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The investigation of positive steady states to reaction diffusion models in bounded do-

mains with Dirichlet boundary conditions has been of great interest since the 1960’s. We

study reaction diffusion models where the reaction term is negative at the origin. In the

literature, such problems are referred to as semipositone problems and have been studied

for the last 30 years. In this dissertation, we extend the theory of semipositone problems to

classes of singular semipositone problems where the reaction term has singularities at cer-

tain locations in the domain. In particular, we consider problems where the reaction term

approaches negative infinity at these locations. We establish several existence results when

the domain is a smooth bounded region or an exterior domain. Some uniqueness results are

also obtained. Our existence results are achieved by the method of sub and super solutions,

while our uniqueness results are proved by establishing a priori estimates and analyzing

structural properties of the solution. We also extend many of our results to systems.
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CHAPTER 1

INTRODUCTION

We consider boundary value problems of the form:
−∆u = λg(u) in Ω

u = 0 on ∂Ω,

(1.1)

where λ is a positive parameter, ∆z = div
(
∇z
)

is the Laplacian of z, Ω is a smooth

bounded domain in Rn, and g : (0,∞) → R is a C1 function. Such problems arise natu-

rally in applications to nonlinear heat generation, combustion theory, chemical reactor the-

ory, and population dynamics (see [6], [32], and [38]). In the case when g(0) > 0 (positone

problems) there is a very rich history in the study of positive solutions (see [2], [8], [17],

[20], [22], [25], [26], [27], [33]). In this dissertation, we will investigate positive solutions

to problems of the form (1.1) when g(0) < 0 (semipositone case) or lims→0+ g(s) = −∞

(infinite semipositone case). The study of positive solutions to semipositone problems has

been of great interest in the recent past (see [1], [3], [4], [5], [9], [10], [11], [12], [13],

[16], [19], and [31]) and has been well documented to be mathematically challenging (see

[7], [30]). Our focus will be to analyze classes of semipositone problems with singulari-

ties in the reaction term (To date, only a few results exist in this direction. See [14], [21],

[24], [28], [29], [34], [36], and [40]). We will discuss existence results for (1.1) in the
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case lims→0+ g(s) = −∞, and also existence and uniqueness results for positive radial

solutions to exterior domain problems of the form

−∆v = λK(|x|)g(v), x ∈ Ωe

v = 0 if |x| = r0

v → 0 as |x| → ∞,

(1.2)

where λ,∆v are as before, |x| is the Euclidean norm of x, Ωe = {x ∈ Rn| |x| > r0},

n > 2, K belongs to a class of functions such that limr→∞K(r) = 0, and g : (0,∞)→ R

is a C1 function such that g(0) < 0 or lims→0+ g(s) = −∞. Using certain transformations

(discussed in Section 2.4), equation (1.2) can be reduced to the two point boundary value

problem 
−u′′(t) = λh(t)g(u), 0 < t < 1

u(0) = u(1) = 0,

(1.3)

where h(t) =
r20

(2−n)2
t
−2(n−1)
n−2 K(r0t

1
2−n ). We note here that h(t) may be singular at t = 0

(namely, limt→0 h(t) = +∞), depending on the function K, which will cause an added

singularity.

We will extend many of our existence results to systems, and to problems involving the

p−Laplacian operator (∆pz = div(|∇z|p−2∇z)).
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We will obtain our existence results by the method of sub and super solutions. By a

subsolution of (1.1) we mean a function ψ ∈ C2(Ω)
⋂
C(Ω̄) that satisfies:

−∆ψ ≤ λg(ψ), in Ω

ψ > 0, in Ω

ψ = 0, on ∂Ω,

(1.4)

and by a supersolution of (1.1) we mean a function Z ∈ C2(Ω) ∩ C(Ω̄) that satisfies:

−∆Z ≥ λg(Z), in Ω

Z > 0, in Ω

Z = 0, on ∂Ω.

(1.5)

Then by the following lemma there exists a positive solution (see [2, 35, 18]).

Lemma 1

Let ψ be a subsolution of (1.1) and Z be a supersolution of (1.1) such that ψ ≤ Z. Then

(1.1) has a solution u such that ψ ≤ u ≤ Z.

The construction of a subsolution is challenging in the semipositone case (see [7] and

[30]). Here our test functions for a positive subsolution must come from positive functions

ψ such that −∆ψ < 0 near the boundary and −∆ψ > 0 in a large part of the interior.

Infinite semipositone problems are even more challenging because in this case the subso-

lution must also satisfy lim
x→∂Ω

−∆ψ = −∞, since lim
s→0+

g(s) = −∞. We will prove our

uniqueness results by establishing a priori estimates and analyzing structural properties of

solutions.

3



In the following sections, we provide details of our results and examples of reaction

terms that satisfy our hypotheses.

1.1 Existence of positive solutions for classes of infinite semipositone problems on
exterior domains (Theorems 1-6)

Consider the boundary value problem of the form
−(|u′|p−2u′)′ = λh(s)g(u(s))

uρ
, 0 < s < 1

u(0) = u(1) = 0,

(1.6)

where λ is a positive parameter, p > 1, 0 ≤ ρ < 1, g ∈ C([0,∞),R) with g(0) < 0, and

h ∈ C((0, 1], (0,∞)) satisfies: ∃ ε1 > 0, d > 0, and β ∈ (0, 1− ρ) such that

h(t) ≤ d

tβ
for all t ∈ (0, ε1),

hmay be singular at 0, and ĥ = inft∈(0,1) h(t) > 0. A motivation for studying this boundary

value problem is discussed in Section 2.4.

For the case ρ = 0, we assume :

(A1) lims→∞ g(s) =∞,

(A2) lims→∞
g(s)
sp−1 = 0,

and prove :

Theorem 1

Let ρ = 0 and assume (A1) and (A2) are satisfied. Then (1.6) has a positive solution for

λ� 1.

An example of a function satisfying (A1) and (A2) is g(s) = sγ−k, where 0 < γ < p− 1,

and k > 0.
4



For the case 0 < ρ < 1, we assume:

(A3) there exist δ > 0, A > 0 such that g(s) ≥ Asδ for s� 1,

(A4) there exist γ > 0, B > 0 such that γ < ρ+ p− 1, and g(s) ≤ Bsγ for all s ≥ 0,

and prove :

Theorem 2

Let 0 < ρ < 1 and assume (A3) and (A4) are satisfied. Then (1.6) has a positive solution

for λ� 1.

An example of a function satisfying (A3) and (A4) is g(s) = sγ − k, where 0 < γ <

ρ+ p− 1, and k > 0.

Next we consider problems of the form
−(|u′|p−2u′)′ = h(t)[aup−1 − buγ−1 − c

uρ
], 0 < t < 1

u(0) = u(1) = 0.

(1.7)

Here a, b, c are positive constants, p > 1, 0 ≤ ρ < 1, γ > p, and h is as before. Let λ1 be

the first eigenvalue of the problem −(|φ′|p−2φ′)′ = λ|φ|p−2φ, t ∈ (0, 1), φ(0) = φ(1) = 0.

We prove :

Theorem 3

Let a > λ1
ĥ

. Then ∃ c∗ = c∗(a, b, p, ρ) such that for c < c∗, (1.7) has a positive solution.

We also extend these results to corresponding systems. Consider

−(|u′|p−2u′)′ = λh1(t)g1(v(t))
uρ

, 0 < t < 1

−(|v′|p−2v′)′ = λh2(t)g2(u(t))
vρ

, 0 < t < 1

u(0) = u(1) = 0, v(0) = v(1) = 0,

(1.8)

5



where λ is a positive parameter, p > 1, 0 ≤ ρ < 1, h1, h2 ∈ C((0, 1], (0,∞)) satisfy:

∃ ε1 > 0, d > 0, and β ∈ (0, 1− ρ) such that

hi(t) ≤
d

tβ
for all t ∈ (0, ε1) for i = 1, 2,

the hi’s may be singular at 0, and ĥ = min{inft∈(0,1) h1(t), inft∈(0,1) h2(t)} > 0. Under the

assumptions that the gi’s i = 1, 2 are continuous and satisfy

(A5) lims→∞ gi(s) =∞, i = 1, 2,

(A6) lims→∞
g1(M(g2(s))

1
p−1 )

sp−1 = 0 for every M > 0,

(A7) There exist δ > 0, A > 0 such that gi(s) ≥ Asδ for s� 1, i = 1, 2,

(A8) There exist γ > 0, B > 0 such that γ < ρ + p − 1 and gi(s) ≤ Bsγfor all s ≥ 0,
i = 1, 2,

we establish :

Theorem 4

Let ρ = 0 and assume (A5) and (A6) are satisfied. Then (1.8) has a positive solution for

λ� 1.

Examples of functions satisfying (A5) and (A6) are g1(s) = sγ1 − k, and g2(s) = sγ2 ,

where k > 0, and γ1 > 0, γ2 > 0 are such that γ1γ2 < (p− 1)2.

Theorem 5

Let 0 < ρ < 1, and assume (A7) and (A8) are satisfied. Then (1.8) has a positive solution

for λ� 1.

Examples of functions satisfying (A7) and (A8) are g1(s) = sγ1−k1, and g2(s) = sγ2−k2,

where k1, k2 > 0, and γi, i = 1, 2 are such that 0 < γi < p+ ρ− 1.

6



Finally we consider the system:

−(|u′|p−2u′)′ = h1(t)[a1u
p−1 − b1u

γ−1 − c1
vρ

], 0 < t < 1, 0 < ρ < 1

−(|v′|p−2v′)′ = h2(t)[a2v
p−1 − b2v

γ−1 − c2
uρ

], 0 < t < 1, 0 < ρ < 1

u(0) = u(1) = 0, v(0) = v(1) = 0,

(1.9)

where ai, bi, ci are positive constants, p > 1, γ > p and the hi’s are as before. In this

setting, we establish:

Theorem 6

Let min{a1, a2} > λ1
ĥ

. Then ∃ c∗ = c∗(ai, bi, p, ρ) > 0 such that (1.9) has a positive

solution when max{c1, c2} < c∗.

1.2 Uniqueness of nonnegative solutions for semipositone problems on exterior do-
mains (Theorem 7)

We consider the boundary value problem
−u′′(s) = λh(s)f(u(s)), 0 < s < 1

u(0) = u(1) = 0,

(1.10)

where λ is a positive parameter, and h ∈ C1((0, 1], (0,∞)) satisfies: ∃ ε1 > 0, d > 0, and

β ∈ (0, 1) such that

h(t) ≤ d

tβ
for all t ∈ (0, ε1),

h may be singular at 0, ĥ = inft∈(0,1) h(t) > 0, and h(s) is decreasing for s > 0. When

f ∈ C1([0,∞),R), and satisfies:

(B1) f is increasing, f(0) < 0, and lims→∞ f(s) =∞,

(B2) lims→∞
f(s)
s

= 0,
7



(B3) f is concave,

we establish :

Theorem 7

Assume (B1) − (B3) are satisfied. Then (1.10) has a unique nonnegative solution for

λ� 1.

An example of a function satisfying (B1)− (B3) is f(s) = (s+ 1)γ − k, where k > 1, and

0 < γ < 1.

1.3 Existence and uniqueness results for semipositone problems with falling zeros
on exterior domains (Theorems 8-9)

We consider the boundary value problem
−u′′(s) = λh(s)f(u(s)), 0 < s < 1

u(0) = u(1) = 0,

(1.11)

where λ is a positive parameter, h ∈ C1((0, 1], (0,∞)) satisfies : there exist ε1 > 0, c >

0, and β ∈ (0, 1) such that h(t) ≤ c
tβ

for all t ∈ (0, ε1), h may be singular at 0, h is

decreasing, and ĥ = inf
t∈(0,1)

h(t) > 0. When f ∈ C1 satisfies :

(C1) there exists ρ1, ρ2 such that 0 < ρ1 < ρ2, f(ρ1) = f(ρ2) = 0 and f > 0 in (ρ1, ρ2),

(C2)
∫ ρ2
t
f(s)ds > 0 for every t ∈ [0, ρ2),

we prove :

Theorem 8

Assume (C1)− (C2) are satisfied. Then (1.11) has a nonnegative solution for λ� 1.

Under the additional assumption
8



(C3) f is concave and f ′(s) < 0 in (ρ2 − τ, ρ2] for some τ > 0,

we establish :

Theorem 9

Assume (C1)−(C3) are satisfied. Then (1.11) has a unique nonnegative solution for λ� 1.

An example of a function satisfying (C1)− (C3) is f(s) = −s2 + 5s− 4.

1.4 Existence of positive solutions for classes of infinite semipositone problems with
asymptotically linear growth forcing terms (Theorems 10-13)

We study the problem 
−∆pu = g(λ, u) in Ω

u = 0 on ∂Ω,

(1.12)

where g(λ, u) = λf(u) − 1
uα

, λ is a positive parameter, ∆pu = div(|∇u|p−2∇u), p > 1,

Ω is a bounded domain in Rn, n ≥ 1 with smooth boundary ∂Ω, 0 < α < 1, and f :

[0,∞)→ R is a continuous function. Under the assumptions

(D1) there exist σ1 > 0, k > 0, and s0 > 0 such that f(s) ≥ σ1s
p−1 − k for every

0 ≤ s ≤ s0,

(D2) lims→∞
f(s)
sp−1 = σ for some σ > 0,

we establish :

Theorem 10

Assume (D1)− (D2) are satisfied. Then there exist positive constants s∗0(σ,Ω), J(Ω),

λ, and λ̂(> λ) such that if s0 ≥ s∗0, and σ1
σ
≥ J, (1.12) has a positive solution for λ ∈ [λ, λ̂].

9



We also extend our results to systems of the form:

−∆pu = λf1(v)− 1
uα

in Ω

−∆pv = λf2(u)− 1
vα

in Ω

u = v = 0 on ∂Ω,

(1.13)

where λ is a positive parameter, α ∈ (0, 1), and the nonlinearities f ′is, i = 1, 2 are contin-

uous, nondecreasing, and satisfy:

(D3) There exist σi > 0, ki > 0, and si > 0 such that fi(s) ≥ σis
p−1 − ki for every

0 ≤ s ≤ si, i = 1, 2.

(D4) lims→∞
f1([f2(s)]p−1)

sp−1 = σ for some σ > 0.

(D5) There exists τ ∈ R such that for each M > 0, f1(Ms) ≤M τf1(s) for s� 1.

We prove :

Theorem 11

Assume (D3)− (D5) are satisfied. Then there exist positive constants s∗0(σ,Ω), J∗(Ω), λ∗,

and λ∗∗(> λ∗) such that if min{s1, s2} ≥ s∗0, and min(σ1,σ2)

σ
p−1
p−1+τ

≥ J∗, (1.13) has a positive

solution for λ ∈ [λ∗, λ∗∗].

