
Mississippi State University Mississippi State University 

Scholars Junction Scholars Junction 

Theses and Dissertations Theses and Dissertations 

1-1-2017 

Micromechanical Modeling of the Soil Water Retention Curve Micromechanical Modeling of the Soil Water Retention Curve 

using a Coupled Discrete Element-Lattice Boltzmann Method using a Coupled Discrete Element-Lattice Boltzmann Method 

Jonathan Frank Fili 

Follow this and additional works at: https://scholarsjunction.msstate.edu/td 

Recommended Citation Recommended Citation 
Fili, Jonathan Frank, "Micromechanical Modeling of the Soil Water Retention Curve using a Coupled 
Discrete Element-Lattice Boltzmann Method" (2017). Theses and Dissertations. 3090. 
https://scholarsjunction.msstate.edu/td/3090 

This Graduate Thesis - Open Access is brought to you for free and open access by the Theses and Dissertations at 
Scholars Junction. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of 
Scholars Junction. For more information, please contact scholcomm@msstate.libanswers.com. 

https://scholarsjunction.msstate.edu/
https://scholarsjunction.msstate.edu/td
https://scholarsjunction.msstate.edu/theses-dissertations
https://scholarsjunction.msstate.edu/td?utm_source=scholarsjunction.msstate.edu%2Ftd%2F3090&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsjunction.msstate.edu/td/3090?utm_source=scholarsjunction.msstate.edu%2Ftd%2F3090&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholcomm@msstate.libanswers.com


Template C v3.0 (beta): Created by J. Nail 06/2015  

Micromechanical modeling of the soil water retention curve using a coupled discrete 

element-lattice Boltzmann method 

By 

TITLE PAGE 

Jonathan Frank Fili 

A Thesis 

Submitted to the Faculty of 

Mississippi State University 

in Partial Fulfillment of the Requirements 

for the Degree of Master of Science 

in Civil Engineering 

in the Department of Civil and Environmental Engineering 

Mississippi State, Mississippi 

December 2017 



 

 

Copyright by 

COPYRIGHT PAGE 

Jonathan Frank Fili 

2017 



 

 

Micromechanical modeling of the soil water retention curve using a coupled discrete 

element-lattice Boltzmann method 

By 

APPROVAL PAGE 

Jonathan Frank Fili 

Approved: 

 ____________________________________ 

Farshid Vahedifard 

(Major Professor) 

 ____________________________________ 

John F. Peters 

(Committee Member) 

 ____________________________________ 

John Ramirez Avila 

(Committee Member) 

 ____________________________________  

James L. Martin 

(Graduate Coordinator) 

 ____________________________________ 

Jason M. Keith 

Dean  

Bagley College of Engineering 



 

 

Name: Jonathan Frank Fili 

ABSTRACT 

Date of Degree: December 8, 2017 

Institution: Mississippi State University 

Major Field: Civil Engineering 

Major Professor: Dr. Farshid Vahedifard 

Title of Study: Micromechanical modeling of the soil water retention curve using a 

coupled discrete element-lattice Boltzmann method 

Pages in Study 41 

Candidate for Degree of Master of Science 

The Soil Water Retention Curve (SWRC) is a key constitutive relationship describing the 

behavior of variably saturated soils. The objective of this research is to assess the 

performance of a hydro-mechanical model, developed by coupling the lattice Boltzmann 

method (LBM) with the discrete element method (DEM), for micromechanical 

simulation of the SWRC. The DEM-LBM model is used to examine the effects of wave 

propagation on fluid-solid interaction. A multi-phase LBM is then employed within a 

static particle array generated by the DEM to examine the effects of initial fluid density 

distribution.  The SWRCs are generated by recording the liquid pore pressure and the 

degree of saturation within a porous medium subjected to imbibition for two cases: 

randomized fluid density simulation (non-unified wetting front) and droplet simulation 

(unified wetting front). The coupled DEM-multiphase LBM model is shown to be a 

promising tool to characterize capillary regime in partially saturated porous media. 
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CHAPTER I 

INTRODUCTION 

1.1 Overview 

An improved understanding of the mechanics of variably saturated soils and the 

underlying physics that occur under different degrees of saturation are paramount in 

geotechnical engineering. The Soil Water Retention Curve (SWRC) is a key constitutive 

relationship describing the behavior of variably saturated soils. Further insight into this 

behavior can be gained by studying the role of capillarity on pore adsorption (Lu and 

Likos, 2004; Fredlund and Rahardio, 1993). The principal experimental approach for 

geotechnical and groundwater applications is developing the SWRC under inhibition and 

drainage conditions. The retention curves obtained in such experiments stem from 

complicated interactions among the air, water and solid phases, details of which are not 

accessible to direct experimental measurement, despite the progress in modern 

tomographic imaging technology (Fredlund et. al., 2011; Fredlund et. al., 1996). A 

variety of approaches have been developed to analyze interactions underlying SWRC (Lu 

2016). Numerical simulations offer an effective supplement to physical experiments 

whereby the detailed interactions among phases can be quantified.   

The motivation for this study is to develop a micromechanical model that 

accurately captures the multi-physical processes in unsaturated soils. Such a model would 
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enable others in the field to study a wide variety of problems at both the micro-and 

macro-scale. Such problems could include SWRC experiments, static liquefaction, and 

cyclic loading on unsaturated soil beds.  

1.2 Objectives 

The main objective of this work is to assess the performance of a novel 

hydromechanical model, developed by coupling multi-phase Lattice-Boltzmann Method 

(LBM) with the Discrete Element Method (DEM), for simulating the mechanics of 

imbibition, beginning with the benchmark validation of the SWRC.  A model using a 

coupled DEM-LBM is used to examine the effect of wave propagation in the single-

phase LBM on the fluid-solid interaction. A multi-phase LBM model is then developed to 

perform a similar study on the effect of initial fluid density distribution on the SWRC.  

