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The investigation of positive steady states to reaction diffusion models in bounded do-
mains with Dirichlet boundary conditions has been of great interest since the 1960’s. We
study reaction diffusion models where the reaction term is negative at the origin. In the
literature, such problems are referred to as semipositone problems and have been studied
for the last 30 years. In this dissertation, we extend the theory of semipositone problems to
classes of singular semipositone problems where the reaction term has singularities at cer-
tain locations in the domain. In particular, we consider problems where the reaction term
approaches negative infinity at these locations. We establish several existence results when
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while our uniqueness results are proved by establishing a priori estimates and analyzing

structural properties of the solution. We also extend many of our results to systems.
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CHAPTER 1

INTRODUCTION

We consider boundary value problems of the form:

—Au = Ag(u) in
(1.1)
u = 0 on 012,

where A is a positive parameter, Az = div (Vz) is the Laplacian of z, €2 is a smooth
bounded domain in R", and g : (0,00) — R is a C' function. Such problems arise natu-
rally in applications to nonlinear heat generation, combustion theory, chemical reactor the-
ory, and population dynamics (see [6], [32], and [38]). In the case when g(0) > 0 (positone
problems) there is a very rich history in the study of positive solutions (see [2], [8], [17],
[20], [22], [25], [26], [27], [33]). In this dissertation, we will investigate positive solutions
to problems of the form (1.1) when ¢(0) < 0 (semipositone case) or lim,_,o+ g(s) = —o0
(infinite semipositone case). The study of positive solutions to semipositone problems has
been of great interest in the recent past (see [1], [3], [4], [5], [9], [10], [11], [12], [13],
[16], [19], and [31]) and has been well documented to be mathematically challenging (see
[7], [30]). Our focus will be to analyze classes of semipositone problems with singulari-
ties in the reaction term (To date, only a few results exist in this direction. See [14], [21],

[24], [28], [29], [34], [36], and [40]). We will discuss existence results for (1.1) in the
1



case lim, ,0+ g(s) = —oo, and also existence and uniqueness results for positive radial

solutions to exterior domain problems of the form

(

—Av = AK(|z|)g(v), x€Q,
v=0 if |z| =1 (1.2)

v—0 as |x| — oo,

\

where A\, Av are as before, |z| is the Euclidean norm of z, Q. = {z € R"||z| > ro},
n > 2, K belongs to a class of functions such that lim, ,., K(r) = 0,and g : (0,00) — R
is a C'! function such that g(0) < 0 or lim,_,o+ g(s) = —oo. Using certain transformations

(discussed in Section 2.4), equation (1.2) can be reduced to the two point boundary value

problem
—u"(t) = M(t)g(u), 0<t<1
(1.3)
u(0) = u(1) =0,
where h(t) = %tﬂ:l) K(rotﬁ). We note here that h(f) may be singular at ¢ = 0

(namely, lim; o h(t) = +00), depending on the function K, which will cause an added
singularity.
We will extend many of our existence results to systems, and to problems involving the

p—Laplacian operator (A,z = div(|Vz[P72V2)).



We will obtain our existence results by the method of sub and super solutions. By a

subsolution of (1.1) we mean a function 1) € C%(Q) (N C(Q) that satisfies:

.

W >0, in O (1.4)

Y =0, on 0f),

\

and by a supersolution of (1.1) we mean a function Z € C%(Q) N C () that satisfies:

;

—AZ>Xg(Z), inQ
Z >0, in 0 (1.5)

Z =0, on 0.

\
Then by the following lemma there exists a positive solution (see [2, 35, 18]).

Lemma 1
Let 1) be a subsolution of (1.1) and Z be a supersolution of (1.1) such that ) < Z. Then

(1.1) has a solution u such that ) < u < Z.

The construction of a subsolution is challenging in the semipositone case (see [7] and
[30]). Here our test functions for a positive subsolution must come from positive functions
1 such that —Aw < 0 near the boundary and —A > 0 in a large part of the interior.
Infinite semipositone problems are even more challenging because in this case the subso-
lution must also satisfy zlirgg —A1) = —o0, since sl_i}rél+ g(s) = —oo. We will prove our

uniqueness results by establishing a priori estimates and analyzing structural properties of

solutions.



In the following sections, we provide details of our results and examples of reaction

terms that satisfy our hypotheses.

1.1 Existence of positive solutions for classes of infinite semipositone problems on
exterior domains (Theorems 1-6)

Consider the boundary value problem of the form

—(Ju/ P2y = An(s)2H) g < s <1

ur

(1.6)

where ) is a positive parameter, p > 1,0 < p < 1, g € C([0,00),R) with g(0) < 0, and

h € C((0,1], (0, 00)) satisfies: 3¢, > 0,d > 0, and 5 € (0,1 — p) such that
d
h(t) < 7 forall ¢t € (0,¢),

h may be singular at 0, and h = infye(0,1) A(t) > 0. A motivation for studying this boundary
value problem is discussed in Section 2.4.

For the case p = 0, we assume :
(A1) limg 00 g(s) = 00,

(A2> hms%oo Sgp(_f)l =0,

and prove :

Theorem 1

Let p = 0 and assume (A7) and (Ay) are satisfied. Then (1.6) has a positive solution for

A> 1

An example of a function satisfying (A;) and (As) is g(s) = s” —k, where 0 <y <p—1,

and k > 0.



For the case 0 < p < 1, we assume:
(A3) there exist & > 0, A > 0 such that g(s) > As® for s > 1,

(A4) there existy > 0, B > Osuchthaty < p+p — 1, and g(s) < Bs? forall s > 0,

and prove :

Theorem 2

Let0 < p < 1 and assume (As) and (Ay4) are satisfied. Then (1.6) has a positive solution

for A > 1.

An example of a function satisfying (A3) and (Ay) is g(s) = s7 — k, where 0 < 7 <
p+p—1,and k > 0.

Next we consider problems of the form

—(Ju'[P?u) = h(t)[auP™! — bt = E] 0<t <1
(1.7)

Here a, b, c are positive constants, p > 1,0 < p < 1, > p, and h is as before. Let \; be
the first eigenvalue of the problem —(|¢/|P72¢) = \|@|P~2¢, t € (0,1),(0) = ¢(1) = 0.

We prove :

Theorem 3
Leta > % Then 3 ¢* = ¢*(a, b, p, p) such that for ¢ < c¢*, (1.7) has a positive solution.

We also extend these results to corresponding systems. Consider

(

—(J P2y = Ay ()2 g <t <1

—(W P2 = )\hz(t)gz(U(t))’ O<t<l1 (1.8)

VP




where A is a positive parameter, p > 1, 0 < p < 1, hy, hy € C((0,1],(0,00)) satisfy:

Je; >0,d>0,and 5 € (0,1 — p) such that
d .
hi(t) < 5 forall ¢t € (0,¢) fori=1,2,

the h,;’s may be singular at 0, and h = min{inf;c( 1y h1 (), infe0,1) ho(t)} > 0. Under the
assumptions that the g;’s ¢ = 1, 2 are continuous and satisfy
(AS) hms—)oo gl(s) = 00, L= 17 2a

1
(Ag) limg o0 g M@2))PT) () for every M > 0,

sp—1

A7) There exist § > 0, A > 0 such that g;(s) > As® fors > 1,i=1,2,
( g

(Ag) There exist y > 0, B > O such thaty < p+ p — 1 and g;(s) < Bs¥forall s > 0,
i=1,2,

we establish :

Theorem 4
Let p = 0 and assume (Aj;) and (Ag) are satisfied. Then (1.8) has a positive solution for

A> 1

Examples of functions satisfying (As) and (Ag) are gi(s) = s — k, and go(s) = 72,

where k£ > 0, and 71 > 0,7, > 0 are such that v,7, < (p — 1)2.

Theorem 5
Let0 < p < 1, and assume (A7) and (As) are satisfied. Then (1.8) has a positive solution

for A > 1.

Examples of functions satisfying (A7) and (Ag) are g;(s) = 7 —ky, and go(s) = $7 — ks,

where k1, ko > 0,and y;,7 = 1,2 are such that 0 < 3, <p+p — 1.



Finally we consider the system:
(

—([u'P2u) = hy(t)[auP™t — byt = 4] 0<t<1, 0<p<l1

P

—(W )P = ha(t)agrPt — bt — 2], 0<t<1, 0<p<1 (19

uP

where a;, b;, ¢; are positive constants, p > 1, > p and the h;’s are as before. In this

setting, we establish:
Theorem 6

M

Let min{ai,as} > 5. Then 3 ¢* = ¢*(a;,b;,p, p) > 0 such that (1.9) has a positive

solution when max{cy, ¢y} < c*.

1.2 Uniqueness of nonnegative solutions for semipositone problems on exterior do-
mains (Theorem 7)

We consider the boundary value problem
(1.10)

where ) is a positive parameter, and 1 € C'((0,1], (0, 00)) satisfies: 3¢ > 0, d > 0, and
B € (0,1) such that

h(t) < t% forall ¢ € (0,¢),

h may be singular at 0, h = inf;c 0,1y h(t) > 0, and h(s) is decreasing for s > 0. When
f € C'Y(]0,00),R), and satisfies:

(By) fisincreasing, f(0) < 0, and lim,_,«, f(s) = o0,

(BQ) hms%oo @ =0,



(B3) fisconcave,

we establish :

Theorem 7
Assume (B;) — (Bs) are satisfied. Then (1.10) has a unique nonnegative solution for

A> 1L
An example of a function satisfying (B;) — (B3) is f(s) = (s+1)Y — k, where k > 1, and
0<y <.

1.3 Existence and uniqueness results for semipositone problems with falling zeros
on exterior domains (Theorems 8-9)

We consider the boundary value problem

(1.11)

where ) is a positive parameter, h € C'((0,1], (0, 00)) satisfies : there existe; > 0,c¢ >
0, and 8 € (0,1) suchthat h(t) < 5 forall ¢t € (0,¢;), h may be singular at 0, h is

decreasing, and h = iglf : h(t) > 0. When f € C! satisfies :
te(0,1

(C1) there exists p1, py such that 0 < p; < po, f(p1) = f(p2) =0and f > 0in (p1, p2),

(Co) [7? f(s)ds > 0 forevery t € [0, py),

t

WE prove :

Theorem 8

Assume (C) — (Cy) are satisfied. Then (1.11) has a nonnegative solution for A > 1.

Under the additional assumption



(C3) fisconcave and f'(s) < 01in (pg — 7, po] for some 7 > 0,

we establish :

Theorem 9

Assume (C)—(C3) are satisfied. Then (1.11) has a unique nonnegative solution for \ > 1.

An example of a function satisfying (C;) — (C3) is f(s) = —s* + 5s — 4.