We also study corresponding problems on exterior domains, which reduce to the two point

boundary value problem:
−(|u′|p−2u′)′ = h(s)g(λ, u), 0 < s < 1

u(0) = u(1) = 0,

(1.14)

where g(λ, u) is as before, and h ∈ C((0, 1], (0,∞)) may be singular at 0, and satisfies:

there exist ε1 > 0, d > 0, β ∈ (0, 1− α) such that h(s) ≤ d

sβ
for all s ∈ (0, ε1].

We establish :
10



Theorem 12

Assume (D1)− (D2) are satisfied. Then there exist positive constants s∗(σ,Ω), J̄(Ω),

λ̃, and λ̂(> λ̃) such that if s0 ≥ s∗, and σ1
σ
≥ J̄ , (1.14) has a positive solution for λ ∈ [λ̃, λ̂].

Finally, we also extend these results to the systems:

−(|u′|p−2u′)′ = h1(t)
(
λf1(v)− 1

uα

)
, 0 < t < 1

−(|v′|p−2v′)′ = h2(t)
(
λf2(u)− 1

vα

)
, 0 < t < 1

u(0) = u(1) = 0, v(0) = v(1) = 0,

(1.15)

where λ, α, fi’s are as before, and hi’s ∈ C((0, 1], (0,∞)) may be singular at 0, and satisfy:

there exist ε > 0, d > 0, and β ∈ (0, 1− α) such that hi(s) ≤
d

sβ
for all s ∈ (0, ε],

i=1, 2. We prove :

Theorem 13

Assume (D3)− (D5) are satisfied. Then there exist positive constants s∗(σ,Ω), J̄∗(Ω),

λ̃∗, and λ∗∗(> λ̃∗) such that if min{s1, s2} ≥ s∗, and min(σ1,σ2)

σ
p−1
p−1+τ

≥ J̄∗, (1.15) has a positive

solution for λ ∈ [λ̃∗, λ∗∗].

Here we give an example of a function satisfying our hypotheses for Theorem 10.

Note that the same example satisfies the hypotheses of Theorem 12. Consider the function

f(s,m0) = σsp−1 + m0s
γ − k where σ > 0,m0 > 0, p > 1, γ ∈ (0, p − 1) and k is a

real number. Now let s0 = ( m0

mν0−σ
)

1
p−1−γ for some ν ∈ (0, 1). Then for every 0 ≤ s ≤ s0,

m0 ≥ mν
0s
p−1−γ − σsp−1−γ. Multiplying by sγ we see that

σsp−1 +m0s
γ ≥ mν

0s
p−1.

11



This implies f(s) ≥ σ1s
p−1 − k for every 0 ≤ s ≤ s0 where σ1 = mν

0 . Hence (D1) is

satisfied. Also f satisfies (D2) since lims→∞
f(s)
sp−1 = σ. Clearly, when m0 is large s0 and

σ1
σ

are also large and hence Theorem 10 holds. In particular if λ ∈ [
µ( p
p−1+α

)p−1

mν0
, 1

2σ||ep||p−1
∞

],

(1.12) has a positive solution. Note that
µ( p
p−1+α

)p−1

mν0
→ 0 as m0 → ∞ and hence this

interval is nonempty when the constant m0 in f is large enough. In fact given a λ ∈

(0, 1

2σ||ep||p−1
∞

], there exists m∗(λ) such that if m0 > m∗(λ), (1.12) has a positive solution.

We now give examples of functions satisfying our hypotheses for Theorem 11. Here

again we note that the same examples satisfy the hypotheses for Theorem 13. Consider

f1(s) = sp−1 and f2(s, a, b) = as
1
p−1 + bsγ − k where p > 1, a, b > 0, 0 < γ < 1

p−1
, and k

is a real number. Clearly f1 satisfies (D3) and (D5) with σ1 = 1, s1 = ∞ and τ = p − 1.

Now, set s2 = (b1−ν)
1

p−1−γ , for some ν ∈ (0, 1). This implies for s ≤ s2, bsγ ≥ bνsp−1.

Thus, f2 satisfies (D3) with σ2 = bν . Also, lims→∞
f1(f2(s)p−1)

sp−1 = a(p−1)2 . Next when

b � 1,min{s1, s2} = s2 is large and min{σ1,σ2}

σ
p−1
p−1+τ

= 1

a
(p−1)3

p−1+τ

. Hence when b is large and a is

small the hypotheses of Theorem 11 hold and we obtain a nonempty interval of λ where a

positive solution exists.

1.5 Existence results for classes of infinite semipositone problems with falling zeros
(Theorems 14-16)

We study positive solutions to the boundary value problem
−∆pu =

aup−1 − buγ−1 − c
uα

, x ∈ Ω

u = 0, on ∂Ω,

(1.16)

where Ω is a smooth bounded domain in Rn, ∆pu = div(|∇u|p−2∇u), a > 0, b > 0, c ≥ 0,

and α ∈ (0, 1), p > 1, and γ > p. For (1.16), we prove:
12



Theorem 14

Given a, b > 0, γ > p, and α ∈ (0, 1), there exists a c1 = c1(a, b, α, p, γ,Ω) > 0 such that

for c < c1, (1.16) has a positive solution.

Next we study this problem on an exterior domain. Namely, we consider
−(|u′|p−2u′)′ = h(s)(au

p−1−buγ−1−c
uα

), 0 < s < 1

u(0) = u(1) = 0,

(1.17)

where a, b, c, α, p, γ are as before and h ∈ C((0, 1], (0,∞)) may be singular at 0, ĥ =

inft∈(0,1) h(t) > 0, and satisfies: there exists ε1 > 0, d > 0, and β ∈ (0, 1− α) such that

h(t) ≤ d

tβ
for all t ∈ (0, ε1).

Then we prove:

Theorem 15

Given a, b > 0, γ > p, and α ∈ (0, 1), there exists a c2 = c2(a, b, α, p, γ) such that for

c < c3, (1.17) has a positive solution.

We also discuss a bifurcation result for the problem
−∆pu =

aup−1 − buγ−1

uα
, x ∈ Ω

u = 0, on ∂Ω,

(1.18)

where Ω is a smooth bounded domain in Rn, a is a positive parameter, b, α > 0, p > 1 +α

and γ > p. We prove:

Theorem 16

The boundary value problem (1.18) has a branch of positive solutions bifurcating from the

trivial branch of solutions (a, 0) at (0, 0).
13



Now we provide an outline of this thesis. In Chapter 2, we introduce some preliminary

results, which are needed for establishing our theorems. Proofs of the results stated in

Section 1.1 are provided in Chapter 3. In Chapter 4, we present the proof of the uniqueness

result discussed in Section 1.2. Proofs of the results in Section 1.3 are provided in Chapter

5. Chapter 6 contains proofs of the results in Section 1.4. In Chapter 7, the results in

Section 1.5 are proved. We provide some computational results for (1.12), (1.16), and

(1.18) in the one dimensional case in Chapter 8. Conclusions and future directions are

discussed in Chapter 9.
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CHAPTER 2

PRELIMINARIES

In this chapter we provide some preliminary results which will be used to establish

our main theorems. In particular, we will discuss maximum principles, anti maximum

principles, the method of sub and super solutions, a sweeping principle, and the reduction

of an exterior domain problem to a two point boundary value problem.

2.1 Maximum and anti maximum principles

For the following, we assume that Ω is a smooth bounded domain in Rn and u ∈

C2(Ω) ∩ C(Ω).

Lemma 2 (Maximum principle)

Let ∆u ≥ 0 in Ω. If u attains its maximum M at some interior point in Ω, then u ≡ M in

Ω.

Lemma 3 (Hopf’s maximum principle)

Let ∆u ≥ 0 in Ω. Suppose that u ≤M in Ω and u = M at some p ∈ ∂Ω. Then
∂u

∂ν
> 0 at

p unless u ≡M where
∂

∂ν
denotes the outward normal derivative.

15



Lemma 4 (Anti-maximum principle, Clement and Peletier [15])

Let λ1 be the first eigenvalue of −∆ with Dirichlet boundary conditions. Then there exists

a δ = δ(Ω) > 0 such that for λ ∈ (λ1, λ1 + δ), the problem
−∆z − λz = −1, x ∈ Ω

z = 0, x ∈ ∂Ω,

(2.1)

has a solution zλ such that zλ > 0 in Ω and
∂zλ
∂ν

< 0 on ∂Ω, where ν is the outer unit

normal to Ω.

Maximum and anti maximum principles also hold when the Laplacian is replaced by a

more general operator, the p−Laplacian, ∆pz = div(|∇z|p−2∇z) (see [37], [39]).

2.2 The method of sub and super solutions

Consider 
−∆pu = λg(u) in Ω

u = 0 on ∂Ω,

(2.2)

where λ is a positive parameter, ∆pu = div(|∇u|p−2∇u), p > 1, Ω is a bounded domain

in Rn, n ≥ 1 with smooth boundary ∂Ω. We use the following definition of sub and super

solutions. Let W 1,p(Ω) denote the set of all functions u ∈ Lp(Ω) such that the weak

16



derivative Du is in Lp(Ω). By a subsolution of (2.2) we mean a function ψ ∈ W 1,p(Ω) ∩

C(Ω̄) that satisfies

∫
Ω

|∇ψ|p−2∇ψ.∇w ≤ λ

∫
Ω

g(ψ)w, for every w ∈ W

ψ > 0 in Ω

ψ = 0 on ∂Ω,

(2.3)

and by a supersolution we mean a function Z ∈ W 1,p(Ω)
⋂
C(Ω̄) that satisfies:

∫
Ω

|∇Z|p−2∇Z.∇w ≥ λ

∫
Ω

g(Z)w, for every w ∈ W

Z > 0 in Ω

Z = 0 on ∂Ω,

(2.4)

where W = {ξ ∈ C∞0 (Ω) : ξ ≥ 0 in Ω}. Then the following lemma holds.

Lemma 5

(see [2, 28, 35, 18]) Let ψ be a subsolution of (2.2) and Z be a supersolution of (2.2) such

that ψ ≤ Z in Ω. Then (2.2) has a solution u such that ψ ≤ u ≤ Z in Ω.

For problems of the form
−u′′(s) = λh(s)g(u(s)), 0 < s < 1

u(0) = u(1) = 0,

(2.5)

where λ is a positive parameter, g ∈ C1([0,∞),R), h ∈ C1((0, 1], (0,∞)), and h may

be singular at 0, we also use the following definition of sub and super solutions. Here
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we do not require the sub and super solutions to be strictly positive in the interior. By a

subsolution of (2.5) we mean a function ψ ∈ W 1,2(0, 1)
⋂
C[0, 1] that satisfies:

∫ 1

0
−ψφ′′ ≤ λ

∫ 1

0
h(t)g(ψ)φ, for every φ ∈ V

ψ(0) ≤ 0, ψ(1) ≤ 0,

(2.6)

and by a supersolution we mean a function Z ∈ W 1,2(0, 1)
⋂
C[0, 1] that satisfies:

∫ 1

0
−Zφ′′ ≥ λ

∫ 1

0
h(t)g(Z)φ, for every φ ∈ V

Z(0) ≥ 0, Z(1) ≥ 0,

(2.7)

where V = {ζ ∈ C∞0 (0, 1) : ζ ≥ 0 in (0, 1)}. Then we have the following lemma (see

[23]).

Lemma 6

Let ψ be a subsolution and Z be a supersolution such that ψ ≤ Z in (0, 1). Then (2.5) has

a solution u ∈ C2((0, 1)) ∩ C1([0, 1]) such that ψ ≤ u ≤ Z in (0, 1).

2.3 A sweeping principle

Here we state and prove a version of a sweeping principle for the problem
−u′′(s) = λh(s)f(u(s)), 0 < s < 1

u(0) = u(1) = 0,

(2.8)

where λ is a positive parameter, g ∈ C1([0,∞),R), h ∈ C1((0, 1], (0,∞)), and h may be

singular at 0.

Lemma 7

Let u be a solution of (2.8), B be a connected topological space and let A = {wt : t ∈ B}

be a family of subsolutions satisfying wt(x) < 0 at x = 0, 1 for all t ∈ B. If
18



• t→ wt is continuous with respect to ||.||∞ and

• wt0 ≤ u in [0, 1] for some t0 ∈ B,

then wt ≤ u for all t ∈ B.

Proof: Set I = {t ∈ B : wt ≤ u in [0, 1]}. I is nonempty as wt0 ≤ u in [0, 1]. We will

show that I is both closed and open. Then the connectedness of B would imply that I = B.

Clearly I is closed since t→ wt is continuous with respect to ||.||∞. In order to show that

I is open we will prove that every point in I is an interior point. Let t ∈ I be given. Then∫ 1

0
−(wt − u)φ′′ ≤ λ

∫ 1

0
h(x)[f(wt)− f(u)]φ, for every φ ∈ V and wt(x)− u(x) < −ξt

for some ξt > 0 at x = 0, 1. Define

g(x) =


f(wt(x))− f(u(x))

wt(x)− u(x)
; wt(x) 6= u(x)

∂
∂x
f(wt(x)) ; wt(x) = u(x).

Then

∫ 1

0

−(wt + ξ − u)φ′′ ≤ λ

∫ 1

0

h(x)[g+ − g−][wt + ξ − u]φ− ξ
∫ 1

0

φ′′

−ξλ
∫ 1

0

h(x)[g+ − g−]φ,∀φ ∈ V, x ∈ [0, 1],

and wt(x) + ξ − u(x) < 0 at x = 0, 1 for all ξ < ξt. Rearranging the terms we have

∫ 1

0

−(wt + ξ − u)φ′′ −
∫ 1

0

h(x)g+(wt + ξ − u)φ ≤ −λ
∫ 1

0

h(x)g−(wt + ξ − u)− ξ∫ 1

0

φ′′ − ξλ
∫ 1

0

h(x)[g+ − g−]φ,

for all φ ∈ V, x ∈ [0, 1]. Now for ξ small enough we have

∫ 1

0

−(wt + ξ − u)φ′′ −
∫ 1

0

h(x)g+(wt + ξ − u)φ ≤ 0,
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∀φ ∈ V, x ∈ [0, 1] and wt(x) + ξ − u(x) < 0 at x = 0, 1. By the weak maximum principle

we obtain wt(x) + ξ − u(x) ≤ 0 on [0, 1]. Hence wt(x) < u(x) in [0, 1]. This implies that

t is in the interior of I . Thus I is both closed and open and therefore I = B i.e., wt ≤ u

for all t ∈ B.

