
U2

0

4E(E − U0)
sin2

(

√

2ma2U0/~
√

E/U0 − 1
)

]−1

(2.46)

since
(

k2
1 − k2

2

k1k2

)2

=
U2

0

E(E − U0)
. (2.47)
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Further simplifying gives

T (E) =
4E(E − U0)

4E(E − U0) + U2
0 sin2

(

√

(E − U0)/t0

) , (2.48)

wheret0 = ~
2/2ma2. This solution is given in [45].

2.5.2 Single Site: Green’s Function (Discrete)

Consider the single atom device as shown in Fig. (2.2) with a (1 × 1) Hamiltonian.

The relevant Schrödinger equation has to be discretized inorder to represent the quantum

system in a matrix form. As an application of the Green’s function formalism [13] to a

single atom with input and output leads as shown (Fig. 2.2) isconsidered.

exp(inka)

r exp(-inka)
t
T

exp(inka)

input lead output  leaddevice

0 00 00 0
Figure 2.2

A one-atom “device” connected to input and output leads.

The device here is treated as single atom whose Hamiltonian is a one-by-one matrix,

[H ] = Ec + 2t0 +
U0

a
. (2.49)
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HereEc is the conduction band edge constant,t0 ≡ ~
2/2mca

2, andU0 is the single-

electron charging energy, that is, the change in potential energy due toone extra electron.

The effects of the two semi-infinite leads are represented bya1 × 1 self energy matrix

[Σ1(E)] = −t0e(ika), [Σ2(E)] = −t0e(ika),

whereka is related to the energyE by the dispersion relation

E = Ec + 2t0(1 − cos ka) −→ ~v(E) = 2at0 sin(ka). (2.50)

The Green’s function

G = [EI −H − Σ1 − Σ2]
−1 = [E − Ec − 2t0 + 2t0e

(ika) − (U0/a)]
−1,

which on simplifying using the dispersion relation gives

G = [i2t0 sin ka− (U0/a)]
−1 =

a

(i~v − U0)
. (2.51)

Then the transmission is given by

T (E) = Tr[Γ1GΓ2G
+] =

~
2v(E2)

~2v(E)2 + U2
0

, (2.52)

whereΓ1,2(E) = i[Σ1,2 − Σ+
1,2] = −t0e(ika) is the broadening matrix, the imaginary part

of the self-energy. This discrete lattice approach in real space is used in calculating the

Green’s function, the effects of the semi-infinite input andoutput leads that have been

integrated through a self energy functionΣR thus replacing them with a finite-sized non-

zero isolated single atom conductor. In this formulation using the self energy function the

semi-infinite leads can be eliminated, except for the pointsof contact between the single
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atom conductor and the adjacent atoms of the leads. Such convenience requires only the

Hamiltonian, which dimension is the same as the number of atoms in the conductor. In

this simple case of the single atom, the dimension is1 × 1.

2.5.3 Single Site: (3 × 3) Matrix

The equation to solve for transmission in this case is Eq. (2.17), in which the matrix

H− EI is set to, sayA, andeiq = cos(q) + i sin(q) = E
2

+ i
√

4−E2

2
as already defined, is

















−E + eiq ~wT 0

~w A ~u

0 ~uT −E + eiq

































1 + r

~ψ

tT

















=

















2i sin(q)

~0

0

















. (2.53)

The method of reduction is employed to find the inverse, whereH in this single site case

is a1 × 1 matrix. Multiply the left side for the middle equation to give

(1 + r)~w + A~ψ + tT~u = ~0, (2.54)

multiply by A−1:

(1 + r)A−1 ~w + ~ψ + tTA−1~u = 0. (2.55)

Then

~ψ = −(1 + r)A−1 ~w − tTA−1~u. (2.56)

Substitute forψ in the matrix equation and take the product for the top row:

(1 + r)(−E + eiq) − (1 + r)~wTA−1~u− tT ~w
TA−1~u = 2i sin(q) (2.57)

and similarly taking the product for the bottom row:

−(1 + r)~uTA−1 ~w − tT~u
TA−1~u+ tT (−E + eiq) = 0. (2.58)
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Now there are two equations Eq. (2.57) and Eq. (2.58) with twovariables(1 + r) andtT

to be solved in matrix form








−E + eiq − ~wTA−1 ~w −~wTA−1~u

−~uTA−1 ~w −E + eiq − ~uTA−1~u

















1 + r

tT









=









2i sin(q)

0









. (2.59)

The dimension of the matrix equation has now been reduced to the inverse of a2 × 2

matrix, the inverse of which can be easily obtained.

In the case of a single atom in the blobH = ǫ is a matrix of size1 × 1. Now A is

1 × 1 and symmetric. ThenA = A−1 is symmetric, and therefore~wA−1~u = ~uA−1 ~w.

With these substitutions

A = (ǫ− E)

~u = tu~e

~w = tw~e

~e = 1

~wTA~w = t2w
1

(ǫ− E)
. (2.60)

Using Kramer’s rule to find the inverse of the2 × 2 matrix gives

tT =

−2i sin(q)tutw
ǫ−E

(

S − t2w
ǫ−E

)(

S − t2u
ǫ−E

)

−
(

− twtu
ǫ−E

)2
. (2.61)

SubstitutingS = E
2

+ i
√

4−E2

2
andsin(q) =

√
4−E2

2
into Eq. (2.61) gives

T = |tT |2 =
(4 −E2)t2wt

2
u

t4u + 2t2ut
2
w + t4w − E2(−1 + t2u + t2w) + E(−2 + t2u + t2w)ǫ+ ǫ2

(2.62)

Settingtw = tu = 1 in the above equation Eq. (2.62)

T =
4 − E2

4 −E2 + ǫ2
. (2.63)
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A screenshot of an Easy Java Simulation showing Transmission versus Energy for the

single site blob, with parameters input strengthtw, output strengthtu, and onsite energy

of the single atom (impurity)ǫ is shown in Fig. (2.3). The Easy Java Simulation is avail-

able freely on the web athttp : //quantum.ph.msstate.edu/nanotransport.html and the

codes for this simulation are given in Appendix A.

2.5.4 Single Site: (1 × 1) Matrix

Figure (2.2) shows the uniform semi-infinite input and output leads to the one-atom

blob in one-dimension represented by a one-band effective mass model. The one site at

x = 0 is different from the others. The Hamiltonian for this single atom is a one-by-one

matrix. In this case, let~w = tw and~u = tu andH = ǫ. The required inverse matrix is

given by

L =
1

ǫ− E − S∗(t2w + t2u)
=

1

ǫ−E − [cos(φ) − i sin(φ)] (t2w + t2u)
(2.64)

with S∗ = exp(−iφ) , where the phase (written in computer notation) is

φ = atan2

(
√

4 − E2

2
,−E

2

)

. (2.65)

Let t̃2 = t2w + t2u. Then

L =
ǫ− E − t̃2 cos(φ) − it̃2 sin(φ)

[

ǫ−E − t̃2 cos(φ)
]2

+
[

t̃2 sin(φ)
]2 . (2.66)

Let L = A exp(iω) with amplitude

A =
1

√

[

ǫ− E − t̃2 cos(φ)
]2

+
[

t̃2 sin(φ)
]2

(2.67)
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Figure 2.3

Easy Java Simulation of single atom blobT vsE.
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This gives the general solution fortT to be

tT = 2i(S∗)2 sin(q)~uTL~w = 2A sin(q)tutwe
iπ
2 e−2iφeiω, (2.68)

and the transmission is [35]

T = |tT |2 = 4A2 sin2(q)t2ut
2
w =

4 sin2(q)t2ut
2
w

[

ǫ−E − t̃2 cos(φ)
]2

+
[

t̃2 sin(φ)
]2 . (2.69)

Simplifying further with the respective definitions ofsin(q), andcos(φ), transmission is

given in terms of onsite energyǫ of the single site, the energyE of the incoming electron,

and the input and output parameterstw andtu,

T = |tT |2 =
(4 − E2)t2ut

2
w

t4u + 2t2ut
2
w + t4w −E2(−1 + t2u + t2w) + E(−2 + t2u + t2w)ǫ+ ǫ2

. (2.70)

Settingtw = tu = 1 in the above equation Eq. (2.70) gives

T =
4 − E2

4 −E2 + ǫ2
. (2.71)

The plots for transmissionT versus energyE are shown in Fig. (2.3) forǫ = 0 astw = tu

is varied and howT varies asǫ is varied. Whentw = tu = 1 and ǫ = 0, there is

full transmission for all energy values−2 ≤ E ≤ 2. Setting input connection strength

tw = 0 is equivalent to disconnecting the atom from the input, showing physically zero

transmission. Setting output connection strengthtu = 0 also gives zero transmission,

when all the electrons are reflected back to the origin.
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2.5.5 Single Site: RG

For ann-site blob, the matrix equation to solve is
















eiq − E ~tw td

~tw A ~tu

td ~tu eiq −E

































1 + r

~ψ

tT

















=

















2i sin(q)

~0

0

















, (2.72)

where

eiq = cos(q) + i sin(q) =
E

2
+ i

√
4 − E2

2
.

The matrix for a single-site blobA = (ǫ − E − t)I + tJ is then(ǫ − E) since there is

only one site in the blob, identity matrixI is just a1 × 1 matrix, and there is no inter-blob

hopping parameter (t = 0), ~tw = ~tTw and~tw = ~tTw. The matrix to solve is the inverse of the

matrix in Eq. (2.72), which is

M3 =

















eiq − E tw 0

tw ǫ−E tu

0 tu eiq −E

















. (2.73)

Then

1 + r = (M−1
3 )1,12i sin(q) (2.74)

with transmissionT = 1−R and reflectionR = |r|2, where(M−1
3 )1,1 is the(1, 1) element

of the inverse of the matrixM3. Number the site just before the blob asx− and the site

after the blobx+, and the site of the blob asx1, and form the vector

~x =

















x−

x1

x+

















. (2.75)
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From Sec. (2.4), Eq. (2.41), the determinant of the matrix is

det |M3| =
π3

[

∫∞
−∞
∫∞
−∞
∫∞
−∞ dx−dx1dx+ exp (−~xTM3~x)

]2 . (2.76)

Therefore using Cramer’s rule to find the(1, 1) element of the inverse gives

1 + r = 2i sin(q)

det

∣

∣

∣

∣

∣

∣

∣

∣









ǫ− E tu

tu eiq − E









∣

∣

∣

∣

∣

∣

∣

∣

det

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

















eiq −E tw 0

tw ǫ− E tu

0 tu eiq − E

















∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(2.77)

which gives

1 + r =
2i sin(q)

π

{

I3
I2

}2

, (2.78)

where

I3 =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
dx−dx1dx+ exp

[

−~xTM3~x
]

(2.79)

and

I2 =

∫ ∞

−∞

∫ ∞

−∞
dx′1dx

′
+ exp









−
(

x′1 x′+
)









ǫ−E tu

tu eiq − E

















x′1

x′+

















. (2.80)

Now perform the integralI2 overdx′1 to give

I2 =

∫ ∞

−∞

∫ ∞

−∞
dx′1dx

′
+ exp

[

−
(

(ǫ−E)x′ 2
1 + (eiq −E)x′ 2

+ + 2tux
′
1x

′
+

)]

(2.81)

and with

~b = 2tux
′

+ and A−1 =
1

ǫ− E
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I2 =

∫ ∞

−∞
dx′+ exp

[

−(eiq − E)x′+
2
]

√
π√

ǫ− E

[

1

4

(2tux
′
+)2

ǫ−E

]

=

√
π√

ǫ−E
I∗1 . (2.82)

