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This study estimated monthly and annual Net Primary Productivity (NPP), an 

important indicator of carbon sequestration, in the Conterminous US from 1997 to 2007

using Carnegie-Ames-Stanford Approach. Vegetation condition, temperature, 

precipitation, photosynthetically active radiation and soil water holding capacity were 

used as model’s inputs. NPP values were lower than mean annual values during the year 

2000 to 2003 which was probably due to extreme drought conditions during these years.

Higher NPP per square meter was generally found in Savannah and Subtropical eco-

divisions whereas Tropical/Subtropical deserts had the lowest NPP. Southeastern states 

had the highest NPP per square meter thus, made the highest contribution to the terrestrial 

carbon sequestration in US. Since the vegetation is one of the main factors in NPP and 

thus carbon sequestration, the results of this study could help in various environmental 

policy decisions on forest and cropland management at the state, EPA and federal levels.   
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CHAPTER I

INTRODUCTION

This chapter contains a brief introduction of the overall study. Section 1.1 

contains a brief background on climate change issues and the importance of studies 

related to primary productivity using remote sensing techniques. Sections 1.2 and 1.3 

present the problem statement and the objectives of this study. Section 1.4 contains the 

hypothesis and section 1.5 contains the overall organization of the thesis.

1.1 Background

This study examines the magnitudes and distributions of net primary productivity,

as measured by remotely sensed data of the Conterminous United States on seasonal and 

decadal time scales. Global environmental changes are altering the structural and 

functional parameters of eco systems which can affect the flow of energy within eco 

systems (IPCC, 2008). There are considerable evidences that eco systems are already 

responding to the global climate changes, including an increase in mean annual air 

temperature, alterations in rainfall patterns, and changes in atmospheric chemistry (IPCC, 

2008). Many studies (Ciais et al., 199; Keeling et al., 1996; Churkina et al.; 1998, CCSP, 

2008; IPCC, 2008) have suggested that the climate change is associated with the dramatic 

increase in carbon dioxide (CO2) and other greenhouse gases, such as water vapor, ozone, 

methane (CH4) and nitrous oxide. These gases are released into the atmosphere primarily
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due to the anthropogenic activities, such as fossil fuel combustion, industrial processes 

and land use change due to deforestation (Keeling et al., 1976; Potter et al., 2003).

Increase in atmospheric CO2 has been measured continuously since 1958 at Mauna Loa, 

Hawaii and is known as the "Keeling Curve". This curve illustrates the impact of 

anthropogenic activities on the earth’s atmosphere (Keeling et al., 1976; Running et al., 

2004).

Continued monitoring of carbon fluxes and their response to global climate 

change is therefore essential for accurately developing alternative policies and practices 

to mitigate the continued buildup of atmospheric carbon and other greenhouse gases 

(Heinsch et al., 2006). In response to global concerns about global warming, the Kyoto 

Protocol was negotiated under United Nations Framework Conventions on Climate 

Change (UNFCC) in December 1997 with an objective of reducing CO2 and other green 

house gases emissions to a level that would prevent climate from anthropogenic activities

(UNFCC, 2008). As per the protocol, the developed countries must reduce their 

greenhouse gas emissions below the level specified for them in the treaty between 2008 

and 2012. The United States, the world’s largest CO2 producer at that time, refused to 

support the protocol arguing that its economic interests would be threatened (UNEP, 

2007). However, US believes that there is global warming and it needs to be addressed. 

The Kyoto Protocol increased the need for global climate change research and initiated 

the attempts to reduce atmospheric concentration of CO2 (UNFCC, 2007). The options 

for reducing CO2 include curbing of CO2 producing anthropogenic activities,

sequestrating CO2 from the atmosphere into vegetation and soil and injecting CO2
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produced at power plants and industrial facilities into underground storage sites before it

is emitted into the atmosphere (EPA, 2008).

Terrestrial eco-systems play a crucial role in the global carbon cycle, and thus, in 

global climate change. Depending upon the relative magnitudes of CO2 uptake and 

release, a terrestrial region can act either as carbon “source,” which adds carbon to the 

atmosphere or as carbon “sink”, which removes carbon from the atmosphere (Matsushita 

et al., 2004) thus slowing down atmospheric CO2 concentration. Terrestrial eco systems

gain carbon through photosynthesis and lose it primarily as CO2 through respiration in 

autotrophs (plants and photosynthetic bacteria) and heterotrophs (fungi, animals, bacteria, 

etc) (Reichstein and Martin, 2008).

Terrestrial net primary productivity (NPP), one of the fundamental ecological 

variables of terrestrial eco systems, is the net fixation of atmospheric CO2. It helps to 

remove carbon from the atmosphere (Field et al., 1995) and it is directly related to carbon 

dynamics through the process of photosynthesis and photorespiration. It acts as the major 

driver of the seasonal fluctuations in atmospheric CO2 concentration (Ciais et al., 1995, 

Churkina et al., 1998). Monitoring NPP and its seasonal fluctuations is vital for 

understanding both the functioning of living eco systems and their subsequent feedbacks 

to the environments.

CO2 emissions in US has increased by 20 % from 1990 to 2004 while methane 

and nitrous oxide emissions have decreased by 10 % and 2 %, respectively (UNFCC, 

2007, EPA, 2008). Consequently, there has been an increased emphasis on understanding 

the carbon dynamics and temporal changes in carbon sequestration in US (UNFCC, 

2007). An accurate estimation of NPP is therefore critical to understanding of carbon 
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dynamics within the atmosphere and vegetation. Understanding of atmospheric CO2

could help in developing policies and practices to mitigate continued build of 

atmospheric CO2.

Use of remote sensing techniques and eco-system process model calibrated with 

climatic and bio-physical parameters allow the estimation of NPP at regional or global 

levels. This study examined the magnitude, spatial pattern and variability of NPP in 

Conterminous US by a combination of National Aeronautics and Space Administration 

(NASA) developed CASA model and remote sensing.

1.2 Statement of the Problem

Estimation of NPP has various important theoretical and practical implications

(Markon and Peterson, 2002; Potter et al., 2003; Running et al., 2004), such as estimation 

of crop productivity, wildlife habitat availability and determination of health and status of 

the vegetation communities. Several studies (Running et al., 2004; Potter et al., 1993; 

Kicklighter et al., 1999; Potter et al., 2003; Turner et al., 2006) have estimated NPP at 

global and different regional scales but were primarily targeted for certain time periods. 

Only few studies (Milesi et al., 2003; Turner et al., 2006) examined NPP in different 

biomes of US eco systems. Potter et al. (2006) estimated carbon budgets for US eco 

systems from 1982 to 1997 using Carnegie Ames Stanford Approach (CASA) Biosphere 

model. There are very few studies if any, that have investigated the nature of NPP in 

different eco-divisions (Bailey (1976) since 1997 in annual scale. Therefore, there is a big 

gap in understanding the amount and distribution of NPP and the impact of climatic 

factors in it within the different eco-divisions of the Conterminous US.  Hence, the 
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primary objective of this study was to estimate NPP in US from 1997 to 2007 and to 

examine its temporal and spatial patterns and determine its relationship with climatic 

factors. Understanding the nature of NPP in different eco-divisions has the potential to 

enhance knowledge in carbon dynamics and can provide input for climate mitigation 

plans.

1.3 Objectives of the Study

In order to accomplish the boarder objective of estimating and analyzing the 

distribution of NPP, following specific objectives were defined:

1. To estimate annual NPP in the Conterminous US from 1997 to 2007

2. To analyze the spatial and temporal trends in NPP in the Conterminous US from 

1997 to 2007

3. To analyze the relation of NPP with climatic factors – temperature, precipitation, 

photosynthetically active radiation (PAR) and evapotranspiration and bio-physical

parameters such as Normalized Difference Vegetation Indices (NDVI) that 

indicates the conditions of the vegetation.

By accomplishing the above mentioned objectives, this research could make two 

major contributions to the literature.

The first contribution is to the methodology. This study modified the method to 

derive certain model parameters such as Fraction of Photo synthetically Active Radiation 

(FPAR) used in the NASA - CASA model to estimate NPP. The model was also modified 

to use current and freely available data. This change in methodology can significantly 

contribute to the scientific estimation of carbon sequestration by adding alternative 
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methods to calculate model parameters. Additionally, the use of remote sensing data and 

GIS techniques to estimate NPP also contribute towards the extension of GIS and remote 

sensing applications in environmental monitoring studies.

The second major contribution of this study is that it can fill the gap of annual 

NPP information for the Conterminous US after the year 1997. Estimation of annual NPP 

and its nature in different climate conditions in different parts of US might aid in the 

climate change research.  Additionally, the analysis of spatial pattern of NPP in different 

Eco-Divisions and states as summary strata can help the policy makers in planning, 

implementing, and monitoring carbon management practices in US. This study can also 

aid in attaining one of the goals of the United States climate change research program by 

examining the magnitude and distribution of carbon sinks in US.

1.4 Hypotheses

Three null hypotheses were tested in this research. 

1. Terrestrial NPP in U.S increased between the years 1997 and 2007.

This null hypothesis was developed based on the NPP trends observed in previous 

studies (Potter et al., 2006, and Hicke et al., 2002). Potter et al. (2006) used CASA model 

to estimate carbon budgets for the U.S eco-systems and he suggested that net terrestrial 

CO2 sink in U.S eco-system exceeded by about 0.05 petagrams of carbon per year in 

positive direction in the 1980s and 1990s. Similarly, Hicke et al. (2002) found a small but 

significant increase in NPP i.e.0.03 Pg C yr-1 from 1982-1998 in North America using the 

CASA model.

2. Southeastern states contribute significantly to the higher NPP than other regions.
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This null hypothesis is based on McNulty (2002) study which showed that 

southern forests contribute significantly to the carbon sink for the increasing atmospheric 

carbon dioxide associated with the anthropogenic activities in the United States.

3. Area with higher vegetation cover (which is measured by NDVI) will have higher 

NPP. 

This null hypothesis is based on previous studies (Lim et al., 2004), which found 

the positive correlation between in the rate of change between carbon assimilation by 

plants and vegetation development. 

1.5 Organization of the Thesis

This thesis is organized into five chapters. Chapter 1 introduced the research 

background, the problem statement, objectives, hypotheses and the overall organization 

of the thesis. Chapter 2 includes the literature review on different climatic and bio-

physical factors and different previous models used for the estimation of NPP. Chapter 3 

provides the methodologies used in this study that involves conceptual model, data 

preparation procedure and technical aspects of data processing. Chapter 4 introduces the

methodology used in the research. Chapter 5 presents the relationship between NPP and 

different climatic variables and discusses about the different spatial and temporal trends 

of NPP. Chapter 6 provides a summary of the major findings of this research along with 

the agenda for future research.
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CHAPTER II

LITERATURE REVIEW

Continuous rise in atmospheric CO2 and the future change in global climate as its 

consequence have gained global attentions since mid 90’s. Several studies (Maselli et al.,

2006, Baez-Gonzalez et al., 2002, Running et al., 2000, Potter et al., 2006) have 

investigated the amount of carbon being sequestered by the vegetation in different parts 

of the world including Marine and terrestrial eco systems to understand the carbon 

dynamics.  The methods used by these studies differed from each other in accordance 

with their simplicity, geographic scale, and computational capabilities. This chapter 

focuses on concepts, theories and applications of NPP and the different methodologies 

used in NPP estimation. Section 2.1 highlights the basic concepts of NPP, and the 

important factors that drive it. Sections 2.2 and 2.3 review the various NPP research 

specific to ecological modeling that integrate remote sensing techniques and climatic 

factors and the importance of remote sensing techniques in different environmental 

studies respectively.

2.1 Indicators of Carbon Fixation: NPP, GPP & NEP

Photosynthesis and primary production capture CO2 (hence carbon) out of the 

atmosphere, while respiration releases it to the air. The three major indicators that are

generally used to describe the process of carbon fixation by plants are NPP, Gross 
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Primary Productivity (GPP), and Net Eco-system Productivity (NEP) (University of 

Michigan, 2009).

GPP is the total amount of carbon assimilated by the plants during photosynthesis 

within a given area over a given timeframe. A fraction of GPP is used by the plant during

metabolism, cellular respiration and maintenance of existing tissues. NPP is the net 

assimilation of atmospheric CO2 after the costs of plant respiration is included (Roxburgh 

et al., 2005). NPP is often expressed mathematically as:  

NPP = GPP – R (2.1)

where, R = photorespiration 

NPP is the fundamental ecological variable that indicates the condition of the land 

surface area and also represents the status of a wide range of ecological processes

(Running et al., 2004, Field et al., 1995). NPP is normally expressed as grams carbon per 

unit area per unit time or grams biomass per unit area per unit time (both as g C m-2 yr-1), 

or energy per unit area per unit time (cal m- 2 yr -1 or watts m-2 yr- 1). 

NEP is the net exchange of carbon between the eco-system and the atmosphere. It 

includes respiration cost by plant (Rp), heterotrophs (Rh) and decomposers (Rd) (Field et 

al., 1995). It is often expressed as: 

NEP = GPP - (Rp + Rh + Rd) (2.2)

Among these three indicators, NPP is the most commonly used indicator for the 

analysis of carbon dynamics in the atmosphere. It is driven by solar radiation and can be 

constrained by light, precipitation, temperature, soils, plant characteristics, distribution 

regime and a number of natural and anthropogenic factors (Leith, 1975, Field et al., 1995, 
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Potter et al., 2006, 2003, Running et al., 2004). Anthropogenic activities alter resource, 

resource regulators, distribution regimes and plant characteristics (Field et al., 1995) and 

thus affect NPP. 

