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A general expression for quantum transmission of non-&atérg spinless electrons
through models of a fully connected network of sites thattmmregarded as a nanoparticle
is obtained using matrix algebra. This matrix algebra metleads to the same results
given by the Green’s function method without requiring thatihematical sophistication
as required by the later. The model of the nanopatrticle s $hidy comprises a single
linear array of atoms that profile the input and output leamected to a fully connected
blob of atoms. A simple tight-binding Hamiltonian motivaténe quantum transmission
in the discrete lattice system. If there areatoms in the nanoparticle, the methodology
requires the inverse ofa x n matrix. The solution is obtained analytically for diffeten
cases: a single atom in the nanopatrticle, a single dangte, atdully connected atoms
in a mean-field type cluster with symmetric input and outparirections, and the most
general case where thefully connected atoms can be connected arbitrarily to tipatin

and output leads. A numerical solution is also providedHtierdase where the intra-bonds



among the atoms in the nanopatrticle are varied (a case witfulp connected atoms).
The expression for the transmission coefficient thus obthirsing the matrix method is
compared with the transmission coefficients derived udiegé¢al space Renormalization

Group method and the Green’s function method.
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CHAPTER 1

INTRODUCTION

1.1 Nanotechnology

Nanotechnology has become popular not only by name but ansite research and
promises a lot of opportunities and benefits in every aredeoflh its original sense, ‘nan-
otechnology’ refers to the projected ability to constrdetns from a bottom up fashion,
using techniques and tools being developed to make highnpeaihce products. In the not
too far future the manufacturing establishments will yieelé paradigm shift that this new
technology will demand. Nanotechnology focuses on constrg structures of clusters
atoms at a scale of a billionth of a meter abbreviatedl as:. The characteristic dimen-
sions are less than aboutd00 nanometers. To get a sense of the nanoscale, a human hair
measures0, 000 nanometers across [39].

In one of his talks given on December 29, 1959, at the annuetingeof the American
Physical Society at the California Institute of Technolatpe 1965 Nobel Prize winner in
Physics, Richard P. Feynman has said, “the principles o$iphyas far as | can see, do
not speak against the possibility of maneuvering thingmdty atom.” The effort is on
to apply at the molecular scale the concept that has denabedtits effectiveness at the

macroscopic scale: making parts go to locations where geéslad [14, 27].



Properties that are of interest with respect to the objedfthis research in particular,
and to the larger interests of the broad area of nanosci@ngeneral, are the electronic
transport and other transport properties at nanoscalendimes. The focus in this treatise
will primarily be that of an alternative transport coeffictederivation to those derived
using standard conventional methods.

The systems of interest to nanoscience are the isolatedtantmres and their prop-
erties of conductivities. The modeling of these nanostmas and a convenient method
in deriving a transmission expression is the essence ofltbsertation. Transport theory

lays the foundation of theoretical materials design. Thestjons to ask then are:

How does one derive a transmission expression? Is theraemoethod?

If there is one, is it rigorous?

Can it be implemented?

Does the method yield the same results as other standarddseth

Is it applicable to more difficult systems?

The answers to these questions set the tone of this dissartat

1.2 Quantum Transport

Transport in nanosystems is currently a subject of intergeranental and theoretical
investigations because of their possible applicationdantenic devices. This ongoing

research concerns with transport properties of variou®syssuch as nanowires, single
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atoms, molecules, quantum, dots, nanotubes. Technol@gicancements in recent times
have permitted fabrication of devices and enabled contret matters of small dimen-
sions. Under those circumstances, the behavior of indatiditoms and electrons become
important and quantum effects become very crucial. Thesdgnentally alter the optical,
electrical and magnetic properties of materials. Many efriies applied in the macro-
scopic realm do not hold in the mesoscopic realm. Certaiddarental limits have to be
set on how small the electronic devices should be. Theatgiredictions along with ex-
periments are part of that process. In the classical casetialp or molecule is transported
through the device by diffusion, a time-dependent randamegss, such as heat diffusion,
molecular diffusion, and Brownian motion. This type of nootiencounters frequent col-
lisions and the net transport of particles takes place tscatia concentration gradient,
that is, from a region of higher concentration to one of a loeencentration. Diffusion
is relevant in the lengths between the nanometer and milinszale. Unlike this clas-
sical type, when the dimensions of the device approach tlenrfree path, the transport
mechanism changes from diffusive to ballistic. In this maeter regime quantum effects
become significant and using quantum principles becomesateifhe nanometer scale
regime’s imperative requirement is that the transport ofigas be governed by the quan-
tum mechanical wave propagation. Transport is no longeemiggnt on the dimensions of
the device, and the macroscopic “Ohm’s law” falls short. Uotsa case the conductance
through a narrow constriction formed between two electsadegeneral is given by the
Landauer formula [24, 25]

2e?

G ==-MT, (1.1)
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wheree is the electronic chargé, is Planck’s constant)/ is the number of transverse
modes, andl is the transmission probability that an electron injectedrse end will
emerge at the other end. = 1 for ballistic transport.

Much of the discussion in this thesis will be utilizing thaglie-band, effective-mass
Schrodinger equation. The solutions of this problem pievane of the fundamental tools
available to understand and predict the behavior of quauienices.

A large number of works in the area of quantum transport haadt dvith conditions
very near to thermal equilibrium and low bias. This ‘very neathermal equilibrium’
and low bias condition is also referred to as the “lineapoese regime,” implying the
current and voltage relationship is linear. Theoreticalodigtions are much easier in this
case than otherwise. The Kubo formula for conductivity is approach in studying linear
response theory [22, 23]. Another approach to the linepiorese transport is the Landauer
transport formula Eq. (1.1) [24]. The conductance formslaxpressed in terms of the
guantum mechanical transmission coefficients for a systeabsolute zero temperature,
where the Fermi-Dirac distribution (Eq. 1.29) is a step fiolt When conditions are
not too far removed from thermal equilibrium, then equilifon statistical physics can be
applied treating the departure from equilibrium as a smafiyybation on the equilibrium
state.

One approach to more sophisticated problems in quantusdoattheory is the Green’s
function formalism. The basis of this approach is its corece with the progress of
guantum electrodynamics. The non-equilibrium Green’sfiom theory is described by
Kadanoff and Baym [18] and by Keldysh [19]. The non-equilibr functions are defined

4



as expectation values of single-particle creation andhalation operators and they de-
scribe the state and time evolution of the system. The Gsdenttions are determined
by solving a set of Dyson equations which are an integral fofrSchrodinger’s equa-
tion. The Dyson’s equations form a convenient starting pfonthe development of a

perturbation expansion [15].

1.3 Transport Calculations - Continuous

A
U(x)
Uy
________ I S — )
B exp (-ik;x) +«———
F exp(ikx)
Aexpkx) __ .
0 a o
Figure 1.1

Potential barrier with propagation directions.

The simplest quantum transport problem is in terms of scag®f the electron wave-

function(x) in one-dimension by a spatially varying potenti&lx), a one-dimensional
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scattering problem that will aid in the understanding ofib&asnsport calculations. The
dynamics of a quantum particle of massn one-dimension is given by the time-independent

Schrodinger equation

R (o)

2m  dx?

+U(x)(x) = Ey(x), (1.2)

whereh is the Planck’s constant, ardis the total energy of a localized wave packet mov-
ing from the left towards a one-dimensional potential leauti(x), (Fig. 1.1) satisfying

the condition

0 zz<0
U)=4Q U, 0<z<a (1.3)
0 x>a.

This repulsive potential supports no bound states. We assuparticle comes in from
x = —oo and is either reflected by or transmitted through the barhrethis case where
E < U,, classically, every particle that arrives at the barriefzat= 0) will be reflected
back. Quantum mechanically the wave function is not zermbdyhe barrier, implying
that there is some probability of transition. The wave eiguais solved by the standard
text book presentation of this scattering phenomenon ditte-independent Schrodinger
equation Eqg. (1.2). It requires a solutionit) = E+. The Schrodinger equation in the

three regions yields the expressions [40, 45]

p

V1 (x) = Aet1® 4 Bemthiz 3 <)
U(z) = Po(x) = CeM® + De™** (< x <a (1.4)

s(x) = Fe'tie x> a,




wherek? = 2mE/h? andk2 = 2m(Uy — E)/R?, A 1% and F e~*1* represent the
incident andtransmitted waves respectively moving in the positivalirection, B e~#1#
corresponds to theeflected wave moving in the negativedirection. Using the continuity
of ¥(z) and its first derivative at = 0 andz = a, the constant®, C', D, and I’ can be
obtained in terms ofl.

The reflection andtransmission coefficients, R andT can now be evaluated as [45]

R 7’.6 f l-ected current dens.ity _ Jreflected o= Jiransmitted (1.5)
incident current density Jincident Jincident
Since the incident wave ig; = Aei*17, the incident current density is given by
incident — om, i dx i dr = m 5 .

and similarly, since the reflected and transmitted wavesate) = Be~*1* andi,(x) =

Ce™1* respectively, then the reflected and transmitted fluxes are

hk hk
Jreflected = _—1‘3‘27 Jtransmitted = —2‘F}2 (17)
m m
Thus the transmission coefficient is
k1| F)?
= i 1.8

Constantf’ can be calculated in terms dfand hence the transmission probability



1.4 The Propagation Matrix

J j+1

: J

x=xj+1

Figure 1.2

1-D step potential.

This section motivates the tight-binding approximatiod #me matrix method, which
is the theme of this dissertation. Consider a step potesitialvn in Fig. (1.2). Any po-
tential of arbitrary shape can be approximated as a seripsteftial stepsi.e. it can be
discretized, as shown in Fig. (1.3). The transmission afidaten coefficients are cal-
culated at the first potential step for a particle enefgincident from the left as shown
in Fig. (1.2). The transmitted particle propagating to tetrpotential step, where it

again has a probability of being transmitted or reflected. every potential step and the

8



! J J+1

Ux)| !

1
1
1
1
1
potential U(x) :

1

I
|
|
1 —
|
|

transmission / reflection
step boundary

|
e — X - X —
, Lj_xj+1 X; !
| |
X
Xj Xj+1
Figure 1.3

Smoothly varying 1-D potential discretized into series ofgmtial steps.

free propagation of the wavefunction to the next potentigh £an be associated with a
2 x 2 matrix. This matrix carries all the amplitude and phasermiation on transmission

and reflection at each potential step and the propagatidmetoéxt step. The total one-
dimensional propagation probability for a potential cetisg of a number of potential

steps can be calculated by taking the product of @agh2 matrix associated with each
transmission and reflection at each step. This approachsweek for a series of potential

steps approximating a smoothly varying potential, by whiotan be assumed that the
errors are small if the step spacing is small compared to thelength of the particle.

The steps [26] implemented to calculate the transmissiobghility are:

1. Calculate the propagation matix;., for transmission and reflection of the wave
function representing a particle of energyincident on a single potential step at

xj4+1 as shown in Fig. (1.3).



2. Calculate the propagation matg.. for propagation of the wave function between

steps. The free propagation region is betweeandz;.,,, with distanceL;.

3. Calculate the propagation matrix for tjx¢h region. This is obtained by multiplying

Pstep aNdPree 10 get matrixp; for the j-th region of the discretized potential.

4. Calculate the total propagation matixfor the complete potential by multiplying

together the propagation matrices for each region of theelized potential.

The particle has wave vector
(1.9)

The propagation between steps separated by disignzzaries a phase so that;; ehili =

Yo andig; e *ili = o)., which in matrix form is

4, Cii
= pjfree ) (110)
B; Dij

where the free propagation matrix is

e—zkij 0
pjfrcc = (1'11)
0 6ik]~L]
while the step matrix is
(1+52) (1-%)
Piser = 5 J SR (1.12)

10



The propagating matrip; for the j-th region is the combined effect, which is a product

of p;... andp; .., matrices, that s,

where

b1

P12

P21

D22

P11 P12
p.j = pjfrcc pjstcp = )
P21 P22
1 k.
5 (1 + ;{:——’_1 eXp(-ikij)
J
1 k;
5 (1 — ;c—ﬂ exp(—ik;L;)
J
1 k.
5 (1 — ;{:—H exp(ikij)
J
1 ( ki ,
— [ 14+ L= ) exp(ik;L;),
2 k; I

note thatp,; = p3, andpy; = pi,.

(1.13)

(1.14)

For the general case of potential steps, the total propagation matrix is the prodtic

the propagation matrix for each region

N
P:plpg...pj...pN:Hpj.
j=1

Since the patrticle is introduced from the left, the incidemefficient is taken to bd = 1.

If there is no incoming particle from the right, théh= 0. Consequently

A

B

can be written as

D D

P11 P12 C

P21 P22 0

11
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The transmission probability in this case is

1 2

ICJ? =
b1

(1.17)

The transmission probability for a rectangular potentairier as shown in Fig. (1.1),
which can be considered as composed of two parts where the wveator changes from
k, to ko due to the potential step-up at= 0 and a step-down at = L = a where
the vector changes fromy, to k;, which is symmetry. The corresponding wave function

changes fromy; to ¢, for the part step up and from, to ¢, for the part step down, where

A . B _
¢ — _ezklx + _e—zlﬁx
Py = —=e™ e (1.18)
o Vk Vs

Using constraints that the wave functions and their firsivdéves are continuous at the

boundaries, in matrix form this becomes

1 1 1 A 1 1 1 C
L - (1.19)
Vi | B 21w _wl|p
k1 k1
Thus
A 1 ki +ky ky— ko C L2
N (1.20)

ki — ko ky+ ko D
The total propagation matrix for the rectangular potertialrier of thicknesd. is the

product of the step-up matrix and the step-down matrix, tvigc

p 1 (/{31 + /{Zg)e_ikQL (/{31 - /{Zg)eikQL /{32 + /{31 /{32 — /{31
 dkyky

(1.21)
(]{31 — l{ig)e_ikQL (]{31 + ]{32)6ik2L ko — k1 ko + Ky
12



Multiplying out the matrices gives the elements of the nxaRti The transmission proba-

bility for a particle incident on the potential barrier isrgh by|1/py1|?, where here

(]{7% + ]{?% + lel{fg)e_ikQL - (/{?% + ]{?% - 2/{31/{32>€ik2L

= 1.22
P11 Ay oo ( )
With some rearrangement
(B +h5) (™l —em™b) 1 yr
= — —(e™" 2 1.23
P 2 21k ‘|‘2(€ + ") ( )

For the casd’ > U,, when the energy of the incident particle is greater thampttential

barrier energy, using the above equation results in

k2 + k2
P = —i% sin(koL) + cos(kaL).
Therefore the transmission probability fbr> Uy is

-1

- ﬁ _ (kgkfk’f):m?(m) + COSQ(J@L)] (1.24)
or
-1
T=|1+ ((%)2 — 1) sin?(ky L) (1.25)
For the case wheR < U,
T=|1+ ((kggfy — 1) sinh2(k2L)] _1. (1.26)

Transmission as a function of energy can be expressed usrtgansmission for the case

E > U, with the use of the relations' = 2mFE/h? andki = 2m(E — Uy)/h? giving
-1

B 1 (E—(E-U) 2.2
T(E)= |1+ 1 (ﬁ) sin (k:gL)] (1.27)
or
T(E) = [1 +i <%) sinh? (/@L)] : (1.28)

13



1.5 Calculation of Finite Temperature Conductance

The zero temperature conductance is a Fermi surface pyopiete the current is
carried by a few electrons near the Fermi energy, and can &dared to be diffusion
from a region of higher electrochemical potengialto a region of lower electrochemical
potentialu;. At zero temperature transport of electrons takes plachdrehergy range
w1 > > .

When the temperature is raised, the Fermi function
fo(E) = (1 +exp[(E — Ey) [ksT)) " (1.29)

changes smoothly over an energy range, instead of the atlisgantinuous change from
one to zero (Fig. 1.4). At finite temperatures, slightly abaero, the kinetic energy of
the electrons are raised thereby causing some redistibuBiome levels that were vacant
at absolute zero are now occupied, and some levels that wetpied at absolute zero
are vacant. The electro-chemical potentialwhich is a function of temperature, causes
the redistribution. The discontinuous change at absolete in the Fermi function is
due tou = € = €. When the quantity, changes due to a change in temperature, then
e — u > kgT and is not zero.

The conductance of a one-dimensional quantum mechanistmyat absolute zero is
given by the well established Landauer equation Eq. (1.Whicth the current flowing

at any point in the device is given by [12]

I'= (2¢/h)M Ty — po].

14



N

E, E

\ 4

Figure 1.4

Fermi function in the degenerate limit.

This current equation shows that at zero temperature thepaat is due entirely to the
influx of electrons at the Fermi energy that is assumed coheteer the range; > F >
pa, Where the transmission functidn(E) = M (E)T(E) with T(E) as the transmission
probability andM ( E) as the number of transverse modes in the conductor.