The renormalized integral to do with sitex1 decimated is

I∗1 =

∫ ∞

−∞
dx′+ exp

[

−
(

eiq −E − t2u
ǫ−E

)

x′+
2

]

. (2.83)

Similarly performing the integral inI3 overdx1 with~b = 2tux++2twx− and A = 1
ǫ−E

gives

I3 =

√
π√

ǫ− E

∫ ∞

−∞

∫ ∞

−∞
dx+dx−

exp









−(x− x+)









eiq −E − t2w
ǫ−E

− twtu
ǫ−E

− twtu
ǫ−E

eiq − E − t2u
ǫ−E

















x−

x+

















=

√
π√

ǫ− E
I∗2 .(2.84)

Collecting terms gives

1 + r =
2i sin(q)

π

{

I3
I2

}2

=
2i sin(q)

π

{

I∗2
I∗1

}2

. (2.85)

This leaves

1 + r =
2i sin(q)

π

det
∣

∣

∣
eiq −E − tu2

ǫ−E

∣

∣

∣

det

∣

∣

∣

∣

∣

∣

∣

∣









eiq − E − t2w
ǫ−E

− tutw
ǫ−E

− tutw
ǫ−E

eiq − E − t2u
ǫ−E









∣

∣

∣

∣

∣

∣

∣

∣

(2.86)

so

1 + r =
(

M∗−1
2

)

1,1
2i sin(q),

where

M∗
2 =









eiq − E − t2w
ǫ−E

− tutw
ǫ−E

− tutw
ǫ−E

eiq −E − t2u
ǫ−E









. (2.87)
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Then

M∗
2









1 + r

tT









=









eiq − E − t2w
ǫ−E

− tutw
ǫ−E

− tutw
ǫ−E

eiq − E − t2u
ǫ−E

















1 + r

tT









=









2i sin(q)

0









.

(2.88)

This equation can be solved fortT by taking the inverse ofM∗
2 , which is a simple sym-

metric2 × 2 matrix giving

T = |tT |2 =
(4 − E2)t2ut

2
w

t4u + 2t2ut
2
w + t4w −E2(−1 + t2u + t2w) + E(−2 + t2u + t2w)ǫ+ ǫ2

. (2.89)

Settingtw = tu = 1 in the above equation Eq. (2.89) gives

T =
4 − E2

4 −E2 + ǫ2
. (2.90)

The equivalence between the transmission equations Eqs. (2.63, 2.71) from the matrix

solutions, Eq. (2.90) from the RG calculations, and the transmission equation (Eq. 2.52)

from the Green’s function calculation lies in the followingrelation [13]:

~
2v(E)2 = 4a2t20 sin2(ka). (2.91)

Setting the hopping parametert0 = 1, lattice constanta = 1, and the wave vectork equal

to angleq as in Eq. (2.5) with the definitionsin(q) =
√

4−E2

2
, gives~

2v(E)2 = 4 − E2,

and that results in the equivalence of the transmission equations

T =
~

2v(E)2

~2v(E)2 + U2
0

=
4 −E2

4 − E2 + ǫ2
, (2.92)

whereU0 andǫ are equivalents of the onsite potential energy of the singleatom. Hence

the equivalence of the Green’s function transmission equation with those derived from the

matrix and RG solutions.
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2.6 Transmission for Single Site Dangle using different methods

tw tu

t

Figure 2.4

Two sites: Dangle blob.

2.6.1 Single Site Dangle: Matrix Formalism

Shown in Fig. (2.4) is a two site blob with one atom connected to the input and output.

The Hamiltonian in this case is a2 × 2 matrix. The input and output connecting vectors

are respectively

~w =









tw

0









, ~u =









tu

0









. (2.93)
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The two atoms in the blob with onsite energiesǫ1 andǫ2 are connected by hopping param-

etert. Then the Hamiltonian of this dangle blob is

H =









ǫ1 t

t ǫ2









. (2.94)

Using Eq. (2.24) with coupling matrices

~w~wT =









t2w 0

0 0









, ~u~uT =









t2u 0

0 0









(2.95)

gives the matrix

L = H− EI − S∗ (~w~wT + ~u~uT
)

=









ǫ1 −E − S∗ (t2w + t2u) t

t ǫ2 − E









. (2.96)

Then the transmission equation Eq. (2.26) gives

T = (4 −E2)

∣

∣

∣

∣

∣

∣

∣

∣

(tw 0)L−1









tu

0









∣

∣

∣

∣

∣

∣

∣

∣

2

. (2.97)

The matrixL−1 can be obtained using standard methods since it is a symmetric 2 × 2

matrix. The transmission therefore for a single-site dangle, for example given a set of

parametric valuestw = tu = 1, andǫ1 = ǫ2 = 0, is

T (E) =
4 − E2

4 − E2 + t4

E2

. (2.98)

2.6.2 Single Site Dangle: Green’s Function Formalism

The above transmission equation Eq. (2.98) for a single-site dangle has been derived

(shown in the Appendix of [8]) using the discrete Green’s function formalism. Referring
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to the same model as shown in Fig. (2.4), the Green’s functionis expressed in terms of the

Dyson equation and the transmission obtained is for the sameset of parameters discussed

in the previous section (2.6.1),

T (E) =
4 − E2

4 − E2 + t4

E2

. (2.99)

2.6.3 Single Site Dangle: RG Formalism

Sec. (2.4) gives the transmission calculation by the RG method for ann-site blob. This

method can be applied for a one site in a dangle as shown in Fig.(2.5). The single dangle

site with on-site energyǫ1 is connected viat to the site withǫ0. The site with energyǫ0

is connected on both sides to the input and output leads that have been decimated shown

in the figure as crossed boxes. Applying the RG to decimate thedangling site leads to a

renormalized on-site energyǫ′0. For an(1 + 1)-site blob of which1 site is decimated, then

the(1 + 1 + 2) × (1 + 1 + 2) matrix equation to be solved will be

























eiq − E tw 0 0

tw ǫ0 − E t tu

0 t ǫ1 −E 0

0 tu 0 eiq −E

















































1 + r

ψ

θ

tT

























=

























2i sin(q)

0

0

0

























, (2.100)
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tw tu

t

tw tu
0 

Figure 2.5

A single site dangle (a) before decimation, (b) after decimation.
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whereeiq = cos(q) + i sin(q) = E
2

+ i
√

4−E2

2
. Decimating the one dangle site in the

standard way, the decimated renormalized matrix is
















eiq − E tw 0

tw ǫ′0 −E tu

0 tu eiq −E

































1 + r

~ψ

tT

















=

















2i sin(q)

0

0

















(2.101)

with

ǫ′0 = ǫ0 −
t2

ǫ1 − E
. (2.102)

This completes the RG decimation equations for the danglingsite. Then

tT =
2i sin(q) tw tu

ǫ′−E

(eiq −E − t2w
ǫ′−E

)(eiq − E − t2u
ǫ′−E

) − ( twtu
ǫ′−E

)2
. (2.103)

With onsite energiesǫ0 = ǫ1 set to zero the transmission probability is calculated using the

symbolic manipulation program Mathematica [46], giving

T =
E2(4 −E2)t2ut

2
w

E2 [(−2 + t2u + t2w)t2 + (t2u + t2w)2] −E2(−1 + t2u + t2w) + t4
. (2.104)

A transmission equation comparable to those (Eq. (2.98), Eq. (2.99)) derived using the

other methods is obtained by settingtw = tu = 1 to give

T = |tT |2 =
E2(4 − E2)

E2(4 −E2) + t4
. (2.105)

Hence the transmission equation Eq. (2.98) obtained from matrix solution for a blob with

one site in the dangle is equivalent to the transmission equations Eq. (2.105) and Eq. (2.99)

derived using the RG method and the Green’s function calculation respectively.
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CHAPTER 3

APPLICATIONS

3.1 General Solution: Fully connected 5 Equations 5 Unknowns case

This section takes into account of a fully connectedn-site blob with input and output

leads connected to each of the sites in the blob with hopping parametert and onsite energy

ǫ. This is a general case with symmetry, (Fig. 3.1), in which~w = ~u. The general trans-

mission formula is obtained using the 5-Equation-5-Unknown matrix method and the RG

mechanism.

input lead output  lead

� 3 � 2 � 1 + 1 + 2 + 3tw tu

blob blob

t

0
Figure 3.1

A fully-connectedn=5 site blob, with all sites connected to input and output.
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3.1.1 5-Equation-5-Unknown: Matrix Formalism

Equation (2.39) for the fully-connectedn-blob case can be further generalized to obtain

exact solutions. Each atom has a on-site energyǫ coupled and a hopping parametert to

each of then−1 other atoms in the blob. Furthermore, the blob atoms are equally coupled

to the input and output by vectors~w (Eq. (2.13)) and~u (Eq. (2.12)) respectively. Consider

the case where(n~w = n~u), so that the input and output leads are symmetrically coupled.

This arrangement initiates a general matrix of the formM that can be solved and that is

the intent of this section.

The 5-Equation-5-Unknown is a special case as shown in Fig. (3.1) with then fully

connected sites of potential energyǫ coupled to input and output with coupling strengths

tw andtu respectively. The number of input and output couplings can vary from one1 to

n, but in general the vector~w (= ~u) can be arbitrary. The Hamiltonian is

H = (ǫ− t)I + tJ (3.1)

and therefore

M = L−1 = H− EI − S∗(t2w + t2u)~w~w
T. (3.2)

Substituting the Hamiltonian in Eq. (3.2) yields the general form of the matrix [35]

M = XII +XJJ +Xio ~w~w
T, (3.3)

whereXI = ǫ − E − t, XJ = t, andXio = −S∗(t2w + t2u) corresponds to the identical

coupling of a site to the input and output. The ansatz for its inverse has the form [35]

M−1 = YII + YJJJ + Yioio ~w~w
T + YJio~e~w

T + YioJ ~w~e
T, (3.4)
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where

~eT ~w = ~wT~e = m

~wT ~w = l

~eT~e = n

J~e = n~e

JJ = nJ

J~w = ~e~eT ~w = m~e, (3.5)

and l andm being parameters, andn the number of atoms in the cluster. Parameterl is

the sum of the squares of the input connection strengths, andm is the sum of the input

(or output) connection strengths. When1
tw
~w has elements of only one or zero, parameters

l = m is a special case of the 5-Equation-5-Unknown. For example for then connected

blob, if only three sites are connected equally to both inputand output leads, thenl =

m = 3. Thus the parametersl andm control the number and coupling strengths to the

n-atom blob. Collecting like terms of the productMM−1 results in five equations with

five unknowns

XIYI = 1

XIYJJ +XJYJ + nXJYJJ +mXJYioJ = 0

XIYioio +XioYI + lXioYioio +mXioYJio = 0

XIYJio +mXJYioio + nXJYJio = 0

XIYioJ +mXioYJJ + lXioYioJ = 0. (3.6)
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One of the five solutions is the trivial solution

YI =
1

XI
, (3.7)

and the four other solutions are obtained by solving the matrix equation using Mathemat-

ica:
























(XI + nXJ ) mXJ

(XI + lXio) mXio

XJ (XI + nXJ)

mXio (XI + lXio)

















































YJJ

Yioio

YJio

YioJ

























=

























−XJ

XI

−Xio

XI

0

0

























. (3.8)

The solutions of Eq. (3.8) are

YJJ = −XJ

XI

[

lXio +XI

(XI + nXJ)(lXio +XI) −m2XJXio

]

Yioio = −Xio

XI

[

nXJ +XI

(XI + lXio)(nXJ +XI) −m2XJXio

]

YJio =
Xio

XI

[

mXJ

(XI + lXio)(nXJ +XI) −m2XJXio

]

YioJ =
XJ

XI

[

mXio

(XI + nXJ)(lXio +XI) −m2XJXio

]

. (3.9)

Substituting these solutions in Eq. (3.4), using Mathematica, yields the amplitude of trans-

mission

tT = 2i(S∗)2 sin(q)~uTM−1 ~w, (3.10)

and hence the transmission coefficientT = |tT |2.

