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Solving large-scale linear systems of equations (LSEs) is one of the most common and

fundamental problems in big data. But such problems are often too expensive to solve

for resource-limited users. Cloud computing has been proposed as an efficient and cost-

effective way of solving such tasks. Nevertheless, one critical concern in cloud computing

is data privacy. Many previous works on secure outsourcing of LSEs have high compu-

tational complexity and share a common serious problem, i.e., a huge number of external

memory I/O operations, which may render those outsourcing schemes impractical. We de-

velop a practical secure outsourcing algorithm for solving large-scale LSEs, which has both

low computational complexity and low memory I/O complexity and can protect clients pri-

vacy well. We implement our algorithm on a real-world cloud server and a laptop. We find

that the proposed algorithm offers significant time savings for the client (up to 65%) com-

pared to previous algorithms.
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CHAPTER 1

INTRODUCTION

1.1 Background

In recent years, many large-scale systems and applications have emerged which deal

with huge volumes of data. For example, social networks need to monitor and record inter-

actions among millions or billions of users [3] [8]; scientists need to sequence the genome

of complex organisms [10]; and power system operators collect enormous amounts of data

from the electric grid for real-time monitoring and offline analysis [7]. Due to advances in

computer memory, large-scale data sets can be stored in a cost-effective manner. However,

analyzing them requires extensive computing resources which are usually very expensive

capital investments. Therefore, both individuals and organizations face a formidable chal-

lenge in trying to analyze large-scale data sets in a timely and cost-effective way. This

challenge has attracted significant attention from industry, academia and governments, who

have identified it as a new technology field, called Big Data [13, 18].

Solving large-scale linear systems of equations (LSEs) of the form Ax = b is one of

the most common and fundamental problems in big data. But such problems are often too

expensive to solve for resource-limited users. Some researchers and commercial entities

suggest cloud computing as a timely, efficient, and cost-effective way of solving such com-

puting tasks [4, 9, 12, 21, 22]. In cloud computing, clients outsource their computing tasks
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to the cloud, which contains a large amount of computing resources and offers them on a

pay per-use basis [20]. In this computing paradigm, clients share the cloud resources with

each other, and avoid purchasing, installing, and maintaining sophisticated and expensive

computing hardware and software.

Nevertheless, one critical concern in cloud computing is data privacy. To be more

prominent, in many cases, clients’s LSEs contain private data that should remain hidden

from the cloud for ethical, legal, or security reasons. For example, a person’s genome could

be disclosed by a computing task from a health-care provider [18]; a company’s data set

may reveal proprietary processes, which are an attractive target for corporate espionage; or

data from power system operators contain information that can be exploited to attack the

electric grid [16]. Thus, in order for people to really adopt cloud computing, we have to

design tools and technologies that allow clients to outsource the computing of their LSEs

to the cloud while preserving the privacy of their data. The fact that clients lack computing

and storage resources also limits the complexity of operations that they can perform to

hide their data from the cloud, which makes secure outsourcing an even more challenging

problem.

1.2 Related Works

Some previous works on securely outsourcing computing tasks to the cloud could be

used to solve LSEs. However, they suffer from high computing requirements. In [5], Gen-

naro et al. utilize fully homomorphic encryption (FHE) to securely outsource computations

to the cloud. Although the scheme is very attractive and offers theoretical privacy guar-
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antees, FHE itself is a computationally intensive operation, and large-scale computations

based on FHE ciphertexts are very expensive, even for the cloud. Wang et al. [23] [25]

propose methods to privately outsource a linear programming problem. A client may em-

ploy these methods to find the solution to an LSE by requesting the cloud to solve a spe-

cial linear program. Unfortunately, to protect data privacy, the client needs to perform a

matrix-matrix multiplication that is prohibitively expensive because this operation has a

computational complexity of O(nρ) for 2 < ρ ≤ 3 (for n× n matrices).

Recently a few secure outsourcing algorithms have been developed specifically for

solving LSEs. Lei et al. [14] and Atallah et al. [1] design secure matrix inversion algo-

rithms that use matrix permutations to preserve data privacy. To find the solution to an

LSE, a client performs operations with O(n2) complexity. Wang et al. [24] develop an

iterative algorithm specifically to solve LSEs, where a client transforms and encrypts the

coefficient matrix using homomorphic encryption, and the cloud carries out computations

on ciphertexts. Specifically, the client needs to perform two matrix-vector multiplications,

which require O(n2) floating-point (flops) operations, and O(n2) homomorphic encryp-

tions. Note that performing homomorphic encryptions has high computational complexity

(O(log2 e) flops per encrypted value, were e is the key size). Although it is proposed that

the client could outsource this computation to a trusted third-party, it may not always exist.