2.2 Bio-physical and Climatic Factors Sensitive to NPP

Studies (Field et al., 1995; Potter et al., 1993, 2003; Seller et al., 1987; Running et 

al., 2004; Mu et al., 2008) have shown that bio-physical parameters such as vegetation 

condition, fractions of photo-synthetically active radiation (FPAR) and climatic factors 

such as photo-synthetically active radiation (PAR), evapotranspiration, temperature and 

precipitation are crucial with respect to the estimation of NPP.  Details of these factors 

are discussed below:

2.2.1 Normalized Difference Vegetation Indices (NDVI)

NDVI is an indicator of relative abundance and condition of green vegetation 

(Jensen, 1996; Running et al., 2004). The relationship between NPP and NDVI is based 

on the concept that plant production of organic matter is related to both the absorbed 

radiation and reflected radiation by green vegetation (primarily leaves) (Sellers et al., 

1987). Extensive experimentation (Sellers, 1987; Running et al., 1988; Prince, 1991;

Running et al., 2004) has demonstrated a close relationship of NDVI with some 

important bio-physical parameters such as biomass, leaf area index (LAI), and FPAR.

Thus, NDVI is widely used in vegetation studies and eco-system modeling. NDVI is 

calculated using red and near infrared (NIR) wavelengths of the electromagnetic 

spectrum using the following expression (2.3):

NDVI = (NIR- Red) / (NIR + Red) (2.3)
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NDVI ranges from -1 to 1. Densely vegetated areas yield NDVI value close to 1 

because of high NIR reflectance and low red reflectance where as sparsely vegetated 

areas have low NIR reflectance and low red reflectance (Jensen, 1996) and have NDVI 

close to 0. NDVI from AVHRR satellite is a reliable index for describing the surface 

vegetation greenness as it reflects the condition of the biomass in a given area (Asrar & 

Myneni 1992; Prince, 1991).

2.2.2 Photo-synthetically Active Radiation (PAR)

PAR reaching the earth surface is one of the major driving variables that controls 

many bio-physical processes related to the vegetation (Rubioa et al., 2005). It is the 

portion of the sunlight spectrum from 400nm to 700nm required by plant during the 

photosynthesis process. Despite USefulness of incident PAR for the modeling of 

photosynthesis, there are very few stations that measure it. It is usually estimated from 

the solar radiation data. Field et al. (1995) computed PAR surface irradiance as the ½ of 

the total solar surface irradiance from the data of Bishop and Rossow (1991) while 

Alados et al. (2000) and Potter et al. (1993) estimated PAR from the measurements of 

global solar radiation. 

2.2.3 Fraction of Photo-synthetically Active Radiation (FPAR)

FPAR, another key bio-physical variable related to NPP, is the measure of 

absorbed amount of incident visible light by plant during photosynthesis. Studies (Field 

et al., 1995; Running et al., 1988, 2004; Sellers et al., 1987) have found its close 

relationship with the NDVI and leaf area index. Sellers et al. (1987) derived FPAR from 

NDVI and Simple Ratio (SR) derived from NDVI based on the assumption of its linearity 
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with NDVI while Running et al. (2004) derived FPAR using leaf area index. FPAR 

values ranges from 0 to 1. 

2.2.4 Intercepted Photo-synthetically Active Radiation (IPAR) and Absorbed 

Photo-synthetically Active Radiation (APAR)

IPAR is the amount of PAR captured by various canopy layers as the PAR 

incident at the top travels down the through canopy layers to the ground. APAR is the 

amount of PAR actually consumed by green canopy during photosynthesis. The 

difference between IPAR and APAR depends upon the canopy closure, coverage over the 

background materials, canopy composition, density and reflectance (Myneni et al., 1992).

For a canopy with dense coverage and green leaves, IPAR may be a good approximation 

of APAR as healthy green leaves do not reflect much PAR. The relation of APAR with 

FPAR and PAR has been extensively documented in several studies as the product of 

FPAR and PAR (Mu et al., 2008, Running et al., 2004, Hicke et al., 2002, Field et al., 

1995, Potter et al., 1993) as shown in the expression (2.4):  

APAR = FPAR * PAR (2.4)

2.2.5 �������	
�����
�
�
�����

Light use efficiency (�) is the underlying variable for the estimation of carbon 

exchange in many eco-system models. It controls the efficiency with which vegetation 

harvest available light to fix carbon via photosynthesis. Variability of � within the 

different vegetation is mainly because of the vegetation types and the climatic conditions. 

With any vegetation, some photosynthesis is immediately used for the maintenance 
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respiration. For the perennial plants, the maintenance respiration cost is minimal; 

therefore perennial plants have higher � than the woody stems (Running et al., 2004).

Vegetation attains maxim�������max) in an ideal climatic condition without any 

constraints. However, it is usually constrained by temperature and water (Field et al., 

1995; Potter et al., 1993, 2003; Running et al., 2000). Studies have quantified it as the 

�����
������max and the water (W) scalar and temperatures (T1, T2) scalar. Water scalar is 

a measure of soil moisture controlled primary through the precipitation and 

evapotranspiration while temperature scalar is a measure of effects of extreme 

temperature beyond the optimal temperature. ������������
�����������������
������	�

represented as:

�= �max * T1 (x, t) * T2(x, t) * W(x, t) (2.5)

��
�
���
���������		�
	�����
��

��	��
����������
�
	�������������max because of 

the complex physiological process within the different vegetation. Potter et al., (1993, 

2003) and Field et al. (1995) ignored ��
���������������������������
�����
	�����used 

single value for all biomes based on calibration of field based NPP and modeled NPP 

values. However, other studies (Running et al., 2004; Turner et al., 2006; Mu et al., 2008) 

used differ
����max ��������
�
�������
	�����
������������max for each biome is not 


��	�	�
���������
����
�
�	��
������	�	������max should be conducted imperatively with 

the site specific NPP.

Various measures of field NPP data and light use by plant suggested that the value 

of � is about 0.3 to 3.7 g MJ-1 among a wide range of plant species, crop varieties and 

forest strands (Prince, 1991; Ruimy et al., 1994). Several studies have estimated NPP 
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with the constant value of � for different vegetation because of the unavailability of exact

measured values (Goetz, 1997; Field et al., 1995; Potter et al., 1993). There are however 

large uncertainties in the estimates of NPP which are centered towards the acquisition of 

remote sensing data in different resolution and assumption of invariant value of �.

2.2.6 Evapotranspiration (ET)

ET is the sum of evaporation from the soil surface and plant transpiration to 

atmosphere. It plays a significant role in regional and global climate through it portioning 

in hydrological cycles. It is important in assessing ground water recharge, predicting crop 

yields and planning land use (Penman, 1948). ET is usually expressed in millimeters per 

unit time (such as mm/month, mm /day) and is estimated through water balance model. 

Potential evapotranspiration (PET) and Actual evapotranspiration (AET) are frequently 

used terms in agronomy to assess crop water requirement. Figure 1 illustrates the various 

processes that underlie within the soil water balance.

Figure 1 Soil Water Balance (After Strahler & Strahler, 2006)

(Source: http://www.uwsp.edu/geO/faculty/ritter/geog101/textbook/hydrosphere/water_balance_1.html)
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Recharge period occurs when precipitation exceeds potential evapotranspiration 

but soil but has to reach its field capacity. Surplus period occurs when precipitation 

exceeds potential evapotranspiration and soil has reached its field capacity. Additional 

water applied to the soil results run off. Utilization period occurs when water is 

withdrawn from soil moisture storage. This occurs when PET exceeds precipitation but 

soil storage has yet to reach to 0. While deficit period occurs when PET exceeds 

precipitation and soil storage has reached 0 and soil has no water for plants.

2.2.6.1 Potential Evapotranspiration (PET)

PET is the amount of water that would be lost through the process of evaporation 

and transpiration from the surface under optimal supply of water. Many methods have

been formulated for the estimation of PET which can be grouped into five categories: 1) 

Water Budget, 2) Mass transfer, 3) Combination (example. Penman, 1948), 4) Radiation 

(example Priestley and Taylor, 1972), 5) Temperature-based methods (example. 

Thornthwaite, 1948; Blaney and Criddle, 1950) (Xu and Singh, 2002). The need of wide 

range of data type and expertise to use various equations properly makes it difficult to 

select the most appropriate PET method for any study.

2.2.6.2 Actual Evapotranspiration (AET)

AET is the amount of water that is actually released to the air through the 

transpiration and evaporation process in the given environmental conditions of a place. It 

increases with the increase of temperature, so long as there is water to evaporate and 

water for plants to transpire (Ritter, 2006). Studies (Kolka and Wolf, 1998; Mehta, 2006) 
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have estimated AET through the combination of PET, water holding capacity of soil and 

the precipitation.

2.2.7 Water Holding Capacity (WHC)

WHC is an estimate of the soil’s ability to store water. Soil scientists have used 

parameters such as field capacity (FC) and wilting point (WP) to define available WHC 

(AWC) of soil under different conditions. 

2.2.7.1 Field Capacity (FC)

FC is the maximum amount of water the soil can hold. The upper limit of soil 

moisture storage is FC and the lower limit is the 0 when the soil dries out (Ritter, 2006). 

It is dependent on soil structure and texture (Brady, N.C. et al., 1999). Fine grain soils have 

larger field capacities than coarse grain (sandy) soils. 

2.2.7.2 Wilting Point (WP)

It is the state of soil at which plant can no longer extract health sustaining quantity 

of water from soil and begin to wilt as the consequences of deficiency of moisture in the 

soil. 

Water holding capacity or water readily available to plants is the difference 

between water content at field capacity and the wilting point. . The Figure 2 shows the 

processes which result change in water holding capacity with the textural characteristic 

and the depth of soil. Relation (2.6) provides the expression for the estimation of AWC. 

AWC = FC- WP (2.6)
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Figure 2 Relationship between Soil texture and Available Water

(Source: //www.ext.colostate.edu/mg/files/gardennotes/261-SoilWater.html)

2.3 Approaches to Net Primary Productivity Modeling

NPP is influenced by various Eco-physiological and bio-physical processes, some 

of which are very difficult to quantify, and are thus rarely measured (Clark et al. 2001a, 

b). The aboveground production is relatively easy to measure and comprises the majority 

of available NPP data. However, belowground production of woody roots and short-lived 

fine roots can form a significant proportion of total production (Clark et al. 2001a, b) but 

is extremely difficult to quantify. Thus, the most reliable component of NPP data is the 

aboveground component, and the belowground component is usually estimated with

substantial uncertainty (Clark et al. 2001 a, b). So, the accuracy of the different vegetative 

models used in estimation of both above and belowground production is difficult to test 

precisely. 
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Aboveground terrestrial NPP is one of the most commonly modeled ecological 

parameters at both the regional and continental scales. NPP is controlled by climatic

conditions and regulated by topography, soil and other environmental factors (Zheng, 

1999). Studies have estimated NPP at global and regional scales using various models 

that ranged from simple correlation model (Leith, 1975) to complex Eco-physiological 

model (Potter et al., 1993, Running et al., 1988, 2000) that couples vegetation-

atmosphere exchange of energy (Matsushita, 2004). NPP models reviewed in this section 

include statistical, climatical, Eco-physiological and process based models driven with 

remote sensing measurements. 

Studies based on statistical models (Brown and Lugo, 1984; Leith 1975) 

estimated NPP as the function of mean annual temperature and precipitation through 

regression analysis. “Miami Model” (Leith, 1975) was the first global scale empirical 

model of terrestrial NPP. These models are strictly empirical in nature and offer little or 

no predictive or monitoring capability (Goetz, 1997). The approach was criticized 

because it failed to relate climate and vegetation photosynthetic activities properly

because of its underlying assumption that the plant production has homogeneous 

responses to climate (Lieth, 1975; Emanuel et al., 1985; Goetz, 1997). However, it offers

simplification of complex mechanistic models.

Soil-Vegetation-Atmosphere-Transfer (SVAT) models, which supplanted

statistical models, included feedback mechanism between vegetation and the atmosphere 

by coupling plant physiological processes with climatic parameters (Goetz, 1997). SVAT 

improved the statistical models rather than monitoring terrestrial carbon dynamics. 
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Eco-physiological C-Flux models such as Terrestrial Eco-system Model (TEM: 

Raich et al., 1991) and Biogeochemical Model (BGC: Running and Hunt et al., 1993) 

were successful in stimulating short-term plant physiological responses to moisture, 

temperature and nutrient limitation and effect of these responses to carbon fluxes and 

energy fluxes (evapotranspiration and latent heat exchange). 

TEM simulates carbon flux at the continental scale by calculating carbon during 

respiration in conjunction with photosynthesis, CO2 concentrations, moisture extent, air 

temperature, nitrogen availability and seasonality of vegetation to some extent (Goetz,

1997). However, it requires calibration for each eco-system with the representative field 

data and the field data must be spatially calibrated like statistical models.

Biome-BGC was originally developed for conifer forests and is particularly 

sensitive to leaf area index (LAI) derived from satellite spectral measurements. Biome-

BGC treats forest canopy as a homogenous three-dimensional leaf of depth proportional 

to LAI (Goetz, 1997). The results of Biome-BGC have been difficult to validate for large 

scale regions but have been validated at a local scale with field measurements. Running 

et al. (1988) noted that LAI estimated from satellite imagery at 1km spatial resolution

may result in significant error with the model, particularly in heterogeneous landscapes. 

Biome-BGC is, however, useful and widely applied model to simulate NPP over large 

areas.

Kumar and Monteith (1982) introduced the concept of product efficiency model 

(PEM) by using annually integrated FPAR and incident PAR to measure annual NPP and 
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crop productivity.  Based on PEM, the product of FPAR derived from NDVI and PAR

provides a measure of productivity as shown in expression (2.7).