A screenshot of an Easy Java Simulation of Transmission versus Energy for the fully

connected blob is shown in Fig. (3.2). The simulation is available freely on the web at

http : //quantum.ph.msstate.edu/nanotransport.html. The simulation codes are given

in Appendix B.
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Figure 3.2

Easy Java Simulation ofT vsE for the 5-Equation-5-Unknown case.

3.1.2 5-Equation-5-Unknown: RG Formalism

From Sec. (2.5.5), Eq. (2.72), the matrix equation for the fully connectedn-site blob
















eiq − E ~tTw td

~tw A ~tu

td ~tTu eiq −E

































1 + r

~ψ

tT

















=

















2i sin(q)

~0

0

















, (3.11)

in which the matrix to find the inverse is

Mn+2 =

















eiq − E ~tTw td

~tw A ~tu

td ~tTu eiq −E

















, (3.12)
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where

A = (ǫ− E − t)I + tJ.

The identity matrixI is of sizen × n and the matrixJ of sizen× n, related asJ~e = n~e,

and~e~eT = J. Then

1 + r =
(

M−1
n+2

)

1,1
2i sin(q) (3.13)

with transmission coefficientT = 1 − R and the reflection coefficientR = |r|2, where

(

M−1
n+2

)

1,1
is the(1, 1) element of the inverse of the matrixMn+2. Number the site just

before the blob asx−, the site just after the blobx+, and the sites of the blobx1, x2, . . . , xn

and form the vector

~x =









































x−

x1

x2

...

xn

x+









































. (3.14)

The determinant is

det |Mn+2| =
πn+2

[

∫∞
−∞
∫∞
−∞ . . .

∫∞
−∞
∫∞
−∞ dx−dx1 . . . dxndx+ exp (−~xTMn+2~x)

]2 . (3.15)
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Therefore using Cramer’s rule to find the(1, 1) element of the inverse matrix gives

1 + r = 2i sin(q)

det

∣

∣

∣

∣

∣

∣

∣

∣









A ~tu

~tTu eiq −E









∣

∣

∣

∣

∣

∣

∣

∣

det

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

















eiq − E ~tw 0

~tTw A ~tu

0 ~tTu eiq − E

















∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(3.16)

so then

1 + r =
2i sin(q)

π

[

In+2

In

]

, (3.17)

where

In+2 =

∫ ∞

−∞

∫ ∞

−∞
. . .

∫ ∞

−∞
dx−dx1 . . . dxndx+ exp

[

−~xTMn+2~x
]

(3.18)

and

In =

∫ ∞

−∞

∫ ∞

−∞
. . .

∫ ∞

−∞
dx′1 . . . dx

′
ndx

′
+ exp

























−(x′1 . . . x
′
nx

′
+)









A tu

tTu e
iq − E

































x′1

...

x′n

x′+

















































.

(3.19)

Perform the integration over alln sites in the blob to giveIn, where the integrals use the

matrixA = (ǫ− E − t)I + tJ of sizen, and the vector

~b =

























2tw1x− + 2tu1x+

2tw2x− + 2tu2x+

...

2twnx− + 2tunx+

























(3.20)
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and sinceJ2 = nJ, thenA−1 = 1
ǫ−E−t

I − t
(ǫ−E−t)(ǫ−E−t+nt)

J. The eigenvalues ofA are

ǫ−E − t+ nt with eigenvector~e andǫ− E − t which isn− 1 fold degenerate, so

det|A| = (ǫ−E − t+ nt)(ǫ− E − t)n−1. (3.21)

Also

~bTJ~b = ~bT~e~eT~b =
[

~eT~b
]2

= 4

[(

n
∑

i=1

twi

)

x+ +

(

n
∑

j=1

tuj

)

x−

]2

, (3.22)

so

~bTJ~b = 4





(

n
∑

i=1

twi

)2

x2
+ + 2

(

n
∑

i=1

twi

)(

n
∑

j=1

tuj

)

x+x− +

(

n
∑

i=1

tui

)2

x2
−



 (3.23)

and

~bTI~b = 4
n
∑

i=1

(twix+ + tuix−)2 = 4

[

x2
+

n
∑

i=1

t2wi + 2x−x+

n
∑

i=1

twitui + x2
−

n
∑

i=1

t2ui

]

.

(3.24)

The constant terms cancel out, leaving the final RG result that can be hypothesized to be

given by

M∗
n









1 + r

tT









=









2i sin(q)

0









(3.25)

with

M∗
n =









eiq − E −
P

t2wi

ǫ−E−t
+ t(

P

twi)2

(ǫ−E−t)(ǫ−E−t+nt)
t

P

twi

P

tui

(ǫ−E−t)(ǫ−E−t+nt)
−

P

twitui

ǫ−E−t

t
P

twi

P

tui

(ǫ−E−t)(ǫ−E−t+nt)
−

P

twitui

ǫ−E−t
eiq − E −

P

t2ui

ǫ−E−t
+ t(

P

tui)2

(ǫ−E−t)(ǫ−E−t+nt)









.

(3.26)
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Therefore the general solution has only the five parameters which are

∑n
i=1 twi,

∑n
i=1 tui,

∑n
i=1 t

2
wi,

∑n
i=1 t

2
ui,

∑n
i=1 twitui.

(3.27)

These can now be specialized to the case wheretwi = tui, for comparison with the 5-

Equation-5-Unknown case. Then the parameters are

n
∑

i=1

twi = m tw

n
∑

i=1

tui = m tu

n
∑

i=1

t2wi = l t2w

n
∑

i=1

t2ui = l t2u

n
∑

i=1

twitui = l twtu. (3.28)

A simpler case to be solved via the RG case is now considered. For ann + m-site

fully-connected blob of whichm sites will be decimated, the(n+m+ 2) × (n+m+ 2)
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matrix equation to be solved with no direct connections between the input and output, no

ǫc, no connection of the decimated sites to input or output leads, is
































eiq − E ~tTw ~0T
m

~0T
m′ 0

~tw A tJn×m tJn×m′ ~tu

~0m tJn×m C tJn×m′
~0m

~0m
′ tJm

′×n tJm
′×m Cd

~0m
′

0 ~tTu ~0T
m

~0T
m′ eiq −E

































































1 + r

~ψ

~θ

~θd

tT

































=

































2i sin(q)

~0n

~0m

~0m
′

0

































,

(3.29)

whereeiq = cos(q) + i sin(q) = E
2

+ i
√

4−E2

2
, the matrixA = (ǫ− E − t)I + tJ is n× n

and the matrixC = (ǫ− E − t)I + tJ ism ×m soCd = (ǫ − E − t)I + tJ ism
′ ×m

′

and the dimensions for matricesJ and vectors are shown.

The decimated renormalized matrix has the form
























eiq − E ~tTw ~0m 0

~tw A− t2Jn×m
′C−1

d Jm
′×n t

′

Jn×m ~tu

~0m t
′

Jm×n C − t2Jm×m′C−1
d Jm′×m

~0m

0 vectTu ~0m eiq − E

















































1 + r

~ψ

~θ

tT

























=

























2i sin(q)

~0n

~0m

0

























.

(3.30)

This completes the final RG decimation equations in matrix form for the fully connected

(easy-case) blob. The required inverse is

C−1
d =

1

(ǫ−E − t)
Im′×m′ − t

(ǫ− E − t)(ǫ− E − t+m′t)
Jm′×m′ . (3.31)

UsingJm×lJl×n = lJm× n gives

Jl×m′C−1
d Jm′×k =

m
′

(ǫ− E − t)
Jl×k −

tm
′

m
′

(ǫ−E − t)(ǫe − t+m′t)
Jl×k. (3.32)
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This gives the complete RG transformation. Finally, one hasthe RG transformations [3, 4],

[36]

t
′

= t− t2m
′

ǫ−E − t

[

1 − tm
′

ǫ− E − t+m′t

]

(3.33)

and

ǫ
′

= ǫ− t2m
′

ǫ− E − t

[

1 − tm
′

ǫ−E − t+m′t

]

. (3.34)

A screenshot of the Mathematica Manipulate Plot showing transmission coefficientT

employing the matrix method and the RG method for the 5-Equation-5-Unknown case is

shown in Fig. (3.3). The results are identical for the two methods.

Figure 3.3

Plots for the matrix and RG methods, 5-Equation-5-Unknown case .

69



3.2 General Solution: Fully connected 10 Equations 10 Unknowns case

This case is the most general case with all sites connected toall other sites of potential

energyǫ and coupling strengtht, and where at least one or more sites are connected to the

input lead with strengthtw and to the output lead with strengthtu. This general case takes

account of both the non-symmetrical case (Fig. 3.4) where~w and~u are not proportional

and the symmetrical 5-Equation-5-Unknown case (Fig. 3.1).

3.2.1 10-Equation-10-Unknown: Matrix Formalism

The same fully connectedn-site blob considered in Sec. (3.1) is connected at random

such that all blob atoms are not necessarily equally coupledto the input and output leads.

Such an assortment calls for a more general matrix of the formM written as [42]

M = XII +XJJ +Xw ~w~w
T +Xu~u~u

T, (3.35)

and the ansatz for its inverse has the form [42]

M−1 = YII + YJJJ + Yww ~w~w
T + Yuu~u~u

T + YJu~e~u
T

+ YuJ~u~e
T + YJw~e~w

T + YwJ ~w~e
T + Yuw~u~w

T + Ywu ~w~u
T. (3.36)
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input lead output  lead

� 3 � 2 � 1 + 1 + 2 + 3

tw

tu

0
Figure 3.4

Fully-connectedn=7 sites, not all symmetrically connected to input, output.
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ThenMM−1 = I. The forty terms of the productMM−1 are shown in Table (3.1). The

product of vectors and the transposes of vectors are defined as:

J = ~e~eT,

~eTJ = n~eT,

JI = J

JJ = nJ,

J~e = n~e,

J~w = ~e~eT ~w = m~e,

~wT ~w = l,

~uT~u = k,

~eT~e = n,

~eT ~w = ~wT~e = m,

~eT~u = ~uT~e = p,

~wT~u = ~uT ~w = h,

(3.37)

wherel,m, n, p, h, k are constants or parameters of the 10-Equation-10-Unknowngeneral

case. Parameterl is the sum of the square of the input strengths,k is the sum of squares of

the output strengths,m is the sum of the input strengths,h is the sum of the product of input

and output strengths, andn is the number of fully connected atoms in the blob. Using these

constants in the combined productMM−1 in Table (3.1) gives a modified set of terms