The performance of the LBM can be a function of several parameters including, 

but not limited to, both the initial shape of the wetting front and density distributions, as 

well as the waves propagating through the system-both physical and artificial (Buick et. 

al, 2004). By studying these phenomena, the numerical ability of the LBM to model the 

SWRC at the meso-scale and micro-scale can be determined. The single-phase LBM 

wave propagation investigation occurs at the meso-scale, while the multi-phase LBM 

density distribution study occurs at the micro-scale. The simulation methods used in this 

study afford the opportunity to better understand basic mechanisms of drainage and 

imbibition cycle because the details that can be extracted from simulations remain 

unavailable from physical tests and from the limited capabilities of LBM-only 

representation. Furthermore, the static particle configurations in this study is used to 
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study capillary behavior, and provide a foundation for future research in deformation 

effects on the SWRC. 

1.3 Scope and Contributions 

Following the introductory Chapter 1, this thesis will continue with Chapter 2, 

which provides a brief overview of unsaturated soil mechanics, particularly as pertinent 

to the SWRC. This chapter will also detail the recent literature that discusses the 

micromechanical modeling of the SWRC.  

Following Chapter 2, a detailed description of the DEM-LBM formulation used in 

this study is provided in Chapter 3. Chapter 4 presents and discusses the results of the 

simulations conducted in this work. Chapter 5 includes conclusions and recommendation 

for future research drawn based upon the current study.  

The main contributions of this research include providing further insight into the 

effect of wave propagation in the LBM that has been questioned in the literature, as well 

as developing a multi-phase LBM model that can not only model the SWRC, but can also 

show the effects of changes in fluid density distribution. This study also presents a 

benchmark reference for modeling the SWRC that can be extended in future works to 

simulations with varying moving particle configurations. Such moving particle 

simulations could be used to study the effect of deformation on the SWRC, specifically 

the capillary regime.
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CHAPTER II 

BACKGROUND 

2.1 Introduction 

The purpose of this chapter is to provide a setting in which the need for the 

research conducted in this work can be clearly seen. The following sections will provide 

introductory information about unsaturated soil mechanics and its progression in general, 

the SWRC, and numerical modeling of the SWRC itself. 

2.2 Unsaturated soil mechanics 

Most man-made earth structures involve the use of compacted soils. The 

compaction process produces a soil with a degree of saturation usually in the range of 75 

-90%. Earthen dams, embankments, and highways are typical examples of earth 

structures made of compacted, unsaturated soils.  The omnipresence of unsaturated soils 

in geotechnical practice underlines the importance of quantifying the soil behavior using 

state variables and laboratory tests. 

Experimental studies in the 1950s, such as Bishop et al. (1960), illustrated the 

possibility of independent measurement of the pore-water and pore-air pressures by high 

air entry ceramic disks. Subsequently, over the next decade, further studies concluded 

that the behavior of saturated and unsaturated soils was fundamentally different. 

However, these same studies also revealed several problems with laboratory testing of 

unsaturated soils. Testing was time consuming and demanded precision in the execution 
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of testing techniques. The difficulty in testing led to a search for a single-valued effective 

stress equation for unsaturated soils (Fredlund and Delwyn, 2006). However, by the late 

1960’s Fredlund and his contemporaries became aware that the use of two independent 

stress state variables would be more consistent with continuum mechanics. For the next 

decade, an extension of classical soil mechanics concepts, such as the Mohr-Coulomb 

failure envelope, was developed for unsaturated soils. An example of this envelope is 

shown in Figure 2.1. The extensions of these models were introduced to include the 

gaseous phase, and to model soil as a ternary system. 

 

Figure 2.1 Sample planar failure envelope showing the extended Mohr-Coulomb 

criterion for unsaturated soil (Lu and Likos 2004) 

After the constitutive relations stemming from classical soil mechanics were 

studied in the 1970’s, boundary-value problems were solved in the 1980’s using 

numerical, finite element, and finite difference models. The main concern during this 

time was the saturated-unsaturated seepage model, presenting the first unsaturated soils 
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problem to come into prominence in the realm of common engineering practice (Fredlund 

and Delwyn, 2006). 

Since the 1990’s, unsaturated soil mechanics and its applications to common 

geotechnical engineering problems has come to the forefront of the research community. 

A common benchmark topic that is used when proposing new methods for understanding 

the general behavior of an unsaturated soil is the study of the Soil Water Retention Curve. 

2.3 Soil Water Retention Curve 

The soil water retention curve (SWRC) is a key constitutive relationship to 

describe the behavior of unsaturated soils. The SWRC provides a relationship between 

the volumetric water content in the soil specimen and matric suction, the difference 

between the pore air pressure and pore water pressure. The SWRC can be directly 

measured in the laboratory or field in a variety of ways. Further, there are several 

parameterized models in the literature to represent SWRC (e.g., Brooks and Corey 1964; 

van Genuchten 1980; Fredlund and Xing 1994).  

These models establish the relationship between water content and suction using a 

functional form including several fitting parameters. The level of complexity and the 

number of fitting parameters differ among these models.  The van Genuchten equation 

can be written as 

𝜃 − 𝜃𝑟
𝜃𝑠 − 𝜃𝑟

= [1 + (
ℎ

ℎ𝑣𝐺
)
𝑛

]

−𝑚

 (2.1) 

 

where 𝜃 is the volumetric water content, 𝜃𝑠 and 𝜃𝑟, are the saturated water content 

and residual water content respectively, ℎ is the pressure head with a scaling 
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parameter ℎ𝑣𝐺 , and m and n are shape parameters relating the air-entry value and porosity 

of the soil to the SWRC model. It is possible to reproduce the SWRC with several 

methods.  

One can employ a model to either produce discrete points fit with a modeling 

equation such as Equation 2.1 or a continuous curve generated from an exact solution. 

Many experiments have utilized the former, one example being Haverkamp, Randel, et 

al. (2005). However, both the former and the latter can be done using scaled models of 

soil skeletons under varying fluid conditions. These models are known as 

micromechanical models due to the scale that characterizes the design and the governing 

equations that are deployed in the numerical experiments. It should be noted that only a 

few select variables can be measured with limited resolution in a physical test and, 

importantly, it is nearly impossible to measure conjugate variable pairs (e.g. water 

content and pressure) at the same point. However, these physical tests can be 

supplemented by micromechanical models. 