The use of homomorphic encryption also forces the cloud to operate on ciphertexts, which

then has to use specialized linear algebra software and performs operations with higher

computational complexity. Besides, the proposed algorithm only works for LSEs whose

coefficient matrices are diagonally dominant, and the privacy will be compromised if the

3



number of iterations approaches or exceeds n. Later on, Chen et al. [2] also propose simi-

lar solutions to outsourcing linear programs and LSEs while preserving users’ privacy. We

notice that most such works’ computational complexities are still high.

More importantly, previous works [1, 2, 14, 24] share a common serious problem, i.e.,

a huge number of memory I/O operations. This problem has been largely neglected in the

previous secure outsourcing algorithm design. But we stress that the number of times an

algorithm accesses a matrix is of particular importance for outsourcing a large-scale LSE

and can eventually render the algorithm impractical. The reason is as follows. Most often a

client lacks enough RAM memory to store a large-scale matrix completely at once. So, in-

stead of working on RAM memory directly, as is the case with smaller matrices, the client

can only load a small section of the large-scale matrix at a time and write the results to

external memory when it is done. However, reading and writing operations from and into

external memory have a very high latency compared to the same operations in RAM. For

example, our experiments show that reading a matrix once with dimension 30, 000×30, 000

and size 10GB on a laptop that has 4GB RAM and a hard disk at 5400RPM would take

about 15 minutes. Therefore, any practical algorithm for large-scale LSEs should only

incur as small the number of memory I/O operations for the client as possible. To bet-

ter capture the special memory I/O requirement of large-scale LSEs, we propose a new

definition of memory I/O complexity, which is the number of values that are read/written

from/into external memory. Previous works have very high storage complexity. For exam-

ple, a client needs to access the elements of a matrix at least four times in [1, 14], and five
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times in [24], respectively, which may take an unacceptably long time due to the latency

of the huge number of I/O operations in practice.

Aiming to reduce both computational and memory I/O complexities, in this paper,

we develop an efficient and practical secure outsourcing algorithm for solving large-scale

LSEs. Specifically, to protect its data privacy, a client generates a random matrix to trans-

form the original coefficient matrix A into matrix Â via a matrix addition. We prove that

matrix Â is computationally indistinguishable from a random matrix. Then, based on the

conjugate gradient method, the client finds the solution vector x iteratively with the help

of the cloud. Since the client delegates expensive matrix-vector operations to the cloud, it

has computational complexity of O(n2). Besides, it has very low memory I/O complexity

of 4n2 + 2n. The algorithm preserves the privacy of the client, i.e, hides A, x, and b, by

letting the cloud operate on the transformed matrix Â and some intermediate values, rather

than on A, x, or b. Moreover, since matrix Â is the result of a linear algebra operation,

the cloud can use traditional linear algebra software, and avoid the costly exponentiations

required for ciphertext-based operations as in [24].

We summarize our main contributions as follows.

• We develop an efficient and practical algorithm to securely outsource the computa-
tion of large-scale LSEs

• The proposed algorithm requires operations with low computational and storage
complexities from the client. In particular, the computational complexity is O(n2)
and the memory I/O complexity is 4n2+2n read/write operations. We compare both
complexities of our algorithm with those of previous algorithms and find that our
algorithm is much more efficient.

• We show that the cloud is unable to obtain any information about the client’s LSE.
Different from [24] where privacy can only be protected if the algorithm converges
in fewer than n iterations, the privacy in our algorithm can be protected no matter
how many iterations are needed.
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• We implement our algorithm on a real-world cloud server and a laptop. We find
that the proposed algorithm offers significant time savings for the client (up to 65%)
compared to previous algorithms.

The rest of the paper is organized as follows. In Section 2 we introduce the considered

system architecture and threat model. Section 3 describes the proposed privacy-preserving

matrix transformation. Section 4 presents in detail the proposed algorithm for secure out-

sourcing of LSEs, while Section 5 analyzes the computational complexity, storage com-

plexity, and privacy of the proposed algorithm. We present our experimental results in

Section 6, and conclude the paper in Section 7.
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CHAPTER 2

PROBLEM FORMULATION

In this section, we present the system architecture considered in this paper, and intro-

duce the threat model.