NPP = �N
t=1* * [FPAR * PAR]� �N

t=1* * APAR (2.7)

In the equation (2.7), ‘t’ is the time interval over a growing season (of length N)

and ‘�’ is the light use efficiency. Applications of the simple production efficiency model

with the constant value of �, have provided moderate to strong correlation with surface 

measurement of NPP in crops (Asrar et al., 1993; Daughtry et al., 1992), semi-arid 

grasslands (Prince, 1991) and even at continental (Goward et al., 1985) and global scales 

(Potter et al., 1993; Ruimy et al., 1994). Spectral vegetation indices (SVI) were first used 

to estimate FPAR by Kumar and Monteith (1982) using Monsi and Saeki’s (1953)

function based on light incident in plant canopies as shown in expression (2.8).

FPAR = IPAR/PAR = l-e-kl (2.8)

In the equation (2.8), ‘k’ is the coefficient that describes the average projection of 

leaves in any direction and is modified by a scattering coefficient based on canopy shape 

and ‘l’ is the projected LAI. Regardless of the radiative transfer modeling approaches, 

estimation of FPAR from SVIs is dependent on a number of factors including leaf 

display, leaf properties, solar geometry, presence of non-photosynthetic elements in the 

canopy, the quality of irradiance and background reflectance (Goetz, 1997). LAI driven 

models are likely to provide erroneous estimates of NPP unless some kind of distinction 

is made (Goetz, 1997). 

Canopy radiative transfer simulation studies (Myneni et al., 1992) conducted with 

consideration of all these effects showed the non-linear relationship between SVIs and 
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FPAR and found it to be driven mostly by background properties such as surface. 

However, studies (Sellers et al., 1987; Zhu et al., 2005) have shown that relationship 

between FPAR and SVIs is the best for a continuous canopy. Non-linearity becomes

problematic because the results of non-linear processes vary with the scale at which they 

are observed. However, accurate estimates of FPAR from SVIs may require frequent 

measurement during the day, depending upon the architecture and leaf display 

(Richardson et al., 1991).

2.3.1 CASA Model

Potter et al. (1993) used a process based model called Carnegie Ames Stanford 

Approach (CASA) which integrated bio-physical, such as NDVI, FPAR and climatic 

factors, such as temperature, precipitation and evapotranspiration acquired through 

remote sensing to estimate NPP. The model operates on a monthly interval to simulate 

seasonal patterns of carbon fixation by plants, biomass and nutrient allocation, litterfall, 

soil nitrogen mineralization and CO2 production (Potter et al., 1993, 2006, Field et al., 

2005). This model calculates monthly NPP as the product of APAR and LUE (��. For 

each terrestrial grid cells, CASA model is used to calculate APAR as the product of PAR

and FPAR derived from AVHRR NDVI (Field et al., 1995). The model calculates ��for 

each cell as the product of constant maximum LUE (�max�  ! across all biomes and scalars 

representing the availability of water (W) and the suitability of temperature (T1, T2).  NPP 

for a location (x) and time (t) is represented as in equation (2.9) or (2.10).

NPP(x, t) = APAR (x, t) * ��(x, t) OR (2.9)

NPP = PAR(x, t) * FPAR (x, t) * �max * T1 (x, t) * T2(x, t) * W(x, t) (2.10)
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2.4 Use of Remote Sensing in Modeling of Primary Productivity

Satellite remote sensing has an advantage of providing nearly continuous 

observation over large areas thus has been used in several areas such as land use land 

cover change, climate change and water management to mention a few. Study related to 

NPP is essential to estimate the human impacts on biosphere-atmosphere functions 

(Cohen et al., 1999) and this requires a global terrestrial observing system that can 

integrate field based measurements, flux towers, remote sensing and eco-system

modeling (Running et al., 2000; Potter et al., 2003; Turner et al., 2006). Several studies 

(Mu et al., 2008; Running et al., 2000; Field et al., 1995) have estimated global and 

regional NPP of terrestrial eco-system using remote sensing data. Satellite estimates,

however, suffer due to the lack of large-scale field data required for validation of 

estimated NPP and also for the parameterization of LUEs (Lobell et al., 2002).

AVHRR and Moderate Resolution Imaging Spectro-radiometer (MODIS) are the 

most commonly used remote sensors that have been used to estimate historic NPP and 

seasonal exchange of CO2 between the atmosphere and the terrestrial biosphere (Hicke et 

al., 2002, Rasmussen, 1998). MODIS was launched into Earth orbit by NASA in 1999 on 

board the Terra (EOS AM) satellite. This instrument captures data in 36 spectral bands 

ranging in wavelength from 0.4 µm to 14.4 µm and at varying spatial resolutions (2 

bands at 250 m, 5 bands at 500 m and 29 bands at 1 km (NASA, 2009). Previous studies 

(Mu et al., 2008; Heinsch et al., 2006; Running et al., 2004) used MODIS datasets to 

estimate NPP across various regimes. AVHRR is a space-borne sensor on the board 

National Oceanic and Atmospheric Administration (NOAA) family of polar orbiting 
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platforms. It measures the reflectance of the Earth in relatively wide spectral bands. In 

1989, Earth Resource Observation and Science (EROS) started acquiring afternoon 

AVHRR 1-km resolution daily observations to produce weekly and biweekly maximum 

NDVI composites of the Conterminous United States and Alaska. AVHRR data are 

particularly relevant to vegetation activities, land surface properties, climate change and 

environmental degradation because of the comparatively long record of data (Nemani et 

al., 2003; Tucker et al., 2001; Goetz et al., 1999; Potter et al., 1993).

To provide validation to the global data products derived from MODIS and 

related sensors, NASA formed the EOS Validation Program. BigFoot is a network of 

validation sites, designed to provide the context using a combination of in situ ecological 

data, Landsat ETM+, and eco-system models (Cohen and Justice, 1999). Based on the 

comparison of BigFoot with the field data, accuracies of BigFoot maps can serve as 

validation media for global data products derived from MODIS and related sensors 

(Running et al., 2000; Cohen and Justice, 1999).

Although there are several studies (Potter et al., 2006; Hicke et al., 2002; Running 

et al., 2000) related to NPP across various biomes at global and regional scale, there are 

only few, if any, for the Conterminous US for recent years. Hicke et al. (2002) found 

small but significant increase in NPP by 8% or 0.03 Pg Cyr-1 over 17 years from 1982 –

1998 across North America driven mainly due to heterotrophic respiration . The largest 

increases occurred in the central and southeastern US, eastern Canada and northwestern 

North America. Potter et al. (2006) found inter annual variability of NPP across 

continuous US at the level of 3-3.5 petagrams of carbon per year from 1982 to 1997.
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This study estimated NPP across different various eco-divisions and states of the 

Conterminous US from 1997 to 2007 using CASA model.

2.5 Role of Landscape Stratification

The decision to use Eco-Divisions and Environmental Protection Agency (EPA) 

regions as a stratum to analyze NPP spatially and temporally helps to analyze the effects 

due to the Modifiable United Area Problem (MAUP) (O’Sullivan and Unwin 2003). 

MAUP is an analytical artifact of choosing an area or strata that, if too large, results in 

loss of information specificity, and if too small, results in the loss of general pattern 

variation across the landscape. Eco-divisions were used to reduce the source of variance 

in analysis of NPP and its relationship with climatic factors due to landscape conditions 

that maintain homogeneity among various eco-regions in Conterminous US.
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CHAPTER III

STUDY AREA: CONTERMINOUS UNITED STATES

As described in Chapter One, the Conterminous US is chosen as the study area for 

this research. Because U.S is the world’s second largest contributor of CO2, there is a 

need for studies on carbon sequestration. This study examines the carbon dynamics 

driven by photosynthesis in different eco-divisions, regions defined by environmental 

protection agency (EPA) and states within the continuous U.S from 1997 to 2007. This 

chapter briefly highlights on the different eco-divisions in the lower 48 states.

3.1 Eco-Divisions

The main purpose of using eco-divisions to analyze the temporal and spatial 

patterns in NPP was that they can help to analyze the relationship between NPP and a 

particular combination of temperature, precipitation and vegetation characteristics. Eco-

regions defined by Bailey (1976) include domains, divisions, and provinces. It was 

developed through a regionalization or top-down process that focuses on differences in 

global, continental, and regional climatic regimes and gross physiography (Bailey, 1976, 

Bailey et al., 1994). There are 11 eco-divisions in the Conterminous US as defined by 

Bailey based on precipitation and temperature patterns.
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3.1.1 Warm Continental Division:

The warm and humid continental division spans towards the south of the eastern 

area of the subarctic climate and between the continental interior and the east coast.

Needle leaf and mixed needle leaf-deciduous forest exists throughout the colder northern 

parts of the humid continental climate zone, extending into the mountain regions of the 

Adirondacks and northern New England (Bailey et al., 1994).

3.1.2 Hot Continental Division:

South of the Warm Continental climate lies another division in the humid 

temperate domain – Hot Continental division. Hot summers and cool winters occur in this 

division. In the warmer sections of this division, the frost-free or growing season 

continues for 5 to 6 months whereas in the colder sections, it continues for only 3 to 5 

months. Winter deciduous forest, dominated by tall broadleaf trees that provide a 

continuous dense canopy in summer, but shed their leaves completely in winter is the 

main vegetation of this region (Bailey et al., 1994). 

3.1.3 Subtropical Division:

The humid Subtropical climate, marked by high humidity (especially in summer) 

and the absence of really cold winters, prevails in southern Atlantic and gulf coast states.

Much of the sandy coastal region of the southeastern US is covered by second-growth 

forests of longleaf, loblolly, and slash pines. Inland areas have deciduous forest (Bailey et 

al., 1994).
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3.1.4 Marine Division:

It is a zone that receives abundant rainfall from maritime polar air masses and has 

a rather narrow range of temperature as it borders on the ocean. Natural vegetation in the 

Marine division is needleleaf forest. In the coastal ranges of the Pacific Northwest 

douglas-fir, redcedar, and spruce grow to magnificent heights, forming some of the 

densest of all coniferous forests with some of the world's largest trees (Bailey et al., 

1994). 

3.1.5 Prairie Division:

The Prairie is typically associated with continental, mid-latitude climates that are 

designated as sub humid. Vegetation in this area is dominated by tall grasses associated 

with subdominant broad-leaved herbs. Trees and shrubs are almost totally absent, but a 

few may grow as woodland patches in valleys and other depressions (Bailey et al., 1994). 

3.1.6 Mediterranean Division:

The Mediterranean is subject to alternate wet and dry seasons, the transition 

between the dry west coast desert and the wet west coast. The combination of wet winters 

with dry summers is unique among climate types and produces a distinctive natural 

vegetation of hard leaved evergreen trees and shrubs called sclerophyll forest (Bailey et 

al., 1994).

3.1.7 Tropical / Subtropical Steppe Division:

It borders the tropical deserts on both the north and south and also on the east as 

well. Locally because of altitude, plateaus and high plains within what would otherwise 
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be desert have a semiarid steppe climate. Steppes typically are grasslands of short grasses 

and other herbs, and with locally developed shrub- and woodland (Bailey et al., 1994).

3.1.8 Tropical / Subtropical Desert Division:

It is characterized by extreme aridity and by extremely high air and soil 

temperatures. The region is characterized by dry-desert vegetation, a class of xerophytic 

plants that are widely dispersed and provide negligible ground cover. In dry periods, 

visible vegetation is limited to small hard-leaved or spiny shrubs, cacti, or hard grasses 

(Bailey et al., 1994).

3.1.9 Temperate Steppe Division:

Temperate Steppes are areas with a semiarid continental climatic regime in which, 

despite maximum summer rainfall, evaporation usually exceeds precipitation. The 

vegetation is typically steppe, sometimes called shortgrass Prairie, and semidesert. 

Typical steppe vegetation consists of numerous species of short grasses that usually grow 

in sparsely distributed bunches (Bailey et al., 1994).

3.1.10 Temperate Desert Division:

This region is characterized by low rainfall and strong temperature contrasts 

between summer and winter. The Temperate Desert has characteristics of a sagebrush 

(Artemisia) semidesert, with a very pronounced drought season and a short humid season. 

Temperate Desert climates support the sparse xerophytic shrub vegetation typical of semi

desert (Bailey et al., 1994).
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3.1.11 Savannah Division:

This region exists in southern Florida, where habitats and fauna are strongly 

influenced by fluctuating water level. The tropical wet-dry savanna climate has a wet

season controlled by moist, warm maritime. Wet and dry seasons result in the growth of 

distinctive vegetation generally known as tropical savanna (Bailey et al., 1994).

Figure 3 Eco-Divisions within the Conterminous US

3.2 Environmental Protection Agency (EPA) Regions

This study tried to examine the carbon dynamics driven by NPP within the 10 

EPA regions of the Conterminous US. Each of these regions is responsible for the 

implementation of federal laws designed to protect the environment (EPA, 2008). So, 
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analysis of NPP based on these regions helps to analyze the contribution of each region in 

carbon dynamics which could be useful in strengthening environmental protection 

programs and recommending policy changes in reducing CO2 emissions. Each EPA 

regions includes different states as mentioned below (EPA, 2008):

Region 1 – It includes the states of Connecticut, Maine, Massachusetts, New Hampshire, 

Rhode Island, and Vermont. 

Region 2 - It includes the states of New Jersey and New York. 

Region 3 - It includes the states of Delaware, Maryland, Pennsylvania, Virginia, West 

Virginia, and the District of Columbia. 

Region 4 - It includes the states of Alabama, Florida, Georgia, Kentucky, Mississippi, 

North Carolina, South Carolina, and Tennessee. 

Region 5 - It includes the states of Illinois, Indiana, Michigan, Minnesota, Ohio, and 

Wisconsin. 

Region 6 - It includes the states of Arkansas, Louisiana, New Mexico, Oklahoma, and 

Texas. 

Region 7 - It includes the states of Iowa, Kansas, Missouri, and Nebraska. 

Region 8 - It includes the states of Colorado, Montana, North Dakota, South Dakota, 

Utah, and Wyoming. 

Region 9 - It includes the states of Arizona, California, and Nevada. 