2.4 Micromechanical modeling of the SWRC 

The LBM is growing in popularity for multi-phase flow simulations and is 

particularly attractive when coupled with the DEM, which adds the ability to quantify 

interparticle stress. One of the main advantages of using this method is the ease at which 

one can generate models representing processes and effects at the molecular scale such as 

those producing phase separation and immiscibility. 

 These physical processes are then incorporated into the macroscopic models of 

choice through upscaling, as is outlined in Chen and Doolen (1998). The LBM models 

proposed by Shan and Chen (1993,1994) (S-C), Galindo-Torres et al. (2013), and Martys 
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and Chen (1996) are of particular interest. These numerical representations are useful for 

modeling the SWRC because they represent the liquid-vapor phase interface based on 

repulsive interactions between the fluid molecules themselves, independent of solid 

contacts and fluid-particle interaction. Coupling the LBM model with the DEM model 

allows local determination of the interparticle and fluid-particle interactions, thus creating 

a trajectory to a micromechanical model of unsaturated soil.  

Successful examples of such a coupled DEM-LBM model have been presented 

recently in the geomechanical literature (e.g., Lomine et al., 2013; Sun et al., 2013; Han 

and Cundall, 2013). However, it has been noted in the literature that wave propagation in 

the LBM is unavoidable. Be the waves a numerical artifact or physical waves, it is 

important to examine the effect that these waves have on fluid-solid interactions.  

 Galindo-Torres et al. (2016) performed a study exploring the LBM’s behavior by 

numerically simulating the SWRC in a small volume as proposed by Schaap et al. (2007). 

They suggested that the numerical representation of the SWRC with the S-C model is 

highly sensitive to initial fluid distribution. The present work investigates characteristic 

factors of the LBM to illustrate in-depth the effects of various numerical parameters on 

the production of the SWRC. By first quantifying the effect of wave propagation on solid 

obstacles in the LBM, variables in the study of initial fluid distribution can possibly be 

eliminated. 

As discussed in Fili et al. (2017), it can be shown that in the capillary regime of 

the SWRC the shape of the wetting front permeating the soil skeleton produces a 

significant effect on the suction values and shapes of the SWRC. The initialization of the 

density distribution of both the wetting and non-wetting fluids in the LBM simulation can 
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be adjusted to model a unified and non-unified wetting front. Furthermore, when the 

density distributions reach a steady state, the immiscibility of the fluids affords the 

opportunity to study the effects of changing the aforementioned distribution parameters 

on the capillary pressure of the enclosed volumes of fluid (Galindo-Torres et al., 2016). 
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CHAPTER III 

FORMULATIONS OF DEM-LBM 

3.1 Introduction 

The following chapter will provide the theoretical background and methodology 

used to create both the single-phase coupled DEM-LBM method and the multi-phase 

LBM that was used to conduct the research presented in later chapters. 

3.2 The lattice Boltzmann method 

3.2.1 Density distribution functions and time evolution 

The lattice Boltzmann method (LBM, Wolf-Gladrow, 2000; Succi, 2001; 

Rothman and Zaleski, 2004; Sukop and Thorne, 2006) is a simulation technique for 

solving fluid flow and transport equations. LBM characterizes the fluid at points located 

on a regular d-dimensional lattice. For a lattice representation DdQz, each point in the D-

dimensional lattice links to neighboring points with z links that correspond to velocity 

directions. For example, the D3Q15 lattice in three dimensions uses fifteen velocity 

vectors 𝑒0 to 𝑒14, as shown in Fig. 3.1.  

 

Figure 3.1 D3Q15 lattice velocities 
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 Primary variables of LBM are density distribution functions,  𝑓𝑖. Density 

distribution functions 𝑓0 to 𝑓14, corresponding to velocity vectors 𝑒0 to 𝑒14,  represent 

portions of a local mass density moving into neighboring cells in the directions of 

discrete velocities. The macroscopic fluid density ρ at each lattice point is a sum of the 

distribution functions at that lattice point: 

 𝜌 =  ∑ 𝑓𝑖
14
𝑖=0     (3.1) 

 Fluid velocity at the lattice point is a weighted sum of lattice velocities, with distribution 

functions being the weight coefficients: 

 𝒖 =  
∑ 𝑓𝑖𝒆𝒊
14
𝑖=0

∑ 𝑓𝑖
14
𝑖=0

= 
∑ 𝑓𝑖𝒆𝑖
14
𝑖=0

𝜌
 (3.2) 

where 𝑓𝑖/𝜌 ratio can be interpreted as a probability of finding a particle at a given spatial 

location with a discrete velocity 𝒆𝒊.  

Using the collision model of Bhatnagar-Gross-Krook (BGK, Bhatnagar et al., 

1954) with a single relaxation time, the time evolution of the distribution functions is 

given by 

         𝑓𝑖(𝑟 + 𝑒𝑖𝛥𝑡, 𝑡 + 𝛥𝑡) = 𝑓𝑖(𝑟, 𝑡) +
1

𝜏𝑢
(𝑓𝑖

𝑒𝑞(𝑟, 𝑡) − 𝑓𝑖(𝑟, 𝑡)) , 𝑖 = 0…14                 (3.3) 

 where 𝒓 and 𝑡 are the space and time position of a lattice site, 𝛥𝑡 is the time step, and 𝜏𝑢 

is the relaxation parameter for the fluid flow. The relaxation parameter 𝜏𝑢 specifies how 

fast each density distribution function 𝑓𝑖 approaches its equilibrium 𝑓𝑖
𝑒𝑞

. Kinematic 

viscosity ν is related to the relaxation parameter 𝜏𝑢, the lattice spacing 𝛥𝑥, and the 

simulation time step 𝛥𝑡 by 

𝜈 =
𝜏𝑢 − 0.5

3

𝛥𝑥2

𝛥𝑡
 (3.4) 
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 Depending on the dimensionality d of the modeling space and a chosen set of the 

discrete velocities 𝑒𝑖, the corresponding equilibrium density distribution function can be 

found (Qian et al.,1992). For the D3Q15 lattice, the equilibrium distribution functions 