2.1 System Architecture

We consider an asymmetric two-party computing architecture as shown in Fig. 2.1,

where a cloud client (CC) is resource-limited while a remote cloud server (CS) has abun-

dant computing resources. The CC intends to solve a large-scale computing task, but

cannot complete it on its own. So the CC offloads the most expensive computations to the

CS and collaborates with it to find the solution to the large-scale LSE. In this work, we

concentrate on the computing task of finding the solution to a large-scale LSE:

Ax = b (2.1)

where A ∈ Rm×n (m ≥ n) is the coefficient matrix, x ∈ Rn×1 is the solution vector, and

b ∈ Rm×1 is the constant vector. We assume that A, x, and b contain, or could reveal

private information of the CC.

7



Figure 2.1

A Secure Architecture for Outsourcing LSEs

2.2 Threat Model

We assume a malicious threat model for the CS. That is, the CS tries to extract infor-

mation from the CC’s data and from the results of its own computations, and may attempt

to deviate from the proposed protocols and return erroneous results.

To enable the CC to securely delegate computing tasks to the CS, the data that the CC

shares with the CS should appear random. This notion of privacy is known as computa-

tional indistinguishability [11], and is defined as follows.

8



2.2.1 Definition 1 Computational Indistinguishability

Two probability ensembles X = {Xs}n∈N and Y = {Ys}n∈N, are computationally

indistinguishable if for every probabilistic polynomial time distinguisher D there exists a

negligible function µ(n) such that

∣∣Pr[D(Xs) = 1]− Pr[D(Ys) = 1]
∣∣ < µ(s) (2.2)

where the notation D(Xs) means that x is chosen according to distribution Xs and then

D(x) is run. Distinguisher D(x) returns 1 if it determines that x is chosen according to

distribution Xs.

Moreover, this definition can be extended to the case where a distinguisher D has access

to multiple samples of the vectors X and Y , i.e., when comparing two matrices.

2.2.2 Definition 2

Let R ∈ Rm×n be a random matrix with entries in its jth column sampled from a

uniform distribution with interval [−Lj, Lj] ∀j ∈ [1, n]. Matrices R and Â ∈ Rm×n are

computationally indistinguishable if for any probabilistic polynomial time distinguisher

D(·) there exists a negligible function µ(·) such that

|P [D(ri,j) = 1]− Pr[D(âi,j) = 1]| ≤ µ(n) (2.3)

where i ∈ [1,m], j ∈ [1, n], ri,j is the element in the ith row and jth column of R, and âi,j

is the element in the ith row and jth column of Â. Distinguisher D(ri,j) outputs 1 when it

identifies the input as a uniform distribution in the range [−Lj, Lj], and zero otherwise.

9



CHAPTER 3

A PRIVACY-PRESERVING MATRIX TRANSFORMATION

Before delving into details about our proposed algorithm for outsourcing large-scale

LSEs, we first present a privacy-preserving matrix transformation scheme.

3.1 Conceal Information

To delegate a computing task to the CS, the CC first needs to perform some compu-

tations on its data. These computations should hide the data from the CS, require light

computational effort from the CC, and at the same time allow the CS to return a mean-

ingful result. To this end, we design a light-weight privacy-preserving matrix transfor-

mation based on matrix addition that offers computational indistinguishability, that is, a

probabilistic polynomial-time algorithm is unable to differentiate between the transformed

matrix and a random matrix with non-negligible probability.

In particular, the CC hides its private information in the coefficient matrix A by apply-

ing a matrix addition as follows:

Â = A+ Z (3.1)

10



where Z ∈ Rm×n is a random matrix, and âi,j = ai,j + zi,j ∀ i ∈ [1,m], j ∈ [1, n] where

ai,j is the element in the ith row and jth column of A. We assume that the values of matrix

A are within the range [−K,K], where K = 2l (l > 0) is a positive constant.

To reduce the CC’s computational complexity, the random matrix Z is formed by a

vector outer-product, i.e.,

Z = uv⊤ (3.2)

where u ∈ Rm×1 is a vector of uniformly distributed random variables with probability

density functions as follows:

fU(ui) =


1
2c
−c < ui < c

0 otherwise
, (3.3)

where c = 2p (p > 0) is a positive constant, and i ∈ [1,m]. Vector v ∈ Rn×1 is a vector of

arbitrary positive constants ranging from 2l and 2l+q (q > 0). Note that element zi,j = uivj

(∀i ∈ [1,m], j ∈ [1, n]) of matrix Z is the product of a random variable and a positive

constant. Thus, zi,j is also a random variable with its probability density function defined

as [15]:

fZ(gi,j) =


1

2Lj
−Lj < gi,j < Lj

0 otherwise
(3.4)

where Lj = cvj (∀j ∈ [1, n]) and hence is between 2p+l and 2p+l+q. We can now arrive

at a theorem about the computational indistinsguishability between Â and a matrix with

columns filled with values taken from uniform distributions.
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3.2 A Theorem

Let R be a random matrix with entries in its jth column sampled from a uniform

distribution with interval [−Lj, Lj] (∀j ∈ [1, n]). Matrices R and Â are computationally

indistinguishable.

