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Hurricane Isaac’s landfall on the coast of Louisiana spawned a hydrological 

research project between Mississippi State University (MSU), the Northern Gulf Institute 

(NGI), and the National Oceanic and Atmospheric Administration (NOAA) in the Lower 

Pearl River Basin (LPRB). Unmanned aerial systems data collection missions were 

scheduled every two months in the LPRB. This research provides a comparison between 

Landsat-8 imagery and corresponding UAS imagery with regards to the four remote 

sensing resolutions: spatial, spectral, radiometric, and temporal. Near-infrared (NIR) 

imagery from each platform was compared by land-water masks and statistical 

comparisons. A classification method known as natural breaks with Jenks Optimization 

determined threshold values between land and water for each image. Land-water masks 

revealed substantial differences between areas of land and water in comparing imagery. 

The overall difference in average land and water percentages between the two platforms 

was 1.77%; however, a larger percentage was 20.41% in a single comparison. 
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INTRODUCTION / BACKGROUND 

1.1 Research Initiative and Study Area 

The growing reputation and potential applications of UASs are evident through 

the expanding use by environmental agencies and research organizations.  For example, a 

workshop held in Boulder, CO in February of 2012 initiated the integration of UASs for 

National Weather Service (NWS) River Forecast Centers (RFCs) regarding river and 

levee requirements. The workshop encouraged the attendance of vendors or operators of 

UAS platforms and sensors, and service providers. One of the main requirements 

discussed in this workshop was the rapid response after a catastrophic flooding event to 

track changes in river channel structure and morphology in an attempt to quickly update 

river models (Moorhead, et al. 2012). The goals of the Boulder workshop were 

coincidently reassured by the hurricane season of 2012, where Alabama, Louisiana, and 

Mississippi coastal RFCs were challenged by inundation caused by Hurricane Isaac. 

Areas along the Louisiana and Mississippi coasts experienced excessive amounts 

of storm total rainfall during Hurricane Isaac, ranging from 525 mm (20.66 in) in New 

Orleans, LA to 10.39 inches in Slidell, LA. Total inundation amounts around the 

Highway 90 (Pearl River boat launch) topped out at 1.8 m with a storm tide of over 2.7 m 

along with heavy rains (NOAA Tropical Cyclone Report 2013). The combination of 

heavy rains, storm surge, and storm tide were powerful enough to force a section of the 
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Mississippi River to flow backwards for a 24-hour period (NOAA Tropical Cyclone 

Report 2013). Flooding was imminent along the central Gulf States during Hurricane 

Isaac, but the aftermath created lasting inundation around lower Louisiana and 

Mississippi. More specifically, the Lower Pearl River Basin (LPRB) below Highway 90 

experienced areas that remained inundated well after Hurricane Isaac’s existence. 

Following the flooding conditions caused by Hurricane Isaac in 2012, the NWS 

RFCs along the Mississippi and Louisiana Gulf Coast initiated a NOAA-backed research 

grant to locate inundation within areas of sparse river gauges along the LPRB. The focal 

area of interest negotiated by RFCs was the Lower Pearl River Basin. An image of the 

study area is shown in Figure 1.1, which will be referred to in this research as the 

‘localized research parameter’. 

 

Figure 1.1 Localized Research Parameter 

(a) January 6th, 2015 Landsat-8 true-color imagery of Lake Pontchartrain and the New 
Orleans area, and (b) the localized research parameter in the Lower Pearl River Basin 
with UASs NIR focal-imagery overlay. 
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1.2 Remote Sensing 

Remote sensing applications have expanded greatly since the early-1900s; during 

an era in which advancements in technology were driven mainly by military agendas. 

Additionally, global remote sensing became relevant following the birth of satellite 

technology in the late 1950s. In fact, the term ‘remote sensing’ was not introduced until 

1960 by U.S. Office of Naval Research personnel, long after both world wars (Jensen 

2007). Since the popularization of remote sensing by military operations and space 

exploration, the applications have become quite vast within the geosciences field. 

In the late 1980s, the American Society for Photogrammetry and Remote Sensing 

(ASPRS) combined the definitions of photogrammetry and remote sensing into the art, 

science, and technology of obtaining reliable information about the physical objects and 

the environment, through the process of recording, measuring and interpreting imagery 

and digital representations of energy patterns derived from non-contact sensor systems 

(Colwell 1997). A modern explanation, according to Schmugge et al. (2002), is that 

remote sensing is the process of inferring surface parameters from measurements of the 

upwelling electromagnetic radiation from the land surface. This radiation is both reflected 

and emitted by the land. Both definitions highlight and express the potential of remote 

sensing technologies in the environment. In other words, remote sensing is a cost-

effective, time-efficient tool to systematically and periodically provide coverage of 

inaccessible regions (Dash et al. 2002). 

Due to a vast array of technology that remote sensing entails, a mention of the 

distance at which an object is measured should be addressed. Such extremes can be 

exemplified by a satellite, such as Landsat-8, which remote senses from an orbital 
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location, or Unmanned Aerial Systems (UASs) that collect data from a few hundred 

meters above the lithosphere. Both examples are well-documented in the field of remote 

sensing, and reflect the stated definitions from Colwell (1997), Schmugge et al. (2002) 

and Dash et al. (2002). A wide variety of remote sensing technologies are readily 

available for operational use depending on the desired data sought. Major factors, such as 

the type of resolution used in imaging, must be considered for collecting data. 

1.2.1 Spatial Resolution 

Spatial resolution can be described as the measurement of the smallest angular or 

linear separation between two objects that can be resolved by the remote sensing system 

(Jensen 2007). Spatial resolution defines the size of the pixels of a measured object 

within the instantaneous-field-of-view (IFOV) of the remote sensing sensor. For an 

example, Figure 1.2 presents a subject ground area of 1.8 x 104 m2 that was aerial imaged 

by 30 m and 0.05 m spatial resolution platforms. The 30 m spatial resolution platform 

contains a total of 20 pixels to represent the NIR image; whereas the 0.05 m spatial 

resolution platform of the exact NIR image contains a total of 3.60 x 105 pixels. 

According to Jenson 2007, the required spatial resolution for adequate imaging is at least 

one-half of the object measured in its smallest dimension. In the example of Figure 1.2, 

the 0.05 m platform is considered fine spatial resolution when compared to the 30 m 

platform’s coarse spatial resolution. The former is referred to as ‘high spatial resolution’ 

and the latter is said to have ‘low spatial resolution’. 
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Figure 1.2 Spatial Resolution Difference 

NIR imagery displaying the spatial resolution difference between (a) 30 m and (b) 0.05 m 
of the exact area of 1.80 x 10

4
 m

2
. 

1.2.2 Spectral Resolution 

Spectral resolution refers to the amount and dimensions of wavelength intervals in 

the electromagnetic spectrum, (known as ‘bands’ or ‘channels’), that the remote sensing 

equipment can measure (Jensen 2007). For example, Landsat-5’s Multispectral Scanner 

(MSS) imaged in 4 bands, opposed to the 7 bands that are imaged from the Enhanced 

Thematic Mapper Plus (ETM+) on Landsat-7. Typically, spectral resolution is separated 

into: broadband (visible, shortwave infrared, and longwave infrared bands), multispectral 

(several bands), hyperspectral (hundreds of bands), and ultraspectral (hundreds to 

thousands of bands). Multispectral resolution has a higher spectral resolution than a 

broadband platform, but a lower spectral resolution than a hyperspectral. 