𝑓𝑖
𝑒𝑞

 are 

𝑓𝑖
𝑒𝑞(𝑟) =  𝜔𝑖𝜌(𝑟)(1 + 3

𝑒𝑖 ∙ 𝑢(𝑟)

𝑐2
+

9
2 (𝑒𝑖 ∙ 𝑢

(𝑟))
2

𝑐4
−

3
2𝑢
(𝑟) ∙ 𝑢(𝑟)

𝑐2
) (3.5) 

 

 with the lattice velocity 𝑐 = 𝛥𝑥/𝛥𝑡 and the weights  

𝜔𝑖 =

{
 
 

 
 
2

9
   𝑖 = 0          

1

9
    𝑖 = 1…6   

1

72
  𝑖 = 7…14  

 (3.6) 

Using the Chapman-Enskog expansion (Chapman and Cowling, 1970), it can be 

shown that LBM Eqs. 3.3 to 3.6 provide an approximation of the incompressible Navier-

Stokes Eqs. 3.7 to 3.8 without external forces: 

 

𝜌 [
𝜕𝑢

𝜕𝑡
+ 𝑢 ∙ ∇𝑢 ] = ∇ ∙ (μ∇u) (3.7) 

∇ ∙ 𝑢 = 0 (3.8) 
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where the 𝜇 = 𝜈𝜌 is the dynamic viscosity of fluid. This approximation is valid in the 

limit of low Mach number 𝑀 = |𝒖|/𝑐, with a compressibility error on the order of 

∼M2 (Succi, 2001). 

3.3 Multi-phase extension of LBM 

Because unsaturated soil is a ternary system, it is necessary to extend the above 

model into a multi-phase DEM-LBM model. A multi-phase extension of lattice-

Boltzmann method (LBM) provides a valuable numerical model for soil specimens 

subjected to external forcing conditions (Schaap et al., 2007; Galindo-Torres et al., 2016). 

In this work, a single-component, multi-phase LBM system was developed using an in-

house code to simulate transient flow processes including pore water in partially saturated 

soils. 

3.3.1.1 Fluid interaction 

LBM models fluid cohesion in multi-phase flows by introducing interaction 

forces between the particles of fluid. Using the method outlined in Shan, Chen (2013), 

the governing force on the fluid particles in absence of solid boundaries or obstacles is 

comprised solely of attractive (cohesive) forces between the fluid particles presented in 

Equation (3.9). The attractive force is based on an “interaction potential”, ψ which is 

proportional to the density of fluid in a fluid cell under examination, as given by Equation 

(3.10). 

𝐹𝑎 = −𝐺𝑎𝜓(𝑥)∑ 𝜔𝑖𝜓(𝑥 + 𝛥𝑡𝑒𝑖)𝑒𝑖
15
𝑖=1                                   (3.9) 

𝜓 = 𝜓0𝑒𝑥𝑝 (
−𝜌0

𝜌
)                                                (3.10) 
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The sum is performed over all neighboring cells, where 𝐺𝑎 is a parameter 

representing strength of cohesive interaction and 𝜔𝑖 are weight coefficients (Equation 

3.6), while 𝜓0 and 𝜌0 are interaction potential parameters.  

In the presence of a solid boundary or particulate obstacle, the attractive 

(adhesive) force between the fluid and solid particles is given by 

𝐹𝑠 = −𝐺𝑠𝜓(𝑥)∑ 𝜔𝑖𝑠(𝑥 + 𝛥𝑡𝑒𝑖)𝑒𝑖
15
𝑖=1                                 (3.11) 

An external force is incorporated as: 

𝐹𝑔 = 𝜌𝑔                                                           (3.12) 

where g is a body force that is equivalent to the gravitational acceleration for a system in 

the gravitational field. 

3.3.1.2 Immiscibility and mixing of fluids 

A multi-phase fluid in the lattice-Boltzmann model is represented by introducing 

additional density distribution for each additional fluid component. In case of a two-

component fluid, the densities of individual components are marked 𝜌1 and 𝜌2. Each 

fluid component has its own 𝐺𝑎and 𝐺𝑠 coefficients as described earlier by Equations (3.9) 

and (3.11). Furthermore, the two fluid components are also under the influence of a 

repulsive force: 

𝐹𝑟 = −𝐺𝑟𝜌1(𝑥) ∑ 𝜔𝑖𝜌2(𝑥 + 𝛥𝑡𝑒𝑖)𝑒𝑖
15
𝑖=1                                   (3.13) 

where strength of the repulsive interaction is characterized by a coefficient 𝐺𝑟. The values 

of these coefficients can be determined based on the fluid densities desired for the 

simulation design. Once the initial densities are chosen, the miscibility of the fluid 
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components depends on the product 𝜌𝑡𝐺𝑟, where 𝜌𝑡 is the sum of the individual fluid 

densities: 

𝜌𝑡 = 𝜌1 + 𝜌2                                                     (3.14) 

  

Two fluid components will separate if 

𝜌𝑡𝐺𝑟 ≤ 𝜌𝑡𝐺𝑟
𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙                                             (3.15) 

or will mix otherwise (Schaap et al., 2007). Individual fluid densities are initialized to 0 

and 1, respectively. A critical range for 𝜌𝑡𝐺𝑟 between 0.8 and 1.1 (lattice distance) x 

(mass units) was found, enabling determination of the other force coefficients listed 

above to prevent thin films from forming. 

Total effective velocity of a mixture is calculated as a weighted sum of individual 

fluid velocities  

𝑢 =
∑

1

𝜏𝜎
𝜎 ∑ 𝑓𝑖

𝜎𝑒𝑖
15
𝑖=1

∑
𝜌𝜎
𝜏𝜎

𝜎
                                                  (3.16) 

where the index σ enumerates fluid components. After all contributing forces are added to 

the total force on a fluid particle, the velocity of the fluid particle is updated as follows: 

𝑢′ = 𝑢 +
𝛥𝑡𝐹

𝜌
                                                   (3.17) 

3.3.1.3 Fluid phase pressure 

To find the total fluid pressure, 𝑃(�⃗⃗� ) at any point in an LBM cell sharing two 

fluids, the following is used: 

𝑃(�⃗⃗� ) =
𝜌1+𝜌2+𝐺𝑟𝜌1𝜌2

3
                                                   (3.18) 
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Then, as in Galindo-Torres (2015), the pressure of each phase is found by calculating the 

average pressure of the cells enclosed by each fluid volume. The difference of Equation 

3.18 and this pressure will give the capillary pressure of the phase in question. 