(see Table (3.2)). From Table (3.2), collecting like terms yields the ten equations with ten
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unknowns. The solutions of these equations are solved with the help of Mathematica. In

particular, the ten equations are

[XIYI ] = 1

[(XI + nXJ)YJJ +mXJYwJ + pXJYuJ ] = 0

[XwYI + (XI + lXw)Yww +mXwYJw + hXwYuw] = 0

[XuYI + (XI + kXu)Yuu + hXuYwu + pXuYJu] = 0

[mXJYwu + pXJYuu + (XI + nXJ)YJu] = 0

[(XI + kXu)YuJ + hXuYwJ + pXuYJJ ] = 0

[pXJYuw +mXJYww + (XI + nXJ)YJw] = 0

[hXwYuJ + (XI + lXw)YwJ +mXwYJJ ] = 0

[hXwYww + pXuYJu + (XI + kXu)Yuw] = 0

[hXwYuu +mXwYJu + (XI + lXw)Ywu] = 0. (3.38)
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The solution of the first equation is the same trivial form as Eq. (3.7). The other nine

equations can be solved in matrix form Eq. (3.39),
































































XII+

































































nXJ 0 0 0 pXJ 0 mXJ 0 0

0 lXw 0 0 0 mXw 0 hXw 0

0 0 kXu pXu 0 0 0 0 hXu

0 0 pXJ nXJ 0 0 0 0 mXJ

pXu 0 0 0 kXu 0 hXu 0 0

0 mXJ 0 0 0 nXJ 0 pXJ 0

mXw 0 0 0 hXw 0 lXw 0 0

0 hXw 0 0 0 pXu 0 kXu 0

0 0 hXwmXw 0 0 0 0 lXw

































































































































































































YJJ

Yww

Yuu

YJu

YuJ

YJw

YwJ

Yuw

Ywu

































































=

































































−XJ

XI

−Xw

XI

−Xu

XI

0

0

0

0

0

0

































































.(3.39)

using Mathematica, and the nine solutions are [42]

YJJ = −XJ (X2
I + kXIXu + lXIXw − h2XuXW + klXuXw)

Ω

YuJ =
XJXu(−hmXw + p(XI + lXw))

Ω

Yuu = −Xu(X
2
I + nXIXJ + lXIXw −m2XJXw + lnXJXw)

Ω

YJu =
XJXu(−hmXw + p(XI + lXw))

Ω

YJw =
XJ(−hpXu +m(XI + kXu))Xw

Ω

Yuw =
(−mpXJ + h(XI + nXJ))XuXw

Ω

Ywu =
(−mpXJ + h(XI + nXJ))XuXw

Ω

YwJ =
XJ(−hpXu +m(XI + kXu))Xw

Ω

Yww = −(X2
I + nXIXJ + kXIXu + knXJXu − p2XJXu)Xw

Ω
, (3.40)

where
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Ω = XI(X
3
I − (h2n+ k(m2 − ln) − 2hmp+ lp2) (3.41)

XJXuXw +X2
I (nXJ + kXu + lXw +

XI(−p2XJXu −m2XJXw + lnXJXw −

h2XuXw + kXu(nXJ + lXw))).

Plugging these solutions of Eq. (3.40) into Eq. (3.36) with corresponding parameters for

M−1 gives the transmission coefficientT = |tT |2, wheretT = 2i(S∗)2 sin(q)~uTM−1 ~w.
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Table 3.1

The forty terms of the productMM−1.

MM−1 XII XJJ Xw ~w~w
T Xu~u~u

T

YII XIYII
2 XJYJJ XwYI ~w~w

TI XuYI~u~u
TI

YJJJ XIYJJIJ XIYJJJ
2 XwYJJJ~w~w

T XuYJJJ~u~u
T

Yww ~w~w
T XIYww ~w~w

TI XJYwwJ~w~wT XwYww ~w~w
T ~w~wT XuYww~u~u

T ~w~wT

Yuu~u~u
T XIYuu~u~u

TI XJYuuJ~u~u
T XwYuu ~w~w

T~u~uT XuYuu~u~u
T~u~uT

YJu~e~u
T XIYJu~e~u

TI XJYJuJ~e~u
T XwYJu ~w~w

T~e~uT XuYJu~u~u
T~e~uT

YuJ~u~e
T XIYuJ~u~e

TI XJYuJJ~u~e
T XwYuJ ~w~w

T~u~eT XuYuJ~u~u
T~u~eT

YJw~e~w
T XIYJw~e~w

TI XJYJwJ~e~wT XwYJw ~w~w
T~e~wT XuYJw~u~u

T~e~wT

YwJ ~w~e
T XIYwJ ~w~e

TI XJYwJJ~w~e
T XwYwJ ~w~w

T ~w~eT XuYwJ~u~u
T ~w~eT

Yuw~u~w
T XIYuw~u~w

TI XJYuwJ~u~wT XwYuw ~w~w
T~u~wT XuYuw~u~u

T~u~wT

Ywu ~w~u
T XIYwu ~w~u

TI XJYwuJ~w~u
T XwYwu ~w~w

T ~w~uT XuYwu~u~u
T ~w~uT
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Table 3.2

The forty terms of productMM−1 modified with constants.

MM−1 XII XJJ Xw ~w~w
T Xu~u~u

T

YII XIYI XJYJJ XwYI ~w~w
T XuYI~u~u

T

YJJJ XIYJJJ XIYJJ n J XwYJJ m ~w~eT XuYJJ p ~u~e
T

Yww ~w~w
T XIYww ~w~w

T XJYww m ~e~wT XwYww l ~w~w
T XuYww h ~u~w

T

Yuu~u~u
T XIYuu~u~u

T XJYuu p ~e~u
T XwYuu h ~w~u

T XuYuu k ~u~u
T

YJu~e~u
T XIYJu~e~u

T XJYJu n ~e~u
T XwYJu m ~w~uT XuYJu p ~u~u

T

YuJ~u~e
T XIYuJ~u~e

T XJYuJ p J XwYuJ h ~w~e
T XuYuJ k ~u~e

T

YJw~e~w
T XIYJw~e~w

T XJYJw n ~e~w
T XwYJw m ~w~wT XuYJw p ~u~w

T

YwJ ~w~e
T XIYwJ ~w~e

T XJYwJ m J XwYwJ l ~w~e
T XuYwJ h ~u~e

T

Yuw~u~w
T XIYuw~u~w

T XJYuw p ~e~w
T XwYuw h ~w~w

T XuYuw k ~u~w
T

Ywu ~w~u
T XIYwu ~w~u

T XJYwu m ~e~uT XwYwu l ~w~u
T XuYwu h ~u~u

T
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3.2.2 10-Equation-10-Unknown: RG formalism

In the most general case of the fully connectedn-site blob (10-Equation-10-Unknown)

wheretw is not necessarily proportional totu, in which case the five corresponding param-

etersl,m, n, p, h, andk are comparable to those in Eq. (3.27), and they are

n
∑

i=1

twi = m

n
∑

i=1

tui = p

n
∑

i=1

t2wi = l

n
∑

i=1

t2ui = k

n
∑

i=1

twitui = h. (3.42)

Figure 3.5

Comparison of the Matrix and RG methods, 10-Equation-10-Unknown case.
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For ann + m-site fully-connected blob of whichm sites will be decimated, then the

matrix equation to be solved is
























eiq − E ~tTw ~tTwd ts

~tw A J ~tu

~twd JT C ~tud

ts ~uT ~tTud eiq −E

















































1 + r

~ψ

~θ

tT

























=

























2i sin(q)

~0n

~0m

0

























, (3.43)

whereeiq = cos(q)+ i sin(q) = E
2

+ i
√

4−E2

2
. The matrixA = (ǫ−E− t)I+ tJ is an×n

and the matrixC = (ǫ− E − t)I + tJ ism×m soJ is of sizen×m. Similarly vectors

~tw,~tu, ~ψ,~0n are all of lengthn while the vectors~twd,~tud, ~θ,~0m are all of lengthm.

The decimated renormalized matrix has the form
















eiq + ǫc − E − ~tTwdC
−1~twd ~t

T
w − ~tTwdC

−1BT ts − ~tTwdC
−1~tud

~tw −BC−1~twd A − BC−1BT ~tu −BC−1~tud

ts − ~tTudC
−1~twd ~tTu − ~tTudC

−1BT eiq + ǫc − E − ~tTudC
−1~tud

































1 + r

~ψ

tT

















=

















2i sin(q)

~0n

0

















, (3.44)

whereC = CT implying thatC−1 is also symmetric. Again~tTudC
−1~twd = ~tTwdC

−1~tud, so

the final matrix is symmetric. This completes the final RG decimation equations in matrix

form for the fully connected blob.

Now assuming that all input and output vectors are proportional to ~e, for example

~tu = tio~e and~tud = tio~e. Then, since

C−1 =
1

ǫ−E − t
I − t

(ǫ− E − t)(ǫ− E − t+mt)
J (3.45)
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one has the RG transformations [3, 4, 28]

t′s = ts −
mt2io

ǫ−E − t
+

tt2iom
2

(ǫ− E − t)(ǫ− E −mt)
= ts +Rm

ǫ′ = ǫc −
mt2io

ǫ− E − t
+

tt2iom
2

(ǫ− E − t)(ǫ− E −mt)
= ǫc +Rm

t′io = tio −
mt2io

ǫ− E − t
+

tt2iom
2

(ǫ−E − t)(ǫ−E −mt)
= tio +Rm

t′ = t− mt2io
ǫ− E − t

+
tt2iom

2

(ǫ− E − t)(ǫ− E −mt)
= t+Rm

ǫ′ = ǫ− mt2io
ǫ− E − t

+
tt2iom

2

(ǫ− E − t)(ǫ− E −mt)
= ǫ+Rm (3.46)

with

Rm = − mt2io
ǫ− E − t

+
tt2iom

2

(ǫ−E − t)(ǫ−E −mt)
(3.47)

3.3 Missing Bonds in Fully Connected Blob

Another of the many applications is to consider transmission when one or more of the

intra-blob bonds are removed. This course of action is to shift from an almost perfect

blob toward that of a real nanoparticle model. In essence this section examines how the

“mean-field” like solutions of Sec. (2.3) are affected when afew values for the hopping

parameters within the blob are removed.

Consider the case of a general blob, with the Hamiltonian dependent on the general

values for the hopping parameter between then sites within the blob,tl,j for 1 ≤ l, j ≤ n,

and the onsite energy of each of then blob sites,ǫl for 1 ≤ l ≤ n. In addition, the solution

will depend on the connections between the left site atx = −1, elements of~tw of tL,l for

1 ≤ l ≤ n, and between the right site atx = +1, elements of~tu of tl,R for 1 ≤ l ≤ n. Thus

the symmetric matrix to solve is given by Eq. (2.24) and Eq. (2.26), has no symmetry inH,

or ~u or ~w can only be solved numerically, at least for largen. The matrixL of Eq. (2.24)
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is ann× n matrix with complex elements. Physically the matrixL must be non-singular,

except perhaps at particular special values of the energyE such as|E| = 2. The matrix is

not Hermitian but is symmetric.

This matrix is solved numerically [35] using the program forlinear algebraic solutions

in Numerical Recipes [38], particularly the LUDCMP program to perform theLU de-

composition of the matrixL and the subroutine LUBKSB to solve the set of linear equa-

tions after theLU decomposition has been carried out. The routines are first converted

from real arithmetic to complex arithmetic for the input andoutput matrices and vectors.

Besides, checks are placed to determine singularities for particular values of the energy.

A numerical solution in this fashion has been performed by Cuansing and Nakanishi

to study quantum interference effects in particle transport through square lattices. [9, 10]

The focus here is on analyzing the effect on the “mean-field” like solutions when some of

the intra-blob bonds are removed.

Figure (3.6) shows results forn = 32 blob atoms. The number of bonds that connect

all atoms to all other atoms is given byn(n − 1)/2. Therefore forn = 32, there will

be 496 bonds. The transmission curve for this fully connected case is similar to those

shown in Fig. (2.1). When two bonds chosen at random are removed the transmission

remains unchanged over much of the energy spectrum, but shows a very distinct drop in

transmission nearE = −0.8 for this particular two-bond removal. Further changes in the

transmission are shown in Fig. (3.6) when 16 randomly chosenbonds have been removed.