Region 10 - It includes the states of Idaho, Oregon, and Washington.
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Figure 4 EPA Regions of the Conterminous US

3.3 Lower 48 States 

All 48 states in the conterminous US were used in the analysis of spatial and 

temporal patterns of NPP. Estimation of NPP at the State level is imperative as the 

environmental policies are often made at the state level. Knowledge of NPP values and 

their trends in each state will help the state and the federal governments in making policy 

decisions regarding drought mitigation, forest management and other resource 

management issues.



32

CHAPTER IV

RESEARCH METHODOLOGY

To attain the objectives of this research, the theoretical framework of CASA 

model and the technical framework of GIS and remote sensing were adopted. Based on 

these two frameworks, the research methodology was designed to include five major 

parts: (1) conceptual model for the overall study, (2) data acquisition, (3) data preparation 

for CASA model, (4) NPP modeling, (5) validation of the results, (6) data extraction and 

analysis and (7) flow chart of the process, which are briefly explained in the sections 4.1, 

4.2, 4.3, 4.4, 4.5, 4.6 and 4.7 of this chapter respectively. 

4.1 Conceptual Model

The overall process for the estimation of NPP was conceived as presented in the 

conceptual model to provide insight over the variables that are important for the CASA 

model. The interaction among various climatic and bio-physical variables during 

photosynthetic process has been represented through the figures 5, 6, 7 and 8.

4.1.1 Modeling Elements

The driving variables are the factors /stimuli that have direct impact on the 

system. Temperature (minimum temperature, maximum temperature, and average 

temperature), NDVI, precipitation, PAR and AWC were the basic driving variables for 

this study. The state variables are the variables that describe the condition/state of a 
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system or components. Plant growth is the state variable for this study. Atmospheric CO2

released after photosynthesis and consumed during photorespiration acts as both the 

source and sink. The auxiliary variables are the variables that have indirect impact in the 

system and are less important than the driving variables. Field based NPP are the 

auxiliary variables for this study which were required for the validation of modeled NPP. 

Parameters that were computed using the relationship between various driving variables 

were APAR, evapotranspiration (PET and AET), LUE, FPAR and thus NPP. Table 1 

shows the symbols generally used in the conceptual model.

Table 1 Symbols Used in the Conceptual Model

Symbols Stands for Symbols Stands for

Driving Variables Source/Sinks

State Variables Rate Equations

Auxiliary Variables Information Flow

The role of radiation (400nm-700nm) and healthiness of plants in determining the 

amount of radiation being absorbed by plants during photosynthesis process has been 

depicted in figure 5. 
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Figure 5 Conceptual Model for the Estimation of APAR

In Figure 6, the complicated concept of evapotranspiration has been simplified by

considering the relation of temperature, precipitation and soil water holding capacity in 

evapotranspiration.

Figure 6 Conceptual Model for the Estimation of Evapotranspiration

Figure 7 shows the primary driving variables that help to determine the stress 

factors (such as water and temperature stress) upon the photosynthesis process. 
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Figure 7 Conceptual Model for the Estimation of Light Use Efficiency

Figure 8 shows the overall variables that are considered for the computation and 

validation of the modeled NPP.

Figure 8 Generalized Conceptual Model for the Estimation of NPP and its
Validation

4.2 Data Acquisition

Different data were downloaded from different sources in different format and 

resolution. Table2 shows the attributes of the different data used in this study. 
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4.2.1 NDVI

Fourteen day AVHRR composites from 1997 to 2007 with a 1-km spatial 

resolution available in the archive of United States Geological Survey (USGS1

4.2.2 Temperature and Precipitation 

) Earth 

Explorer were used to extract NDVI dataset for this study. NDVI datasets were used with 

no image enhancement as the data are already preprocessed such as radio-metrically 

calibrated, geometrically registered, and atmospherically corrected (USGS, 2008).

Four kilometer resolution spatial grids of monthly precipitation and monthly mean 

maximum and minimum temperature from Parameter – elevation Regressions on 

Independent Slopes Model (PRISM2

4.2.3 Photo-synthetically Active Radiation (PAR)

) were used as the preliminary model input. These

4km climate data were prepared from US weather stations record and were interpolated 

first into 30 arc-seconds grid by PRISM. As the data were already in raster format, it 

became easier to work with than the data recorded by different national weather stations 

in some other formats such as excel. Monthly mean temperatures from 1997 to 2007 were 

computed by averaging monthly minimum and maximum temperature data.

Solar radiation impact to primary production was incorporated in the model by 

using PAR data provided by GEWEX Continental Scale International Project (GCIP) and 

1 http://edcsns17.cr.usgs.gov/EarthExplorer/
2 http://prism.oregonstate.edu/
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GEWEX Americas Prediction Project (GAPP)3

4.2.4 Soil Data

surface radiation budget data. Monthly

PAR datasets for the entire study period were available with the spatial resolution of ½ 

degree in the units of W/m2 and in the format supported by the Fortan program. So, the 

data were first extracted into point format and then converted into arcGrid format by 

using Inverse Distance Weighted (IDW) interpolation method.

Amount of water available in soil has huge impact on plant productivity. 

Information regarding water holding capacity of the soil is very hard to achieve for the 

entire US. SURGO soil information available in USDA is based on soil series and it is 

available only for different sampling sites on county basis. It was very hard to put soil 

information based on different soil series together for entire US. For the purpose, 

information regarding AWC available in National Geophysical Data Center (NGDC-

NOAA4) was used. This dataset was estimated for the Food and Agriculture Organization 

(FAO) digital Soil Map of the World (SMW) by employing continuous pedo-transfer 

functions (PTF) within global pedon databases (Reynolds et al., 1999). These datasets 

was computed based on the particle-size distribution; dominant soil texture; organic 

carbon content; coarse fragments; bulk density, and porosity for two-layers of depths (0-

30 and 30-100 cm). AWC at 30-100 cm soil depth was used for this study.

3 http://www.atmos.umd.edu/~srb/gcip/
4 http://www.ngdc.noaa.gov/ecosys/cdroms/reynolds/reynolds/reynolds.htm
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4.2.5 Eco-Divisions Data

Eco-divisions data for the Conterminous United States, defined by Robert G. 

Bailey (Bailey et al., 1994), were used as summary strata for the examination of the 

temporal and spatial variation of NPP from 1997 to 2007. These data are available in eco-

system management divisions of USDA5

4.2.6 BigFoot Sites NPP Data

.

BigFoot Sites NPP data available for different sites at different years were used to 

validate the estimated NPP data in this study. BigFoot NPP surfaces were developed

initially to provide validation of MODLand (MODIS Land Science Team) science NPP 

products. These data are available in DAAC ORNL. BigFoot NPP surfaces data available 

in DAAC ORNL (http://daac.ornl.gov/data/BigFoot_val/) are 5km * 5km in size with the 

resolution of 25m in the ascii format. 

There are very few BigFoot sites throughout the Conterminous US and only few 

of them have collected NPP data during 1997 to 2007. Apart from BigFoot sites, field 

specific NPP data can be obtained from Long Term Ecological Research Network 

(LTER6

5 http://www.fs.fed.us/land/ecosysmgmt/colorimagemap/ecoreg1_divisions.html

) sites but these data are available only from 1975 to 1998. Further, the NPP data 

available in LTER are based on plot level and they introduce additional difficulties 

related to scaling issues while comparing with estimated NPP as the estimated NPP were 

very coarse (1km resolution) compared to plot level data. So, this study validated 

modeled NPP with the BigFoot NPP surfaces data available for six different sites for 

6 http://www.lternet.edu/sites/
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different time period that varies widely in climate, land use and vegetation regimes 

(Figure9). There are no BigFoot sites with NPP data from 1997 to 2007 for the 

southeastern part of US.

Table 2 shows the details of the BigFoot Sites that includes the geographic 

location, types of biomes and the year for which field NPP data are available. 

Table 2 BigFoot Sites used for the Validation of the Modeled NPP

Name Location Biome Year

AGRO Tolono, Il, USA
Crop (corn& 

soybean)
2000

KONZ
Manhattan, KS, USA

(Konza LTER)
Tallgrass Prairie 2000

HARV
Petersham, MA, USA

(Harvard Forest LTER)
Temperate Mixed 

Forest
2001, 2002, 

2003

CHEQ
Park Falls, WI, USA

(Tall Tower Site)
Temperate Mixed 

Forest
2000

METL Sisters, OR, USA
Temperate 

Needle leaf Forest
2002
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Figure 9 BigFoot Sites in the Conterminous US Used for the Validation

Table 3 Data Used in the Modeling of NPP

Data Source Format Resolution
Monthly Minimum Temperature, 
Maximum Temperature, Monthly 
Precipitation

ASCII 4Km

AVHRR 14 Days Composites Raster 1Km

Monthly Photosynthetically 
Active Radiation (PAR)

Fortan 0.5 Degree "##$�

Maximum Soil Water Holding 
Capacity

Raster 0.5 Degree "##$�

US Eco Divisions Shape file

BigFoot Sites NPP Raster 25 Meter

NGDC 
NOAA
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4.3 Data Preparation

The collected data were prepared so as to use them as the inputs for the modeling 

of NPP. AVHRR 14 days composites data were first geo-referenced to Lambert 

Azimuthal Equal Area Projection and then band 6 i.e. NDVI band amongst 14 bands of 

AVHRR was extracted. Monthly NDVI were computed from AVHRR composite data 

using raster calculator tool in ArcGIS software.

Monthly average PAR data downloaded from PRISM website were first extracted 

as point data using Fortran program. PAR data was in 0.5 degree resolution. The data 

were then interpolated using Inverse Distance Weighted (IDW) method based on Tobler 

law of geography which states that-“Everything is related to everything else, but near 

things are more related than distant things’’ (Tobler 1970). The extracted PAR data were

in the unit of (W m-2 per hour per day) so those were converted to M J m-2 using relation 

(4.1). 

M J m-2 = (W / m2) x 86400 x 10-6 x total days of the month (4.1)

Total monthly precipitation, mean monthly minimum and maximum temperature 

datasets, available from PRISM, were first geo-referenced to geographic coordinate 

system and then re-projected to Lambert Azimuthal Equal Area Projection. These data 

were re-sampled to 1 km resolution similar to the resolution of NDVI data. Minimum and 

maximum monthly temperature data were then averaged to obtain the mean monthly 

temperature dataset. Similarly, soil AWC data was first projected to the geographic 

coordinate system and then re-projected and re-sampled for the model.
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4.4 NPP Modeling

Many fundamental issues related to the global carbon cycle can be addressed 

using simulation models that operate by linking remote sensing, spatial databases of 

climate and soils and understanding of atmosphere-plant-soil biogeochemistry (Potter et 

al., 1993). In this study, fundamental concepts of CASA model were used for the 

estimation of monthly NPP.

4.4.1 CASA Model Parameters Estimation

4.4.1.1 APAR

Monthly APAR was calculated as the product of PAR surface irradiance and 

FPAR. FPAR was calculated as a linear function of the AVHRR simple ratio (SR), where

SR(x,t) = (1+NDVI(x,t))/(1-NDVI(x,t)) (4.2)

A linear relation between FPAR and SR is supported by theoretical results from 

Kumar and Monteith (1982), Sellers (1985, 1987). Based on Sellers et al. (1987), SR-

FPAR relationship for different eco-system can be expressed as shown in expression 

(4.3).

FPAR (x,t) = min (SR(x,t)/[SRmax – SRmin] – SRmin/[SRmax – SRmin], 0.95) (4.3)

In equation (4.3), ‘SRmin’ represents SR for unvegetated land areas and was set to 

1.08 for the study site. SRmax is the maximum possible SR which differs by vegetation 

type based on rationale of Sellers et al. (1987). As the national land cover database 

(NLCD) for the study area was available only for the years between 1992 and 2001, the 

study modified the model and computed SRmax per pixel as the average value of 

maximum SR over the 11 years study period. However, previous studies (Field et al., 
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1995; Potter et al., 2006; 2003, Hicke et al., 2002) based on NASA-CASA model used 

NDVI and simple ratio (SR) in conjunction of land use land cover information to estimate 

FPAR.  The basic assumption behind use of pixel information is that each NDVI pixel 

reflects the properties of different land cover. The value 0.95 was imposed on FPAR in

the equation 4.3, reflects a finite upper limit to leaf area and the factor 0.05 accounts for 

the fact that approximately half of the incoming solar radiation is in the PAR waveband 

(0.4 – %&'�(����)���
��
����&*�+,,-�&�

4.4.1.2 Water and Temperature Scalars

Inclusion of temperature and water scalars is a simple attempt to include as much 

as possible of the mechanistic basis of the effects of temperature and precipitation on 

productivity (Field et al., 1995). Temperature and precipitation data were used to 

determine T1, T2, and W. Monthly water scalar was calculated as a function of the ratio of 

actual evapotranspiration (AET) to potential evapotranspiration (PET) (Potter et al., 

2006, 1993; Field et al., 1995):

W(x, t) = 0.5 +AET(x, t)/PET(x, t) (4.4)

W takes into account of transitions between dry and wet seasons because the rate 

of evaporation is controlled by the soil moisture (Field et al., 1995). When AET equals 

PET, NPP is no longer restricted by soil moisture and W equals 1 (Zhu et al., 2004; Field 

et al., 1995).

The study used Thornthwaite (1948) method to estimate PET because of its 

simplicity with regard to data availability. This method requires only mean monthly 

temperature and day length as an input to estimate potential evapotranspiration from a 
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reference grass surface. Willmott et al. (1985) summarized the Thornthwaite method to 

compute PET. PET in (mm/month) without adjustment for day length was computed 

with:

PETi = 0 when T<0. C (4.5)

PETi = 1.6 * (10 * Ti/I) a when T>=0.C (4.6)

Where T is mean surface air temperature in month i (. C) and I is the heat index 

defined in Equation 4.7 below. The exponent ‘a’ in Equation 4.8 is the function of the 

heat index (I).

