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Major Professor: Dr. Farshid Vahedifard 

Title of Study: Deterministic and random Isogeometric analysis of fluid flow in 

unsaturated soils   

Pages in Study 92 

Candidate for Degree of Master of Science 

The main objective of this research is to use IGA as an efficient and robust 

alternative for numerical simulation of unsaturated seepage problems. Moreover, this 

research develops an IGA-based probabilistic framework that can properly account for 

the variability of soil hydraulic properties in the simulations. In the first part, IGA is used 

in a deterministic framework to solve a head-based form of Richards’ equation.  It is 

shown that IGA is able to properly simulate changes in pore pressure at the soils 

interface.   In the second part of this research, a new probabilistic framework, named 

random IGA (RIGA), is developed. A joint lognormal distribution function is used with 

IGA to perform Monte Carlo simulations. The results depict the statistical outputs 

relating to seepage quantities and pore water pressure. It is shown that pore water 

pressure, flow rate, etc. change considerably with respect to standard deviation and 

correlation of the model parameters. 
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 CHAPTER I

INTRODUCTION 

1.1 Background 

Fluid flow and heat transport in porous media are of interest in many fields of 

engineering and science. In particular, researchers in geomechanics or geotechnical 

engineering are interested in subsurface modeling where it includes flow or heat transport 

in geological media. Fluid components including liquids, gases, and gas-liquid phases fill 

the non-solid spaces (i.e., fractures, cavities, pore voids) in porous media. Water is the 

most important fluid among different types of fluids in environmental and hydrological 

context. Subsurface water often includes soil moisture of unsaturated zone and 

groundwater of saturated zone. The saturated zone forms strata above impervious layers 

and below the groundwater free surface, where the voids are fully filled with water. The 

unsaturated zone (vadose zone) is a moist layer between the groundwater surface and the 

ground surface, where only a fraction of the voids is occupied by water and the other part 

is filled by gaseous phase (usually air). Unsaturated flow represents two fluid phases 

(water and air). However, it is common to consider the gas phase constant at the 

atmospheric level, which simplifies the unsaturated flow problem to a one-phase model. 

One-phase variably saturated porous media is the subject of study in many fields of 
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engineering such as petroleum, geotechnical engineering, and material research for 

industrial porous media. In particular, the study of infiltration processes for the 

monitoring the water front movement from ground surface to the water table is the 

interesting topic in soil science and subsurface hydrology (Diersch, 2013).    

Incorporating unsaturated soil mechanics into geotechnical engineering practice 

requires solving the governing equation that represents the variations in moisture, 

hydraulic conductivity, degree of saturation, etc. due to infiltration/evaporation. Richards 

(1930) presented a second order partial differential equation (PDE) that shows the one-

phase flow mechanism in variably saturated soils. There are numerous analytical and 

numerical solutions to solve the governing equation (e.g., Ashcroft et al., 1962; Warrick 

et al., 1991; Shahraiyni and Ashtiani, 2009; Guerrero et al., 2010; Namin, et al., 2012). 

However, analytical solutions are limited to simple geometries and boundary conditions 

(Philip, 1957; Parlange, 1971; Broadbridge et al., 1988; Parlange et al., 1999) whereas 

numerical methods are more applicable for general unsaturated problems. Thus, there is a 

growing demand for improvement in the accuracy and performance of numerical 

methods (e.g., Huyakorn, et al., 1986; Celia et al., 1990; Gottardi and Venutelli, 1992; 

Wu, 2010).  

This research attempts to address some of the aforementioned needs and gaps by 

introducing Isogeometric analysis (IGA) for solving unsaturated seepage problems in 

deterministic and probabilistic manners.  

1.2 Objectives 

The main objective of this research is to introduce and investigate the 

performance of IGA as an efficient and robust alternative for numerical simulation of 
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single-phase unsaturated seepage problems. In addition, it is intended to develop an IGA-

based probabilistic framework that can properly account for the variability of soil 

hydraulic properties in modeling unsaturated seepage problems. 

1.3 Scope and Contributions 

In the presented thesis, the second chapter introduces an IGA procedure to obtain 

a head-based solution to the Richards equation for unsaturated flow in porous media. IGA 

uses Non-Uniform Rational B-Spline (NURBS) as the shape functions, which provide a 

higher level of inter-element continuity in comparison with Lagrange shape functions. 

The semi-discrete nonlinear algebraic equations are solved using a combination of 

implicit backward-Euler time-integration and Newton-Raphson scheme. The time-step 

size is adaptively controlled based on the rate of change of the pore pressure. The results 

from the proposed formulation are compared and verified against an analytical solution 

for one-dimensional transient unsaturated flow in a homogenous soil column. The 

proposed method is then applied to four more complex problems including two-

dimensional unsaturated flow in a two-layered soil and a semi-circular furrow. The 

performance of IGA against the conventional finite element method for solving transient 

seepage problems is comprehensively evaluated and disused. 

In the third chapter, a new probabilistic framework, named Random IGA (RIGA), 

is developed by combining IGA and random fields to numerically simulate unsaturated 

soil problems. The proposed framework benefits from computationally efficient IGA 

solutions, and properly accounts for the variability of unsaturated soil parameters by 

utilizing random field theory. Two constitutive models commonly used to describe the 

behavior of unsaturated soils, the Soil Water Retention Curve (SWRC) and Hydraulic 
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Conductivity Function (HCF), are considered under the proposed RIGA method. A 

database of unsaturated hydraulic properties is used to investigate the variability of 

SWRC and HCF model parameters for different soils. Random field concepts with 

statistical homogeneity (fixed mean, standard deviation, and spatial correlation) are 

implemented to generate SWRC and HCF model properties considering a joint lognormal 

distribution function among the model parameters. The joint lognormal distribution 

function is used with IGA to perform Monte Carlo simulations. The number of 

realizations in the Monte Carlo simulation accounts for the effect of stochastic soil 

parameters in unsaturated soil analysis. The application of the proposed RIGA is then 

illustrated by simulating unsaturated seepage in two example problems, including a one-

dimensional flow in a rectangular domain and a two-dimensional infiltration problem in a 

semi-circular furrow.
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 CHAPTER II

HEAD-BASED ISOGEOMETRIC ANALYSIS OF TRANSIENT FLOW IN 

UNSATURATED SOILS 

This chapter has been published as a journal article in Computers and 

Geotechnics, Volume 84: pp. 183-197, doi: 10.1016/j.compgeo.2016.11.018). The 

original paper may be accessed at: http://dx.doi.org/ 10.1016/j.compgeo.2016.11.018. 

Furthermore, the paper has been reformatted and replicated herein with minor 

modifications in order to outfit the purposes of this thesis. 

2.1 Introduction 

Transient flow in variably saturated porous media is a common interest in many 

research studies. Its application covers a high range of disciplines from soil science and 

subsurface hydrology to material research for industrial porous media, geotechnical and 

petroleum engineering (Diersch, 2013). In geotechnical engineering, fluid flow in 

unsaturated soils has shown to play a controlling role in various practical problems 

including slope stability (Griffiths and Lu, 2005; Lu and Godt, 2013; Robinson et al., 

2016; Vahedifard et al., 2016a), lateral earth pressure (Vo et al., 2016), reinforced soil 

structures (Vahedifard, et al., 2016b), and bearing capacity of foundations (Oh and 

Vanapalli,  2012; Vahedifard, et al., 2015). Loss of suction and the subsequent reduction 

in soil’s effective stress, due to steady or transient flow can adversely impact the 
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performance and integrity of variably saturated slopes and earthen structures (Richards, 

1931; Robinson and Vahedifard, 2016).  

From physical point of view, the air pressure can be assumed constant and fluid 

transportation is simply governed by Richards’ equation which is the combination of 

generalized Darcy’s law and mass continuity equation (Richards, 1931; Krabbenhøft, 

2007). Richards’ equation is considerably nonlinear because of highly variable effective 

conductivity that varies from very dry to fully saturated conditions. This variation results 

in a nonlinear relation between negative pore pressure and degree of saturation. The 

nonlinear nature of transient flow in unsaturated medium restricts the analytical solutions 

to few problems with simple boundary conditions (Philip, 1957; Parlange, 1971; 

Broadbidge and White, 1988; Parlange et al., 1999; Guerrero and Skaggs, 2010; Jaiswal 

et al., 2011).  For general unsaturated problems, numerical methods are more applicable 

than analytical methods. Numerical methods that represent Richards’ equation can be 

classified into three general forms of continuous equations: moisture-based, head-based, 

and mixed form. 

Moisture-based (θ-based) formulation represents the governing equation in terms 

of moisture content. The moisture form generally performs very well when implemented 

in an iterative procedure and allows the use of large time steps. However, this form is 

only applicable to strictly unsaturated and homogenous conditions (Diersch,  2013). 

Head-based (h-based) form formulates the governing equation based on pressure head. 

This form is applicable to both saturated and unsaturated conditions and it can be used to 

model heterogeneous media as well. Nevertheless, its performance encounters 

difficulties, especially for problems involving infiltration into very dry soils. Very short 
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time steps are usually implemented to prevent divergence in the iterative solutions 

(Diersch, 2013). In an attempt to take advantages of both moisture- and head-based 

frameworks, the primary variable switching technique has been proposed (Forsyth et al., 

1995; Diersch and Perrochet, 1999). This technique uses the moisture content as the 

primary variable when the domain is partially saturated and the pressure head as the 

primary variable when the domain is fully saturated. Despite the simplicity of the 

concept, there is still the possibility of divergence during the iterative procedure. For 

instance, in the Finite Element Method (FEM), the solution procedure may diverge if a 

given node with a degree of saturation below the switching criteria changes to fully 

saturated conditions during subsequent iterations. This problem is intensified as the mesh 

is refined and the wetting front covers a greater number of nodes in the associated time 

step (Krabbenhøft, 2007). Moreover, with respect to any form of governing equation, the 

efficiency and robustness of the results are highly influenced by spatial and temporal 

discretization methods as well as the linearization methods for nonlinear equations. For 

spatial discretization, the finite difference method (shahraiyni and Ashtiani, 2009; 

Ashcroft et al. 1962; Celia et al. 1990), FEM (Gottardi and Venutelli, 1992; Prasad,  

2001;  Wu, 2010 ), and the finite volume method (Arampatzis, 2000) are commonly used 

numerical methods while the finite deference is usually reserved for time discretization. 

For solving nonlinear equations, Picard and Newton-Raphson methods are popular 

schemes, which are vastly used in transient flow simulations in porous medium (Diersch, 

2013).    

While conventional numerical methods are successful in the simulation of 

transient flow problems in variably saturated soils, it is still desirable to develop more 
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efficient analysis methods.  In recent years, Isogeometric analysis (IGA) has been 

increasingly employed in variety of engineering fields like plates (Valizadeh et al., 2013), 

incompressibility (Bazilevs et al., 2006), poroelasticity with fully saturated conditions 

(Irzal et al., 2013), flow regime in shale (Shahrokhabadi et al., 2014), among others. As 

discussed in the previous studies, IGA offers advantageous features including exactness 

of reproducing the geometry, higher-order continuity, and simpler mesh generation and 

mesh refinement procedures in comparison to alternative numerical methods. Extending 

IGA applications to different fields and examining advantages and disadvantages of using 

different types of splines in IGA have been increasingly investigated in recent years.  