As the temperature is increased from absolute zero, thetiweransmission coeffi-
cient is drastically modified almost immediately. If indlascattering effects inside the
device are not important, then the Landauer relation betweaductivity and transmis-
sion remains valid provided is replaced by[ dF (—aai]g) T(E). Here, f; is the Fermi
distribution at temperatur€. The physics behind this is that the carriers are assumed to
suffer no inelastic scattering inside the sample. Thusiwitine sample the temperature is

effectively zero. However, the sources and sinks for cegfhich are metallic conductors
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attached to the ends of the device are in thermal equiligrhence the carriers available
for conduction through the device, instead of being confilwed; itself, have a thermal
distribution around it given by f, /OE [5].

The shift in the energy levels provide multiple energy pahd transport can take
place through these paths. The Landauer formula for fieteperature, also called multi-

channel conduction through transverse modes, is given by

B 2¢?

G —zi/dE<—§%)77E) (1.30)

1.6 Green’s Function Method

The Green’s function method plays a vital role in condensattenphysics and parti-
cle physics. It is used in solving inhomogeneous boundalyevaroblems and provides
an effective method for analyzing the local density of Sat®nductance, quantum the-
ory of scattering, and other transport-related propedfesemi-conductors. In modern
theoretical physics, Green’s functions are used as propesgaf Feynman diagrams. A
brief introduction [12] to the Green’s function and sometsfproperties will provide an
understanding of the concepts of this methodology.

A responseR due to an excitatios' is related by means of a differential operafay,,
D,,R=25. (1.31)

The response due to an excitation for instance, could be ragehia the current due to a

change in the potential. The Green’s function can be defimélae form

R=D,'S=GS5, (1.32)
16



whereG = D;pl. The case of a non-interacting transport problem can beeszpd in the
form

[E — H,,]V =8, (1.33)

whereV is the wave function anf is an equivalent excitation term due to a wave incident

from one of the leads. The corresponding Green'’s functiorbeawritten as
G=[E—-H,)™", (1.34)

whereH,, is the Hamiltonian operator:

+ U(r). (1.35)

The inverse of a differential operator can be obtained wherbbundary conditions are
set, without which the system is an infinite one and the irevefs differential operator of
an open system without boundary conditions would be imptssince a real and proper
solution is bounded.

As an example [12], a simple one-dimensional wire is consiigvith a constant po-

tential energyl/y. From Eqs. (1.34, 1.35),

-1
h? 02
= — — 1.
G E UO+2m8x2] : (1.36)
which is
h2 82 / /
E_U(]—‘l_%@ G(l’,$):5(l’—$), (137)
similar to the Schrodinger equation
h* 92



except for the source terd{z — 2') on the right. The Green’s functio@i(z, z') can be
viewed as the wavefunction atresulting from a unit excitation applied at. Such an
excitation gives rise to two waves traveling outwards frdra point of excitation, with

amplitudesA™ and A~ as shown in Fig. (1.6).

A- l AT
> X
x=x’
(a)
A- — l — ATt
> X
x=x’
(b)
Figure 1.5

(a) Retarded and (b) advanced Green’s function for infinizWire.

The solutions

/

Glz,z') = At explik(z — )], x>z

/

!

G(z,z') = A" exp|—ik(z — )], z <z (1.39)

18



regardless of what™ and A~ might be, satisfy Eq. (1.37) at all points other thae: .

In order to satisfy Eq. (1.37) at= 2, the Green’s function must be continuous

’ /

G(z,x )] ,_yr =[G,z )] - (1.40)

z=x t =
while the derivative must be discontinuousbyt /1>

(1.41)

0G(x,z") B
ox .

0G(z,x") _2m
ox . R

With the substitution of the solutions into the continuond discontinuous conditions the

Green’s function is given by

!

Gz, 2') = —i—% exp[—ik|z — z|]

!

GR(z,2) = —% explik|z — z'|] (1.42)

called the advanced and retarded Green’s function respdctiThe former corresponds
to incoming waves and the later corresponds to outgoing svavkey satisfy Eq. (1.37).
To accommodate the boundary conditions, an imaginary temal termin) (n > 0) is

added to the energy part in Eq. (1.37), resulting in

hz 82 ’ !
E—-Uy+-——= +in |GR(x,x) =d(x — x), (1.43)

2m Ox?

then the associated wave number is

V2m(E +in — Uy)
h
\2m(E - Ty) in
~ 2 P*%E—%J

k(14 16). (1.44)
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This imaginary part makes the advanced function grow indefjnrmoving away from the
source of excitation which is divergent and therefore na@eptable solution. Hence the
retarded function is accepted as the solution, since itnsegent (or bounded). A similar

argument for the advanced function makes it the only acbéptalution of the equation

hQ 82 . A ’ ’
E—Uo—l—%@—lﬁ G (x,x) =d(x—x). (1.45)

Thus a general Green'’s function is given as
G* =[E - H,,+in™, (1.46)

whereG+ = G4 is the advanced Green’s function, afd = G* is the retarded Green'’s

function. The transmission in terms of the Green’s funcisogiven as
T = TT[FlG_F2G+] = TT[FQG_F1G+], (147)

whereT'; = i[>.] — Y]] is the coupling of the conductor to the lead andT, =
i[>, — S5 is the coupling of the conductor to lead 2. The tems are the advanced

and retarded self energy terms which are Hermitian congsgatteach other.

1.7 Method of Finite Differences

The method of finite differences is another approach in abtgia numerical solution
of the Schrodinger equation, and subsequently deals rartisport and transport properties

in the regime of quantum effects. The steps are [13]

1. Convert an infinite dimensional open system, such as firetenleads, to one of a

finite dimensional closed system with boundaries.
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2. Choose discrete lattice pointszat= na, wheren is an integer, and, the lattice

constant,
3. Convert the Hamiltonian operatéf,, into a matrix[ 4.

4. Convert the wave functio(z) into a column vectof}.

The Schrodinger equation gets converted from a partitdreiftial equation into a matrix

equation:

() = HyW(e) i) = [H)p@).  (1.48)

The matrix representation for a 1-D system is obtained bysicleming the Hamiltonian
operator
n? d>
H,, = + U(x) (1.49)

 2m dx?
and a discrete lattice (as in Fig. 2.2) whose points aredolcaitr = na, n being an integer.

The matrix can be written as

h? d*y
2m dx?

[Hopw]x:na - [ } + Unwna (150)

wherey,, — ¥ (x = na), U, — U(z = na). The method of finite differences can be

applied to approximate the operat8r) /dz* as

d? 1
O Lthws — 2o ] (1.51)
Then
[Hopw]x:na = (Un + 2t)wn - twn—l - tqvbn:la (152)
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wheret = h? /2ma®. The above equation can be written as

[Hopw]x:na

= Z[(Un + 2t)5n,m - tan,m-i—l - tén,m—l]a

(1.53)

whered,, ,,, is the Kronecker delta, which is onerifandm are equal and zero otherwise.

Thus the elements of the matriX operator for a 1-D linear chain can be written as

—t
—t U_y+2t
H=1 0 -t
0 0
0 0

0

—t
Up + 2t

—t

0

0 0
0 0
t 0
U +2t —t

—t

(1.54)

Each site is linked to its nearest neighbor by the elemewhile elements along the di-

agonal are the potential energy, and2¢. The dispersion relation for the 1-D discrete

lattice with a constant potentidl(x) = U, is obtained using the plane wave eigenfunc-

tions ¢y (z) = explikz] and E = Uy + (h?k?)/2m. The Schrodinger equation can be

written using equation Eq. (1.52) as

Ewn = (UO + Qt)wn - twn—l - twn+1~

(1.55)

This is satisfied by the solution of the forf, = expl[ikz,|, wherex,, = na, anda is the

lattice constant. Substituting these wavefunctions irgo(E.55) results in

E =Uy+2t(1 —cos(ka)),

(1.56)

which is the dispersion relation for the 1-D lattice. Thisdi@ion imposes ot the 1-D

energy band limits

Uy < E<Uy+4t.
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1.8 The Tight Binding Approximation

The Schrodinger equation even in one dimension providesaiealytic solutions.
Therefore numerical methods are sought to solve most prableMost often the 1-D
discrete Schrodinger equation is presented as the infenimerical approximation to the
‘true’ continuous equation, which is exact only in the limoftinfinitesimal lattice spac-
ing. While such a position is correct mathematically, thatowous Schrodinger equa-
tion is not the most physically reasonable choice for réalimodeling of semiconductor
guantum wells and other nanoelectronic devices because agm@ied to semiconductor
guantum wells the continuous Schrodinger equation isaflgtan equation for the wave-
function envelope and therefore its solutions are meaegsght lengths smaller than the
lattice constant [7]. The discrete modeling is more appaberin portraying the physics
of a crystal than is the continuous model. Discrete Scimgkl picture is provided by
the equivalent tight-binding model for a crystalline sdkd. Numerical results for both
continuous and discrete models cannot be interpreted utithe analytical results. Sim-
ple 1-D time-independent quantum mechanical models aredbais Eq. (1.2), where:
represents the effective mass afithe wave function. Equation (1.2) must be solved nu-
merically for all but the simplest potentials. This numerical solution is achieved using
the standard finite difference method or equivalently thered difference formula for the
second derivative. The difference equation is obtaineddmgiclering the spatial variation

of the wave function); and using Taylor expansions.
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t t t t (J-11H|j)
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. (-2) G-1) J G+ G+2) ... [J)

j1 € € j+1 42 (JIH|F)

Figure 1.6

Section of infinite chain of atoms, each with adike orbital.

Fig. (1.6) shows a section of an infinite chain of atoms, eaith an s-like orbital, of
lattice spacing:. The top row shows the nearest neighbor matrix elemamd the kets

|7) represent one orbital per atom. The difference equatiod isse

PV o (e — @) — 26(2) + (e + a), (1.58)

dz? " a2
wherea is the lattice space constant. Evaluating the functionsdartvatives at points

xj; = ja gives

2ma? ma? ma?

2 2 2
(h—) i+ {h— Uy - E} b+ (—j—) i =0,  (159)

whereU,, = U(z,), ¥, = ¥(x,). Eq. (1.59) is essentially the tight-binding approximatio

H =3 alli) (i) + 3ty (1] + ). (1.60)
: (ig)
wheree; andt;; are the are the on-site atomic energy and the overlap irsegfahe

atomic orbitals at sitesand j, respectively. The tight-binding hopping matrix elements

t;;, also called the perturbative potential, are usually agsbtm be non-zero only between
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pairs of nearest-neighbor lattice sitgg). Located on sites andj are the tight-binding
basis functions$i) and|j) respectively, applied to a chain of atoms with spacirgsnd one
orbital per atom (site) shown in Fig.(1.6).

The tight-binding Hamiltonian is another way to calculdte electron dispersion re-
lation in periodic potentials. It is widely used to describe electronic band structure
in condensed matter. Unlike the free electron theory, tietdinding method describes
the electronic structure in terms of localized atomic @isitvhich overlap due to bonding
between the neighboring valance atoms [16, 37]. The prdpaggloch states, which are
responsible for electronic transport in metals, can be bpilfrom the atomic orbitals by
solving the appropriate Schrodinger equation. The tightling approach is very suited
to numerical calculations of the conductance becausedteatiges the spatial continuum
in terms of the atomic sites.

Noting that solids are made up of atoms, the electron mowealljoin the lowest
energys-state or thes-atomic orbital of an isolated atom. The electronic streetof a
periodic array of such atoms is then developed by allowingallsoverlap of electronic
wavefunctions between adjacent atoms. The Hamiltoniapiesented in a basis of singly
occupied states, a subset of states of Fock space wheratai are multiply occupied. Its
matrix representation is easy to construct. The simplestadridiagonal matrix in the

position-occupation basis. Using this tight-binding fatiem for an infinite 1-D linear
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chain of atoms (Fig. 1.6) with site-labeling in discrete@mahe left-hand side part of the

Schrodinger equatiof — F)y = 0 can be written in the site basis:

€. —F t 0 0 0 0
t e.1—F t 0 0 0
0 t e—F t 0 0
(1.61)
0 0 t 61—E t 0
0 0 0 t €9 — F t
0 0 0 0 t €3 — F

1.9 Matrix Formalism

Most descriptions of electronic transport through nantesys use the Green’s function
formalism. The matrix method is another approach in obtgmumerical solution to the
Schrodinger equation. Daboed al. [11] have described the matrix method in quantum
percolation studies. The method transforms the infinitelgd Hamiltonian matrix into
a reduced matrix that is finite and involves semi-infiniteein chains of atoms using an
ansatz. The method uses the tight-binding Hamiltonian dodiBtype wave functions.
This approach provides less mathematical sophisticalian its counterpart, the Green’s
function, which involves many terms in the transport catiohs that obscures the real
physics. In this approach to studying transport problenetyimnalgebra is used for the

same reason it is for a transfer matrix calculation [21, 2933, 34] in statistical physics,
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that is to study a system with an infinite number of particlesvihere computations only
using a finite matrix is sought. In statistical physics ttensfer matrix calculations will
ultimately lead to the calculation of the trace of an infimibatrix. And for isotropic
systems the problem is one of simply finding the trace of a p@ia finite-dimensional
matrix [31, 32]. For electronic transport problems the ngeeof an infinite matrix are
required. The system in this approach will reduce to theutalion of the inverse of
a finite matrix that will provide the wavefunctions for an mte number of values of the
positionz. Then the numerical calculation of the probability of tnamssion and reflection
would be possible.

The basis of the matrix formalism is in considering the digetattice structure, incor-
porating the tight-binding model, also called the finitdetiénce method.

Consider a system where two atomandb located atr = 0, called a “blob” whose
wavefuntions are), and ), respectively. Attached to the blob on the leftaat= —1
are the semi-infinite 1-D linear chain of atoms labeled= —oo,...,—4, -3, -2, —1,
and connected to the blob on rightaat= 1 is the semi-infinite chain of atoms labeled
x =1, 2, 3,...00(Fig. 1.7). The Hamiltonian of the whole system includesitipait and
output chains of atoms, as well as the blob atoms.

The Schrodinger equatidi.. (z)V(x) = E V() can be written in matrix form where
the random hopping integralis given a value ofl (or —1 only in the 1-dimensional

case), and the onsite energy: 0 for each site in the semi-infinite chains of atoms except
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Two atoms in ‘blob’

onsite potential

input connection €, output connection
strength at x =-1 strength at x = +1
t a,b - hopping parameter between blob atoms

Figure 1.7

Two-site blob with input and output semi-infinite chains tdras in 1-D.
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for the sites in the blob whose onsite energieseaarande¢,. The Schrodinger equation

(H — E)U = 0 in matrix form is

Vs
Y2

-1
Ya

(e

(G
(e
¥

| (1.62)

Where\f/(g:) is the column vector of site wavefunctions. The Hamiltongan infinite-

dimensional matrix. In Sec. (2.2) the solution to this matvill be reduced to the solution

for an inverse of a finite-dimensional matrix.
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CHAPTER 2

TRANSMISSION CALCULATIONS

2.1 Transmission Coefficient Calculations from 4 + 2) Matrix

The Schrodinger equation in matrix form (Eq. 1.62) for @egsthat includes the input
wire, the blob of two atoms, and the output wire, is an infhtil@ensional matrix equa-
tion that is to be solved for the column vectob}. The equation has to be reduced first
to a finite-dimensional one so that the inverse and henceotbhéan could be determined
numerically. Electrons are sent fram= —oc so the wavefunction for < 0 are the in-
cident wave and reflected wave with amplitudeepresented by the ansatz [11] (physical
guess)

Uiy =€ "l (2.1)
and the ansatz for the transmitted wave traveling te oo is
Vint1) = tre™ (2.2)

wheretr is the amplitude. The sites of the system are now labeled 0,1,2,...00
implying discretization of the one-dimensional space. sehghysical ansatz can also be

written for the negative values with = —n — 1 forx < 0 as
Yy = MG pemilmila oy — g oL 22 ] (2.3)
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and for the positive values withh = n + 1 as
Yy = tpe! ™y =12, ... 4o0. (2.4)

This wavefunction with unit amplitude traveling in from= —oo, is partially reflected
with an amplitude to x = —oo, and partially transmitted with amplitude to z = +oc.

The energyF of the injected electron is the same at any location in theegyswhich is
o E
el+e=F < FE=2cos(q) < q=arccos (E) : (2.5)
This condition imposes a limit on the energyof the incoming electron of
—2< E <2 (2.6)

This is the dispersion relation of Eq. (1.57) with= 1 andU, = —2t soe = Uy + 2t = 0.