Another main aspect of spectral resolution is the calibrated bandwidth of each 

band. These calibrations are intended to optimize each band for the desired data to be 

collected from the remote sensing platform. For an example, the Landsat-7 ETM+ has a 

near-infrared (NIR) bandwidth range of 760 nm – 900 nm, which is not as narrow as the 

NIR bandwidth range of 700 nm – 900 nm on the Landsat-5 MSS. According to Jensen 
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2007, the precision of bandwidth sensitivity is best analyzed by a typical Gaussian shape 

and by determining the Full Width at Half Maximum (FWHM). 

1.2.3 Radiometric Resolution 

Radiometric resolution, referred to as the quantization level, is the remote sensing 

detector’s sensitivity to differences in signal strength as it records the radiant flux 

reflected, emitted, or back-scattered from the imaged object (Jensen 2007). An analog-to-

digital conversion occurs onboard a remote sensing platform that quantizes the collected 

data into what is known as the radiometric resolution, which defines the range for pixel 

values within a certain image. For an example, 8-bit unsigned data have a possible range 

between 0-255; a total of 256 possible integers to represent each pixel value within an 

image. The typical quantization levels in Table 1.1 represent higher and lower 

radiometric resolutions. A remote sensing platform with a higher radiometric resolution 

will image in a larger domain of pixel values and provides a higher probability of image 

accuracy. 

Table 1.1 Common Radiometric Resolutions in Remote Sensing 

  Radiometric Resolutions 
Quantization 

Levels 6-bit 8-bit 10-bit 12-bit 16-bit 

Value 
Ranges 0 - 63 0 - 255 0 - 1,023 0 - 4,095 0 - 65,535 

 

1.2.4 Temporal Resolution 

Temporal resolution is defined by the frequency at which a remote sensing 

platform can collect data of a certain object. Higher temporal resolution refers to the 
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ability of a remote sensing platform to repetitively collect data of an object more often 

than a lower temporal resolution platform. Temporal resolution greatly vary depending 

on the aerial imaging platform; however, orbiting satellites such as Landsat-7 have a 

fixed temporal resolution, in which it images a certain area on the Earth every 16 days. 

1.3 Landsat Program Overview 

1.3.1 Historical Relevance 

The Landsat program is the longest running satellite mission providing imagery 

for Earth, which has immensely impacted many fields within geosciences. Initiated in 

1972, the Landsat program has launched eight and maintained seven versions of satellites 

(Knight and Kvaran 2014). Despite a failed mission in Landsat-6, in which an orbital 

destination was never reached, the Landsat program exemplifies an impressive history in 

remote sensing. 

Landsat started as an experimental satellite initially deemed the Earth Resources 

Technology Satellite (ERTS) program by the National Aeronautics & Space 

Administration (NASA) in 1967 with the primary mission of collecting Earth resources 

data. The first of the series, ERTS-1, launched on July 23rd, 1972, and aimed to test the 

performance of collecting Earth data from an unmanned satellite (Jensen 2007). After 

successful ERTS-1 operations and the design of ERTS-B, NASA renamed the program 

‘Landsat’ in January of 1975 to avoid confusion with the ‘Seasat’ satellite scheduled to 

launch in 1978. Subsequently, ERTS-1 and ERTS-B became known as Landsat-1 and 

Landsat-2, respectively. 

The original Landsat technology gained a reputation of successful data collection 

with its Multispectral Scanner (MSS) sensor. The MSS was installed on Landsats 1 
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through 3, and also joined with the Thematic Mapper (TM) sensor introduced on Landsat 

4 and 5, which improved the spatial, spectral, temporal, and radiometric resolution 

relative to the MSS. Landsat-7 introduced the Enhanced Thematic Mapper Plus (ETM+) 

in 1999. The ETM+ did not increase any of said resolutions relative to the TM; however, 

a milestone in the Landsat program was reached with the release of the Operational Land 

Imager (OLI) and Thermal Infrared Sensor (TIRS) installed on Landsat-8. Launched in 

February 2013 under the label, ‘Landsat Data Continuity Mission (LDCM)’, Landsat-8 

operates the OLI and TIRS simultaneously, but independently (Reuter et al. 2015). 

1.3.2 Remote Sensing Resolutions 

The original MSS performed with a spatial resolution of 79 m for bands 4 through 

7, a spectral resolution represented by bands 4 through 7, and 8 (band 8 only found on 

Landsat-3), a temporal resolution of 18 days (Landsats 1-3) and 16 days (Landsats 4 and 

5), and a radiometric resolution of 6-bit (0-63) (Jensen 2007). Also installed on Landsat 4 

and 5 was the TM sensor with an improved spatial resolution of 30 m, spectral resolution 

of bands 1-7, temporal resolution of 16 days, and a radiometric resolution of 8-bit. 

Landsat-7’s ETM+ and Landsat-8’s OLI also featured a spatial resolution of 30 m and 

temporal resolution of 16 days. However, the ETM+ and OLI differs in spectral and 

radiometric resolutions. The ETM+ operates with a spectral resolution imaging in eight 

bands and the OLI imaging in nine bands. Additionally, Landsat-8 includes the TIRS that 

thermally images with two bands at a spatial resolution of 120 m. Table 1.2 describes the 

sensor specifications for Landsat 4 – 8. 
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1.3.3 Applications 

Landsat-8 was designed and launched with the intention of maintaining the 

continuous imaging of the previous Landsat-7 (Roy et al. 2014), as well as to distribute 

multispectral imagery at a scale to monitor natural and human-induced changes over time 

(Reuter et al. 2015). The OLI and TIRS operating onboard Landsat-8 extends the Landsat 

program by providing global imagery to the USGS Earth Resources Observation and 

Science Center (EROS) and the National Satellite Land Remote Sensing Data Archive 

(NSLRSDA) (Reuter et al. 2015). 