3.3.2 Immersed moving boundary 

The immersed moving boundary (IMB) technique (Noble and Torczynski, 1998; 

Strack and Cook, 2007; Owen et al., 2011) allows solid boundaries to move through the 

computational grid. The IMB method introduces a subgrid resolution at the solid-liquid 

boundaries, resulting in smoothly changing forces and torques exerted by the fluid on 

moving particles. The IMB introduces an additional collision operator Ωi
S expressing 

collisions of solid particles with fluid as 

Ω𝑖
𝑆 = 𝑓−𝑖(𝑟, 𝑡) − 𝑓𝑖(𝑟, 𝑡) + 𝑓𝑖

𝑒𝑞(𝜌, 𝑈𝑆) − 𝑓−𝑖
𝑒𝑞(𝜌, 𝑢) (3.19) 

The time evolution of the density distribution functions in IMB includes Ωi
S 

𝑓𝑖 = 𝑓𝑖(𝑟, 𝑡) + [1 − 𝛽(𝜖, 𝜏)]
1

𝜏
(𝑓𝑖

𝑒𝑞(𝑟, 𝑡) − 𝑓𝑖(𝑟, 𝑡)) +   𝛽(𝜖, 𝜏)Ω𝑖
𝑆 i = 0: 14 (3.20) 

where the weighting factor β(ε,τ) depends on solid coverage ε and relaxation parameter τ 

𝛽(𝜖, 𝜏) =
𝜖

1 +
1 − 𝜖
𝜏 − 0.5

 
(3.21) 

 

3.3.3 Fluid force on particles 

The total hydrodynamic force exerted by the fluid on a particle is calculated by 

summing the momentum change at every lattice cell due to the new collision operator: 
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𝐹𝐹 =
Δ𝑥3

Δ𝑡
∑(𝛽𝑛∑Ω𝑖

𝑆𝑒𝑖

14

𝑖=0

)

𝑛

 (3.22) 

 

3.3.4 Boundary conditions 

At the fluid-solid interface, the “no-slip” boundary condition is imposed, which is 

a prevalent choice with IMB technique (Cook et al., 2004; Feng and Michaelides, 2004; 

Strack and Cook, 2007; Owen et al., 2011).  

At the outer boundaries of the simulation domain, the boundary condition for 

fluid can be periodic or non-periodic. Non-periodic boundary conditions can impose a 

constant velocity, simple wall (bounce-back), partially covered wall (immersed 

boundary), or moving wall (immersed moving boundary). Moving walls can be  

• velocity driven - moving with a prescribed velocity,  

• force driven - driven by a sum of fluid force, particle forces, and an external 

constraining force.  

Constant velocity boundary condition (BC), following the work of Zou and He 

(1997), can be applied at the inlet/outlet boundary. An alternative is to apply body force, 

what is equivalent to applying an external pressure gradient.  

3.4 The discrete element method 

 The DEM is a robust numerical method that was originally developed by Cundall 

and Strack (1979) to simulate dry granular materials. Since then, the method and its 

subsequent developments have been extensively used for simulating various problems in 

geomechanics. The DEM treats particles as distinct interacting bodies that are governed 
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locally by contact laws that control particle interpenetration and dissipate energy. 

Examples of contact interactions behavior are given by Cole and Peters (2008). An 

example of a contact law is the power law model that is evaluated for contact overlap 

(Owen 2011) and is written as: 

𝐹𝑁 =  𝛼 𝐾𝑁𝛿𝑛
𝑚 (3.23) 

where α and m are power law parameter with α=m=1 for the linear contact law,  

KN is the normal stiffness, and δ is the penetration distance. In this study, simple linear 

contact laws are used, but with differing moduli used for loading and unloading to 

represent energy dissipation. 

 After determining the contact forces on each particle, the particle velocity 

and angular rotation are determined by integrating Newton’s equations of motion. The 

equations of motion are expressed as: 

𝑚
𝜕𝑣𝑖
𝜕𝑡

= 𝑚𝑔𝑛𝑖
𝑔
+∑𝑓𝑖

𝑐

𝑁𝑐

𝑐=1

 (3.24) 

and 

𝐼𝑚𝜌 
𝜕𝜔𝑖
𝜕𝑡

=∑𝑒𝑖𝑗𝑘𝑓𝑖
𝑐𝑟𝑗
𝑐 +∑𝑀𝑖

𝑐

𝑁𝑐

𝑐=1

𝑁𝑐

𝑐=1

 (3.25) 

where m and Im are the particle mass and moment of inertia respectively, gni
g is the 

acceleration of gravity, fi
c is the force term for the particle, Mi

c is the moment term for the 

particle, and Nc is the number of contacts.  
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3.5 Coupled DEM-LBM 

The discrete element method (DEM) subsystem of the DEM+LBM coupled 

system is described in Peters et al. (2010). The DEM subsystem accounts for the effects 

of fluid by simply adding forces and torques exerted on particles by fluid to the total 

DEM contact forces. The LBM subsystem of the coupled system resolves the motion of 

fluid between particles and evaluates forces and torques exerted by fluid on particles. The 

forces and torques exerted by fluid on particles are then passed to the DEM subsystem, 

which performs integration of equations of motion for particles by applying total 

(DEM+LBM) forces and torques. 

3.5.1 The DEM-LBM coupling cycle 

The DEM+LBM coupling is performed in a cycle as follows: 

1.) DEM calculates contact forces and torques between particles/objects. 

2.) LBM receives locations and velocities of particles/objects from DEM. 