1.4 Existence of positive solutions for classes of infinite semipositone problems with
asymptotically linear growth forcing terms (Theorems 10-13)

We study the problem

(1.12)
u =0 on 0f),
where g(\,u) = Af(u) — -5, A is a positive parameter, A,u = div(|VulP~>Vu), p > 1,
Q2 is a bounded domain in R™ n > 1 with smooth boundary 0f), 0 < o < 1, and f :
[0, 00) — R is a continuous function. Under the assumptions

(D) there exist o; > 0,k > 0, and s > 0 such that f(s) > o;s*~! — k for every
0 S S S S0,

(D) limg oo ;;(—f)l = ¢ for some o > 0,

we establish :

Theorem 10
Assume (Dy) — (D-) are satisfied. Then there exist positive constants s} (o, ), J(€2),

A, and \(> )) such that if sq > s%, and 2. > J, (1.12) has a positive solution for \ € [, Al



We also extend our results to systems of the form:

4

—Aju=Afi(v) —L inQ

ue

1 =00 = Afo(u) — L inQ (1.13)

et

u=v=>0 on 0f),

\

where ) is a positive parameter, o € (0, 1), and the nonlinearities f/s,i = 1,2 are contin-

uous, nondecreasing, and satisfy:

(D3) There exist o; > 0,k; > 0, and s; > 0 such that f;(s) > o;s*~' — k; for every
0<s<s,0=1,2.

(Dy) limg_,o %ﬂwl) = ¢ for some o > 0.

(D5) There exists 7 € R such that for each M > 0, f;(Ms) < M7 fi(s) for s > 1.

We prove :

Theorem 11

Assume (D3) — (Ds) are satisfied. Then there exist positive constants s(o, §2), J*(€2), A,

and A, (> \,) such that if min{sy,s,} > s, and ™29Le2) > j* (113) has a positive

op—1+7

solution for A € [y, Auil.

We also study corresponding problems on exterior domains, which reduce to the two point

boundary value problem:

—(['[P~2') = h(s)g(A\u), 0<s<1
(1.14)

where g(\, u) is as before, and h € C((0, 1], (0, 00)) may be singular at 0, and satisfies:
. d
there exist e, > 0,d > 0, 8 € (0,1 — «) such that h(s) < — forall s € (0, €1].
s

We establish :
10



Theorem 12
Assume (D;) — (D,) are satisfied. Then there exist positive constants s*(c, ), J(9),

), and 5\(> \) such thatif s, > s*, and 2> J, (1.14) has a positive solution for \ € [2, ;\]

Finally, we also extend these results to the systems:

(

—(juP2u) = () (Mu(v) = 55), 0<t<1

—([V'P~2) = ha(t)(Afa(u) — ), 0<t<1 (1.15)

where A, a, f;’s are as before, and h;’s € C((0, 1], (0, c0)) may be singular at 0, and satisfy:

d
there exist e > 0,d > 0, and 5 € (0,1 — ) such that h;(s) < — forall s (0, €,
s

i=1, 2. We prove :
Theorem 13

Assume (D3) — (Ds) are satisfied. Then there exist positive constants s*(, ), J*(Q),

\,, and i (> ):*) such that if min{sy, s2} > s*, and W > J*, (1.15) has a positive

op—1+7

solution for \ € [):*, Ak

Here we give an example of a function satisfying our hypotheses for Theorem 10.
Note that the same example satisfies the hypotheses of Theorem 12. Consider the function

f(s,mg) = osP™! +mys?” — k where 0 > 0,mg > 0,p > 1,7 € (0,p—1)and kis a

real number. Now let sy = (m?fg)z’iﬂ for some v € (0, 1). Then for every 0 < s < s,

mo > mygsP~17 — osP~177. Multiplying by s7 we see that

o7t mys? > m(’js”_l.
11



This implies f(s) > o1sP™1 — k for every 0 < s < sy where o7 = mj. Hence (D) is

satisfied. Also f satisfies (D) since limg_,q, RNy Clearly, when my is large sy and

sp—1

p —1
#(o=rra)” L]
b

2L are also large and hence Theorem 10 holds. In particular if A € | s Bl T
0 T||€p||loco

p p—1

1.12) has a positive solution. Note that M — 0 as mg — oo and hence this
p m
0

interval is nonempty when the constant m, in f is large enough. In fact given a A\ €
(0, m], there exists m*(\) such that if mq > m*(\), (1.12) has a positive solution.
We now give examples of functions satisfying our hypotheses for Theorem 11. Here
again we note that the same examples satisfy the hypotheses for Theorem 13. Consider
fi(s) = sP7Land fy(s,a,b) = as T + bs" — k where p > 1,a,b > 0,0 <y < zﬁ’ and k
is a real number. Clearly f; satisfies (D3) and (D;) withoy = 1,5y = occand 7 = p — 1.

Now, set sy = (bl_”)P—i—v, for some v € (0,1). This implies for s < sy, bs? > b’sP~1.

Thus, fo satisfies (D3) with o0y = b”. Also, lim;_,, h(2E") (-1 Next when

sp—1

b > 1, min{sy, so} = sy is large and mm{;,’f;”} = (pfl)g . Hence when b is large and a is
oP—1+T7 ap—197

small the hypotheses of Theorem 11 hold and we obtain a nonempty interval of A where a

positive solution exists.

1.5 Existence results for classes of infinite semipositone problems with falling zeros
(Theorems 14-16)

We study positive solutions to the boundary value problem

auP~1 —bu"t — ¢
, T e

u® (1.16)
u =0, on 0f,

—Ayu =

where € is a smooth bounded domain in R”, A,u = div(|VulP~*Vu),a > 0,b > 0,¢ > 0,

and o € (0,1),p > 1, and v > p. For (1.16), we prove:
12



Theorem 14
Givena,b > 0,7 > p, and o € (0, 1), there exists a c; = ¢1(a, b, «, p,~,€) > 0 such that

for c < ¢y, (1.16) has a positive solution.
Next we study this problem on an exterior domain. Namely, we consider

—(Ju/ [P~ = h(s) (@ mey < s < 1

u(!

(1.17)

where a,b, ¢, a, p,y are as before and h € C((0,1],(0,00)) may be singular at 0, h =

infyc0,1) h(t) > 0, and satisfies: there exists ¢; > 0,d > 0, and 8 € (0,1 — «) such that
d
h(t) < i forall ¢t € (0,¢).
Then we prove:
Theorem 15

Given a,b > 0,7 > p, and o € (0,1), there exists a co = co(a, b, ., p,) such that for

¢ < c3, (1.17) has a positive solution.

We also discuss a bifurcation result for the problem

auP~! — byt

—Aju = , 1€

u® (1.18)
u =0, on 0f),

where 2 is a smooth bounded domain in R", a is a positive parameter, b,a > 0, p > 1 + «

and v > p. We prove:
Theorem 16

The boundary value problem (1.18) has a branch of positive solutions bifurcating from the

trivial branch of solutions (a, 0) at (0,0).
13



Now we provide an outline of this thesis. In Chapter 2, we introduce some preliminary
results, which are needed for establishing our theorems. Proofs of the results stated in
Section 1.1 are provided in Chapter 3. In Chapter 4, we present the proof of the uniqueness
result discussed in Section 1.2. Proofs of the results in Section 1.3 are provided in Chapter
5. Chapter 6 contains proofs of the results in Section 1.4. In Chapter 7, the results in
Section 1.5 are proved. We provide some computational results for (1.12), (1.16), and
(1.18) in the one dimensional case in Chapter 8. Conclusions and future directions are

discussed in Chapter 9.
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CHAPTER 2

PRELIMINARIES

In this chapter we provide some preliminary results which will be used to establish
our main theorems. In particular, we will discuss maximum principles, anti maximum
principles, the method of sub and super solutions, a sweeping principle, and the reduction

of an exterior domain problem to a two point boundary value problem.

2.1 Maximum and anti maximum principles

For the following, we assume that () is a smooth bounded domain in R"” and v €

C*(Q)NC(Q).

Lemma 2 (Maximum principle)
Let Au > 0 in ). If u attains its maximum M at some interior point in €2, then w = M in

Q.

Lemma 3 (Hopf’s maximum principle)

0
Let Au > 0 in §2. Suppose that u < M in 2 and uw = M at some p € 0f). Then a_u > 0 at
1%

0 .
p unless u = M where Em denotes the outward normal derivative.
v

15



Lemma 4 (Anti-maximum principle, Clement and Peletier [15])
Let \; be the first eigenvalue of —A with Dirichlet boundary conditions. Then there exists

ad = () > 0 such that for X € (A1, \; + ), the problem

—Az—Xdz=-1, €9
(2.1)

z=0, z€0Q,

. . 0z . .
has a solution z, such that zy > 0 in ) and a—’\ < 0 on 0X2, where v is the outer unit
v

normal to ().
Maximum and anti maximum principles also hold when the Laplacian is replaced by a

more general operator, the p—Laplacian, A,z = div(|Vz[P~2Vz) (see [37], [39]).

2.2 The method of sub and super solutions

Consider

—Ayu=Ag(u) in{}
(2.2)

u=2>0 on 0f,
where ) is a positive parameter, A,u = div(|Vu[P?Vu),p > 1, Q is a bounded domain
in R”, n > 1 with smooth boundary 02. We use the following definition of sub and super

solutions. Let W'?(Q) denote the set of all functions u € LP(2) such that the weak

16



derivative Du is in LP(€2). By a subsolution of (2.2) we mean a function ¢ € W1P(Q) N

C(Q) that satisfies

(
/ |V [P2Veh. Vw < /\/ g()w, forevery w € W
Q Q

>0 in (23)

=0 on 0f),

and by a supersolution we mean a function Z € W?(Q) (N C(Q) that satisfies:
(
/ \VZ[P2NVZNw > )\/ g(Z)w, foreveryw € W
Q 0
Z >0 in Q) 24)

Z =0 on 0f),

\

where W = {£ € C3°(€2) : £ > 0in Q}. Then the following lemma holds.

Lemma 5
(see [2, 28, 35, 18]) Let ¢ be a subsolution of (2.2) and Z be a supersolution of (2.2) such

that ¢ < Z in . Then (2.2) has a solution u such that ¢ < u < Z in ).

For problems of the form

(2.5)

where ) is a positive parameter, g € C'([0,00),R), h € C'((0,1],(0,00)), and h may

be singular at 0, we also use the following definition of sub and super solutions. Here

17



we do not require the sub and super solutions to be strictly positive in the interior. By a

subsolution of (2.5) we mean a function ¢» € W12(0,1) (| C[0, 1] that satisfies:

Jl—pd” <X [ h(t)g(v)e, forevery ¢ € V

(2.6)
$(0) <0,4(1) <0,
and by a supersolution we mean a function Z € W2(0,1) () C|0, 1] that satisfies:
[} =Z¢" > X [ h(t)g(Z)p, forevery € V
2.7)

Z(0) > 0,Z(1) > 0,
where V' = {¢ € C§°(0,1) : ¢ > 01in (0,1)}. Then we have the following lemma (see

[23D).

Lemma 6
Let 1 be a subsolution and Z be a supersolution such that{ < Z in (0,1). Then (2.5) has

a solution u € C*((0,1)) N C'([0,1]) such that ) < u < Z in (0, 1).

2.3 A sweeping principle

Here we state and prove a version of a sweeping principle for the problem
—u"(s) = Ah(s)f(u(s)), 0<s<1
(2.8)
where ) is a positive parameter, g € C''([0, 00),R), h € C'((0,1], (0, 00)), and h may be

singular at 0.