3.2.1 Proof

According to Definition 2.2.2, we need to show that ri,j and âi,j (∀i ∈ [1,m], j ∈ [1, n])

are computationally indistinguishable for matrices R and Â to be computationally indis-

tinguishable. In particular, we show that any probabilistic polynomial time distinguisher D

cannot distinguish âi,j from ri,j for any ∀i ∈ [1,m], j ∈ [1, n] except with non-negligible

success probability.

Recall that values from R and A are in the intervals [−Lj, Lj] and [−K,K], respec-

tively. Thus, we have âi,j ∈ [−K − Lj, K + Lj], and hence ri,j, âi,j ∈ [−2κ, 2κ] where

κ = p + l + q + 1. The best strategy for distinguisher D when presented with a sam-

ple x = âi,j is to return b ← {0, 1} with equal probability if −Lj ≤ x ≤ Lj , and 1 if

x < −Lj or x > Lj . Therefore, when x = âi,j , we have that the success probability of the

distinguisher is given by

Pr[D(âi,j) = 1]

=
1

2
Pr[−Lj ≤ âi,j ≤ Lj]

+Pr[âi,j < −Lj] + Pr[âi,j > Lj]

=
1

2
(1− Pr[âi,j < −Lj]− Pr[âi,j > Lj])

+Pr[âi,j < −Lj] + Pr[âi,j > Lj] (3.5)
12



where

Pr[âi,j > Lj] = Pr[ai,j + zi,j > Lj]

= Pr[zi,j > Lj − ai,j]

≤ Pr[zi,j > Lj −K]

=
K

2Lj

(3.6)

Similarly, we find that Pr[â < −Lj] ≤ K
2Lj

. Consequently, we have that the probability of

success for distinguisher D, when x = âi,j , is bounded as follows:

Pr[D(âi,j = 1)] ≤ 1

2
+

K

2Lj

(3.7)

On the other hand, if x = ri,j , we can obtain that Pr[D(ri,j) = 1] = 1
2
. According to

equation (2.3), for any ∀i ∈ [1,m], j ∈ [1, n] we get that

|Pr[D(âi,j) = 1]− Pr[D(ri,j) = 1]| ≤ K

2Lj

(3.8)

Note that K = 2l and Lj ∈ [2p+l, 2p+l+q]. Thus, we have

µ(κ) =
K

2Lj

≤ 2l

2p+l
=

1

2p
=

1

2κ−l−q−1
(3.9)

which is a negligible function. This concludes the proof.
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CHAPTER 4

SECURE OUTSOURCING OF LARGE-SCALE LSES

In this section, we develop a practical and light-weight algorithm to securely outsource

a large-scale LSE to the CS based on the conjugate gradient method (CGM).

4.1 The Conjugate Gradient Method

We notice that solving the LSE in (2.1) is equivalent to solving the following uncon-

strained quadratic program

min f(x) =
1

2
x⊤A′x− b′x (4.1)

where A′ is symmetric and positive definite [19]. Therefore, we use the CGM algorithm

that solves the above optimization problem to solve (2.1).

Specifically, as any gradient directions (GD) method, the CGM employs a set of vec-

tors P = {p0,p1, . . .pn} that are conjugate with respect to A′, that is, at iteration k the

following condition is met:

p⊤
k A

′pi = 0 for i = 0, . . . , k − 1. (4.2)

Using the conjugacy property of vectors in P , we can find the solution in at most n steps

by computing a sequence of solution approximations as follows:

xk+1 = xk + αkpk (4.3)
14



where αk is the one-dimensional minimizer of (4.1) along xk + αkpk. The minimizer αk

can be found by setting (4.1) to zero and taking its gradient when x = xk+1

∇f(xk+1) = A′xk+1 − b′ = 0. (4.4)

By replacing xk+1 with (4.3) and multiplying by p⊤
k from the left, we get

αk =
−r⊤k pk

p⊤
k A

′pk

(4.5)

where rk = A′xk − b′ is called the residual.

Moreover, we can find the residual iteratively based on (4.3) as follows:

rk+1 = A′xk+1 − b′

= A′(xk + αkpk)− b′ = rk + αkA
′pk. (4.6)

Efficiently finding the set of conjugate vectors P is a major challenge in GD methods.