3.) LBM utilizes 

3.1) state of the fluid flow from the previous step, 

3.2) new locations and velocities of the particles/objects from DEM, 

3.3) boundary conditions to calculate fluid velocities on a cubic grid. 

4.) LBM calculates forces and torques exerted by fluid on particles/objects. 

5.) LBM adds fluid forces and torques to DEM’s contact forces and torques. 

6.) DEM integrates equations of motion and updates locations and velocities of 

particles/objects. 
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3.5.2 Multi-stepping 

The LBM time step Δt is determined from the kinematic viscosity of fluid ν, 

required grid resolution Δx, and constraints on the relaxation parameter (τ >0.5) 

according to Eq. 3.4. The relaxation parameter must be chosen low enough to achieve a 

sufficient time resolution. An upper limit on the relaxation parameter is given by the low 

Mach number constraint. For DEM, the largest acceptable time step value is determined 

from the smallest particle mass mi and the stiffest spring ki in the system, given the 

frequency of fastest oscillations 

𝜔𝑚𝑎𝑥 = √
𝑀𝐴𝑋(𝑘𝑖)

𝑀𝐼𝑁(𝑚𝑖)
 (3.26) 

and their time period 

𝑇𝑚𝑖𝑛 =
2𝜋

𝜔𝑚𝑎𝑥
 (3.27) 

 In this work, the LBM time step is constrained to be greater than or equal to the 

DEM time step. Accordingly, the LBM time step is determined first, and then the DEM 

time step is adjusted to perform an integer number of DEM substeps before performing 

the LBM calculation.  

To couple the two methods, the DEM first calculates contact forces and torques 

between the particles. The LBM then receives the locations and velocities of the particles 

and solves the fluid equations. The LBM calculates the fluid forces and torques on the 

particles at the current positions and adds those forces and torques to the DEM’s contact 

forces and torques. Finally, the DEM integrates the equations of motion and updates the 

locations and velocities of the particles. It should be noted that during the DEM 
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subcycling, the fluid forces and torques remain constant, and the fluid-solid boundary 

does not move. Therefore, care must be taken when deciding the number of DEM 

subcycles (Owen et al., 2011). 
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CHAPTER IV 

RESULTS AND DISCUSSION 

4.1 Introduction 

Using the coupled DEM-LBM and multiphase LBM outlined in the previous 

chapter, the numerical experiments detailed in this chapter were used to examine the 

performance of each method. Furthermore, key parameters were studied to determine the 

extent of their influence on the simulation of SWRC’s. This chapter will first discuss the 

DEM-LBM and its use in the wave propagation experiments. Then, the multi-phase LBM 

validation and density distribution experiments will be discussed. 

4.2 DEM-LBM and wave propagation 

To quantify the effect of wave propagation and to establish whether the observed 

waves stemming from initialization have a physical meaning in the DEM-LBM method, a 

single particle simulation was designed. Snapshots of this simulation are shown in Fig. 

4.1. 

4.2.1 Model setup 

Table 4.1 Input parameters used in the DEM-LBM settling particle simulation 

Property Units Value 

Particle Radius mm 1.0 

Fluid Viscosity Pa-s 1.0 𝐸−6 

Fluid Density kg/m3 1000 

Grid Distance m 9.9 𝐸−5 

Domain Dimensions mm 20 x 80 x 1 
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The particle was placed under in the influence of gravity and with an initial zero 

velocity in all directions. The parameters used in this study, which can be found in Table 

4.1, were chosen based on the significant role that Equation 3.4 plays in the DEM-LBM  

               

Figure 4.1 An example of the gravity-capillary wave propagating through the domain 

as a single particle falls in a fluid-filled shaft. 

 

formulation. These parameters also were chosen to reflect the analytical solution of a 

settling particle in water as closely as possible.  The x, y, z-dimensions of the domain are 

20mm x 80 mm x 1 mm, with a periodic boundary condition in the z direction. The ratio 

of grid distance to time step, 
∆𝑥

∆𝑡
, or LBM lattice speed, for this study was set initially as in 

Fili et al. (2017), with a grid distance of 9.90E-05 m, and then increased by 1.25x, 1.5x, 

and 2.0x. By varying the grid distance in the simulation, the rate at which each fluid 

density distribution function 𝑓𝑖 approaches its equilibrium 𝑓𝑖
𝑒𝑞

will be changed (Equation 

3.3-3.6). By keeping the physical parameters constant, but changing the above, the waves 

in the LBM will be represented on different scales proportional to the grid distance. 

Thusly, a trend between the grid distance and effect of wave propagation can be 

observed. 
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4.2.2 Results and discussion 

As the grid distance of the settling particle was varied, a study of particle velocity 

and force on the particle was conducted. All settling particle simulations approach the 

analytical solution for terminal velocity for a falling particle in a fluid using the 

Immersed Moving Boundary LBM method, similarly to a classing drafting-kissing 

tumbling (DKT) case. More information about DKT and the solutions can be found in 

Feng and Michaelides (2004). Figure 4.1 shows a plot of the particle velocity in the y-

direction, the direction of motion in the settling particle simulation. The grid distance was 

varied as mentioned above  and plotted with a convention relative to the particle 

diameter, with 
𝑑

∆𝑥
 values of 20.1, 16.2, 13.4, and 10.1, where d is the particle diameter and 

∆x is the LBM grid distance. For convenience, these values are rounded in Figure 4.1 and 

the remainder of this chapter.  As evidenced by the plot, varying grid distance has minute 

effect on the velocity of the particle. 

In a similar plot of the fluid force on the particle, Figure 4.2, it is immediately 

apparent that grid distance influences the noise present in the force solution. At the 

initialization, there are sharp changes in force that attenuate quickly as the fluid motion 

reaches equilibrium with particle velocity. At the initialization of many LBM 

simulations, as discussed in Buick et al. (2004), the fluid will exhibit behavior that can be 

attributed to wave propagation through the domain.  Upon detailed examination, force 

evidence of the effect of wave propagation from the particle as a source can be seen in 

this simulation. Figure 4.3 contains a subsection of the forces on the particle plotted in 

Figure 4.2. 
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Figure 4.2 Velocities of particles in settling-particle simulations versus 

time 

After the particle begins to move through the fluid domain, there are clear 

increases in force towards the bottom of the simulation domain. The coarseness of the 

grid affects these localized minima. As the grid becomes coarser, i.e. the grid distance of 

the LBM is increased, the time at which the minima occur happens later in the 

simulation. This is due to the change in lattice speed that arises from changing the grid 

distance, which in-turn will affect the relaxation time of the simulation (Equation 3.4). 