As the number of bonds continue to decrease the transmissioncurve takes additional dips

and resonances. As the number of bonds approach one-half thenumber for a fully con-
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Figure 3.6

Transmission versus energy for decreasing number of inter-blob connections.
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nected configuration, the spectrum looks very much like thatof any disordered system

with random impurities in one or two dimensions [1, 2, 8, 17, 20]. The combination of

a one-dimensional incoming and outgoing lead wires attached to an “almost perfect” blob

that is multiply connected producing such a disordered transmission is remarkable.
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CHAPTER 4

CONCLUSIONS AND DISCUSSION

An general expression for quantum transmission of spinlesselectrons through a model

of a nanoparticle has been derived using finite-dimensionalmatrix algebra. The general

expressions required the calculation of the inverse of ann × n matrix. Particular models

solved were a single site in the blob, a two-site one-dangle blob, a fully connected sym-

metric case that resulted from 5-Equations and 5-Unknowns,and the most general case

of the 10-Equations and 10-Unknowns solutions method wherethe fully connected atoms

in the blob can have both symmetrical and asymmetrically connections to the input and

output leads. Similar expressions were obtained using the RG method and compared to

the conventional Green’s function method. The comparisonsof different solutions meth-

ods for the assortments of connections show no difference inthe transmission. The case

where some of the inter-blob hopping bonds were randomly removed required numerical

solutions using matrix algebra. The numerical solutions are found to be consistent with

those analytical solutions.

From all the above considerations it can be prudently concluded that the matrix algebra

method is more feasible since it is not inundated with mathematical sophistication, and

thereby does not obscure the physics. It is more economic in the sense it requires half the

number of the matrix calculations that is required by the Green’s function method. For
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example, the transmission coefficient Eq. (1.47) along withEq. (1.46) for the general case

of n atoms in the blob requires the trace of the products of two coupling termsΓ1 and

Γ2 which are matrices with their respective self energy termsΣ±, and two more matrices

G± that has the Hamiltonian ofn blob atoms. This requirement plus the need to find the

inverses ofG± makes this method less economic when compared with the matrix method

that requires only the inverse of the matrix of the blob ofn atoms. The transmission

calculations using the matrix method are in par with those derived by the standard methods.

And furthermore the matrix algebra method provides parameters that facilitates one to

modify the nanoparticle model in terms of the hopping energies, the onsite energies, the

connection strengths, and the number of sites in the model. The method is applicable to

other complex systems, and also has numerical solutions forthe model discussed.

This dissertation has developed a general formalism using the matrix algebra method

and the RG method for calculating the transmission coefficient of quantum electrons

through a model of a nanoparticle. This formalism can now be applied to more realis-

tic models, either analytically or numerically.
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APPENDIX A

EASY JAVA SIMULATION CODE: SINGLE IMPURITY TRANSPORT
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/*
* Class : transportsingleimpurity.java
* Generated using * Easy Java Simulations Version 4.1
*/

package transportsingleimpurity_pkg;

import org.colos.ejs.library._EjsConstants;

import javax.swing.event.*;
import javax.swing.*;
import java.awt.event.*;
import java.awt.*;
import java.net.*;
import java.util.*;
import java.io.*;
import java.lang.*;

public class transportsingleimpurity extends org.colos.ejs.
library.AbstractModel {

public transportsingleimpuritySimulation _simulation=null;
public transportsingleimpurityView _view=null;
public transportsingleimpurity _model=this;

public int _getStepsPerDisplay() { return 1; }

static public String _getEjsModel() {
return "./transportsingleimpurity.xml"; }

static public String _getModelDirectory() { return ""; }

static public java.util.Set<String> _getEjsResources() {
java.util.Set<String> list = new java.util.

HashSet<String>(); return list;
};

static public void main (String[] args) {
String lookAndFeel = null;
boolean decorated = true;
if (args!=null) for (int i=0; i<args.length; i++) {

if (args[i].equals("-_lookAndFeel"))
lookAndFeel = args[++i];
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else if (args[i].equals("-_decorateWindows"))
decorated = true;

else if (args[i].equals("-_doNotDecorateWindows"))
decorated = false;

}
if (lookAndFeel!=null) org.opensourcephysics.display.

OSPRuntime.setLookAndFeel(decorated,lookAndFeel);
org.opensourcephysics.tools.ResourceLoader.

addSearchPath(".");
// This is for relative resources

boolean pathsSet = false;
try { // in case of security problems

if (System.getProperty("osp_ejs")!=null) {
// Running under EJS

org.colos.ejs.library.Simulation.setPathToLibrary
("C:/Documents and Settings/LAZARUS/Desktop/

EJS_4.1/bin/config/");
// This is for classes (such as EjsMatlab)

which needs to know where the library is
pathsSet = true;

}
}
catch (Exception _exception) { pathsSet = false; }

// maybe an unsigned Web start?
try { org.colos.ejs.library.control.EjsControl.

setDefaultScreen(Integer.parseInt
(System.getProperty("screen"))); }
// set default screen

catch (Exception _exception) { }
// Ignore any error here

if (!pathsSet) {
org.colos.ejs.library.Simulation.setPathToLibrary

("C:/Documents and Settings/LAZARUS/Desktop/
EJS_4.1/bin/config/");

// This is for classes (such as EjsMatlab)
which needs to know where the library is

}
transportsingleimpurity __theModel =

new transportsingleimpurity (args);
}

public transportsingleimpurity () {
this (null, null, null,null,null,false); }
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// slave application

public transportsingleimpurity (String[] _args) {
this (null, null, null,null,_args,true); }

public transportsingleimpurity (String _replaceName,
java.awt.Frame _replaceOwnerFrame, java.net.
URL _codebase, org.colos.ejs.library.
LauncherApplet _anApplet, String[] _args,
boolean _allowAutoplay) {

__theArguments = _args;
__theApplet = _anApplet;
java.text.NumberFormat _Ejs_format =

java.text.NumberFormat.getInstance();
if (_Ejs_format instanceof java.text.DecimalFormat) {

((java.text.DecimalFormat) _Ejs_format).
getDecimalFormatSymbols()

.setDecimalSeparator(’.’);
}
_simulation = new transportsingleimpuritySimulation

(this,_replaceName,_replaceOwnerFrame,_
codebase,_allowAutoplay);

_view = (transportsingleimpurityView)
_simulation.getView();

_simulation.processArguments(_args);
}

public org.colos.ejs.library.View getView()
{ return _view; }

public org.colos.ejs.library.Simulation getSimulation() {
return _simulation; }

public void _resetSolvers() {
_external.resetIC();

}
// --- Implementation of ExternalClient ---

public String _externalInitCommand
(String _applicationFile) {

StringBuffer _external_initCommand=new StringBuffer();
return _external_initCommand.toString();

}
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public synchronized void _externalSetValues(boolean _any,
org.colos.ejs.library.external.ExternalApp _application){
}

public synchronized void _externalGetValues(boolean _any,
org.colos.ejs.library.external.ExternalApp _application){
}

// --- End of implementation of ExternalClient ---

// -------------------------------------------
// Variables defined by the user
// -------------------------------------------

public double E = -2; // Variables.Var Table:1
public double eps = 0.0; // Variables.Var Table:2
public double tw = 1.0; // Variables.Var Table:3
public double tu = 1.0; // Variables.Var Table:4
public Object myColor = null; // Variables.Var Table:5

// -------------------------------------------
// Methods defined by the user
// -------------------------------------------

// --- Initialization

public void _initialization1 () {
// > Initialization.Init Page

} // > Initialization.Init Page

// --- Evolution

// --- Constraints

public void _constraints1 () {
// > Fixed relations.FixRel Page

int e = (int) eps; // > Fixed relations.FixRel Page:1
{ // > Fixed relations.FixRel Page:2

if (e == -2.0) myColor = Color.black;
// > Fixed relations.FixRel Page:3

if (e == -1.0) myColor = Color.red;
// > Fixed relations.FixRel Page:4
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if (e == 0.0) myColor = Color.orange;
// > Fixed relations.FixRel Page:5

if (e == 1.0) myColor = Color.yellow;
// > Fixed relations.FixRel Page:6

if (e == 2.0) myColor = Color.white;
// > Fixed relations.FixRel Page:7
// > Fixed relations.FixRel Page:8

} // > Fixed relations.FixRel Page:9
} // > Fixed relations.FixRel Page

// --- Custom

//public void lib_Page () { // > Custom.Lib Page:1
//} // > Custom.Lib Page:2

// --- Methods for view elements

public double _method_for_tw_inputStrength_lineWidth ()
{ return 5*tw; }

public double _method_for_tu_outputStrength_lineWidth ()
{ return 5*tu; }

// -------------------------------------------
// Implementation of interface Model
// -------------------------------------------

public synchronized void reset () {
E = -2; // Variables.Var Table:1
eps = 0.0; // Variables.Var Table:2
tw = 1.0; // Variables.Var Table:3
tu = 1.0; // Variables.Var Table:4

}

public synchronized void initialize () {
_initialization1 ();
_resetSolvers();

}

public synchronized void step () {
}

public synchronized void update () {
_constraints1 ();

}
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public void _freeMemory () {
System.gc(); // Free memory from unused old arrays

}

} // End of class transportsingleimpurityModel

/*
* Class : transportsingleimpurity.java
* Generated using * Easy Java Simulations Version 4.1
*/

package transportsingleimpurity_pkg;

import org.colos.ejs.library._EjsConstants;

import javax.swing.event.*;
import javax.swing.*;
import java.awt.event.*;
import java.awt.*;
import java.net.*;
import java.util.*;
import java.io.*;
import java.lang.*;

public class transportsingleimpurity extends org.colos.ejs.
library.AbstractModel {

public transportsingleimpuritySimulation _simulation=null;
public transportsingleimpurityView _view=null;
public transportsingleimpurity _model=this;

public int _getStepsPerDisplay() { return 1; }

static public String _getEjsModel() {
return "./transportsingleimpurity.xml"; }

static public String _getModelDirectory() { return ""; }

static public java.util.Set<String> _getEjsResources() {
java.util.Set<String> list = new java.util.

HashSet<String>(); return list;
};
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static public void main (String[] args) {
String lookAndFeel = null;
boolean decorated = true;
if (args!=null) for (int i=0; i<args.length; i++) {

if (args[i].equals("-_lookAndFeel"))
lookAndFeel = args[++i];

else if (args[i].equals("-_decorateWindows"))
decorated = true;

else if (args[i].equals("-_doNotDecorateWindows"))
decorated = false;

}
if (lookAndFeel!=null) org.opensourcephysics.display.