Lemma 7
Let u be a solution of (2.8), B be a connected topological space and let A = {w; : t € B}

be a family of subsolutions satisfying w,(x) < 0 atx = 0,1 forallt € B. If
18



e { — wy is continuous with respect to ||.||, and

e wy, < wuinl0,1] for somet, € B,

then w; < wu forallt € B.

Proof: Set! = {t € B : w; < win[0,1]}. I is nonempty as wy, < w in [0, 1]. We will
show that I is both closed and open. Then the connectedness of B would imply that [ = B.
Clearly [ is closed since ¢t — wy is continuous with respect to ||.||o. In order to show that
I is open we will prove that every point in / is an interior point. Let ¢ € I be given. Then
[ —(wy —w)e” < X[ h(@)[f(w;) — f(u)]g, forevery ¢ € V and wy(z) — u(z) < —&
for some & > O at z = 0, 1. Define

flwi(x)) — f(u(z))

wi(w) — u(x)

a%f(wt(x)) ;o w(x) = u(x).

s wi(x) # u(z)

g(z) =

Then
! " ! ! 1
| ~wse=we < a [l —g e —uo—e [ o
=y @)l — 1oV € Vi € 0.1],

and wy(z) + & —u(x) < 0atxz = 0,1 for all £ < &. Rearranging the terms we have
1 1 1
/ —(w + & —u)g” - / h(a)g™ (wi +& —u)p < —A/ h(z)g™ (wp +§ —u) — &
0 0 0

/0 oo /0 h@)lgt — g

forall ¢ € V,x € [0, 1]. Now for ¢ small enough we have

1 1
/ (w4 € — ) / h(@)g* (we+ € — ) < 0.
0 0
19



Vo € V,z € [0,1] and wy(x) + £ — u(x) < 0 at z = 0, 1. By the weak maximum principle

we obtain wy(x) + £ — u(z) < 0on [0,1]. Hence wy(x) < w(x) in [0, 1]. This implies that

t is in the interior of /. Thus [ is both closed and open and therefore / = B ie., w; < u

forallt € B.

2.4 The reduction of an exterior domain problem to a two point boundary value

problem

Consider the problem

\

—Au = AK(|z])f(u), z€Q
U =0, if x| =1

u —0 as |z| — oo,

(2.9

where K : [rg,00) — (0,00) is continuous, 2 = {z € R"||z| > 7o}, n > 2, and

: (0,00) — R is continuous. We set r = |z| = /22 + 22 + ... + 22 and v(r
1 2 n

Then

v(rg) =0, wv(r) —0, as r — oo.
) = v(r), then
BRI WS Rl S

(2.10)



This reduces the problem (2.10) to the following boundary value problem,

—Z" = Ah(s)f(z(s)), O0<s<1

(2.11)
2(0) =2z(1) =0,
where h(s) = %3_%31)}( (Tosﬁ). Thus studying positive radial solutions to the
problem (2.9) is equivalent to studying positive solutions to (2.11).
In a very similar way, by using the transformations r = |z[, s = () 1, we can
reduce the problem
Ay = AK(e)f(w), zEQ
u —0 as |z| —» o0
to the two point boundary value problem
—(['P2d) = h(s)f(u), 0<s<l1
(2.13)

where h(s) = (%)prgs = K(rgs »r ).
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CHAPTER 3

PROOFS OF THEOREMS 1-6

3.1 Proof of Theorem 1
Consider
—([¢'[P%¢") = No[P%¢, t € (0,1),(0) = ¢(1) = 0. (3.1

Let ¢; € C?[0, 1] be an eigenfunction corresponding to the first eigenvalue \; of (3.1) such

that ¢, > 0 and ||¢1 || = 1. Then there exist d; > 0 such that

0 < ¢ (t) <dit(l—t)fort e (0,1).

IS

Let o € (1, 2=

£=1), € <€, m > 0and p > 0 be such that

1
—m > M) — P Ha—1)(p—1)]¢)[] in (0, U1 —¢1)

and ¢; > pin (¢,1 — €). This is possible since ¢; = 0 and |¢}| > 0 att = 0, 1. Define

—a(p-1)

b = Mo where —kp < 44

m

mMinse(,00) 9(t). Then

W= Meoa(d) T,
(WY = M e a - 1) (p — Det VI g P

L e (A Lk

|41

_ /\[Alkgqap—lqsrlx(p—l) _ kg—lap—l(a —1(p— 1)%_&@_1)

].
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Fort € (0, €],

_ kb _ _
~(W1P) = A el - 0 a = Dip = 1o}
1
&y p—eao-1) &y Des &~V

< Ah(t) min g(t) < Ah(t)g(¥).

- te[0,00)
Since h does not have a singularity in [1 — ¢,1], it is easier to prove —(|¢/[P~2¢) <
Ah(t)g(y) fort € [1—¢,1). Now fort € (e,1—¢), since ¢1(t) > pand limg_,, g(s) = 00,

g(Mkoop$t(t)) > %Alkg_lap’lqﬁf(p_l)(t) for A > 1. Thus for A > 1,
—(R' P2 < ANKE T aP e PV (1) < Ahg(Mkoo® (1)) < AR(t)g(¥).

Hence for A > 1, ¢ is a positive subsolution of (1.6). Next we construct a positive super-

solution. Let Z = M (\)e where e is the solution of
—(le']P2)Y = h(t), 0<t<1, e(0)=c¢e(l)=0.

Define §(z) = maxyejoq) g(u), then ¢ satisfies (A;) and (Ay) and is nondecreasing.

Choose M (A) > 1 such that

L M O)felleo)
lelle” 3 = L0 el

Then
—(1Z'P72Z") = (M(N)P7'h(t) > Ag(M(N)|le]loo)2(t) > AG(M(N)e)h(t) > Nn(t)g(Z).

Hence Z is a positive supersolution of (1.6) . Choose M (A) > 1 such that ¢» < Z. Thus

we know that (1.6) has a positive solution u € [, Z].
23



3.2 Proof of Theorem 2

Let ¢, be as defined before, a € (1, p’ffp) andr € (fw %p_a) Define 1) = \'¢¢.

Then

¥ = Nagi e,
fAk

].
—a(p—1
(#17 (p-1)

—(W/P ) = N a0 —ar o= 1) (p - 1)

Letm > 0, € > 0 be such that o' (a—1)(p—1)|} [P — \a? 1 ¢} > min (0, €]U[1—¢, 1)
where € < ¢; as in the previous section. Let & > 0 be such that g(s) > —k for all s > 0.

Then in (0,¢] U [1 —€, 1), for A > 1

dy(—
Mo? 7 — 0 o= 1) Dl < —m < 2R
since 1 — r — rp < 0. Hence in (0, €], for A > 1
B
_92 . r —1 ;a(p—1) -1 |¢/1|p Add1<_k)
—([' P2y = N AP et —aP Ha— 1) (p — 1)¢11)_a(p_1)] < )\Tpgbllj_o‘(p_l)

MY (k) _ Ad(=k) _ AM=R)h() _ AgVg5)h()
Aoglter T (NgR)eth T (Wef)e T (Vg

(3.2)

Here again we note that since h does not have any singularity near ¢ = 1, an easier proof
will show that —(|¢/[P~2¢)") < AL in [1 — ¢, 1),

Next in (€, 1 — ¢€), since there exist 1 > 0 such that ¢; > u , from (Aj3)
GV ET) > AN G5), for A 1.
Since 1 +7(6 —p) —r >0, in (¢, 1 — ¢),

_(|¢/|p—2¢/)/ < /\T>\1@p_1¢?(p_1) < ABA(ATQZS?)é_p, for A > 1.
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Hence, for A > 1 we have,

MANG)’ _ M(t)g(V )

o Hp—2,//\/
W= "0 = ovary

(3.3)

Combining (3.2) and (3.3) we see that

—ﬂwP%Wsm@%?

in (0,1) for A > 1.

Thus ) is a positive subsolution. Now we construct a supersolution Z > 1. Note that in

Ay), without loss of generality we can choose p < v < p+ p — 1. Hence for m(\) > 1,
g y P P
(m(A)P~P7 > ABe’ 7,

where e is as before. Hence for m(\) > 1

Define Z = m(\)e. Then

BOnNO) ) oy 9

~ZFZ) = mA)R() 2 A g MO 2 MO

Thus Z is a supersolution. Further m(\) can be chosen large such that Z > . Hence (1.6)

has a positive solution for A > 1 when 0 < p < 1.

3.3 Proof of Theorem 3

Consider the boundary value problem

—(|ZP72) = Mz|PPe = -1, O0<t <1, 2(0) = 2(1) = 0. (3.4)
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From an anti-maximum principle (see [37]) there exist 6; > 0 such that for A\ € (A, A\ +
d1) the solution, zy of (3.4) is positive in (0, 1) and |2}| > 0 att = 0, 1. Also there exists
ds > 0 such that

0 < 2y <dot(l —t)fort € (0,1).

Let a € (1,min{(%)p%1, p{’ffp}), and fix \* € (Al,min{aﬁ—ijl, A1+ 01}). Define ¢ =

koz5. where z)- is the solution of (3.4) for A = A\* and

ap*l)\*
aP~! a2 (a—%==) 1
ko = min{ L (——— =) )
(b||zA* gg—”a—ldg—a(?’—”d) (2b\|zk*\|§§7_p))
Then
Vo= koazii A,
(WY = =k ar N a = 1)(p— 1)
e S (EH e |
I |p
_ kg—lap—lzg\lfp—l)/\* _ kg_l(lp_lzig_l)(p_l) . kg—lap—l(a . 1)(p o 1) p|_22€p_1) (35)
A*
and
_ — c -1 _a(p—-1) -1 _a(y-1) c
h() (aP™ — byt — ) = h()(akP 0P gm0 . — ) (3.6)
(0) ) = hl) ekt e [

Let 4 > 0,m > 0 be such that |z)+| < 1, and |z}.

> min (0,e]U[l —¢ 1) and 2y« > p
in (e, 1 — €) where € < €;. Also let

kPP ar— (o — 1) (p — 1)m?
¢ = min{i0__ @ (a—1)(p—1Lm

1 aP~I\*
’ _kp—1+P a(p—1+p) a— _ ]
o R Oy

In (0, €] we compare (3.5) and (3.6) term by term to see that for ¢ < ¢*

-ﬂWP%WsMWWﬁkwwl—ﬁ»
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Since \*a?~! < ah,

K ar PN < b Vn(ta. 3.7)
Next, we see that
_kp*loép 1Z(a D(p-1) — _kp ' al” Z)\* _kp ! aP~ Z)\* —k'p ! aP~ Z)\*
0 A* Z}p\* a(p—1) dg a(p— Utp*a(p*l) - dg a(p— 1)t6
ht) =k laP'zyh(1)

< —kP P g, =
0 dg_a(p_l)d kg_pdg_a(p_l)d

—1 [0 S
Now from the choice of kg, o7 < —2 . Hence,

aP—

—kE™ L p—1 la=D)(p-1) < —bk)~ 1||Z)\* (v—Da 2 h(t) < —bkd™ 1, (y=Dea= 12,\*h(t)

)\*

= bk 20V n().

k8+p_1ap’1(oc—1)(p—1)mp
d3d ’

Sincep—a(p—1) >+ apandc <

K o= Dp = DI ko = D(p = D

Zi* a(p—1) - 2B 2y P
_ —kg oo = 1)(p — YmPh(t)
- dyd=5?
—ky_PaP " (a = 1)(p — 1)mPh(1)
N (k=5 )7
ch(t)
(ko5 )?