2.4 The reduction of an exterior domain problem to a two point boundary value
problem

Consider the problem

−∆u = λK(|x|)f(u), x ∈ Ω

u = 0, if |x| = r0

u → 0 as |x| → ∞,

(2.9)

where K : [r0,∞) → (0,∞) is continuous, Ω = {x ∈ Rn| |x| > r0}, n > 2, and

f : (0,∞) → R is continuous. We set r = |x| =
√
x2

1 + x2
2 + ...+ x2

n and v(r) = u(x).

Then

∆u = v′′(r) +
n− 1

r
v′(r)

which reduces (2.9) to the following:
−v′′(r)− n−1

r
v′(r) = λK(r)f(v(r)), r0 < r <∞

v(r0) = 0, v(r) → 0, as r →∞.

(2.10)

Now set s = ( r
r0

)2−n and z(s) = v(r), then

−v′′(r)− n− 1

r
v′(r) = −(2− n)2

r2
0

s
2(1−n)
2−n z′′(s).
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This reduces the problem (2.10) to the following boundary value problem,
−z′′ = λh(s)f(z(s)), 0 < s < 1

z(0) = z(1) = 0,

(2.11)

where h(s) =
r20

(2−n)2
s
−2(n−1)
n−2 K(r0s

1
2−n ). Thus studying positive radial solutions to the

problem (2.9) is equivalent to studying positive solutions to (2.11).

In a very similar way, by using the transformations r = |x|, s = ( r
r0

)
−n+p
p−1 , we can

reduce the problem 

−∆pu = λK(|x|)f(u), x ∈ Ω

u = 0, if |x| = r0

u → 0 as |x| → ∞

(2.12)

to the two point boundary value problem
−(|u′|p−2u′)′ = h(s)f(u), 0 < s < 1

u(0) = u(1) = 0,

(2.13)

where h(s) = ( p−1
n−p)prp0s

−p(n−1)
n−p K(r0s

−(p−1)
n−p ).
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CHAPTER 3

PROOFS OF THEOREMS 1-6

3.1 Proof of Theorem 1

Consider

−(|φ′|p−2φ′)′ = λ|φ|p−2φ, t ∈ (0, 1), φ(0) = φ(1) = 0. (3.1)

Let φ1 ∈ C2[0, 1] be an eigenfunction corresponding to the first eigenvalue λ1 of (3.1) such

that φ1 > 0 and ||φ1||∞ = 1. Then there exist d1 > 0 such that

0 < φ1(t) ≤ d1t(1− t) for t ∈ (0, 1).

Let α ∈ (1, p−β
p−1

), ε < ε1, m > 0 and µ > 0 be such that

−m > [λ1α
p−1φp1 − αp−1(α− 1)(p− 1) |φ′1|

p
] in (0, ε] ∪ [1− ε, 1)

and φ1 > µ in (ε, 1 − ε). This is possible since φ1 = 0 and |φ′1| > 0 at t = 0, 1. Define

ψ = λk0φ
α
1 where −k0 <

d
p−α(p−1)
1 d

m
mint∈[0,∞) g(t). Then

ψ′ = λk0α(φ1)α−1φ′1,

−(|ψ′|p−2ψ′)′ = −λkp−1
0 αp−1(α− 1)(p− 1)φ

(α−1)(p−1)−1
1 |φ′1|

p

−λkp−1
0 αp−1φ

(α−1)(p−1)
1 (|φ′1|p−2φ′1)′

= λ[λ1k
p−1
0 αp−1φ

α(p−1)
1 − kp−1

0 αp−1(α− 1)(p− 1)
|φ′1|

p

φ
p−α(p−1)
1

].
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For t ∈ (0, ε],

−(|ψ′|p−2ψ′)′ = λ
kp−1

0

φ
p−α(p−1)
1

[λ1α
p−1φp1 − αp−1(α− 1)(p− 1) |φ′1|

p
]

≤ −λ k0

d
p−α(p−1)
1 tp−α(p−1)

m ≤ −λ k0

d
p−α(p−1)
1 tβ

m ≤ −λ k0h(t)

d
p−α(p−1)
1 d

m

≤ λh(t) min
t∈[0,∞)

g(t) ≤ λh(t)g(ψ).

Since h does not have a singularity in [1 − ε, 1], it is easier to prove −(|ψ′|p−2ψ′)′ ≤

λh(t)g(ψ) for t ∈ [1−ε, 1).Now for t ∈ (ε, 1−ε), since φ1(t) ≥ µ and lims→∞ g(s) =∞,

g(λk0φ
α
1 (t)) ≥ 1

ĥ
λ1k

p−1
0 αp−1φ

α(p−1)
1 (t) for λ� 1. Thus for λ� 1,

−(|ψ′|p−2ψ′)′ ≤ λλ1k
p−1
0 αp−1φ

α(p−1)
1 (t) ≤ λĥg(λk0φ

α
1 (t)) ≤ λh(t)g(ψ).

Hence for λ � 1, ψ is a positive subsolution of (1.6). Next we construct a positive super-

solution. Let Z = M(λ)e where e is the solution of

−(|e′|p−2e′)′ = h(t), 0 < t < 1, e(0) = e(1) = 0.

Define ĝ(x) = maxu∈[0,x] g(u), then ĝ satisfies (A1) and (A2) and is nondecreasing.

Choose M(λ)� 1 such that

1

||e||∞p−1λ
≥ ĝ(M(λ)||e||∞)

(M(λ)||e||∞)p−1
.

Then

−(|Z ′|p−2Z ′)′ = (M(λ))p−1h(t) ≥ λĝ(M(λ)||e||∞)h(t) ≥ λĝ(M(λ)e)h(t) ≥ λh(t)g(Z).

Hence Z is a positive supersolution of (1.6) . Choose M(λ) � 1 such that ψ ≤ Z. Thus

we know that (1.6) has a positive solution u ∈ [ψ,Z].
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3.2 Proof of Theorem 2

Let φ1 be as defined before, α ∈ (1, p−β
p−1+ρ

) and r ∈ ( 1
1+ρ

, 1
1+ρ−δ ). Define ψ = λrφα1 .

Then

ψ′ = λrαφα−1
1 φ′1,

−(|ψ′|p−2ψ′)′ = λr[λ1α
p−1φ

α(p−1)
1 − αp−1(α− 1)(p− 1)

|φ′1|p

φ
p−α(p−1)
1

].

Letm > 0, ε > 0 be such that αp−1(α−1)(p−1)|φ′1|p−λ1α
p−1φp1 ≥ m in (0, ε]∪ [1−ε, 1)

where ε < ε1 as in the previous section. Let k > 0 be such that g(s) ≥ −k for all s ≥ 0.

Then in (0, ε] ∪ [1− ε, 1), for λ� 1

λ1α
p−1φp1 − αp−1(α− 1)(p− 1)|φ′1|p ≤ −m ≤

λddβ1 (−k)

λrλrρ
,

since 1− r − rρ < 0. Hence in (0, ε], for λ� 1

−(|ψ′|p−2ψ′)′ = λr[λ1α
p−1φ

α(p−1)
1 − αp−1(α− 1)(p− 1)

|φ′1|p

φ
p−α(p−1)
1

] ≤ λddβ1 (−k)

λrρφ
p−α(p−1)
1

≤ λddβ1 (−k)

λrρφβ+αρ
1

≤ λd(−k)

(λrφα1 )ρtβ
≤ λ(−k)h(t)

(λrφα1 )ρ
≤ λg(λrφα1 )h(t)

(λrφα1 )ρ
. (3.2)

Here again we note that since h does not have any singularity near t = 1, an easier proof

will show that −(|ψ′|p−2ψ′)′ ≤ λh(t)g(ψ)
ψρ

in [1− ε, 1).

Next in (ε, 1− ε), since there exist µ > 0 such that φ1 ≥ µ , from (A3)

g(λrφα1 ) ≥ A(λrφα1 )δ, for λ� 1.

Since 1 + r(δ − ρ)− r > 0, in (ε, 1− ε),

−(|ψ′|p−2ψ′)′ ≤ λrλ1α
p−1φ

α(p−1)
1 ≤ λĥA(λrφα1 )δ−ρ, for λ� 1.
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Hence, for λ� 1 we have,

−(|ψ′|p−2ψ′)′ ≤ λĥA(λrφα1 )δ

(λrφα1 )ρ
≤ λh(t)g(λrφα1 )

(λrφα1 )ρ
. (3.3)

Combining (3.2) and (3.3) we see that

−(|ψ′|p−2ψ′)′ ≤ λh(t)
g(ψ)

ψρ
in (0, 1) for λ� 1.

Thus ψ is a positive subsolution. Now we construct a supersolution Z ≥ ψ. Note that in

(A4), without loss of generality we can choose ρ ≤ γ < ρ+ p− 1. Hence for m(λ)� 1,

(m(λ))p−1+ρ−γ ≥ λBeγ−ρ,

where e is as before. Hence for m(λ)� 1

m(λ)p−1 ≥ λ
B(m(λ)e)γ

(m(λ)e)ρ
.

Define Z = m(λ)e. Then

−(|Z ′|p−2Z ′)′ = m(λ)p−1h(t) ≥ λ
B(m(λ)e)γ

(m(λ)e)ρ
h(t) ≥ λh(t)

g(m(λ)e)

(m(λ)e)ρ
.

Thus Z is a supersolution. Further m(λ) can be chosen large such that Z ≥ ψ. Hence (1.6)

has a positive solution for λ� 1 when 0 < ρ < 1.

3.3 Proof of Theorem 3

Consider the boundary value problem

−(|z′|p−2z′)′ − λ|z|p−2z = −1, 0 < t < 1, z(0) = z(1) = 0. (3.4)
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From an anti-maximum principle (see [37]) there exist δ1 > 0 such that for λ ∈ (λ1, λ1 +

δ1) the solution, zλ of (3.4) is positive in (0, 1) and |z′λ| > 0 at t = 0, 1. Also there exists

d2 > 0 such that

0 < zλ ≤ d2t(1− t) for t ∈ (0, 1).

Let α ∈ (1,min{(aĥ
λ1

)
1
p−1 , p−β

p−1+ρ
}), and fix λ∗ ∈ (λ1,min{ aĥ

αp−1 , λ1 + δ1}). Define ψ =

k0z
α
λ∗ where zλ∗ is the solution of (3.4) for λ = λ∗ and

k0 = min{
( αp−1

b||zλ∗||(γ−1)α−1
∞ d

p−α(p−1)
2 d

) 1
γ−p ,

( (a− αp−1λ∗

ĥ
)

2b||zλ∗||α(γ−p)
∞

) 1
γ−p}.

Then

ψ′ = k0αz
α−1
λ∗ z′λ∗ ,

−(|ψ′|p−2ψ′)′ = −kp−1
0 αp−1(α− 1)(p− 1)z

(α−1)(p−1)−1
λ∗ |z′λ∗|p

−kp−1
0 αp−1z

(α−1)(p−1)
λ∗ (|z′λ∗|p−2z′λ∗)

′

= kp−1
0 αp−1z

α(p−1)
λ∗ λ∗ − kp−1

0 αp−1z
(α−1)(p−1)
λ∗ − kp−1

0 αp−1(α− 1)(p− 1)
|z′λ∗|p

z
p−α(p−1)
λ∗

(3.5)

and

h(t)(aψp−1 − bψγ−1 − c

ψρ
) = h(t)(akp−1

0 z
α(p−1)
λ∗ − bkγ−1

0 z
α(γ−1)
λ∗ − c

(k0zαλ∗)
ρ
). (3.6)

Let µ > 0,m > 0 be such that |zλ∗| ≤ 1, and |z′λ∗| ≥ m in (0, ε]∪ [1− ε, 1) and zλ∗ ≥ µ

in (ε, 1− ε) where ε < ε1. Also let

c∗ = min{k
p−1+ρ
0 αp−1(α− 1)(p− 1)mp

dβ2d
,
1

2
kp−1+ρ

0 µα(p−1+ρ)(a− αp−1λ∗

ĥ
)}.

In (0, ε] we compare (3.5) and (3.6) term by term to see that for c < c∗

−(|ψ′|p−2ψ′)′ ≤ h(t)(aψp−1 − bψγ−1 − c

ψρ
).
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Since λ∗αp−1 < aĥ,

kp−1
0 αp−1z

α(p−1)
λ∗ λ∗ ≤ kp−1

0 z
α(p−1)
λ∗ h(t)a. (3.7)

Next, we see that

−kp−1
0 αp−1z

(α−1)(p−1)
λ∗ =

−kp−1
0 αp−1zλ∗

z
p−α(p−1)
λ∗

≤ −kp−1
0 αp−1zλ∗

d
p−α(p−1)
2 tp−α(p−1)

≤ −k
p−1
0 αp−1zλ∗

d
p−α(p−1)
2 tβ

≤ −kp−1
0 αp−1zλ∗

h(t)

d
p−α(p−1)
2 d

=
−kγ−1

0 αp−1zλ∗h(t)

kγ−p0 d
p−α(p−1)
2 d

.

Now from the choice of k0, −1
k0
γ−p ≤ −b||zλ∗ ||

(γ−1)α−1
∞ d

p−α(p−1)
2 d

αp−1 . Hence,

−kp−1
0 αp−1z

(α−1)(p−1)
λ∗ ≤ −bkγ−1

0 ||zλ∗ ||(γ−1)α−1
∞ zλ∗h(t) ≤ −bkγ−1

0 z
(γ−1)α−1
λ∗ zλ∗h(t)

= −bkγ−1
0 z

(γ−1)α
λ∗ h(t).

Since p− α(p− 1) > β + αρ and c < kρ+p−1
0 αp−1(α−1)(p−1)mp

dβ2 d
,

−kp−1
0 αp−1(α− 1)(p− 1)|z′λ∗ |p

z
p−α(p−1)
λ∗

≤ −k
p−1
0 αp−1(α− 1)(p− 1)mp

zλ∗βzλ∗αρ

≤ −k
p−1
0 αp−1(α− 1)(p− 1)mph(t)

dβ2dz
αρ
λ∗

=
−kp−1+ρ

0 αp−1(α− 1)(p− 1)mph(t)

dβ2d(k0zαλ∗)
ρ

≤ − ch(t)

(k0zαλ∗)
ρ
.