(4.7)

(4.8)

A monthly estimate of PET calculated with Equation 4.7 and 4.8 was adjusted for 

day length because 30 day months and 12 hour days were assumed when this relationship 

was developed. The PET was adjusted for month length and daylight duration with:

(4.9)

where APE is adjusted PET in mm/month, d is length of the month in days and h 

is the duration of daylight in hours on the fifteenth day of the month.

A commonly used water balance model was used to estimate the AET which 

recognizes the relationship between PET and AET (Kolka and Wolf 1998; Mehta, 2006). 

This model uses soil water storage in conjunction with PET and precipitation to estimate 

AET. Figure 10 represents the simple water balance model and Table 3 shows the details 

of the symbols used in the model.
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Figure 10 Conceptual Model for Water Balance (Mehta, 2006)

Monthly precipitation (P) and PET were used to calculate SW and APWL on 

monthly step.  Excess water, i.e. net precipitation (�P) in excess of the soil’s available 

water holding capacity (AWC) leaves the soil and is stored in the watershed and 

eventually released to the river.  Table 4.below summarizes the calculations.

Table 4 Notation used for Water balance Model

AWC = Available Water Holding Capacity (i.e. field 
capacity-wilting point) X (soil depth)
SW = Available Soil Water (i.e. above wilting pt.)
APWL = Accumulated Potential Water Loss (negative)
�P = Net Precipitation; P – PET
P = Precipitation
PET = Potential Evapotranspiration
AET = Estimated Evapotranspiration
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Table 5 Model Used for the Estimation of AET

* When P>PET, AET =PET and When P<PET, AET = dSW + P

This model was based on the assumption that soils are at field capacity in January 

Flow record shows that on average, months of January and February usually begins with 

no flow i.e. APWL = 0 (Mehta, 2006). Following this assumption, the study calibrated 

this model with APWL = 0 for January 1996.  The reason behind computing AET for 

1996 instead from 1996 is to minimize the possible limitation of considering no flow for 

the month of January 1997 directly.  

The temperature scalars T1 and T2 in CASA attempt to capture two aspects of the 

regulation of vegetation growth by temperature. T1is a stress term at very low or very 

high temperature where as T2 is a stress term when temperature is below or above the 

optimum temperature (Zhu et al., 2004, Field et al., 1995). Despite the abundant evidence 

of temperature acclimation on photosynthesis, the hypotheses behind T1 and T2 in CASA 
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have not been explicitly tested (Field et al., 1995).  The value of T1 and T2 was calculated 

using equation. (4.10) and (4.11).

T1 = 0.8 + 0.02 Topt – 0.0005 T2
opt (4.10)

T2 = 1.1814/ {1+ exp (0.2 (Topt (x, t)-10- T(x, t))}* 1/ {1+exp (0.3 (- Topt (x, t)-10+ T(x,

t))} (4.11)

Where T is the mean monthly temperature and Topt is the mean temperature during 

the month of maximum NDVI. Topt was computed on a pixel basis using mean 

temperature during the month of maximum NDVI in a year with USe of UPOS function 

available in ArcMap. 

X = UPos (NDVI1, NDVI2,….. , NDVI12) (4.12)

Equation 4.12 helped to identify the month that has maximum NDVI value in a 

specified year for a pixel in the study area. The basic idea behind this computation is that 

different places experience maximum NDVI in different months during a year. After 

determining the month of the maximum NDVI values, conditional statement was used to 

assign the average temperature of a particular month identified through equation 4.13 for 

the pixels that has maximum NDVI values. 

Con ([X] == 1, [Temp1], con ([X] == 2, [Temp2],…., [ Temp12]))) (4.13)

The scalars equal 1 when T equals Topt and falls to 0.5 at approximately 10 ° c 

above and 13° c below Topt . T2 has a large impact on NPP in sites that experience 

seasonal variation in temperature. For the eco-system, where temperature varies little like 

low altitude deserts and tropical rainforests, T2 has little effect (Zhu et al., 2004, Field et 

al., 1995).
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4.4.1.3 Maximum Light Use Efficiency Parameter

Based on Potter et al. (1993, 2006) and Field et al. (1995), maximum light use 

efficiency parameter of constant value 0.389 g C MJ-1 PAR was applied over all 

vegetation types. This value was derived from previous field estimates (Potter et al., 

1993, Field et al., 1995). 

After the estimation of all these parameters, they were applied to the equation 4.3 

which gave the final estimation of above ground NPP.

4.5 NPP Validation

Modeled NPP results were evaluated across various sites in different kinds of 

biomes to determine its accuracy. Because of limited field NPP datasets, BigFoot NPP 

surfaces were used to compare modeled NPP.

Bigfoot sites NPP data available in ASCII dataset were converted to grid using 

ASCII to Raster Conversion function available in ArcGIS. Before direct comparison 

could be made, the BigFoot products in Universal Transverse Mercator (UTM) 

coordinate system were re-projected to the Lambert Azimuthal Equal Area Projection of 

the modeled NPP products (Turner et al., 2005; Cohen et al., 2003b) to bring them both 

in same projection system. Use of same projection for two different layers allows to 

perform different kind of analysis between them. 

To achieve spatial and temporal correspondence, modeled annual NPP of 

different years for which BigFoot NPP surfaces data exists were taken into consideration 

(Figure11). There were not any BigFoot sites for the southeast part of US. BigFoot NPP 

grids were rescaled to 1km to minimize the spatial resolution issues between two 
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different datasets. Fifty random points were selected initially from both of the images to 

compare BigFoot NPP and modeled NPP values. The idea behind selection of 50 points 

is to include every pixel of rescaled BigFoot sites NPP surfaces.  The points that fell into 

water bodies in BigFoot NPP surfaces were ignored during the comparison process. 

4.6 Data Extraction and Analysis

4.6.1 Zonal Statistics to Extract NPP Values

Estimated monthly and annual NPP data were analyzed based on different eco-

divisions, EPA regions and states. For this purpose, zonal statistics were computed in 

ArcGIS software where different eco-divisions, EPA regions and states were used as the 

zones. The idea behind using 48 states in analyzing annual NPP were to compare carbon 

fluxes driven by NPP in different states and identify the states that contribute highly per 

square meter. Mean monthly and annual NPP extracted by different eco-divisions using 

zonal statistics were used to analyze the annual and monthly trend of NPP within 

Conterminous US. Eleven years monthly NPP, NDVI, temperature, precipitation, PAR 

and EET were then averaged for the months of January through December to analyze the 

temporal relationship of NPP with these climatic and bio-physical factors. 

4.6.2 Generation of Random Points

Five hundred random points of monthly NPP, NDVI, temperature, precipitation, 

PAR and AET within each eco-division were generated to compute Pearson’s correlation 

coefficient. Yamane (1967) provided a simple formula (n = N / (1+N*E2)) to calculate 

sample sizes. In the formula, n, N, and E represent the sample size, the number of 
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population, and the sampling error, respectively. If the population is large enough, the 

minimum sample size goes to 400 with 5% sampling error (Israel, 2009). Therefore, this 

study used 500 samples that are larger than the minimum sample size 400 at 95% 

confidence level to include different geographic locations within the eco-divisions rather 

than just computing correlation coefficient based on 132 monthly mean data for each 

parameter. 

4.6.3 Pearson Correlation Coefficients

Pearson Product Moment correlation (Pearson’s correlation) coefficients for pairs 

of random points are generally used to investigate the relationship between two variables, 

including the magnitude and direction of relationship. The formula for this coefficient is:

(4.14)

where r is the Pearson’s correlation, and represents the mean of X and Y 

respectively, N is the number of paired data. R ranges from -1.0 to 1.0; the signs indicates 

whether the relationship is direct (+) or inverse (-). T test was used to examine whether 

the relationship is significant. A relationship is considered significant if the probability of 

the observed �
	��	����	��
��/�0�%&%+�����/�0�%&%#���	�
1��������r less than the test level. 

Smaller p values represent more consistent correlations (Wilks 2006). 
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Spatial variation of NPP at different geographic latitudes was examined by 

computing Pearson’s correlation coefficient from extracted random points of mean 

annual NPP and their corresponding latitudes at the range of 0.5 degree. 

4.6.4 Analysis of Variance

Analysis of variance (ANOVA) statistics were used to test whether the NPP vary 

significantly from one eco-divisions to other eco-divisions annually.

ANOVA: Single factor performs a simple analysis of variance on data for two or 

more samples. This analysis provides a test of the hypothesis that each sample is drawn 

from the same underlying probability distribution against the alternative hypothesis that 

underlying probability distributions are not the same for all samples. This technique is an 

extension of the two-sample t test. It test the difference between each pair of means and 

yield a matrix where asterisks indicate significantly different group means at an alpha 

level of 0.05 (Excel Help). 

Table 6 Interpreting the Anova One Way Test Results

If Then

test statistic > critical value (i.e. F> Fcrit) Reject the null hypothesis

test statistic < critical value (i.e. F< Fcrit) Accept the null hypothesis

p value < a Reject the null hypothesis
p value > a Accept the null hypothesis
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4.6.5 Hot Spot Analysis and Getis-Ord Statistics

To understand the spatial pattern of NPP further, Hot Spot Analysis Tool in 

ArcMap software was used. This tool calculates the Getis-Ord Gi* statistics for each 

feature in a dataset. This test is also known as Hot Spot Analysis which is a measure of 

spatial autocorrelation. The result provides spatial autocorrelation of low values (cold 

spot) and high values (hot spots).

Hot Spot Analysis based on mean annual NPP of different states allows the test 

the second hypothesis of this study which is southeastern states contribute significantly to 

the higher NPP than other regions. The resultant Z score tells where the features with 

either high or low NPP values cluster spatially (ArcGIS Desktop 9.3 Help7

(4.15)

). The Getis-

Ord local statistic is given as:

Where is a z-score, xj is the attribute value (i.e. mean annual NPP per square 

meter in each states) for feature j (states), wi,j is the spatial weight between i and j, n is 

equal to the total number of features (states) and:

7 http://webhelp.esri.com/arcgisdesktop/9.3/index.cfm?topicname=hot_spot_analysis_(getis-
ord_gi*)_(spatial_statistics)
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(4.16)

(4.17)

The critical Z score values with 95% confidence level are -1.96 and +1.96 

standard deviations. The p-value associated with a 95% confidence level is 0.05. If the Z 

score is between -1.96 and +1.96, then p-value will be larger than 0.05 and null 

hypothesis cannot be rejected. Null hypothesis for pattern analysis tools is that there is no 

spatial pattern among the features.

4.7 Flow Chart

Flow chart in figure 10 summarizes entire processes that were done to estimate 

monthly and annual NPP. As the data downloaded were in different format, resolution 

and with different projections, it was necessary to bring them all in same resolution and 

projection systems to overlay on the top of each other and perform GIS and remote 

sensing operations. All the data were re-projected to Lambert Azimuthal Equal Area 

Projection and re-sampled to 1km as of NDVI data. PAR data were in point format at 0.5 

degree interval so the PAR data were interpolated for Conterminous US. All the data 

were then fed into the CASA model framework to compute different parameters such as 

SR, FPAR, evapotranspiration, optimum temperature, temperature scalar, and soil 

moisture. After the estimation of monthly NPP, annual NPP was computed which were 

validated with five different BigFoot Sites NPP data. Then various spatial and statistical 

analyses were conducted as explained in previous sections.
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Figure 11 Flow Chart
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The major software packages used in this study includes ERDAS Imagine, 

ArcGIS, SPSS and Geoda. The results and discussion of the study is provided in the next 

chapter.



56

CHAPTER V

RESULTS AND DISCUSSIONS

The sections 5.1, 5.2 and 5.3 of this chapter illustrate the main findings while 

fulfilling the objectives 1, 2 and 3 respectively, of this study. As described in Chapter 

One, the three objectives of this study were: (Objective 1) to estimate annual NPP in the 

Conterminous US from 1997 to 2007, (Objective 2) to examine the temporal and spatial 

trends in NPP in the Conterminous US and (Objective 3) to analyze the interaction of 

NPP with climatic and bio-physical factors. 

5.1 Objective 1: Estimation of Annual NPP 

5.1.1 Estimation of Annual NPP in the Conterminous US from 1997 to 2007

The NPP in the Conterminous US for the years 1997 to 2007 was found to be in 

the range 3472 T g C yr-1 (year 2002) to 4948 T g Cyr-1 (year 2005) (Figure 12) with 

mean annual NPP of 4234 T g C yr-1 . Figure 11 shows NPP anomalies with three 

different trends.  Estimated total NPP were lower in the years 2000 to 2003 than the mean 

annual NPP during which the growing seasons were affected by extensive drought in 

most part of contiguous US. There was about 26 percent reduction in NPP in the year 

2002 compared to 1997. An increasing trend was then observed for the years 2003

through 2005. NPP in the year 2005 was about 42 percent higher than in 2002. Years 

2006 and 2007again showed a decreasing trend.  In a nutshell, this trend suggested a very 
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negligible change in NPP with the R2 of 0.004 within the 11 years of study period. Thus, 

the first null hypothesis of the study that the NPP had an increasing trend from 1997 to 

2007 was rejected.

NPP started decreasing since1999 and reached the lowest in 2002. There was 

about 18% of the nation’s mean annual NPP during 2002 compared to previous year. 

During this period climatic conditions in most part of the US deviated hugely from their 

historical climatic records (NCDC-NOAA8). NPP started regaining slowly from 2003 

and reached the maximum in 2005.