Hence we get —(|¢/[P~)")" < h(t)(ay?! — b7~ — %) in (0, €. It is easier to prove

this in [1 — ¢,1), as h is not singular. Now in (¢,1 — €) since z5 > u, we have
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¢ < TPt (a - %) and by our choice of ko, bky Pz < L(a —

—1y*
%) Hence, fort € (¢,1 —¢),

N hEP L1 a*(p—l))\*
_(lwl‘P*2 ) <kp 1ap IZA*(P 1))\ — 0 ¢ AZ)\

h
Sh(t)[;az Nk 1 a(p 1)+; hl/\ e 1 /C\vfp 1)]
< h(t) [%akg‘lzi‘fp_l) — 1/k:g‘lszp_l)(a - ap_lA*)
+ akp 1 ap 1) 2kp 1 ié*(p 1)< ap;;)\*)}
< h(t)[%kg‘lszp‘”a— (ko;) + ;k T Va — bk Y]
= h(t)[ak?t 200D p 1007 m].

Hence v is a positive subsolution of (1.7). Next we construct a supersolution. We know
that there exist a large M > 0 such that au?~! — bu’™' — -5 < MP7! forall u > 0
and Me > 1 in (0,1) where e is as defined before. Let Z = Me. Then Z is a positive

supersolution of (1.7). Thus Theorem 3 is proven.

3.4 Proof of Theorem 4

—a(p—1
d€ (p )d

Let ¢, be as defined before, o € (1,2=2) and —k <

- min{ gy, g}, where

Gi = Milgejoeo) gi(®), @ = 1,2 and dy, m are as in the proof of Theorem 1. Define
1 = Py = Ako@f. Following the steps in the proof of Theorem 1, it is now easy to show

that for A > 1, (11, 1)2) is a subsolution of (1.8). Now we define
Zl = M()\)el,

Zy = (A2 (M(N]lell)) 7 €2,
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where ¢; is solution of —(|e}[P~2€})’ = hi(t), 0 <t < 1,¢(0) =¢e;(l) =0,i=1,2.

)

Choose M () > 1 such that

_1 _1
1 o (7 lealloo (g2 (M(N)llen|lo0))7T)
lealloc” A MNP~ le | '

Now

—(1ZP2ZL) = M) ha(t) > Agy (AT [[es] oo (g2 (M () lex|]o0)) 7T ) (£)
> Agi (AT ea(ga(M(A)|ler||oe)) 77 ) () = Aga (Za)ha (1),

—(125177223)" = Aga(M(N)|lex]loo) ha(t) > Aga(M (Ner)ha(t) = Aga(Z1)ha(t).

Hence (7, Z3) is a positive supersolution of (1.8). Choose M (\) > 1suchthaty; < Z;

and ¢, < Z,. Thus Theorem 4 is proven.

3.5 Proof of Theorem 5

Let ¢, be as defined before, o € (1, 22 ) and r € (-, —1—). Define ¢, = ¢, =

1+p 14+p? 14p—0

’p

A" ¢S, A similar proof as in Theorem 2 will show that (11, 12) is a subsolution of (1.8) for
A > 1. Now we construct a supersolution (Z7, Z) > (11, 1). There exist 73 > 0 and
79 > 0 such that

ep < Tep, and ey < Toeo,

where €)s are as in the proof of Theorem 4. As in Theorem 2 we can choose p < v <

p+ p — 1, hence for m(\) > 1,

(m(\)P~P > ABrelf, i=1,2.
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Hence, for m(\) > 1,

Similarly

—(1Z1722) = mA)P T () = A

and similarly

92(Z1)

—(|Z}|P~225) > Ahy(t) Z2)

Thus (Z;, Z3) is a supersolution. Further m(\) can be chosen large such that (7, Z,) >

(11, 12). Hence (1.8) has a positive solution for A > 1 when 0 < p < 1.

3.6 Proof of Theorem 6

Let @ = min(ay,as) and b = max(by, by). Define 1), = )9 = koz$. where 2« is the

solution of (3.4) for A = A* € (A, min(aZ—ijl, A1+ 61)),

ko = min{ o S i R
0 :mln — o — — ’Y—P’ f Y—P ,
b|zae |V PN 20| |z || 27

and o € (1, min((%)v%l, pfffp)). By following the proof of Theorem 3 we can easily

show that there exists

KPP a1 (o — 1) (p — Dm? 1 aP~ I\

* : -1 a(p—
¢* = min{~2 dgd ’51{;6) T o= 140)
30
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such that for max{c;, co} < ¢*, (11,19) is a positive subsolution of (1.9). Define Z; =
Mey and Zy = Mey, where M > 0 is such that a;uP~" — bu?~" — & < M fori = 1,2
and Me; > 11, Mey > 1)o. Itis easy to see that (7}, Z5) is a supersolution of (1.9). Hence

Theorem 6 is proven.
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CHAPTER 4

PROOF OF THEOREM 7

We first establish some a priori estimates which are needed to prove Theorem 7.

4.1 A priori estimates

Let F(s) = [ f(t)dt. Note that there exist positive real numbers 3,6 such that

f(B) =0and F(0) = 0and § < 6. (See Figure 4.1).

f(s) F(s)

/ﬁ ¢ ° ‘ s
B 7]

Figure 4.1

Graphs of f(s) and F'(s)

Lemma 8
Let u be a nonnegative solution of (1.10). Then u has only one interior maximum, say at

toy, and U(to) > 0.
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u(t)

Figure 4.2

A solution with more than one maximum

Proof. Let E(t) := AF(u(t))h(t) + @,t € (0,1). Hence E'(t) = AF(u(t))h'(t).
Since, h(s) decreases for s > 0, E(t) increases when u(t) < ¢ and decreases when
u(t) > 0. Letty € (0,1) be the first point at which u has a local maximum, and assume

u(t) < 0,Vt < ty. Integrating (1.10) from ¢ to o, ¢ < ty, and using properties of A,

)
11—«

df (0)

tl—a_tl—oz <\
(% ) <A

u'(t) = )\/tto h(s)f(u(s))ds < A 4.1)

where d > c is such that h(t) < £ forall ¢t € (0,1)and o € (0, 1). Integrating (4.1)

again from 0 to t,t < to, u(t) < AMot where My = CifT@. Since f is continuous, there

exists ko > 0 such that |F'(u)| < kou for u € [0, 6]. Hence
. < T l—a _
tlir(% AF(u(t))|h(t) < tlir& koA Modt 0,

which implies lim;_,o £(t) > 0. Since F(t) increases on [0, to|, E(to) = AF'(u(to))h(to) >
0 which is a contradiction if u(ty) < 6. Hence u(ty) > 6.
Now suppose u has two interior maxima. Let ¢ € (¢, 1) be such that v'(f) = 0 and

u”(t) > 0 (as in Figure 4.2). Since u”(t) = —Ah(¢) f(u(t)) > 0 we see that u(¢) < 3 and
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thus £(t) < 0. Lett € (ty,t) be such that u(t) = 0. Since E(t) > 0 and E increases in

(t,t), E(t) > 0 which is contradiction. Hence u can have only one interior maximum and

that maximum value is bigger than 6.

Lemma 9

Ifty,t, are such thatt, < t; and u(t,) = u(t,) = B, thent,,1 — t; < O()\*%).

u(t)

0 by o o
Figure 4.3

Graph of a solution

Proof. Let ¢, be the first point in (0, 1) such that u(ts) = g Integrating (1.10) from 0

tot,t < o,

Integrating again from O to 72, we obtain

> 0. (4.2)

N——
N

ty, < 6)\_%, where ¢ = <ﬁ_

—~
ol | @

~—
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By the Mean Value Theorem, there exists a ¢ € [0, t5] such that u(ty) — u(0) = u/(t)(t2)

and by (4.2), u'(t) > 2%)5. Since v’ increases in [0, ¢, this implies

A2, Vit E [t t1]. 4.3)

S

u'(t) >

Integrating (4.3) from ¢, to ¢; we see that (t; — t5) < &\~2. This and (4.2) implies t; <

O(A~2). Similarly we can also prove 1 — ; < O(A~2).

Lemma 10
Given M > 0, there exists A(M) such that if \ > \(M) then u(t) > M for some t €

(t1,11).

Proof. Let v := u — 3, then v > 0 in (¢, ;) and satisfies:

—v" = Ah(t) J(w) v, 0<t<l1
u—p (4.4)
U(tl) = U(tAl) = 0.
Also
ot —t)\\” 72 _m(t—t)
— —— = — - . 4.5
(szn<(t1 —t1)>) 7 _tl)Qszn(<t1 _t1>) (4.5)
Multiplying (4.4) by sin mt=t)) and integrating from ¢ to t;, we have
(t1—t1)
4 - 0 _
/ cos(ﬂ(:g tl)) T yds = / Ah(s) fu) Usin(ﬂgs tl))ds (4.6)
t (t1 —t1) 7 (t1 —t1) t u—p (t1 —t1)

and multiplying (4.5) by v and integrating from ¢, to ¢;, we have

h (s —t1) T e b g2 . (m(s—ty)
/t1 cos( @ 1) > - tl)v ds = /tl - t1)2v81n< @ 1) )ds. 4.7

Now subtracting (4.7) from (4.6) we see easily that

2
A f(w) h(t) = — " forsomet e (t1,11). (4.8)

(t1 —t1)?
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Note that inf;¢ (1) h(t) > 0 and from Lemma 9 without loss of generality we can assume
(t, —t1) > % Thus for A > 1, (4.8) is true only if 5(7“6) — 0. Since f satisfies (Bs), this

implies ||u||oc — 00 when A — oo.

Lemma 11

There exists k > 0 such that u(t) > Ak fort € [1, 3] if A\ > 1.

Proof. We first claim u(t) > 2t for ¢t € [1,3]. Recall ¢y € (t1,%1) is the point at which
u has it’s maximum. By Lemma 10 given M > 0,3 A(M) such that if A > A(M) then

u(to) > M. Since u” < 01in (t1, ), for t € [t1,to], we have

(u(to) — )
to — 11

u(t) > (t—t1)+ 5. (4.9)

Similarly for ¢ € [to, 1], we can get

u(t) > %(t} —t)+ 6. (4.10)

Now by Lemma 9, for A > 1 we can assume ¢; < 0.2 and {1 > 0.8. Hence from 4.9),
(4.10) and Lemma 10, the claim u(t) > 25 holds when )\ is large. Now let G(%, s) be the
Green’s function associated with problem (1.10). Then

1

u(t) = A / G(t, s)h(s) f(uls))ds
0
t1 %
> [ G one ) + [ Gt shls)(u(s)ds
0 i

1
+ / G(t, $)h(s)f (u(s))ds|.
t1
But by Lemma 9, t; — 0 and {7 — 1as A\ — oo. Hence for A > 1, u(t) > Ak for

~ 3
t € [%,3], where k = $hf(ZE2) inf f; G(t, s)ds, which proves the lemma.
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Lemma 12

There exists A such that if \ > X, u(t) > A\d(t, 952), where 2 = (0,1).