OSPRuntime.setLookAndFeel(decorated,lookAndFeel);
org.opensourcephysics.tools.ResourceLoader.

addSearchPath(".");
// This is for relative resources

boolean pathsSet = false;
try { // in case of security problems

if (System.getProperty("osp_ejs")!=null) {
// Running under EJS

org.colos.ejs.library.Simulation.setPathToLibrary
("C:/Documents and Settings/LAZARUS/Desktop/

EJS_4.1/bin/config/");
// This is for classes (such as EjsMatlab)

which needs to know where the library is
pathsSet = true;

}
}
catch (Exception _exception) { pathsSet = false; }

// maybe an unsigned Web start?
try { org.colos.ejs.library.control.EjsControl.

setDefaultScreen(Integer.parseInt
(System.getProperty("screen"))); }
// set default screen

catch (Exception _exception) { }
// Ignore any error here

if (!pathsSet) {
org.colos.ejs.library.Simulation.setPathToLibrary

("C:/Documents and Settings/LAZARUS/Desktop/
EJS_4.1/bin/config/");

// This is for classes (such as EjsMatlab)
which needs to know where the library is
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}
transportsingleimpurity __theModel =

new transportsingleimpurity (args);
}

public transportsingleimpurity () {
this (null, null, null,null,null,false); }

// slave application

public transportsingleimpurity (String[] _args) {
this (null, null, null,null,_args,true); }

public transportsingleimpurity (String _replaceName,
java.awt.Frame _replaceOwnerFrame, java.net.
URL _codebase, org.colos.ejs.library.
LauncherApplet _anApplet, String[] _args,
boolean _allowAutoplay) {

__theArguments = _args;
__theApplet = _anApplet;
java.text.NumberFormat _Ejs_format =

java.text.NumberFormat.getInstance();
if (_Ejs_format instanceof java.text.DecimalFormat) {

((java.text.DecimalFormat) _Ejs_format).
getDecimalFormatSymbols()

.setDecimalSeparator(’.’);
}
_simulation = new transportsingleimpuritySimulation

(this,_replaceName,_replaceOwnerFrame,_
codebase,_allowAutoplay);

_view = (transportsingleimpurityView)
_simulation.getView();

_simulation.processArguments(_args);
}

public org.colos.ejs.library.View getView()
{ return _view; }

public org.colos.ejs.library.Simulation getSimulation() {
return _simulation; }

public void _resetSolvers() {
_external.resetIC();

}
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// --- Implementation of ExternalClient ---

public String _externalInitCommand
(String _applicationFile) {

StringBuffer _external_initCommand=new StringBuffer();
return _external_initCommand.toString();

}

public synchronized void _externalSetValues(boolean _any,
org.colos.ejs.library.external.ExternalApp _application){
}

public synchronized void _externalGetValues(boolean _any,
org.colos.ejs.library.external.ExternalApp _application){
}

// --- End of implementation of ExternalClient ---

// -------------------------------------------
// Variables defined by the user
// -------------------------------------------

public double E = -2; // Variables.Var Table:1
public double eps = 0.0; // Variables.Var Table:2
public double tw = 1.0; // Variables.Var Table:3
public double tu = 1.0; // Variables.Var Table:4
public Object myColor = null; // Variables.Var Table:5

// -------------------------------------------
// Methods defined by the user
// -------------------------------------------

// --- Initialization

public void _initialization1 () {
// > Initialization.Init Page

} // > Initialization.Init Page

// --- Evolution

// --- Constraints

public void _constraints1 () {
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// > Fixed relations.FixRel Page
int e = (int) eps; // > Fixed relations.FixRel Page:1
{ // > Fixed relations.FixRel Page:2

if (e == -2.0) myColor = Color.black;
// > Fixed relations.FixRel Page:3

if (e == -1.0) myColor = Color.red;
// > Fixed relations.FixRel Page:4

if (e == 0.0) myColor = Color.orange;
// > Fixed relations.FixRel Page:5

if (e == 1.0) myColor = Color.yellow;
// > Fixed relations.FixRel Page:6

if (e == 2.0) myColor = Color.white;
// > Fixed relations.FixRel Page:7
// > Fixed relations.FixRel Page:8

} // > Fixed relations.FixRel Page:9
} // > Fixed relations.FixRel Page

// --- Custom

//public void lib_Page () { // > Custom.Lib Page:1
//} // > Custom.Lib Page:2

// --- Methods for view elements

public double _method_for_tw_inputStrength_lineWidth ()
{ return 5*tw; }

public double _method_for_tu_outputStrength_lineWidth ()
{ return 5*tu; }

// -------------------------------------------
// Implementation of interface Model
// -------------------------------------------

public synchronized void reset () {
E = -2; // Variables.Var Table:1
eps = 0.0; // Variables.Var Table:2
tw = 1.0; // Variables.Var Table:3
tu = 1.0; // Variables.Var Table:4

}

public synchronized void initialize () {
_initialization1 ();
_resetSolvers();

}

100



public synchronized void step () {
}

public synchronized void update () {
_constraints1 ();

}

public void _freeMemory () {
System.gc(); // Free memory from unused old arrays

}

} // End of class transportsingleimpurityModel

/*
* Class : transportsingleimpurity.java
* Generated using * Easy Java Simulations Version 4.1
*/

package transportsingleimpurity_pkg;

import org.colos.ejs.library._EjsConstants;

import javax.swing.event.*;
import javax.swing.*;
import java.awt.event.*;
import java.awt.*;
import java.net.*;
import java.util.*;
import java.io.*;
import java.lang.*;

public class transportsingleimpurity extends org.colos.ejs.
library.AbstractModel {

public transportsingleimpuritySimulation _simulation=null;
public transportsingleimpurityView _view=null;
public transportsingleimpurity _model=this;

public int _getStepsPerDisplay() { return 1; }

static public String _getEjsModel() {
return "./transportsingleimpurity.xml"; }
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static public String _getModelDirectory() { return ""; }

static public java.util.Set<String> _getEjsResources() {
java.util.Set<String> list = new java.util.

HashSet<String>(); return list;
};

static public void main (String[] args) {
String lookAndFeel = null;
boolean decorated = true;
if (args!=null) for (int i=0; i<args.length; i++) {

if (args[i].equals("-_lookAndFeel"))
lookAndFeel = args[++i];

else if (args[i].equals("-_decorateWindows"))
decorated = true;

else if (args[i].equals("-_doNotDecorateWindows"))
decorated = false;

}
if (lookAndFeel!=null) org.opensourcephysics.display.

OSPRuntime.setLookAndFeel(decorated,lookAndFeel);
org.opensourcephysics.tools.ResourceLoader.

addSearchPath(".");
// This is for relative resources

boolean pathsSet = false;
try { // in case of security problems

if (System.getProperty("osp_ejs")!=null) {
// Running under EJS

org.colos.ejs.library.Simulation.setPathToLibrary
("C:/Documents and Settings/LAZARUS/Desktop/

EJS_4.1/bin/config/");
// This is for classes (such as EjsMatlab)

which needs to know where the library is
pathsSet = true;

}
}
catch (Exception _exception) { pathsSet = false; }

// maybe an unsigned Web start?
try { org.colos.ejs.library.control.EjsControl.

setDefaultScreen(Integer.parseInt
(System.getProperty("screen"))); }
// set default screen

catch (Exception _exception) { }
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// Ignore any error here
if (!pathsSet) {

org.colos.ejs.library.Simulation.setPathToLibrary
("C:/Documents and Settings/LAZARUS/Desktop/

EJS_4.1/bin/config/");
// This is for classes (such as EjsMatlab)

which needs to know where the library is
}
transportsingleimpurity __theModel =

new transportsingleimpurity (args);
}

public transportsingleimpurity () {
this (null, null, null,null,null,false); }

// slave application

public transportsingleimpurity (String[] _args) {
this (null, null, null,null,_args,true); }

public transportsingleimpurity (String _replaceName,
java.awt.Frame _replaceOwnerFrame, java.net.
URL _codebase, org.colos.ejs.library.
LauncherApplet _anApplet, String[] _args,
boolean _allowAutoplay) {

__theArguments = _args;
__theApplet = _anApplet;
java.text.NumberFormat _Ejs_format =

java.text.NumberFormat.getInstance();
if (_Ejs_format instanceof java.text.DecimalFormat) {

((java.text.DecimalFormat) _Ejs_format).
getDecimalFormatSymbols()

.setDecimalSeparator(’.’);
}
_simulation = new transportsingleimpuritySimulation

(this,_replaceName,_replaceOwnerFrame,_
codebase,_allowAutoplay);

_view = (transportsingleimpurityView)
_simulation.getView();

_simulation.processArguments(_args);
}

public org.colos.ejs.library.View getView()
{ return _view; }
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public org.colos.ejs.library.Simulation getSimulation() {
return _simulation; }

public void _resetSolvers() {
_external.resetIC();

}
// --- Implementation of ExternalClient ---

public String _externalInitCommand
(String _applicationFile) {

StringBuffer _external_initCommand=new StringBuffer();
return _external_initCommand.toString();

}

public synchronized void _externalSetValues(boolean _any,
org.colos.ejs.library.external.ExternalApp _application){
}

public synchronized void _externalGetValues(boolean _any,
org.colos.ejs.library.external.ExternalApp _application){
}

// --- End of implementation of ExternalClient ---

// -------------------------------------------
// Variables defined by the user
// -------------------------------------------

public double E = -2; // Variables.Var Table:1
public double eps = 0.0; // Variables.Var Table:2
public double tw = 1.0; // Variables.Var Table:3
public double tu = 1.0; // Variables.Var Table:4
public Object myColor = null; // Variables.Var Table:5

// -------------------------------------------
// Methods defined by the user
// -------------------------------------------

// --- Initialization

public void _initialization1 () {
// > Initialization.Init Page
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} // > Initialization.Init Page

// --- Evolution

// --- Constraints

public void _constraints1 () {
// > Fixed relations.FixRel Page

int e = (int) eps; // > Fixed relations.FixRel Page:1
{ // > Fixed relations.FixRel Page:2

if (e == -2.0) myColor = Color.black;
// > Fixed relations.FixRel Page:3

if (e == -1.0) myColor = Color.red;
// > Fixed relations.FixRel Page:4

if (e == 0.0) myColor = Color.orange;
// > Fixed relations.FixRel Page:5

if (e == 1.0) myColor = Color.yellow;
// > Fixed relations.FixRel Page:6

if (e == 2.0) myColor = Color.white;
// > Fixed relations.FixRel Page:7
// > Fixed relations.FixRel Page:8

} // > Fixed relations.FixRel Page:9
} // > Fixed relations.FixRel Page

// --- Custom

//public void lib_Page () { // > Custom.Lib Page:1
//} // > Custom.Lib Page:2

// --- Methods for view elements

public double _method_for_tw_inputStrength_lineWidth ()
{ return 5*tw; }

public double _method_for_tu_outputStrength_lineWidth ()
{ return 5*tu; }

// -------------------------------------------
// Implementation of interface Model
// -------------------------------------------

public synchronized void reset () {
E = -2; // Variables.Var Table:1
eps = 0.0; // Variables.Var Table:2
tw = 1.0; // Variables.Var Table:3
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tu = 1.0; // Variables.Var Table:4
}

public synchronized void initialize () {
_initialization1 ();
_resetSolvers();

}

public synchronized void step () {
}

public synchronized void update () {
_constraints1 ();

}

public void _freeMemory () {
System.gc(); // Free memory from unused old arrays

}

} // End of class transportsingleimpurityModel
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APPENDIX B

EASY JAVA SIMULATION CODE: 5-EQUATIONS-5-UNKNOWNS
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/*
* Class : FullyConnectedBlob.java
* Generated using * Easy Java Simulations Version 4.1
*/

package FullyConnectedBlob_pkg;

import org.colos.ejs.library._EjsConstants;

import javax.swing.event.*;
import javax.swing.*;
import java.awt.event.*;
import java.awt.*;
import java.net.*;
import java.util.*;
import java.io.*;
import java.lang.*;

public class FullyConnectedBlob extends org.colos.ejs.
library.AbstractModel {

public FullyConnectedBlobSimulation _simulation=null;
public FullyConnectedBlobView _view=null;
public FullyConnectedBlob _model=this;

public int _getStepsPerDisplay() { return 1; }

static public void main (String[] args) {
String lookAndFeel = null;
boolean decorated = true;
if (args!=null) for (int i=0; i<args.length; i++) {

if (args[i].equals("-_lookAndFeel"))
lookAndFeel = args[++i];

else if (args[i].equals("-_decorateWindows"))
decorated = true;

else if (args[i].equals("-_doNotDecorateWindows"))
decorated = false;

}
if (lookAndFeel!=null) org.opensourcephysics.display.