Nguyen et al. (2014) utilized IGA in unsaturated flow problems in the moisture-

based form and introduced a successful framework including NURBS basis for spatial 

discretization and the implicit backward-Euler method for time discretization. However, 

the proposed solution is limited to homogenous problems and their solution is unable to 

simulate mixed unsaturated-saturated conditions. Moreover, they used constant time steps 

in the time integration scheme which is not computationally cost effective. 

In the present study, we propose a head-based method implementing IGA to solve 

transient flow in heterogeneous unsaturated soils. This numerical approach utilizes 

NURBS basis functions for spatial discretization which benefits from the high-order 

continuity of IGA interpolation. The implicit backward-Euler method with adaptive time-

stepping is used for time marching. This technique utilizes larger time step sizes where 

the rate of changes in the pore pressure is not significant, while decreasing the time step 

size when the changes in pore pressure are considerable and affect the solution 

convergence. In order to avoid oscillation at the wetting front, the lumped mass matrix 
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technique is used for numerical integration (Diersch, 2013) and the Newton-Raphson 

method is employed to solve the nonlinear equations.  

The rest of chapter 2 is organized as follow: Section 2.2 describes the methodology of the 

presented study, in which the governing equation, variational statement, IGA spatial 

discretization, and time discretization are explained. In Section 2.3, the proposed method 

is benchmarked against a one dimensional (1D) analytical solution representing 

homogenous soil (Srivastava and Yeh, 1991). The application of the proposed IGA 

method is further extended in Section 2.4 which presents the implementation of higher 

order IGA in a highly nonlinear problem (referred to as Celia et al.’s (1990) problem) and 

comparison with an alternative FEM solution. Then numerical solution is implemented to 

a semi-circular furrow under high rate of infiltration. The accuracy and applicability of 

the method for heterogeneous medium is investigated through two numerical examples. 

The first example shows a 1D two-layer soil system (referred to as Brunone et al.’s 

(2003) problem) and results are compared with results from quadratic Lagrangian FEM. 

The second example represents a two dimensional (2D), two-layered soil subjected to 

infiltration. 

2.2 Methodology 

2.2.1 Governing equations 

Since Richards’ equation is only one flow equation, it requires the choice of 

primary and secondary variables. In the h-based formulation, the head is introduced as 

the primary variable and the multidimensional generalization of the governing equation is 

expressed as: 
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 (
 

 
       )

  

  
   [        ] (2.1) 

where   is the moisture content,   is the porosity,    is the specific storage coefficient, h 

is the total head,   is the pressure head,       is relative conductivity function,   is the 

tensor of saturated hydraulic conductivity,   is the gradient operator, and      is the 

moisture capacity function. In this work, a general form of   is considered enabling 

simulation of isotropic/anisotropic and homogenous/heterogeneous soils.  

After obtaining the primary variable (h) from Eq. (2.1),   can be easily calculated based 

on classical soil mechanics concepts. Subsequently, a parameterized retention curve (e.g., 

Gardner (1958), or van Genuchten (1980) and Mualem (1976)) can be used to 

introduce  ,   , and   functions: 

 Gardner:                 
     (2.2a) 

 VGM:      {
             |   |              
                                                                

 (2.2b) 

Effective degree of saturation (  ) is defined based Eq. (2.2a) or (2.2b) as: 

    
       

     
 (2.3) 

Subsequently the relative hydraulic conductivity is defined:  

 Gardner:             (2.4a) 

 VGM:          
   

[   (    

 

 )

 

]  (2.4b) 

where    and    are residual and saturated moisture contents, respectively,    is 

Gardner’s curve fitting coefficient,    and   are VGM’s fitting parameters, and   can be 

assumed as     
 

 
. 
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Finally, the moisture capacity function can be obtained by introducing the first 

derivative of Eq. (2.2): 

 Gardner:      
  

  
           

     (2.5a) 

 VGM:      
  

  
 

    |   |   

   |   |     
        (2.5b) 

The h-based form of Richards’ equation can produce considerable mass balance 

errors. This drawback is caused by the addition of      in the approximation of the 

storage term (left hand side of Eq. (2.1)). Obtaining      based on the chord slope 

approximation method has been introduced as a solution to preserve mass conservation 

(Diersch, 2013). In this study, the chord slope approximation is used instead of direct 

analytical derivatives to avoid any mass balance error. Appendix A presents the 

necessary expressions for approximating   using the chord slope approximation. 

2.2.2 Isogeometric Analysis for Head-Based solution 

Let   be the spatial domain,     R
D
, where D denotes the spatial dimensionality. 

Let   specify the boundary of   which is      , where    and     represent the 

boundaries with Dirichlet and Neumann conditions, respectively.  The Galerkin 

variational statement for Eq. (2.1) states that h can be found such that for any arbitrary 

function   (    on   ): 

 ∫ ,(
 

 
       )

  

  
   [        ]-     

 
   (2.6) 

Following standard discretization notations, the continuous head is approximated 

by:  

             ̂    (2.7) 
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where      shows the shape functions and   represents the coordinate of spatial 

nodes. Using integration by parts, the resulting nonlinear matrix system is:  

       ̇̂        ̂      (2.8) 

   ∑    ∫ (
 

 
       )

 

           (2.9) 

   ∑ ∫        
            

      (2.10) 

   ∑ ∫     
      (2.11) 

where   is the lumped-mass matrix,  ̇̂ represents the changes in the h vector with respect 

to time,   is the permeability matrix,   is the force vector, q
e
 represents infiltration or 

evaporation rates from elements boundary, and     is Kronecker-delta property. The 

mass-lumping technique presented in Eq. (2.9) is only applicable for IGA and linear 

FEM. For higher order FEM, the mass-lumping technique discussed in Appendix B 

should be considered. In addition to Eqs. (2.9) and (2.10), the interpolation of the 

moisture capacity and relative conductivity over the element e is introduced as: 

       ∑   
       

 
  (2.12) 

    
     ∑   

    
    

 
  (2.13) 

where the pressure head   at local node   of element e is evaluated from the solution h 

(  
 
   

    , in which    shows the elevation of node  ). 

The shape functions in Eq. (2.7) are formed by NURBS basis functions. The 

linear combination of NURBS basis functions with a given set of control points is used to 

shape a curve of order p (Hughes, 2005):  

  ̂    ∑          
 
  (2.14) 
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where   is the number of control points,    is the  th
 control point coordinate, and 

        is the NURBS basis function defined by: 

         
         

∑          
 
   

 (2.15) 

where         and    are the  th 
B-spline basis function of order p and the assigned 

weight to  th 
control point, respectively.          is constructed based on a knot vector 

     in the parametric space which is in an ascending sequence of real numbers. It is 

common to define the parametric space       as: 

      {                   }         [   ] (2.16) 

where    shows the  th 
knot.  

Open knot vectors have the Kronecker-delta property at the boundaries and the 

direct imposition of essential boundary conditions is applicable when they are used for 

spatial discretization. Open knot vectors are formed if the first and last knot (  ,       ) 

are repeated     times, implying curves include discontinuities (    continuity). 

Moreover, the basis functions can be interpolatory at intermediate knots where they are 

repeated p times. This implies that curves include corresponding control points in the 

physical space with     continuity (Hughes et al. 2005). This property allows introducing 

soil layers with definite interfaces. The B-spline basis functions are defined based on the 

recursive Cox-de Boor algorithm (De Boor, 1972): 

         {
                

                    
     for     (2.17a) 

         
    

       
          

        

           
              for      (2.18) 
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Figure 2.1 shows a set of quadratic B-spline basis functions which are used in one 

of the example problems solved in Section 2.4. This sort of knot vector interpolates the 

first and last knots (     ) in the knot vector which results in interpolation of the 

corresponding nodes in the physical geometry. This is also true for the intermediate knot 

(     ). This property allows exact definition of external and internal boundaries. The 

internal boundaries are defined as the intersection of two regions with different hydraulic 

properties.  

Formation and insertion of knot and control points are the key steps to shape 

geometry and h-refinement in IGA. Here, the formation of geometry is discussed first and 

it is followed by knot insertion description which can be performed by inserting a single 

knot once or multiple times. 

 

Figure 2.1 Quadratic basis functions for the open knot vector 

     {                   }  
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Consider a set of points {  }           ) on the geometry of the problem. In 

order to interpolate these points with NURBS basis functions of order p, we need to 

assign a parameter  ̅  to each Qk, and select an appropriate knot vector ( ) = { 1,  2, … , 

   , … ,   + +1}     [0,1]. We can form up to         system of linear equations 

using:  

     ̂( ̅)  ∑       ̅   
 
  (2.19) 

where    represents n unknown control points. The next step is to determine  ̅ and ( ). 

There are three common methods to find  ̅: equally spaced, chord length, and centripetal 

method (Piegl, 1966). In this study, the chord length method is used. In this method,   is 

introduced as the total chord length 

   ∑ |       |
   
    (2.19) 

Then the following statement is defined by assuming  ̅   : 

   ̅    ̅   
|       |

 
              (2.20) 

Subsequently, the corresponding knots, which are able to reflect the distribution 

of    ̅, are defined based on the averaging technique: 

      {

         

       
 

 
∑   ̅

     
      

               

             (2.21) 

Furthermore, using Eq. (2.21) along with Eq. (2.20) in Eq. (2.18) leads to a 

system of linear equations from which   can be obtained easily. Further information 

regarding geometry formation using NURBS can be found in “The NURBS Book” 

(Piegl, 1966). 
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Refinement in IGA can be done by knot insertion without changing the geometry 

of the problem. Introducing the extended knot vector  ̃( ) = {    ̃   ̃   ̃        

      } leads to defining new n+m basis functions. Subsequently, the corresponding new 

n+m control points  ̃  are formed by a linear combination of the original control points:  

  ̃      (2.22) 

where 

    
 
 {

           ̃  [          

                           
 (2.23) 

    
    

 ̃      

       
   

  
        ̃   

           
     

 
    for             (2.24) 

Further information for p and h refinement can be found in Hughes et al. (2005). 

Eq. (2.14) can be easily extended to higher spatial dimensions (2D and 3D) using 

the tensor product concept. Subsequently, a NURBS surface,        of order   and   

with respect to   and  -direction, can be formed as:  

        ∑ ∑     
       

 
 
        (2.25) 

In Eq. (2.25),      represents the coordinates of control points in 2D while 

    
         shows the bivariate NURBS basis functions in parametric coordinates of   and 

 . The formation of bivariate basis function follows:  

     
         

                  

∑ ∑                   
 
   

 
   

 (2.26) 

where    shows the 2D weights and         is the basis function of order   for  th
 

knot in the  -direction. The shape functions in IGA, as used in the current study, have the 

following advantageous properties (Hughes, 2005): 

 NURBS basis functions satisfy partition of unity: ∑        
   .  
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 The shape functions are always positive; this property is useful for mass-lumping 

techniques (Nguyen et al., 2014).  