Proof. Let o be the unique solution of

(4.11)

where x is the characteristic function. By Hopf’s maximum principle there exists ¢ > 0
such that o(t) > ce(t) ¥Vt € [0, 1], where e is the solution of —e”(t) = h(t) in (0, 1)
and e(0) = e(1) = 0. Let M > 0 be such that P = ¢f (M) + f(0) > 0 and let uy, us

satisfy —ui = Af(M)x2 3h(¢) in (0,1),u1(0) = u1(1) = 0 and —uy = —Af(0)h(?) in

3
4

)

Sl

(0,1), u5(0) = uz(1) = 0. Then by Lemma 11, if A > &L, we have

—u" = Af(u)h(t)

> Af(M)xq1 21h(t) + Af(0)R(t)

and thus, by the maximum principle, u(t) > ui(t) — ua(t) = ANf(M)o(t) + Af(0)e(t).

Hence
u(t) > Mf(M)ce(t)+ Af(0)e(t) = APe(t), Vt e (0,1).

Let L > 0 be such that e(t) > Ld(t,d) forall t € [0,1]. Hence u(t) > AKd(t, 99) for all
t € (0,1) where K = PL. Now let D := [¢, 1 — €], for some € > 0. Then u(t) > AKe for
all t € D. Let uz be the unique solution to —u5(t) = xph(t) in (0, 1), u3(0) = us(1) = 0.
Since f satisfies (B,), for A > 1, f(AKe)us(t) + f(0)e(t) > d(t,09) in [0, 1]. Hence for

A1, —u” = Mh(t) f(u(t)) > A(f(Af(e)XDh(t) + f(())h(t)) , and thus by the maximum
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principle u(t) > )\< FOK ) us(t) + f(O)e(t)) > Ad(t,89) for all t € [0, 1], if A is large,

which proves the lemma.

Lemma 13

For each \ > 0, there exists M () such that ||u||o < M()).

Proof. Due to our assumptions on £, fol h(s)ds = A < co. By (Bs), there exists K such
that f(2) < A"Y A+ 1)"'z + K, for all z > 0. Since G(s,t) < 1/4 for all s,t, € [0,1],

we have

[ulloe = u(to)

:)\/ G(s, to)h(s) f(u(s))ds
01 (4.12)

< )\/ G(s,to)h(s)(N A+ 1) u(ty) + K)ds

1 _

Therefore ||ul|, < 2AK A, which proves the lemma.

4.2 Proof of Theorem 7

We first claim that (1.10) has a maximal positive solution @ for A > 1. Given A > 0,
choose J = J(\) > Af(M (X)) where M()) is as in the previous section. Further choose
J > 1sothat J > A\f(J||e|]|o), where e is as before (see Lemma 12). This is possible
since f satisfies (B). Now if v is any solution of (1.10), then —(Je — v)"(t) = Jh(t) —
M (v)h(t) > h(t)(J — Af(M (X)) > 0in (0,1). By the maximum principle we obtain
Je > vin [0, 1]. Also, —(Je)"(t) = Jh(t) > Af(Je(t))h(t) in (0,1). Hence Je is a

supersolution of (1.10) larger than any solution of (1.10). However, by Theorem 1, we
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know that (1.10) has a positive solution for A > 1. Hence (1.10) must have a maximal
positive solution % for A > 1.
Now let u be any other positive solution of (1.10). To establish our theorem, we will

now show that 7 = u for A > 1. Since u and wu are solutions of (1.10), we obtain

%ﬂ—WWﬂZAMOQ@@D—ﬂMﬂD,0<t<1

4.13)
(i — u)(0) = (@ —w)(1) = 0
By the Mean Value Theorem there exists £ such that v < & < win [0, 1] and
—(@—u)"(t) = A(t) f(E)(ut) —ut)), 0<t<l
(4.14)

Multiplying (1.10) by (u — u), (4.14) by u, integrating and using the fact that f is concave,

we obtain
)\/01 <f(u) . f’(u)u>h(s)(a —u)ds < 0. 4.15)

Now by (Bs), there exists a > 0,b > 0 such that f(z) — f’(z)z > b whenever z > a

and from Lemma 12, u(t) > a if d(¢,002) > ¢ when A > 1. Let Q, = [§,1 — ¢] and
Q_=(0,%)U (1~ %,1). Then from (4.15) we obtain
I— / b — wh(s)ds + | F(0)(@ — u)h(s)ds < 0. .16)
04 o

Here we have used f(z) — zf'(z) > f(0) Vz > 0, which follows from the fact that f is

concave.
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Next let my, my satisfy —m//(t) = xa, h(t)in (0,1), m1(0) = my(1) = 0Oand —m5(t) =
Xa_h(t) in (0,1),m2(0) = mo(1) = 0 respectively. Multiplying (4.14) by bm4(t) +

f(0)my(t) and integrating by parts we obtain

I— / b — wh(s)ds + | f(0)(a - w)h(s)ds
- (4.17)

Q4
=3 [ £ 0h)om6) + FOmaslas
As )\ tends to +00, my tends to e and my tends to 0 in C*[0, 1]. Hence for A > 1 bmy (t) +
f(0)mz(t) > 01in (0,1). Thus from (4.16) and (4.17) we see that I = 0 for A > 1, and

from (4.17), we see that this is possible only if « = u in [0, 1], which proves Theorem 7.
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CHAPTER 5

PROOFS OF THEOREMS 8-9

5.1 Proof of Theorem 8

We first establish two useful results for such nonlinear eigenvalue problems when the

nonlinearities are zero at the origin. Namely, we consider f € C 1((0,00), R) such that

f(O) = 0 and satisfies:

(C}) there exists ji, gz such that 0 < gy < g, f(p1) = f(p2) = 0and f > 0in (51, f2),

(Cy) tp~2 f(s)ds > 0 forevery t € [0, 53),

fa Fu)

Figure 5.1

Graphs of f(u) and F'(u)
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(see Figure 5.1) and study the boundary value problem:

—u"(s) = Ah(s)f(u(s)), 0<s<1
.1

where h(s) is as before. First we establish:

Lemma 14
Assume (C4), and (Cy) hold and f(0) = 0. Then (5.1) has a positive solution u, for A > 1

with max uy € (p1, fa).

Proof. First modify f outside [0, 5] as f(s) = 0if s > gy and f(s) = —f(—s) for
s < 0. Define I, (u) = %fol(u’(x))zdx—A fol h(z)F (u(x))dz in Wy*(0, 1), where F'(u) =
Iy f(s)ds. Since h is integrable and F is bounded, it is easy to see that I (u) is bounded
below, weakly lower semi continuous and coercive for A > 0. Also since F is an even
function and h(s) > 0, I(|Ju|) < Ix(u), for all A > 0. Hence I)(u) has a nonnegative
minimizer, say u).

We now prove ||uy||ec < 2. Suppose ||uy||o > p2 and let t;* be such that uy(t1*) =
||ur||so- Then there exists a to* < t1* such that uy(ty*) = p2 and u, is nondecreasing in

[to*, t1*]. Integrating (5.1) from ¢ to ¢1* where ¢y* < t < t;* we see that

u'(t) = A/ttl h(s)f(ux(s))ds = 0 (since f(s) = 0 for s > f),

which is a contradiction.
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Next we prove ||uy||o > p1 for A > 1. Suppose ||uy|| < p1 for all positive A. We
choose aw € C§°(0,1) suchthat 0 < w < g in [0,6] U[1 — 9, 1] and w = py in (6,1 — 9)

where 6 will be chosen later. Then

) = i) = 5 [ (@ @) =3 [ ()~ Fun)ie
< %/Ol(wf)zdx_A[/ol h(x)F(ﬁg)dx+/06h(x)(F(w)—F(ﬁg))dx
+ /1 ;h(x)(ﬁ(w) _ F(p))da — /0 1 () ) e
<3/ (! A / W) (F(w) — F(po))d

—A/lléh(x)(ﬁ(w) — F(py))dx — A/Ol h(x) /uj f(s)dsdz.

Let § = min{fp”~2 f(s)ds;0 < p < 1 }. By our assumption 3 > 0. Also F(uy) < m for
some m > 0 and h(s) < & forall ¢ € (0,1), thus

1 2Amdst=e  2xmd(1— (1—6)'"%)  ABd

1
L(w) — Iy(uy) < 5/0(71/)26137‘" 1 — o + 1—a T 1l-a

We now choose 0 = 0. Then it follows that I (w) < I(u,) for A > 1, a contradiction.
Thus ||uy||ec > p1 for A > 1.
Next we prove that uy > 0in (0, 1). Suppose u,(t) = 0 for some ¢ € (0,1). Then uy

satisfies the initial value problem

(5.2)

But f (0) = 0 and hence by the uniqueness result by Picard, u, = 0, which is a contradic-

tion. Hence u, > 0in (0, 1).
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Next we prove that the solution ) has only one interior maximum.

Lemma 15

Assume (C}), and (Cy) hold and Iet u, be the solution of (5.1) for \ > 1. Then uy has

only one interior maximum.

u(®)

Figure 5.2

A solution with more than one maximum

Proof Let E(t) := A (uy(t))h(t) + M,t € (0,1). Hence E'(t) = AF (ux(t))l/(t).

Note that h(s) decreases for s > 0. Let § be such that 5, < 6 < g, and F'(§) = 0. Then

E(t) increases when u, () < 6 and decreases when u,(t) > 6. Let t* € (0, 1) be the first

point at which u, has a local maximum, and assume () < 0 ,Vt < t*. Integrating (1.11)

from ¢ to t*, ¢t < t*, and using the integrability assumption on h,
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where d > c is such that A(t) < £ forall ¢ € (0,1)and @ € (0,1). Integrating (5.3)

again from 0 to ¢,t < t*, uy(t) < AMyt where M, = f 9) . Since f is continuous, there

exists ky > 0 such that | F(uy)| < kouy for uy € [0, §]. Hence

Jim A (u()[A(t) < lim koAModt'™* =0,

which implies lim,_,o, E(t) > 0. Since E(t) increases on [0, t*], E(t*) = AF(ux(t*))h(t*)
> 0, which is a contradiction if u, (*) < . Hence u,(t*) > 6.

Now suppose wu has two interior maxima. Let # € (*,1) be such that v, (f) = 0 and
w/ () > 0 (as in Figure 5.2). Since /(1) = —Ah() f(ux(f)) > 0, we see that uy(f) < g
and thus E(f) < 0. Let ¢ € (t*,7) be such that u,(t) = 0. Since E(t) > 0 and F increases
in (¢,1), E(t () > 0 which is contradiction. Hence wu, can have only one interior maximum
and that maximum value is bigger than 0.

Now we prove Theorem 8.

First modify f in R \ [0, po] as follows. Let f(s) < 0 for s € (py, 00), f(s) = 0 for

s € (—oo,—1] and [”* f(s) ds > 0 for ¢ € [-1,0) such that f € C'. By Lemma 14,

—u"(s) = ph(s)f(u(s) —1), 0<s<l1
54

has a positive solution w for some x large enough with maxw € (p; + 1, p + 1]. Define
v(t) =w(t) — 1forallt € (0,1).