The CGM algorithm offers an efficient way of finding P that has low storage and compu-

tational complexity. In particular, the CGM finds a new conjugate vector pk+1 at iteration

k by a linear combination of the negative residual, i.e., the steepest descent direction of

f(x), and the current conjugate vector pk, that is,

pk+1 = −rk+1 + βk+1pk (4.7)

where βk+1 is chosen in such a way that p⊤
k+1 and pk meet condition (4.2). By multiplying

p⊤
k A

′ from the left in (4.7), we get

p⊤
k A

′pk+1 = −p⊤
k A

′rk+1 + p⊤
k A

′βk+1pk, (4.8)

15



which leads to

βk+1 =
p⊤
k A

′(pk+1 + rk+1)

p⊤
k A

′pk

. (4.9)

Since as mentioned above p⊤
k and p⊤

k+1 are conjugate with respect to A′, we have p⊤
k A

′pk+1 =

0. Note that p⊤
k A

′rk+1 is a scalar and A is symmetric. Thus, we have

βk+1 =
r⊤k+1A

′pk

p⊤
k A

′pk

. (4.10)

Moreover, since xk minimizes f(x) along pk, it can be shown that r⊤k pi = 0 for

i = 0, 1, . . . , k − 1 [19]. Using this fact and equation (4.7), a more efficient computation

for (4.5) can be found, namely,

αk =
−r⊤k (−rk + βkpk−1)

p⊤
k A

′pk

=
r⊤k rk

p⊤
k A

′pk

. (4.11)

Similarly, using (4.6), we can find a more efficient formulation for βk+1. First, we replace

A′pk with 1
α
(rk+1 − rk) in (4.10) to get

βk+1 =
r⊤k+1(rk+1 − rk)

p⊤
k (rk+1 − rk)

(4.12)

Then, using the fact that p⊤
k rk+1 = 0 and r⊤k+1rk = 0 [19], we find that

βk+1 = −
r⊤k+1rk+1

p⊤
k rk

. (4.13)

By replacing pk with −rk + βkpk−1 above, and applying p⊤
k−1rk = 0, we get

βk+1 =
r⊤k+1rk+1

r⊤k rk
. (4.14)
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To summarize the above, the CGM algorithm is as follows. At iteration k = 0, we have

r0 = A′x0 − b′ (4.15)

p0 = −r0 (4.16)

k = 0 (4.17)

and at iteration k > 0 we have the following iterative equations:

αk =
r⊤k rk

p⊤
k A

′pk

(4.18)

rk+1 = rk + αkA
′pk (4.19)

xk+1 = xk + αkpk (4.20)

βk+1 =
r⊤k+1rk+1

r⊤k rk
(4.21)

pk+1 = −rk+1 + βk+1pk (4.22)

Compared to other methods, e.g., Gaussian eliminations, QR decomposition, CGM offers

a feasible algorithm for extremely large-scale systems.

4.2 The Privacy-preserving CGM Algorithm

In what follows, we describe our proposed privacy-preserving CGM algorithm (PPCG-

M) that exploits the structure of the CGM method to securely shift the relatively more

expensive operations, i.e., matrix-vector multiplications, in each iteration to the CS.
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4.2.1 LSE Transformation

As shown in Section 6.2, the CGM algorithm only works with symmetric and positive

definite matrices. Therefore, the CC can transform the original LSE (2.1) to the following

equivalent LSE:

A′x = b′ (4.23)

where A′ = A⊤A is symmetric and positive definite, and b′ = A⊤b.

Since computing A′ requires a matrix-matrix multiplication, which has complexity of

O(nρ), the CC can outsource the computation to the CS. To be more prominent, the CC

generates a random matrix Z0 = u0v
⊤
0 as described in Section 3 and then sends a masked

matrix Â0 to the CS:

Â0 = A+ Z0. (4.24)

As proved before, Â0 is computationally indistinguishable from a random matrix and

hence does not reveal any information about A. The CS carries out the following secure

computation:

G = Â⊤
0 Â0

= A⊤A+M (4.25)

where M = Z⊤
0 A + A⊤Z0 + Z⊤

0 Z0. Thus, upon receiving G, the CC can obtain the

symmetric positive definite matrix A′ by

A′ = G−M. (4.26)
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To avoid matrix-matrix multiplications in the calculation of M, the CC can replace Z0 with

u0v
⊤
0 , i.e.,

M = v0(u
⊤
0 A) + (A⊤u0)v

⊤
0 + v0(u

⊤
0 u0)v

⊤
0 . (4.27)

We summarize this LSE transformation scheme in Algorithm 4.1. Next, the CC and

the CS collaboratively carry out the CGM algorithm to solve A′x = b′. Note that A′ can

be calculated just once for many LSEs that share the same A′ but have different b′’s. For

example, power system operators solve many state estimation problems for system mon-

itoring and control. These problems have different measurements, i.e., b′’s, but the same

A′ which depends on network topology and does not change frequently. Thus, finding A′

once is enough to solve a large number of LSEs.