The Landsat program has consistently collected large-scale imagery of land and 

water over time. An invaluable spectral range that Landsat remote senses in is the Near-

Infrared (NIR) wavelength. Government agencies such as the U.S. Department of 

Agriculture (USDA) often use Landsat imagery as an effective method of monitoring 

large crop farms. For example, the USDA has implemented the Cropland Data Layer 

(CDL), which uses 30 m spatial resolution to annually account for over 100 land cover 

and crop type classes for the contiguous U.S. (Roy et al. 2014). Due to the improved 

radiometric resolution of the OLI, the USDA has integrated Landsat-8 data into the CDL 

generation. However, its low temporal and spatial resolution creates a difficult task when 

attempting to collect data in more localized parameters; hence, the UAS integration 

initiative set forth by the Boulder, CO workshop described in Section 1.1. 
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Table 1.2 Specifications of Landsat Sensors  

  Landsat 4 and 5 (MSS) Landsat 7 (ETM+) Landsat 8 (OLI/TIRS) 

              
Spectral  

Resolution  
Band  Wavelength 

Ranges (nm) 
  Band Wavelength 

Ranges (nm) 
  Band Wavelength 

Ranges (nm) 
 

  1 500 – 600   1 450 – 520   1 430 – 450  
  2 600 – 700   2 520 – 600   2 450 – 510  
  3 700 – 800   3 630 – 690   3 530 – 590  
  4 800 – 1100   4 760 – 900   4 640 – 670  
      5 1550 – 1750   5 850 – 880  
      6 1040 – 1250   6 1570 – 1650  
      7 2080 – 2350   7 2110 – 2290  
          8 500 – 680  
          9 1360 – 1380  
          10 1060 – 1119  
          11 1150 – 1251  
              

Spatial 
Resolution 

(m) 

79 x 79    30 x 30  
60 x 60 (Band 6) 

  30 x 30 (Bands 1-
6,7,9) 

15 x 15 (Band 8) 
100 x 100 (Bands 

10,11) 

 

Radiometric 
Resolution 

6 Bit (0 – 63)   8 Bit (0 – 255) 
 

  16 Bit (0 – 65,535)  

Temporal 
Resolution 

16 Days   16 Days   16 Days  

Altitude (m) 9.19 x 105   7.05 x 105   7.05 x 105  

Swath (m) 1.85 x 105    1.85 x 105    1.85 x 105    
(Jensen 2007 and Roy et al. 2014) 

1.4 Unmanned Aerial Systems 

1.4.1 Definitions and Features 

The terms Unmanned Aerial Vehicle (UAV), Unmanned Aircraft (UA), and 

Unmanned Aerial System (UAS) are widely used as synonymous representations; 

however, one would benefit from understanding the difference in components involved 

with each technology. A UAV is just that, an aerial vehicle that is flown without an on-

board pilot. Similar to a UA, the UAV is referring to the aircraft itself. A UAS includes a 

longer list of components such as: the UA/UAV (platform), a remote pilot or operator, a 
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Ground Control Station (GCS) where the pilot operates the aircraft, a communication unit 

that transfers information from the GCS and UA/UAV, the payload and/or payload 

operator used for remotely sensed data collection, and spotters that monitor the flight and 

any hazards that may come near the flight path (Whitehead et al. 2014, Cress et al. 2015). 

The GCS can be considered the mission operation center of the UAS. This is the 

location where all components of the UAS are linked together. The pilot operates the 

aircraft from the GCS with the visual assistance of spotters that warn of any flightpath 

hazards. The remote sensing equipment installed on UASs for operational data collection 

missions is referred to as the payload. Payloads vary depending on mission requirements 

and desired data sought. The communication unit allows the pilot to control the aircraft 

from the GCS and simultaneously provides a link to transmit payload data such as live 

video images, compass headings, and location information (Cress et al. 2015). 

UASs are designed with many various UAV shapes and sizes; however, according 

to Hugenholtz (2012) and Whitehead et al. (2014), there are only two main types of UAS 

configurations: rotary wing and fixed wing (helicopter and airplane, respectively). 

Additionally, the two configurations are separated into five UAV classifications: Micro 

(<0.9 kg), Mini (0.9-13.6 kg), Tactical (13.6-454.5 kg), Medium Altitude Long 

Endurance (454.5-13,636.4 kg), and High Altitude Long Endurance (>13,636.4 kg). 

Adding to this list of classifications, Watts et al. (2012) identifies: Nano Air Vehicles 

(NAVs), Vertical Take-off & Landing (VTOL), Low Altitude, Short-Endurance (LASE), 

and Long Altitude, Long-Endurance (LALE). 

Another UAV classification of UAS technology will be made available to fly in 

the National Air Space (NAS), which is deemed by the Federal Aviation Administration 
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(FAA) as “small UAS” (sUAS) (Hugenholtz 2012). In order to define a sUAS per FAA, a 

thorough explanation is needed for a “small unmanned aircraft” itself. The FAA states 

that Public Law 112-95 defines a “small unmanned aircraft” as weighing less than 24.9 

kg (Huerta and Foxx 2015); however, the FAA proposes to update the stated definition 

by limiting the total takeoff weight of the small unmanned aircraft to less than 24.9 kg to 

reduce the damage threat. Despite the FAA classifying platforms weighing less than 24.9 

kg as sUAS, the components required for operation are the same (Cress et al. 2014). 

An important advancement in sUAS technology is the development of an 

autopilot option that includes several integrated components: GPS receiver, micro-inertial 

navigation system, microprocessor, and a flight data recorder. The GPS receiver 

measures the absolute aircraft position and airspeed while the micro-inertial navigation 

system measures the aircraft attitude. The microprocessor provides input to aircraft flight 

controls and the flight data recorder logs the position and attitude parameters for each 

image (Hugenholtz, 2012). 

1.4.2 Historical Relevance 

UAS is a new term relative to the history of UAVs/UAs. Contrary to popular 

belief, UAVs/UAs have been around for many years; in fact, decades before the use of 

satellite technology. Veritably, the first UAV was manufactured by the American 

Lawrence and Sperry (ALS) in 1916, which they initially coined as, “Aviation Torpedo” 

(Gupta et al. 2013). This was also thought to be the beginning of ‘attitude control’, 

referring to the automatic steering of an aircraft. According to Gupta et al. (2013), the 

“Aviation Torpedo” developed by ALS flew in excess of 48 km. 
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Decades following the first UAV, the military adopted its technology in the late 

1950s. Full scale research and development was initiated by real-world application 

opportunities in the Vietnam and Cold wars, extending into the 1970s with a UAV called 

“Fire Bee.” The size and cost of the UAV technology was reduced post-Vietnam War, as 

a result of the US and Israel’s interest. Subsequently, these newer UAVs were powered 

by motorcycle and snow-mobile engines that transmitted images to the operator’s 

location from an onboard video camera. This idea was considered the prototype of 

modern UAV technology (Gupta et al. 2013). 

After an impressively long conception of the UAV, popularity of the technology 

remained in the interests of military operations throughout the 1900s. The use of the 

popular General Atomics MQ-1 Predator in the first Gulf war is an excellent example of 

how the world perceived the relevance of unmanned flight. Military UA operations have 

continued to grow over the last 20 years with the use of over 20 different UASs flying 

overseas missions from four branches: Air Force, Navy, Marine Corps, and Army. 

Moreover, the U.S. military has increased total UAS flight hours from less than 50 

thousand in the year 2000 to over 550 thousand in 2010 (Spriesterbach et al. 2013). 

1.4.3 Applications 

Military UAV operations in the Gulf War initialized the logic of practical use that 

spread beyond the US Armed Forces. After over a decade of research and development, 

various U.S. government agencies, such as the Department of the Interior (DOI) U.S. 