By Lemma 15 v has only two zeros, say aj,as and v > 0 in (o, as). Extend v
n (1,00) such that v(t) < —1 and v"(t) = 0 for all ¢ € (1,00). Also extend h(t) as
h(t) = h(1) for all t € (1,00). Then v(t) satisfies —v"(s) = ph(s)f(v)in (0,00) with

max v € (p1, p2]. Now for a fixed yo € (0, 1), define ¢, (N, z) = v(( )2 |z — yo| + t*)
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v(t)

w(t)

-1

Figure 5.3

Graphs of v(t) and w(t)

where t* is a point at which v has maximum. Let Q = (0,1) and d(yo, 9Q) denote the
distance from y, to the boundary of Q. If A\ > pu(ay — t*)%d(yo, Q)2 = A\*, ¥, < O on
9. Thus 1y, is a subsolution of (1.11) for A > \*. Clearly Z = p, is a supersolution of
(1.11). Also the subsolution, ¢, < po for all X. Thus (1.11) has a solution wu,, € [1)y,, p2]
if A > A"

Next we will show that u,, > 0, using the sweeping principle. For y € I, = ((0@ —

1

E)($)5,1 = (az = #9)(4)} ), define v, (A, 2) = v((2)Fle =yl + ). Then {,y € I}
is a family of subsolutions to the problem (1.11) with 1), < 0 on the 9€2 and

e y — 1, (A, x) is continuous with respect to ||.||» and

e yo € I, and u,, > 1), in [0, 1].

Thus by the sweeping principle, u,, () > 1, (A, z) forall y € I,. For z € I, by choosing
y = x, we see that u,,(x) > v(t*) > 0. For z € (0,1) — I, we choose y € I, such that
d(z,y) < (%)%(ag—t*). Since t* > «; and by the choice of y, a; < (ﬁ)élm—y\ +1* < o

which implies v, (A, z) > 0 for z € (0,1) — I,. Hence u,,(z) > 0 forall z € (0, 1).
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5.2 Proof of Theorem 9

Let F(s) = [; f(t)dt. Note that there exist a positive real number 6 such that p; <

0 < py and F(0) = 0 (See Figure 5.4.)

f(u) F(u)

TN

P1 P2

1 0 )

Figure 5.4

Graphs of f(u) and F'(u)

Let u denote a nonnegative solution of problem (1.11) for A > 1 under the assumptions
(C1) — (C3). We first establish some properties of u, namely , Lemmas 16-19, which will

help us to prove Theorem 9.

Lemma 16

u has only one interior maximum, say at ty, and u(ty) > 6.

Proof. Follows by similar arguments as in the proof of Lemma 15.

Lemma 17

Let ty and t5 € (0,1) be such that ty < {5 and u(ty) = u(t}) = pl;“@, then ty,1 — ty <
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u(t)

L1+ |

tr to
Figure 5.5

Graph of a solution

Proof. Let ¢, be the first point in (0, 1) such that u(t;) = £ Integrating (1.11) from 0

tot,t<t,

u'(t) = u'(0)— A/Oth(s)f(u(s))ds > Aizt(—f(%)) (5.5)

Integrating (5.5) from 0 to ¢ yields t; < ¢A~2, where ¢ = (W) ® . Now let E(t) :=

AF(u)h(t) + W,t € (0,1). As in the discussion in Lemma 15, lim; o £(¢) > 0 and

FE is increasing if u(t) < 6. Hence we have E/(t) > 0 for all t € (0, 1). This implies that

(U’(Qlt))2 > M~ F(u))h(t) forall t € (0, 1).

Fort € (t1,t5), u'(t) > A2ky, where k; = minge (r, 4,) / —2F (u)h(t) > 0. Integrating this
from ¢, to t,, we obtain (f, — 1) < O(A"2). Since ¢; < &A™z, this implies £, < O(A2).

Similarly 1 — £, < O(\"2).

Lemma 18

[|u]|oo = p2 as A — oc.

48



Proof. Suppose there exists € > 0 such that ||u|| < p2 — ¢, forall A > 0. Let G(t, s)
denote the Green’s function of the operator —u” with boundary condition «(0) = 0 = u(1).

Then for t € (0, 1) we have

u(t) = )\/0 G(t,s)h(s)f(u(s))ds

3
1

> )\[/OQG(t,s)h(s)f(u(s))ds+/ G(t,s)h(s)f(u(s))ds

1
1

+/1 G(t,s)h(S)f(u(S))dS}

t2

Since h is integrable, by Lemma 17 we have

u(t) > %)\/ G(t, s)h(s) f(uls))ds for A > 1.

By our assumption (||u[|o < ps — €), there exists ks > 0 such that f(u(s)) > kyin [1, 3].
Then forall ¢ € [1, 3],
3
1. 3
u(t) > —Ahky inf /4 G(t, s)ds,
2 te[d,3] J1

which is a contradiction, since all positive solutions of (1.11) are bounded above by p- .

Hence ||u||o — p2 as A — o0.

Lemma 19
Let p € (py — 7,p2) and ty, ty be such that u(ty) = u(ty) = p with ty < t. Then

ty, (1 —15) = 0as A — oo.
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Proof. By (C5), f'(s) < 0 for s € [p, po] and by Lemma 18 there exists 5 and £, such that

u(ty) = u(ty) = p when \ is large. We first prove £, — 0 as A\ — 0o. Suppose there exists

~v1 > O such that £, > ~; > 0 for all A > 0. Then

u(t) = A /0 G(t, 5)h(s) f (u(s))ds

0 Yo

+ / G(t, s)h(s) f(u(s))ds} ,

to

where 7 is such that 0 < t5 < vy < 7. Now using Lemma 17, for ¢ in say, [%, %],

1~ 2!
u(t)z§h)\k:3 infr/ G(t, s)ds,

tel3.31 /o

=5 / Gt () f(u(s)ds + | Glt, $)h(s)f(u(s))ds

where k3 > 0 is such that f(u(s)) > ks in [y9,71]. This again contradicts the fact that

solutions of (1.11) are bounded. Hence t, — 0 as A — oo. Similarly (1 — £,) — 0 as

A — 00.

Now we prove Theorem 9.

By Theorem 8, (1.11) has a positive solution for A > 1. Note that (1.11) has a maximal

solution, u, since all positive solutions of (1.11) are bounded above by p», which is also a

supersolution. To prove the uniqueness of the positive solution, u for A > 1, we will show

that © = u. Since @ and w satisfy (1.11),

(= u)"() = Mh(t) (Fa(t) = Fu(r)), 0<t<1

By the Mean Value Theorem there exists £ such that v < & < @ in [0, 1] and

—(u—w)"(t) = A(t) f(E)(u(t) —u(t)), 0<t<1

(5.6)

(5.7)



Multiplying (1.11) by (@ — u), (5.7) by u and integrating,

)\/01 <f(u) - f’(u)u)h(s)(ﬂ —u)ds < 0. (5.8)

Here we also used the concavity of f. Let Q, = (t5,£,) and Q_ = (0,1) — Q. where
ty is as in Lemma 19. Since f’(s) < 0 for s > p, there exists a constant a > 0 such that
f(2) = f'(2)z > ain Q. Also since f is concave, f(z) — f'(z)z > f(0) for all z > 0.
Thus

/ ah(s)(@ —wu)ds+ [ f(0)h(s)(z —u)ds < 0. (5.9)
0 o

By Lemma 19, |Q_| — 0 as A — oco. Also using the facts that (& — u) is bounded and h(s)

is positive and integrable, we see that (5.9) is true only if (z — u) = 0.
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CHAPTER 6

PROOFS OF THEOREMS 10-13

6.1 Proof of Theorem 10

We first construct a supersolution for (1.12). Let Z = M)e, where M, > 1 and e, is

the unique positive solution of

(6.1)
ep =10 on 0S).

Let f(s) = maxuepoq f(t). Then f(s) < f(s), f(s) is increasing and lim f;@l = 0.
U— 00

Hence, we can choose M, > 1 such that

N (AT
(Mleplo)?
Now let \ = W For )\ < ;\,
F(M o . 1
A Z =M > % > Mf(Myep) > Mf(Myey) > M(Z) — ——.
20]|ep|[5 2

Hence Z is a supersolution of (1.12) if A < . Next we construct a subsolution. Consider

the boundary value problem

—Apz —plz[P?2=—1 inQ
(6.2)

z=0 on 0f).
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By the anti-maximum principle established in [37], there exists a constant £ = £(2) > 0
such that if © € (uq, p1n + &), where p; is the principal eigenvalue of —A,, with Dirichlet
boundary conditions, then the solution z of (6.2) is positive in 2 and = < 0 on 02 where
v is the outer unit normal vector. Now fix p € (p11, 1 + €) and let z,, denote the solution
of (6.2). Since 2z, > 01in €2 and %i: < 0 on 012, there exist m > 0, A > 0,0 > 0 such that
|Vz,| > minsand z, > Ain Q — Qs, where Q5 = {z € Q : d(z,00) < ¢}. Define

W= kozi~ ri where ky > 0 is such that

1 ko 27 p=ita 1 = a)(p — )m? p p—1
X < i Al (63
kg_m( +20HepH€;1>—mm{ (p—1+a) ’<p—1+04) } ©

Then

p pita
Vzp = ]{}0 (m)Zu " VZ/“

—Ap = —div(|VY [P VY)

(1—=a)(p—1)

1
=—kb 1( 1+ " dw(zu” |V, P 2V2M>
—1+a

< —1+a

r=le(l—a)(p—1) =2
) (A
_1+a _1+a 2 Vz,|

p— (A—a)(p—1) 9 (1-a)(p=1)
1+« — —14+a
) {VZHP ) VPV, 4z Apzu}

(A=) (p=1)
+z, P (11— ,uzpfl)}

w
= ]{;p*1< p >p 1/1 §(p1+1; I kpfl( p )p 12%
* \p-1+a “u O \p—1+a [z
—1 p—
kg ppi— o) (p = )|Vl 6
Z,_IZ 1+a( _].+O[)p
_pr
Now we let s;(0, Q) = ko2~ " ||o. If we can prove
1 p(p—1) 1

—A w<)\0'1]€p p 1+a )\k_—ap, (6.5)

ka p 1+a
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then (D;) implies —Ayp < Af(¢) — w% and 1) will be a subsolution of (1.12). We will

Pt

now prove (6.5) by comparing terms in (6.4) and (6.5). Let A = “(”’% For A > \,

p—1 p pol o B p1 B
kO (m) ,uzﬁ S )\O’lkfo Zﬁ . (66)
. N 1
Alsosince A < \ = PRI
1 1 k
—— + A< =5 !
]{;S‘z/ffHa k’S‘zﬁfH& 20“6p|‘00
ap
kbt 1 kkgzp e
- Oap [ p—1+a (1 + e p—1>:| : (67)
2 bho 20| ey |5

Now in {25 we have |V z,| > m and by (6.3),

ap
a ., p—1ta
1 kEG 24

Pl —a)(p = m”