 The basis functions of order   are      times differentiable       ),    shows 

the multiplicity of the  th
 knot.  

 The support of      is compact and covers [  ,      ]. Thus, the number of nodes 

per element is (     and (            for 1D and 2D problems, 

respectively.   

2.2.3 Temporal Discretization  

The nonlinear matrix system (Eq. (2.8)) is solved in time with suitable initial 

conditions (IC). The fully-implicit time-marching scheme is used in backward-Euler (BE) 

framework. The formulation of BE with an automatic error-controlled time step helps to 

speed up the h-based solution in comparison with the fixed time step scheme (Diersch, 

2013). Expanding Eq. (2.8) based on the BE time discretization introduces the discrete 

residual of the h-based Richards’ equation as:  

       ̂  (
       

   
         )   ̂    (

       

   
)   ̂    (2.27) 

Since the mass matrix ( ) and the permeability matrix ( ) are dependent on the solution 

itself, iterative methods are needed to solve Eq. (2.27) for  ̂   . Utilizing the Newton-

Raphson iteration method leads to the final form of Richards’ equation for IGA: 

 (
      

  

   
        

  )    ̂   
    (

      
  

   
)   ̂        

    ̂   
    (2.28) 
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where   counts the time steps,   denotes the iteration numbers,   ̂   
    is the 

increment for     iteration ( ̂   
     ̂   

    ̂   
   ), and       

   shows the partial 

Jacobian matrix as:  

       
   (

      
  

   
        

  ) (2.29) 

2.2.3.1 Adaptive Time Steps 

Selecting the appropriate time step significantly affects the solution performance. 

Large time steps during the initial solution phase can lead to inaccurate results or even 

divergence of the solution. On the other hand, small time steps lead to considerable 

computational costs when the solution is stable and close to steady state conditions. The 

adaptive time steps method, originally developed by Gresho (1978), controls the solution 

process with a local time prediction. In this approach, the time step size is automatically 

updated with respect to requirements of temporal accuracy. The adaptive time step 

procedure is robust and computationally inexpensive in that the time step size increases 

whenever possible or decreases if necessary. Several studies have demonstrated the 

advantages of adaptive time stepping for solving the Richards equation (Miller, 2006). 

The scheme is based on Local Truncation Error (LTE) estimation:  

       ̂     ̂  (2.30) 

where       is the residual between the approximate solution in the next time step 

( ̂   ) and the exact solution in the current time step ( ̂ ). It is assumed that the exact 

solution is introduced at the beginning of each time step. Subsequently, if the current 

LTE is kept for the next time step, the potential step size can be obtained as:  
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          (
 

‖    ‖
)
   

 (2.31) 

In Eq. (2.31),   is the prescribed error tolerance and ‖    ‖ is Root Mean Square 

(RMS) norm for     . The fitness of the predicted time step from Eq. (2.31) should be 

evaluated for the next time step. This procedure is conducted by checking three following 

conditions: 

 Condition 1. If            

The increase in time step is allowed and the predicted       is acceptable for the 

next time step. However, it has been shown that it is practically beneficial to limit the 

upper bound of the next time step to:  

      
                     ,      (2.32) 

where      
    

 is the applicable time step size that is used for the next time step,       is 

the maximum user-defined time step size, and   the rate of change in the time step size 

(  
     

   
) which can be 1,2,3,…. 

 

 Condition 2. If                 

Where   is typically 0.85, the solution  ̂    is acceptable but the predicted time step 

size should not be changed (         ).  

 Condition 3. If            

The solution  ̂    is not acceptable and there is no update for the next time step. 

This condition enforces the algorithm to repeat the current time step with a reduced time 

step size as:  

    
    

   
 

     
(

 

‖    ‖
) (2.33) 
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where     
    shows the reduced time step size. The new solution again will be 

evaluated against error conditions and further step reduction is allowed if the third 

condition (Eq. (2.33)) governs the solution. However, the solution algorithm must restart 

the overall time stepping with new error condition ( ) or the initial time step (   ), if the 

number of reduction cycles reaches twelve cycles. 

2.2.4 Head-Based Solution Algorithm 

The main steps of the proposed h-based solution, utilizing IGA and adaptive time 

step, for solving Richards’ equation are summarized in Box 2.1. 

Box 2.1. Algorithm for h-based solution using IGA and adaptive time steps. 

1. Discretize the problem geometry with NURBS mesh. 

2. Define problem properties, i.e.,                   
3. Define B.C (    ,  ) and allocate related node IDs in the mesh. 

4. Loop over time steps:    0,1,…. Or   ‖    ‖          

    4.1 Loop over Iterations:    0,1,…Or until convergence ‖  ̂‖          

          4.1.1 Update the Residual vector and Jacobian matrix based on Eq. (2.28, 2.29) 

          4.1.2 Update the increment:   ̂       
        

  

          4.1.3 Update  ̂   
     ̂   

    ̂ 

    END for iterations 

    4.2 Update ‖    ‖ 

    4.3 Update       based on Eq. (2.31) 

    4.4 IF            then update  ̂    and       using Eq. (2.32) 

          Else IF                then update  ̂    and           

          Else Do not update  ̂    , reduce time step using Eq. (2.33), and repeat current 

time step. 

    4.5 Post processing and visualization in selected time steps. 

END for time steps 

 

 In the above algorithm,         and         are the prescribed tolerances for the 

steady state condition and convergence criteria.   
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2.3 Validation 

In this section, the proposed IGA formulation is validated against an analytical 

solution and also compared with conventional FEM analysis for a benchmark problem. 

Srivastava and Yeh (1991) proposed an analytical solution for one-dimensional (vertical) 

transient unsaturated flow problem subjected to infiltration/evaporation in a homogenous 

soil column. They used Gardner’s equations (Eq. (2.2a) and Eq. (2.4a)) to introduce 

hydraulic conductivity, pressure and retention curve. To evaluate the accuracy and 

performance of the proposed solution based on IGA, a 3 m column of soil under a 

prescribed infiltration (flux) is considered (Figure 2.2(a)). The datum is assumed at the 

bottom where the groundwater table is located. The top boundary is subjected to the 

infiltration rate of q = 0.2 md
-1

 while the bottom boundary is enforced to the essential 

boundary condition of zero (h = 0) and the negative ICs are distributed hydrostatically in 

the problem.  

 

Figure 2.2 1D infiltration problem in vadose zone: a) Sketch of the unsaturated 

solution domain. b) Discretized domain in IGA with different node 

numbers. 
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The analytical solution of Eq. (2.1) for transient flow (i.e., negative pore pressure) 

for the given retention curve and hydraulic conductivity function is presented as:  

   
      

 
 (2.34) 

where 

   
 

 
 (

 

 
  )     

 
  

 
 (

     

 
)   

  

  ∑
       

         
      

   

  (
  

 
)    

   
 
    (2.35) 

    
   

       
   

         

        

In the above equations,   is the soil column length and    is the     root of the 

characteristic equation. The characteristic equation is defined as:  

                (2.36) 

For the IGA simulation, linear, quadratic, and cubic NURBS basis functions are 

used with the associated knot vectors: 

      {        }      {           }   and      {               } and the 

corresponding control points   {   }   {       }   and   {       }  respectively. 

The introduced   and   generate few degrees of freedom (DOFs) which are not adequate 

for numerical solutions. In order to generate reasonable models, the number of nodes 

(i.e., DOFs) is increased using non-uniform h-refinement and results are compared with 

the analytical solution. One of the interesting features of NURBS mesh is the automatic 

generation of finer mesh near boundaries. This property is very important for extremely 
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dry soils subjected to high rate of infiltration. The hydraulic conductivity of the boundary 

elements in these problems is very small and unable to transmit the water away from the 

boundary nodes. As a remedy, generating finer mesh near boundaries and providing a 

proper feedback in the matrix to the flux are key steps to alleviate this problem (Wu, 

2010). Figure 2.2(b) shows the discretized geometry for 18, 34, 66 DOFs. 

For comparison purposes, the benchmark problem is also solved using linear and 

quadratic FEM. Since linear IGA configuration can be adapted to linear FEM, the same 

discretized configuration (non-uniform mesh) is utilized for both FEM and IGA. 

However, non-uniform mesh is used for quadratic/higher-order IGA while uniform mesh 

is used for quadratic FEM. 

 

Figure 2.3 Analytical [40] and IGA solution for 1D homogenous soil under infiltration 

of 0.2md
-1

. 
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In order to avoid convergence issues and obtain an acceptable accuracy, the initial 

time steps (   ) in the adaptive time steps are chosen sufficiently small in all cases. To 

show more details, Table 2.1 summarizes the material properties and assumptions that are 

used for solving this problem. Figure 2.3 shows the pore pressure profile using the 

analytical solution and the proposed IGA solution (with 66 DOFs) for time intervals of t 

= 0.1, 0.25, 0.5 day, and steady state condition.  

Table 2.1 Parameters and conditions used for homogenous soil column. 

Quantity Symbol Value  Unit 

Column length   3 m 

Saturated conductivity    1.0 md
-1

 

Porosity   0.4  

Specific Storage Coefficient    0 m
-1

 

Saturated moisture content    0.4 1 

Residual moisture content    0.092 1 

Gardner parametric model    

Fitting coefficient      2 m
-1

 

IC and BC’s    

Initial conditions (IC)    0.0 m 

Neumann-type BC at top   0.2 md
-1

 

Dirichlet-type BC at bottom    0.0 m 

Method: IGA, FEM    

Initial time step size     0.45 s 

Convergence error tolerance          10
-4

 1 

Steady state error tolerance         10
-4

 1 

 

Constant time steps (        ) require a large computational expense with 

548 time steps to capture the steady state conditions. On the other hand, 118 time steps 

are only needed to reach the steady state solution with the adaptive time stepping. The 
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range of time step sizes varies from 0.45(s) at the first time steps to 0.5 day for the last 

time steps and in all intervals a very good agreement is observed between the analytical 

and the IGA results.  

For a thorough error analysis, 𝑙  error norm is calculated using:  

 𝑙  (∫            
    

  )
 

  (2.37) 

where       is the solution vector from numerical methods (i.e., IGA or FEM) 

and      is the solution vector from the analytical solution.  