Table 4.1

Algorithm 1 LSE Transformation

REQUIRE CC ←A,b
1. Generate matrix Z0

2. Construct Â0 using (4.24) and send it to CS
3. Receive G
4. Calculate A′ using (4.26)
5. Calculate b′ = A⊤b using
ENSURE A′,b′

4.2.2 Initialization

In the initialization step, the CC sets the initial solution vector x0 to a random vector

of Rn×1, and tries to compute r0 and p0 according to equations (4.15) and (4.16). Since
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computing A′x0 requires a matrix-vector multiplication, the CC can outsource this com-

putation to the CS.

Particularly, the CC generates a masked coefficient matrix Â′ = A′ + Z, where Z =

uv⊤ as described in Section 3, and sends it together with x0 to the CS. The CS helps the

CC compute the term A′x0 in a privacy-preserving manner by computing the following

intermediate value

h0 = Â′x0. (4.28)

Upon receiving h0, the CC computes the residual vector as follows

r0 = A′x0 − b′

= h0 − u(v⊤x0)− b′. (4.29)

By computing v⊤x0 first in equation (4.29), the CC computes vector-vector compu-

tations only, which have linear complexity. This is possible due to the fact that Z is a

rank-one matrix and can be decomposed into an outer-vector product. If we had formed Z

arbitrarily, the client would not experience any computational or storage complexity gains.

At the end of the initialization step, the client sets the conjugate vector p0 = −r0, and

transmits it along with r0 to the CS.

4.2.3 Main Iteration

Exploring the CGM iteration, i.e., equations (4.18)-(4.22), we notice that equations

(4.18) and (4.19) need matrix-vector multiplications involving the coefficient matrix A′,

while the rest of the equations only require vector-vector multiplications. We exploit these
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equations to design an efficient collaborative computation between the CC and the CS,

where the CS helps compute (4.18) and (4.19), and the CC carries out the rest of the

equations by itself. To protect the CC’s privacy, the CS carries out computations with the

transformed matrix Â′, instead of A′. In what follows, we describe a set of operations that

allow the CC to efficiently find xn, while protecting its data privacy.

To compute αk, the CC and the CS carry out equation (4.18) in two steps. First, the CS

computes an intermediate vector

tk = p⊤
k Â

′pk (4.30)

Second, the CC finds αk using tk as follows

αk =
r⊤k rk

tk − (p⊤
k u)(v

⊤pk)
. (4.31)

Similarly, the CC exploits the CS’s resources to find rk+1. The CS first calculates the

intermediate vector

fk = Â′pk (4.32)

which allows the CC to compute rk+1 as follows

rk+1 = rk + αk(fk − uv⊤pk). (4.33)

Note that when calculating αk and rk+1 we have also used the fact that Z is rank-one

to provide computational gains to the CC. That is, the CC carries out the computations of

αk and rk+1 in linear time via vector-vector multiplications.

Equations (4.20)-(4.22) only require vector-vector operations, hence they all can be

computed entirely by the CC itself. At the end of the kth iteration, the CC transmits pk+1
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to the CS for the next iteration k+1. Iterations terminate according to the stopping criteria

suggested by Golub and Van Loan [6], i.e.,
√
r⊤k rk ≤ ν||b||2, where ν is a tolerance value.

We summarize the PPCGM algorithm for the CC in Algorithm 4.2. Moreover, we note

that since the CS has an economic incentive to allocate less computational resources to the

CC and return erroneous solutions, the CC should be able to verify the results from the CS.

In particular, at the end of the algorithm the CC can multiply A′ by the obtained solution

vector x, and compare the product to the constant vector b′. As in [24], the solution vector

x can be deemed correct if ||A′x − b′p|| ≤ ϵ, where ϵ is a small value. Since the result

verification is not the main focus of this paper, we refer the readers to other works for more

detailed discussions.