_ <
kg—l-l—a( 20_||ep||€gl )] — (p -1 i Oé)p
Hence
1 p—1 _p—1/1 _ 1 P
e — + )\k S kO pp a(pl O[) (p >|V’ZH| in Q(S- (68)

kgl S (p—1+a)

From (6.6) and (6.8) it can be seen that (6.5) holds in €25. We will now prove (6.5) holds

also in §2 — €);. Since 2, > A in Q — {25 and by (6.3) and (6.7), we get

1 kb p-1
LUV, Sl S
k825_1+a Zl;f—l+a p - 8]
p—1 (A=o)(p=1)
= kgil (}ﬁ) Zu pite in () — Qg. (69)

From (6.6) and (6.9), (6.5) holds also in {2 — €25. Thus @ is a positive subsolution of
(1.12) if A € [A, A]. We can now choose M, >> 1 such that ¢y < Z. Let J(Q) =

2[|epl[5s (5=t )P IF 28 > T it is easy to see that A < X and for A € [, \] we have a

positive solution. This completes the proof of Theorem 10.
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Remark. Note that in the proof the choice of & can be adjusted easily to obtain a subso-

ﬂ(p,lﬁ)p_l i .
—r—*2—_ Further, for the case when p = 2 using

AN}

lution for all A € [, 21) where A =
the asymptotically linear condition at co, a large enough supersolution can be created for

all A < % (see [24] for details). Hence in the case p = 2, a positive solution exists for all

Ae 3.

g

6.2 Proof of Theorem 11

We first construct a supersolution for the system (1.13) when

1
A< - A**

T (20)55 T e[

Let (Z1,Z2) = (Myey, [)\fg(M)\||6p||oo)]ril€p), where e, is as before and M), is a large

filf2(s)P7Y) _

sp—1

AL(Mylepllo)]7T)
=T el

positive constant. Since lim;_, o, we can choose M), > 1 such that

Then
Sl f2(Mnleplloe))7T)

lepl[5™ 20

~AZy = MU >

Now since A < \,, we have

p—

1 [[epl B fi (o (Ml epl )] 7T)

lepl 5"

= M ley| 2 Fu([fo (M lep| )] 7T)-

A

—A,Zy >

Note that (D,) implies f5(s) — oo as s — 0o. Hence from (Dj) for M, > 1 we get

—A, 71 > MO |yl [oo Lo (M lep o) 7T)

> M (oM el )] 7T e lloo) > Mi(Z2) — Zi (6.10)
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Also,

1
—A,Zy = MNa(Myllepllos) = Afa(Mrep) > Afa(Z1) — Za (6.11)
2

Hence, from (6.10) and (6.11) we see that (77, Z5) is a supersolution of (1.13) when A <

p

- . Next we let )y = by = koz/ '™ where kg is as in (6.3) with & =

P
-1
(20)P=TF7 [|ep IS0

max{k, ka2 }. Setting s* = kol||2/~'""||o and following the steps in the proof of Theorem

(10) it is now easy to see that (t1,1)9) is a subsolution of (1.13) when A € [\, \..],

P -1
M(m)p
min(o1,02)

where )\, is as defined above and A\, = . We now choose M, > 1 such that

Y1 < Zy and Py < Zs. Let J*(Q) = 2pf;ifﬂ<p—jl'ﬁ>p_l|’€p||gl- If ™e1o2) > 7 then
op—1+7

the interval of A\ for which we have positive solution is nonempty. Thus we have proven

Theorem 11.

6.3 Proof of Theorem 12

We begin the proof by constructing a supersolution. Let Z = Mye, where M), > 1

and e,, is the unique positive solution of

—(leyl"=%e,)" = h(t) in (0,1),

p

(6.12)
ep(0) = 0 =¢,(1).

As in the proof of Theorem (10) it can be seen that Z is a supersolution of (1.14) when

A< A= Now consider the boundary value problem

2ollepll% T
—(1[P722) = plafP?2 = =1 in (0, 1),

(6.13)
2(0) =0 = 2(1).
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By the anti-maximum principle established in [37], there exists a £ > 0 such that if © €

(1, p1 + &), where iy is the principal eigenvalue of

—([2[P722)" = plzP=*zin (0, 1),
(6.14)

2(0) = 0 = 2(1),
then the solution z of (6.13) is positive in (0,1) and |z/| > 0 at s = 0,1. Now fix a
€ (p1, 1 + §) and let z, denote the solution of (6.13). Since z, > 0 in (0,1) and
|z,| > 0ats = 0,1, there exist m > 0, A > 0,¢ > O such that |z, | > m in (0,€]U[1 —¢,1)

and z, > Ain (¢,1 — €) where € < ¢. Also note that there exists a ¢ > 0 such that

p—pB
0 < z,(s) <ecs(l—s)forall s € (0,1). Define ¢ = koz; '™, where ky > 0 is such that
1 k'ko‘ 04(1’:_5)
o) 6.15
e (1 e €1
— B8Pl —aq— — p — -1 A8
Smin{(p PPt —a=pB)p—1)m ( p-5 )P A }
(p — 1+ a)rdc? p—1+a ¢
where ¢ is such that h(s) < ¢forall s € (¢,1 — ¢€). Then
_ 1 e=86e-1
=2 //:kp—l< p—p )p plta 6.16
(I P~=y) 0 p——l—l—a Hzp (6.16)
(P B \e e Bp - P —a = 6)(p— DIl
0 p—1+a “u ap+pp—p :
" (p—1+a)p
Let s*(o, Q) = ko| |z,§";+" || If we can prove
| =801 1
—([¢'P~2") < h(s) [Amk‘é’_ " = M- — | (6.17)
k§zp— "

then by (D), will be a subsolution of (1.14). Now we compare the terms in (6.16) and

~ p—B8 \p—1 ~
(6.17) to see that (6.17) holds in (0, 1). Let A = % where h = inf,c(o1) h(s) > 0.

For A > )\,
(p—B8)(p—1) (p—B8)(p—1)

- B p_l —1+4a - p—14+a
K 1(%) pz, T < R(s)AaIkE e, (6.18)
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Also, since A < ;\,

1 1 k
h(s) [W + )‘k} < h(S)[ som T 20| le]
kgzi— ™ kgzp e 2Ol
a(p—pB)
h(s)kb™ [ 1 ( kkg 2 e
= LA S f>} (6.19)
Zﬁ ko 20] |e,| 5"

Now in (0, €] we have h(s) < t% and z, < ct. Hence

a(p—pB)
kjg_l 1 kk82571+a d
h(s) [—a@fm ““Vf} ) [k,p—Ha (1 * 20|le Hp—lﬂt_ﬁ
kgl e Zp e o m
p1 C!(Pl—Jrﬁ) s
kP~ 1 kkSzP7 T \1dc
CH [ ey
z,f*ﬁ kg 20||ep|[5 Zp

Also in (0, €], |z,/| > m and thus by (6.15) we have

K (p— B Y1 —a—B)(p— 1)z,
a(p—p) + Ak S ap+Bp—pB £ .

k82571+a ZMP—1+Q (p _ 1 _'_ &)p

(6.20)

h(s) [

From (6.18) and (6.20) we see that (6.17) holds in (0, €|]. Proving that (6.17) holds in
[1 — ¢,1) is easier since h is not singular at s = 1. Next we prove (6.17) holds also in

(e,1 —¢€).Since z, > A, h(s) < cforall s € (¢,1 — €) and by (6.15) and (6.19) we get

1 _1 p— 6 p—1 (1—‘;_—1#
h(s) [m + )\k:| < kg <m> m * . (6.21)
0 2u

Thus (6.17) holds also in (¢, 1 — €) and ¢ is a subsolution of (1.14). Now we can choose

M), > 1 such that v < Z. Hence (1.14) has a positive solution when A\ &€ [2, 5\] Let

J(Q) = i) el

z - It is clear that if 2+ > J we have a nonempty interval of \

where (1.14) has a positive solution.
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6.4 Proof of Theorem 13

The proof of Theorem 13 follows using similar arguments as in the proof of Theorem

11 with the necessary adjustments to overcome the singularity from h(s) (as done in the

p—1
- _ p—1F7 p—B —1le z;o—l ~
proof of Theorem 12). Here, s* = ko||2} " ||o0, J*(Q) = 2 M(p“zo‘)p lesl ;A =

-8 -1
n(GE575 )P
LA and )\** — +

min(o1,02)h o‘mHepHggl
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CHAPTER 7

PROOFS OF THEOREMS 14-16

7.1 Proof of Theorem 14

We first construct a subsolution. Consider the eigenvalue problem —A,¢ = A|¢|P~2¢
in 2, = 0 on 0L2. Let ¢; be an eigenfunction corresponding to the first eigenvalue \,
such that ¢; > 0 and ||¢1||c = 1. Also let §, m, u > 0 be such that |V¢,| > m in 5 and
¢1 = prin Q— €5, where Q5 = {2 € Q[ d(z,0Q) < 6}. Let 8 € (1, —f1) be fixed. Here

note that since a € (0,1), .= > 1. Choose a k > 0 such that 2bk7"" + BPINEY < a.

Define ¢; = min {kP~ " P71(3 —1)(p — 1)mP, kP~ PP~ (a — P71\ k) }. Note that

c1 > 0 by the choice of k£ and . Let ¢ = kgb’f . Then

. L) et o Vo |
—mw::H”Wl&%“”—W1wlw—w@—néﬁéﬁ

To prove that 1) is a subsolution we need to establish:

S Vo
LD WY Ay 1(5—1)(p_1)d);1oﬁ—él)

c

ko g®

< akpflfaqﬁf(P—l—a) _ bk'yflfad)f(”_l_a) — (7.1)

in Q if ¢ < ¢;. To achieve this, we split the term kP~! Bp*1A1¢f P into three, namely,

kp—lﬁp—l)\1¢f(10*1) _ akp—l—a¢»f(p*1*a) _ %kp—l—agﬁf@*l*a) (& _ kagﬁ?ﬁﬁp_l)\l)
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—%k”_l_aﬁ(p*l*a) (a — k*¢7” 8"~ \). Now to prove (7.1) holds in €, it is enough to

show the following three inequalities.

) o o
— kTRl @ = ko) < 0RO in, (72)

1 ie
—S Gl (0= ko) S i Q-0 (13)
ko
~1pp—1 [Vu|? c .
— kLB LB — 1) (p — 1)¢€_5(p_l) < T Qs. (7.4)

From the choice of k,

—(a — BP7 I\ k) < —2bk7P, hence
1 . —1l—a a O — —1l—a —l=a
—SR T (0 = kg A < bk

< _bm—l—a(ﬁf(w—l—a). (7.5)

Using ¢ > pin Q — Qs and ¢ < kP~ 1P0~D (@ — g1 k),

1, e B _kp—1¢5(17—1) a4 — ka/\lﬂp_l
—5k AT (= kgt BN < 1 2k£¢?ﬁ )
—c
< (7.6)
ka¢15
Finally, since [V¢;| > m, in Qs and ¢ < kP~1HepP=1(5 —1)(p — 1)m?,
1 ppt V[P —kr— e i(3 — 1)(p — I)m?
—kP BB = 1)(p — 1)¢110—ﬁ(p—1) < ka¢‘1’5¢117_/3(p_1)_045
- —c
- ka¢?6¢1{—5(p—1+a)'
Since p — f(p — 1 + «) > 0,
p _
g (- 1)(p - 1)l < ¢ a

(ﬁzl’fﬁ(z’*l) - kagb?ﬁ ’
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From (7.5), (7.6) and (7.7) we see that equation (7.1) holds in €2, if ¢ < ¢;. Next we
construct a supersolution. Let e be the solution of —A,e = 11in {2, e = 0 on 2. Choose
M > 0 such that % < MP~'Vu > 0and Me > 1. Define Z = Me. Then Z

is a supersolution of (1.2). Thus Theorem (14) is proven.