In matrix notation for the two-site blob and the two semi+iite leads thensatas

_3 ei(=2)a | pe—i(=2)q e=204 | o2

_9 et=Da 4 pe—i(=1)q e—lia 4 pelia

-1 e + re="4 147
Ya Ya Ya

= = . (2.7)

Up Uy Uy
(U tpeli tr
(O tpelt trelid
U3 tpeid treia
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Substituting Eq. (2.7) in Eq. (1.62) gives the matrix equrati

-E'1 0 0 0 0 0 0 --- |[e2a4re2a 0
1 —E 1 0 0 0 0 0 - |[etaspetia 0
0 1 —E t4, tay, 0 0 0 -- 147 0
0 0 tyaea—FE top tag 0 0 - e 0
0 0 t_1p tey —Etyy 0 0 - by : 0
0 0 0 tog ty —-E 1 0 -- tr 0
0 0 0 0 0 1 —E 1 tpelia 0
0 0 0 0 0 0 1 —E-- tpe?ia 0
'(2.8)

From the product on the left side of the above matrix for sites 1 (m < —2) for the

incoming sites (negative) there is

Vmot — By + Uy = €M+ [e7 — E+ €] + re~im+1a (€9 — E +e7"]

= T[] 4 pemi Mt [0] = 0. (2.9)
Similarly for the sites witm > 1 (m < —2) for the outgoing sites (positive) this gives

Ut = B + gy = D0 4 Bi0mDa g il
= tpelm=1a [e7 — E + €]

= tpe!™m DI 0] = 0. (2.10)
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Hence the equatiofi{., — £)¥ = 0 is satisfied everywhere except (so far) in the central

part of the matrix that pertains to the blob atoms. The céptg of the matrix requires

that
e~ + et
1-E @ 00 147 e_iq+r6iq—E—7’E+@UTz/7 0
0wH-—FIL a0 " = | W+rd+H)—EWp+trii | = |0
00 @ -F1 tr @) — Etr + tre' 0
tret
(2.11)

HereH is the portion of the Hamiltonian that governs the intex@gsiwithin the blob in
terms of the onsite energiesand hopping parametetsbothe and¢ are taken to be real
numbers. The size of the matriX is equal to the number of sites within the bldbs the
identity matrix of the same dimension. The vectarand« and their transposes also have
the same dimension as the dimensiorifThe vectord that couples the site at= —1

to the blob is

(2.12)

and the vectofi (standing for the wordit in Norwegian, which means out) that couples

the site atr = +1 to the blob is
tl,a

(2.13)

<y
I
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The equation Eq. (2.11) can be written as

_E 4 ¢l wr 0 147
i H — EI i i
0 ﬁT —E+€iq tT

which when multiplied out results in

e~ 4 reit — [ — ¢ B+ @it

@+ 1@+ HY — EL + tri

@) — Bty + tyeid
which is the same as Eq. (2.11).

The equation

—FE + ¢4 wt 0 1+r
w H— E1 u
0 ur —F + ¢

el — e~ 0
0 = 0d |, (214)
0 0
0
sl (2.15)
0
el — e
- i . (2.16)
0

is thus the key equation to solve ferand¢;. This finite and reduced matrix whose

dimension is equal to the number of sitesn the blob plus 2 is the key to solve the

Schradinger equation and hence determine the coeffic@ntsflection 2 = |r|> and

transmissioril” = |tr|?. By conservation of the number of electrons, the relatignsh

R+T = |r]* + |tz|*> = 1 must always hold. The solution also yields the eigenvegtor

within the blob.
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2.2 Then-Matrix Transmission

The equation to solve is EqQ. (2.16), which can be solved fdyraa

- 1 -1

1+r —E+¢e4 @t 0 e —e
v | = W  H-FEI @ 0
tr 0 ur —F + e 0

The energy if = e " +¢'? = 2cos(q) with —2 < E < 2. Also note that

—E + et = — oTia,

The wave vectog can be regarded as an angle, with

FE
cos(q) = 5
and
) 4 — B2
sin(q) = 5

Thus one can use
4 — F2

, E
e* = cos(q) £ isin(q) = 5 +i 5

Define
4 — B2 E 4 — F2

4 E
=—-F M= 4+ =+ =41
S +e +2—|—z 5 2+z 5

Then Eg. (2.17) can be shown by direct matrix multiplicatiote

- 1 -1

S w 0 5+ @u L —gw'L W L

W H—-EI @ = — <L L —<Lau
T 1 =TT .= 1 =T 1 1 =TT~

0 U S U L —<su L 5+ gu Lu
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(2.20)

(2.21)

(2.22)
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with the definition of the matrix

1 R

L=|H-FEI- gﬁﬁT - gww (2.24)

Multiplying through the general form of the matrix inverselq. (2.17) gives the result

147 ++ @uTLd —4d'L L La 2i sin(q)
0 — 1L L —1La 0 (2.25)
tr L'y —Ld"L i+ &d"La 0
or
14 2z's,1;(q) + 2is;r21(q)w*TLw
7 — 2isin(g) 1 =
7 2y : (2.26)
tr ELUCNES T

The finite matrix to solve has now been reduced in size by twae dnly requirement is
to solve the matriX. analytically or numerically finding the inverse of a matrixsize n
equal to the number of sites in the blob. From Eq. (2.26),idr@simission coefficient [35]
is

(2.27)

2.3 Fully Connected Blob,n > 2

Consider a blob with sites located at = 0, in which all sites are identical and> 1.
Assume an on-site energyand all blob sites are equally connected to the input leaitieat s

x = —1 with strengtht,, and to the output lead at site= +1 with strengtht,,. Introduce
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a vectore of lengthn whose elements are dl] the identity matrix of sizen x n, and the

n X n matrixJ whose elements are dll For example, fon = 3

1 1 00 1 1 1
€= 1|, I= o010, J= 111 |- (2.28)
1 0 01 1 1 1

RelationsJé = né, eel = J andJ? = nJ can be proved by matrix multiplication.
The input and output coupling vectors in Eq. (2.26) in terrhg,@and coupling strength
parameter can be written as

@ =tye, = t,e (2.29)

The matrix equation Eq. (2.26) in original form#¢ — E1 = (e — E — ¢)I + tJ, where
each of then blob sites is coupled with a hopping parametés each of the other — 1

blob sites. As an example far= 3 they are

1 1 e—FE t t
w=t,| 1 |, u=t, | 1 |, H—-EI= t e—E ¢t (2.30)
1 1 t t e—FE

EqQ. (2.24) is now written as
L' =(e—E—t)I+[t—S*(t2 +2))J (2.31)

whereS = —F + exp(iq) = =% + z—v‘lgw defined in Eq. (2.22). The matrik can be
written as

L=X1I+X,7, (2.32)
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whereX; = (e — E —t)andX; =t — S*(t2 +t2). Its inverse is

L= (XLII + YJJ) , (2.33)
then
(X/I+X,J) (XLII + YJJ> =1 (2.34)
provided that
Yo = _XI(X;XJi nX,)’ (2.35)

which when substituted in Eq. (2.34) along with the proes#t = I, JI = 1J = J, and

J?2 = nJ, results in

X X
YJ_'_XJYJH_'_X[YJ]J: {YJ—FYJ(XJTL—FX[) J=0. (2.36)
I I

The matrix cannot be singulaX( # 0) for a plausible solution. Therefore the inverse
L~! provides a general solution for any number of site§ he solution for the general
site case using Eq. (2.34) is

1 t— S*(t2 + t?

—E—1 (—B-0f-E+(n-Di-nS @10 (2.37)

Thus the solution [35] to find for the transmission is,
tr = 2i(S*)?sin(q)u L = 2i(S*)*t,t, sin(q)é" Le. (2.38)

Using the propertiedé = né, €Te = n, andeTlé = n in the transmission amplitude
above yields

n B n? [t — S*(t2 + t2)]
e—FE—-t (e—E—t)e—E+ (n+1)t—nS*(t2 +12)]

(2.39)

tr = 2i(S*)?sin(q)twty
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This solution is valid fom > 2, a non-singular matrix se — £ — t # 0, and then the

physically measurable probability = |t7|*.
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Figure 2.1

Transmission vs. Energy forsite blob withe =t =t¢, =t, = 1.

Fig. (2.1) illustrates how transmission changes with theloer of atoms in the blob.
For more than about four atoms in the blob the transmissies dot significantly change.
The argument for such a behavior is that as more atoms arel aoldlee blob the sum of
input and output hopping strengths = ¢, = 1 increases accordingly and so does the

sum of strengths of the intra-blob bond hopping paraméters
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2.4 Decimation Renormalization Group - Matrix

One of the most basic themes in theoretical physics is tteetltegt nature is described
locally. The basic equations of all physics is local. In orte be able to specify lo-
cal equations it is necessary to define continuum limitdustiag the limits that define
derivatives. The idea of the derivative and a continuum igdrtant in all of physics. A
group of continuum limits is called the statistical continu limit that has a very broad
range of applications in physics. The functions of a cordusivariable are themselves
independent in a statistical continuum limit. If the contiim were to be replaced by dis-
crete lattice points, the field averages would consist @grdls over the value of the field
at each lattice site. Thus for the discrete lattice case one has a multiple iatexqr, where
the variables of the integration are the fields at each sitprodedure to understand the
statistical continuum limit is called the renormalizatigmoup RG [43]. Renormalization
refers to a mathematical tool that allows one to change aigdlysystem as one views
it at different distance scales. 1t is a strategy for dealing with problems involving many
scale lengths. The RG method is intimately related to “stalariance,” a symmetry by
which the system appears the same at all scales. It bringghbthe scale invariance
in the neighborhood of a critical point. In the real spacagdfarmation, one eliminates
certain degrees of freedom which are defined on a lattice tfaungl carries out a partial
trace operation on the partition function. The lattice ¢ansof the resulting system is
then readjusted and the interval variables are renornthilzeuch a manner that the new

Hamiltonian corresponds to the original one in its form. HBipgroach is to integrate out
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the fluctuations in sequence, starting with fluctuationsroatamic scale and then moving
on until enough scales have been averaged out [41, 43, 44].

The central equation used in the RG type of solutions herarfar x n matrix A is

o0 o0 . n/2 1~ N
| dRexp—FTAG + bF] = —— ex {—bTA‘lb‘l}. 2.40
/_oo /_oo vl I= T P |3 (2.40)

The matrix A is symmetric, and Eq. (2.40) holds for a positive-definitetnraA. It
can, however, be assumed that the equation holds as loAgssymmetric even if it is
complex. The complex entries are only along the diagondlercases to be considered in
the forthcoming sections and chapters applying RG type lotisos. Having thus made

this assumption, the determinant
" exp [%BTA_@]
o 2
(S [ diexp |~ AT + 57 )

can be utilized. The inverse of a matrix can be achieved uSnagner’s rule for a square

det|A| =

(2.41)

matrix such as foA as

-1 _ adj(A)
det(A)’

(2.42)

whereadj(A) = CT, that is, the adjugate of is the transpose of the cofactor Af The
cofactor being”;; = (—)"*7M,;, and(¢, j) the minor ofA denoted by\/;; the determinant
of the(n — 1) x (n — 1) matrix that results from the deletion of rovand columry of the

matrix A: M;; = det(ij minor of A).

2.5 Transmission for a Single Site Blob using different metbds

This section deals with the simple and special case where tha single atom in the

blob. The transmission equations are compared using eliffenethods using solutions in
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continuous space, the discrete Green'’s function methed3tlk 3) and(1 x 1) matrices,

and the RG method.

2.5.1 Single Site: Continuous

From Sec. (1.3), Fig. (1.1), Eq. (1.7), constaAt@and A are found using boundary
conditions for the one-dimensional potential barrier. Thestraints are that anddy/dx
must be continuous at = 0 andx = a. Implementing for the constants yields the

following relationship between them [45]
A+B=C+D, ik(A— B)=iky(C — D), (2.43)
and
Ce™2t 4 Dem™0 = Fe™a iky(Ce™2* — Dem ™) = ik Fe™e. (2.44)
Solving for F' results in
F = 4k ko Ae™ ™ [k ky cos(kea) — 2i (k] — k3) sin(ksa)] . (2.45)

The transmission coefficient Eq. (1.7) is then

1 (k2 — k2 . -
T = |i1 + Z ( 1]{51]{}2 2) Sll’l2(l{?2a):|

2

_ {1 . % sin? (v/2ma?Ta /BTy = 1)] (2.46)

E —Uy)
since
KoK U (2.47)
k1 ko E(E —Uy) '
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Further simplifying gives

T(E) = 4E(E — Uo) (2.48)

AE(E — Uy) + U2 sin (\/(E - Uo)/to) ’

wheret, = h?/2ma?. This solution is given in [45].

2.5.2 Single Site: Green’s Function (Discrete)

Consider the single atom device as shown in Fig. (2.2) with & () Hamiltonian.
The relevant Schrodinger equation has to be discretizeddier to represent the quantum
system in a matrix form. As an application of the Green’s fiorcformalism [13] to a

single atom with input and output leads as shown (Fig. 2.2pmsidered.

exp(inka)
] t..exp(inka
r exp(-inka) r explinka) R
——
Ty Ty ty -t -ty -l
-o0—oo—o0— @ —0o—o—=0
3 -2 1 o0 i o+ +2 +3 i
input lead device output lead
Figure 2.2

A one-atom “device” connected to input and output leads.

The device here is treated as single atom whose Hamiltogsiammne-by-one matrix,

H) = B+ 2t + 2. (2.49)
a
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Here E, is the conduction band edge constaigt,= h%/2m.a?, and U, is the single-
electron charging energy, that is, the change in potentieigy due tawne extra electron.

The effects of the two semi-infinite leads are representeallby 1 self energy matrix
[S1(E)] = —tee™,  [Sy(E)] = —toe ™),
whereka is related to the energy by the dispersion relation
E =FE,.+2ty(1 —coska) — hv(FE) = 2atgsin(ka). (2.50)
The Green’s function
G=[El—H—%, — %] =[E—E,— 2ty + 2tee™ — (Uy/a)] Y,

which on simplifying using the dispersion relation gives

a

T . o -1 _
G = [i2tgsinka — (Up/a)] o =T (2.51)
Then the transmission is given by
2 2

T R2u(E)?2 4+ U
wherel'; 5(E) = i[¥1, — Ef,] = —teel™) is the broadening matrix, the imaginary part
of the self-energy. This discrete lattice approach in reaks is used in calculating the
Green’s function, the effects of the semi-infinite input andput leads that have been
integrated through a self energy functibf thus replacing them with a finite-sized non-
zero isolated single atom conductor. In this formulatiomgshe self energy function the

semi-infinite leads can be eliminated, except for the pahtsontact between the single
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atom conductor and the adjacent atoms of the leads. Suclem@mce requires only the
Hamiltonian, which dimension is the same as the number ohato the conductor. In

this simple case of the single atom, the dimensionssl.

2.5.3 Single Site: § x 3) Matrix

The equation to solve for transmission in this case is EQ.7(2in which the matrix

H — Elis setto, sayA, ande’ = cos(q) + isin(q) = £ + i¥452* as already defined, is

—E+eét it 0 1+7r 2i sin(q)
i A i v | = 0 : (2.53)
0 ul —FE e tr 0

The method of reduction is employed to find the inverse, witéie this single site case

isal x 1 matrix. Multiply the left side for the middle equation to giv

(1470 + AY + tpii = 0, (2.54)
multiply by A~
(14 7)A~'G + ¢ + tr AT = 0. (2.55)
Then
U =—(14r) AN — t7 A7 (2.56)

Substitute for) in the matrix equation and take the product for the top row:
(14+7)(—E +¢e) — (1 +r)w" A7 d — tpw" A~ = 2isin(q) (2.57)
and similarly taking the product for the bottom row:

—(1+ )" A — tpd" AT tp(—E 4 €) = 0. (2.58)
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Now there are two equations Eq. (2.57) and Eg. (2.58) withvarables(1 + r) andtr

to be solved in matrix form

—F + €' — wT Al —wT A 1+7r 2i sin(q)
= . (2.59)
—a" A~ —FE+ e —adtA™ g tr 0

The dimension of the matrix equation has now been reduceletinverse of & x 2

matrix, the inverse of which can be easily obtained.

In the case of a single atom in the bléb = ¢ is a matrix of sizel x 1. Now A is

1 x 1 and symmetric. ThelA = A~! is symmetric, and thereforé A~'i = @A~ !4.

With these substitutions

1
AW = 2 B (2.60)

Using Kramer's rule to find the inverse of tBe< 2 matrix gives

—2isin(q)tutw
= . (2.61)

T o) (5- &) - ()

SubstitutingS = £ + i¥*>2 andsin(q) = Y52 into Eq. (2.61) gives

2 (4 - B9t b
T = |tr|” = (2.62)
th 42212 + 1) — E2(—1 4+ 12 +12) + E(=2 + 12 +12)e + €2

Settingt,, = t, = 1 in the above equation Eq. (2.62)
4 — E?
(2.63)

y A
4 — E? 4 €2
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A screenshot of an Easy Java Simulation showing Transmissosus Energy for the
single site blob, with parameters input strengith output strengtlt,,, and onsite energy
of the single atom (impurityd is shown in Fig. (2.3). The Easy Java Simulation is avail-
able freely on the web &ttp : //quantum.ph.msstate.edu/nanotransport.html and the

codes for this simulation are given in Appendix A.