Table 4.2

Algorithm 2 A Privacy-Preserving Conjugate Gradient Method (PPCGM)

REQUIRE CC ←A′,b′

1. Generate u, v, and Z using (3.2)
2. Calculate Â′ = A′ + Z and transmit it and x0 to the CS
3. Receive h0

4. Calculate r0 using (4.29) and p0 = −r0, and transmit to cloud
5. WHILE

√
r⊤k rk > ν||b||2 do

6. Receive tk and fk
7. Compute αk using (4.31)
8. Compute rk+1 using (4.33)
9. Compute xk+1, βk+1, pk+1 using (4.20), (4.21) and (4.22), respectively.
10. Transmit pk+1 to cloud
11. ENDWHILE
ENSURE xn
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CHAPTER 5

PERFORMANCE AND PRIVACY ANALYSIS

In this section we analyze the computational and memory I/O complexity of the pro-

posed PPCGM algorithm, and compare them with those of the previous works We also

present a thorough privacy analysis. Note that previous works can only work with square

coefficient matrices. To perform fair comparisons, we assume that they employ our pro-

posed Algorithm 4.1 to securely transform an arbitrary coefficient matrix into a square

matrix.

5.1 Computational Complexity

We define the computational complexity of a party as the number of floating-point

(flops) operations (additions, subtractions, multiplications, and divisions), bitwise opera-

tions, and encryptions that the party needs to perform. We note that an encryption takes

many flops, and a flop takes some bitwise operations. To determine the overall computa-

tional complexity for the client in PPCGM, we look into Algorithm 4.1 and Algorithm 4.2

in detail.

If the original coefficient matrix is not symmetric and definite positive, the CC runs

Algorithm 4.1 to construct such a matrix in equation (4.23). To this end, the CC computes

4 matrix-matrix additions and subtractions (1×mn+ 3× n2), 2 matrix-vector products
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(2× n(2m− 1)), 3 outer vector products (3× n2), 1 inner vector product (2n− 1), and 1

scalar-vector product (n), which takes 5mn+ 6n2 + n− 1 flops.

In line 4.2 of Algorithm 4.2, the client generates the random vector u and the random

matrix Z. To get u, the client uses a pseudo-random number generator like the Mersenne

Twister [17], which takes a constant number of bitwise operations per random number. To

get Z, the client multiplies u times the vector of constants v⊤ via n2 flops. We assume the

constants in v are pre-chosen by the client. In line 4.2, the client constructs the transformed

coefficient matrix Â′ through a matrix addition, which takes n2 flops. Thus, the total

number of operations required to get Â′ is 2n2 flops and Cn bitwise operations, where C

is the number of bitwise operations needed to generate a random number. In line 4.2, the

client computes r0 through one vector-vector multiplications (2n − 1), one vector-scalar

multiplication (n), and two vector-vector subtractions (2n), which takes 5n − 1 flops in

total. Note that p0 can be computed by the CS. The total computational complexity of the

initialization phase for the CC is 2n2 + 5n− 1 flops plus Cn bitwise operations.

To find αk in line 4.2, according to equation (4.31), the client performs 4 vector-vector

multiplications (4× (2n− 1)), a scalar subtraction, and a scalar division, which has a total

of 8n − 2 flops. In line 4.2, the client performs 1 vector-vector multiplication (2n − 1),

2 vector-scalar multiplications (2n), and 2 vector-vector additions (2n) to find rk+1. This

computation has a cost of 6n − 1 flops. Similarly, we observe xk+1, βk+1, pk+1 need 2n,

4n− 1, and 2n flops, respectively. Totally, the client performs 22Kn− 4K flops after K

iterations.
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Therefore, the total computational complexity of the PPCGM algorithm is O(mn)

flops plus O(n) bitwise operations.

In the scheme proposed by [14], as mentioned earlier, an arbitrary coefficient matrix

is transformed into a square matrix first, which takes 5mn+ 6n2 + n− 1 flops. Then,

a client encrypts its coefficient matrix by multiplying it with two permutation matrices,

which takes 2n2 flops. Similarly, the client performs 2n2 multiplications to decrypt the re-

ceived inverse matrix. To solve an LSE the client performs an additional matrix-vector mul-

tiplication. Thus, the total computational complexity is 5mn+ 12n2 − 1, i.e., O(mn),

flops.

The secure outsourcing proposed in [24] requires a client to perform a problem transfor-

mation that takes one diagonal matrix inversion, a matrix-vector multiplication, the mul-

tiplication of diagonal matrix and a matrix with a zero diagonal, the multiplication of a

diagonal matrix and a vector, and an additive homomorphic encryption of the elements of

the coefficient matrix. These operations take a total of 3n2−n flops plus n2 homomorphic

encryptions. Then in each iteration the client decrypts a vector and performs a vector addi-

tion, which takes n flops and n decryptions. Considering the transformation of an arbitrary

coefficient matrix into a square matrix, the total computational complexity for this work is

O(mn) flops +O(n2) encryptions.