The grid distance affects the placement and amplitude of the local minima in the fluid 

force on the particle, meriting the analysis of their correlation.  
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Figure 4.3 The fluid forces on each settling particle, y-component. 

The wave propagation in this work could be attributed to two types of waves: 

artificial and capillary. Artificial waves arise from the LBM method, as discussed in 

Buick et al. (2004). Capillary waves are caused by surface tension forces and rapid 

changes in fluid density across the LBM grid. Solid particle movement in the DEM-LBM 

across the fluid grid causes such a rapid change in density. To confirm the changes in 

force on the particle resulted from the propagation of a density wave from the particle, a 

density distribution study was conducted. Density profiles were generated by sampling 

the densities across in the x-center of the domain and plotting them versus the y-, as 

shown in Figure 4.4.  

Because the single-particle simulation employs the IMB method, the fluid within 

the particle is under the influence of gravitational force, but remains confined by the 

particle itself. The IMB method introduces a subgrid resolution at the solid-liquid 

boundaries, resulting in smoothly changing forces and torques exerted by the fluid on 

moving particles. As such, the density profiles for different  
𝑑

∆𝑥
 ratios shown in Figure 4.4 
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yield a smooth density transition after an initial sharp increase. The sharp increase 

denotes the bottom edge of the particle, with a linear decrease trough the diameter of the 

particle, until the density returns to its equilibrium value outside of the particle. The 

distinct shape of these density profiles affords the opportunity to clearly observe the 

propagation of any capillary waves.  The fluctuation in density outside of the particle is 

evidence of such a propagation. The small increases in density to the left of each peak in 

Figure 4.4 illustrate this phenomenon. Furthermore, the profiles generated in Figure 4.4 

correspond to the same time at which the minima occur in Figure 4.3. 

 

Figure 4.4 Enlarged section of Figure 4.6, from t = 0.1-0.35 s.  

 Further substantiation of the presence of physical wave propagation can be 

obtained by isolating a single simulation and refining the time scale.  This is shown in 

Figure 4.5. At  t = 0.01s, the density profile consists only of the change in density across 

the diameter of the solid particle.  
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However, at t = 0.05s, a perturbation can be seen around both y = 0.0675m and    

y = 0.0775 m. This shows a wave propagating outwardly from the particle center in the 

direction of the top and bottom of the simulation domain. One would expect to see, at this 

smaller scale, such a wave reflecting from the solid “ceiling” boundary of the LBM 

domain as time progresses, as observed at t = 0.11 s at y = 0.075 m. In addition, the wave 

that originated  

 

Figure 4.5 Average fluid density versus y-position of particle in the domain. 

 

from the bottom of the particle can also be seen at t = 0.11 s at y = 0.06 m. By examining 

the density profile at the corresponding time of the local fluid force minima in the 

beginning of the simulations, it is clear that wave propagation influences the force and, 

consequently, on the fluid pressure that acts on the particle, though small in value.  It is 

also clear that to minimize the effect of this wave propagation, a finer grid that closely 
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matches analytical solution must be chosen. But, most importantly, the results show that 

though the waves propagating in the fluid are indeed caused by the initialization process 

and the LBM itself, they do hold a physical significance. 

 

Figure 4.6 Average fluid density versus y-position of particle in domain. Time 

progression. 

4.3 Multiphase LBM validation 

In this work it is important to validate the LBM model, particularly with respect 

to the governing forces controlling the movement of the gaseous and liquid phases of the 

fluid. More details about the S-C model and the attractive, repulsive, and adhesive forces 

can be found in Galindo-Torres et al. (2016). To test the implementation of the above 

multi-phase LBM extension, several simulations were executed. 

4.3.1 Model setup 

4.3.1.1 Fluid interaction 

First, a cubic domain was generated in the LBM with dimensions of 50x50x50 

mm. The single-phase fluid was initialized with a random distribution over the entirety of 
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the domain. This can be seen in the top left portion of Figure 4.6. At time t > 0, the 

forces, including gravity and cohesion force were introduced to the fluid allowing the 

fluid to coalesce into large bubbles at equilibrium (Equations 3.9 and 3.10).  

The same was then done with a multi-phase fluid with dimensions of 50x50x5 

mm with a periodic boundary condition in the z-direction, which is shown in Figure 4.7. 

Table 4.2 Input parameters used in the multiphase validation 

Property  Units Value 

Particle Radius mm 10 
𝐺𝑎 ------ −200 

𝐺𝑠 ------ 200 
𝐺𝑟 ------ 0.01 

Initial Fluid Density kg/m3 500 

Grid Distance m 9.9 𝐸−5 

Domain Dimensions mm 50 x 50 x 50 

   

   

Figure 4.7 Simulation beginning with fluid density distribution randomized at 

initialization (red). As the simulation progresses, the intermolecular 

attractions of the fluid cause cohesion as shown. 
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4.3.1.2 Fluid-solid interaction 

In a similar way, at time t > 0, the forces, including gravity, adhesion force, and the 

cohesion force were introduced to the fluid allowing the fluid to not only to coalesce, but 

to cover the solid elements of the simulation. This is shown in Figure 4.8. Table 4.2 lists 

the parameters that were used to design these simulations. 

 

Figure 4.8 3D single particle simulation showing the adhesion behavior of the fluid to 

the solid particle and to the solid walls of the specimen 

4.3.2 Results and discussion 

As shown by Figure 4.6 and 4.7, the liquid phase of each fluid was able to 

coalesce successfully into “bubbles” in the simulation domain. These results show that 

the intermolecular forces between the mesoscale fluid “molecules” are exhibiting 

attraction independent of each other and acting only between fluid like molecules.  