Geological Survey (USGS), began experimenting with UAS technology. A popular 

mission planned by the DOI occurred in 2004 during a volcanic event on Mount Saint 

Helens, Washington. The successful mission highlighted the benefits of using UAS 
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technology as a cost-effective remote sensing method for scientific, environmental, and 

land management applications (Cress et al. 2015). Following the successful 

demonstration of UAS potential at Mount Saint Helens, the USGS began adopting UAS 

technology. In 2005, a USGS Land Remote Sensing Program concluded the following 

after investigating UAS technology: UAS military use was increasing exponentially, 

many civil agencies were implementing UAS program offices, U.S. universities were 

creating UAS degree programs, and there was a rapid increase in UAS vendors (Cress et 

al. 2015). 

UAS technology began to spread beyond the U.S. in the 2000s at the International 

Society for Photogrammetry and Remote Sensing (ISPRS) congress in Istanbul. The 

congress passed Resolution I.1 in 2004, noting: UAVs provide a new controllable 

platform for remote data acquisition, the maneuverability of UAVs allow remote data 

acquisition in dangerous environments that are inaccessible to direct examination, and 

UAVs provide a cost-effective option with more rapid data acquisition than manned 

aircraft (Everaerts, 2008). Wide ranges of applications are being considered for UAS 

technology such as: military intelligence, surveillance and reconnaissance (ISR), border 

security, attack and strike, target identification and designation, environmental, 

agricultural, aerial mapping and meteorology (Gupta et al. 2013). The vast amount of 

payloads that UASs can carry are only increasing its potential in such applications. 

1.5 Research Objective 

Suborbital aerial imaging is becoming a more liable method of collecting data in 

the remote sensing field; whereas satellite imaging has a reliable history of collecting 

data. Various types of UAS platforms are increasingly operated by government agencies, 
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universities, and research teams due to its cost-efficient and highly-modifiable 

characteristics; however, the Landsat program has a long period of reliable data 

collection for observing Earth, which includes land surface classifications. UAS 

platforms are designed to collect data over a relatively concentrated area, opposed to 

larger coverage of Landsat-8 OLI imagery. As a result, research is needed to 

quantitatively and qualitatively compare data from the two platforms to define the 

abilities associated with using UAS imagery along with, or even in place of, existing 

Landsat data. 

The objective of this research is to compare imagery from two different remote 

sensing platforms: Landsat-8 and UAS NB3. The purpose of the imagery comparison is 

to test an upward trending remote sensing method versus reliable satellite technology. 

Each platform will be analyzed in four remote sensing resolutions: spatial, spectral, 

radiometric, and temporal. The imagery comparisons will be tested by detecting land and 

water features within the Lower Pearl River Basin, where inundation caused by 

Hurricane Isaac challenged National Weather Service (NWS) River Forecast Centers 

(RFCs). This research will evaluate satellite imagery versus UAS imagery with the 

analysis of land-water masks and statistical comparisons using the near-infrared (NIR) 

spectral band on-board Landsat-8 and NB3 platforms. Upon the completion of land-water 

masks and statistical comparisons of Landsat-8 imagery and corresponding NB3 imagery, 

a thorough qualitative and quantitative analysis of each remote sensing resolution will be 

presented and discussed. 
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METHODS AND MATERIALS 

2.1 Remote Sensing Platforms 

2.1.1 UAS 

This research employed a sUAS with a 6.8 kg fixed-wing UA/UAV that measured 

1.8 m in length with a wing span of 2.7 m and carried a Nova Block 3 (NB3) payload. 

The NB3 payload supported a Canon EOS Rebel SL1 with a Kodak Wratten deep yellow 

#12 longpass gel filter with a spectral resolution of three bands (red, green, and blue). 

The longpass gel filter was designed to attenuate lower spectral responses of less than 

500 nm (blue band), and transmit at an optimal spectral response between 792-873 nm 

(band-3) to simulate that of a NIR band. The Canon EOS Rebel SL1 imaged from an 

along-track 40.9° Field of View (FOV). The spatial resolution of the Canon EOS Rebel 

SL1 was ≈0.05 m from 243 m Above Ground Level (AGL) with an 8-bit unsigned 

radiometric resolution. The specifications of the NB3 Canon EOS Rebel SL1 are 

compared to Landsat-8 OLI in Table 2.1. 

The UAS employed for this research was maintained and operated by Altavian 

Inc. in conjunction with Mississippi State University (MSU) and the Northern Gulf 

Institute (NGI) with a temporal return of two months. Due to the temporal resolution of 

Landsat-8 and the research schedule of the UAS mission, the Landsat-8 data did not 

occur over the same time period as the NB3 data. As such, the NB3 data used in this 



 

17 

research were selected with the intention of finding the closest temporal match to reliable 

Landsat-8 data, which is compared in Table 2.2 and Table 2.3. 

Table 2.1 Specifications of Landsat-8 OLI and NB3 Canon EOS Rebel SL1 Imagery 

 

2.1.2 Landsat-8 

Landsat-8 platform was equipped with an OLI payload that integrates a linear 

array pushbroom sensor technology. The pushbroom sensor onboard Landsat-8 

simultaneously senses an entire row with detectors per channel that sweeps in the along-

track direction by spacecraft motion. Sensing an entire row simultaneously allows the 

OLI to receive stronger signals and improve signal-to-noise performance (Li et al. 2013). 

Additionally, an Image Assessment System (IAS) was developed to operationally 

monitor, characterize, and update the OLI (Reuter et al. 2015). 

The spectral resolution of the OLI includes bands 1-9 are described in Table 1.2. 

Band-5 on the OLI was calibrated as NIR, which had an optimal spectral response 

between 850-880 nm with a spatial resolution of 30 m at an orbiting altitude of 7.05 x 105 

m above the Earth’s surface. Each Landsat-8 OLI image had a 16-bit unsigned 

radiometric resolution and a temporal resolution of 16 days, in which the localized 

 Spatial 
Resolution 

Spectral 
Resolution 

Temporal 
Resolution 

Radiometric 
Resolution 

Coverage  
Area  

Sensor  
Type 

Landsat-8 
OLI 

30 m 
Band 5 

850 - 885 
nm 

Band-5 

16-Day 
Return 

16 bit  
0 - 65,535 

1.85 x 105  m 
x 

1.80 x 105 m 

Operational 
Land Imager 

NB3 
Canon 
EOS 

≈0.05 m 
Band 3 

792 - 873 
nm 

Band-3 

Mission 
Variable 

8 bit  
0 - 255 

272 m  
x  

182 m  

Canon EOS 
Rebel SL1 
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research parameter in the LPRB was remotely sensed from a sun-synchronous near-polar 

orbit. 

Table 2.2 Full extent for NB3 Canon EOS Rebel SL1 and Landsat-8 OLI 

 

Landsat-8 OLI data are managed and archived by the USGS Earth Resources 

Observation Systems (EROS) Data Center. All Landsat-8 OLI global and synoptic data 

are electronically distributed for public use as level-1 radiometrically calibrated and 

orthorectified images in the standard Worldwide Reference System 2 (WRS2) grid 

(Reuter et al. 2015). Landsat-8 OLI data were made available by the USGS as a no-cost 

download through three platforms; EarthExplorer, Global Visualization Viewer (GloVis), 

and LandsatLook Viewer. 