2.5.4 Single Site: { x 1) Matrix

Figure (2.2) shows the uniform semi-infinite input and ouitipads to the one-atom
blob in one-dimension represented by a one-band effectagsmmodel. The one site at
x = 0 is different from the others. The Hamiltonian for this siagitom is a one-by-one
matrix. In this case, let = t,, andu = t, and’H = e. The required inverse matrix is

given by

1 1
e e—E- S +18) e—E- [cos(¢p) — isin(g)] (2 + t2) (2.64)

with S* = exp(—i¢) , where the phase (written in computer notation) is

JI— E2?
¢ = atan2 (ﬁ, —E) . (2.65)
2 2
Let#? =2 +¢2. Then
L_ €~ E — % cos(¢) — it?sin(¢) (2.66)
e—FE—# (:0:5((?)}2 + [¢ sin(gb)]Q. .
Let L = Aexp(iw) with amplitude
1
A= (2.67)

\/[e ~-E-{2 Cos(gbﬂ2 + [ sin(gzﬁﬂ2
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3FF Quantum Transmission

Description for transportsingleimpurity

Electron transport in small world nanosystems
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Quantum Transmission:
Single Impurity Case

A "blob" in this context is a single tmpurity site. Attached to the left and right of this
blob are two semi-infinite linear chains of atoms (in biue), which are the input and
output connections tothe blob. The simple case considered here is the one impurity
atom with an onsite pﬂtant!al energy €. E[E'ﬂtrons of energy E enter via the input lead
to the site and exit via either the output lead or the input lead. The incoming wave has
some probability of being transmitted o reflected depending on the input and output
connection strength parameters, e and fu respectively, the onsite energy ¢, and the
energy of the incoming electron. The sum of the probabilities of transmission and
reflection is equal to 1.

The M |/ Meth

Figure 2.3

Easy Java Simulation of single atom blébys E.
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This gives the general solution for to be
tr = 2i(5*)?sin(q)u’ L = 24 sin(q)tutwe%e_%‘bei“, (2.68)

and the transmission is [35]

4sin?(q)t2t2 (2.69)
[e—FE—# cos(¢)]2 + [ sin(gb)}zi .

T = |tr|* = 4A% sin?(q)£212 =

Simplifying further with the respective definitions gifi(¢), andcos(¢), transmission is
given in terms of onsite energyof the single site, the enerdy of the incoming electron,

and the input and output parameteysandt,,,

2 (4= E)tats,
T = |tr]* = . (2.70)
th 26212 4t — E2(—1+ 2 +12)+ E(—2+t2+12)e+ €2

Settingt,, = t, = 1 in the above equation Eq. (2.70) gives

4 — E?

T
4 — E? 4 €2

(2.71)

The plots for transmissiof versus energy are shown in Fig. (2.3) for = 0 ast,, = t,

is varied and how!l" varies ase is varied. Whent,, = t, = 1 ande = 0, there is
full transmission for all energy values2 < E < 2. Setting input connection strength
t, = 0 is equivalent to disconnecting the atom from the input, shgwphysically zero
transmission. Setting output connection strength= 0 also gives zero transmission,

when all the electrons are reflected back to the origin.
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2.5.5 Single Site: RG

For ann-site blob, the matrix equation to solve is

¢ —E t, tq 1+ 2i sin(q)
tw At " = 0 ; (2.72)
tg  t, €9—F tr 0
where
€' = cos(q) + isin(q) = £ + ZLEQ

2 2

The matrix for a single-site bloA = (¢ — £ — t)I + tJ is then(e — E) since there is
only one site in the blob, identity matrixis just al x 1 matrix, and there is no inter-blob
hopping parametet & 0), £, = t. andt,, = ... The matrix to solve is the inverse of the

matrix in Eq. (2.72), which is

e"—FE i, 0
M; = te €e—E 1, - (2.73)
0 t, €9—F
Then
L+ 7= (Mz")1,12isin(q) (2.74)

with transmissiorl’ = 1— R and reflection? = |r|?, where(M; '), ; is the(1, 1) element
of the inverse of the matridI;. Number the site just before the blobas and the site

after the blobz , and the site of the blob as, and form the vector

STl
Il

o | (2.75)

Ly
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From Sec. (2.4), Eq. (2.41), the determinant of the matrix is

77.3

[ffooo ffooo ffooo dzx_dzridxy exp (— _TMgf)]

det|M3| = 3 -

Therefore using Cramer’s rule to find th 1) element of the inverse gives

e—F t.
det
t, €9—F
1+ r = 2isin(q)
el —E t, 0
det tw €e—E 1,
0 t. €19—F
which gives
by e 2i sin(q) {5}2’
s IQ
where
Is = / / / dr_dxidzr, exp [—fTMgf}
and
0o poo e—F tu zh
I, = / / daida! exp | — (2} o))
—0o0 J —00 tu eiq — E xg_

Now perform the integral, overdz to give

I = / / dz'|dz!, exp [~ ((e — E)a)* + (€' — E)2'? + 2,2, ]

and with

1
e—F

b= 2tuxl+ and A7'=
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L= / " e exp [—(eiq—E)xﬂ VT F(Qt“”mz} _ VT (282

oo Ve—FE |4 e—E ve—F
The renormalized integral to do with sitg decimated is
Iy = /_OO dz', exp {— (e’q - FE - - —UE) ', ] . (2.83)
Similarly performing the integral ith; overdz; with b= 2tyxy +2t,x_and A = ﬁ
gives
=
I3 = dr dx_
’ € — E —00 J —00 "
e F — th _lwtu T \/—
e—F e—F s
exp | —(z_ z4) = 15.(2.84)
_lwty el — F — t T Ve— L
e—FE e—F +
Collecting terms gives
.. 2 . N 2
Lt 2i sin(q) I _ 2i sin(q) I3 . (2.85)
T Iy T Iy
This leaves
2i sin(q) det e — & :12E
14+7r= (2.86)
g 67«[] _ E _ t?u _tutw
det e—F e—F
wtu i ta
—ah e —F— 25
SO
L+r=(M;"),, 2isin(g),
where
el _ | — to _ tutw
M = “F “F . (2.87)
wtu i ta
—ah R
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147 eiq—E—% —% 14+7r 2isin(q)
M: = _
tr —6“ = el —F — 6_"E tr 0
(2.88)

This equation can be solved for by taking the inverse of/;, which is a simple sym-
metric2 x 2 matrix giving

2 (4 — E*)tuts,
T = |tr]* = . (2.89)
e+ 26212+t — E2(—1+ 12 +12) + E(=2 + 12 +12)e + €

Settingt,, = t, = 1 in the above equation Eq. (2.89) gives

4 — E?
= 2.90
4 — F? + €2 ( )
The equivalence between the transmission equations EG8, 271) from the matrix

solutions, Eq. (2.90) from the RG calculations, and thegmaission equation (Eq. 2.52)

from the Green'’s function calculation lies in the followirgation [13]:
R?v(E)? = 4a°t} sin®(ka). (2.91)

Setting the hopping parametgr= 1, lattice constant = 1, and the wave vectdr equal

to angleg as in Eq. (2.5) with the definitiosin(q) = Y52, givesh?v(E)? = 4 — E?,

and that results in the equivalence of the transmissiontemsa

R2u(E)? 4- E?

T: =
RPu(E2+ U2 4— E?+¢€¥’

(2.92)

whereU, ande are equivalents of the onsite potential energy of the siagden. Hence
the equivalence of the Green'’s function transmission eguoiatith those derived from the

matrix and RG solutions.
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2.6 Transmission for Single Site Dangle using different méiods

O
@

Figure 2.4

Two sites: Dangle blob.

2.6.1 Single Site Dangle: Matrix Formalism

Shown in Fig. (2.4) is a two site blob with one atom connecbetth¢ input and output.
The Hamiltonian in this case is2ax 2 matrix. The input and output connecting vectors

are respectively

W= . = . (2.93)
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The two atoms in the blob with onsite energigsinde, are connected by hopping param-

etert. Then the Hamiltonian of this dangle blob is

€1 t
H= : (2.94)
t €9
Using Eq. (2.24) with coupling matrices
20 20
Wi = : TITRE (2.95)
0 O 0 0

gives the matrix

T 6 —E—S* (2 +t2) t
L=H-FEI-5" (ww + du ): . (2.96)
t 62—E

Then the transmission equation Eq. (2.26) gives

T=(4-E|(t, 0L SN (2.97)

0

The matrixL.—! can be obtained using standard methods since it is a synumetri2
matrix. The transmission therefore for a single-site danfpr example given a set of

parametric values, = t, = 1, ande; = ¢; = 0, is

4 — E?

AL

T(E) (2.98)

2.6.2 Single Site Dangle: Green’s Function Formalism

The above transmission equation Eq. (2.98) for a singieesngle has been derived

(shown in the Appendix of [8]) using the discrete Green’sction formalism. Referring
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to the same model as shown in Fig. (2.4), the Green’s fundierpressed in terms of the
Dyson equation and the transmission obtained is for the sataf parameters discussed

in the previous section (2.6.1),

4 — E?

AL

T(E) (2.99)

2.6.3 Single Site Dangle: RG Formalism

Sec. (2.4) gives the transmission calculation by the RG atetbr ann-site blob. This
method can be applied for a one site in a dangle as shown ifZ%). The single dangle
site with on-site energy, is connected via to the site withey. The site with energy,
is connected on both sides to the input and output leads Hvat leen decimated shown
in the figure as crossed boxes. Applying the RG to decimatedhngling site leads to a
renormalized on-site energy. For an(1 + 1)-site blob of whichl site is decimated, then

the(1+ 1+ 2) x (1 + 1+ 2) matrix equation to be solved will be

eh—FE t, 0 0 1+7r 2i sin(q)
ty  w—FE i t, " 0
_ . (2.100)
0 t 6 —F 0 6 0
0 tu 0 ¢4 —F tr 0
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(b)

Figure 2.5

A single site dangle (a) before decimation, (b) after detioma
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wheree = cos(q) + isin(q) = £ + 452, Decimating the one dangle site in the

standard way, the decimated renormalized matrix is

el1—E t, 0 1+7r 2isin(q)
tw e — E tu " = 0 (2.101)
0 ty el — F tr 0
with
/ t2
=€y — . 2.102
€ = €o - (2.102)
This completes the RG decimation equations for the dangiteg Then
27 sin () e tu
tr = — 2 (9) =3 _ . (2.103)
<eq_E E’iUE)(eq_E_E’fE) (e’w—E'>

With onsite energieg, = ¢; set to zero the transmission probability is calculatedgitie

symbolic manipulation program Mathematica [46], giving

E?(4 — E?)242

T = .
E2[(=24 82 +12)t2 + (12 +12)?] — E2(—1+ 2 +t2) + ¢4

(2.104)

A transmission equation comparable to those (Eq. (2.98),(Z89)) derived using the

other methods is obtained by settihg= ¢, = 1 to give

E2(4 — E?)
2
T=l = ma v (2.105)

Hence the transmission equation Eq. (2.98) obtained frotixrsolution for a blob with
one site in the dangle is equivalent to the transmissionteansEg. (2.105) and Eq. (2.99)

derived using the RG method and the Green’s function caionlaespectively.
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CHAPTER 3

APPLICATIONS

3.1 General Solution: Fully connected 5 Equations 5 Unknowsicase

This section takes into account of a fully connectesite blob with input and output
leads connected to each of the sites in the blob with hop@angrpeter and onsite energy
e. This is a general case with symmetry, (Fig. 3.1), in whi¢ch= 4. The general trans-

mission formula is obtained using the 5-Equation-5-Unknomatrix method and the RG

mechanism.
blob blob
t
input lead output lead
—O0——O O—0- @
by 2 @
-3 -2 -1 0 +1 +2 +3

Figure 3.1

A fully-connectedn=5 site blob, with all sites connected to input and output.
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3.1.1 5-Equation-5-Unknown: Matrix Formalism

Equation (2.39) for the fully-connectedblob case can be further generalized to obtain
exact solutions. Each atom has a on-site energyupled and a hopping parameten
each of the: — 1 other atoms in the blob. Furthermore, the blob atoms arellgquoapled
to the input and output by vectois(Eq. (2.13)) andi (Eq. (2.12)) respectively. Consider
the case wherénw = ni), so that the input and output leads are symmetrically calple
This arrangement initiates a general matrix of the fdvirthat can be solved and that is
the intent of this section.

The 5-Equation-5-Unknown is a special case as shown in Big) (vith then fully
connected sites of potential energgoupled to input and output with coupling strengths
t,, andt, respectively. The number of input and output couplings Gy rom onel to

n, but in general the vectar (= «) can be arbitrary. The Hamiltonian is
H=(—t)I+1tJ (3.1)

and therefore

M=L"1'=H~—FEl- S + t})wu". (3.2)
Substituting the Hamiltonian in Eq. (3.2) yields the geh&yan of the matrix [35]
M = X1+ X,;J + X, 0w’ (3.3)

whereX; =¢ — F —t, X;=t, andX,, = —S*(¢3 + ¢?) corresponds to the identical

coupling of a site to the input and output. The ansatz fomkglise has the form [35]

M =Y I+Y; T+ YWt + Y,ewt + Y, wer, (3.4)
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where

&' = we=m
ot o= 1

ele = n

Jé = ne

JJ = nJ

Ju = ée'w=me, (3.5)

and! andm being parameters, andthe number of atoms in the cluster. Paramétisr
the sum of the squares of the input connection strengthspaigdthe sum of the input
(or output) connection strengths. Whgnﬁ has elements of only one or zero, parameters
I = m is a special case of the 5-Equation-5-Unknown. For exangsléhien connected
blob, if only three sites are connected equally to both irgnd output leads, theh=

m = 3. Thus the parameteisandm control the number and coupling strengths to the
n-atom blob. Collecting like terms of the produefM ! results in five equations with

five unknowns

XYy =1

XY+ XY, +n XY, +mX, Y, = 0
X1Yioio + XioYT + 1 Xi6Yi0i0 + MXioYsi0 = 0
X1Yjio + mX Yioio + nXsYsie = 0

X1Yios +mX;, Yy, +1X;0Yi; = 0. (3.6)
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One of the five solutions is the trivial solution

1

Y= —
1 X]’

(3.7)

and the four other solutions are obtained by solving theimatjuation using Mathemat-

ica:
(X1 +nXy) mX; Y;; —)?iJ
(XI + le'(;) sz }/;oio o
| | @39
XJ (X] -+ nXJ) ino 0
mXZ (XI + lXio) Y;oJ 0
The solutions of Eq. (3.8) are
Xy X0+ X1
Yy = —— 5
X] (X[+nXJ)(le+XI)—m XJXZ'O
Xio nXy+ X
)/;oio - -
X[ (X] + ZXZ'O)(TLXJ + X]) - szJXiO
Xz' mXJ
YJio -
X[ (X[ + lXi0)<nXJ + X[) - m2XJXiO
X Xio
Vi = =2 o (3.9)

Xr (X7 +nX)) (X + X1) —m2X ;X
Substituting these solutions in Eq. (3.4), using Matheoaatyields the amplitude of trans-
mission
tr = 2i(S*)?sin(q)a" M1, (3.10)

and hence the transmission coefficiéht= |t |%.

A screenshot of an Easy Java Simulation of Transmissiorusdfsergy for the fully
connected blob is shown in Fig. (3.2). The simulation is laiéde freely on the web at
http : //quantum.ph.msstate.edu/nanotransport.html. The simulation codes are given

in Appendix B.
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Figure 3.2

Easy Java Simulation @f vs E for the 5-Equation-5-Unknown case.

3.1.2 5-Equation-5-Unknown: RG Formalism

From Sec. (2.5.5), EqQ. (2.72), the matrix equation for thly ftonnectedn-site blob

in which the matrix to find the inverse is

¢ —F Y
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2i sin(q)

(3.11)

=1

, (3.12)



where

A=(e—E—t)I+1].