Figure 12 Annual Net Primary Productivity (T g C yr-1) from 1997 to 2007

8 http://www.ncdc.noaa.gov/oa/climate/research/2002/ann/us-summary.html
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Upon examination of climatic and bio-physical factors during the 11 years study 

period, tremendous decrease in NDVI, precipitation and evapotranspiration were 

observed in 2000 to 2003 compared to other years which could be the most probable 

reason for lower NPP (Refer section 5.2.1 for details).  During these years southeastern 

and western parts of US experienced dry conditions (NCDC-NOAA9

5.1.2 Estimation of Annual NPP across Different States of the Conterminous US

).  Extreme drought 

conditions and large acres of land burnt by wildfires as a result of extreme drought might 

have resulted loss of NPP during these years (NCDC-NOAA).

Estimation of mean annual NPP (g C m-2 yr-1) across different states of the 

Conterminous US would help to identify the states that contribute to higher carbon sink.

Southeastern states, such as Louisiana, Mississippi, Alabama, Georgia, South Carolina, 

North Carolina and Florida were found to have very high NPP per unit area (Table 7 and 

Figure 13). Among these states, Florida was the largest contributor. In contrary, the states 

of Nevada, Wyoming, Montana and North Dakota showed very low NPP per square 

meter (Figure 13). Large concentration of hardwood and deciduous forest in the 

southeastern states compared to other states could be one of the probable reasons for their 

higher NPP. However, the contribution of these states to the nation’s total NPP was found 

to vary based on their total area. The total annual contributions of states (T g C yr-1) to

nation NPP during these 11 years periods are shown in Annex A.  Mean annual NPP (g 

Cm-2yr-1) of different states for the year 1997 to 2007 are given in the Table 7.

9 http://www.ncdc.noaa.gov/climate-monitoring/index.php
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Table 7 Annual NPP (g C m-2 yr-1) in Different States of the Conterminous US
from 1997 to 2007
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Table 7 (Continued)

5.1.3 Validation of Modeled NPP

Estimated NPP was validated by comparing with the different BigFoot NPP sites 

data at different time period to determine the accuracy of the model in the estimation of 

NPP. Table 8 shows different BigFoot sites used for the validation of the estimated NPP, 

the sample sizes that were used for cross validation and their correlation.
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Table 8 Correlation of Modeled NPP with BigFoot NPP Data

Year Sites Correlation (at 0.01 
significance level) Sample Size

2000 CHEQ 0.74 45
2000 KONZ 0.61 50
2000 AGRO 0.61 50
2001 HARV 0.80 45
2002 HARV 0.94 45
2002 METL 0.77 27
2003 HARV 0.66 45

Figure 14 shows the overall correlation and the trend line of BigFoot sites NPP 

data with the estimated NPP data based on 307 random points at different time period and 

locations. The R2 was 0.88, which signified that the model is a good approximation for 

the NPP estimation.

Figure 15 shows the scatter plot of the modeled NPP versus BigFoot NPP data for 

the sites: HARV (2002, 2001, 2003), METL (2002), CHEQ (2000) and KONZ (2000). 

The estimated NPP were found to be highly correlated with NPP values estimated at each 

of the BigFoot sites for all time periods. Compared to other BigFoot sites, estimated NPP 

values for HARV sites had strong correlation with the site’s NPP data. Quality of the 

driving variables in terms of resolution and the time when it was taken could be the 

potential reasons for these kind of over and under estimation (Turner et al., 2005, 

Running et al., 2000, Running et al., 2004). This cross validation across different sites 

signified that the values closely resembled with the field NPP data. This shows the 

accuracy of CASA- NASA model in estimating NPP fluxes with use of remote sensing 

data.
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Figure 14 Overall Comparisons of Annual BigFoot Sites NPP with the Estimated 
NPP

Figure 15 Comparisons of Annual BigFoot Sites NPP with the Estimated NPP 
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5.2 Objective 2: Spatial and Temporal Trends in NPP in the Conterminous US

5.2.1 Latitudinal Variation in NPP

Climate is directly related to the latitude. The global patterns of temperature and 

precipitation are well known to be the consequences of the angle of Earth’s rotational 

axis. Evaporation of water vapor from warm water makes precipitation much higher near 

the equator than the poles. Various combinations of precipitation and temperature 

distributed at different location have a very predictable effect on vegetation type and 

structure (Michael and Steve, 2009).

NPP has been found to have negative relationship with latitude. In general, the 

values of NPP at lower latitudes are found to be higher compared to the higher latitudes. 

Figure 16 shows the profile of NPP at various latitudes in US. Similar trends were found

by Kicklighter et al. (1999), where NPP values decreased from lower latitude to the 

higher latitude regions in the northern hemisphere. Altitudinal variation can also have

impact on NPP as vegetation types and their characteristics differ with the altitude. 
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Figure 16 Latitudinal variations in NPP
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Figure 17 Mean Annual NPP (g C m-2 yr-1) and Total Area Covered by Each 
Eco -Division

Table 9 shows the total geographic coverage of each eco-division, annual mean 

NPP and their percentage contribution to the total terrestrial carbon sequestration due to 

NPP in the Conterminous US based on average of annual NPP during 11 years period. It 

was found that the Subtropical followed by Hot Continental and Temperate Desert

contributed largely to the total carbon sink in the Conterminous US. Thought the mean 

annual NPP per square meter (g C m-2yr-1) for Savannah was found to be the highest, its 

contribution to total NPP was lower (0.4 %) than Tropical/Subtropical Desert which was 

SA = Savannah, S = Subtropical, HC= Hot Continental, 
WC = Warm Continental, P = Prairie, T/S S = Tropical Subtropical 
Steppe, TS = Temperate Steppe, T/S D = Tropical Subtropical Desert, 
TD = Temperate Desert, MD = Mediterranean, MA = Marine
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found to have lowest NPP per square meter because of its reduced area compared to other 

eco-divisions.

Table 9 Mean NPP (g C m-2 yr-1) in Different Eco-Divisions and Their 
Percentage Contribution

Table 10 and figure 18 both show that all the eco-divisions except Warm 

Continental and Marine lost significant NPP in the years 2000, 2001 and 2002.

Mediterranean and Prairie experienced subtle change in NPP compared to other eco-

divisions during these years. It was found that the most of these eco-divisions regained 

their productivity subsequently in the years 2003, 2004 and 2005.

Eco Divisions
Land Area 
(10^3 Km2)

Total NPP 
(T g C yr-1)

Contribution (%) to Total 
NPP of Conterminous US

Hot Continental 1125.4 658.5 15.5
Marine 171.3 94.2 2.2
Mediterranean 318.5 177.6 4.2
Prairie 761.8 405.3 9.6
Savannah 20.7 18.5 0.4
Subtropical 1155.3 881.3 20.8
Temperate Desert 1380.1 626.8 14.8
Temperate Steppe 1156.2 513.1 12.1
Tropical/Subtropical Desert 241.8 81.4 1.9
Tropical/Subtropical Steppe 945.1 523.1 12.3
Warm Continental 488.7 256.8 6.1
Total 7764.84 4236.6 100
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Table 10 Mean Annual NPP (g C m-2 yr-1) in Different Eco-Divisions from 1997 
to 2007

Upon examination of national climatic condition during these years, it was found 

that 2000, 2001 and 2002 national drought had its origin in late 1999. Drought in year 

2000 was found to affect about 36% of the contiguous US (NCDC, NOAA). The area 

most severely affected were deep south, the southern and central plains and much of the 

western US. There were hundreds of wildfires across several western states with the 

highest concentration in Idaho and western Montana. Record dryness occurred in the 

southern states of US as, Alabama, Florida, Georgia, Louisiana, Texas and Mississippi

during 2000. The drought in 2001 affected about 20% of the contiguous US .The most

severely affected areas included the parts of southern Great Plains and much of the 

western US. The three states Washington, Oregon, and Idaho declared drought 

emergencies. Record dry conditions from 2001 continued to early 2002 in the eastern US.  

The largest wildfires in state history occurred in Colorado, Arizona and Oregon in 2002.
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During 2003, most of the parts of US were wet compared to earlier years. Precipitation in 

2004 was characterized by persistent moderate dryness in the West and above average 

wetness in the South and East. This follows a record wet year in 2003 for some of the 

East coast (NCDC, NOAA). Due to these extremes conditions, there might have been 

significant impact on vegetation growth which might have resulted in the significant 

reduction of NPP during these years.
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Mean annual NPP per square meter in different eco-divisions computed 

using 11 years NPP data was visualized through figure 19 where the dark green 

color represents the highest NPP and red color represents the lowest NPP. It 

shows that Savannah and Subtropical have higher annual NPP per square meter 

and the Tropical/Subtropical Desert has very low annual NPP per square meter.

The probable reasons for these differences in NPP could be different vegetation 

types and climatic conditions predominant in these regions. 

Vegetation in Tropical /Subtropical Desert is very sparse and consists 

mainly of dwarf-shrub land. It has a climate of long, hot summers and mild 

winters with little precipitation and pronounced drought season. Vegetation in 

Subtropical and Savannah eco-divisions is dominated by conifers, with 

deciduous hardwoods along with floodplains and precipitation is abundant with 

rare period of summer drought (USDA, 2007). Forest provides typical vegetation 

throughout the Subtropical eco-divisions. Shrubs are more influential to drought 

seasons and extreme climatic conditions than hardwoods. This could be the

reasons for the lower NPP in Tropical/Subtropical Desert than Subtropical and 

Savannah eco-divisions in general.

ANOVA – single factor analysis (Table 11) was used to analyze whether the NPP 

in different eco-divisions vary significantly with each other. The analysis showed the p

value of 1E-25 which was less than 0.05 significance level. This helped to reject the null 

hypothesis that the mean annual NPP between different eco-divisions are same. F
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(27.7619) was greater than F critical (1.91783), so again, it rejected the null hypothesis 

that the NPP variances among various eco-divisions are all equal.

Table 11 ANOVA: Single Factor Analysis Based on Mean Annual NPP of 
Different Eco-Divisions

SUMMARY
Groups Count Sum Average Variance

Hot Continental 11 6436.36 585.124 3843.72
Marine 11 6053.71 550.337 5298.11
Mediterranean 11 6134.78 557.707 2753.4
Prairie 11 5852.39 532.035 3371.33
Savannah 11 9882 898.364 10076.8
Subtropical 11 8391.07 762.825 7537.63
Temperate Desert 11 4995.77 454.161 7760.22
Temperate Steppe 11 4881.34 443.758 7716.87
Tropical/Subtropical Desert 11 3705.65 336.877 29723.9
Tropical/Subtropical Steppe 11 6088.12 553.465 18145.3
Warm Continental 11 5780.03 525.457 5206.6

ANOVA
Source of Variation SS df MS F P-value F crit

Between Groups 2559997.52 10 256000 27.7619 1E-25 1.91783
Within Groups 1014339.01 110 9221.26

Total 3574336.53 120
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Figure 19 Mean Annual NPP (g C m-2 yr-1) in Different Eco-Divisions

5.2.3 Spatial Variation of NPP in Different EPA Regions 

Spatial variation of NPP was examined for different EPA regions of US (Figure 

20). Southeast region was estimated to have the highest annual NPP on a unit area basis 

and Rocky Mountain the least. It was followed by Mid Atlantic and South Central.

Pronounced drought and short humid season with sagebrush and shrub lands vegetation 

types could be the reasons for the lowest mean annual NPP per square meter in Rocky 

Mountain. However, based on the total area covered by different regions, South Central 

typically contributed about 21%, Southeast about 18% and Rocky Mountain 16% of the 

nation’s total NPP.  Table 12 shows the estimated annual mean NPP per unit area from 
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1997 to 2007 in EPA regions. Total annual NPP in EPA regions during 11 years period is 

tabulated in Annex C.

Figure 20 Mean Annual NPP (g C m-2 yr-1) in Different EPA Regions
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5.2.4 Spatial Autocorrelation of NPP: The Hot Spot Analysis

Figure 21 shows the clusters of low and high NPP in different parts of US as the 

result of hot spot analysis based on Getis-Ord Gi* statistics based on mean annual NPP of 

48 different states. Cluster of high NPP (NPP hotspots) was found in the southeastern 

part of USA which is shown in the red and orange color whereas cluster of low NPP 

(NPP cold spot) was found to exist in the western and northern parts of USA, as shown in 

the blue and light blue color. States with white color showed the insignificant spatial 

autocorrelation. States such as, Louisiana, Arkansas and Virginia have lower z scores as 

compared to Mississippi, Alabama, Tennessee, Florida, South Carolina, North Carolina 

and Georgia but are still the hot spots of higher NPP. Based on this analysis, the second 

null hypothesis that the southeastern states contribute significantly to the higher NPP than 

other regions was accepted.



78

Figure 21 Hot Spot Analysis (Getis - Ord GI*) Based on Mean Annual NPP for 
48 States of US

5.2.5 Seasonal Trends of NPP in the Conterminous US

The mean monthly variation in NPP in Conterminous US is represented through 

the box plot (also known as box and whisker diagram or plot) in the figure 22. This 

analysis was based on the average of 11 years monthly estimated NPP. Mean monthly 

NPP in the Conterminous US followed a bell shaped curve with lower NPP at the 

beginning and the end of the year and higher in the middle of the year (Figure 22). In 

general, it can be concluded that NPP starts increasing slowly from the month of January 

and reaches the maximum value in the month of June. Again it starts decreasing from the 

month of July till December. However, there could be variation in these seasonal trends 
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depending upon the different parts of the contiguous US and their climatic, physiographic 

factors and vegetation types. 

Figure 22 Seasonal Trend of NPP (g C m-2 month-1) in the Conterminous US

Figure 23 shows the spatial and temporal variations of NPP in different parts of 

US. It shows that the most parts of the Conterminous US experience low NPP in the 

months of January, February and December (during winter). Southern parts of US start to 

gain NPP noticeably from March (beginning of spring). NPP reaches maximum in almost 

every location during the month of June and it again slows down from the month of July.  