 

Figure 2.4 𝑙2 error analysis for IGA and FEM: (a) p-refinement (steady analysis), (b) 

effect of inter-element discontinuity, C
m

 (m = 0, 1, and 2), (c) 

Computational time, (d) p-refinement (transient analysis). 
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Figure 2.4 represents the results for steady state and transient conditions using 

different DOFs, orders of approximation, and element continuities. Figure 2.4(a) shows 

the effect of p refinement while    elements are used in the steady state condition. The 

results for linear FEM and IGA (IGA1, FEM1) are identical when a similar mesh 

configuration is used. Although we use a uniform mesh for quadratic FEM, the 

descending trend for quadratic IGA and FEM (IGA2, FEM2) is also similar. For p = 3, 

only cubic IGA (IGA3) is studied and the descending trend depicts the highest rate of 

convergence in comparison with the linear and quadratic IGA/FEM. In general, the 

results show identical trends for both IGA and FEM with the rate of convergence of p+1. 

That is, for example, the rate of convergence for p = 2 is equal to 3V:1H. 

Figure 2.4(b) illustrates the effects of    (m = 0, 1, and 2) continuity on the error 

analysis. Considering quadratic IGA, the rate of convergence is identical for both    and 

   continuities.  However,    elements yield a smaller error for a given number of DOFs. 

The continuity analysis for cubic IGA (p = 3) suggests an identical rate of convergence 

for m = 0, 1, and 2. However, for a given number of DOFs, the error magnitude decreases 

by increasing the level of continuity (m). The results of error analysis demonstrate that    

elements have better performance in comparison with    and    continuities. 

Figure 2.4(c) depicts the reduction in error magnitude with respect to increase in 

CPU time for both IGA and FEM. Generally, as expected, the computation cost grows by 

increasing the number of DOFs. Further, the results suggest that p-refinement leads to a 

decrease in both computational cost and error magnitude. It is noticeable that the 

computational cost for IGA and FEM algorithms are almost similar. Although FEM 
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shows slightly better performance in the case of higher number of DOFs, the overall 

difference between IGA and FEM results is negligible. 

Figure 2.4(d) shows the error analysis results for IGA (p =1, 2, and 3) at t = 0.1d 

to examine the performance of the model under transient condition. The trend of error 

analysis results is found very sensitive to time discretization. For all cases which were 

examined, increasing DOFs could decrease error magnitude up to a certain level but 

beyond that, no further error reduction is observed by increasing the DOF. In the current 

analysis, the number of time steps is increased to     and it is observed that, within the 

depicted range of DOFs, the error analysis has a descending trend with a slope of 2V:1H. 

On the other hand, it should be noted that the magnitude of error is considerably higher 

than the state-state analysis. While beyond the scope of the current study, further studies 

are recommended to investigate the implementation of high-order implicit/explicit time 

integration schemes. 

2.4 Numerical Examples 

2.4.1 Celia et al.’s problem 

Celia et al.’s problem is a benchmark model to represent a strong infiltration front 

development in a homogenous soil column. Unsaturated hydraulic constitutive equations 

of soil are presented by the VGM model. Celia et al. (1990) used the modified Picard 

method in the context of mixed formulation of Richards’ equation and considered a 

column of 1 m length subjected to Dirichlet boundary conditions at the top and bottom. 

They used a constant time step (      ) to obtain the solution for the simulation time 

of 1 day. Table 2.2 briefly represents the parameters and conditions that are defined for 

Celia et al.’s problem. 
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Table 2.2 Parameters and conditions used for Celia et al.’s problem. 

Quantity Symbol Value  Unit 

Column length   1 m 

Saturated conductivity    9.22e
-5

 md
-1

 

Porosity   0.368  

Specific Storage Coefficient    0 m
-1

 

Saturated moisture content    0.368 1 

Residual moisture content    0.102 1 

VGM parametric model    

Fitting parameter  n 2 1 

Fitting coefficient     3.35 m
-1

 

IC and BC’s    

Initial conditions (IC)    -10 m 

Dirichlet -type BC at top   
  -0.75 m 

Dirichlet-type BC at bottom   
  -10 m 

Method: IGA, FEM    

Initial time step size     0.05 s 

Convergence error tolerance          10
-4

 1 

Steady state error tolerance         10
-4

 1 

 

In the current study, we use linear and quadratic FEM and IGA to simulate the 

same problem and investigate the effect of p refinement in highly nonlinear problems. 

For IGA and linear FEM the mass-lumping technique described in Eq. (2.9) is used 

which is known as the row-sum technique. However, for higher order FEM the special 

lumping technique that is presented in Appendix B is needed.  
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Figure 2.5 (a): Simulation of 1 day infiltration using linear IGA and FEM. (b) 

Comparison of linear and quadratic IGA for 1 day simulation. 

 

Figure 2.5(a) shows the results of simulation for IGA1 and FEM1 with 65 DOFs. 

The time of simulation is 24 hours and the solution is presented in time intervals of 6 

hours. As expected, the results are quite similar for both linear FEM and IGA. Using the 

mass lumping technique in Eq. (2.9) eliminates the oscillation in the solution otherwise 

the solution contains oscillation if consistent mass matrix is used. However, the result 

from higher order elements needs a detailed study. Implementing special mass lumping in 

the FEM2 formulation is not a successful strategy to prevent oscillation while IGA2 

obtains desired results by implementing row mass lumping.  
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Figure 2.6 Wetting front propagation in Celia et al.’s problem (a) FEM2 with 

consistent mass matrix. (b) FEM2 with special mass matrix. (c) IGA2 with 

row mass lumping.   

 

Figure 2.6 shows the patterns of wetting front propagation for quadratic FEM 

(Figures (2.6a) and (2.6b)) and IGA (Figure 2.6(c)) using 9 and 10 DOFs, respectively. 

The wetting front propagation versus time using FEM2 is depicted in Figure 2.6(a). The 

results show considerable oscillation when mass lumping is not formulated in the 

numerical scheme. Further, as demonstrated in Figure 2.6(b), FEM2 does not still yield 

proper results even using the special mass lumping technique and chord slope 

approximation of C (Eq. (2.5)). Following to the sharp change of pore pressure which 

occurs in the elements near the top boundary, C significantly increases in the 

corresponding nodes at the top boundary. This condition leads to the formation of a very 

large mass matrix while the magnitude of conductance matrix is considerably small, 

eventually resulting oscillatory solutions. This issue is very similar to the well-known 

numerical oscillation of reaction-diffusion processes when reaction dominates the physics 

(i.e.,Illinca and Hétu, 2008). Mass lumping is a stabilization procedure that helps 

alleviate these spurious oscillations. However, while this procedure is able to stabilize the 

FEM1 and all IGA solutions, it fails to stabilize the FEM2 solution with quadratic 
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Lagrange shape functions, which are     continuous. This observation can be possibly 

attributed to the fact that the mid-node of each element in FEM2 is connected to only two 

nodes, while the side nodes of the element are connected to four other nodes. IGA2, on 

the other hand, maintains the same level of connectivity for each degree-of-freedom, 

thereby providing a larger support across multiple nodes in the problem domain. This, as 

demonstrated in Figure 2.6(c), can likely enhance the stability of the numerical 

discretization to simulate wetting front propagation. 

Solutions of the h-based form of Richards’ equation are not generally mass 

conservative. However, the h-based formulation can still lead to a mass-conservative 

solution if the moisture capacity is properly introduced in the formulation. Using chord 

slope approximation of moisture capacity is a remedy to this shortcoming and it has been 

successfully used in several h-based solutions (e.g., Wu, 1999). To examine the IGA 

results, mass conservation ratio is defined as the ratio of total additional mass in the 

domain with respect to total net flux into the domain:  

   
∫             

∫      
 
        

 (2.38) 

where   is mass ratio,      is the moisture content at a given time,    is the initial 

moisture content,     and      are defined as the inward flux into system and outward 

flux, respectively.  

The mass conversation of the h-based IGA results is examined for two cases 

where moisture capacity is calculated using the analytical solution (i.e., Eq. 2.5(a)) or 

approximated using the chord slope method. Figure 2.7 depicts the mass conservation 

ratios of the h-based IGA results for both cases. The analysis shows that if the analytical 
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solution of moisture capacity is considered in the numerical formulation, the method is 

not mass conservative and about 30% of mass loss occurs at the beginning of simulation. 

It is noticeable that an increase in p in this method leads to an increase in mass loss. 

However, as shown, the method using the chord slope approximation is totally mass 

conservative and the value of   is unity during the simulated time.  

 

Figure 2.7 The analysis of mass conservation for Celia’s problem. 

 

2.4.2 2D Infiltration Problem in Semi-Circle Furrow 

To illustrate the ability of IGA for modeling unsaturated seepage problems in 

complex geometries, this section presents results for IGA modeling of infiltration in a 

semi-circular furrow. As illustrated in Figure 2.8(a), the vadose zone is subjected to 

infiltration in a semi-circular region at the top while it rests on the water table at the 

bottom boundary. Hydrostatic distribution of pore water pressure is defined as initial 
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condition. The 2D problem is modeled with R = 1 m where R is the radius of furrow, and 

x = y = 4 m where x, y are horizontal and vertical dimensions of the model, respectively. 

Soil properties are taken identical to the parameters introduced in Problem 2.4.1 (Celia et 

al.’s problem) and the infiltration rate (q) is 8.3e
-5

 md
-1

, which suggests a highly 

nonlinear problem due to the high rate of imposed infiltration.  

 

Figure 2.8 Infiltration problem in semi-circular furrow: (a) Geometry and hydraulic 

boundary conditions. (b) Discretized domain using quadratic IGA mesh. 

 

Taking advantage of symmetry, only a half of the domain is considered in the 

simulation and the geometry is simulated via quadratic basis functions. The associated 

knot vectors with respect to each direction are defined as       {               } and 

      {           } where r and t represent the discretization directions (see Figure 

2.8(b)). The corresponding control points with respect to       and       are defined  

as:  
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      {
          
           

    
        
           

   
          
        

 
          
       

}   (2.39) 

To accurately simulate the semi-circle geometry at the top boundary, the 

following weight vector is applied to the control points:  

    {       
 

√ 
        

 

√ 
                                      } (2.40) 

For illustration purpose, Figure 2.8(b) shows the discretized domain with 165 

DOFs while the transient simulation is performed using 612 DOFs. Figure 2.9 shows 

total head contours at different times of t = 0.5, 1, 3 d and steady state condition. This 

problem involves applying a high rate of infiltration to a dry soil. The conductivity of the 

nodes related to the circular boundary is small and considering the geometry of the 

problem, these nodes may not be able to properly transfer the moisture from the boundary 

nodes to the soil body. This condition can dump moisture on the elements near the 

boundary. However, utilizing IGA and adaptive time steps allows to successfully 

transmitting moisture into the soil body in this problem. Cloud of nodes near the furrow 

and    elements associated with small time steps at the beginning stages of simulation 

suggest a successful remedy to alleviate large hydraulic gradients and complex 

geometries.  
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Figure 2.9 Total head contours for infiltration in semi-circular furrow at different time 

intervals: (a) t=0.5d (b) t =1d (c) t=3d (d) Steady state. 

  

2.4.3 Brunone et al.’s Problem 

Brunone et al. (2003) studied the transient flow problem for a heterogeneous 

column of soil. The flow conditions were similar to the research done by Hills et al. 