The identity matrixI is of sizen x n and the matrixJ of sizen x n, related asle' = né,

andee™T = J. Then

1+7r= (M;}ﬂ)l,l 2isin(q) (3.13)

with transmission coefficierit = 1 — R and the reflection coefficient = |r|?, where
(1\/1;1&)171 is the(1, 1) element of the inverse of the matiM,,,,. Number the site just
before the blob as_, the site just after the blah, , and the sites of the blob, xs, . .., x,,

and form the vector

X1

X2

8y
I

(3.14)

In

The determinant is

,n.n+2

det [Mo] = ——— - (3.15)

[f_oo I ffooo ffooo dr_dxy ...dzx,dr, exp (—fTMn+gf)]
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Therefore using Cramer’s rule to find the 1) element of the inverse matrix gives

A 129
det
tr et - F
1+ r = 2isin(q) (3.16)
el —F t, 0
det {r A t,

so then
|4 = 2500 {I”“} , (3.17)
s 1,
where
Ihio = / / .. / dr_dz ... dr,dx, exp [—fTMnJrgf} (3.18)
and
)
In:/ / / dey...da)dx exp | —(z7 ... 2,2)))
oo - tlelt — F x
. x/—i_ -
(3.19)

Perform the integration over all sites in the blob to givé,, where the integrals use the
matrix A = (e — E — t)I + tJ of sizen, and the vector
2tw1£(3_ + 2tu1$+

2tw2113'_ + 2tu21‘+

>
|

(3.20)

2nT— + 2ty
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and sincel? = nJ, thenA~—! = I

)J. The eigenvalues oA are

1 t
e—E—t~  (e—E—t)(e—E—t+nt

e — F — t + nt with eigenvectoe’ande — E — t which isn — 1 fold degenerate, so

det|/A| = (e— E—t+nt)(e— E—t)". (3.21)

Also

2 n n 2
i = et =[] = 4 KZ t) 2y 4 (Z tu]> ] e
i=1 j=1
o)
b Jb =4 (Z tm) xi + 2 (Z tm) (Z tuj> rir_ + (Z tm) T (3.23)
=1 =1 7=1 i=1
and

brIb = 4 Z(twim +tyr ) =4 [xi Z 2+ 20 Z twitui + T2 Z ti] )
i=1 i=1 =1 =1
(3.24)

The constant terms cancel out, leaving the final RG resultcdua be hypothesized to be

given by
1+7r 2i sin(q)
M = (3.25)
tr 0
with
i St (3 twi)? £ twi O tui 3 twitui
M — e —F - e—E—t + (e—E—t)(e—E—t+nt) (e—E—t)(e—E—t4nt)  e—E—t
! t> tws 3 tui 3 twitui i Y2, t(3 tui)?
(e—E—t)(e—E—t+nt)  e—E—t e — B — =g+ (e—E—t)(e—E—t+n?)

(3.26)

66



Therefore the general solution has only the five parametbishvare

Z?zl twi>

Z?:l bui,

Z?:1 tim (3'27)
Z?:l tiiv

Z?:l thtuz

These can now be specialized to the case whgre= t,;, for comparison with the 5-

Equation-5-Unknown case. Then the parameters are

zn:twi = mty
i=1
o, =1t
Ztii - lti
D twitu = Ltuta. (3.28)

A simpler case to be solved via the RG case is how consideredarin + m-site

fully-connected blob of whichn sites will be decimated, thg: + m + 2) x (n 4+ m + 2)
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matrix equation to be solved with no direct connections leetwthe input and output, no

€., N0 connection of the decimated sites to input or outputdeed

el —F L (T,T,L (_);Tn, 0 147
t A tam tI 0 Ty o
Op  tJxm C I . On g | =
0, tJ .. tI. — Cy4 0, 0,
0 tr 0r 62, ¢4 —F tp

wheree’? = cos(q) + isin(q) = £ 4 ¥4

2isin(q)

(3.29)

YA E? the matrixA = (e — E — t)I + tJisn x n

and the matrixC = (e — E — t)I +tJism x msoCy = (e — E — t)I +tJ ism’ x m’

and the dimensions for matricdsand vectors are shown.

The decimated renormalized matrix has the form

eh—E tr O 0 L+ 2isin(q)
ty A—t23 C;'J . ' T t o 0,
Orm t nsen C—+tJ, . ,,C;'3 . . 0O 0 : Orm
0 vect! 0,, el —F tr 0
(3.30)

This completes the final RG decimation equations in matnimféor the fully connected

(easy-case) blob. The required inverse is

t

1
C(e—E—-t)(e— FE—t+m')

(e—E—1)

Im' xm’

C;'=

UsingJ,.xiJixn = [Jm x n gives

! ! !
tmm

/ /.
m Xm

Jlxm’ CglJm’xk = (6
68

C(e—E—t)(e. —t+m't)

Jlxk-

(3.31)

(3.32)



This gives the complete RG transformation. Finally, onethafkG transformations [3, 4],

[36]

: t2m/ tm’
t =t— — |1 — 3.33
(—:—E—t[ (—:—E—t—i-m't} (3-33)

and

, t2m’ tm/’
€e =e——— |1 — — | .
e—F —1t e—F—t+mt

(3.34)

A screenshot of the Mathematica Manipulate Plot showingsirassion coefficient’
employing the matrix method and the RG method for the 5-Equ&i-Unknown case is

shown in Fig. (3.3). The results are identical for the twomoels.

n sites -1 1
intrablob t n 0 . i
L] {TEST fully connect blob N=_1}
...................... el
input t 1 1.05 e e o ST .
outputt o } - B Lo ool
sum 42 /nt _J‘ 1
& 1 } nel
sumtint | - i H
out19]- —
onsite enrgy il & 0.25
02
= -1 1
Figure 3.3

Plots for the matrix and RG methods, 5-Equation-5-Unknoasec
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3.2 General Solution: Fully connected 10 Equations 10 Unkmnens case

This case is the most general case with all sites connectdtidtiher sites of potential
energye and coupling strength and where at least one or more sites are connected to the
input lead with strength,, and to the output lead with strength This general case takes
account of both the non-symmetrical case (Fig. 3.4) wh&endw are not proportional

and the symmetrical 5-Equation-5-Unknown case (Fig. 3.1).

3.2.1 10-Equation-10-Unknown: Matrix Formalism

The same fully connectedsite blob considered in Sec. (3.1) is connected at random
such that all blob atoms are not necessarily equally coupléae input and output leads.

Such an assortment calls for a more general matrix of the Mrmritten as [42]

M = X1+ X,;J + X, 00" + X, aid?, (3.35)

and the ansatz for its inverse has the form [42]

M = YT+ Y ;J + Yy, 0" + Yy it + Y,eit

+ Y, jUET 4 Y,eWT + Yo j0ET + Y@ + Y 0t . (3.36)
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Figure 3.4

Fully-connectech=7 sites, not all symmetrically connected to input, output.
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ThenMM ! = I. The forty terms of the produ®IM ' are shown in Table (3.1). The

product of vectors and the transposes of vectors are defsed a

J =eet,
ey = net,
JI=1J
3J = nJ,
Jé'=ne,

(3.37)
Wt =1,
it =k,
ere=n,
et = whe = m,
et = u'e = p,
T

wherel, m, n, p, h, k are constants or parameters of the 10-Equation-10-Unkigenaral
case. Parameteéis the sum of the square of the input strengthis, the sum of squares of
the output strengths; is the sum of the input strengttisis the sum of the product of input
and output strengths, amds the number of fully connected atoms in the blob. Usingehes
constants in the combined proddefM~! in Table (3.1) gives a modified set of terms

(see Table (3.2)). From Table (3.2), collecting like ternmedds the ten equations with ten
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unknowns. The solutions of these equations are solved hlnélp of Mathematica. In

particular, the ten equations are

(X;Y] = 1
(Xr+nX))Y, 0 +mX,; Y, +pX,Y] = 0
[(XowYr + (X7 + X)) Yew + mX Yy + hXyYuw] = 0

(XY + (Xr + kX)) Y + b X You +p XY = 0
mX;You +pXsYou + ( Xy +nX)Yn = 0

(X7 4+ kX)) Yus +hX Y +pX Y] = 0

X1 Yow + mX Yy + (X1 +nX;)Y5] = 0

(W XYy + (X1 +1X0) Yy + mX,Ys] = 0
[hXwYuw + pXu Yy + (X1 + kX)) Y = 0

(WX You +mXy Yy + (X7 +1X0)Yu] =

e

(3.38)
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The solution of the first equation is the same trivial form as 8.7). The other nine

equations can be solved in matrix form Eg. (3.39),

- nX;y 0 0 0 pX; 0 mX; 0 O
0 (X, 0 0 0 mX, 0 hRX, O

0 0 kX,pX, 0 0 0 0 hX,

0 0 pXy;nX; 0 O 0 0 mX;
X+ px, 0 0 0 kX, 0 hRX, 0 0
0 mX; 0 0 0 nX; 0 pX; O
mX, 0 0 0 hX, 0 X, 0 O
0 hX, 0 0 0 pX, 0 kX, O

0 0 hAX,mX, 0 0 0 0 [X,

using Mathematica, and the nine solutions are [42]

Yy =
Yus =
Yiu =
Yy =
Y =
Yiw =
Yiu =

YwJ =

where

Xy (X2 + kX Xy + 11X Xy — B2X, Xy + kX, X,)

Q
Xy Xu(=hmX, + p(X; +1X,))

Q

XU(XI2 + nX[XJ + ZX[XU, - mZXJXw + ZTLXJXw)

XXy (=hmX, + p(X; + ZS;(w))

Xy(—=hpX, + ngz(XI + kX)) X

(—mpX; + h()g +nX7)) XX

(—mpX,; + h(X? +nX7))XuXuw

Xy (—hpX, + m%XI + kX)) X
Q

(X? + nX[XJ + ]{/‘X[Xu + anJXu - szJXu)Xw

Q
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Q = XX} — (h*n+k(m* —In) — 2hmp + Ip?) (3.41)
Xi XX+ X2(nXy+ kX, +1X, +
X[(—p2XJXu — szJXw + l’leJXw —

WX, Xy + kXo(nXy +1X,))).

Plugging these solutions of Eqg. (3.40) into Eq. (3.36) wibhresponding parameters for

M~ gives the transmission coefficieht= |t7|?, wheretr = 2i(S5*)? sin(q)d* M~ 0.
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Table 3.1

The forty terms of the produ®IM .

X1 X,J Xt X uar
X Y12 X;Y;J X YT X YruatT
XY 1J XY ;J? XYy JwwT XYy Juut

XYoo T X ;Y Jww™ X, Yt wd™ X, Y, dutww”
J

XYyua'l XY, Judt X, Yodltaadt XY aut T
J

XYyed'l  X;YpJdent X, Ypowtedt X, Yauteut

XY ue'l X Y, Juet X, Yowtuet XY, autaet

XYyed'l X,V Jewt X, Yypuoutent  X,Y,uut et

XY wetl XY, Jwet XY, 0w0twet X, Y, autweT

XYoot XY JJad® X, Y, dotudt XY, a0t dwt

XY wu'l X Y, JJuoadt X, Y outwut XY, a0t oat
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Table 3.2

The forty terms of produdIM ' modified with constants.

MM ! X1 X;J X, 0T X, "
VI XY, XY, X, YT X, Yyai®
Yy, XY, ,J X Ynd  X,Yyymwet XYy puet
Yoo W™ | X Yipo@W@T XYy m 0T XYoo L 00T X, Yo h GwT
Yottt | X Yadt  X,Ypédt X,V h@dt XY, kad®
Yieut | X;Yedt  X;Yunédt  X,Ymod®t XY, paat
Y, uet | XYuet XY, pJd X, Yoy hwet XY, ket
Viw@@T | X[Yued™  X,Yjenedt XY m@wT XY, padT
Yyswet | X;Y,0et  X,Y,,;mJI X Y., lwet XY, haer
Yo" | X Ytw" XY, pew" XY, hwwt XY,k aw”
YouWt" | X YpuwWd™ X Yy med®t XYool WdT XY ha@d®
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3.2.2 10-Equation-10-Unknown: RG formalism

In the most general case of the fully connectesite blob (10-Equation-10-Unknown)
wheret,, is not necessarily proportional tg, in which case the five corresponding param-

etersl, m,n, p, h, andk are comparable to those in Eq. (3.27), and they are

itwi = m
=1
=1

o =1

i=1

o=k

i=1
D tuitu = h. (3.42)
=1

n sites in blob ;
-

RGand 10Eqn_10Unknown N=, 2}
intrablob t

L
. L
inputtw — - | i 55 L
Y E
outputtu ~ r 1, o8k
-~ L
param | ]I 1.75 R—
E! ik
param m I a. °
-
param p - | 0,95 r
param h -J 1,
param k J 1;
onsite enrgy € _‘, 0.08

Figure 3.5

Comparison of the Matrix and RG methods, 10-Equation-18fdmwn case.

78



For ann + m-site fully-connected blob of which: sites will be decimated, then the

matrix equation to be solved is

R A ts 1+ 2isin(q)
. A J i ¥ 0,
= : (3.43)

!
Dy
o

3

Fwd JT C tud

ty @'t €9—F tr 0

wheree' = cos(q) +isin(q) = £+

@. The matrixA = (e— F —t)I+tJisan xn

and the matribdC = (e — E — t)I + tJ ism x m soJ is of sizen x m. Similarly vectors

—

ty, . 1, 0, are all of lengthn while the vectors,,,, f..4, 0, 0., are all of lengthm.

The decimated renormalized matrix has the form

el te, —E—1r C iy th — 10 ,C'BT ty—tr C g
tw — BC ', A —-BC'BT t, —BC 't
ty — 1L C Mg tF L C'BT ¢ 4 ¢, — E —1,C 'y
147 2i sin(q)
s | = 8 , (3.44)
tr 0

whereC = CT implying thatC~! is also symmetric. Agaif’,C~'t,q = t.,C 't,4, SO

the final matrix is symmetric. This completes the final RG detion equations in matrix

form for the fully connected blob.

Now assuming that all input and output vectors are propealido ¢, for example

t, = t;,€ andt, 4 = t;,€. Then, since

1 t
Cc = | J 3.45
e—E—t (e—E—-t)(e— E—t+mt) (3-49)
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one has the RG transformations [3, 4, 28]

to=1 mtiy + i =t,+ R

7 e—E—t (e—E—-t)e—E-mt) ° "

, mtt, t2,m? r

€ = € — = € m

e—FE—-t (e—E—t)(e—FE—mt)

t =t mhy tiym” =t,+ R

o e E—t (e—E—-t)(e—E—-mt) " "

PR i tigm” —t+R

B e—FE—t (e—E—t)(e—E—mt) "

, mtl, 2

=€— = R,, 3.46
T T CE T e E—0—E—mp T (3.46)

with
t7 tt2 m?
Ry = —— o o (3.47)

e—E—-t (e—FE—t)(e—E—mt)

3.3 Missing Bonds in Fully Connected Blob

Another of the many applications is to consider transmissiben one or more of the
intra-blob bonds are removed. This course of action is tét §lom an almost perfect
blob toward that of a real nanoparticle model. In essencsegbttion examines how the
“mean-field” like solutions of Sec. (2.3) are affected whefewa values for the hopping
parameters within the blob are removed.

Consider the case of a general blob, with the Hamiltoniareddent on the general
values for the hopping parameter betweemnttsites within the bloby; ; for1 <1, j <mn,
and the onsite energy of each of thélob sitesg, for 1 < [ < n. In addition, the solution
will depend on the connections between the left site at —1, elements of,, of tr, for
1 <1 < n, and between the right siteat= +1, elements of,, of tigforl <1 <mn.Thus
the symmetric matrix to solve is given by Eq. (2.24) and EQR&®, has no symmetry iH,

or ¢ or w can only be solved numerically, at least for largeThe matrixL of Eq. (2.24)
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is ann x n matrix with complex elements. Physically the mattixnust be non-singular,
except perhaps at particular special values of the enBrgych asF| = 2. The matrix is
not Hermitian but is symmetric.

This matrix is solved numerically [35] using the programlfoear algebraic solutions
in Numerical Recipes [38], particularly the LUDCMP program to perform thg/ de-
composition of the matri¥. and the subroutine LUBKSB to solve the set of linear equa-
tions after theL. U decomposition has been carried out. The routines are firstected
from real arithmetic to complex arithmetic for the input andput matrices and vectors.
Besides, checks are placed to determine singularitiessfidicplar values of the energy.

A numerical solution in this fashion has been performed bar@ing and Nakanishi
to study quantum interference effects in particle transfhwough square lattices. [9, 10]
The focus here is on analyzing the effect on the “mean-fiek#’ $olutions when some of
the intra-blob bonds are removed.

Figure (3.6) shows results far = 32 blob atoms. The number of bonds that connect
all atoms to all other atoms is given byn — 1)/2. Therefore forn = 32, there will
be 496 bonds. The transmission curve for this fully conrkecise is similar to those
shown in Fig. (2.1). When two bonds chosen at random are rechthe transmission
remains unchanged over much of the energy spectrum, butsshaery distinct drop in
transmission neakl = —0.8 for this particular two-bond removal. Further changes & th
transmission are shown in Fig. (3.6) when 16 randomly chbsewls have been removed.
As the number of bonds continue to decrease the transmissioa takes additional dips
and resonances. As the number of bonds approach one-haltitheer for a fully con-
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Figure 3.6

Transmission versus energy for decreasing number of bitdr-connections.
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nected configuration, the spectrum looks very much like diany disordered system
with random impurities in one or two dimensions [1, 2, 8, 10]. 2 The combination of
a one-dimensional incoming and outgoing lead wires atththan “almost perfect” blob

that is multiply connected producing such a disorderedstrassion is remarkable.
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CHAPTER 4

CONCLUSIONS AND DISCUSSION

An general expression for quantum transmission of spirdistrons through a model
of a nanoparticle has been derived using finite-dimensiovatfix algebra. The general
expressions required the calculation of the inverse of ann matrix. Particular models
solved were a single site in the blob, a two-site one-danigle, a fully connected sym-
metric case that resulted from 5-Equations and 5-Unknoand,the most general case
of the 10-Equations and 10-Unknowns solutions method witneréully connected atoms
in the blob can have both symmetrical and asymmetricallyneotions to the input and
output leads. Similar expressions were obtained using thariethod and compared to
the conventional Green’s function method. The comparisdmsfferent solutions meth-
ods for the assortments of connections show no differentieeirransmission. The case
where some of the inter-blob hopping bonds were randomlyweh required numerical
solutions using matrix algebra. The numerical solutioresfaund to be consistent with
those analytical solutions.