OSPRuntime.setLookAndFeel(decorated,lookAndFeel);
org.opensourcephysics.tools.ResourceLoader.
addSearchPath("."); // This is for relative resources

boolean pathsSet = false;
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try { // in case of security problems
if (System.getProperty("osp_ejs")!=null)
{ // Running under EJS
org.colos.ejs.library.Simulation.setPathToLibrary

("C:/Documents and Settings/LAZARUS/Desktop/EJS_4.1
/bin/config/");

// This is for classes (such as EjsMatlab) which
needs to know where the library is

pathsSet = true;
}

}
catch (Exception _exception) { pathsSet = false; }

// maybe an unsigned Web start?
try { org.colos.ejs.library.control.EjsControl

.setDefaultScreen
(Integer.parseInt(System.getProperty("screen"))); }

// set default screen
catch (Exception _exception) { }

// Ignore any error here
if (!pathsSet) {

org.colos.ejs.library.Simulation.setPathToLibrary
("C:/Documents and Settings/LAZARUS/Desktop/EJS_4.1

/bin/config/");
// This is for classes (such as EjsMatlab)

which needs to know where the library is
}
FullyConnectedBlob __theModel = new

FullyConnectedBlob (args);
}

public FullyConnectedBlob ()
{ this (null, null, null,null,null,false); }

// slave application

public FullyConnectedBlob (String[] _args)
{ this (null, null, null,null,_args,true); }

public FullyConnectedBlob
(String _replaceName, java.awt.Frame _replaceOwnerFrame,
java.net.URL _codebase, org.colos.ejs.library.

LauncherApplet _anApplet, String[] _args,
boolean _allowAutoplay) {

__theArguments = _args;
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__theApplet = _anApplet;
java.text.NumberFormat _Ejs_format =

java.text.NumberFormat.getInstance();
if (_Ejs_format instanceof java.text.DecimalFormat) {

((java.text.DecimalFormat) _Ejs_format).
getDecimalFormatSymbols().setDecimalSeparator(’.’);

}
_simulation = new FullyConnectedBlobSimulation

(this,_replaceName,_replaceOwnerFrame,_codebase,
_allowAutoplay);

_view = (FullyConnectedBlobView) _simulation.getView();
_simulation.processArguments(_args);

}

public org.colos.ejs.library.View getView ()
{ return _view; }

public org.colos.ejs.library.Simulation getSimulation()
{ return _simulation; }

public void _resetSolvers() {
_external.resetIC();

}
// --- Implementation of ExternalClient ---

public String _externalInitCommand
(String _applicationFile) {

StringBuffer _external_initCommand=new StringBuffer();
return _external_initCommand.toString();

}

public synchronized void _externalSetValues
(boolean _any, org.colos.ejs.library.external.

ExternalApp _application) {
}

public synchronized void _externalGetValues
(boolean _any, org.colos.ejs.library.external.

ExternalApp _application) {
}

// --- End of implementation of ExternalClient ---
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// -------------------------------------------
// Variables defined by the user
// -------------------------------------------

public double L = 2.0; // Variables.variables5Eq5Unkn:1
public double tu = 1.0; // Variables.variables5Eq5Unkn:2
public double tw = 1.0; // Variables.variables5Eq5Unkn:3
public double n = 2.99995;//Variables.variables5Eq5Unkn:4
public double E ; // Variables.variables5Eq5Unkn:5
public double m = 6.299823999999999;

// Variables.variables5Eq5Unkn:6
public double t = 1.5; // Variables.variables5Eq5Unkn:7
public double eps = 0.7332239999999999;

// Variables.variables5Eq5Unkn:8
public Object myColor = null;

// Variables.variables5Eq5Unkn:9
public boolean show2 = true;// Variables.showVariables:1
public boolean show3a ; // Variables.showVariables:2
public boolean show3b ; // Variables.showVariables:3
public boolean show4a ; // Variables.showVariables:4
public boolean show4b ; // Variables.showVariables:5
public boolean show5a ; // Variables.showVariables:6
public boolean show5b ; // Variables.showVariables:7
public boolean bnd2a3a ; // Variables.showVariables:8
public boolean bnd3a4a ; // Variables.showVariables:9
public boolean bnd4a5a ; // Variables.showVariables:10
public boolean bnd2b3b ; // Variables.showVariables:11
public boolean bnd3b4b ; // Variables.showVariables:12
public boolean bnd4b5b ; // Variables.showVariables:13
public boolean in3a ; // Variables.Var Table:1
public boolean out3a ; // Variables.Var Table:2
public boolean in3b ; // Variables.Var Table:3
public boolean out3b ; // Variables.Var Table:4
public boolean in4a ; // Variables.Var Table:5
public boolean out4a ; // Variables.Var Table:6
public boolean in4b ; // Variables.Var Table:7
public boolean out4b ; // Variables.Var Table:8
public boolean in5a ; // Variables.Var Table:9
public boolean out5a ; // Variables.Var Table:10
public boolean in5b ; // Variables.Var Table:11
public boolean out5b ; // Variables.Var Table:12

// -------------------------------------------
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// Methods defined by the user
// -------------------------------------------

// --- Initialization

public void _initialization1 () {
// > Initialization.IntializationForT

} // > Initialization.IntializationForT

// --- Evolution

// --- Constraints

public void _constraints1 () {
// > Fixed relations.number of atoms n

int i = (int)n;// > Fixed relations.number of atoms n:1
switch (i) // > Fixed relations.number of atoms n:2
{ // > Fixed relations.number of atoms n:3

case 2: // > Fixed relations.number of atoms n:4
{show3a = false; show3b = false;

// > Fixed relations.number of atoms n:5
show4a = false; show4b=false;

// > Fixed relations.number of atoms n:6
show5a = false; show5b = false;

// > Fixed relations.number of atoms n:7
bnd2a3a = false; bnd3a4a = false; bnd4a5a = false;

// > Fixed relations.number of atoms n:8
bnd2b3b = false; bnd3b4b = false; bnd4b5b= false;};

// > Fixed relations.number of atoms n:9
break; // > Fixed relations.number of atoms n:10
case 3: // > Fixed relations.number of atoms n:11
{ show3a = true; bnd2a3a = true;

// > Fixed relations.number of atoms n:12
show3b = false;

// > Fixed relations.number of atoms n:13
show5a = false; show5b = false;

// > Fixed relations.number of atoms n:14
show4a = false; show4b = false;

// > Fixed relations.number of atoms n:15
// > Fixed relations.number of atoms n:16

bnd3a4a = false; bnd4a5a = false;
// > Fixed relations.number of atoms n:17

bnd2b3b = false; bnd3b4b = false; bnd4b5b= false;};
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// > Fixed relations.number of atoms n:18
break; // > Fixed relations.number of atoms n:19

// > Fixed relations.number of atoms n:20
case 4: // > Fixed relations.number of atoms n:21
{show3b = true; bnd2b3b = true;

// > Fixed relations.number of atoms n:22
show3a = true; bnd2a3a = true;

// > Fixed relations.number of atoms n:23
show4a = false; show5a = false;

// > Fixed relations.number of atoms n:24
show4b = false; show5b = false;

// > Fixed relations.number of atoms n:25
bnd3a4a = false; bnd4a5a = false; bnd3b4b = false;
bnd4b5b= false;};

// > Fixed relations.number of atoms n:26
break; // > Fixed relations.number of atoms n:27

// > Fixed relations.number of atoms n:28
case 5: // > Fixed relations.number of atoms n:29
{ show4a = true; bnd3a4a = true;

// > Fixed relations.number of atoms n:30
show3b = true; bnd2b3b = true;

// > Fixed relations.number of atoms n:31
show3a = true; bnd2a3a = true;

// > Fixed relations.number of atoms n:32
show4b = false; show5b = false;

// > Fixed relations.number of atoms n:33
bnd4a5a = false; bnd3b4b = false; bnd4b5b= false;};

// > Fixed relations.number of atoms n:34
break; // > Fixed relations.number of atoms n:35

// > Fixed relations.number of atoms n:36
case 6: // > Fixed relations.number of atoms n:37

{ show4b = true; bnd3b4b = true;
// > Fixed relations.number of atoms n:38

show4a = true; bnd3a4a = true;
// > Fixed relations.number of atoms n:39

show3b = true; bnd2b3b = true;
// > Fixed relations.number of atoms n:40

show3a = true; bnd2a3a = true;
// > Fixed relations.number of atoms n:41

show5a = false; show5b = false;
// > Fixed relations.number of atoms n:42

bnd4a5a = false; bnd4b5b = false;};
// > Fixed relations.number of atoms n:43
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break; // > Fixed relations.number of atoms n:44
// > Fixed relations.number of atoms n:45

case 7: // > Fixed relations.number of atoms n:46
{ show5a = true; bnd4a5a = true;

// > Fixed relations.number of atoms n:47
show4b = true; bnd3b4b = true;

// > Fixed relations.number of atoms n:48
show4a = true; bnd3a4a = true;

// > Fixed relations.number of atoms n:49
show3b = true; bnd2b3b = true;

// > Fixed relations.number of atoms n:50
show3a = true; bnd2a3a = true;

// > Fixed relations.number of atoms n:51
show5b = false; bnd4b5b = false;

// > Fixed relations.number of atoms n:52
in5b = false; out5b = false; };

// > Fixed relations.number of atoms n:53
break; // > Fixed relations.number of atoms n:54

// > Fixed relations.number of atoms n:55
case 8: // > Fixed relations.number of atoms n:56
{ show3a = true; show4a = true; show5a = true;

// > Fixed relations.number of atoms n:57
show3b = true; show4b = true; show5b = true;

// > Fixed relations.number of atoms n:58
bnd4b5b = true; bnd2a3a = true; bnd3a4a = true;

// > Fixed relations.number of atoms n:59
bnd4a5a = true; bnd2b3b = true; bnd3b4b = true;
bnd4b5b = true;};

// > Fixed relations.number of atoms n:60
break; // > Fixed relations.number of atoms n:61

// > Fixed relations.number of atoms n:62
} // > Fixed relations.number of atoms n:63

} // > Fixed relations.number of atoms n

public void _constraints2 () { // > Fixed relations.
L parameter

int j = (int)L; // > Fixed relations.L parameter:1
{ // > Fixed relations.L parameter:2
if (L>n) L = n; // > Fixed relations.L parameter:3

switch (j) // > Fixed relations.L parameter:4
{ // > Fixed relations.L parameter:5
case 2: // > Fixed relations.L parameter:6

{ // > Fixed relations.L parameter:7
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in3a = false; in4a = false; in5a = false;
in3b = false; in4b = false; in5b = false;

// > Fixed relations.L parameter:8
}; break; // > Fixed relations.L parameter:9

// > Fixed relations.L parameter:10
case 3: // > Fixed relations.L parameter:11

{ // > Fixed relations.L parameter:12
in3a = true; in4a = false; in5a = false;
in3b = false; in4b = false; in5b = false;

// > Fixed relations.L parameter:13
}; break; // > Fixed relations.L parameter:14

case 4: // > Fixed relations.L parameter:15
{ // > Fixed relations.L parameter:16
in3a = true; in4a = false; in5a = false;
in3b = true; in4b = false; in5b = false;

// > Fixed relations.L parameter:17
}; break; // > Fixed relations.L parameter:18

case 5: // > Fixed relations.L parameter:19
{ // > Fixed relations.L parameter:20
in3a = true; in3b = true; in4a = true;
in4b = false; in5a = false; in5b = false;