(1989) in which a layered soil profile made up of layers of Berino loamy fine sand at the 

top and Glendale clay loam at the bottom. The upper layer is exposed to an intense 

vertical infiltration while it has a lower hydraulic conductivity with respect to the bottom 

layer. Since this problem is highly nonlinear, improper IC can highly affect the accuracy 
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of the solution and leads to divergence. In this case, the steady state pressure head profile 

for the constant infiltration rate of q = 4.54 × 10
-6

 mh
-1

 is used as IC while the infiltration 

rate abruptly changes to q = 95 × 10
-4

 mh
-1

. In the discretized domain, the boundary 

condition for the top boundary is flux (q) and the boundary condition at the bottom is a 

prescribed constant head. Tables 2.3 and 2.4 list further details that specify this highly 

nonlinear problem. As shown, Gardner’s model is used to describe hydraulic constitutive 

equations of the soils. 

Table 2.3 Parameters used for Brunone et al.’s problem. 

Quantity Symbol Value  Unit 

Column length   1 m 

IC and BC’s    

Initial conditions (IC)    Variable m 

Neumann-type BC at top   95e
-4

 md
-1

 

Dirichlet-type BC at bottom    -1.0 m 

IGA2    

Degree of freedom     50 and 100 1 

FEM2    

Degree of freedom     50 and 100  1 

Initial time step size     0.45 s 

Convergence error tolerance          10
-4

 1 

Steady state error tolerance         10
-4

 1 

    

Table 2.4 Material properties used for Brunone et al.’s problem. 

Layer Thickness (m)           (m
-1

)   (mh
-1

)    (m
-1

) 

1 0.2 0.4 0.06 0.4 10 0.01 10
-4

 

2 0.8 0.4 0.06 0.4 10 0.1 10
-4
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To model Brunone et al.’s problem, quadratic NURBS basis functions are utilized 

based on knot vector      {                   } and control points 

  {                 }  The introduced   has C
0
 continuity at P3 = 0.8 (Figure 2.1). 

This property allows the introduction of a definite boundary between two soil layers. In 

addition, based on the aforementioned, when a boundary is interpolatory in IGA, finer 

elements will be automatically generated near that boundary.  In order to compare the 

results with quadratic FEM, the same mesh configuration is used for FEM2. Two models 

with the number of DOFs of 50 and 100 with non-uniform mesh are analyzed and results 

are compared with the corresponding analytical results. 

In variably saturated transient flow problems, the principal motivation behind the 

mass-lumping technique is the generation of a mass matrix,    which is diagonal and 

easily invertible. Moreover, fully implicit time marching in combination with mass 

lumping has shown privilege to consistent mass matrix (Diersch, 2013). In the FEM2 

analysis, the special mass lumping technique is used while in IGA2 analysis the row-sum 

technique is used. In FEM, the row-sum technique is usually valid for linear elements 

where the shape functions are always positive. For higher order IGA, the lumping 

procedure is equivalent to the row-sum technique since IGA basis functions are always 

positive Hughes (2005). In conventional FEM, the higher-order shape functions could be 

either negative or positive, which limits the applicability of the row-sum technique.  
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Figure 2.10 (a): Wetting front for 1D heterogeneous soil using 50 DOF for IGA2 and 

FEM2. (b): Wetting front for 1D heterogeneous soil using 100 DOF for 

IGA2 and FEM2. 

 

The pore pressure profile for different time intervals and 50 DOFs is illustrated in 

Figure 2.10(a). It shows that both IGA2 and FEM2 are able to predict the wetting front 

properly in the top layer where the hydraulic conductivity is ten times less than the 

bottom layer. However, in the bottom layer, the pore pressure profile obtained by FEM2 

is behind the pore pressure profile achieved by IGA2. This trend is more pronounced for 

time intervals of 1 and 2 hours and as time increases toward the steady state condition, 

the difference between IGA2, FEM2 and the analytical solution decreases. The number of 

DOFs is increased to 100 in Figure 2.10(b), which shows that the solutions from both 

IGA2 and FEM2 are closer to the analytical solution, though the predicted wetting front 

from FEM2 is still behind IGA2. In summary, it is seen that the results from IGA are 

closer to the analytical solution by increasing the DOF and p refinement. 

2.4.4 2D Infiltration in Heterogeneous Soils 

The last example shows the numerical simulation of the infiltration problem into 

two layers of soil in the vadose zone. This example represents a 2D geometry with 2 m 
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width and 3 m high subjected to a constant infiltration rate (q) at the surface for 2 days. 

As depicted in Figure 2.11(a), it is assumed that the infiltration is only imposed on the 

left part of the surface (           and the rest of the top boundary is a no-flux 

zone. The bottom layer lies on the water table and it enforces the essential boundary 

condition h = 0. While the hydraulic conductivity of the soil layer at the top is twice as 

the hydraulic conductivity of the bottom layer, a continuous hydrostatic distribution of 

pore water pressure is assumed as ICs for both layers. The internal boundary that 

separates two layers of soils is located at 1.5 m. Further details for material properties of 

soil layers and Gardner parameters are presented in Table 2.5 and 2.6, respectively.  

Table 2.5 Parameters used for 2D heterogeneous problem. 

Quantity Symbol Value Unit 

Column length   3 m 

IC and BC’s    

Initial conditions (IC)    Hydrostatic m 

Neumann-type BC at top   0.7 md
-1

 

Dirichlet-type BC at bottom    0.0 m 

IGA (p=1,2, and 3)    

Degree of freedom     500 1 

Initial time step size     0.45 s 

Convergence error tolerance         10
-4

 1 

Steady state error tolerance         10
-4

 1 

 

Table 2.6 Material properties used for 2D heterogeneous problem. 

Layer Thickness(m)            (m
-1

)   (mh
-1

)    (m
-1

) 

1 1.5 0.4 0.092 0.4 2 0.042 0 

2 1.5 0.4 0.092 0.4 2 0.021 0 
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Figure 2.11 (a) Sketch of the 2D unsaturated solution domain in heterogeneous vadose 

zone. (b) IGA mesh based on NURBS basis function (170 DOF). 

 

The presented problem is simulated with IGA using 500 DOFs based on NURBS 

basis functions and the results are compared regarding p refinement. Problem domain is 

discretized to non-monotonic element sizes since IGA mesh is finer near the boundaries. 

This intrinsic property of IGA is induced as a result of decrease in continuity of NURBS 

basis functions to     and   . In this study, the domain boundaries (external boundaries) 

are generated by utilizing open knot vectors that include     property. The generation of 

internal boundary is done by repeating the associate knot p-1 times in knot vectors which 

results in     continuity at the interface of two soil layers. 

To discretize the problem using IGA mesh in the x and y directions, we used 

      {       } to discretize the domain in the x direction while the order of basis 

function (   ) is 1 and for the y direction, the parameters for the quadratic case (i.e.  
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      {                   } with order of     ) are shown. The corresponding 

control point with respect to       and       is defined  as:  

      {
      
       

    
     
     

   
   
         

 
 
   

} (2.41) 

The presented problem is simulated with IGA using 500 DOFs based on NURBS 

basis functions and the results are compared regarding p refinement. Problem domain is 

discretized to non-monotonic element sizes since IGA mesh is finer near the boundaries. 

This intrinsic property of IGA is induced as a result of decrease in continuity of NURBS 

basis functions to     and   . In this study, the domain boundaries (external boundaries) 

are generated by utilizing open knot vectors that include     property. The generation of 

internal boundary is done by repeating the associate knot p-1 times in knot vectors which 

results in     continuity at the interface of two soil layers.     

In order to visualize the discretized domain with IGA mesh, Figure 2.11(b) 

represents the discretized geometry when the number of DOFs is 170. The internal 

boundary is located at the elevation of 1.5 m and as expected, the elements with smaller 

sizes are generated near the internal boundary.  

The numerical simulation shows the mechanism of negative pore pressure 

dissipation in the selected domain for 2 days. The results of pre-selected time interval of t 

=0.1, 0.5, and 2 days are presented in Figure 2.12. 
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Figure 2.12 Pore pressure contours for heterogeneous soil: a) t=0.1 day, b) t=0.5 day, 

and c) t= 2 day. 

 

IGA simulations (p = 1, 2, 3) represent the dissipation of negative pore pressure 

which occurs in a lower rate in the bottom layer. It is also noticeable that near the internal 

boundary, the sharp changes in pore pressure contours appear. Generally, the difference 

between IGA results is pronounced near this region.  Sharp changes in the pore water 

pressure profile at the soils interface are expected. In comparison with linear 

approximation (IGA1), p-refinement in this study suggests that higher order 

approximations estimate the sharp changes closer to the internal boundary. 



 

52 

 CHAPTER III

RANDOM ISOGEOMETRIC ANALYSIS (RIGA) FOR MODELING SEEPAGE IN 

UNSATURATED SOILS 

 

This chapter has been submitted to the ASCE Journal of Engineering Mechanics 

as a technical paper, and it is under peer review process while this thesis has been written. 

This chapter has been reformatted and replicated herein with minor modifications in 

order to outfit the purposes of this thesis. 

3.1 Introduction 

The majority of natural soils are heterogeneous with highly variable properties. 

Soil variability can be attributed to lithological heterogeneity, uncertainty in measured 

data from a site, inclusion of uniform soil mass pockets with different lithology or 

transformation uncertainty (Phoon and Kulhawy, 1999; Elkateb et al., 2003). The first 

source of uncertainty shows embedded stiffer/softer layers in thicker softer/stiffer media. 

The second source, which is known as point variability, describes the variation in 

measured properties independent from the position. For instance, the permeability 

coefficients obtained from different samples from the same site represent point 

variability. Point variability in soil properties is commonly shown by Probability Density 

Function (PDF) (Phoon et al. 2010). The third source which attributes to the definition of 

spatial variability shows the variation of soil properties from one point to another in a 
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given medium. Spatial variability is usually defined by the spatial correlation functions 

(Elkateb et al., 2003; Green et al., 2015). The mathematical structure that combines point 

and spatial variability is termed as random field theory (Fenton and Griffiths 2008).  

In conventional geotechnical engineering practice, geotechnical engineers 

commonly use high factors of safety and past experience to account for the effects of 

uncertainties in design. However, case histories show that 70% of geotechnical failures 

were due to poor or bad engineering judgments (Morgenstern, 2000). Therefore, the need 

for developing more reliable tools to consider the variability in engineering designs and 

analyses has been well-accepted (e.g., Fenton and Griffiths, 2003; Griffiths and Fenton, 

2009, Bastani and Damircheli, 2013; Bastani and Damircheli, 2017). Random field 

models have successfully been employed along with the Finite Element Method (FEM) to 

account for the effects of variability of soil parameters (e.g., Griffiths and Fenton, 1993; 

Schweiger and Peschl, 2005; Zhang and Yan, 2015). In such analyses, FEM simulations 

account for point and spatial variability using either a stochastic approach or Monte Carlo 

simulation (Elkateb et al., 2003). Employing the Monte Carlo method in random field 

simulations needs considerably large numbers of successive simulations to accurately 

predict the behavior of soils with highly variable properties. Therefore, it is desirable to 

employ a computationally efficient solver with the Monte Carlo method for simulating 

the true behavior of a system. This problem is further intensified where the soil properties 

show a highly nonlinear behavior (e.g., unsaturated flow in porous media). It is noted the 

majority of the above-mentioned studies accounted for the variability of soil properties in 

the context of classic soil mechanics, where the soil is treated as either dry or saturated. 