From all the above considerations it can be prudently caleduhat the matrix algebra
method is more feasible since it is not inundated with matteral sophistication, and
thereby does not obscure the physics. It is more economiisénse it requires half the
number of the matrix calculations that is required by thee@i® function method. For
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example, the transmission coefficient Eq. (1.47) along ®dh(1.46) for the general case
of n atoms in the blob requires the trace of the products of tw@lbog termsI’; and
', which are matrices with their respective self energy te¥imisand two more matrices
G* that has the Hamiltonian of blob atoms. This requirement plus the need to find the
inverses of* makes this method less economic when compared with thexnmagétihod
that requires only the inverse of the matrix of the blobno&toms. The transmission
calculations using the matrix method are in par with thosevee by the standard methods.
And furthermore the matrix algebra method provides pararaghat facilitates one to
modify the nanoparticle model in terms of the hopping eresgihe onsite energies, the
connection strengths, and the number of sites in the moded. niethod is applicable to
other complex systems, and also has numerical solutiorieéanodel discussed.

This dissertation has developed a general formalism usiagnatrix algebra method
and the RG method for calculating the transmission coeffficed quantum electrons
through a model of a nanopatrticle. This formalism can now jg@ie@d to more realis-

tic models, either analytically or numerically.
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/*

*

Class : transportsingleinpurity.java
Cenerated using * Easy Java Sinulations Version 4.1

*/

package transportsingleinpurity_pkg;

inmport org.colos.ejs.library. Ej sConstants;

i mport javax.sw ng. event.*;
i mport javax.sw ng. *;

i nport java.awt.event.*;

i mport java.awt.*;

i mport java.net.*;

i mport java.util.*;

i mport java.io.*;

i nport java.lang.*;

public class transportsingleinpurity extends org.col os. ej s.

i brary. Abstract Mbdel

{

public transportsingleinpuritySimulation _sinulation=null

public transportsingleinpurityView _view=null;
public transportsingleinpurity _nodel =this;

public int _getStepsPerDi splay() { return 1; }

static public String _getE swodel () {
return "./transportsingleinpurity.xm"; }

static public String _getMdel D rectory() { return o}

static public java.util.Set<String> getE sResources() {
java. util.Set<String> list = new java.util.
HashSet <String>(); return list;

}

static public void main (String[] args) {
String | ookAndFeel = null;
bool ean decorated = true;
if (args!=null) for (int i=0; i<args.length; i++) {
i f (args[i].equal s("-_I ookAndFeel "))
| ookAndFeel = args[ ++i]
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}

else if (args[i].equal s("-_decorateWndows"))
decorated = true;
else if (args[i].equal s("-_doNot Decorat eW ndows"))
decorated = fal se;
}
i f (1l ookAndFeel!=null) org.opensourcephysics. display.
OSPRunt i ne. set LookAndFeel (decor at ed, | ookAndFeel ) ;
or g. opensour cephysi cs. t ool s. Resour ceLoader .
addSearchPat h(".");
/1 This is for relative resources
bool ean pat hsSet = fal se;
try { // in case of security problens
I f (System getProperty("osp_ejs")!=null) {
/1 Runni ng under EJS
org.colos.ejs.library. Sinmulation. setPat hToLi brary
("C./Docunents and Settings/ LAZARUS/ Deskt op/
EJS 4.1/ bin/config/");
/1 This is for classes (such as Ej sMatl ab)
whi ch needs to know where the library is
pat hsSet = true;

}
}

catch (Exception _exception) { pathsSet = false; }
/1 maybe an unsi gned Web start?
try { org.colos.ejs.library.control.Ej sControl
set Def aul t Scr een( | nt eger . par sel nt
(System get Property("screen"))); }
/'l set default screen
catch (Exception _exception) { }
/1l lgnore any error here
if (!pathsSet) {
org.colos.ejs.library. Simulation.setPathToLi brary
("C:./Docunents and Settings/ LAZARUS/ Deskt op/
EJS 4.1/ bin/config/");
/1 This is for classes (such as Ejsiatl ab)
whi ch needs to know where the library is
}
transportsingleinmpurity _ theMdel =
new transportsingleinpurity (args);

public transportsingleinmpurity () {

this (null, null, null,null,null,false); }
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/'l sl ave application

public transportsingleinpurity (String[] _args) {
this (null, null, null,null, _args,true); }

public transportsingleinpurity (String _replaceNane,
java. awt . Frane _repl aceOwner Frane, java. net.
URL _codebase, org.colos.ejs.library.
Launcher Appl et _anApplet, String[] _args,
bool ean _al | owAut opl ay) {
__theArgunents = _args;
__theApplet = _anAppl et;
java. text. NunberFormat _Ejs format =
j ava. t ext . Nunber For mat . get | nst ance();
if (_Ejs_format instanceof java.text.Deciml Format) {
((java.text.Deciml Format) _Ejs format).
get Deci mal For mat Synbol s()
. set Deci mal Separator(’.’);
}
_sinmulation = new transportsingleinpuritySi mul ati on
(this, _replaceNane, replaceOmer Frane, _
codebase, _al | owAut opl ay) ;
_view = (transportsingleinmpurityView)
_sSimul ation. getView);
_simul ation. processArgunent s(_args);

}

public org.colos.ejs.library. View getView)
{ return _view, }

public org.colos.ejs.library. Sinulation getSinmulation() {
return _simulation; }

public void _resetSol vers() {
_external ..resetl C();

[l --- Inplenmentation of ExternalClient ---

public String _externallnitCommand
(String _applicationFile) {
StringBuffer _external _initComrand=new StringBuffer();
return _external _initCommand.toString();

}
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publ i c synchroni zed voi d _external Set Val ues(bool ean _any,
org.colos.ejs.library.external.External App _application){

}

publ i c synchroni zed void _external Get Val ues(bool ean _any,
org.colos.ejs.library.external.External App _application){

}

/1l --- End of inplenmentation of Externalient ---
I A e
/1 Variabl es defined by the user
A
public double E = -2; // Variables.Var Table: 1

public double eps = 0.0; // Variables.Var Table: 2
public double tw = 1.0; // Variabl es.Var Table: 3
public double tu = 1.0; // Variables.Var Table: 4
public Object nmyColor = null; // Variables.Var Table:5

I e R
/1 Methods defined by the user

I e R
[l --- Initialization

public void _initializationl () {
/1 > 1nitialization.lnit Page
} // > 1Initialization.Init Page

/'l --- Evolution
Il --- Constraints
public void _constraintsl () {
/'l > Fixed rel ations. Fi xRel Page

int e = (int) eps; // > Fixed relations. FixRel Page:1
{ /1 > Fixed rel ati ons. Fi xRel Page: 2

if (e == -2.0) nyCol or = Col or. bl ack;
/'l > Fixed rel ations. Fi xRel Page: 3
if (e ==-1.0) nyColor = Color.red;

/'l > Fixed rel ations. Fi xRel Page: 4
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if (e == 0.0) nyCol or = Col or. orange;

/'l > Fixed rel ations. Fi xRel Page:5
if (e == 1.0) nyColor = Color.yellow,

/'l > Fixed rel ations. Fi xRel Page: 6

if (e == 2.0) myCol or = Col or.white;

/'l > Fixed rel ati ons. Fi xRel Page: 7

/'l > Fixed rel ations. Fi xRel Page: 8

} // > Fixed relations. FixRel Page:9

} /1l > Fixed rel ations. Fi xRel Page

/[l --- Custom

/[/public void lib Page () { // > Custom Lib Page:1
/[1}y [/ > CustomLib Page: 2

[/ --- Methods for view elenents

public double _nethod for_tw inputStrength_|ineWdth ()
{ return 5*tw;, }
public double nethod for tu outputStrength |ineWdth ()
{ return 5*tu; }
I A
/1 1nplenentation of interface Mde
I A

publi ¢ synchroni zed void reset () {
E =-2; // Variables.Var Table:1
eps = 0.0; // Variables.Var Table:2
tw=1.0; // Variables.Var Tabl e:3
tu 1.0; // Variables.Var Table: 4

}

public synchroni zed void initialize () {
_initializationl ();
_reset Sol vers();

}

public synchroni zed void step () {

}

publ i c synchroni zed void update () {
_constraintsl ();

}
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public void freeMenory () {
Systemgc(); // Free menory from unused ol d arrays
}

} /1 End of class transportsingleinpurityMdel

/*
* Class : transportsingleinpurity.java
* CGenerated using * Easy Java Sinulations Version 4.1
*/

package transportsingleinpurity pkg;
import org.colos.ejs.library. Ej sConstants;

i nport javax.sSw ng. event. *;
i nport javax.sw ng. *;

i mport java.awt.event.*;

i mport java.awt.*;

i nport java.net.*;

import java.util.*;

i nport java.io.*;

i mport java.l ang. *;

public class transportsingleinpurity extends org.col os. e] s.
ibrary. Abstract Model {

public transportsingleinmpuritySimulation _sinulation=null;
public transportsinglei npurityView view=null;
public transportsingleinpurity _nodel =this;

public int _getStepsPerDi splay() { return 1; }

static public String _getE swodel () {
return "./transportsingleinpurity.xm"; }

static public String _getMdelDrectory() { return""; }

static public java.util. Set<String> _getE sResources() {
java.util.Set<String> list = new java.util.
HashSet <String>(); return list;
1
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static public void main (String[] args) {
String | ookAndFeel = null;
bool ean decorated = true;
if (args!=null) for (int i=0; i<args.length; i++) {
i f (args[i].equal s("-_| ookAndFeel "))
| ookAndFeel = args| ++i];
else if (args[i].equal s("-_decorateWndows"))
decorated = true;
else if (args[i].equal s("-_doNot DecorateW ndows"))
decorated = fal se;
}
i f (1l ookAndFeel!=null) org.opensourcephysics.display.
OSPRunt i me. set LookAndFeel (decor at ed, | ookAndFeel ) ;
or g. opensour cephysi cs. t ool s. Resour ceLoader .
addSearchPat h(".");
/[l This is for relative resources
bool ean pat hsSet = fal se;
try { // in case of security problens
if (System getProperty("osp_ejs")!=null) {
/1 Runni ng under EJS
org.colos.ejs.library. Sinmulation.setPat hToLi brary
("C:./ Docunents and Settings/ LAZARUS/ Deskt op/
EJS 4.1/ bin/config/");
/1l This is for classes (such as Ejsiatl ab)
whi ch needs to know where the library is
pat hsSet = true;

}
}

catch (Exception _exception) { pathsSet = false; }
/'l maybe an unsigned Wb start?
try { org.colos.ejs.library.control.E sControl
set Def aul t Scr een( | nt eger . par sel nt
(System get Property("screen"))); }
/'l set default screen
catch (Exception _exception) { }
/1l lgnore any error here
i f (!pathsSet) {
org.colos.ejs.library.Simulation.setPathToLi brary
("C./Docunents and Settings/ LAZARUS/ Deskt op/
EJS 4.1/ bin/config/");
/1l This is for classes (such as Ejsiatl ab)
whi ch needs to know where the library is
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}
transportsingleinmpurity _ theMdel =

new transportsingleinpurity (args);
}

public transportsingleinmpurity () {
this (null, null, null,null,null,false); }
/'l sl ave application

public transportsingleinpurity (String[] _args) {
this (null, null, null,null, _args,true); }

public transportsingleinpurity (String _replaceNane,
java. awm . Frame _repl aceOwner Franme, java. net.
URL codebase, org.colos.ejs.library.
Launcher Appl et _anApplet, String[] _args,
bool ean _al | owAut opl ay) {
__theArgunents = _args;
__theApplet = _anAppl et;
java. text. Nunber Format _Ejs format =
j ava. t ext. Nunber For mat . get | nst ance();
if (_Ejs_format instanceof java.text.Deciml Format) {
((java.text.Deciml Format) _Ejs_format).
get Deci mal For mat Synbol s()
. set Deci nal Separator(’.’);
}
_sinmulation = new transportsingleinpuritySinul ati on
(this, _replaceNane, repl aceOmer Frane, _
codebase, _al | owAut opl ay) ;
_view = (transportsingleimpurityVi ew)
_simul ation. getView);
_simul ation. processArgunent s(_args);

}

public org.colos.ejs.library.View getView)
{ return _view

public org.colos.ejs.library. Sinulation getSinulation()
return _simulation;

public void _resetSol vers() {
_external .resetl C();

}
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[l --- Inplementation of ExternalClient ---

public String _externallnitCommand
(String _applicationFile) {
StringBuffer _external _initComrand=new StringBuffer();
return _external _i nitCommand.toString();

}

publ i ¢ synchroni zed voi d _external Set Val ues(bool ean _any,
org.colos.ejs.library. external.External App _application){

}

publ i c synchroni zed voi d _external Get Val ues(bool ean _any,
org.colos.ejs.library. external.External App _application){

}

/[l --- End of inplenentation of Externalient ---
A e
/'l Variabl es defined by the user
A e
public double E = -2; // Variables.Var Table:1

public double eps = 0.0; // Variables.Var Table: 2
public double tw = 1.0; // Variables.Var Table:3
public double tu = 1.0; // Variables.Var Table: 4
public Object nmyColor = null; // Variables.Var Table:5

I A e
/1 Methods defined by the user

A i
[l --- Initialization

public void _initializationl () {
/1 > 1lnitialization.lnit Page
} // > 1Initialization.Init Page
/[l --- Evolution
/'l --- Constraints

public void _constraintsl () {
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/'l > Fixed rel ations. Fi xRel Page
int e = (int) eps; // > Fixed relations. FixRel Page:1
{ /'l > Fixed rel ati ons. Fi xRel Page: 2

if (e == -2.0) nyCol or = Col or. bl ack;
/'l > Fixed rel ations. Fi xRel Page: 3
if (e == -1.0) nyColor = Color.red;

/'l > Fixed relations. Fi xRel Page: 4
if (e == 0.0) nyCol or = Col or. orange;

/'l > Fixed rel ations. Fi xRel Page:5

if (e == 1.0) myCol or = Col or.yell ow,

/'l > Fixed rel ations. Fi xRel Page: 6

if (e == 2.0) nyColor = Color.white;

/'l > Fixed rel ati ons. Fi xRel Page: 7

/'l > Fixed rel ations. Fi xRel Page: 8

} // > Fixed relations. FixRel Page:9

} /1l > Fixed rel ations. Fi xRel Page

[/ --- Custom

/lpublic void |ib Page () { // > CustomlLib Page:1
/1}y [/ > CustomLib Page: 2

/]l --- Methods for view el enents

public double nethod for tw inputStrength [ineWdth ()
{ return 5*tw;, }
public double _nethod for_tu outputStrength_|linewWdth ()
{ return 5*tu; }
I A e
/1 1nplenentation of interface Mde
A e

public synchroni zed void reset () {
E =-2; // Variables.Var Table:1
eps = 0.0; // Variables.Var Table:2
tw=1.0; // Variables.Var Table:3
tu 1.0; // Variables.Var Table: 4

}

public synchronized void initialize () {
_initializationl ();
_reset Sol vers();

}
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public synchroni zed void step () {

}

publ i ¢ synchroni zed void update () {
_constraintsl ();

}

public void freeMenory () {
Systemgc(); // Free nmenory fromunused old arrays

}

} /1 End of class transportsingleinpurityMdel

/*
* Class : transportsingleinpurity.java
* (Cenerated using * Easy Java Sinulations Version 4.1
*/

package transportsingleinpurity pkg;
inmport org.colos.ejs.library. Ej sConstants;

i nport javax.sw ng. event.*;
i mport javax.sw ng. *;

i nport java.awt.event.*;

i mport java.awt.*;

i nport java.net.*;

i mport java.util.*;

i mport java.io.*;

i mport java.l ang. *;

public class transportsingleinpurity extends org. col os. e] s.
l'ibrary. Abstract Model {

public transportsingleinpuritySimulation _sinulation=null;
public transportsingleinpurityView _view=null;
public transportsingleinpurity _nodel =this;

public int _getStepsPerDi splay() { return 1; }

static public String _getE swodel () {
return "./transportsingleinpurity.xm"; }
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static public String _getMdelDrectory() { return o}

static public java.util. Set<String> _getE sResources() {
java.util.Set<String> list = new java.util.
HashSet <String>(); return list;

b

static public void main (String[] args) {
String | ookAndFeel = null;
bool ean decorated = true;
if (args!=null) for (int i=0; i<args.length; i++) {
i f (args[i].equal s("-_| ookAndFeel "))
| ookAndFeel = args[++i];
else if (args[i].equal s("-_decorateWndows"))
decorated = true;
else if (args[i].equal s("-_doNot Decorat eW ndows"))
decorated = fal se;
}
i f (I ookAndFeel!=null) org.opensourcephysics. displ ay.
OSPRunt i me. set LookAndFeel (decor at ed, | ookAndFeel ) ;
or g. opensour cephysi cs. t ool s. Resour ceLoader .
addSearchPath(".");
/1 This is for relative resources
bool ean pat hsSet = fal se;
try { // in case of security problens
I f (System getProperty("osp_ejs")!=null) {
/1 Runni ng under EJS
org.colos.ejs.library. Sinmulation.setPat hToLi brary
("C./Docunents and Settings/ LAZARUS/ Deskt op/
EJS 4.1/ bin/config/");
/1l This is for classes (such as Ejsiatl ab)
whi ch needs to know where the library is
pat hsSet = true;