Hence we get −(|ψ′|p−2ψ′)′ ≤ h(t)(aψp−1 − bψγ−1 − c
ψρ

) in (0, ε]. It is easier to prove

this in [1 − ε, 1), as h is not singular. Now in (ε, 1 − ε) since z∗λ ≥ µ, we have
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c ≤ 1
2
kp−1+ρ

0 (zαλ∗)
p−1+ρ(a − αp−1λ∗

ĥ
) and by our choice of k0, bkγ−p0 z

α(γ−p)
λ∗ ≤ 1

2
(a −

αp−1λ∗

ĥ
). Hence, for t ∈ (ε, 1− ε),

−(|ψ′|p−2ψ′)′ ≤ kp−1
0 αp−1z

α(p−1)
λ∗ λ∗ =

ĥkp−1
0 αp−1z

α(p−1)
λ∗ λ∗

ĥ

≤ h(t)[
1

2

αp−1

ĥ
λ∗kp−1

0 z
α(p−1)
λ∗ +

1

2

αp−1

ĥ
λ∗kp−1

0 z
α(p−1)
λ∗ ]

≤ h(t)
[1
2
akp−1

0 z
α(p−1)
λ∗ − 1

2
kp−1

0 z
α(p−1)
λ∗ (a− αp−1λ∗

ĥ
)

+
1

2
akp−1

0 z
α(p−1)
λ∗ − 1

2
kp−1

0 z
α(p−1)
λ∗ (a− αp−1λ∗

ĥ
)
]

≤ h(t)[
1

2
kp−1

0 z
α(p−1)
λ∗ a− c

(k0zαλ∗)
ρ

+
1

2
kp−1

0 z
α(p−1)
λ∗ a− bkγ−1

0 z
α(γ−1)
λ∗ ]

= h(t)[akp−1
0 z

α(p−1)
λ∗ − bkγ−1

0 z
α(γ−1)
λ∗ − c

(k0zαλ∗)
ρ
].

Hence ψ is a positive subsolution of (1.7). Next we construct a supersolution. We know

that there exist a large M̄ > 0 such that aup−1 − buγ−1 − c
uρ
≤ M̄p−1 for all u > 0

and M̄e ≥ ψ in (0,1) where e is as defined before. Let Z = M̄e. Then Z is a positive

supersolution of (1.7). Thus Theorem 3 is proven.

3.4 Proof of Theorem 4

Let φ1 be as defined before, α ∈ (1, p−β
p−1

) and −k0 <
d
p−α(p−1)
1 d

m
min{ḡ1, ḡ2}, where

ḡi = minx∈[0,∞) gi(x), i = 1, 2 and d1, m are as in the proof of Theorem 1. Define

ψ1 = ψ2 = λk0φ
α
1 . Following the steps in the proof of Theorem 1, it is now easy to show

that for λ� 1, (ψ1, ψ2) is a subsolution of (1.8). Now we define

Z1 = M(λ)e1,

Z2 =
(
λg2(M(λ)||e1||∞)

) 1
p−1 e2,
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where ei is solution of −(|e′i|p−2e′i)
′ = hi(t), 0 < t < 1, ei(0) = ei(1) = 0, i = 1, 2.

Choose M(λ)� 1 such that

1

||e1||∞p−1λ
≥
g1

(
λ

1
p−1 ||e2||∞(g2(M(λ)||e1||∞))

1
p−1
)

M(λ)p−1||e1||∞p−1 .

Now

−(|Z ′1|p−2Z ′1)′ = M(λ)p−1h1(t) ≥ λg1

(
λ

1
p−1 ||e2||∞(g2(M(λ)||e1||∞))

1
p−1
)
h1(t)

≥ λg1

(
λ

1
p−1 e2(g2(M(λ)||e1||∞))

1
p−1
)
h1(t) = λg1(Z2)h1(t),

−(|Z ′2|p−2Z ′2)′ = λg2(M(λ)||e1||∞)h2(t) ≥ λg2(M(λ)e1)h2(t) = λg2(Z1)h2(t).

Hence (Z1, Z2) is a positive supersolution of (1.8). ChooseM(λ) � 1 such that ψ1 ≤ Z1

and ψ2 ≤ Z2. Thus Theorem 4 is proven.

3.5 Proof of Theorem 5

Let φ1 be as defined before, α ∈ (1, p−β
p−1+ρ

) and r ∈ ( 1
1+ρ

, 1
1+ρ−δ ). Define ψ1 = ψ2 =

λrφα1 . A similar proof as in Theorem 2 will show that (ψ1, ψ2) is a subsolution of (1.8) for

λ � 1. Now we construct a supersolution (Z1, Z2) ≥ (ψ1, ψ2). There exist τ1 > 0 and

τ2 > 0 such that

e2 ≤ τ1e1, and e1 ≤ τ2e2,

where e′is are as in the proof of Theorem 4. As in Theorem 2 we can choose ρ ≤ γ <

ρ+ p− 1, hence for m(λ)� 1,

(m(λ))p−1+ρ−γ ≥ λBτ γi e
γ−ρ
i , i = 1, 2.
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Hence, for m(λ)� 1,

m(λ)p−1 ≥ λτ γ1
B(m(λ)e1)γ

(m(λ)e1)ρ
≥ λ

B(m(λ)e2)γ

(m(λ)e1)ρ
.

Similarly

m(λ)p−1 ≥ λ
B(m(λ)e1)γ

(m(λ)e2)ρ
.

Define (Z1, Z2) = (m(λ)e1,m(λ)e2). Then

−(|Z ′1|p−2Z ′1)′ = m(λ)p−1h1(t) ≥ λ
B(m(λ)e2)γ

(m(λ)e1)ρ
h1(t)

≥ λh1(t)
g1(m(λ)e2)

(m(λ)e1)ρ
= λh1(t)

g1(Z2)

(Z1)ρ

and similarly

−(|Z ′2|p−2Z ′2)′ ≥ λh2(t)
g2(Z1)

(Z2)ρ

Thus (Z1, Z2) is a supersolution. Further m(λ) can be chosen large such that (Z1, Z2) ≥

(ψ1, ψ2). Hence (1.8) has a positive solution for λ� 1 when 0 < ρ < 1.

3.6 Proof of Theorem 6

Let a = min(a1, a2) and b = max(b1, b2). Define ψ1 = ψ2 = k0z
α
λ∗ where zλ∗ is the

solution of (3.4) for λ = λ∗ ∈ (λ1,min( aĥ
αp−1 , λ1 + δ1)),

k0 = min{
( αp−1

b||zλ∗||(γ−1)α−1
∞ d

p−α(p−1)
2 d

) 1
γ−p ,

( (a− αp−1λ∗

ĥ
)

2b||zλ∗||α(γ−p)
∞

) 1
γ−p},

and α ∈ (1,min((aĥ
λ1

)
1
p−1 , p−β

p−1+ρ
)). By following the proof of Theorem 3 we can easily

show that there exists

c∗ = min{k
p−1+ρ
0 αp−1(α− 1)(p− 1)mp

dβ2d
,
1

2
kp−1+ρ

0 µα(p−1+ρ)(a− αp−1λ∗

ĥ
)}
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such that for max{c1, c2} < c∗ , (ψ1, ψ2) is a positive subsolution of (1.9). Define Z1 =

M̄e1 and Z2 = M̄e2 where M̄ > 0 is such that aiu
p−1 − biuγ−1 − ci

uρ
≤ M̄ for i = 1, 2

and M̄e1 > ψ1, M̄e2 > ψ2. It is easy to see that (Z1, Z2) is a supersolution of (1.9). Hence

Theorem 6 is proven.
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CHAPTER 4

PROOF OF THEOREM 7

We first establish some a priori estimates which are needed to prove Theorem 7.

4.1 A priori estimates

Let F (s) =
∫ s

0
f(t)dt. Note that there exist positive real numbers β, θ such that

f(β) = 0 and F (θ) = 0 and β < θ. (See Figure 4.1).

Figure 4.1

Graphs of f(s) and F (s)

Lemma 8

Let u be a nonnegative solution of (1.10). Then u has only one interior maximum, say at

t0, and u(t0) > θ.
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Figure 4.2

A solution with more than one maximum

Proof. Let E(t) := λF (u(t))h(t) + [u′(t)]2

2
, t ∈ (0, 1). Hence E ′(t) = λF (u(t))h′(t).

Since, h(s) decreases for s > 0, E(t) increases when u(t) < θ and decreases when

u(t) > θ. Let t0 ∈ (0, 1) be the first point at which u has a local maximum, and assume

u(t) ≤ θ, ∀t ≤ t0. Integrating (1.10) from t to t0, t < t0, and using properties of h,

u′(t) = λ

∫ t0

t

h(s)f(u(s))ds ≤ λ
df(θ)

1− α
(t1−α0 − t1−α) ≤ λ

df(θ)

1− α
(4.1)

where d ≥ c is such that h(t) ≤ d
tα

for all t ∈ (0, 1) and α ∈ (0, 1). Integrating (4.1)

again from 0 to t, t < t0, u(t) ≤ λM0t where M0 = df(θ)
1−α . Since f is continuous, there

exists k0 > 0 such that |F (u)| ≤ k0u for u ∈ [0, θ]. Hence

lim
t→0+

λ|F (u(t))|h(t) ≤ lim
t→0+

k0λM0dt
1−α = 0,

which implies limt→0+ E(t) ≥ 0. SinceE(t) increases on [0, t0],E(t0) = λF (u(t0))h(t0) >

0 which is a contradiction if u(t0) ≤ θ. Hence u(t0) > θ.

Now suppose u has two interior maxima. Let t̃ ∈ (t0, 1) be such that u′(t̃) = 0 and

u′′(t̃) ≥ 0 (as in Figure 4.2). Since u′′(t̃) = −λh(t̃)f(u(t̃)) ≥ 0 we see that u(t̃) ≤ β and
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thus E(t̃) < 0. Let t ∈ (t0, t̃) be such that u(t) = θ. Since E(t) ≥ 0 and E increases in

(t, t̃), E(t̃) > 0 which is contradiction. Hence u can have only one interior maximum and

that maximum value is bigger than θ.

Lemma 9

If t1, t̂1 are such that t1 < t̂1 and u(t1) = u(t̂1) = β, then t1, 1− t̂1 ≤ O(λ−
1
2 ).

0 1t0t1 t1
ß

t2
t

Β

uHtL

Figure 4.3

Graph of a solution

Proof. Let t2 be the first point in (0, 1) such that u(t2) = β
2
. Integrating (1.10) from 0

to t, t < t2,

u′(t) = u′(0)− λ
∫ t

0

h(s)f(u(s))ds

≥ λĥt
(
− f

(β
2

))
.

Integrating again from 0 to t2, we obtain

t2 ≤ c̃λ−
1
2 , where c̃ =

( −β
ĥf(β

2
)

) 1
2
> 0. (4.2)
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By the Mean Value Theorem, there exists a t̄ ∈ [0, t2] such that u(t2) − u(0) = u′(t̄)(t2)

and by (4.2), u′(t̄) ≥ β
2c̃
λ

1
2 . Since u′ increases in [0, t1], this implies

u′(t) ≥ β

2c̃
λ

1
2 , ∀t ∈ [t2, t1]. (4.3)

Integrating (4.3) from t2 to t1 we see that (t1 − t2) ≤ c̃λ−
1
2 . This and (4.2) implies t1 ≤

O(λ−
1
2 ). Similarly we can also prove 1− t̂1 ≤ O(λ−

1
2 ).

Lemma 10

Given M > 0, there exists λ(M) such that if λ > λ(M) then u(t̂) ≥ M for some t̂ ∈

(t1, t̂1).

Proof. Let v := u− β, then v > 0 in (t1, t̂1) and satisfies:
−v′′ = λh(t)

f(u)

u− β
v, 0 < t < 1

v(t1) = v(t̂1) = 0.

(4.4)

Also

−
(
sin
(π(t− t1)

(t̂1 − t1)

))′′
=

π2

(t̂1 − t1)2
sin
(π(t− t1)

(t̂1 − t1)

)
. (4.5)

Multiplying (4.4) by sin
(π(t−t1)

(t̂1−t1)

)
and integrating from t1 to t̂1, we have

∫ t̂1

t1

cos
(π(s− t1)

(t̂1 − t1)

) π

(t̂1 − t1)
v′ds =

∫ t̂1

t1

λh(s)
f(u)

u− β
vsin

(π(s− t1)

(t̂1 − t1)

)
ds (4.6)

and multiplying (4.5) by v and integrating from t1 to t̂1, we have

∫ t̂1

t1

cos
(π(s− t1)

(t̂1 − t1)

) π

(t̂1 − t1)
v′ds =

∫ t̂1

t1

π2

(t̂1 − t1)2
vsin

(π(s− t1)

(t̂1 − t1)

)
ds. (4.7)

Now subtracting (4.7) from (4.6) we see easily that

λ
f(u)

u− β
h(t) =

π2

(t̂1 − t1)2
for some t ∈ (t1, t̂1). (4.8)
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Note that inft∈(0,1) h(t) > 0 and from Lemma 9 without loss of generality we can assume

(t̂1 − t1) > 1
2
. Thus for λ � 1, (4.8) is true only if f(u)

u−β → 0. Since f satisfies (B2), this

implies ||u||∞ →∞ when λ→∞.

Lemma 11

There exists k > 0 such that u(t) > λk for t ∈ [1
4
, 3

4
] if λ� 1.

Proof. We first claim u(t) > β+θ
2

for t ∈ [1
4
, 3

4
]. Recall t0 ∈ (t1, t̂1) is the point at which

u has it’s maximum. By Lemma 10 given M > 0,∃ λ(M) such that if λ > λ(M) then

u(t0) ≥M . Since u′′ < 0 in (t1, t0), for t ∈ [t1, t0], we have

u(t) ≥ (u(t0)− β)

t0 − t1
(t− t1) + β. (4.9)

Similarly for t ∈ [t0, t̂1], we can get

u(t) ≥ (u(t0)− β)

t̂1 − t0
(t̂1 − t) + β. (4.10)

Now by Lemma 9, for λ � 1 we can assume t1 < 0.2 and t̂1 > 0.8. Hence from (4.9),

(4.10) and Lemma 10, the claim u(t) > β+θ
2

holds when λ is large. Now let G(t, s) be the

Green’s function associated with problem (1.10). Then

u(t) = λ

∫ 1

0

G(t, s)h(s)f(u(s))ds

≥ λ
[ ∫ t1

0

G(t, s)h(s)f(u(s))ds+

∫ 3
4

1
4

G(t, s)h(s)f(u(s))ds

+

∫ 1

t̂1

G(t, s)h(s)f(u(s))ds
]
.

But by Lemma 9, t1 → 0 and t̂1 → 1 as λ → ∞. Hence for λ � 1, u(t) ≥ λk for

t ∈ [1
4
, 3

4
], where k = 1

2
ĥf(β+θ

2
) inf [0,1]

∫ 3
4
1
4

G(t, s)ds, which proves the lemma.
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Lemma 12

There exists λ̄ such that if λ ≥ λ̄, u(t) ≥ λd(t, ∂Ω), where Ω = (0, 1).