Modeling unsaturated soil problems, as a more general case, can pose further 
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complexities due to a higher number of parameters needed to describe the hydro-

mechanical properties of these soils and the inherent variability associated with them. 

Limited work (e.g., Cheng et al. 2016; Soraganvi et al. 2016; Liu et al. 2017) has been 

done to incorporate the effects of such variability in the simulation of unsaturated soil 

problems.  

In this study, for the first time we combine Isogeometric analysis (IGA) and 

random field theory and propose a new probabilistic framework, called Random 

Isogeometric Analysis (RIGA), for simulating unsaturated soil problems. The proposed 

framework offers a computationally efficient solution, owing to IGA features, and also 

accounts for the variability of unsaturated soil parameters. The Soil Water Retention 

Curve (SWRC) and Hydraulic Conductivity Function (HCF) are considered two key 

constitutive equations for describing the behavior of unsaturated soils. A database of 

unsaturated hydraulic properties is used to investigate the variability of SWRC and HCF 

model parameters for different soils. Random field concepts with statistical homogeneity 

(fixed mean, standard deviation, and spatial correlation) are used to generate SWRC and 

HCF model properties. A joint lognormal distribution function is introduced to present 

the PDF for model parameters and it is used within IGA to perform Monte Carlo 

simulations of unsaturated seepage problems. Application of the proposed RIGA is then 

illustrated by simulating unsaturated seepage in two example problems. 

3.2 Variability in hydraulic properties of unsaturated soils 

3.2.1 Governing Equations 

Richards’ equation is commonly used to describe fluid flow in unsaturated soils. 

In this study, we consider a head-based formulation of Richards’ equation: 
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   [          ]  (
 

 
       )

  

  
 (3.1) 

where   is the volumetric water content,   is the porosity,    is the specific 

storage coefficient,   is total head,   is matric suction,        is relative conductivity 

function,    is effective degree of saturation,    is saturated hydraulic conductivity 

tensor, and      is the moisture capacity.                      are determined based 

on soil types and experimental data. Subsequently, these terms can be introduced as the 

sources of uncertainty in unsaturated flow analysis. In this study and for simplicity, we 

focused on the uncertainty imposed by the variability in               . 

3.2.2 Point variability 

Volumetric water content ( ) and matric suction ( ) are the key parameters in 

defining the hydraulic properties of unsaturated soils. The  -   relationship, referred to 

as the SWRC, can be represented by several models in the literature (e.g., Brooks and 

Corey, 1964; van Genuchten 1980; Fredlund and Xing, 1994). The majority of these 

models are developed to relate the Hydraulic Conductivity Functions (HCF) of the soils 

to the suction regime. For instance, van-Genuchten (1980) and Mualem (1976) (VGM) 

expresses hydraulic conductivity as follows:  

      {
             |   |              
                                                                

 (3.2) 

where    and    are residual and saturated moisture contents, respectively,    and 

  are VGM’s fitting parameters representing the inverse of the air-entry head and the 

breadth of the soil’s pore size, respectively. It is commonly assumed to     
 

 
. 

Based on Eq. (3.2), effective degree of saturation (  ) is defined as:  
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 (3.3) 

Subsequently, the hydraulic conductivity in unsaturated soil is expressed as:  

       (  

 

 *   (    

 

 )

 

+

 

)   (3.4) 

Uncertainty in the SWRC has been relatively well-studied in geotechnical 

engineering (e.g., Gitirna and Fredlund 2005; Phoon et al. 2010; Chiu et al. 2012; Tan et 

al. 2013; Zhang and Yan 2015). Phoon et al. (2010) studied the probabilistic analysis of 

SWRC by casting a probability model for curve fitting parameters (    ). Their study 

covered sandy clay loam, loam, loamy sand, clay, and silty clay data in Unsaturated Soil 

Hydraulic Database (UNSODA). Moreover, they state that    is fixed at the experimental 

value related to zero suction which means    is not a fitting parameter. On the other hand, 

they showed that different assumptions on the residual water content (e.g.,       

or      ) lead to different SWRC curves over the high suction rage. Since only a few 

data points in the database present high suction range, they concluded that it is very 

difficult to present which assumption is more accurate (Phoon et al. 2010). Subsequently, 

they limited their statistical study to    and n. For the same reason this study only 

considerers     and n as fitting parameters for RIGA. 

Phoon et al. (2010) found the correlation between      with a maximum 

correlation coefficient reported as -0.487 for clay. They used a lognormal joint 

probability model to represent point variability of SWRC. In this study, the same 

approach is used but the proposed joint distribution function will be extended for       

and   . 
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3.2.2.1  Database of unsaturated hydraulic properties 

In this study, data is extracted from UNSODA which was developed by U.S. 

Salinity Laboratory, U.S. Department of Agriculture (Leij et al. 1996). The database 

includes test results of hydraulic properties from 780 unsaturated soils ranging from clays 

to sand. In the current study,      and    are considered as Random Variables (RVs). 

The test results for silty loam and sandy loam from UNSODA are used to characterize the 

variability of        and   . In order to find the joint distribution function of RVs, the test 

records such as suction, moisture content, and saturated hydraulic conductivity for silty 

loam and sandy loam samples are obtained. The fitting parameters          are then 

determined using the constrained non-linear optimization method. This method finds a 

vector that is a local minimum to a scalar function subjected to constraints on the 

permissible vector. This procedure is accomplished using the built in subroutine 

“fmincon” in Matlab8.1 (R2013a).  After discarding incomplete data and excluding 

outliers, 48 and 40 data sets were used for silty loam and sandy loam, respectively.   

3.2.2.2 Statistical distribution of hydraulic properties 

From a material properties point view, PDFs with non-negative values (e.g., 

exponential, Weibull, and lognormal distribution) are preferred to define the probability 

distribution of RVs as these properties are typically positive. Specifically, the lognormal 

PDF has been successfully used in a variety of analyses, including unsaturated soils (e.g., 

Babu and Murthy, 2005; Likos et al., 2013; Tan et al. 2013). Griffiths and Fenton (1993) 

used a lognormal distribution of     to model the random field in steady-saturated 

seepage problems using their proposed Random FEM (RFEM) framework. In addition, 
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Phoon et al. (2010) showed that the distributions of     and   also follow a lognormal 

PDF.  

We performed our statistical analysis based on the assumption of a joint 

lognormal distribution of      and    for silty loam and sandy loam. Since all three RVs 

are continuous, the fitness of the proposed PDF is tested by Anderson Darling (AD) 

criteria (Fenton and Griffiths, 2008). A given set of RVs ( ) is lognormally distributed if 

𝑙      follows a normal distribution. Consequently, the PDF for the random variable (y) 

is defined:  

       
 

         √  
   ( 

 

 
( 

            

    
   ))                     (3.5) 

where       and      are mean and standard deviation of the corresponding 

normal distribution, respectively, and   defines the threshold where the Cumulative 

Distribution Function (CDF) of Y is zero below that.   is defined based on practical 

cases, which matches the physics of problem. The values of   for         and   are 

(0,0,1), respectively. The mean and variance of   are obtained by using the moment 

generating function of lognormal RV. The transformation between the mean and variance 

of a lognormal distributed RV and corresponding normal distribution are defined as:  

      𝑙       
 

 
    

  (3.6) 

     
  𝑙 (  

  

      
) (3.7) 

where   and   are the mean and standard deviation of measured data, 

respectively. These parameters can be estimated by sample mean and standard deviation 

(    
∑ 

 
,     (

∑      

   
)
   

,   represents the sample size). In addition, the 
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requirement for introducing a joint PDF is considered based on a linear correlation 

between normal RVs. Phoon (2004) introduced a closed-form equation that relates the 

correlation of normal random vectors 𝑙       and 𝑙       (         
) to the correlation of 

the corresponding lognormal vectors    and    (     
):  

      
 

   (     
     

         
)  

√    (     
 )       (     

 )   
 (3.8) 

Table 3.1 shows linear correlation (          
), mean ( ), standard deviation ( ), 

coefficient of variation (   ) for the silty loam and sandy loam sampels which were used 

in this study. The statistical correlation between the three parameters can be explained by 

the relation between physical factors controlling these variables.  As noted before,    and 

n approximate the inverse of air entry value and pore size distribution, respectively. The 

air entry value is directly connected to the characteristics of soil pore size distribution. 

The pore size distribution depends on the particle size distribution, the particles 

arrangement and the soil composition among others. Saturated hydraulic conductivity 

closely correlated to soil texture, particle size distribution and soil bulk density. 

 

Table 3.1 Statistical analysis of silty loam and sandy loam samples used in this 

study. 

Silty Loam Sandy Loam 

         
 Ks(m/s) (1/m) n          

 Ks(m/s) (1/m) n 

Ks (m/s) 1 -0.06 0.01 Ks (m/s) 1 0.25 0.11 

   (1/m) -0.06 1 -0.32    (1/m) 0.25 1 -0.44 

N 0.01 -0.32 1 n 0.11 -0.44 1 
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  4.84e-6 1.04 1.36   9.57e-6 2.62 1.33 

  5.48e-6 1.06 1.95   2.40e-5 3.49 0.16 

    1.13 1.02 0.14     2.51 1.33 0.12 

 

In the above definition, lognormal random vector              

represents        and  , respectively. It is noted that the subscript   is not represented in 

the next sections for simplicity. 

Figures 3.1 and 3.2 show the histograms and estimated PDFs for        and   

for silty loam and sandy loam, respectively. In all figures, the frequency of occurrence in 

each bin is normalized by the total number of data points with respect to the given data 

set. The probability of mistakenly rejecting the lognormal hypothesis is defined by 

significance level of 5%. The AD goodness-of fit test indicates that the lognormal 

distribution is acceptable to represent the PDF for the RVs of interest. The minimum 

significance level (P_value = 0.135) is observed for the data representing n in silty loam 

(Figure 3.1(c)). It still shows that the hypothesis of representing lognormal distribution is 

valid for n.   
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Figure 3.1 Statistical analysis for silty loam: (a) Histogram and estimated PDF for   . 

(b) Histogram and estimated PDF for   . (c) Histogram and estimated PDF 

for  . 

 

 

Figure 3.2 Statistical analysis for sandy loam: (a) Histogram and estimated PDF 

for   . (b) Histogram and estimated PDF for   . (c) Histogram and 

estimated PDF for  .  