}
}

catch (Exception _exception) { pathsSet = false; }
/1 maybe an unsi gned Web start?

try { org.colos.ejs.library.control.E sControl.
set Def aul t Scr een( | nt eger . par sel nt
(System get Property("screen"))); }
/'l set default screen

catch (Exception _exception) { }
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/1l lgnore any error here
i f (!pathsSet) {
org.colos.ejs.library.Sinmulation.setPathToLi brary
("C./ Docunents and Settings/ LAZARUS/ Deskt op/
EJS 4.1/ bin/config/");
[l This is for classes (such as Ej sMatl ab)
whi ch needs to know where the library is
}
transportsingleinmpurity _ theMdel =
new transportsingleinpurity (args);

}

public transportsingleinmpurity () {
this (null, null, null,null,null,false); }
/'l slave application

public transportsingleinpurity (String[] _args) {
this (null, null, null,null, _args,true); }

public transportsingleinpurity (String _replaceNane,
java. awm . Frame _repl aceOwner Frame, java. net.
URL _codebase, org.colos.ejs.library.
Launcher Appl et _anApplet, String[] _args,
bool ean _al | owAut opl ay) {
__theArgunents = _args;
__theApplet = _anAppl et;
java. text. NunberFormat _Ejs format =
j ava. t ext . Nunber For mat . get | nst ance();
if (_Ejs_format instanceof java.text.Deciml Format) {
((java.text.Deciml Format) _Ejs format).
get Deci mal For mat Synbol s()
. set Deci nal Separator(’.’);
}
_sinmulation = new transportsingleinpuritySi nul ati on
(this, _replaceNane, replaceOmer Frane, _
codebase, _al | owAut opl ay) ;
_view = (transportsinglei mpurityVi ew)
_simul ation. getView);
_sinul ati on. processArgunents(_args);

}

public org.colos.ejs.library.View getView)
{ return _view, }
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public org.colos.ejs.library.Simulation getSinulation() {
return _sinulation; }

public void _resetSol vers() {
_external .reset| C();

}

[l --- Inplementation of ExternalClient ---

public String _externallnitCommand
(String _applicationFile) {
StringBuffer _external _initCommand=new StringBuffer();
return _external _initCommuand.toString();

}

publ i ¢ synchroni zed void _external Set Val ues(bool ean _any,
org.colos.ejs.library.external.External App _application){

}

publ i ¢ synchroni zed void _external Get Val ues(bool ean _any,
org.colos.ejs.library. external.External App _application){

}

/[l --- End of inplenentation of Externalient ---
A
/1 Variabl es defined by the user
I A e
public double E = -2; // Variables.Var Table: 1

public double eps = 0.0; // Variables.Var Table:2
public double tw 1.0; // Variables.Var Table:3
public double tu 1.0; // Variables.Var Table: 4
public Object nmyColor = null; // Variables.Var Table:5

I A i
/1 Methods defined by the user

I A e
Il --- Initialization

public void _initializationl () {
/[l > 1nitialization.lnit Page
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} // > 1Initialization.Init Page
/[l --- Evolution
/'l --- Constraints
public void constraintsl () {
/'l > Fixed rel ations. Fi xRel Page

int e = (int) eps; // > Fixed relations. FixRel Page:1l
{ /'l > Fixed rel ations. Fi xRel Page: 2

if (e == -2.0) nyCol or = Col or. bl ack;
/'l > Fixed rel ations. Fi xRel Page: 3
if (e == -1.0) nyColor = Color.red;

/'l > Fixed rel ations. Fi xRel Page: 4
if (e == 0.0) myCol or = Col or. orange;

/'l > Fixed rel ations. Fi xRel Page:5

if (e == 1.0) nmyCol or = Col or.yell ow,

/'l > Fixed rel ations. Fi xRel Page: 6

if (e == 2.0) myCol or = Col or.white;

/'l > Fixed rel ations. Fi xRel Page: 7

/'l > Fixed rel ations. Fi xRel Page: 8

} // > Fixed relations. Fi xRel Page:9

} // > Fixed rel ations. Fi xRel Page

/[l --- Custom

[/public void lib Page () { // > Custom Lib Page:1
[1}y [/ > Custom Lib Page: 2

/]l --- Methods for view elenents

public double nethod for tw inputStrength [ineWdth ()
{ return 5*tw;, }
public double _nethod for_ tu outputStrength_linewWdth ()
{ return 5*tu; }
I e
/1 1nplenentation of interface Mde
e T

publ i ¢ synchroni zed void reset () {
E =-2; // Variables.Var Table:1
eps = 0.0; // Variabl es.Var Table: 2
tw= 1.0; // Variables.Var Table:3
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tu =1.0; // Variables.Var Table: 4
}

public synchronized void initialize () {
_initializationl ();
_reset Sol vers();

}

public synchroni zed void step () {
}

public synchroni zed void update () {
_constraintsl ();

}

public void freeMenory () {
Systemgc(); // Free menory from unused ol d arrays

}

} /1 End of class transportsingleinpurityMdel

106



APPENDIX B

EASY JAVA SIMULATION CODE: 5-EQUATIONS-5-UNKNOWNS
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/~k
* Class : FullyConnectedBl ob.java
* (Cenerated using * Easy Java Sinulations Version 4.1
*/

package Ful | yConnect edBl ob_pkg;
inmport org.colos.ejs.library. Ej sConstants;

i mport javax.sw ng. event.*;
i mport javax.sw ng. *;

i nport java.awt.event.*;

i mport java.awt.*;

i mport java.net.*;

i mport java.util.*;

i mport java.io.*;

i nport java.lang.*;

public class FullyConnect edBl ob extends org.col os. ej s.
i brary. Abstract Model {

public Ful | yConnect edBl obSi nul ati on _si nul ati on=nul |
public Ful | yConnect edBl obVi ew _vi ew=nul |
public Ful |l yConnect edBl ob nodel =t hi s;

public int _getStepsPerDi splay() { return 1; }

static public void main (String[] args) {
String | ookAndFeel = null;
bool ean decorated = true;
if (args!=null) for (int i=0; i<args.length; i++) {
i f (args[i].equal s("-_| ookAndFeel "))
| ookAndFeel = args[++i];
else if (args[i].equal s("-_decorateWndows"))
decorated = true;
else if (args[i].equal s("-_doNot DecorateW ndows"))
decorated = fal se;
}
i f (I ookAndFeel ! =null) org.opensourcephysics. di spl ay.
OSPRunt i me. set LookAndFeel (decor at ed, | ookAndFeel ) ;
or g. opensour cephysi cs. t ool s. Resour ceLoader .
addSearchPath("."); // This is for relative resources
bool ean pat hsSet = fal se;
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try { // in case of security problens
i f (System getProperty("osp_ejs")!=null)
{ /1 Runni ng under EJS
org.colos.ejs.library. Simulation. set Pat hToLi brary
("C./Docunents and Settings/ LAZARUS/ Deskt op/ EJS 4.1
/bin/configl/l");
/1 This is for classes (such as Ej sivatl ab) which
needs to know where the library is
pat hsSet = true;

}
}
catch (Exception _exception) { pathsSet = false; }
/1 maybe an unsi gned Web start?
try { org.colos.ejs.library.control.E sControl
. set Def aul t Scr een
(I nteger. parsel nt (System get Property("screen"))); }
/'l set default screen
catch (Exception _exception) { }
/1l l1gnore any error here
if (!pathsSet) {
org.colos.ejs.library. Simulation.setPathToLi brary
("C./ Docunents and Settings/ LAZARUS/ Deskt op/ EJS 4.1
/bin/config/");
/1 This is for classes (such as Ej sMatl ab)
whi ch needs to know where the library is
}
Ful | yConnect edBl ob __t heMbdel = new
Ful | yConnect edBl ob (args);

}

publi ¢ Ful | yConnect edBl ob ()
{ this (null, null, null,null,null,false); }
/'l slave application

public FullyConnectedBlob (String[] _args)
{ this (null, null, null,null, _args,true); }

public Ful | yConnect edBl ob
(String _replaceNane, java.aw.Franme _repl aceOwner Frane,
java. net.URL _codebase, org.colos.ejs.library.
Launcher Appl et _anApplet, String[] _args,
bool ean _al | owAut opl ay) {
__theArgunents = _args;
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__theApplet = _anApplet;
java. text. NunberFormat _Ejs format =
j ava. t ext . Nunber For mat . get | nst ance() ;
if (_Ejs_format instanceof java.text.Deciml Format) {
((java.text.Deciml Format) _Ejs format).
get Deci mal For mat Synbol s() . set Deci mal Separator(’.");
}
_simulation = new Ful | yConnect edBl obSi nul ati on
(this, _replaceNane, replaceOmerFrane, codebase,
_al | owAut opl ay) ;
_view = (Ful |l yConnect edBl obVi ew) _sinul ation. getView);
_sinul ati on. processArgunents(_args);

}

public org.colos.ejs.library.View getView ()
{ return _view, }

public org.colos.ejs.library. Sinulation getSinulation()
{ return _sinulation; }

public void _resetSol vers() {
_external .reset|C();

}

[l --- Inplementation of ExternalClient ---

public String _externallnitCommand
(String _applicationFile) {
StringBuffer _external _initCommand=new StringBuffer();
return _external _initCommand.toString();

}

publ i ¢ synchroni zed void _external Set Val ues
(bool ean _any, org.colos.ejs.library.external.
Ext ernal App _application) {

}

publ i ¢ synchroni zed void _external Get Val ues
(bool ean _any, org.colos.ejs.library.external.
Ext ernal App _application) {

/1l --- End of inplenmentation of Externaldient ---
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e

/1 Variabl es defined by the user

e

publ
publ
publ
publ
publ
publ

publ
publ

publ

publ
publ
publ
publ
publ
publ
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i

OO0 0000

o o0

OO OO0 0000000000000 0O0OO0O0OO0O0OO0OO0

doubl e
doubl e
doubl e
doubl e
doubl e
doubl e

doubl e
doubl e

hj ect

bool ean
bool ean
bool ean
bool ean
bool ean
bool ean
bool ean
bool ean
bool ean
bool ean
bool ean
bool ean
bool ean
bool ean
bool ean
bool ean
bool ean
bool ean
bool ean
bool ean
bool ean
bool ean
bool ean
bool ean
bool ean

L = 2.0;
tu = 1.0;
tw = 1.0;
n =229

o —
©
[7)]

1
I

my Col or

show?2 =

. 5;
0. 7332239999999999;

/'l Vari abl es. vari abl es5Eq5Unkn:
/'l Vari abl es. vari abl es5Eq5Unkn:
/'l Vari abl es. vari abl es5Eq5Unkn:

9995; // Vari abl es. vari abl es5Eq5Unkn:

/'l Vari abl es. vari abl es5Eq5Unkn: 5
m = 6.299823999999999;

/'l Vari abl es. vari abl es5Eq5Unkn:
/'l Vari abl es. vari abl es5Eq5Unkn:

/'l Vari abl es. vari abl es5Eq5Unkn:
nul | ;

Il

Var i

true;//

show3a ;

show3b ;
showda ;
showdb ;

showba ;
showbb ;
bnd2a3a ;

bnd3a4da
bnd4ab5a

bnd2b3b ;
bnd3b4b ;

bnd4b5b
in3a ;
out 3a ;
in3b ;
out 3b ;
i nda ;
out 4a ;
i ndb ;
out 4b ;
i n5a ;
out 5a ;
i n5b ;
out 5b ;

/1

Il
11
11
11
Il
Il
Il
11
11
I
Il
Il

Var i
Var i
Var i
Var i
Var i
Var i

abl es. vari abl es5Eg5Unkn:
Var i abl es. showvar i abl es:
abl es. showvari abl es: 2

abl es. showari abl es:
abl es. showari abl es:
abl es. showari abl es:
abl es. showari abl es:
abl es. showari abl es:

~No ok W

Var i abl es. showvari abl es: 8
Vari abl es. showvari abl es: 9
Var i abl es. showari abl es: 10
Var i abl es. showari abl es: 11
Var i abl es. showari abl es: 12
Var i abl es. showari abl es: 13
Vari abl es. Var Tabl e: 1

/1l Vari abl es. Var Tabl e: 2

/1 Variabl es. Var Tabl e: 3

/]l Variabl es. Var Tabl e: 4

/1l Variabl es.Var Table:5

/1l Vari abl es. Var Tabl e: 6

/1l Variabl es.Var Table:7

/1l Vari abl es. Var Tabl e: 8

/1l Variabl es. Var Tabl e: 9

/]l Vari abl es. Var Tabl e: 10

/1 Variabl es.Var Table: 11

/1l Variabl es. Var Table: 12

»

= ©
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/1 Methods defined by the user
I R

[/ --- Initialization

public void _initializationl () {
/1 > Initialization.IntializationForT
} /1 > 1Initialization.IntializationForT

/! --- Evolution
[/ --- Constraints

public void _constraintsl () {
/'l > Fixed relations. nunber of atonms n
int i = (int)n;// > Fixed relations.nunber of atonms n:1
switch (i) [// > Fixed relations. nunber of atons n:2
{ [/l > Fixed relations.nunber of atonms n:3
case 2: /! > Fixed rel ations.nunber of atons n:4

{show3a = fal se; showdb = fal se;
/1 > Fixed rel ations. nunber of atons n:5
showda = fal se; showdb=fal se;
/[l > Fixed rel ations. nunber of atons n: 6
showba = fal se; showsb = fal se;

/1 > Fixed rel ations. nunber of atons n:7
bnd2a3a = fal se; bnd3a4a = fal se; bnd4a5a = fal se;
/1 > Fixed rel ations. nunber of atons n:8
bnd2b3b = fal se; bnd3b4b = fal se; bnd4b5b= fal se;};
/1 > Fixed rel ations. nunber of atons n:9
br eak; /1 > Fixed rel ations. nunber of atons n: 10
case 3: [// > Fixed relations. nunber of atons n: 11
{ show3a = true; bnd2a3a = true;
[/ > Fixed rel ations. nunber of atoms n: 12
show3b = fal se;
/1 > Fixed rel ations. nunber of atons n: 13
showba = fal se; showbb = fal se;
/1 > Fixed rel ations. nunber of atons n: 14
showda = fal se; showdb = fal se;
/1 > Fixed rel ations. nunber of atons n: 15
/1 > Fixed rel ations. nunber of atons n: 16
bnd3a4a = fal se; bnd4ab5a = fal se;
/1 > Fixed rel ations. nunber of atons n:17
bnd2b3b = fal se; bnd3b4b = fal se; bnd4b5b= fal se; };
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/1 > Fixed rel ations. nunber of atons n: 18

break; // > Fixed relations.nunber of atonms n: 19

/1 > Fixed rel ations. nunber of atons n: 20

case 4: [/ > Fixed relations. nunber of atons n:21
{show3b = true; bnd2b3b = true;

[/ > Fixed rel ations. nunber of atoms n: 22
true; bnd2a3a = true;
/1 > Fixed rel ations. nunber of atons n: 23
showda = fal se; showba = fal se;

/1 > Fixed rel ations. nunber of atons n: 24
showdb = fal se; showbb = fal se;

/1 > Fixed rel ations. nunber of atons n: 25
bnd3a4a = fal se; bnd4a5a = fal se; bnd3b4b = fal se;
bnd4b5b= f al se; };

show3a

/1 > Fixed rel ations. nunber of atons n: 26
break; [// > Fixed relations. nunber of atons n:27
/1 > Fixed rel ations. nunber of atons n: 28
case 5: // > Fixed relations. nunber of atons n: 29

{ showda = true; bnd3ada = true;
/! > Fixed rel ati ons. nunber of atons n: 30

show3b = true; bnd2b3b = true;
/1 > Fixed rel ati ons. nunber of atons n: 31
show3a = true; bnd2a3a = true;