Proof. Let σ be the unique solution of
−σ′′(t) = χ[ 1

4
, 3
4

]h(t), 0 < t < 1

σ(0) = σ(1) = 0,

(4.11)

where χ is the characteristic function. By Hopf’s maximum principle there exists c̄ > 0

such that σ(t) ≥ c̄e(t) ∀t ∈ [0, 1], where e is the solution of −e′′(t) = h(t) in (0, 1)

and e(0) = e(1) = 0. Let M > 0 be such that P = c̄f(M) + f(0) > 0 and let u1, u2

satisfy −u′′1 = λf(M)χ[ 1
4
, 3
4

]h(t) in (0, 1), u1(0) = u1(1) = 0 and −u′′2 = −λf(0)h(t) in

(0, 1), u2(0) = u2(1) = 0. Then by Lemma 11, if λ > M
k

, we have

−u′′ = λf(u)h(t)

≥ λf(M)χ[ 1
4
, 3
4

]h(t) + λf(0)h(t)

and thus, by the maximum principle, u(t) ≥ u1(t) − u2(t) = λf(M)σ(t) + λf(0)e(t).

Hence

u(t) ≥ λf(M)c̄e(t) + λf(0)e(t) = λPe(t), ∀t ∈ (0, 1).

Let L > 0 be such that e(t) ≥ Ld(t, ∂Ω) for all t ∈ [0, 1]. Hence u(t) ≥ λK̃d(t, ∂Ω) for all

t ∈ (0, 1) where K̃ = PL. Now let D := [ε, 1− ε], for some ε > 0. Then u(t) ≥ λK̃ε for

all t ∈ D. Let u3 be the unique solution to −u′′3(t) = χDh(t) in (0, 1), u3(0) = u3(1) = 0.

Since f satisfies (B1), for λ� 1, f(λK̃ε)u3(t) + f(0)e(t) ≥ d(t, ∂Ω) in [0, 1]. Hence for

λ� 1,−u′′ = λh(t)f(u(t)) ≥ λ
(
f(λK̃ε)χDh(t)+f(0)h(t)

)
, and thus by the maximum
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principle u(t) ≥ λ
(
f(λK̃ε)u3(t) + f(0)e(t)

)
≥ λd(t, ∂Ω) for all t ∈ [0, 1], if λ is large,

which proves the lemma.

Lemma 13

For each λ > 0, there exists M̄(λ) such that ||u||∞ ≤ M̄(λ).

Proof. Due to our assumptions on h,
∫ 1

0
h(s)ds ≡ A < ∞. By (B2), there exists K̄ such

that f(z) ≤ λ−1(A + 1)−1z + K̄, for all z ≥ 0. Since G(s, t) ≤ 1/4 for all s, t,∈ [0, 1],

we have

‖u‖∞ = u(t0)

= λ

∫ 1

0

G(s, t0)h(s)f(u(s))ds

≤ λ

∫ 1

0

G(s, t0)h(s)(λ−1(A+ 1)−1u(t0) + K̄)ds

≤ 1

2
u(t0) + λK̄A.

(4.12)

Therefore ‖u‖∞ ≤ 2λK̄A, which proves the lemma.

4.2 Proof of Theorem 7

We first claim that (1.10) has a maximal positive solution ū for λ � 1. Given λ > 0,

choose J = J(λ) > λf(M̄(λ)) where M̄(λ) is as in the previous section. Further choose

J � 1 so that J ≥ λf(J ||e||∞), where e is as before (see Lemma 12). This is possible

since f satisfies (B2). Now if v is any solution of (1.10), then −(Je − v)′′(t) = Jh(t) −

λf(v)h(t) ≥ h(t)(J − λf(M̄(λ))) > 0 in (0, 1). By the maximum principle we obtain

Je ≥ v in [0, 1]. Also, −(Je)′′(t) = Jh(t) ≥ λf(Je(t))h(t) in (0, 1). Hence Je is a

supersolution of (1.10) larger than any solution of (1.10). However, by Theorem 1, we
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know that (1.10) has a positive solution for λ � 1. Hence (1.10) must have a maximal

positive solution ū for λ� 1.

Now let u be any other positive solution of (1.10). To establish our theorem, we will

now show that ū ≡ u for λ� 1. Since ū and u are solutions of (1.10), we obtain

−(ū− u)′′(t) = λh(t)
(
f(ū(t))− f(u(t))

)
, 0 < t < 1

(ū− u)(0) = (ū− u)(1) = 0.

(4.13)

By the Mean Value Theorem there exists ξ such that u ≤ ξ ≤ ū in [0, 1] and

−(ū− u)′′(t) = λh(t)f ′(ξ)(ū(t)− u(t)), 0 < t < 1

(ū− u)(0) = (ū− u)(1) = 0.

(4.14)

Multiplying (1.10) by (ū−u), (4.14) by u, integrating and using the fact that f is concave,

we obtain

λ

∫ 1

0

(
f(u)− f ′(u)u

)
h(s)(ū− u)ds ≤ 0. (4.15)

Now by (B2), there exists a > 0, b > 0 such that f(z) − f ′(z)z ≥ b whenever z ≥ a

and from Lemma 12, u(t) ≥ a if d(t, ∂Ω) ≥ a
λ

when λ � 1. Let Ω+ = [ a
λ
, 1 − a

λ
] and

Ω− = (0, a
λ
) ∪ (1− a

λ
, 1). Then from (4.15) we obtain

I =

∫
Ω+

b(ū− u)h(s)ds+

∫
Ω−

f(0)(ū− u)h(s)ds ≤ 0. (4.16)

Here we have used f(z) − zf ′(z) ≥ f(0) ∀z ≥ 0, which follows from the fact that f is

concave.
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Next letm1,m2 satisfy−m′′1(t) = χΩ+h(t) in (0, 1),m1(0) = m1(1) = 0 and−m′′2(t) =

χΩ−h(t) in (0, 1),m2(0) = m2(1) = 0 respectively. Multiplying (4.14) by bm1(t) +

f(0)m2(t) and integrating by parts we obtain

I =

∫
Ω+

b(ū− u)h(s)ds+

∫
Ω−

f(0)(ū− u)h(s)ds

= λ

∫ 1

0

f ′(ξ)(ū− u)h(s)[bm1(s) + f(0)m2(s)]ds.

(4.17)

As λ tends to +∞, m1 tends to e and m2 tends to 0 in C1[0, 1]. Hence for λ� 1 bm1(t) +

f(0)m2(t) > 0 in (0, 1). Thus from (4.16) and (4.17) we see that I = 0 for λ � 1, and

from (4.17), we see that this is possible only if ū ≡ u in [0, 1], which proves Theorem 7.
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CHAPTER 5

PROOFS OF THEOREMS 8-9

5.1 Proof of Theorem 8

We first establish two useful results for such nonlinear eigenvalue problems when the

nonlinearities are zero at the origin. Namely, we consider f̃ ∈ C1((0,∞), R) such that

f̃(0) = 0 and satisfies:

(C̃1) there exists ρ̃1, ρ̃2 such that 0 < ρ̃1 < ρ̃2, f̃(ρ̃1) = f̃(ρ̃2) = 0 and f̃ > 0 in (ρ̃1, ρ̃2),

(C̃2)
∫ ρ̃2
t
f̃(s)ds > 0 for every t ∈ [0, ρ̃2),

Figure 5.1

Graphs of f̃(u) and F̃ (u)
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(see Figure 5.1) and study the boundary value problem:
−u′′(s) = λh(s)f̃(u(s)), 0 < s < 1

u(0) = u(1) = 0

(5.1)

where h(s) is as before. First we establish:

Lemma 14

Assume (C̃1), and (C̃2) hold and f̃(0) = 0. Then (5.1) has a positive solution uλ for λ� 1

with maxuλ ∈ (ρ̃1, ρ̃2].

Proof. First modify f̃ outside [0, ρ̃2] as f̃(s) = 0 if s > ρ̃2 and f̃(s) = −f̃(−s) for

s < 0.Define Iλ(u) = 1
2

∫ 1

0
(u′(x))2dx−λ

∫ 1

0
h(x)F̃ (u(x))dx inW 1,2

0 (0, 1),where F̃ (u) =∫ u
0
f̃(s)ds. Since h is integrable and F̃ is bounded, it is easy to see that Iλ(u) is bounded

below, weakly lower semi continuous and coercive for λ > 0. Also since F̃ is an even

function and h(s) > 0, Iλ(|u|) ≤ Iλ(u), for all λ > 0. Hence Iλ(u) has a nonnegative

minimizer, say uλ.

We now prove ||uλ||∞ ≤ ρ̃2. Suppose ||uλ||∞ > ρ̃2 and let t1∗ be such that uλ(t1∗) =

||uλ||∞. Then there exists a t0∗ < t1
∗ such that uλ(t0∗) = ρ̃2 and uλ is nondecreasing in

[t0
∗, t1

∗]. Integrating (5.1) from t to t1∗ where t0∗ < t < t1
∗ we see that

u′(t) = λ

∫ t1∗

t

h(s)f̃(uλ(s))ds = 0 (since f̃(s) = 0 for s > ρ̃2),

which is a contradiction.

42



Next we prove ||uλ||∞ > ρ̃1 for λ � 1. Suppose ||uλ||∞ ≤ ρ̃1 for all positive λ. We

choose a w ∈ C∞0 (0, 1) such that 0 ≤ w ≤ ρ̃2 in [0, δ] ∪ [1− δ, 1] and w = ρ̃2 in (δ, 1− δ)

where δ will be chosen later. Then

Iλ(w)− Iλ(uλ) =
1

2

∫ 1

0

((w′)2 − (u′λ)
2)dx− λ

∫ 1

0

h(x)(F̃ (w)− F̃ (uλ))dx

≤ 1

2

∫ 1

0

(w′)2dx− λ
[ ∫ 1

0

h(x)F̃ (ρ̃2)dx+

∫ δ

0

h(x)(F̃ (w)− F̃ (ρ̃2))dx

+

∫ 1

1−δ
h(x)(F̃ (w)− F̃ (ρ̃2))dx−

∫ 1

0

h(x)F̃ (uλ)dx
]

≤ 1

2

∫ 1

0

(w′)2dx− λ
∫ δ

0

h(x)(F̃ (w)− F̃ (ρ̃2))dx

−λ
∫ 1

1−δ
h(x)(F̃ (w)− F̃ (ρ̃2))dx− λ

∫ 1

0

h(x)

∫ ρ̃2

uλ

f̃(s)dsdx.

Let β = min{
∫ ρ̃2
ρ
f̃(s)ds; 0 ≤ ρ ≤ ρ̃1}. By our assumption β > 0. Also F̃ (uλ) ≤ m for

some m > 0 and h(s) ≤ d
tα

for all t ∈ (0, 1), thus

Iλ(w)− Iλ(uλ) ≤
1

2

∫ 1

0

(w′)2dx+
2λmdδ1−α

1− α
+

2λmd(1− (1− δ)1−α)

1− α
− λβd

1− α
.

We now choose δ ≈ 0. Then it follows that Iλ(w) < Iλ(uλ) for λ � 1, a contradiction.

Thus ||uλ||∞ > ρ̃1 for λ� 1.

Next we prove that uλ > 0 in (0, 1). Suppose uλ(t̂) = 0 for some t̂ ∈ (0, 1). Then uλ

satisfies the initial value problem
−u′′λ(s) = λh(s)f̃(uλ(s)),

u′λ(t̂) = uλ(t̂) = 0.

(5.2)

But f̃(0) = 0 and hence by the uniqueness result by Picard, uλ ≡ 0, which is a contradic-

tion. Hence uλ > 0 in (0, 1).
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Next we prove that the solution uλ has only one interior maximum.

Lemma 15

Assume (C̃1), and (C̃2) hold and let uλ be the solution of (5.1) for λ � 1. Then uλ has

only one interior maximum.

0 1t* t
~

t
t

Θ
�

uΛHtL

Figure 5.2

A solution with more than one maximum

Proof Let Ẽ(t) := λF̃ (uλ(t))h(t) +
[u′λ(t)]2

2
, t ∈ (0, 1). Hence Ẽ ′(t) = λF̃ (uλ(t))h

′(t).

Note that h(s) decreases for s > 0. Let θ̃ be such that ρ̃1 < θ̃ < ρ̃2 and F̃ (θ̃) = 0. Then

Ẽ(t) increases when uλ(t) < θ̃ and decreases when uλ(t) > θ̃. Let t∗ ∈ (0, 1) be the first

point at which uλ has a local maximum, and assume uλ(t) ≤ θ̃, ∀t ≤ t∗. Integrating (1.11)

from t to t∗, t < t∗, and using the integrability assumption on h,

u′λ(t) = λ

∫ t∗

t

h(s)f̃(uλ(s))ds ≤ λ
df̃(θ̃)

1− α
(t∗1−α − t1−α) ≤ λ

df̃(θ̃)

1− α
(5.3)
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where d ≥ c is such that h(t) ≤ d
tα

for all t ∈ (0, 1) and α ∈ (0, 1). Integrating (5.3)

again from 0 to t, t < t∗, uλ(t) ≤ λM0t where M0 = df̃(θ̃)
1−α . Since f̃ is continuous, there

exists k0 > 0 such that |F̃ (uλ)| ≤ k0uλ for uλ ∈ [0, θ̃]. Hence

lim
t→0+

λ|F̃ (uλ(t))|h(t) ≤ lim
t→0+

k0λM0dt
1−α = 0,

which implies limt→0+ Ẽ(t) ≥ 0. Since Ẽ(t) increases on [0, t∗], Ẽ(t∗) = λF̃ (uλ(t
∗))h(t∗)

> 0, which is a contradiction if uλ(t∗) ≤ θ̃. Hence uλ(t∗) > θ̃.

Now suppose uλ has two interior maxima. Let t̃ ∈ (t∗, 1) be such that u′λ(t̃) = 0 and

u′′λ(t̃) ≥ 0 (as in Figure 5.2). Since u′′λ(t̃) = −λh(t̃)f̃(uλ(t̃)) ≥ 0, we see that uλ(t̃) ≤ ρ̃1

and thus Ẽ(t̃) < 0. Let t ∈ (t∗, t̃) be such that uλ(t) = θ̃. Since Ẽ(t) ≥ 0 and Ẽ increases

in (t, t̃), Ẽ(t̃) > 0 which is contradiction. Hence uλ can have only one interior maximum

and that maximum value is bigger than θ̃.

Now we prove Theorem 8.