 

3.2.3 Spatial Variability 

In the previous section, we considered the variability of quantities at a point in a 

given medium. In this section, we add the spatial variability of RVs in the domain and 

study the possible correlations between them. Spatial dependence between two positions, 

   and   , is negatively dependent on the distance between these two points (       ). 

For instance, two RVs, 𝑙        and 𝑙      , are statistically more likely to be similar, or 
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correlated, when   is small and dissimilar, or uncorrelated, when   is large (Fenton and 

Griffiths, 2008). The spatial dependency results in smoothing of random process; 

however, including all points in this scheme leads to a joint PDF with infinite 

dimensions. Assumptions of statistical homogeneity and isotropy can be used to alleviate 

this problem. Statistical homogeneity implies that the joint PDF is independent of spatial 

position and depends only on relative positions of the points in a given domain. This 

indicates that the mean, variance, and higher order moments are constant in space. In 

addition, isotropy suggests that the joint PDF is invariant under rotation, which indicates 

that the correlation between two points only depends on the distance between them and is 

independent from their orientation relative to one another in two- or three-dimensional 

random fields (Fenton and Griffiths, 2008).  

Since the RVs are Gaussian and stationary, we only need the following items to 

characterize them: 

1) Mean     . 

2) Variance     
 . 

3) Point correlation          
. 

4) How rapidly the RVs vary in space.  

Items 1, 2 and 3 have been considered in the previous section, while the last is 

discussed in the rest of this section. The rate of variation of RVs in space is based on the 

second moment of the joint PDF. The covariance function, spectral density function, and 

variance function are equivalent to the second moment of the joint PDF. In this study, we 

use covariance and variance functions to capture the spatial variability of the RVs.    
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The covariance function defines the second moment for joint Gaussian RVs. 

Since 𝑙   is stationary,      and      are independent of position, consequently, the 

covariance function can be expressed just in term of  :  

     𝑙       𝑙            𝑙      𝑙             𝑙      𝑙            (3.9) 

The covariance function      generates a positive definite set if we consider the 

covariance matrix   [      ]  where   and   show two different positions in a given 

domain. The square root of   is real and equals the lower triangular matrix   , which is 

obtained by Cholesky decomposition (Griffiths and Fenton, 2007):  

        
  (3.10) 

Since the magnitude of covariance depends on the size of the RVs, it does not 

give much information about linear dependence between random fields. Subsequently, a 

more meaningful measure is to study the dependency/independency of RVs by the 

correlation function:  

   ( 𝑙       𝑙      )  
     

    
  (3.11) 

where    shows the spatial correlation between RVs. In this study, we used the 

Markov correlation function for simplicity:  

            ( 
 | |

 
) (3.12) 

where   is the correlation length;   indicates the spatial domain of RVs where 

beyond that the RVs are largely uncorrelated (see Figure 3.3).  

In practice, common engineering properties represent the local average over the 

laboratory samples. For instance, failure load is defined as the average of bond strength 

over the failure region (Fenton and Griffiths, 2008). This idea is also used in the study of 
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behavior of random fields over the area (A) of a given 2D domain with length    and    

(       ).  

 

Figure 3.3 Spatial correlation         and arithmetic average of random fields 

over        . 

 

Fenton and Griffiths (2008) show that the local arithmetic averaging preserves the 

mean of the random field while variance in random fields decreases by a reduction factor 

( ):      

          
 

  
   

 ∫ ∫  |  |     
  

 

  

 
 |  |                 (3.13) 

where | |   √  
    

   in two-dimensional (2D) geometry.   
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3.2.4 Random Isogeometric analysis 

This study uses IGA in a non-deterministic way by combining it with random 

fields. Here, it is tried to solve Richards’ equation with respect to uncertainty and 

randomness in soil properties. The numerical solution follows exactly Chapter 2 and we 

just focus on probabilistic analysis in the rest of thesis. 

3.2.5 RIGA Solution Procedure 

The analysis of unsaturated flow for a given realization using RIGA is described 

in the following steps with respect to point and spatial variability of unsaturated soil 

properties: 

0. Discretize the problem geometry using IGA.  

1. Generate three uncorrelated standard normal random samples with respect to 

number of nodes (        in the discretized domain.    [        ]        . Since 

the sample mean can be non-zero for small sample sizes, the sample mean is removed 

from the simulated numbers. This procedure is done by built in subroutine “randn” in 

Matlab8.1 (R2013a).     

2. Calculate the covariance matrix for   and imply Cholesky decomposition to 

find lower triangular matrix [  ]   . 

3. Find correlation matrix for normally distributed data (Eq. (3.8)) and imply 

Cholesky decomposition to find lower triangular matrix [    ]   . 

4. The correlated normal random vector is generated using the Cholesky factor of 

the correlation matrix. [ ]                   
    . 



 

66 

5. Generate spatial correlated random fields with respect to   by Eq. (3.12). Then 

calculate the lower triangular matrix [  ]              using Eq. (3.10).   

6. Generate spatially correlated normal random vector using [  ]            

 . 

7. Average    over the discretized domain (elements) and calculate covariance 

reduction factor                    𝑙        regarding the size of elements using 

Eq. (3.13).  

8. The correlated lognormal random vectors              which show the 

elements properties are defined as         ( 
 
   

         
)     (      

 does not 

represent the indicial summation). 

9. Continue the realization via IGA using elements properties introduced in step 8. 

Performing Monte Carlo simulation using adequate numbers of realizations 

(following steps: 0-9) leads to RIGA analysis of unsaturated flow in porous media, 

considering the point and spatial variability of hydraulic properties. It is noted the 

algorithm presented by Phoon (2004) is used in the current study to generate correlated 

and lognormal distributed RVs. This procedure simulates uncorrelated standard normal 

RVs and transforms them into correlated normal RVs with the appropriate correlation 

formula introduced by Eq. (3.8) and finally, translates the correlated normal to correlated 

lognormal RVs. 

3.3 Example Problems 

Two sets of results are usually of particular interest in unsaturated flow problems: 

a) pore water pressure distribution, and b) inflow and outflows. The following sections 
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present two example problems to demonstrate the application of RIGA for investigating 

the aforementioned set of results. The first example problem involves one-dimensional 

unsaturated flow in a rectangular domain. In this example, we employed RIGA to explain 

how the outflow varies with inherent uncertainties in soil properties. In the second 

example, unsaturated flow in a two-dimensional furrow, we show that how the random 

nature of soil affects the pore water pressure distribution and how the probabilistic 

solution is different from a deterministic scenario. 

3.3.1 One-dimensional unsaturated flow in a rectangular domain 

The first example problem represents a rectangular domain (W X L) consisting of 

silty loam. In this problem the effect of   and geometry ratio (W/L) on the outflow (Q) 

from bottom boundary is studied. The boundary conditions on the top and bottom of the 

domain are Dirichlet boundary conditions (   ). The top boundary is subjected to a 

constant head of 2 m and the bottom boundary is located on the water table. According to 

Figure 3.4(a), the datum is defined on the soil surface, which introduces a constant head –

L on the bottom boundary. Based on the defined boundary conditions, this problem 

represents a one-dimensional (1D) flow in a 2D geometry.   
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Figure 3.4 (a): Rectangular domain representing 1D flow in silty loam. (b): 

Discretized domain using 100 DOFs. 

 

The problem domain is discretized using elements in IGA. The order of 

approximation is p = q = 2 and the corresponding knot vectors and control points are 

defined as:  

     {           } (3.14) 

     {
       
   

       
       

               
       

       
      

}  

The corresponding weight vector is unit in this problem. For illustrative purposes, 

Figure 3.4(b) represents the discretized domain using 100 DOFs and quadratic elements 

for the geometry ratio W/L=1. To achieve a computationally accurate solution the DOF 

were increased from 100 to 1156 for Monte Carlo simulations, In order to study the effect 

of geometry on the outflow distribution at the bottom boundary, three geometry ratios 

(W/L= 1/6, 1, and 6) are studied. The correlation length varies with respect to   = [0.005, 

0.05, 0.25, 0.5, 1, 1.5] m for a given geometry ratio. For each individual  , 1000 Monte 
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Carlo simulations were performed and the corresponding Q at the bottom boundary was 

recorded. The number of realizations is problem-specific and was determinate through a 

sensitivity analysis. For this problem, it was found that the changes in mean and standard 

deviation were negligible beyond 1000 realizations.  

Figure 3.5 shows the dependency of coefficient of variation (COV) of outflow in 

steady sate conditions on the correlation length. It is observed in Figure 3.5 that 

dependency of COV exponentially increases as the correlation length grows. It is also 

shown in Figure 3.5 that by increasing W/L the COV of results from Monte Carlo 

simulations increases. Figure 3.5 suggests that the variation in the simulations is 

considerable as the distance between the water table and soil surface decreases for 

     m.  

 

Figure 3.5 Dependency of coefficient of variation on correlation length in Monte 

Carlo simulations.    
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In order to study the effect of   on the results, the outflow variation with respect 

to            , and      m is studied in the proposed geometry ratios. The frequency 

of occurrence is normalized by the total number of simulations in each bin and it is 

assumed that in all analyses, the lognormal distribution is the null hypothesis to represent 

the PDF for Q. The goodness of fit test (AD) suggests that the lognormal distribution is 

acceptable with a significance level of 5% in all cases. Higher P_values show more 

confidence in representing the distribution of Q with a lognormal function. The increase 

in COV as ε increases is captured in Figure 3.6 for W/L=1/6. In addition, the histograms 

for values of Q are shown to be slightly skewed to the left as   increases. The minimum 

P_value is observed for       m while the maximum P_value is observed for        

m.  

 

Figure 3.6 Lognormal PDF of Q in geometry ratio (W/L=1/6): (a) correlation 

length       . (b) correlation length       . (c) correlation length   
     m.   

 

Increase in the geometry ratio (W/L) from 1/6 to 1 leads to an increase in Q for all 

  values, as shown in Figure 3.7. In addition, Figure 3.7 shows that higher   leads to 

higher COV, similar to the trend seen for the ratio W/L=1/6. The histograms show that an 
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increase in   results in data that is more skewed to lower values of Q and covers wider 

ranges than smaller values of  .  

 

Figure 3.7 Lognormal PDF of Q in geometry ratio (W/L=1): (a) correlation length ε = 

0.05. (b) correlation length ε = 0.25. (c) correlation length ε = 0.50 m. 

 

The last scenario in the parametric study deals with the geometry ratio W/L = 6. 

Similar to the trend seen in Figures 3.6 and 3.7, the COV increases as   grows. However, 

the rate of change in COV is intensified with respect to increase in the geometry ratio. 

For instance, Figures. 3.6, 3.7, and 3.8(c) show that by increasing W/L the COV 

considerably increases from Q = 0-20 x 1e
-7

 m/s (Figure 3.6(c)) to 0-140 x 1e
-6

 m/s 

(Figure 3.8(c)). Subsequently, changes in W/L lead to variation in COV from 0.495 to 

2.107. 
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Figure 3.8 Lognormal PDF of Q with geometry ratio (W/L=6): (a) correlation 

length       . (b) correlation length       . (c) correlation length   
     m. 