2.2 Digital Image Processing 

Collecting remotely sensed data must be transformed into information that can be 

interpreted and analyzed. Remotely sensed platforms convert the analog data to digital 

values that are organized and stored in a matrix. The digital values of the collected data 

are stored in columns and rows, which collectively create a pixel. A pixel is a two-

dimensional representation of the smallest nondivisible element of a digital image 

  Platform Date ∆ Days Pixel Values Threshold Values   
 NB3 Canon EOS 3/19/2015 

8 
42 - 255 157  

 Landsat-8 OLI 3/27/2015 01 – 255 118  
 NB3 Canon EOS 3/16/2015 

11 
67 - 255 163  

 Landsat-8 OLI 3/27/2015 01 – 167 96  
 NB-3 Canon EOS 12/18/2014 

17 
75 - 255 186  

 Landsat-8 OLI 1/6/2015 04 – 187 93  
 NB-3 Canon EOS 12/16/2014 

21 
01 - 255 128  

  Landsat-8 OLI 1/6/2014 23 - 252 75   
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(Jensen 2007). After remotely sensed data is collected and digitally converted, the stored 

pixels within the matrix are each assigned a Brightness Value (BV). These BVs are 

bounded by the calibrated quantization level of the remotely sensed platform. The NB3 

Canon EOS Rebel SL1 had an 8-bit unsigned radiometric resolution quantized to an 

output BV range of 0-255. The Landsat-8 OLI data was digitally processed and quantized 

in 16-bit radiometric resolution with an output range of 0-65,535. Several matrices are 

stored in multispectral remote sensing systems; however, each band has its own matrix 

with unique BVs. 

An equal comparison of the Landsat-8 OLI and NB3 Canon EOS Rebel SL1 

required both images to share the same spatial extent and quantization levels. The higher 

radiometric resolution of the OLI 16-bit was downsampled to an 8-bit quantization level 

using the nearest neighbor method. The spatial extent of the comparing Landsat-8 OLI 

and NB3 Canon EOS Rebel SL1 imagery was matched at two different scales: full extent 

of Canon EOS Rebel SL1 and an area of interest (AOI) of ≈3.00 x 105 m2. Both scales 

were used in comparing the two remote sensing platforms and are shown in Figure 2.1. 

2.3 Comparisons 

2.3.1 Land-Water Masks 

A remote sensing detector measures the total amount of radiance as a function of 

the electromagnetic energy from four sources: atmospheric scattering, water-surface 

radiance, subsurface volumetric radiance, and bottom of the water radiance (Jensen 

2007). The total amount of radiance measured from a remotely sensed platform over an 

area of pure water is the sum of all four sources as explained in Equation 2.1: 

 Lt = Lb + Lp + Ls + Lv (2.1) 
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where Lb is the measured radiance from the solar and atmospheric irradiance that 

penetrates the surface of the water, reaches the bottom and propagates upward through 

the air-water boundary. Lp is the source of radiance that never reaches the surface of the 

water, but is scattered and measured as atmospheric noise. Ls is the solar and atmospheric 

irradiance that barely penetrates the surface of the water before reflecting back towards 

the platform sensor. Lv is measured from solar and atmospheric irradiance that penetrates 

the water, interacts with the organics and inorganics within the water, then reflects back 

through the air-water boundary without reaching the bottom of the water body. 

Measuring the total radiance with each platform in this research was presented 

with the creation of land-water masks. Land-water masks are a widely used technique of 

visualizing classifications from data collected by a remote sensing platform. The creation 

of land-water masks in this research adopted the density slicing method to classify 

between land and water in the localized research parameter (Figure 1.1) for each 

platform. Density slicing was the preferred method in this research, in which a single 

spectral band was separated from both platform’s multispectral digitally processed 

collection of data. This research aimed to density slice the NIR wavelength from the 

Landsat-8 OLI and NB3 Canon EOS Rebel SL1 (band 5 and band 3, respectively). 

The NIR band is the optimal wavelength for classifying between land and water 

due to its absorptivity and reflectivity characteristics of solar and atmospheric irradiance. 

According to Jensen 2007, water features in the NIR and mid-NIR wavelengths (740 – 

2500 nm) are relatively dark-colored in imagery because they absorb almost all of the 

incident radiance, opposed to the relatively high radiance reflectance of vegetation. The 

collected data in the NIR wavelength, shown in Figure 2.1, returns BVs that represent the 
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total measured radiance that was absorbed and reflected by the water and land, 

respectively. The density slicing method considers the BVs as a representation of the 

measured object’s density values, such that lower density values will result in darker-

colored pixels (water) within the subject imagery. Conversely, the higher measured 

density values from reflected radiance in vegetation will be represented as brighter-

colored pixels (land). 

The method used in this research to classify between land and water in the density 

sliced data for each platform is referred to as ‘natural breaks’ with Jenks Optimization. 

The original natural breaks method required the cartographer to analyze the data 

distribution and subjectively decide where the appropriate class breaks should exist. This 

method’s subjectivity was reduced by the development of the Jenks Optimization 

approach, and is now considered one of the major techniques for class delineation. Jenks 

Optimization identifies the breaks in the attribute value range by minimizing the sum of 

the variance within each of the classes, which suggests a maximization of homogeneity 

for each classification (Murray et al. 2000). The threshold values used for the creation of 

land-water masks in this research are described in Table 2.2 (full extent) and Table 2.3 

(AOI). 

The threshold values for each land-water mask were based on natural breaks with 

Jenks Optimization for two classes: land and water. Each image were expected to have 

different threshold values, thus, a natural break with Jenks Optimization was determined 

for each image. The two scales at which land-water masks were compared in this 

research were: the full extent of the Canon EOS Rebel SL1 and AOI ≈3.00 x 105 m2; 

which are described in Table 2.2 and Table 2.3, respectively. 
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Figure 2.1 Landsat-8 and NB3 NIR Imagery 

Full extent and AOI NIR imagery of 8-bit Landsat-8 vs. NB3: (a,b) Jan. 06
th

 OLI vs. (i,j) 
Dec. 16

th
 Canon EOS, (c,d) Jan. 06

th
 OLI vs. (k,l) Dec. 18

th
 Canon EOS, (e,f) Mar. 27

th
 

OLI vs. (m,n) Mar. 16
th

 Canon EOS, (g,h) Mar. 27
th

 OLI vs. (o,p) Mar. 19
th

 Canon EOS. 
Note: Areas of no data are found in (g) Mar. 27th OLI. 

Table 2.3 AOI extent for NB3 Canon EOS Rebel SL1 and Landsat-8 OLI 

 

  Platform Date ∆ Days Pixel Values Threshold Values   
 NB3 Canon EOS 3/19/2015 

8 
82 - 222 150  

 Landsat-8 OLI 3/27/2015 04 - 231 111  
 NB3 Canon EOS 3/16/2015 

11 
99 - 227 162  

 Landsat-8 OLI 3/27/2015 85 - 158 130  
 NB3 Canon EOS 12/18/2014 

17 
123 - 253 181  

 Landsat-8 OLI 1/6/2015 26 - 163 98  
 NB3 Canon EOS 12/16/2014 

21 
48 - 236 126  

  Landsat-8 OLI 1/6/2014 24 - 157 76   
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2.3.2 Statistical Comparisons 

Statistically comparing imagery in this research was based on the exact AOI 

spatial extents used for the land-water masks. A major difference was adding a NB3 

Canon EOS Rebel SL1 image that matched the 30 m spatial resolution of Landsat-8 OLI. 