First modify f in R \ [0, ρ2] as follows. Let f(s) ≤ 0 for s ∈ (ρ2,∞), f(s) = 0 for

s ∈ (−∞,−1] and
∫ ρ2
t
f(s) ds > 0 for t ∈ [−1, 0) such that f ∈ C1. By Lemma 14,
−u′′(s) = µh(s)f(u(s)− 1), 0 < s < 1

u(0) = u(1) = 0

(5.4)

has a positive solution w for some µ large enough with maxw ∈ (ρ1 + 1, ρ2 + 1]. Define
v(t) = w(t)− 1 for all t ∈ (0, 1).

By Lemma 15 v has only two zeros, say α1, α2 and v > 0 in (α1, α2). Extend v

in (1,∞) such that v(t) ≤ −1 and v′′(t) = 0 for all t ∈ (1,∞). Also extend h(t) as

h(t) = h(1) for all t ∈ (1,∞). Then v(t) satisfies −v′′(s) = µh(s)f(v) in (0,∞) with

max v ∈ (ρ1, ρ2]. Now for a fixed y0 ∈ (0, 1), define ψy0(λ, x) = v
(

(λ
µ
)
1
2 |x − y0| + t∗

)
,
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w(t)

Α1 Α2
t

-1

vHtL

Figure 5.3

Graphs of v(t) and w(t)

where t∗ is a point at which v has maximum. Let Ω̃ = (0, 1) and d(y0, ∂Ω̃) denote the

distance from y0 to the boundary of Ω̃. If λ > µ(α2 − t∗)2d(y0, Ω̃)−2 = λ∗, ψy0 < 0 on

∂Ω̃. Thus ψy0 is a subsolution of (1.11) for λ > λ∗. Clearly Z = ρ2 is a supersolution of

(1.11). Also the subsolution, ψy0 ≤ ρ2 for all λ. Thus (1.11) has a solution uy0 ∈ [ψy0 , ρ2]

if λ > λ∗.

Next we will show that uy0 > 0, using the sweeping principle. For y ∈ Iλ =
(

(α2 −

t∗)(µ
λ
)
1
2 , 1− (α2 − t∗)(µλ)

1
2

)
, define ψy(λ, x) = v

(
(λ
µ
)
1
2 |x− y| + t∗

)
. Then {ψy, y ∈ Iλ}

is a family of subsolutions to the problem (1.11) with ψy < 0 on the ∂Ω and

• y → ψy(λ, x) is continuous with respect to ||.||∞ and

• y0 ∈ Iλ and uy0 ≥ ψy0 in [0, 1].

Thus by the sweeping principle, uy0(x) > ψy(λ, x) for all y ∈ Iλ. For x ∈ Iλ, by choosing

y = x, we see that uy0(x) ≥ v(t∗) > 0. For x ∈ (0, 1) − Iλ, we choose y ∈ Iλ such that

d(x, y) < (µ
λ
)
1
2 (α2− t∗). Since t∗ > α1 and by the choice of y, α1 < (λ

µ
)
1
2 |x−y|+ t∗ < α2

which implies ψy(λ, x) > 0 for x ∈ (0, 1)− Iλ. Hence uy0(x) > 0 for all x ∈ (0, 1).
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5.2 Proof of Theorem 9

Let F (s) =
∫ s

0
f(t)dt. Note that there exist a positive real number θ such that ρ1 <

θ < ρ2 and F (θ) = 0 (See Figure 5.4.)

Figure 5.4

Graphs of f(u) and F (u)

Let u denote a nonnegative solution of problem (1.11) for λ� 1 under the assumptions

(C1)− (C3). We first establish some properties of u, namely , Lemmas 16-19, which will

help us to prove Theorem 9.

Lemma 16

u has only one interior maximum, say at t0, and u(t0) > θ.

Proof. Follows by similar arguments as in the proof of Lemma 15.

Lemma 17

Let t2 and t̂2 ∈ (0, 1) be such that t2 < t̂2 and u(t2) = u(t̂2) = ρ1+θ
2

, then t2, 1 − t̂2 ≤

O(λ−
1
2 ).
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Figure 5.5

Graph of a solution

Proof. Let t1 be the first point in (0, 1) such that u(t1) = ρ1
2
. Integrating (1.11) from 0

to t, t < t1,

u′(t) = u′(0)− λ
∫ t

0

h(s)f(u(s))ds ≥ λĥt(−f(
ρ1

2
)). (5.5)

Integrating (5.5) from 0 to t1 yields t1 ≤ c̃λ−
1
2 , where c̃ =

(
ρ1

ĥ(−f(
ρ1
2

))

) 1
2
. Now let E(t) :=

λF (u)h(t) + [u′(t)]2

2
, t ∈ (0, 1). As in the discussion in Lemma 15, limt→0+E(t) ≥ 0 and

E is increasing if u(t) < θ. Hence we have E(t) ≥ 0 for all t ∈ (0, 1). This implies that

(u′(t))2

2
≥ λ(−F (u))h(t) for all t ∈ (0, 1).

For t ∈ (t1, t2), u′(t) ≥ λ
1
2k1, where k1 = mint∈(t1,t2)

√
−2F (u)h(t) > 0. Integrating this

from t1 to t2, we obtain (t2 − t1) ≤ O(λ−
1
2 ). Since t1 ≤ c̃λ−

1
2 , this implies t2 ≤ O(λ−

1
2 ).

Similarly 1− t̂2 ≤ O(λ−
1
2 ).

Lemma 18

||u||∞ → ρ2 as λ→∞.
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Proof. Suppose there exists ε > 0 such that ||u||∞ < ρ2 − ε, for all λ > 0. Let G(t, s)

denote the Green’s function of the operator−u′′ with boundary condition u(0) = 0 = u(1).

Then for t ∈ (0, 1) we have

u(t) = λ

∫ 1

0

G(t, s)h(s)f(u(s))ds

≥ λ
[ ∫ t2

0

G(t, s)h(s)f(u(s))ds+

∫ 3
4

1
4

G(t, s)h(s)f(u(s))ds

+

∫ 1

t̂2

G(t, s)h(s)f(u(s))ds
]
.

Since h is integrable, by Lemma 17 we have

u(t) ≥ 1

2
λ

∫ 3
4

1
4

G(t, s)h(s)f(u(s))ds for λ� 1.

By our assumption (||u||∞ < ρ2 − ε), there exists k2 > 0 such that f(u(s)) > k2 in [1
4
, 3

4
].

Then for all t ∈ [1
4
, 3

4
],

u(t) ≥ 1

2
λĥk2 inf

t∈[ 1
4
, 3
4

]

∫ 3
4

1
4

G(t, s)ds,

which is a contradiction, since all positive solutions of (1.11) are bounded above by ρ2 .

Hence ||u||∞ → ρ2 as λ→∞.

Lemma 19

Let ρ̃ ∈ (ρ2 − τ, ρ2] and tλ, t̂λ be such that u(tλ) = u(t̂λ) = ρ̃ with tλ < t̂λ. Then

tλ, (1− t̂λ)→ 0 as λ→∞.
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Proof. By (C3), f ′(s) < 0 for s ∈ [ρ̃, ρ2] and by Lemma 18 there exists tλ and t̂λ such that

u(tλ) = u(t̂λ) = ρ̃ when λ is large. We first prove tλ → 0 as λ→∞. Suppose there exists

γ1 > 0 such that tλ > γ1 > 0 for all λ > 0. Then

u(t) = λ

∫ 1

0

G(t, s)h(s)f(u(s))ds

≥ λ
[ ∫ t2

0

G(t, s)h(s)f(u(s))ds+

∫ γ1

γ0

G(t, s)h(s)f(u(s))ds

+

∫ 1

t̂2

G(t, s)h(s)f(u(s))ds
]
,

where γ0 is such that 0 < t2 < γ0 < γ1. Now using Lemma 17, for t in say, [1
4
, 3

4
],

u(t) ≥ 1

2
ĥλk3 inf

t∈[ 1
4
, 3
4

]

∫ γ1

γ0

G(t, s)ds,

where k3 > 0 is such that f(u(s)) > k3 in [γ0, γ1]. This again contradicts the fact that

solutions of (1.11) are bounded. Hence tλ → 0 as λ → ∞. Similarly (1 − t̂λ) → 0 as

λ→∞.

Now we prove Theorem 9.

By Theorem 8, (1.11) has a positive solution for λ� 1. Note that (1.11) has a maximal

solution, ū, since all positive solutions of (1.11) are bounded above by ρ2, which is also a

supersolution. To prove the uniqueness of the positive solution, u for λ� 1, we will show

that u ≡ ū. Since ū and u satisfy (1.11),

−(ū− u)′′(t) = λh(t)
(
f(ū(t))− f(u(t))

)
, 0 < t < 1

(ū− u)(0) = (ū− u)(1) = 0.

(5.6)

By the Mean Value Theorem there exists ξ such that u ≤ ξ ≤ ū in [0, 1] and

−(ū− u)′′(t) = λh(t)f ′(ξ)(ū(t)− u(t)), 0 < t < 1

(ū− u)(0) = (ū− u)(1) = 0.

(5.7)
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Multiplying (1.11) by (ū− u), (5.7) by u and integrating,

λ

∫ 1

0

(
f(u)− f ′(u)u

)
h(s)(ū− u)ds ≤ 0. (5.8)

Here we also used the concavity of f . Let Ω̃+ = (tλ, t̂λ) and Ω̃− = (0, 1) − Ω̃+, where

tλ is as in Lemma 19. Since f ′(s) ≤ 0 for s > ρ̃, there exists a constant a > 0 such that

f(z) − f ′(z)z > a in Ω̃+. Also since f is concave, f(z) − f ′(z)z ≥ f(0) for all z > 0.

Thus ∫
Ω̃+

ah(s)(ū− u)ds+

∫
Ω̃−

f(0)h(s)(ū− u)ds ≤ 0. (5.9)

By Lemma 19, |Ω̃−| → 0 as λ→∞. Also using the facts that (ū−u) is bounded and h(s)

is positive and integrable, we see that (5.9) is true only if (ū− u) ≡ 0.
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CHAPTER 6

PROOFS OF THEOREMS 10-13

6.1 Proof of Theorem 10

We first construct a supersolution for (1.12). Let Z = Mλep where Mλ � 1 and ep is

the unique positive solution of 
−∆pep = 1 in Ω

ep = 0 on ∂Ω.

(6.1)

Let f̃(s) = maxt∈[0,s] f(t). Then f(s) ≤ f̃(s), f̃(s) is increasing and lim
u→∞

f̃(u)
up−1 = σ.

Hence, we can choose Mλ � 1 such that

2σ ≥ f̃(Mλ||ep||∞)

(Mλ||ep||∞)p−1
.

Now let λ̂ = 1

2σ||ep||p−1
∞

. For λ ≤ λ̂,

−∆pZ = Mp−1
λ ≥ f̃(Mλ||ep||∞)

2σ||ep||p−1
∞

≥ λf̃(Mλep) ≥ λf(Mλep) ≥ λf(Z)− 1

Zα
.

Hence Z is a supersolution of (1.12) if λ ≤ λ̂. Next we construct a subsolution. Consider

the boundary value problem
−∆pz − µ|z|p−2z = −1 in Ω

z = 0 on ∂Ω.

(6.2)
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By the anti-maximum principle established in [37], there exists a constant ξ = ξ(Ω) > 0

such that if µ ∈ (µ1, µ1 + ξ), where µ1 is the principal eigenvalue of −∆p with Dirichlet

boundary conditions, then the solution z of (6.2) is positive in Ω and ∂z
∂ν
< 0 on ∂Ω where

ν is the outer unit normal vector. Now fix µ ∈ (µ1, µ1 + ξ) and let zµ denote the solution

of (6.2). Since zµ > 0 in Ω and ∂zµ
∂ν

< 0 on ∂Ω, there exist m > 0, A > 0, δ > 0 such that

|∇zµ| ≥ m in Ωδ and zµ ≥ A in Ω − Ωδ, where Ωδ = {x ∈ Ω : d(x, ∂Ω) < δ}. Define

ψ = k0z
p

p−1+α
µ where k0 > 0 is such that

1

kp−1+α
0

(
1 +

kkα0 z
αp

p−1+α
µ

2σ||ep||p−1
∞

)
≤ min

{pp−1(1− α)(p− 1)mp

(p− 1 + α)p
,
( p

p− 1 + α

)p−1

A
}
. (6.3)

Then

∇ψ = k0

( p

p− 1 + α

)
z

1−α
p−1+α
µ ∇zµ,

−∆pψ = −div(|∇ψ|p−2∇ψ)

= −kp−1
0

( p

p− 1 + α

)p−1

div
(
z

(1−α)(p−1)
p−1+α

µ |∇zµ|p−2∇zµ
)

= −kp−1
0

( p

p− 1 + α

)p−1{
(∇z

(1−α)(p−1)
p−1+α

µ ).|∇zµ|p−2∇zµ + z
(1−α)(p−1)
p−1+α

µ ∆pzµ

}
= −kp−1

0

( p

p− 1 + α

)p−1{(1− α)(p− 1)

p− 1 + α
z
−αp
p−1+α
µ |∇zµ|p

+z
(1−α)(p−1)
p−1+α

µ (1− µzp−1
µ )

}
= kp−1

0

( p

p− 1 + α

)p−1

µz
p(p−1)
p−1+α
µ − kp−1

0

( p

p− 1 + α

)p−1

z
(1−α)(p−1)
p−1+α

µ

− kp−1
0 pp−1(1− α)(p− 1)|∇zµ|p

z
αp

p−1+α
µ (p− 1 + α)p

. (6.4)

Now we let s∗0(σ,Ω) = k0||z
p

p−1+α
µ ||∞. If we can prove

−∆pψ ≤ λσ1k
p−1
0 z

p(p−1)
p−1+α
µ − λk − 1

kα0 z
αp

p−1+α
µ

, (6.5)

53



then (D1) implies −∆pψ ≤ λf(ψ) − 1
ψα

and ψ will be a subsolution of (1.12). We will

now prove (6.5) by comparing terms in (6.4) and (6.5). Let λ =
µ( p
p−1+α

)p−1

σ1
. For λ ≥ λ,

kp−1
0

( p

p− 1 + α

)p−1

µz
p(p−1)
p−1+α
µ ≤ λσ1k

p−1
0 z

p(p−1)
p−1+α
µ . (6.6)

Also since λ ≤ λ̂ = 1

2σ||ep||p−1
∞

,

1

kα0 z
αp

p−1+α
µ

+ λk ≤ 1

kα0 z
αp

p−1+α
µ

+
k

2σ||ep||p−1
∞

=
kp−1

0

z
αp

p−1+α
µ

[ 1

kp−1+α
0

(
1 +

kkα0 z
αp

p−1+α
µ

2σ||ep||p−1
∞

)]
. (6.7)

Now in Ωδ we have |∇zµ| ≥ m and by (6.3),

1

kp−1+α
0

(1 +
kkα0 z

αp
p−1+α
µ

2σ||ep||p−1
∞

)] ≤ pp−1(1− α)(p− 1)mp

(p− 1 + α)p
.