7.2 Proof of Theorem 15

We begin the proof by constructing a subsolution. Consider

—(61772¢) = Mo”2, t € (0,1),
(7.8)
Let ¢; be an eigenfunction corresponding to the first eigenvalue of (7.8) such that ¢; > 0
and ||¢1]|cc = 1. Then there exist d; > 0 such that 0 < ¢y (t) < dyt(1 —t) fort € (0,1).

Also let € < ¢; and m, ;1 > 0 be such that |¢}| > min (0,¢] U[l —¢,1) and ¢y > pin

(e,1—¢€).Let 8 € (1, pf;’:a) be fixed and choose £ > 0 such that 2bk7 P + W <a.

Define ¢; = min {kpilwﬁpilfﬁfl)(pfl)mp, kPP (g — W)} Then, c; > 0 by
1

the choice of k£ and (5. Let ¢ = kgbf . This implies that:

—([ Py = BT g Y = T (B - 1) (p - %ﬁ—ﬂ)—n :

1

To prove that ) is a subsolution, we need to establish:

1 - 1 o
R g — R (B - 1) (p - D256
< B(t)(ak? g I —phr g0 kafbaﬁ)- (79)
1

L) hp-1ge-iaef@D L
Here, we note that kP~ 37—\, #~ 1) = M5 ;Al?f’l < h(t) (akr-1-o 07170

—1—a fp-1- ke gePpr—1n —1—a Bp-1- ke gl Br—ia
_%kp 1 a¢1(p a)(a_#l)_%kp 1 a¢1(p a)(a_lTl)) where
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h = inf,c(0,1) ~(s). Now to prove (7.9) holds in (0, 1), it is enough to show the following

three inequalities.

a o8 pp—1
—%kplacbf(””) (a— %) < bk P07 n(0,1),  (7.10)
1 s keg2P gr=1), c .
—fplregfmlme) L < — in (6,1 —¢€), 7.11
LA ( 3 S g ) (7.11)
ik h(t
—kP1BP (B —1)(p— 1) 91" o cht) in (0,e] U[l —¢,1). (7.12)

¢11J—B(p—1) - k:o‘gb‘fﬂ ’
From the choice of k,

—(a— m) < —2bkYP, hence,

LR

1
__kpflfa B(p—1-a)
5 o (a i

) < _bk'yflfa(bf(P—l—a)

< —pk im0, (7.13)

Using ¢ > pin (6,1 —€) and ¢ < 2P~ P~ (0 — W),

o PpRe — —148(p-1) ko, grt
_lkpflfa Blp—1—a) k ¢1ﬁﬁp "\ < —kP 1¢1 8 (a B TB)
M ) S 2k
1
—c
< 5 (7.14)
ke
Next we prove (7.12) holds in (0, €. Since |¢}| > mandp — B(p — 1) > af + p,
(B - 1) (p— )l o TR~ Ve = m?
op koot of
< _kp—l—l—aﬂp—l(ﬁ o 1)(]9 o 1)mp
B kegP dfte
Since h,(t) < tlp in (O, E], and ¢ < kpflJrOé,BPflEg_l)(P—l)mp’
1P —ch(t
g8 = 1(p - Dl <~ (7.15)

¢€*/B(p*1) - kagb‘llﬁ.
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Proving (7.12) holds in [1 — €, 1) is straight forward since h is not singular at ¢ = 1. Thus
from equations (7.13), (7.14) and (7.15), we see that (7.9) holds in (0,1). Hence ¢ is a
subsolution. Let Z = Me where e satisfies —(|¢/|P~2¢’) = h(t) in (0,1),e(0) = e(1) = 0
and M is such that W < MP~'Vu > 0and Me > 1. Then Z is a supersolution
of (1.17) and there exists a solution u of (1.17) such that u € [¢), Z] . Thus Theorem (15)

is proven.

7.3 Proof of Theorem 16

We first prove (1.18) has a positive solution for every a > 0. We begin by constructing

a subsolution. Let ¢; be as in the proof of Theorem 14. Let 5 € (1,-£), and choose a

p—1
k > 0 such that bk7~P + P~ \ k* < a. Let ¢ = k¢’. Then,
1 o 1 1 op— |Vr|?
—A = RTEIN] T — R (B - 1) (p - 1)@-
To prove that 1) is a subsolution, we will establish:
R g T < kT gl e 0T (7.16)

in 0. To achieve this, we rewrite the term kP~13P~1\,¢" P~ as kp=18r-1) ¢ P~ —
akp=1=o @I  pp=1ma gm0 (o g g1, Now to prove (7.16) holds in €,
it is enough to show —kP—1-ag =17 (a — k2P Br—1\) < —bky 1m0 From

the choice of k, —(a — P~ A\ k%) < —bk7P, hence
_kpflfa(bf@*l*a) (CL _ k,oc(b?ﬁﬂpfl)\l) < _bk'yflfa(éf@*l*a)

< _bk'y—l—aqﬁf("f—l—a).

64



Thus 1) is a subsolution. It is easy to see that Z = (%)ﬁ is a supersolution of (1.18).
Since k can be chosen small enough, 1) < Z. Thus (1.18) has a positive solution for every
a > 0. Also all positive solutions are bounded above by Z. Hence when a is close to 0,
every positive solution of (1.18) approaches 0. Also u = 0 is a solution for every a. This
implies that we have a branch of positive solutions bifurcating from the trivial branch of

solutions (a, 0) at (0,0).
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CHAPTER 8

COMPUTATIONAL RESULTS

8.1 Computational results for (1.12) in the one dimensional case

Here we consider the boundary value problem

8.1

where f(s) = s + mes? —2;mg > 0 and a € (0, 1). Using the quadrature method (see

[27]), it follows that the bifurcation diagram of positive solutions of (8.1) is given by

r ds 1
G(p; ) :/ — (8.2)
0 JRAF(p) — F(s)) — (£522)]
where F(s) := [ f(t)dt and p = u(3) = ||u||~. Now we use Mathematica to plot

(8.2) and provide the exact bifurcation diagrams when my = 10 and my = 5000 (See

Figure 8.1).

8.2 Computational results for (1.16) and (1.18) in the one dimensional case

Consider the boundary value problem

(8.3)



7 A

12 A 0.002

Figure 8.1

Bifurcation diagrams with my = 10, my = 5000 respectively

where a,b > 0,¢ > 0 and « € (0, 1). Using the quadrature method (See [27]) the bifurca-

tion diagram of positive solutions of (8.3) is given by

p ds 1
G(p,c) = -, )
() /omz(F(p)—F(sm 2 (®4

where F(s) := [ f(t)dt where f(t) = %f‘c and p = u(3) = ||ul|. We plot the exact
bifurcation diagram of positive solutions of (8.3) using Mathematica. Figure 8.2 shows
bifurcation diagrams of positive solutions of (8.3) when a = 8 (< A;) and b = 1 for
different values of «.

Bifurcation diagrams of positive solutions of (8.3) when a = 15 (> A;) and b = 1 for
different values of « is shown in Figure 8.3.

Finally, we provide the exact bifurcation diagram for the case when p = 2, Q2 = (0, 1)
and ¢ = 0. Consider,

—u'(z) = 2= 7€ (0,1),

uOt

(8.5)
u(0) = 0= u(1),
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—a=01
—a=02
a=03
—a=04
a=05
——a=06
a=07

—a=08

—a=09

Figure 8.2

Bifurcation diagrams, ¢ vs p for (8.3) witha =8, b =1

Figure 8.3

Bifurcation diagrams, ¢ vs p for (8.3) witha = 15,b =1
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where a,b > 0 and o € (0,1). The bifurcation diagram of positive solutions of (8.5) is

given by

(8.6)

Y

- P ds 1
G(pa CL) - — — 5
/0 VE(EQ) -~ F(s)] 2

where F(s) := [ f(t)dt with f(t) = “=2 and p = u(}) = |Ju||~. The bifurcation

diagram of positive solutions of (8.5) as well as the trivial solution branch are shown in

Figure 8.4 when o = 0.5and b = 1.

20
15
1.0]

0.5

Figure 8.4

Bifurcation diagram, a vs p for (8.5) witha =0.5,b=1

This bifurcation diagram (Figure 8.4) indicates that (0, 0) is a bifurcation point of (8.5)

as in Theorem 16.
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CHAPTER 9

CONCLUSIONS AND FUTURE DIRECTIONS

9.1 Conclusions

In this thesis, we have extended the theory of semipositone problems to exterior do-
mains, including problems involving the p— Laplacian operator as well as systems, and
to the case of infinite semipositone problems. We have also established new results in the

bounded domain.

9.2 Future directions

We plan to continue and expand the theory of infinite semipositone problems. In the

near future, we will study the following open problems.

e Consider

{—Au =Ag(u) inQ ©.1)

u =0 on 02,

where ) is a positive parameter, Au = div (Vu) is the Laplacian of u, €2 is a smooth
bounded domain in R”,n > 1, and g : (0,00) — R is a C' function such that

lim, o+ g(u) = —o0, and satisfies a sublinear growth condition ( limg_,, @ =0).
We will aim to prove uniqueness results for large values of parameter \.
e Consider
—u"(t) = Ah(t)g(u), 0<t<1
(t) = Mh(D)g(w) 02)
u(0) =u(l) =0,

where ) is a positive parameter, g : (0,00) — R is a C' function such that lim,,_,q+
g(u) = —oo, and satisfies limg_, @ = 0,and h € C((0,1],(0,00)) is singular at
t = 0. We will aim to prove uniqueness results for large values of parameter \.
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e Consider

{—Au =MAg(u) inQ 9.3)

u =0 on 0f),

where ) is a positive parameter, Au = div (Vu) is the Laplacian of u, €2 is a smooth
bounded domain in R”,n > 1, and g : (0,00) — R is a C' function such that
lim, o+ g(u) = —oo, and lim,_,, @ = o0 (superlinear grwoth condition). We

will aim to prove existence and uniqueness of positive solutions when A ~ 0.

e Consider

9.4)

—u"(t) = M(t)g(u), 0<t<1
u(0) =u(1) =0,

where ) is a positive parameter, g : (0, 00) — R is a C' function such that lim,, ¢+

g(u) = —oo0, and lim,_, ., @ = oo and h € C((0,1],(0,00)) is singular at ¢ = 0.

We will aim to prove existence and uniqueness results for A ~ 0.

e We will also aim to extend the analysis of the above open problems to the case of
systems, and to problems involving the p—Laplacian operator.
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