The southwestern part of US gain NPP slowly from the months of December and 

experience higher NPP in the months of April and May (Figure 23). This could be due to 

the lower temperature in these areas compared to other months. The other parts of US 

start gaining NPP slowly from March and attain the peak during the months of June.
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Southeastern parts of US were observed to have longer growing seasons as compared to 

western and northern parts. Variation in climate especially temperature, precipitation and 

the drought could be the major driving variables for the variation in NPP. This study thus,

has examined the relation of NPP with these different climatic factors in the later 

sections.
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5.2.6 Seasonal Trend of NPP in Different Eco-Divisions

NPP was found to vary spatially and seasonally which can be visualized through 

figure 24. Figure 24 shows the variation in monthly NPP based on 11 years NPP data in 

11 different eco-divisions. NPP in different eco-divisions were found to have trends 

different than the general trend (Figure 22). NPP in Savannah and Tropical /Subtropical

desert shows bimodal nature with higher NPP in the months of May and July (Savannah)

and April and November (Tropical/Subtropical Desert).  NPP reaches maximum in the 

month of May in Subtropical and in Mediterranean, in July in Hot Continental, Warm 

Continental, Prairie and Marine, in June in Temperate Steppe and Temperate Desert and 

in April in Tropical/Subtropical Desert. Unlike other eco-divisions, Savannah faces less 

fluctuation in NPP throughout the year.  It is also observed that Warm Continental

experiences higher NPP for fewer months compared to other eco-divisions while 

tropical/Subtropical experiences lower NPP throughout the year.

Different climatic variables such as temperature, precipitation and 

photosynthetically active radiation, and drought could be the reasons for the variability of 

NPP in these eco-divisions.
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Figure 24 Seasonal Trend of NPP in Different Eco-Divisions
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Figure 24 (Continued)

Figure 25 shows the temporal trend of NPP in different eco-divisions of US. All

the eco-divisions were found to have the least NPP in the months of December and 

January. It is found to increase slowly from the month of February and reach maximum 

in the month of June and again starts declining from July. Tropical/Subtropical Desert

experiences lower NPP fluxes throughout the year except the slight increase in the 
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months of February, March and April whereas Savannah experiences higher NPP 

compared to other eco-divisions throughout the year. 
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5.3 Objective 3: Analyze the relation of NPP with Climatic and Bio-physical

Factors

Figure 26 depicts the general patterns of NDVI and climatic factors such as,

precipitation, temperature, evapotranspiration and PAR nationally so as to see their 

relationship with NPP. NPP, NDVI and evapotranspiration were found to have very 

similar trends during these 11 years period. Upon examinations of climatic conditions in

NCDC-NOAA, severe drought had been observed during those years. So, loss of NPP 

during 2000 to 2003 compared to mean annual NPP might be related to adverse climatic 

conditions such as drought and evapotranspiration during these years.

The result of this study supports the traditional knowledge on the relationship 

between the vegetation growth and CO2 .As vegetation growth increases, more CO2 will 

be assimilated from the atmosphere and the decrease in atmospheric CO2 will be 

relatively larger (Keeling et al., 1996, Lim et al., 2004). NDVI, temperature, 

precipitation and photosynthetically active radiation were used linearly in CASA model 

to estimate NPP throughout the contiguous US. The equations used in the model are 

however not specific to particular locations and climatic conditions though the effects of 

climatic variables to NPP vary both linearly and non-linearly in different locations. So, 

the effects of these climatic variables in NPP in different spatial locations were analyzed 

using correlation coefficients.
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Figure 26 Annual Trends of NPP and Different Climatic Factors in the 
Conterminous US

Table 13 shows the correlation coefficients of NPP, temperature, precipitation, 

PAR and AET based on monthly mean data for the Conterminous US for the entire study 

period. It is found that in general, precipitation, PAR, NDVI and AET have positive 
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correlation with the NPP without considering the temporal and spatial effects. Amongst 

all driving variables, NDVI and AET have higher correlation with the NPP.  Rosenzweig 

(1968) found high correlation of NPP with evapotranspiration in different types of eco 

systems. 

Table 13 Correlation of NPP with Climatic and Bio-physical Parameters

Driving Variables R Significant at P<0.005

NDVI 0.87

Temperature 0.80

Precipitation 0.48

PAR 0.24

AET 0.93

Correlation coefficients were further examined within each eco-divisions of the 

Conterminous US (Table 14) based on the monthly mean for the entire study period.  

Significant correlation were found between NPP, NDVI, temperature, precipitation, PAR 

and AET. It has been noticed that in general, NDVI and PAR have significant positive 

impact on NPP in all eco-divisions. However, the correlation of temperature and 

precipitation with NPP in different eco-divisions was positive in some cases and negative 

in others. Except for Tropical/Subtropical Desert, NPP showed significant positive 

correlation with temperature in all eco-divisions. Marine and Mediterranean showed 

significant negative correlation of precipitation with the NPP while other eco-divisions

showed positive correlation.
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Table 14 Pearson’s r Correlation Coefficients between NPP, NDVI, temperature, 
precipitation, PAR and AET by Eco-Divisions

** Non significant correlations with p values >0.01 are bold faced with shaded gray. 
Negative correlations are in red color and bold faced

The correlation between climatic variables and NPP were further examined 

considering temporal variations within each eco-divisions. Tables 15, 16, 17, 18 and 19

show the relationship of NPP with different driving variables in different eco divions for 

different months of a year based on the 500 random points generated from monthly data 

within the different eco-divisions.

Eco Divisions NDVI TEMP PPT PAR AET
r 0.916 0.909 0.468 0.880 0.954
p 0.000 0.000 0.000 0.000 0.004
r 0.826 0.884 -0.721 0.913 0.877
p 0.000 0.000 0.000 0.000 0.000
r 0.666 0.480 -0.478 0.809 0.757
p 0.000 0.000 0.007 0.000 0.000
r 0.928 0.896 0.573 0.907 0.940
p 0.000 0.000 0.000 0.000 0.000
r 0.510 0.339 0.113 0.710 0.306
p 0.000 0.000 0.000 0.000 0.000
r 0.847 0.850 0.078 0.923 0.851
p 0.000 0.000 0.000 0.000 0.116
r 0.852 0.779 -0.146 0.859 0.938
p 0.000 0.000 0.373 0.000 0.000
r 0.906 0.808 0.801 0.844 0.951
p 0.000 0.000 0.247 0.000 0.082
r 0.783 -0.301 0.157 0.027 0.359
p 0.000 0.001 0.000 0.000 0.000
r 0.728 0.598 0.439 0.707 0.723
p 0.000 0.000 0.000 0.000 0.000
r 0.904 0.863 0.509 0.760 0.932
p 0.000 0.000 0.000 0.000 0.493

Prairie

Hot Continental

Marine

Mediterranean

Warm Continental

Tropical Subtropical Steppe

Tropical Subtropical Desert

Temperate Steppe

Temperate Desert

Subtropical

Savannah
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Table 15 Correlation of NPP with NDVI in Various Eco-Divisions for Different 
Months of a Year

Table 15 shows the close relationship of NPP with NDVI in all eco-divisions

throughout the year. NPP closely follows the trend as the NDVI does (Figure 28). It thus 

reflects the significance of NDVI for carbon related studies. Based on this analysis, the 

third null hypothesis that the area with higher vegetation cover will have a higher NPP 

was accepted. 

Eco divisions Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Hot Continental 0.56 0.84 0.76 0.64 0.74 0.88 0.98 0.68 0.88 0.85 0.47 0.40
Marine 0.91 0.90 0.78 0.90 0.95 0.79 0.82 0.65 0.79 0.83 0.47 0.95
Mediterranean 0.84 0.95 0.83 0.81 0.87 0.63 0.85 0.87 0.71 0.41 0.31 0.64
Prairie 0.56 0.73 0.90 0.75 0.67 0.71 0.94 0.70 0.93 0.91 0.28 0.43
Savannah 0.77 0.85 0.88 0.73 0.74 0.96 0.95 0.83 0.97 0.95 0.43 0.74
Subtropical 0.84 0.71 0.79 0.69 0.93 0.84 0.90 0.71 0.91 0.96 0.34 0.26
Temperate Desert 0.87 0.91 0.93 0.64 0.79 0.90 0.87 0.89 0.92 0.80 0.30 0.74
Temperate Steppe 0.54 0.82 0.87 0.64 0.60 0.94 0.88 0.95 0.90 0.90 0.38 0.51
Tropical /Subtropical Desert 0.91 0.97 0.93 0.82 0.94 0.94 0.90 0.92 0.94 0.85 0.74 0.53
Temperate /Subtropical Steppe 0.73 0.84 0.89 0.69 0.95 0.96 0.92 0.95 0.90 0.79 0.23 0.50
Warm Continental 0.48 0.74 0.81 0.85 0.75 0.64 0.89 0.75 0.92 0.73 0.83 0.67
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Table 16 verifies the fact that the temperature can have both the positive and 

negative relationship with the NPP. Increase of temperature during the months of 

December, January, February, March, April and November usually have positive impact 

on NPP i.e. higher the temperature higher the NPP in all eco-divisions except for 

Tropical/Subtropical Desert and Savannah. However, temperature in the months of June, 

July, August and September has negative correlation with NPP except in June for Marine

and in August for Warm Continental. Tropical/Subtropical Desert was found to have 

negative correlation with temperature throughout the year.

Table 16 Correlation of NPP with Temperature in Various Eco-Divisions for 
Different Months of a Year

Figure 29 shows the trends of mean NPP and mean temperature in different eco-

divisions for different months. It shows the significant negative correlation of NPP with 

temperature in Tropical/Subtropical Desert for the months of June, July and August.

Eco divisions Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Hot Continental 0.58 0.53 0.65 0.65 0.45 0.07 -0.36 -0.35 0.03 0.49 0.56 0.54
Marine 0.50 0.55 0.50 0.51 0.53 0.38 -0.09 -0.29 -0.10 0.16 0.30 0.42
Mediterranean 0.50 0.57 0.61 0.42 -0.02 -0.55 -0.50 -0.51 -0.54 -0.30 0.13 0.48
Prairie 0.69 0.66 0.71 0.74 0.59 0.11 -0.64 -0.67 0.07 0.68 0.75 0.69
Savannah 0.28 -0.05 -0.21 -0.19 -0.08 0.23 -0.05 -0.14 -0.17 -0.06 0.34 -0.04
Subtropical 0.70 0.66 0.65 0.34 -0.17 -0.19 -0.26 -0.36 -0.17 0.32 0.68 0.67
Temperate Desert 0.42 0.50 0.51 0.50 0.27 -0.38 -0.65 -0.66 -0.42 0.05 0.40 0.36
Temperate Steppe 0.46 0.51 0.56 0.48 0.25 -0.27 -0.36 -0.11 0.21 0.43 0.55 0.48
Tropical /Subtropical Desert 0.02 0.03 -0.18 -0.34 -0.57 -0.59 -0.48 -0.45 -0.45 -0.38 -0.35 0.09
Temperate /Subtropical Steppe 0.29 0.21 0.14 0.05 -0.18 -0.33 -0.32 -0.38 -0.34 0.01 0.13 0.33
Warm Continental 0.38 0.43 0.64 0.35 0.54 0.18 0.06 0.14 0.51 0.70 0.60 0.00
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Table 17 Correlation of NPP with Precipitation in Various Eco-Divisions for 
Different Months of a Year

Table 17 showed a positive correlation between NPP and precipitation in the 

months of July, August and September in almost all the eco-regions, except Savannah.

Precipitation in Marine, Mediterranean, Subtropical and Temperate Desert was found to 

have negative impact on NPP in the months of January, February, March and April, 

Warm Continental in July andMarine in October.  It is quite interesting to observe NPP in 

Tropical/Subtropical Desert having positive correlation with precipitation during all the 

months of a year while NPP in the Tropical/Subtropical Steppe also having positive 

correlation with precipitation throughout the year expect, for the months of January and 

December. Figure 30 showed the strong negative correlation of NPP with the

precipitation for Marine and Mediterranean during the months of January, February, 

March, April, May, Novemeber and Decemeber.

Eco divisions Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Hot Continental 0.34 0.16 0.27 0.18 0.05 -0.06 0.19 0.34 0.29 0.11 0.22 0.21
Marine -0.07 -0.23 -0.21 -0.20 -0.43 -0.20 0.19 0.49 0.38 -0.15 -0.33 -0.04
Mediterranean -0.22 -0.29 -0.31 -0.27 -0.05 0.42 0.31 0.41 0.55 0.47 -0.14 -0.10
Prairie 0.29 0.15 0.31 -0.12 0.09 0.19 0.41 0.46 0.37 0.35 0.37 0.23
Savannah 0.33 0.15 0.22 0.27 -0.11 -0.27 -0.10 -0.06 -0.10 -0.24 0.20 0.08
Subtropical -0.14 -0.18 -0.21 -0.08 -0.07 -0.08 0.18 0.36 0.13 0.17 -0.06 -0.17
Temperate Desert -0.13 -0.17 -0.28 -0.33 -0.16 0.24 0.48 0.59 0.59 0.11 -0.27 -0.17
Temperate Steppe 0.09 0.05 0.29 0.08 0.02 0.21 0.49 0.51 0.46 0.28 0.18 0.18
Tropical /Subtropical Desert 0.33 0.28 0.35 0.23 0.51 0.21 0.38 0.46 0.43 0.29 0.39 0.34
Temperate /Subtropical Steppe -0.01 0.01 0.07 0.25 0.47 0.41 0.38 0.51 0.54 0.26 0.26 -0.02
Warm Continental 0.28 0.17 0.14 -0.06 0.05 -0.17 -0.19 0.28 0.23 0.02 0.17 0.07
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Table 18 Correlation of NPP with PAR in Various Eco-Divisions for Different 
Months of a Year

Table 18 shows that the NPP has a positive correlation with PAR in the months of 

January, February, October, November and December in almost all the eco-divisions,

except for Tropical/Subtropical Desert (in February and November), Warm Continental

(in February) and Mediterranean (in October).  It is also quite interesting to see that NPP 

in Tropical/Subtropical Desert has negative correlation with PAR for the months of June, 

July, August and September. However, overall NPP is not highly correlated with PAR 

unlike NDVI, temperature and precipitation.