Hence

1

kα0 z
αp

p−1+α
µ

+ λk ≤ kp−1
0 pp−1(1− α)(p− 1)|∇zµ|p

z
αp

p−1+α
µ (p− 1 + α)p

in Ωδ. (6.8)

From (6.6) and (6.8) it can be seen that (6.5) holds in Ωδ. We will now prove (6.5) holds

also in Ω− Ωδ. Since zµ ≥ A in Ω− Ωδ and by (6.3) and (6.7), we get

1

kα0 z
αp

p−1+α
µ

+ λk ≤ kp−1
0

z
αp

p−1+α
µ

( p

p− 1 + α

)p−1

zµ

= kp−1
0

( p

p− 1 + α

)p−1

z
(1−α)(p−1)
p−1+α

µ in Ω− Ωδ. (6.9)

From (6.6) and (6.9), (6.5) holds also in Ω − Ωδ. Thus ψ is a positive subsolution of

(1.12) if λ ∈ [λ, λ̂]. We can now choose Mλ � 1 such that ψ ≤ Z. Let J(Ω) =

2||ep||p−1
∞ µ( p

p−1+α
)p−1. If σ1

σ
≥ J it is easy to see that λ ≤ λ̂ and for λ ∈ [λ, λ̂] we have a

positive solution. This completes the proof of Theorem 10.
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Remark. Note that in the proof the choice of k0 can be adjusted easily to obtain a subso-

lution for all λ ∈ [λ, λ1
σ

) where λ =
µ( p
p−1+α

)p−1

σ1
. Further, for the case when p = 2 using

the asymptotically linear condition at∞, a large enough supersolution can be created for

all λ ≤ λ1
σ

(see [24] for details). Hence in the case p = 2, a positive solution exists for all

λ ∈ [λ, λ1
σ

).

6.2 Proof of Theorem 11

We first construct a supersolution for the system (1.13) when

λ ≤ 1

(2σ)
p−1
p−1+τ ||ep||p−1

∞
= λ∗∗.

Let (Z1, Z2) = (Mλep, [λf2(Mλ||ep||∞)]
1
p−1 ep), where ep is as before and Mλ is a large

positive constant. Since lims→∞
f1(f2(s)p−1)

sp−1 = σ, we can choose Mλ � 1 such that

2σ ≥ f1([f2(Mλ||ep||∞)]
1
p−1 )

(Mλ||ep||∞)p−1
.

Then

−∆pZ1 = Mp−1
λ ≥ f1([f2(Mλ||ep||∞)]

1
p−1 )

||ep||p−1
∞ 2σ

.

Now since λ ≤ λ∗∗ we have

−∆pZ1 ≥
λ
p−1+τ
p−1 ||ep||p−1+τ

∞ f1([f2(Mλ||ep||∞)]
1
p−1 )

||ep||p−1
∞

= λλ
τ
p−1 ||ep||τ∞f1([f2(Mλ||ep||∞)]

1
p−1 ).

Note that (D4) implies f2(s)→∞ as s→∞. Hence from (D5) for Mλ � 1 we get

−∆pZ1 ≥ λf1(λ
1
p−1 ||ep||∞[f2(Mλ||ep||∞)]

1
p−1 )

≥ λf1([λf2(Mλ||ep||∞)]
1
p−1 ||ep||∞) ≥ λf1(Z2)− 1

Zα
1

. (6.10)
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Also,

−∆pZ2 = λf2(Mλ||ep||∞) ≥ λf2(Mλep) ≥ λf2(Z1)− 1

Zα
2

. (6.11)

Hence, from (6.10) and (6.11) we see that (Z1, Z2) is a supersolution of (1.13) when λ ≤

1

(2σ)
p−1
p−1+τ ||ep||p−1

∞

. Next we let ψ1 = ψ2 = k0z
p

p−1+α
µ where k0 is as in (6.3) with k =

max{k1, k2}. Setting s∗ = k0||z
p

p−1+α
µ ||∞ and following the steps in the proof of Theorem

(10) it is now easy to see that (ψ1, ψ2) is a subsolution of (1.13) when λ ∈ [λ∗, λ∗∗],

where λ∗∗ is as defined above and λ∗ =
µ( p
p−1+α

)p−1

min(σ1,σ2)
. We now choose Mλ � 1 such that

ψ1 ≤ Z1 and ψ2 ≤ Z2. Let J∗(Ω) = 2
p−1
p−1+τ µ( p

p−1+α
)p−1||ep||p−1

∞ . If min(σ1,σ2)

σ
p−1
p−1+τ

≥ J∗, then

the interval of λ for which we have positive solution is nonempty. Thus we have proven

Theorem 11.

6.3 Proof of Theorem 12

We begin the proof by constructing a supersolution. Let Z = Mλep where Mλ � 1

and ep is the unique positive solution of
−(|e′p|p−2e′p)

′ = h(t) in (0, 1),

ep(0) = 0 = ep(1).

(6.12)

As in the proof of Theorem (10) it can be seen that Z is a supersolution of (1.14) when

λ ≤ λ̂ = 1

2σ||ep||p−1
∞

. Now consider the boundary value problem


−(|z′|p−2z′)′ − µ|z|p−2z = −1 in (0, 1),

z(0) = 0 = z(1).

(6.13)
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By the anti-maximum principle established in [37], there exists a ξ > 0 such that if µ ∈

(µ1, µ1 + ξ), where µ1 is the principal eigenvalue of
−(|z′|p−2z′)′ = µ|z|p−2z in (0, 1),

z(0) = 0 = z(1),

(6.14)

then the solution z of (6.13) is positive in (0, 1) and |z′| > 0 at s = 0, 1. Now fix a

µ ∈ (µ1, µ1 + ξ) and let zµ denote the solution of (6.13). Since zµ > 0 in (0, 1) and

|z′µ| > 0 at s = 0, 1, there exist m > 0, A > 0, ε > 0 such that |z′µ| ≥ m in (0, ε]∪ [1− ε, 1)

and zµ ≥ A in (ε, 1 − ε) where ε < ε1. Also note that there exists a c > 0 such that

0 < zµ(s) ≤ cs(1− s) for all s ∈ (0, 1). Define ψ = k0z
p−β
p−1+α
µ , where k0 > 0 is such that

1

kp−1+α
0

(
1 +

kkα0 zλ∗
α(p−β)
p−1+α

2σ||ep||p−1
∞

)
(6.15)

≤ min
{(p− β)p−1(1− α− β)(p− 1)mp

(p− 1 + α)pdcβ
,
( p− β
p− 1 + α

)p−1A1−β

c̄

}
,

where c̄ is such that h(s) ≤ c̄ for all s ∈ (ε, 1− ε). Then

− (|ψ′|p−2ψ′)′ = kp−1
0

( p− β
p− 1 + α

)p−1

µz
(p−β)(p−1)
p−1+α

µ (6.16)

− kp−1
0

( p− β
p− 1 + α

)p−1

z
(1−α−β)(p−1)

p−1+α
µ −

kp−1
0 (p− β)p−1(1− α− β)(p− 1)|z′µ|p

z
αp+βp−β
p−1+α

µ (p− 1 + α)p
.

Let s∗(σ,Ω) = k0||z
p−β
p−1+α
µ ||∞. If we can prove

−(|ψ′|p−2ψ′)′ ≤ h(s)
[
λσ1k

p−1
0 z

(p−β)(p−1)
p−1+α

µ − λk − 1

kα0 z
α(p−β)
p−1+α
µ

]
, (6.17)

then by (D1), ψ will be a subsolution of (1.14). Now we compare the terms in (6.16) and

(6.17) to see that (6.17) holds in (0, 1). Let λ̃ =
µ( p−β
p−1+α

)p−1

σ1ĥ
where ĥ = infs∈(0,1) h(s) > 0.

For λ ≥ λ̃,

kp−1
0

( p− β
p− 1 + α

)p−1

µz
(p−β)(p−1)
p−1+α

µ ≤ h(s)λσ1k
p−1
0 z

(p−β)(p−1)
p−1+α

µ . (6.18)
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Also, since λ ≤ λ̂,

h(s)
[ 1

kα0 z
α(p−β)
p−1+α
µ

+ λk
]
≤ h(s)

[ 1

kα0 z
α(p−β)
p−1+α
µ

+
k

2σ||ep||p−1
∞

]

=
h(s)kp−1

0

z
α(p−β)
p−1+α
µ

[ 1

kp−1+α
0

(
1 +

kkα0 z
α(p−β)
p−1+α
µ

2σ||ep||p−1
∞

)]
. (6.19)

Now in (0, ε] we have h(s) ≤ d
tβ

and zµ ≤ ct. Hence

h(s)
[ 1

kα0 z
α(p−β)
p−1+α
µ

+ λk
]
≤ kp−1

0

z
α(p−β)
p−1+α
µ

[ 1

kp−1+α
0

(
1 +

kkα0 z
α(p−β)
p−1+α
µ

2σ||ep||p−1
∞

)] d
tβ

≤ kp−1
0

z
α(p−β)
p−1+α
µ

[ 1

kp−1+α
0

(
1 +

kkα0 z
α(p−β)
p−1+α
µ

2σ||ep||p−1
∞

)]dcβ
zβµ

.

Also in (0, ε], |zµ′| ≥ m and thus by (6.15) we have

h(s)
[ 1

kα0 z
α(p−β)
p−1+α
µ

+ λk
]
≤
kp−1

0 (p− β)p−1(1− α− β)(p− 1)|z′µ|p

z
αp+βp−β
p−1+α

µ (p− 1 + α)p
. (6.20)

From (6.18) and (6.20) we see that (6.17) holds in (0, ε]. Proving that (6.17) holds in

[1 − ε, 1) is easier since h is not singular at s = 1. Next we prove (6.17) holds also in

(ε, 1− ε). Since zµ ≥ A, h(s) ≤ c̄ for all s ∈ (ε, 1− ε) and by (6.15) and (6.19) we get

h(s)
[ 1

kα0 z
α(p−β)
p−1+α
µ

+ λk
]
≤ kp−1

0

( p− β
p− 1 + α

)p−1

z
(1−α−β)(p−1)

p−1+α
µ . (6.21)

Thus (6.17) holds also in (ε, 1 − ε) and ψ is a subsolution of (1.14). Now we can choose

Mλ � 1 such that ψ ≤ Z. Hence (1.14) has a positive solution when λ ∈ [λ̃, λ̂]. Let

J̄(Ω) =
2µ( p−β

p−1+α
)p−1||ep||p−1

∞

ĥ
. It is clear that if σ1

σ
≥ J̄ we have a nonempty interval of λ

where (1.14) has a positive solution.
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6.4 Proof of Theorem 13

The proof of Theorem 13 follows using similar arguments as in the proof of Theorem

11 with the necessary adjustments to overcome the singularity from h(s) (as done in the

proof of Theorem 12). Here, s∗ = k0||z
p−β
p−1+α
µ ||∞, J̄∗(Ω) =

2
p−1
p−1+τ µ( p−β

p−1+α
)p−1||ep||p−1

∞

ĥ
, λ̃∗ =

µ( p−β
p−1+α

)p−1

min(σ1,σ2)ĥ
and λ∗∗ = 1

σ
p−1
p−1+τ ||ep||p−1

∞

.
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CHAPTER 7

PROOFS OF THEOREMS 14-16

7.1 Proof of Theorem 14

We first construct a subsolution. Consider the eigenvalue problem −∆pφ = λ|φ|p−2φ

in Ω, φ = 0 on ∂Ω. Let φ1 be an eigenfunction corresponding to the first eigenvalue λ1

such that φ1 > 0 and ||φ1||∞ = 1. Also let δ,m, µ > 0 be such that |∇φ1| ≥ m in Ωδ and

φ1 ≥ µ in Ω−Ωδ, where Ωδ = {x ∈ Ω | d(x, ∂Ω) ≤ δ}. Let β ∈ (1, p
p−1+α

) be fixed. Here

note that since α ∈ (0, 1), p
p−1+α

> 1. Choose a k > 0 such that 2bkγ−p + βp−1λ1k
α ≤ a.

Define c1 = min
{
kp−1+αβp−1(β− 1)(p− 1)mp, 1

2
kp−1µβ(p−1)(a−βp−1λ1k

α)
}

. Note that

c1 > 0 by the choice of k and β. Let ψ = kφβ1 . Then

−∆pψ = kp−1βp−1λ1φ
β(p−1)
1 − kp−1βp−1(β − 1)(p− 1)

|∇φ1|p

φ
p−β(p−1)
1

.

To prove that ψ is a subsolution we need to establish:

kp−1βp−1λ1φ
β(p−1)
1 − kp−1βp−1(β − 1)(p− 1)

|∇φ1|p

φ
p−β(p−1)
1

≤ akp−1−αφ
β(p−1−α)
1 − bkγ−1−αφ

β(γ−1−α)
1 − c

kαφαβ1

(7.1)

in Ω if c < c1. To achieve this, we split the term kp−1βp−1λ1φ
β(p−1)
1 into three, namely,

kp−1βp−1λ1φ
β(p−1)
1 = akp−1−αφ

β(p−1−α)
1 − 1

2
kp−1−αφ

β(p−1−α)
1

(
a− kαφαβ1 βp−1λ1

)
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−1
2
kp−1−αφ

β(p−1−α)
1

(
a − kαφαβ1 βp−1λ1

)
. Now to prove (7.1) holds in Ω, it is enough to

show the following three inequalities.

−1

2
kp−1−αφ

β(p−1−α)
1

(
a− kαφαβ1 βp−1λ1

)
≤ −bkγ−1−αφ

β(γ−1−α)
1 , in Ω, (7.2)

−1

2
kp−1−αφ

β(p−1−α)
1

(
a− kαφαβ1 βp−1λ1

)
≤ − c

kαφαβ1

, in Ω− Ωδ, (7.3)

−kp−1βp−1(β − 1)(p− 1)
|∇φ1|p

φ
p−β(p−1)
1

≤ − c

kαφαβ1

, in Ωδ. (7.4)

From the choice of k,

−(a− βp−1λ1k
α) ≤ −2bkγ−p, hence

−1

2
kp−1−αφ

β(p−1−α)
1

(
a− kαφαβ1 βp−1λ1

)
≤ −bkγ−1−αφ

β(p−1−α)
1

≤ −bkγ−1−αφ
β(γ−1−α)
1 . (7.5)

Using φ1 ≥ µ in Ω− Ωδ and c < 1
2
kp−1µβ(p−1)(a− βp−1λ1k

α),

−1

2
kp−1−αφ

β(p−1−α)
1

(
a− kαφαβ1 βp−1λ1

)
≤
−kp−1φ

β(p−1)
1

(
a− kαλ1β

p−1
)

2kαφαβ1

≤ −c
kαφαβ1

. (7.6)

Finally, since |∇φ1| ≥ m, in Ωδ and c < kp−1+αβp−1(β − 1)(p− 1)mp,

−kp−1βp−1(β − 1)(p− 1)
|∇φ1|p

φ
p−β(p−1)
1

≤ −kp−1+αβp−1(β − 1)(p− 1)mp

kαφαβ1 φ
p−β(p−1)−αβ
1

≤ −c
kαφαβ1 φ

p−β(p−1+α)
1

.