 

3.3.2 Two-dimensional Furrow problem 

In the second example, RIGA is used to model an infiltration problem in a semi-

circular furrow. This problem includes a 2D flow in a variably saturated soil. Due to 

symmetry, only half of the problem is considered with Sandy-loam properties (Table 

3.1). Figure 3.9(a) shows an unsaturated domain subjected to infiltration rate of q/Ks(mean) 

= 0.5 in the circular geometry while the bottom boundary sits on the water table. The 

prescribed head on the bottom boundary is constant (h = -4m) and Ks(mean) represents the 

mean value of saturated permeability for sandy loam. In order to represent the problem in 

IGA, bi-quadratic elements are used to discretize the geometry.  The associated knot 

vectors with respect to each direction are defined as       {               } and 

      {           } where r and t represent the discretization directions (Figure 

3.9(b)). The corresponding control points with respect to       and       are defined  

as:  

      {
          
           

    
        
           

   
          
        

 
          
       

}   (3.15) 



 

73 

To accurately simulate the semi-circle geometry at the top boundary, the 

following weight vector for associated control points is defined as: 

    {       
 

√ 
        

 

√ 
                                      } (3.16) 

For illustration purpose, Figure 3.9(b) shows the discretized domain with 165 

DOFs while in order to obtain accurate results, the Monte Carlo simulation is performed 

using 612 DOFs. 

 

Figure 3.9 Infiltration problem in semi-circular furrow: (a) Geometry and hydraulic 

boundary conditions. (b) Discretized domain using quadratic IGA mesh.   

 

Monte Carlo simulation includes 1500 realizations to represent the random nature 

of HCF in this problem. For this problem, the changes in mean and standard deviation 

were found to be negligible beyond 1500 realizations. Figures 3.10 and 3.11 show three 

realizations and associated results in steady state conditions with the aim of representing 

averaged Ks in the IGA elements. The outcomes from Figure 3.10 correspond to a 

lognormal random vector for point and spatial variability. The color code in the 
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discretized domain shows lower permeability in the darker elements and higher 

permeability in the lighter ones and Figure 3.11 shows the corresponding head contours 

in the same realizations. Figures 3.10 and 3.11 illustrate that the effects of random 

properties on unsaturated seepage analysis. It is seen that the variation in pore pressure 

increases in the regions with lower permeability blocks. Unlike the deterministic analysis 

(Figure 3.12(a)), the pore pressure profile is not smooth and due to the random nature of 

unsaturated soil hydraulic properties, the pore pressure profile is not unique and varies in 

each realization with respect to different elements’ properties.   

 

 

Figure 3.10 Random field (Ks) representation in IGA elements in three realizations. 
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Figure 3.11 Head contours in three different realizations. 

 

The outcomes of 1500 simulations are compared with deterministic results 

including   ̅ for Ks,   , and n (sandy loam in Table 3.1). Figure 3.12(a) represents the 

head values in the probabilistic and deterministic approach. The probabilistic approach 

includes the mean of 1500 realizations while the deterministic results are obtained 

directly from the problem simulation with   ̅ for Ks,   , and n. It is observed that the 

difference between the probabilistic and deterministic analyses is considerable in 

unsaturated flow simulations.  

Figure 3.12(b) shows the standard deviation of the results from the Monte Carlo 

simulations. The results from the simulations show that standard deviation values vary 

from the minimum 0.02 m to the maximum 0.18 m in the problem domain. The minimum 

values of standard deviation are close the bottom boundary since the value of total head is 

constant on this boundary. Analogous to the previous example with a geometry ratio W/L 

= 1/6, the standard deviation of the results decreases as the distance between the water 

table and soil surface increases.  
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Figure 3.12 (a) Difference between the mean of 1500 Monte Carlo realizations and 

results from deterministic solution, (b) standard deviation in the results of 

1500 simulation.     

 

Equation (3.13), along with step 7 in the RIGA solution procedure, indicates that 

the covariance reduction factor (  ) should be considered for obtaining the average of an 

element’s properties over the discretized domain.  Figure 3.13 shows the color codes that 

represent changes in    within the discretized domain. Figure 3.13 indicates that    

increases as the element size decreases. The minimum value for    is observed as 0.5 and 

the maximum value of    is 0.75 in the discretized domain. While beyond the scope of 

this study, the results obtained from RIGA can also be employed to determine the 

probability of occurrence of a specified event, such as the resulted water head in this 

example problem.  
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Figure 3.13 Covariance reduction factor (  ) in the discretized domain with quadratic 

IGA elements.     
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 CHAPTER IV

CONCLUSION 

 

4.1 Summary of work accomplished for head-based Isogeometric analysis of 

transient flow in unsaturated soils 

This part of the study presented a head-based IGA solution for transient flow in 

heterogeneous unsaturated soils. In general, the proposed IGA uses NURBS basis 

functions to approximate geometry and field variables, a feature which provides accurate 

results and an easier mesh generation/refinement procedure. The results from the 

proposed IGA formulation were validated and compared against analytical solution and 

conventional FEM. The IGA results, with different orders of approximations were found 

in good agreement with analytical solutions for 1D and 2D problems in one- and two-

layer soil systems. The utilization of NURBS basis functions leads to higher-order 

accurate results in the h-based solution. In addition, the intrinsic property of c
0
 NURBS 

basis functions allows defining the soil internal boundaries with local mesh refinement. 

These features of the proposed IGA method provide better performance in heterogeneous 

unsaturated mediums and problems with complex geometries and allow precise tracking 

of the water front at the intersection of the soil layers. Regarding mass lumping, the row-

sum technique was used for IGA and linear FEM simulations while special mass-lumping 

technique was utilized in quadratic FEM simulations. The rate of convergence for both 
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IGA and FEM models is found identical. However, in highly nonlinear unsaturated 

problems, the application of quadratic FEM is limited whereas higher order IGA 

simulations are applicable. Moreover, the comparison of results between quadratic IGA 

and FEM shows that the IGA framework obtains closer results to analytical solutions 

where hydraulic conductivity is high. Moreover, it is noted that the computational costs 

are considerably reduced if adaptive time steps are used in the solution framework. 

4.2 Summary of work accomplished for random Isogeometric analysis (RIGA) 

for modeling seepage in unsaturated soils 

Since modeling seepage problems in unsaturated soils involve various 

uncertainties owning to the random nature and variability of unsaturated soil properties, 

In the third chapter, we considered the point and spatial variability of unsaturated flow in 

porous media in the formulation of a new numerical scheme called Random Isogeometric 

analysis (RIGA). The proposed probabilistic framework can be easily extended to 

analysis of problems governed by partial differential equations, including uncertainty in 

various fields (e.g., geotechnical, petroleum, and agricultural engineering). To illustrate 

the application of the proposed method, RIGA is implemented in the analysis of 

uncertainty in unsaturated flow problems. Ks, αV, and n are considered as three random 

variables (RVs) in this study. It is shown that correlated lognormal probability 

distribution function (PDF) is the appropriate distribution function to represent point 

variability of the RVs. Regarding the analysis of spatial variability of random fields, the 

Markov correlation function is studied and it is observed that the covariance of results 

from Monte Carlo simulation is an exponential function of correlation length and 

geometry ratios. Furthermore, it was found that the outflow probability distribution also 
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follows a lognormal PDF. It is observed that the outflow PDF is skewed to lower values 

of flow as the correlation length and geometry ratio increases. In addition, the analysis 

showed that the variability in results is a function of the vadose zone length. The increase 

in vadose zone length leads to less variation in outflow. The results from RIGA were 

compared against a deterministic solution and considerable differences were found 

between the probabilistic and deterministic analyses. The proposed framework offers a 

robust and computationally efficient means for probabilistic investigation of pore water 

pressure distribution and flow quantities in unsaturated earthen structures such as slopes, 

dams, levees, sheet piles. Further, properly accounting for the variability of unsaturated 

soil properties leads to more realistic estimations of suction, a critical factor that can 

significantly affect the serviceability and stability of earthen structures subjected to 

steady and transient unsaturated flows. 

4.3 Recommendation for future works 

In this research, the performance of IGA in solving unsaturated seepage problems 

was evaluated. Further, a probabilistic IGA-based framework, RIGA, was developed  to 

consider the randomness and uncertainty of unsaturated soil hydraulic properties in the 

analysis. This research considered a single-phase flow and assumed that the gas phase is 

constant at the atmospheric level. In addition, the density of fluid was taken constant 

during the analysis and no interaction was considered between solid particles and water 

constituent.  

For future research, the proposed IGA modeling of unsaturated flow can be 

further extended through one or combination of the following: 
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- Simulating a more general case of two-phase flow where both water and air 

pressures exists and are treated as unknown variables in the analysis. 

- Developing a fully coupled model for the analysis of water and airflow in 

deforming porous media in variably saturated conditions. For this purpose, the 

solid displacements and the pressures of fluids can be taken as primary 

unknowns of the simulation.   

- Considering the fact that the density of fluid is not often uniform and it can be 

influenced by variations in temperature and pressure. The increase in 

temperature leads to decrease in density while the increase in pressure leads to 

increase in density and vice versa. The fluid density should be considered as a 

dependent thermodynamic variable where its spatial and temporal variations 

play a key role in variable-density flow problems.    

- Developing fully coupled numerical model to simulate the unsaturated 

transient flow including heat and mass transfer in deforming porous media by 

taking into account the incompressibility of fluid. In this case, the governing 

equations in terms of displacement, temperature, capillary pressure, and gas 

pressure are coupled and form a nonlinear system of differential equations that 

will be solved by the proposed IGA framework.  
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 APPENDIX A

CHORD SLOPE APPROXIMATION OF MOISTURE CAPACITY 
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Chord slope is an alternative and effective approximation of the moisture capacity 

in contrast of analytical solution. The mass balance error appears in approximating the 

storage term 
  

  
 by the expansion     

  

  
 in the discretized formulation. If      is 

performed by chord slope approximation instead of analytical derivatives (Eq. (4)), a 

solution for mass balance error attained. The first-order finite difference approximation 

for discretized        is: 

     
  

    
    

    
    

 (A.1) 

The limitations for chord slope approximation exist if the denominator of Eq. 

(2.42) is close to zero. It is recommended to use analytical solution if the denominator is 

below an absolute minimum difference tolerance (practically, 10
-18

). 
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 APPENDIX B

SPECIAL MASS LUMPING TECHNIQUE 



 

92 

Hinton et al. (1976) developed the special lumping technique which always 

generates positive lumped masses by virtue of positive-definiteness. The idea is to set the 

entries of the lumped-mass matrix proportional to diagonal entries of consistent mass: 

   ∑     ∫ (
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      (B.1) 

where 
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 (B.2) 

 

The special mass lumping has optimal rates of convergence and it is the lumping 

method that is recommended for arbitrary elements (Hughes, 1978). 
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