Eco divisions Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Hot Continental 0.38 0.16 0.09 0.22 0.33 0.33 0.18 0.00 0.22 0.49 0.56 0.42
Marine 0.10 0.26 0.05 0.12 0.29 0.31 0.10 -0.10 0.09 0.53 0.56 0.19
Mediterranean 0.41 0.34 0.17 0.16 0.14 -0.24 0.03 -0.18 -0.26 -0.09 0.42 0.40
Prairie 0.53 0.34 0.28 0.39 0.32 0.13 -0.15 -0.34 0.17 0.72 0.68 0.66
Savannah 0.24 0.16 0.14 0.08 0.23 0.49 0.15 -0.02 0.04 0.30 0.38 0.30
Subtropical 0.66 0.52 0.61 0.43 0.30 0.26 0.01 -0.13 0.18 0.30 0.70 0.57
Temperate Desert 0.17 0.13 0.10 0.11 0.06 0.01 -0.04 -0.28 -0.03 0.43 0.25 0.22
Temperate Steppe 0.33 0.26 0.21 0.26 0.16 0.06 -0.12 0.08 0.36 0.56 0.41 0.38
Tropical /Subtropical Desert 0.04 -0.02 -0.06 0.14 -0.03 0.02 -0.11 -0.30 -0.24 0.15 -0.21 0.16
Temperate /Subtropical Steppe 0.23 0.10 0.07 -0.03 -0.17 -0.13 -0.10 -0.10 -0.25 0.25 0.10 0.31
Warm Continental 0.24 -0.01 -0.25 0.11 0.21 0.55 0.54 0.47 0.60 0.46 0.12 0.12
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Table 19 Correlation of NPP with AET in Various Eco-Divisions for Different 
Months of a Year

Table 19 shows positive correlation between NPP and AET in almost all the eco-

divisions, except for Savannah (negative correlation was found in the months of 

September, October, November and December) and Subtropical (no correlation was 

found in the months of May and June). AET thus, is the important rate limitating 

resource in the photosynthesis (Rosenzweig, 1968). Figure 32 shows the relation of mean 

monthly NPP and AET for different eco-divisions.

Eco divisions Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Hot Continental 0.71 0.58 0.66 0.59 0.39 0.07 0.27 0.44 0.39 0.43 0.53 0.55
Marine 0.50 0.52 0.52 0.45 0.13 0.13 0.42 0.60 0.58 0.23 0.36 0.37
Mediterranean 0.50 0.55 0.59 0.50 0.33 0.67 0.68 0.63 0.63 0.53 0.37 0.52
Prairie 0.78 0.77 0.70 0.61 0.42 0.33 0.54 0.56 0.54 0.58 0.72 0.75
Savannah 0.39 0.23 0.04 0.33 0.06 0.07 0.00 -0.02 -0.18 -0.05 0.39 0.04
Subtropical 0.73 0.65 0.57 0.20 0.00 0.04 0.34 0.44 0.28 0.43 0.65 0.63
Temperate Desert 0.39 0.52 0.49 0.46 0.29 0.62 0.76 0.74 0.67 0.37 0.37 0.27
Temperate Steppe 0.52 0.65 0.60 0.42 0.40 0.38 0.61 0.62 0.53 0.46 0.51 0.55
Tropical /Subtropical Desert 0.54 0.49 0.58 0.68 0.64 0.53 0.43 0.48 0.43 0.27 0.38 0.45
Temperate /Subtropical Steppe 0.39 0.29 0.28 0.55 0.53 0.55 0.59 0.58 0.58 0.45 0.46 0.39
Warm Continental 0.45 0.49 0.74 0.36 0.54 0.15 0.12 0.41 0.51 0.70 0.58 0.60
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5.4 Mismatch of Estimated NPP with Previous Study 

NPP is influenced by various eco-physiological and biophysical processes, some 

of which are very difficult to quantify, and are thus rarely measured (Clark et al. 2001a, 

b). Although the climatic variables are strong predictors of aboveground NPP patterns,

the uncertainty remains usually high in large scale NPP prediction because of the lack of 

data that considers various biophysical and eco-physiological processes such as soil

nutrient, soil respiration, biophysical parameters such as basal area, leaf area index etc. 

Similarly, the accuracy of the different vegetative models used in estimation of both 

above and belowground production is difficult to test precisely. 

Though the estimated NPP was validated with BigFoot sites NPP data, the 

estimation is still uncertain. Use of land use land cover information, micro-climate, soil 

nutrient and biophysical parameters such as leaf area index may all add variability to the 

NPP estimation that is not represented by this model. This study computed FPAR using 

SR at pixel basis with an assumption that NDVI of each pixel reflects the characteristics 

of vegetation types unlike the previous model because of the lack of updated land use 

land cover information. This could add variability in the NPP estimation. 

This study compared its estimated NPP for the year 1997 with the previous study 

conducted by Potter et al. 2006 which also used CASA model to estimated annual NPP 

fluxes for different EPA regions. Some differences were found between these studies 

though they used same model. Estimated NPP in this study closely matched with Potter et 

al (2006) estimation in most of the eco-divisions except for South Central, Rocky 

Mountain, Pacific Southeast and Pacific Northwest. The reasons for these anomalies are 
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difficult to find out so, a comparison of the model parameter estimation procedures in 

each of these studies were revisited and explained below.

Table 20 Estimates from the NASA CASA Model for the NPP
fluxes (1997) based on Potter et al. 2006

Table 21 Estimates from the NASA – CASA model for NPP
fluxes (1997) based on this study

US Regions
Land Area 
(103km2)

NPP (1997) 
Pg C Yr-1

1 New England 168.9 0.09
2 North East 145.2 0.08
3 Mid Atlantic 314.1 0.20
4 Southeast 974.1 0.77
5 North Central 860.9 0.43
6 South Central 1437.3 1.03
7 Mid West 739.7 0.42
8 Rocky Mountain 1507.4 0.79
9 Pacific South West 989.8 0.54

10 Pacific North West 641.6 0.35
Total 7779.1 4.71
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For the estimation of FPAR, Potter et al. 2006 used MODIS one kilometer land 

cover map (Friedl et al., 2002) specified predominant land cover classes while this study 

used AVHRR monthly NDVI derived SRmax values on a pixel basis. The idea behind the 

use of AVHRR NDVI is the lack of updated land cover data type for the entire study 

period. Other major differences between these studies were the sources of the data used 

for different parameters estimation and their resolution. Potter et al. 2006 used monthly 

temperature, precipitation data from DAYMET and calibrated the CASA model at the 

resolution of 8-kilometer resolution while this study used monthly mean temperature and 

precipitation from PRISM group, NDVI data at 1-km resolution from AVHRR 

composites, PAR at 0.5 degree from GCIP/SRB project and maximum soil water holding 

capacity from NGDC – NOAA at 0.5 degree and calibrated the model at the resolution of 

1-kilometer. However, both the studies validated their results with high correlation with 

the field NPP data. So, variability of the NPP fluxes between two studies might be due to 

quality of the data and their resolution used in the study. This study however, fails to 

compare its results with other studies because of the lack of estimated NPP fluxes for the 

contiguous US for the study period 1997 to 2007.

In a nutshell, the primary objective to estimate monthly and annual NPP from 

1997 to 2007 in the Conterminous US was achieved. Analysis of annual trend showed 

decrease of NPP during 2000 to 2003 compared to mean annual NPP.  Validation of 

estimated NPP was achieved using BigFoot sites NPP values. Then, the spatial pattern of 

NPP was observed in different parts of US using three broad classification systems: 

States, EPA regions and eco-divisions.  Southeastern states, Subtropical eco-divisions 
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and Southeast regions were found to have higher NPP per square meter when viewed 

from states, eco-divisions and regions perspective. Correlation coefficient analysis of 

NPP with climatic and biophysical variables showed the extent to which NPP is limited 

by these variables.
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CHAPTER VI

CONCLUSIONS AND RECOMMENDATIONS

This final chapter summarizes the main findings and suggests the areas for future 

research. 

6.1 Conclusions

NPP is an integral part of carbon dynamics (Running et al., 2004). Fundamental 

questions regarding environmental degradation, impact of pollution, fire and climate 

change are often addressed by evaluating changes in NPP.  The capacity of terrestrial 

eco-system to sequester carbon from the increasing pool of atmospheric CO2 is becoming 

integral research and policy issues for scientists and policy makers. Affordable and rapid 

methods to understand and quantify the productivity in different eco-regions are thus very 

crucial for the preservation of an eco-system.

Global climate change due to emission of green house gases is threatening the 

existence of mankind. Especially in the US, CO2 emissions have increased by 20 percent 

from 1990 to 2004 (UNFCC, 2007, EPA, 2008). Biophysical, climatic and vegetation 

cover play a major role in carbon sequestration. An accurate estimation of NPP is 

therefore critical to understanding of carbon dynamics. Estimation of NPP in the US thus 

helps the policy makers and researchers to develop policies to increase carbon 
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sequestration efforts in the US.  With this broader goal, this study had the following three 

objectives.

1. To estimate annual NPP in the Conterminous US from 1997 to 2007

2. To analyze the spatial and temporal trends in NPP in the Conterminous US 

from 1997 to 2007

3. To analyze the relation of NPP with climatic factors – temperature, 

precipitation, photosynthetically active radiation (PAR) and 

evapotranspiration and bio-physical parameters such as Normalized 

Difference Vegetation Indices (NDVI) that indicates the conditions of the 

vegetation.

This study used a NASA developed model known as CASA model to estimate the 

NPP. Remote sensing data as primary input and GIS techniques as efficient method were 

used in the model. Specifically, bio-physical parameters such as NDVI and climatic 

factors such as temperature, precipitation, PAR and soil water holding capacity were the 

model parameters used in the estimatation monthly NPP fluxes over the Conterminous 

US from 1997 to 2007. AVHRR satellite derived NDVI values available at 1 km 

resolution was used as the minimum mapable area in the model. Therefore all other 

model inputs were also rescaled to 1 km resolution. 

Predicted NPP fluxes from CASA model over the period from 1997 to 2007 

showed an inter-annual variability nationwide that ranged from 3.42 – 4.95 petagrams of 

carbon per year (Figure12) with the mean annual NPP of 4.23 petagrams of carbon. 
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Validation of estimated NPP against BigFoot NPP sites at multiple locations in different 

years showed that model’s estimation of NPP was reasonably accurate. 

The annual NPP was found to be lower during the years 2000 to 2003, when the 

growing seasons were affected by the extensive droughts. The overall increase in NPP in 

the conterminous US during 11 years period was very negligible with R2 of 0.004.

Savannah and Subtropical eco-divisions were estimated to have higher NPP per unit area 

while Subtropical typically contributed more than 20 percentage of the nation’s total 

annual NPP. Rocky Mountain regions (Figure 20) and Tropical/Subtropical Desert eco-

divisions (Figure 19) had very low NPP per unit area. The southeast and south central 

regions of the country contributed more than 35percent of the nation’s total annual NPP. 

Changes in seasonal NPP resulting from poor vegetation condition (measured by NDVI) 

due to periodic droughts and temperature variations are likely to be the main reasons for 

variation in NPP fluxes for any given year.  

NPP was observed to have negative correlation with the latitude. NPP and NDVI 

exhibited significant positive correlation for all eco-divisions throughout the year. 

Tropical/Subtropical Desert was found to have higher NPP during the beginning of the 

year i.e. in March and April while other eco-divisions experienced higher in the months 

of May, June and July. 

6.2 Recommendations

NASA-CASA model to estimate the NPP might perform better if the updated data 

especially land use land cover data with greater details are incorporated. Therefore, 

potential research can be focused towards obtaining high resolution datasets instead of 
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the coarse resolution datasets as they might affect the accuracy of NPP estimation. High 

resolution datasets however are very difficult to obtain for the large study area like 

Conterminous US. Use of high resolution datasets could add challenges in terms of 

computational time and the computer resources.

Similarly, several other parameters such as, leaf area index, different maximum 

light use efficiency parameters and soil nutrient could be considered for the better 

approximation of NPP.  These parameters are however very difficult to validate with field 

data. Another improvement could be done in the estimation of potential 

evapotranspiration by using models such as Penman–Monteith and Priestley–Taylor

model. This study had to rely on Thornthwaite model instead of Penman–Monteith or 

Priestley–Taylor because of the lack of historical data such as humidity, solar radiation, 

wind speeds which are required by these models. 

Improvements in NPP estimation can also be made through the validation of each 

parameter such as FPAR, evapotranspiration, soil moisture as errors during different 

parameters estimation could accumulate and propagate in the estimated final NPP.

Overall this study illustrated the spatial and temporal anomalies in NPP in the 

conterminous US. Since NPP is one of the important indicators of carbon cycle, this 

study provides some basic understandings of the situation of carbon sinks in the United 

States. Although NPP values are affected by the fluctuations in biophysical and climatic 

factors to certain extent, the vegetation condition (indicated by NDVI in this study) 

including species distribution and density can increase the carbon sinks. Thus the results 
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of this study could be used in various environmental policy decisions especially in the 

policies on forest and cropland management at the state, EPA region and federal levels.   
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APPENDIX A 

TOTAL ANNUAL NPP (T G C YR-1) FOR DIFFEENT STATES IN 

CONTERMINOUS US FROM 1997 TO 2007
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TOTAL ANNUAL NPP (T G C YR-1) FOR DIFFEENT ECO-DIVISIONS IN 

CONTERMINOUS US FROM 1997 TO 2007
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CONTERMINOUS US FROM 1997 TO 2007
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