This downsample of spatial resolution for the Canon EOS Rebel SL1 from ≈0.05 m to 30 

m was to ensure an unbiased statistical comparison with the exact spatial alignment, 

shown in Figure 2.2. Resampling both images to match spatial and radiometric 

resolutions was completed before converting the imagery from GeoTIFF to ASCII 

dataset format. 

 

Figure 2.2 Landsat-8 and NB3 NIR Grid 

30 m NIR imagery grid of (a) January 6
th

 Landsat-8 OLI vs. (b) December 16
th

 NB3 
Canon EOS Rebel SL1 

The resulting ASCII file was processed into a binary vector dataset and classified 

as either water (0) or land (1) with threshold values determined by the natural breaks 
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method with Jenks Optimization. Calculating the water and land percentages of each 

image was completed using Equation 2.2 and Equation 2.3: 

  
 


n

i

n

i
xTcWc

0 0
100)/( Wp  (2.2) 

  
 


n

i

n

i
xTcLc

0 0
100)/( Lp  (2.3) 

where the percentage of water pixels and land pixels in the subject image are represented 

as Wp and Lp, respectively. Wc is the total number of water pixels in the subject image, 

Lc is the total number of land pixels in the subject image, and Tc is the total number of 

pixels in the subject image. 

To ensure the spatial alignment of each NB3 image with its corresponding 

Landsat-8 image, an additional statistic was accomplished to compare pixels in space. 

Each pixel was classified as either water (0) or land (1) as previously described in the 

statistical comparison. Figure 2.2 shows a gridded example of how corresponding images 

were compared in space. The A1 - C4 pixels between Figure 2.2a and 2.2b were spatially 

matched by classifying each pixel value as land or water, subsequently calculating the 

matched percentage of the corresponding pixels. 
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RESULTS 

3.1 Spatial Resolution 

3.1.1 Land-Water Masks 

With respect to spatial resolution, the land-water masks for the full-extent scale 

between the NB3 Canon EOS Rebel SL1 and Landsat-8 OLI imagery slightly differ as far 

as suggesting water versus land. Figure 3.1 presents the overall land-water mask 

comparisons of each NB3 Canon EOS Rebel SL1 and corresponding Landsat-8 OLI 

imagery at full-extent. Figure 3.2 shows the AOI extent comparison between the OLI and 

Canon EOS Rebel SL1. The coarser resolution of the Landsat-8 OLI creates relatively 

rigid shorelines and areas of water within the marsh terrain, opposed to the NB3 Canon 

EOS Rebel SL1 higher resolution showing more distinct shorelines and suggested areas 

of water. 

The spatial resolution aspect of each platform yielded major differences in 

comparing land-water masks at the AOI scale. All four NB3 Canon EOS Rebel SL1 land-

water masks at the AOI extent have areas that suggest water that are not found in the 

corresponding Landsat-8 OLI imagery. Conversely, there is a low frequency of 

occurrence where the Landsat-8 OLI at the smaller AOI suggests water in areas where the 

NB3 Canon EOS Rebel SL1 suggests land. The coarser resolution of the Landsat-8 OLI 
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is evident in Figure 3.2 with respect to the AOI extent, which has a more noticeable 

disagreement between the two platforms. 

 

Figure 3.1 Land-Water Mask Comparisons 

Comparison of the full extent land-water masks of Landsat-8 vs. NB3: (a) Jan. 06
th

 OLI 
vs. (b) Dec. 16

th
 Canon EOS, (c) Jan. 06

th
OLI vs. (d) Dec. 18

th
 Canon EOS, (e) Mar. 27

th
 

OLI vs. (f) Mar. 16
th

 Canon EOS, (g) Mar. 27
th

 OLI vs. (h) Mar. 19
th

 Canon EOS. Note: 
Areas of no data are found in (g) Mar. 27th OLI and (h) Mar. 19th Canon EOS. 

The LPR as well as a primary and secondary tributary are evident in the NB3 

land-water mask (Figure 3.2b); however, the corresponding Landsat-8 mask (Figure 3.2d) 

fails to suggest the secondary tributary and only senses the large primary tributary and 

LPR. A similar disagreement between the NB3 and Landsat-8 land-water masks is shown 

in Figures 6n and 6p, respectively, where the NB3 suggests a substantial stream with 
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associated branches. An interesting difference in land-water masks is noted in Figures 6f 

and 6h, where both masks classify the large area on the eastern section of the LPR as 

water, but only the NB3 mask has a suggested narrow entry point location. 

 

Figure 3.2 Landsat-8 and NB3 NIR and Land-Water Masks 

AOI NB3 and Landsat-8: (a) Dec. 16
th

 Canon EOS NIR and (b) mask vs. (c) Jan. 06
th

 
OLI NIR and (d) mask, (e) Dec. 18

th
 Canon EOS NIR and (f) mask vs. (g) Jan. 06

th
 NIR 

and (h) mask, (i) Mar. 16
th

 Canon EOS NIR and (j) mask vs. (k) Mar. 27
th

 OLI NIR and 
(l) mask, (m) Mar. 19

th
 Canon EOS NIR and (n) mask vs. (o) Mar. 27

th
 NIR and (p) mask. 
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3.1.2 Statistical Comparisons 

Overall, the 30 m spatial resolution AOI comparisons had an average difference 

of 1.77% pixel values of water and land, as shown in Table 3.1. The largest classification 

difference in the comparing imagery was 20.41% between the March 16th NB3 Canon 

EOS Rebel SL1 and March 27th Landsat-8 OLI. Additionally, the comparing histogram 

distribution between March 16th NB3 Canon EOS Rebel SL1 and March 27th Landsat-8 

OLI has the largest difference between any of the other AOI comparisons, shown in 

Table 3.1. 

Table 3.1 Statistical Comparison Results 

Remote 
Sensing 

Platform 

Water 
Pixels 
(Wc) 

Land  
Pixels    
(Lc) 

Total   
Pixels     
(Tc) 

Water 
Percentage 

(Wp) 

Land 
Percentage 

(Lp) 

Water 
Percentage 

(Avg ) 

Land 
Percentage 

(Avg ) 
Landsat-8 

OLI      32.71% 67.29% 

19-Mar 25 215 240 10.42% 89.58%   
16-Mar 95 145 240 39.58% 60.42%   
18-Dec 86 154 240 35.83% 64.17%   
16-Dec 108 132 240 45.00% 55.00%   

         
NB3 Canon 
EOS Rebel      30.94% 69.06% 

19-Mar 28 212 240 11.67% 88.33%   
16-Mar 46 194 240 19.17% 80.83%   
18-Dec 104 136 240 43.33% 56.67%   
16-Dec 119 121 240 49.58% 50.42%     

 

Three of the four comparing images had over an 87% spatial match with respect 

to land and water pixels. Table 3.2 shows the results of the statistical alignment between 

each Landsat-8 and NB3 image. The anomaly of the four spatial statistic is found in the 

March 16th comparison; whereas, a 67.92% match between land and water pixels 
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between the two platforms. This anomaly is 19.58% lower than the next lowest alignment 

statistic of 87.50% found in the December 18th comparison. 