Furthermore, by introducing a solid particle into an LBM simulation, Figure 4.8 

shows fluid adhesion to arbitrary solid surfaces, which are present in actual soils, 

validating the method outlined in Chapter 3 Section 3 of this work. 
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4.4 Static particle array and SWRC generation 

4.4.1 Model setup 

Table 4.3 Input parameters used in the static particle simulations 

Property  Units Value 

Particle Radius mm 4.75 
Porosity ------ 0.45 

Initial Fluid Density kg/m3 500 
Grid Distance m 9.9 𝐸−5 

Domain Dimensions mm 50 x 100 x 1 

𝐺𝑎 ------ −200 

𝐺𝑠 ------ 200 

𝐺𝑟 ------ 0.01 

 

After validating the multi-phase LBM model, two types of simulation were 

performed to quantify the effects of initial density distributions of the wetting fluid on 

static particles. The simulations used in this work both consist of a rectangular domain 

populated with an array of cubically packed spherical particles. As with Galindo-Torres 

et al. (2016) and Fili et al. (2017), a small domain containing five particles in each 

direction was generated by the DEM and subsequently filled with both phases of the 

fluid.  

The fluids were initialized in the following two ways with respect to the wetting 

fluid. The first way dispersed the fluid with random density distribution (Figure 4.9), 

while the second approach introduced the fluid as a droplet confined to a radius of 10 mm 

(Figure 4.10). Both specimens use boundary conditions that are periodic in the z-direction 

with flow enabled, and a solid boundary in each x and y-direction. The flow boundary 

condition is imposed by using a variation of the velocity conditions detailed in Zou and 

He (1997), in which a zero-velocity profile is initialized, allowing body forces on only 
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the liquid phase of the fluid to dominate the movement and produce a proper imbibition 

phase. 

(a) (b)  

Figure 4.9 The randomized initial density simulation showing the values of ρ1, the 

density of the wetting fluid in blue and ρ2, the density of the non-wetting 

fluid in red. (a) Initial step. (b) Final step. 

An external gravitational force was applied in the -y direction. The droplets that 

formed in both cases percolated between particles in the direction of gravity and spread 

into the void region of the particle domain.     

4.4.2 Results and discussion 

The LBM grid distance for these simulations was chosen to minimize noise in 

fluid pressure calculation stemming from wave propagation based on the results in 

section 4.2.2 and to mirror physical parameters as evaluated by Schaap et al. (2007). The 

static particle simulations shown Figure 4.9 and Figure 4.10 were then used to generate 

the SWRC’s shown in Figure 4.11. Fluid pressure of each phase was determined using 

the method outlined in Section 3.1.1.3., and volumetric water content was determined by 

using a Boolean cell counting scheme in the multi-phase LBM code. 
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Because the droplet of wetting fluid is confined to an initial radius with given 

density, the surface tension causes a greater pressure within the bubble than that of the 

smaller bubbles that eventually coalesce in the randomized initial density simulation. 

These smaller bubbles are free from a spatial restriction, and as such reach equilibrium 

both locally and globally more quickly.  The results of these physical processes yield a 

similar trend, but a greater capillary response from the droplet simulation, as shown in 

Figure 4.11.       

(a) (b)   

Figure 4.10 The “droplet” density simulation showing the values of ρ1, the density of 

the wetting fluid in blue and ρ2, the density of the non-wetting fluid in red. 

(a) Initial step. (b) Final step. 

The volumetric water content of each simulation varies in scale due to the random 

density initialization in Figure 4.3. The random nature results in a soil skeleton that is 

partially saturated from t < 0, but to a greater degree than the droplet simulation in Figure 

4.9 is partially saturated. However, though the range of volumetric water content varies, 

the peak values for capillary pressure show a pronounced difference in the role that the 

shape of the wetting front, and in-turn the initial density distribution have on the 

generation of the SWRC.  
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(a)  

(b)  

Figure 4.11 Capillary pressure versus the volumetric water content for the a) droplet 

simulation and b) randomized density simulation. Porosity of the specimen 

is n = 0.45 
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CHAPTER V 

CONCLUSION 

5.1 Conclusions 

 Because wave propagation in the LBM is unavoidable, be the waves a numerical 

artifact or physical waves, it is important to examine the effect that these waves have on 

fluid-solid interactions. If waves generated in the presented DEM-LBM method are 

simply numerical artifacts, it follows logically that the method is unsuitable for the meso- 

and micro-scale and, by extension, to micromechanical modeling of the SWRC. If said 

waves are physical, improper scale representation could cause noise in the generation of 

the SWRC by interfering with the calculation of the fluid pressure in an enclosed volume 

of fluid phase, which is based on the density of each phase. This study has shown that in 

the DEM-LBM method, the waves observed in simulations are not an artifact of the 

method, but physical waves that are dominated by surface tension forces based on 

density, called capillary waves. It has also shown that by refining the LBM grid, this 

effect can be minimized by better representing the scale of the physical waves, ensuring 

the accuracy of SWRC generation.  

Furthermore, the effect of density distribution on the generation of the SWRC has 

been shown to be linked to the shape of the wetting front as it progresses through the soil 

skeleton. The unified wetting front produces higher peak capillary pressures, but both the 

unified and non-unified wetting fronts produce a trend in the SWRC that is both easily 

recognizable and qualitatively expected. This study also presents a benchmark reference 

in the SWRC that will be extended in future works to simulations with varying moving 
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particle configurations to study the effect of deformation on the SWRC, specifically the 

capillary regime. 

5.2 Recommendations for future research 

To provide a more thorough analysis of the effects that the parameters in this 

study have on the LBM, the development of a non-isothermal, multi-phase DEM-LBM 

model should be considered.  This model would provide a valuable insight into the effect 

of temperature on the progression of the wetting front through the soil skeleton for 

varying initial fluid density distributions. 

Also, larger particle array simulations that are under load should be considered. 

This would extend the capability of the present model to represent a multi-phase, 

unsaturated particle system that can be applied to analyze the effect of deformation of the 

sample on the SWRC at the microscale. 
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