// > Fixed relations.L parameter:21
}; break; // > Fixed relations.L parameter:22

case 6: // > Fixed relations.L parameter:23
{ // > Fixed relations.L parameter:24
in3a = true; in3b = true; in4a = true;
in4b = true; in5a = false; in5b = false;

// > Fixed relations.L parameter:25
}; break; // > Fixed relations.L parameter:26

case 7: // > Fixed relations.L parameter:27
{ // > Fixed relations.L parameter:28
in3a = true; in3b = true; in4a = true;
in4b = true; in5a = true; in5b = false;

// > Fixed relations.L parameter:29
}; break; // > Fixed relations.L parameter:30

// > Fixed relations.L parameter:31
// > Fixed relations.L parameter:32

case 8: // > Fixed relations.L parameter:33
{ // > Fixed relations.L parameter:34
in3a = true; in3b = true; in4a = true;
in4b = true; in5a = true; in5b = true;

// > Fixed relations.L parameter:35
}; break; // > Fixed relations.L parameter:36
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} // > Fixed relations.L parameter:37
} // > Fixed relations.L parameter:38

} // > Fixed relations.L parameter

public void _constraints3 () {
// > Fixed relations.m parameter

int M = (int)m; // > Fixed relations.m parameter:1
{ // > Fixed relations.m parameter:2
if (m>n) m = n; // > Fixed relations.m parameter:3

switch (M) // > Fixed relations.m parameter:4
{ // > Fixed relations.m parameter:5
case 2: // > Fixed relations.m parameter:6

{ // > Fixed relations.m parameter:7
in3a = false; in4a = false; in5a = false;
in3b = false; in4b = false; in5b = false;

// > Fixed relations.m parameter:8
out3a = false; out4a = false; out5a = false;
out3b = false; out4b = false; out5b = false;

// > Fixed relations.m parameter:9
}; break; // > Fixed relations.m parameter:10
// > Fixed relations.m parameter:11

case 3: // > Fixed relations.m parameter:12
{ // > Fixed relations.m parameter:13
in3a = true; in4a = false; in5a = false;
in3b = false; in4b = false; in5b = false;

// > Fixed relations.m parameter:14
out3a = true; out3b = false; out4a = false;
out4b = false; out5a = false; out5b = false;

// > Fixed relations.m parameter:15
}; break; // > Fixed relations.m parameter:16

case 4: // > Fixed relations.m parameter:17
{ // > Fixed relations.m parameter:18
in3a = true; in4a = false; in5a = false;
in3b = true; in4b = false; in5b = false;

// > Fixed relations.m parameter:19
out3a = true; out3b = true; out4a = false;
out4b = false; out5a = false; out5b = false;

// > Fixed relations.m parameter:20
}; break; // > Fixed relations.m parameter:21

case 5: // > Fixed relations.m parameter:22
{ // > Fixed relations.m parameter:23
in3a = true; in4a = true; in5a = false;
in3b = true; in4b = false; in5b = false;
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// > Fixed relations.m parameter:24
out3a = true; out3b = true; out4a = true;
out4b = false; out5a = false; out5b = false;

// > Fixed relations.m parameter:25
}; break; // > Fixed relations.m parameter:26

case 6: // > Fixed relations.m parameter:27
{ // > Fixed relations.m parameter:28
in3a = true; in4a = true; in5a = false;
in3b = true; in4b = true; in5b = false;

// > Fixed relations.m parameter:29
out3a = true; out3b = true; out4a = true;
out4b = true; out5a = false; out5b = false;

// > Fixed relations.m parameter:30
}; break; // > Fixed relations.m parameter:31

case 7: // > Fixed relations.m parameter:32
{ // > Fixed relations.m parameter:33
in3a = true; in4a = true; in5a = true;
in3b = true; in4b = true; in5b = false;

// > Fixed relations.m parameter:34
out3a = true; out4a = true; out5a = true;
out3b = true; out4b = true; out5b = false;

// > Fixed relations.m parameter:35
}; break; // > Fixed relations.m parameter:36

// > Fixed relations.m parameter:37
case 8: // > Fixed relations.m parameter:38

{ // > Fixed relations.m parameter:39
in3a = true; in4a = true; in5a = true;
in3b = true; in4b = true; in5b = true;

// > Fixed relations.m parameter:40
out3a = true; out3b = true; out4a = true;
out4b = true; out5a = true; out5b = true;

// > Fixed relations.m parameter:41
}; break; // > Fixed relations.m parameter:42

} // > Fixed relations.m parameter:43
} // > Fixed relations.m parameter:44

} // > Fixed relations.m parameter

public void _constraints4 () { // > Fixed relations.eps
parameter

int e = (int)eps; // > Fixed relations.eps parameter:1
{ // > Fixed relations.eps parameter:2
if (e == -2.0) myColor = Color.black;

// > Fixed relations.eps parameter:3
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if (e == -1.0) myColor = Color.orange;
// > Fixed relations.eps parameter:4

if (e == 0.0) myColor = Color.yellow;
// > Fixed relations.eps parameter:5

if (e == 1.0) myColor = Color.red;
// > Fixed relations.eps parameter:6

if (e == 2.0) myColor = Color.white;
// > Fixed relations.eps parameter:7

} // > Fixed relations.eps parameter:8
} // > Fixed relations.eps parameter

// --- Custom

// --- Methods for view elements

public void _method_for_twSlider_dragaction () {
_simulation.disableLoop();

// Make the simulation thread not to step the model
_getArguments();
_simulation.enableLoop();

// Make the simulation thread not to step the model
}
public void _method_for_tuSlider_dragaction () {
_simulation.disableLoop();

// Make the simulation thread not to step the model
_getArguments();
_simulation.enableLoop();

// Make the simulation thread not to step the model
}
public double _method_for_in3a_lineWidth ()

{ return 3*tw; }
public double _method_for_out3a_lineWidth ()

{ return 3*tu; }
public double _method_for_in3b_lineWidth ()

{ return 3*tw; }
public double _method_for_out3b_lineWidth ()

{ return 3*tu; }
public double _method_for_in2a2b_lineWidth ()

{ return 3*tw; }
public double _method_for_out2a2b_lineWidth ()

{ return 3*tu; }
public double _method_for_in4a_lineWidth ()

{ return 3*tw; }
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public double _method_for_in4b_lineWidth ()
{ return 3*tw; }

public double _method_for_out4a_lineWidth ()
{ return 3*tu; }

public double _method_for_out4b_lineWidth ()
{ return 3*tu; }

public double _method_for_in5a_lineWidth ()
{ return 3*tw; }

public double _method_for_out5a_lineWidth ()
{ return 3*tu; }

public double _method_for_in5b_lineWidth ()
{ return 3*tw; }

public double _method_for_out5b_lineWidth ()
{ return 3*tu; }

public double _method_for_bond2aTo2b_lineWidth ()
{ return 3*t; }

public double _method_for_bond2bTo3b_lineWidth ()
{ return 3*t; }

public double _method_for_bond2aTo3a_lineWidth ()
{ return 3*t; }

public double _method_for_bond3aTo4a_lineWidth ()
{ return 3*t; }

public double _method_for_bond3bTo4b_lineWidth ()
{ return 3*t; }

public double _method_for_bond4aTo5a_lineWidth ()
{ return 3*t; }

public double _method_for_bond4bTo5b_lineWidth ()
{ return 3*t; }

// -------------------------------------------
// Implementation of interface Model
// -------------------------------------------

public synchronized void reset () {
L = 2.0; // Variables.variables5Eq5Unkn:1
tu = 1.0; // Variables.variables5Eq5Unkn:2
tw = 1.0; // Variables.variables5Eq5Unkn:3
n = 2.999956; // Variables.variables5Eq5Unkn:4
m = 6.299823999999999; // Variables.variables5Eq5Unkn:6
t = 1.5; // Variables.variables5Eq5Unkn:7
eps = 0.7332239999999999;

// Variables.variables5Eq5Unkn:8
show2 = true; // Variables.showVariables:1

}
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public synchronized void initialize () {
_initialization1 ();
_resetSolvers();

}

public synchronized void step () {
}

public synchronized void update () {
_constraints1 ();
_constraints2 ();
_constraints3 ();
_constraints4 ();

}

public void _freeMemory () {
System.gc(); // Free memory from unused old arrays

}

} // End of class FullyConnectedBlobModel
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APPENDIX C

MATHEMATICA CODE: 10-EQUATION-10-UNKNOWNS CASE
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Mathematica Code for Transmission Coefficent for
the General Case 10 Equations 10 Unknowns
through a blob of any number of sites n>0:

\\Define Identity Matrix Z of size n:

Z = IdentityMatrix[n];

\\Define or generate vector e of length n with all
\\elements equal to 1:

e = [1, {i, n}];

\\Matrix J of size nxn, all elements equal to 1:

J = Outer[Times, e, e];

\\Define in terms of hopping energy t, site energy epsilon,
\\energy of incoming electron E (ee):

Xi = ǫ− ee− t;
Xj = t;
Xu = −Stu2;
Xw = −Stw2;

\\output coupling vector u

u = tue;

\\input coupling vector w

w = twe;

\\Define S in terms of egienvalues E (ee):

S = −ee
2

− I
√

4−ee2
2

;

\\Ansatz for Matrix M for blob:

M = XiZ + XjJ + Xw(Outer[Times, w, w]) + Xu(Outer[Times, u, u]);
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\\Ansatz for inverse of matrix M:

L = YiZ + YjjJ + Yww(Outer[Times, w, w]) + Yuu(Outer[Times, u, u]) +
Yju(Outer[Times, e, u]) + Yuj(Outer[Times, u, e]) + Yjw(Outer[Times, e, w]) +
Ywj(Outer[Times, w, e]) + Ywu(Outer[Times, w, u]) + Yuw(Outer[Times, u, w]);

\\Products of transposes of vectors and vectors:

e.w = w.e == m;w.w == l; u.u == k; e.u = u.e == p; e.e == n;
e.J = J.e == ne; J.J == nJ ; u.w = w.u == h; J.Z = J ;

\\Form matrix R in terms of parameters;
\\solve matrix equation for Y’s the 10 unknowns :

Solve[R.B == A, {Yjj ,Yww,Yuu,Yju,Yuj,Yjw ,Ywj ,Ywu,Yuw}];

A = {−Xj/Xi ,−Xw/Xi ,−Xu/Xi , 0, 0, 0, 0, 0, 0};

B = {Yjj ,Yww,Yuu,Yju,Yuj,Yjw ,Ywj ,Ywu,Yuw};

\\Matrix in terms parameters:

R = {{(Xi + nXj), 0, 0, 0, pXj , 0, mXj , 0, 0},
{0, (Xi + lXw), 0, 0, 0, mXw, 0, hXw, 0},
{0, 0, (Xi + kXu), pXu, 0, 0, 0, 0, hXu},
{0, 0, pXj , (Xi + nXj), 0, 0, 0, 0, mXj},
{pXu, 0, 0, 0, (Xi + kXu), 0, hXu, 0, 0},
{0, mXj , 0, 0, 0, (Xi + nXj), 0, pXj , 0},
{0, hXu, 0, 0, 0, pXu, 0, (Xi + kXu), 0},
{0, 0, hXw, mXw, 0, 0, 0, 0, (Xi + lXw)}};

\\Transmission amplitude;
\\substitute solutions B in matrix L

tT = 2IS2
√

4−ee2
2

tu(Transpose[w, {1}].L.u)tw;

\\Transmission Coefficient T:

T = Simplify[ComplexExpand
[

Abs
[

tT2]
]

, {ee,−2, 2}
]

;
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