Since p− β(p− 1 + α) > 0,

−kp−1βp−1(β − 1)(p− 1)
|∇φ1|p

φ
p−β(p−1)
1

≤ −c
kαφαβ1

. (7.7)
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From (7.5), (7.6) and (7.7) we see that equation (7.1) holds in Ω, if c < c1. Next we

construct a supersolution. Let e be the solution of −∆pe = 1 in Ω, e = 0 on ∂Ω. Choose

M̄ > 0 such that aup−1−buγ−1−c
uα

≤ M̄p−1 ∀u > 0 and M̄e ≥ ψ. Define Z = M̄e. Then Z

is a supersolution of (1.2). Thus Theorem (14) is proven.

7.2 Proof of Theorem 15

We begin the proof by constructing a subsolution. Consider

−(|φ′|p−2φ′)′ = λ|φ|p−2φ, t ∈ (0, 1),

φ(0) = φ(1) = 0.

(7.8)

Let φ1 be an eigenfunction corresponding to the first eigenvalue of (7.8) such that φ1 > 0

and ||φ1||∞ = 1. Then there exist d1 > 0 such that 0 < φ1(t) ≤ d1t(1 − t) for t ∈ (0, 1).

Also let ε < ε1 and m,µ > 0 be such that |φ′1| ≥ m in (0, ε] ∪ [1 − ε, 1) and φ1 ≥ µ in

(ε, 1− ε). Let β ∈ (1, p−ρ
p−1+α

) be fixed and choose k > 0 such that 2bkγ−p + βp−1λ1kα

ĥ
≤ a.

Define c2 = min
{kp−1+αβp−1(β−1)(p−1)mp

dρ1
, 1

2
kp−1µβ(p−1)(a − βp−1λ1kα

ĥ
)
}
. Then, c2 > 0 by

the choice of k and β. Let ψ = kφβ1 . This implies that:

−(|ψ′|p−2ψ′)′ = kp−1βp−1λ1φ
β(p−1)
1 − kp−1βp−1(β − 1)(p− 1)

|φ′1|
p

φ
p−β(p−1)
1

.

To prove that ψ is a subsolution, we need to establish:

kp−1βp−1λ1φ
β(p−1)
1 − kp−1βp−1(β − 1)(p− 1)

φ′1
p

φ
p−β(p−1)
1

≤ h(t)(akp−1−αφ
β(p−1−α)
1 − bkγ−1−αφ

β(γ−1−α)
1 − c

kαφαβ1

). (7.9)

Here, we note that kp−1βp−1λ1φ
β(p−1)
1 =

ĥkp−1βp−1λ1φ
β(p−1)
1

ĥ
≤ h(t)

(
akp−1−αφ

β(p−1−α)
1

−1
2
kp−1−αφ

β(p−1−α)
1

(
a− kαφαβ1 βp−1λ1

ĥ

)
− 1

2
kp−1−αφ

β(p−1−α)
1

(
a− kαφαβ1 βp−1λ1

ĥ

))
where
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ĥ = infs∈(0,1) h(s). Now to prove (7.9) holds in (0, 1), it is enough to show the following

three inequalities.

−1

2
kp−1−αφ

β(p−1−α)
1

(
a− kαφαβ1 βp−1λ1

ĥ

)
≤ −bkγ−1−αφ

β(γ−1−α)
1 , in (0, 1), (7.10)

−1

2
kp−1−αφ

β(p−1−α)
1

(
a− kαφαβ1 βp−1λ1

ĥ

)
≤ − c

kαφαβ1

, in (ε, 1− ε), (7.11)

−kp−1βp−1(β − 1)(p− 1)
|φ′1|p

φ
p−β(p−1)
1

≤ − ch(t)

kαφαβ1

, in (0, ε] ∪ [1− ε, 1). (7.12)

From the choice of k,

−(a− βp−1λ1kα

ĥ
) ≤ −2bkγ−p, hence,

−1

2
kp−1−αφ

β(p−1−α)
1

(
a− kαφαβ1 βp−1λ1

ĥ

)
≤ −bkγ−1−αφ

β(p−1−α)
1

≤ −bkγ−1−αφ
β(γ−1−α)
1 . (7.13)

Using φ1 ≥ µ in (ε, 1− ε) and c < 1
2
kp−1µβ(p−1)

(
a− βp−1λ1kα

ĥ

)
,

−1

2
kp−1−αφ

β(p−1−α)
1

(
a− kαφαβ1 βp−1λ1

ĥ

)
≤
−kp−1φ

β(p−1)
1

(
a− kαλ1βp−1

ĥ

)
2kαφαβ1

≤ −c
kαφαβ1

. (7.14)

Next we prove (7.12) holds in (0, ε]. Since |φ′1| ≥ m and p− β(p− 1) > αβ + ρ,

−kp−1βp−1(β − 1)(p− 1)
|φ′1|p

φ
p−β(p−1)
1

≤ −kp−1+αβp−1(β − 1)(p− 1)mp

kαφαβ1 φρ1

≤ −kp−1+αβp−1(β − 1)(p− 1)mp

kαφαβ1 dρ1t
ρ

.

Since h(t) ≤ 1
tρ

in (0, ε], and c < kp−1+αβp−1(β−1)(p−1)mp

dρ1
,

−kp−1βp−1(β − 1)(p− 1)
|φ′1|p

φ
p−β(p−1)
1

≤ −ch(t)

kαφαβ1

. (7.15)
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Proving (7.12) holds in [1− ε, 1) is straight forward since h is not singular at t = 1. Thus

from equations (7.13), (7.14) and (7.15), we see that (7.9) holds in (0, 1). Hence ψ is a

subsolution. Let Z = M̄e where e satisfies −(|e′|p−2e′)′ = h(t) in (0, 1), e(0) = e(1) = 0

and M̄ is such that au
p−1−buγ−1−c

uα
≤ M̄p−1 ∀u > 0 and M̄e ≥ ψ. Then Z is a supersolution

of (1.17) and there exists a solution u of (1.17) such that u ∈ [ψ,Z] . Thus Theorem (15)

is proven.

7.3 Proof of Theorem 16

We first prove (1.18) has a positive solution for every a > 0. We begin by constructing

a subsolution. Let φ1 be as in the proof of Theorem 14. Let β ∈ (1, p
p−1

), and choose a

k > 0 such that bkγ−p + βp−1λ1k
α ≤ a. Let ψ = kφβ1 . Then,

−∆pψ = kp−1βp−1λ1φ
β(p−1)
1 − kp−1βp−1(β − 1)(p− 1)

|∇φ1|p

φ
p−β(p−1)
1

.

To prove that ψ is a subsolution, we will establish:

kp−1βp−1λ1φ
β(p−1)
1 ≤ akp−1−αφ

β(p−1−α)
1 − bkγ−1−αφ

β(γ−1−α)
1 (7.16)

in Ω. To achieve this, we rewrite the term kp−1βp−1λ1φ
β(p−1)
1 as kp−1βp−1λ1φ

β(p−1)
1 =

akp−1−αφ
β(p−1−α)
1 −kp−1−αφ

β(p−1−α)
1

(
a−kαφαβ1 βp−1λ1

)
. Now to prove (7.16) holds in Ω,

it is enough to show −kp−1−αφ
β(p−1−α)
1

(
a− kαφαβ1 βp−1λ1

)
≤ −bkγ−1−αφ

β(γ−1−α)
1 . From

the choice of k, −(a− βp−1λ1k
α) ≤ −bkγ−p, hence

−kp−1−αφ
β(p−1−α)
1

(
a− kαφαβ1 βp−1λ1

)
≤ −bkγ−1−αφ

β(p−1−α)
1

≤ −bkγ−1−αφ
β(γ−1−α)
1 .
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Thus ψ is a subsolution. It is easy to see that Z = (a
b
)

1
γ−p is a supersolution of (1.18).

Since k can be chosen small enough, ψ ≤ Z. Thus (1.18) has a positive solution for every

a > 0. Also all positive solutions are bounded above by Z. Hence when a is close to 0,

every positive solution of (1.18) approaches 0. Also u ≡ 0 is a solution for every a. This

implies that we have a branch of positive solutions bifurcating from the trivial branch of

solutions (a, 0) at (0, 0).
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CHAPTER 8

COMPUTATIONAL RESULTS

8.1 Computational results for (1.12) in the one dimensional case

Here we consider the boundary value problem
−u′′(x) = λf(u)− 1

uα
, x ∈ (0, 1),

u(0) = 0 = u(1),

(8.1)

where f(s) = sp−1 +m0s
1
2 − 2;m0 > 0 and α ∈ (0, 1). Using the quadrature method (see

[27]), it follows that the bifurcation diagram of positive solutions of (8.1) is given by

G(ρ, λ) =

∫ ρ

0

ds√
[2λ(F (ρ)− F (s))− (ρ

1−α−s1−α
1−α )]

=
1

2
, (8.2)

where F (s) :=
∫ s

0
f(t)dt and ρ = u(1

2
) = ||u||∞. Now we use Mathematica to plot

(8.2) and provide the exact bifurcation diagrams when m0 = 10 and m0 = 5000 (See

Figure 8.1).

8.2 Computational results for (1.16) and (1.18) in the one dimensional case

Consider the boundary value problem
−u′′(x) = au−bu2−c

uα
, x ∈ (0, 1),

u(0) = 0 = u(1),

(8.3)
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Figure 8.1

Bifurcation diagrams with m0 = 10, m0 = 5000 respectively

where a, b > 0, c ≥ 0 and α ∈ (0, 1). Using the quadrature method (See [27]) the bifurca-

tion diagram of positive solutions of (8.3) is given by

G(ρ, c) =

∫ ρ

0

ds√
[2(F (ρ)− F (s))]

=
1

2
, (8.4)

where F (s) :=
∫ s

0
f(t)dt where f(t) = at−bt2−c

tα
and ρ = u(1

2
) = ||u||∞. We plot the exact

bifurcation diagram of positive solutions of (8.3) using Mathematica. Figure 8.2 shows

bifurcation diagrams of positive solutions of (8.3) when a = 8 (< λ1) and b = 1 for

different values of α.

Bifurcation diagrams of positive solutions of (8.3) when a = 15 (> λ1) and b = 1 for

different values of α is shown in Figure 8.3.

Finally, we provide the exact bifurcation diagram for the case when p = 2,Ω = (0, 1)

and c = 0. Consider, 
−u′′(x) = au−bu2

uα
, x ∈ (0, 1),

u(0) = 0 = u(1),

(8.5)
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Figure 8.2

Bifurcation diagrams, c vs ρ for (8.3) with a = 8, b = 1
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Α = 0.4

Α = 0.3
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Α = 0.1

Figure 8.3

Bifurcation diagrams, c vs ρ for (8.3) with a = 15, b = 1
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where a, b > 0 and α ∈ (0, 1). The bifurcation diagram of positive solutions of (8.5) is

given by

G̃(ρ, a) =

∫ ρ

0

ds√
[2(F̃ (ρ)− F̃ (s))]

=
1

2
, (8.6)

where F̃ (s) :=
∫ s

0
f̃(t)dt with f̃(t) = at−bt2

tα
and ρ = u(1

2
) = ||u||∞. The bifurcation

diagram of positive solutions of (8.5) as well as the trivial solution branch are shown in

Figure 8.4 when α = 0.5 and b = 1.

5 10 15
a

0.5

1.0

1.5

2.0

Ρ

Figure 8.4

Bifurcation diagram, a vs ρ for (8.5) with α = 0.5, b = 1

This bifurcation diagram (Figure 8.4) indicates that (0, 0) is a bifurcation point of (8.5)

as in Theorem 16.
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CHAPTER 9

CONCLUSIONS AND FUTURE DIRECTIONS

9.1 Conclusions

In this thesis, we have extended the theory of semipositone problems to exterior do-

mains, including problems involving the p− Laplacian operator as well as systems, and

to the case of infinite semipositone problems. We have also established new results in the

bounded domain.

9.2 Future directions

We plan to continue and expand the theory of infinite semipositone problems. In the

near future, we will study the following open problems.

• Consider {
−∆u = λg(u) in Ω

u = 0 on ∂Ω,
(9.1)

where λ is a positive parameter, ∆u = div
(
∇u
)

is the Laplacian of u, Ω is a smooth
bounded domain in Rn, n ≥ 1, and g : (0,∞) → R is a C1 function such that
limu→0+ g(u) = −∞, and satisfies a sublinear growth condition ( lims→∞

g(s)
s

= 0).
We will aim to prove uniqueness results for large values of parameter λ.

• Consider {
−u′′(t) = λh(t)g(u), 0 < t < 1

u(0) = u(1) = 0,
(9.2)

where λ is a positive parameter, g : (0,∞)→ R is a C1 function such that limu→0+

g(u) = −∞, and satisfies lims→∞
g(s)
s

= 0, and h ∈ C((0, 1], (0,∞)) is singular at
t = 0. We will aim to prove uniqueness results for large values of parameter λ.
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• Consider {
−∆u = λg(u) in Ω

u = 0 on ∂Ω,
(9.3)

where λ is a positive parameter, ∆u = div
(
∇u
)

is the Laplacian of u, Ω is a smooth
bounded domain in Rn, n ≥ 1, and g : (0,∞) → R is a C1 function such that
limu→0+ g(u) = −∞, and lims→∞

g(s)
s

= ∞ (superlinear grwoth condition). We
will aim to prove existence and uniqueness of positive solutions when λ ≈ 0.

• Consider {
−u′′(t) = λh(t)g(u), 0 < t < 1

u(0) = u(1) = 0,
(9.4)

where λ is a positive parameter, g : (0,∞)→ R is a C1 function such that limu→0+

g(u) = −∞, and lims→∞
g(s)
s

= ∞ and h ∈ C((0, 1], (0,∞)) is singular at t = 0.
We will aim to prove existence and uniqueness results for λ ≈ 0.

• We will also aim to extend the analysis of the above open problems to the case of
systems, and to problems involving the p−Laplacian operator.
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