/1 > Fixed rel ations. nunber of atons n: 32
showdb = fal se; showsb = fal se;
/1 > Fixed rel ations. nunber of atons n: 33
bnd4a5a = fal se; bnd3b4b = fal se; bnd4b5b= fal se; };
/1 > Fixed rel ations. nunber of atons n: 34
break; // > Fixed relations.nunber of atons n: 35
/1 > Fixed rel ations. nunber of atons n: 36
case 6: [// > Fixed relations. nunber of atons n: 37
{ show4b = true; bnd3b4b = true;
/1 > Fixed rel ations. nunber of atons n: 38

showda = true; bnd3ad4a = true;

/1 > Fixed rel ations. nunber of atons n: 39
show3db = true; bnd2b3b = true;

/1 > Fixed rel ations. nunber of atons n: 40
show3a = true; bnd2a3a = true;

[/ > Fixed rel ations. nunber of atoms n: 41
showba = fal se; showbb = fal se;

/1 > Fixed rel ati ons. nunber of atons n: 42
bnd4ab5a = fal se; bnd4b5b = fal se;};
/1 > Fixed rel ati ons. nunber of atons n: 43
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br eak:

/1 > Fixed rel ati ons. nunber of atons n:

/] > Fixed rel ations. nunber of atons n: 45

case 7: [/ > Fixed relations. nunber of atoms n:
{ showba = true; bnd4ab5a = true;
/1 > Fixed rel ations. nunber of atons n:
showdb = true; bnd3b4b = true;
/1 > Fixed rel ations. nunmber of atons n:
showda = true; bnd3ad4a = true;
/1 > Fixed rel ations. nunber of atons n:
show3db = true; bnd2b3b = true;
/1 > Fixed rel ations. nunber of atons n:
show3a = true; bnd2a3a = true;
/1 > Fixed rel ati ons. nunber of atons n:
showsb = fal se; bnd4b5b = fal se;
/1 > Fixed rel ations. nunber of atons n:
in5b = fal se; out5b = fal se; };
/1 > Fixed rel ations. nunber of atons n
break; // > Fixed relations.nunber of atons n
/1 > Fixed rel ations. nunber of atons n
case 8: [/ > Fixed relations. nunber of atons n
{ show3a = true; showda = true; showba = true;
/1 > Fixed rel ati ons. nunber of atons n:
show3db = true; show4db = true; showbb = true;
/1 > Fixed rel ati ons. nunber of atons n:
bnd4b5b = true; bnd2a3a = true; bnd3ad4a = true;
/1 > Fixed rel ations. nunber of atons n:
bnd4a5a = true; bnd2b3b = true; bnd3b4b = true;
bnd4b5b = true;};
/1 > Fixed rel ations. nunmber of atons n:
break; [// > Fixed relations. nunber of atonms n:
/1 > Fixed rel ations. nunber of atons n:

} // > Fixed relations.nunber of atons n: 63
} [/l > Fixed rel ations. nunber of atons n

public void _constraints2 () { // > Fixed rel ations.

int j = (int)L;

{ I/ > Fixed relations.L paraneter:?2

if (L>n) L
switch (j)

n,

{ I/ > Fixed relations.L paraneter:5

case 2:

{ I/ > Fixed relations.L paraneter:7
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/'l > Fixed relations.L paraneter:6

44

46

47

48

49

50

51

52

: 53
154
. 55
: 56

57

58

59

60

61
62

L paraneter
/'l > Fixed relations.L paraneter:1

/'l > Fixed relations.L paraneter:3
/1l > Fixed relations.L paraneter:4



in3a = false; ind4a = false; in5a = fal se;
in3b = false; indb = false; in5b = fal se;
/'l > Fixed relations.L paraneter:8
}; break; // > Fixed relations.L paraneter:9
/'l > Fixed relations.L paraneter: 10
case 3: // > Fixed relations.L paraneter:11
{ I/ > Fixed relations.L paraneter:12

i n3a true; inda = false; inba = fal se;
i n3b false; indb = false; inbb = fal se;
/'l > Fixed relations.L paraneter: 13

}; break; // > Fixed relations.L paraneter: 14
case 4. /| > Fixed relations.L paranmeter:15
{ I/ > Fixed relations.L paraneter:16
in3a = true; inda = false; inba = fal se;
in3b = true; indb = false; inbb = fal se;
/'l > Fixed relations.L paraneter: 17
}; break; // > Fixed relations.L paraneter:18
case 5: /'l > Fixed relations.L paraneter: 19
{ I/ > Fixed relations.L paraneter: 20
in3a = true; in3b = true; inda = true;
indb = false; inSa = false; in5b = fal se;
/'l > Fixed relations.L paraneter:21
}; break; // > Fixed relations.L paraneter: 22
case 6: // > Fixed relations.L paraneter: 23
{ I/ > Fixed relations.L paraneter: 24
in3a = true; in3b = true; inda = true;
indb = true; inba = false; in5b = fal se;
/'l > Fixed relations.L paraneter:25
}; break; // > Fixed relations.L paraneter: 26
case 7: [/l > Fixed relations.L paraneter:27
{ I/ > Fixed relations.L paraneter: 28
in3a = true; in3b = true; inda = true;
indb = true; inba = true; in5b = fal se;
/'l > Fixed relations.L paraneter: 29
}; break; // > Fixed relations.L paraneter: 30
/'l > Fixed relations.L paraneter: 31
/'l > Fixed relations.L paraneter: 32
case 8. // > Fixed relations.L paraneter: 33
{ I/ > Fixed relations.L paraneter: 34
in3a = true; in3b = true; inda = true;
indb = true; inb5a = true; in5b = true;
/'l > Fixed relations.L paraneter: 35
}; break; // > Fixed relations.L paraneter: 36
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} [// > Fixed relations.L paraneter: 37
} // > Fixed relations.L paraneter: 38
} // > Fixed relations.L paraneter

public void _constraints3 () {
/'l > Fixed rel ations. m paraneter
int M= (int)m // > Fixed relations. mparaneter:1
{ I/ > Fixed relations.mparaneter:?2
if (nPn) m=n; // > Fixed relations. mparaneter:3
switch (M // > Fixed relations. mparaneter: 4
{ I/ > Fixed relations.mparaneter:5
case 2: // > Fixed relations. mparaneter:6
{ I/ > Fixed relations.mparaneter:7

in3a = false; inda = false; inba = fal se;
in3b = false; indb = false; inbb = fal se;
/1l > Fixed relations. mparaneter:8

out3a = false; outd4a = fal se; outb5a = fal se;
out3b = false; outd4b = fal se; out5b = fal se;
/1l > Fixed relations. mparaneter:9
}; break; // > Fixed relations.mparaneter: 10
/'l > Fixed relations. mparaneter: 11
case 3: // > Fixed relations. mparaneter: 12
{ /'l > Fixed relations. mparaneter: 13
in3a = true; inda = false; inba = fal se;
in3b = false; indb = false; in5b = fal se;
/1 Fi xed rel ati ons. m paraneter: 14
out3a = true; out3b = false; outda = fal se;
out4b = false; out5a = fal se; out5b = fal se;
/'l > Fixed relations. mparaneter: 15
}; break; // > Fixed relations.mparaneter: 16
case 4. // > Fixed relations. mparaneter: 17
{ I/ > Fixed relations.mparaneter: 18
in3a = true; inda = false; inba = fal se;
in3b = true; indb = false; in5b = fal se;
/1 Fi xed rel ati ons. m paraneter: 19
out3a = true; out3b = true; outda = fal se;
out4b = fal se; outba = fal se; out5b = false;
/'l > Fixed relations. mparaneter: 20
}; break; // > Fixed relations.mparaneter: 21
case b: /'l > Fixed relations. mparaneter: 22
{ I/ > Fixed relations.mparaneter: 23
in3a = true; inda = true; inba = fal se;
in3b = true; indb = false; in5b = fal se;

V

\Y
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/1 Fi xed rel ati ons. m par aneter: 24
out3a = true; out3b = true; outd4a = true;
out4b = false; out5a = fal se; out5b = fal se;
/1 Fi xed rel ati ons. m par aneter: 25
}; break; // > Fixed relations.mparaneter: 26
case 6: // > Fixed rel ations. mparaneter: 27
{ /'l > Fixed relations. mparaneter: 28
in3a = true; inda = true; inb5a = fal se;
in3b = true; ind4b = true; in5b = fal se;
/'l > Fixed relations. m paraneter: 29
out3a = true; out3b = true; outda = true;
out4b = true; outb5a = false; out5b = fal se;
/'l > Fixed relations. mparaneter: 30
}; break; // > Fixed relations.mparaneter: 31
case 7: /! > Fixed rel ations. mparaneter: 32
{ I/ > Fixed rel ations. mparaneter: 33
in3a = true; inda = true; inba = true;
in3b = true; indb = true; in5b = fal se;
/1 Fi xed rel ati ons. m paraneter: 34
out3a = true; outd4a = true; outbSa = true,
out 3b true; outd4b = true; out5b = false;
/1 > Fixed relations. mparaneter: 35
}; break; // > Fixed relations.mparaneter: 36
/'l > Fixed rel ations. m paraneter: 37
case 8. // > Fixed rel ations. mparaneter: 38
{ /'l > Fixed relations. m paraneter: 39
in3a = true; inda = true; inba = true;
in3b = true; indb = true; in5b = true;
/1 > Fixed relations. mparaneter: 40
out3a = true; out3b = true; outda = true;
out4b = true; outba = true; out5b = true;
/'l > Fixed relations. mparaneter: 41
}; break; // > Fixed relations.mparaneter: 42
} // > Fixed relations. mparaneter: 43
} [/ > Fixed relations. mparaneter: 44
} /1l > Fixed rel ati ons. m par anet er

V

V

public void constraints4 () { // > Fixed relations. eps
par anet er
int e = (int)eps; // > Fixed relations.eps paraneter:
{ I/ > Fixed relations.eps paraneter:?2
if (e == -2.0) nyCol or = Col or. bl ack;
/1 > Fixed relations.eps paraneter:3
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if (e == -1.0) nyCol or = Col or. orange;
/'l > Fixed relations. eps paraneter:4
if (e == 0.0) nyColor = Color.yellow,
/'l > Fixed relations. eps paraneter:5
if (e == 1.0) myCol or = Col or.red;
/1 > Fixed rel ations. eps paraneter:6
if (e == 2.0) nyColor = Color.white;
/'l > Fixed rel ations. eps paraneter:
} [/ > Fixed relations.eps paraneter:8
} [/ > Fixed rel ations. eps paraneter

\l

[/ --- Custom
/]l --- Methods for view elenents

public void _nethod for_ twSlider _dragaction () {
_sinul ation. di sabl eLoop();
/1 Make the simulation thread not to step the nodel
_get Argunent s();
_simul ati on. enabl eLoop();
/1 Make the simulation thread not to step the nodel
}
public void nethod for tuSlider _dragaction () {
_sinul ation. di sabl eLoop();
/1 Make the simulation thread not to step the nodel
_get Argunent s();
_sinul ati on. enabl eLoop();
/1 Make the simulation thread not to step the nodel
}
public double _nethod for_in3a_lineWdth ()
{ return 3*tw; }
public double nethod for _out3a lineWdth ()
{ return 3*tu; }
public double _nethod _for_in3b_lineWdth ()
{ return 3*tw; }
public double _nethod for _out3b lineWdth ()
{ return 3*tu; }
public double _nethod_for_in2a2b_lineWdth ()
{ return 3*tw; }
public double _nethod for_out2a2b IineWdth ()
{ return 3*tu; }
public double _nethod for_inda |lineWdth ()
{ return 3*tw; }
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public double _nethod _for_indb_linewWdth ()
{ return 3*tw; }
public double _nethod_for_outda |lineWdth ()
{ return 3*tu; }
public double _nethod for _outd4b IineWdth ()
{ return 3*tu; }
public double _nethod _for_inb5a_linewWdth ()
{ return 3*tw; }
public double nethod for _outb5a |ineWdth ()
{ return 3*tu; }
public double _nethod for_in5b lineWdth ()
{ return 3*tw; }
public double _nethod_for_out5b IineWdth ()
{ return 3*tu; }
publ i c double _nethod for_bond2aTo2b_|i neWdth ()
{ return 3*t; }
public double nethod for bond2bTo3b |ineWdth ()
{ return 3*t; }
public doubl e _nethod for_bond2aTo3a_|i neWdth ()
{ return 3*t; }
public doubl e _nethod for_bond3aTo4a_|ineWdth ()
{ return 3*t; }
public double nethod for bond3bTo4b |ineWdth ()
{ return 3*t; }
public doubl e _nethod for_bond4aTo5a_| i neWdth ()
{ return 3*t; }
public double nethod for bond4bTo5b |ineWdth ()
{ return 3*t; }
I
/1 1nplenentation of interface Mde
I

public synchroni zed void reset () {
L = 2.0; // Variables.variabl esS5Eg5Unkn: 1

tu = 1.0; // Variabl es.variabl esS5Eq5Unkn: 2

tw= 1.0; // Variabl es.variabl esSEq5Unkn: 3

n = 2.999956; // Vari abl es. vari abl es5Egq5Unkn: 4

m = 6.299823999999999; // Vari abl es. vari abl es5Eq5Unkn: 6
t = 1.5, // Variables.variabl esSEg5Unkn: 7

eps = 0.7332239999999999;

/'l Vari abl es. vari abl es5Eq5Unkn: 8
show?2 = true; // Vari abl es. showari abl es: 1

119



public synchroni zed void initialize () {
_initializationl ();
_reset Sol vers();

}

publi c synchroni zed void step () {

}

publ i ¢ synchroni zed void update () {
_constraintsl ();
_constraints2 ();
_constraints3 ();
_constraints4 ();

}

public void freeMenory () {
Systemgc(); // Free menory from unused ol d arrays

}

} /1 End of class FullyConnect edBl obMbdel
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APPENDIX C

MATHEMATICA CODE: 10-EQUATION-10-UNKNOWNS CASE
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Mat hemati ca Code for Transm ssion Coefficent for
the General Case 10 Equations 10 Unknowns
t hrough a bl ob of any nunber of sites n>0:
\\Define lIdentity Matrix Z of size n:
Z = |dentityMatrixn];

\\Define or generate vector e of length n with all
\\el ements equal to 1:

e =[1,{i,n};
\\Matrix J of size nxn, all elenents equal to 1:
J = OutefTimes e, eJ;

\\Define in ternms of hopping energy t, site energy epsilon,
\\energy of incomng electron E (ee):

Xi =¢—ece—t
Xj =t;

Xu = —Stu?;
Xw = —Stw?;

\'\ out put coupling vector u

u = tue;

\\input coupling vector w

w = twe;

\\Define Sin terns of egienvalues E (ee):
S = =g [Vizee,

\\Ansatz for Matrix M for Dbl ob:

M = XiZ + XjJ + Xw(OutefTimes w, w]) + Xu(OutefTimes u, u]);
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\W\Ansatz for inverse of matri x M

L =YiZ +YijjJ + Yww(OutefTimes w, w]) + Yuu(OutefTimes u, u]) +
Yju(OutefTimes e, u|) + Yuj(OutefTimes u, ¢]) + Yjw (OutefTimes e, w]) +
Ywj (OutefTimes w, e]) + Ywu(OutefTimes w, u]) + Yuw(OutefTimes u, w]);
\\ Products of transposes of vectors and vectors:

ew=w.e==m;w.w == luu===Fkeu=ue==p,ee==n;

e.J =Je==mne; JJ==nJ;uw=wu==h;JZ=J;

\W\Formmatrix Rin ternms of paraneters;
\\solve matrix equation for Y s the 10 unknowns :

SolveR.B == A, {Yijj, Yww, Yuu, Yju, Yuj, Yjw, Ywj, Ywu, Yuw}|;
A = {=Xj/Xi, =Xw/Xi, —Xu/Xi,0,0,0,0,0,0};

B = {Yijj, Yww, Yuu, Yju, Yuj, Yjw, Ywj, Ywu, Yuw};
\\Matrix in terns paraneters:

R = {{(XI _l_ /n/XJ), 07 07 07pXJ7 07 mXJ707 0}7

{0, (Xi + IXw), 0,0,0, mXw, 0, hXw, 0},

{0,0, (Xi + £Xu), pXu,0,0,0,0, hXu},

{0,0, pXj, (Xi +nXj),0,0,0,0, mXj},

{pXu,0,0,0, (Xi + £Xu),0,hXu, 0,0},
{0,mXj,0,0,0, (Xi +nXj),0,pXj,0},

{0, hXu, 0, 0,0, pXu, 0, (Xi + kXu), 0},

{0,0, hXw, mXw, 0,0,0,0, (Xi + IXw)}};

\\ Transm ssi on anpl i tude;
\\substitute solutions Bin matrix L

tT = 2152 ¥4-e€ty(Transposey, {1}]. L.u)tw;
\\ Transm ssion Coefficient T:

T = Simplify[ComplexExpandAbs [tT*]] , {ee —2,2}] ;
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