Table 3.2 Spatial Alignment of Landsat-8 OLI and NB3 Canon EOS Rebel SL1 

Date Match Non-Match Total Pixels Percent Match   

19-Mar 231 9 240 96.25%  
16-Mar 163 77 240 67.92%  
18-Dec 210 30 240 87.50%  
16-Dec 223 17 240 92.92%   

 

3.2 Spectral Resolution 

The spectral responses of each platform sensor are shown in Figure 3.3, which 

include the Canon EOS Rebel SL1 with and without the Kodak Wratten deep yellow #12 

longpass gel filter. As displayed in the Figure 3.3, the longpass filter attenuates band 3 

(blue band) in wavelengths less than 500 nm. This attenuation allows band 3 to measure 

the radiance reflected in the optimal range of the NIR wavelength (792 – 873 nm). 

Landsat-8 OLI has a more narrow optimal NIR wavelength range (850 – 880 nm). 

A comparison of the original 16-bit Landsat-8 OLI to the 8-bit NB3 EOS Rebel 

SL1 with respect to their spectral responses are shown in Figure 3.4. The central 

wavelengths of green, red, and NIR for the Canon EOS Rebel SL1 were 540 nm, 610 nm, 

and 820 nm, respectively. Landsat-8 OLI had central wavelengths for green, red, and NIR 

of 561 nm, 655 nm, and 865 nm, respectively. As mentioned in section 2.3.1, the BVs are 

indicative of the absorptivity and reflectivity characteristics at a measured wavelength. 



 

30 

 

Figure 3.3 Landsat-8 and NB3 Spectral Resolution 

(a) Spectral comparison between the original unfiltered Canon EOS, (b) Canon EOS with 
the Kodak Wratten #12 deep yellow NIR gel filter, (c) and Landsat-8 OLI. 

Both sensors show a similar overall spectral response to areas of vegetation and 

water with respect to wavelengths and BVs. The difference between the OLI and Canon 

EOS Rebel SL1 around the 540 nm – 561 nm wavelengths shows a wider range of 

measured BVs due to the different calibrated central wavelengths between NB3 Canon 

EOS Rebel SL1 and Landsat-8 OLI. The gradual decline in BVs shown in Figures 8a and 

8c, suggests more absorption of water areas measured at higher wavelengths. Figures 8b 

and 8d shows the spectral response of vegetation; which is indicative of the higher 

reflectivity of land areas in the localized research parameter of the LPRB. 
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Figure 3.4 Water and Vegetation Spectral Response 

Spectral response comparison between Landsat-8 and NB3: (a) OLI water and (b) OLI 
vegetation vs. (c) Canon EOS Rebel SL1 water and (d) Canon EOS Rebel SL1 
vegetation. 

3.3 Radiometric Resolution 

Radiometric resolutions for the original Landsat-8 OLI and NB3 Canon EOS 

Rebel SL1 were calibrated to a 16-bit and 8-bit quantization levels, respectively. Table 

3.3 presents the radiometric comparison of the data collected from the OLI and Canon 

EOS Rebel SL1 sensors and the land water threshold values based on the natural breaks 

with Jenks Optimization classification method. The pixel value ranges are indicative of 

the full extent collected NIR imagery data from the Landsat-8 OLI and NB3 Canon EOS 

Rebel SL1. 
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Table 3.3 Radiometric Data of Landsat-8 (16-bit) vs. NB3 (8-bit) 

  Platform Dates Pixel Values Threshold Values   
 UAS NB-3 3/19/2015 42 - 255 157  
 Landsat-8 3/27/2015 5,932 - 16,462 10,805  
 UAS NB-3 3/16/2015 67 - 255 163  
 Landsat-8 3/27/2015 5,664 - 15,898  10,962  
 UAS NB-3 12/18/2014 75 - 255 186  
 Landsat-8 1/6/2015 5,365 - 12,692 8,382  
 UAS NB-3 12/16/2014 01 - 255 128  
  Landsat-8 1/6/2014 5,659 - 16,685 7,562   
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DISCUSSION 

4.1 Land-Water Masks 

Analyzing the imagery in the full extent (Figure 3.1) versus the AOI (Figure 3.2) 

exposes the strengths of higher spatial resolution of the NB3 Canon EOS Rebel SL1. The 

full extent land-water masks show a slight difference over a more expansive coverage 

area than that of the AOI masks. Overall, the results consistently yielded more detailed 

and distinct characteristic of the AOI land-water masks, which was expected when 

comparing 0.05 m and 30 m spatial resolution of the NB3 Canon EOS Rebel SL1 and 

Landsat-8 OLI, respectively. However, the difference in spatial resolution is one of the 

main focuses in this research. The primary objective of this research was to compare a 

trending remote sensing platform, presented as UAS NB3, with reliable satellite 

technology, such as Landsat-8. The results from the AOI land-water masks created a 

more visual distinction for areas of suggested land and water, opposed to that of landsat-8 

OLI relatively coarse resolution. 

4.2 Statistical Comparisons 

The statistical comparisons indicated a few major differences in the land-water 

masks generated from the Canon EOS Rebel SL1 and OLI imagery. Primarily, the 

distinct disagreements found in the AOI land-water-masks were not enough to result in 

an overall average difference greater than 1.77% of either land or water between the 
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comparisons. Relatively coarse spatial resolution from the OLI appeared to completely 

disregard areas of water suggested by the Canon EOS Rebel SL1. The March 16th Canon 

EOS Rebel SL1 data vs. the March 27th OLI data had the largest difference between all 

AOI comparisons with a 20.41%. This substantial difference was likely due to smaller 

scattered areas of land and water found in the March 16th comparison, opposed to the 

relatively more uniform areas of land and water found in the other AOI comparisons. The 

March 16th comparison suggests a weakness of the 30 m spatial resolution in smaller 

sporadic areas of land and water when analyzing the NIR imagery, land water masks, and 

histograms, as shown in Figure 4.1. There exists a noticeable visual difference between 

Figures 9a vs. 9d and Figures 9b vs. 9e. The visual difference is confirmed with the 

comparisons of the histograms in Figure 4.1c vs. 4.1f. The histogram for the Canon EOS 

Rebel SL1 shows a substantial lesser amount of water pixels relative to the OLI 

histogram. 

The major difficulty in concluding results from this statistical comparison is due 

to the lack of an accurate ground truth in this research. However, in a localized research 

parameter, such as described in this research, the absence of a ground truth is unavoidable 

due to the highly dynamic water levels caused by temporal tidal variances within the 

LPRB. Contrarily, the temporal differences between the NB3 Canon EOS Rebel SL1 and 

Landsat-8 OLI should be omitted with respect to seasonal variations, as neither of the 

∆Days presented in Table 2.2 and Table 2.3 were large enough to alter the absorptivity or 

reflectivity of the localized research parameter. 
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Figure 4.1 Imagery and Histogram Comparisons 

(a-c) AOI Canon EOS and (d-f) OLI comparisons: (a) Mar. 16
th

 NIR imagery, (b) land-
water mask, and (c) histogram vs. (d) Mar. 27

th
 NIR imagery, (e) land-water mask, and (f) 

histogram. The vertical red line on histograms (c) and (f) represents the threshold 
between water and land. 

The spatial alignment of the imagery between Landsat-8 OLI and NB3 Canon 

EOS Rebel SL1 suggests a high agreement for three of the comparisons with a matched 

percentage range of 87.50% - 96.25%. The imagery that had a relatively low matched 

percentage of 67.92% was the comparison between March 27th Landsat-8 OLI vs. March 

16th NB3 Canon EOS Rebel SL1. An explanation for this anomaly is presented in Figure 

3.1; whereas, the March 16th land water mask comparison shows sporadic areas of water, 

opposed to the more uniform areas of water found in the other three land water mask 

comparisons. The likely reason for this substantially lower spatially aligned percentage is 

the 30 m spatial resolution used in the AOI imagery comparison. Higher spatial 
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resolution would be more effective in accurately classifying land vs. water in areas with 

sporadic tributaries and pools of water. 

4.3 Remote Sensing Resolutions 

To obtain temporally precise statistical comparisons between NB3 and Landsat-8, 

or any remote sensing methods, future research would benefit from simultaneously 

collecting data. A caveat with the stated potential future research is the orbital position of 

Landsat-8, which remotely senses from above the Lifted Condensation Level (LCL), 

making the sought after data susceptible to cloud interference. The NB3 operates below 

243 m AGL, which is likely below the LCL on a mission scheduled day. 

Spectrally, there was only a single band used in this research to compare 

classifications of land and water. The NIR wavelength was selected for its ability to 

measure the absorption and reflectance of total radiance between land and water. The 

NB3 Canon EOS Rebel SL1 used a longpass filter to attenuate the blue band in order to 

measure the optimal peak of reflectance in the NIR wavelength. Using the FWHM 

method, this research determined that the NB3 Canon EOS Rebel SL1 had an optimal 

NIR wavelength between 792 – 873 nm and the Landsat-8 OLI had a narrower range 

between 850 – 880 nm. The major benefit of operating the NB3 for aerial imagery over 

the localized research parameter is the capability of interchanging the sensor onboard the 

platform. Such a procedure occurred on the NB3 during a research mission that involved 

the installation of a 5-band sensor onboard the NB3 for LPRB aerial imaging. The 

orbiting location of Landsat-8 does not allow the OLI or TIRS to be interchanged with 

any other sensor. 
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The sensitivity difference of the two platforms did not appear to cause a 

substantial difference in the full-extent or AOI land-water masks comparisons. 

Downsampling from 16-bit to 8-bit was accomplished to ensure an unbiased comparison 

between the two platforms. Temporally, the comparisons were as closely matched as 

possible in this research. The largest difference between any of the comparisons was 21 

days. The Landsat-8 satellite remotely senses an area every 16 days at a fixed orbit, 

opposed to the two-month return of the NB3 research schedule. However, the UAS 

technology used in this research has the ability to launch at variable times. Future 

research would benefit from scheduling a UAS to measure an area at the same time 

period over the course of a multi-day research trip. 
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CONCLUSION 

Unmanned Aerial Systems are thought of as a modern aviation technology; 

however, research shows its genesis dates back to the early 1900s. Over the past century, 

UAS technology has evolved beyond vast military operations into many fields including 

meteorology, hydrology, ecology, etc. As a result, many government agencies have 

begun employing UAS technology to remotely sense areas similar to the localized 

research parameter studied in this project. 

Since its inception in 1972, the Landsat program has exemplified a persistent 

history of operationally imaging the Earth’s surface with the ability to collect data over a 

large coverage area. Many fields within geosciences have benefitted from the reliable 

remote sensing data collection that Landsat has made available free to the public. The 

latest operational design, Landsat-8, reached a milestone in the Landsat program with its 

Operational Land Imager (OLI) and pushbroom sensor technology, which increases its 

signal-to-noise ratio. The newly designed OLI remote senses in the NIR (band 5) with a 

wavelength of 850-880 nm, which is narrower than its predecessor’s Landsat-7 ETM+. 

The NIR wavelength has ideal absorptivity and reflectivity properties to classify 

areas of water and land. The main methods of comparing imagery with land-water masks 

and statistical comparisons, utilizes the DN from the collected NIR data, which results in 
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BVs. Land-water masks in this research were created using a single spectral band from 

each remote sensing platform; Landsat-8 OLI and NB3 Canon Rebel EOS SL1. 

The NB3 Canon EOS Rebel SL1 was superior to the Landsat-8 OLI for 

classifying water vs. land over time in the localized research parameter within the LPRB. 

A major benefit of the NB3 is its operating altitude of 243 m AGL, opposed to Landsat-8 

orbiting at 7.05 x 105 m AGL. The NB3 operated entirely under the LCL; therefore, was 

not susceptible to faulty data due to cloud interference. Contrarily, Landsat-8 OLI 

collected faulty data over the LPRB on December 21st, 2014; which would have been a 

closer dated match to the NB3 research schedule. Due to the cloudy Landsat OLI imagery 

from December 21st, 2014, shown in Figure 5.1, this research used Landsat-8 OLI 

January 06th, 2015 data to compare with the data collected on December 16th and 18th, 

2014 from the NB3 Canon EOS Rebel SL1. 

 

Figure 5.1 Cloud Interference 

Dec. 21
st
 Landsat-8 OLI imagery of (a) the New Orleans area and (b) the localized 

research parameter with NB3 Canon EOS Rebel SL1 NIR imagery overlay. 
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Another advantage of the UAS over Landsat-8 is the capability to operate 

different sensors onboard the UAS platform. In this research the NB3 Canon EOS Rebel 

SL1 was used with a Kodak Wratten #12 deep yellow filter to attenuate all wavelengths 

less than 500 nm. This was an optional equipment addition to the NB3 platform. Landsat-

8 does not have the capability to interchange an onboard sensor due to its orbiting 

location. A benefit of the Landsat-8 OLI data is its no-cost availability to the public. This 

research selected Landsat-8 OLI for its reliable record and no-cost data downloads. Other 

high-resolution satellites such as GeoEye-1, WorldView-3, or QuickBird could have been 

selected to compare against the NB3 Canon EOS Rebel SL1; however, these satellites 

offer collected data downloads at an expensive cost. Additionally, Landsat-8 OLI was 

designed as a linear array pushbroom sensor, and the NB3 Canon EOS Rebel SL1 was 

designed as a digital frame camera area array sensor. Pushbroom sensors operate by 

sensing an entire row simultaneously with multiple detectors per channel. An area array 

sensor captures an entire image with overlapping frames. 

The persistent advancement of UAS technology for geoscience applications will 

benefit a localized research parameter such as described in this research. Landsat-8 will 

have the greatest impact by continuing large-scale global imaging, where 30 m resolution 

is sufficient. 
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