A brief summary of computational complexity comparison between our algorithm and

previous works is shown in Table 5.1. To facilitate the comparison between our proposed

algorithm and previous works, we assume that only Algorithm 2 is executed, i.e., the input

coefficient matrix A is symmetric and positive definite and the CS skips Algorithm 1.
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5.2 Memory I/O Complexity

As mentioned before, to better capture the special memory I/O requirement of large-

scale LSEs, we propose a new definition of memory I/O complexity, which is the number

of values that areas follows. If the original LSE system is not symmetric and positive

definite, the CC runs Algorithm 4.1, which needs to read the original coefficient matrix

and write the new coefficient matrix. These operations take 2mn I/O operations. In line

4.2 of Algorithm 4.2, to construct Â′, the CC reads A′ and writes of Â′ to external memory,

which takes 2n2 I/O operations. Computing r0 requires one read of b′ which takes n I/O

operations. In the main iteration phase, the CC is able to make all of its operations within

the RAM memory. At the final iteration, the CC stores the solution x∗ into the external

memory, which takes n I/O operations. Therefore, the total memory I/O complexity of our

scheme is no more than 4n2 + 2n.

In [14], the CC hides its coefficient matrix using permutation matrices that need one

read of A and one write of the resulting matrix, which takes 2n2 I/O operations. The client

decrypts the received inverse matrix similarly, which takes another 2n2 I/O operations. To

find the solution vector, the CC performs a read of the inverse matrix and vector b and

a write of the final solution, which takes n2 + 2n I/O operations. Note that transform-

ing an arbitrary matrix into a square matrix for matrix inversion incurs 2n2 memory I/O

operations. The memory I/O complexity in [14] for general matrices is thus 7n2 + 2n.

In [24], the CC protects its data by transforming the problem through a matrix trans-

formation, which takes 3n2 + n I/O operations, and by encrypting the coefficient matrix,

which takes additional 2n2 I/O operations. At the final iteration, the CC also stores the re-
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sult in external memory which takes n I/O operations. Similarly, an arbitrary matrix needs

to be transformed into a square matrix first, which takes 2n2 I/O operations. Thus, the total

memory I/O complexity for the CC is 7n2 + 2n I/O operations.

A summary of memory I/O complexity comparison between our algorithm and previ-

ous works is also shown in Table 5.1.

Table 5.1

Computational and Memory I/O Complexity Comparison

Algorithm Computational Com-
plexity

Memory I/O
Complexity

Matrix Type

Gennaro et. al [5] O(n2) FHE crypt ops 6n2 + 2n I/O ops General
Wang et. al [23]
[25]

O(nρ) flops 6n2 + 2n I/O ops General

Lei et. al [14] O(n2) flops 7n2 + 2n I/O ops General
Attallah et. al [1] O(n2) flops 8n2 + 2n I/O ops General
Wang et. al [24] O(n2) flops +O(n2)

crypt ops
7n2 + 2n I/O ops Diagonally Dom-

inant
Our scheme O(n2) flops + O(n) bit

ops
4n2 + 2n I/O ops General

5.3 Privacy Analysis

Exploring the PPCGM algorithm proposed in Section 4, we observe that the CS only

has access to the transformed coefficient matrix Â′ and the conjugate vector pk. According

to Theorem 3.2, the transformed matrix Â′ is computationally indistinguishable from a

random matrix. Thus, the CS cannot derive any information about the coefficient matrix

A′ from the transformed matrix Â.
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We also observe that the CS is unable to derive information about the solution vector

xn. Specifically, to calculate xn the CS needs the knowledge of αk, which is calculated

with rk. However, the CC keeps αk and rk private. We also note from (4.22) that even

if the CS stores pk for all k, it cannot calculate rk because βk is kept private by the CC.

Moreover, from (4.19), rk also remains unknown from the CS since it would need the

coefficient matrix A′ to find it.

In addition, by keeping αk and rk private, the CC also prevents the CS to learn about

the vector b′ and hence b.

We also note that different from [24] where privacy can only be protected if the algo-

rithm converges within n iterations, the privacy in our algorithm can be protected no matter

how many iterations are needed.
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CHAPTER 6

EXPERIMENTAL RESULTS

In this section, we evaluate the computational and memory I/O complexity of the pro-

posed scheme for secure outsourcing of large-scale LSEs. We implement both the CC and

the CS parts of the algorithm in Matlab 2013b. We run the CC on a laptop with a dual-

core 2.4GHz CPU, 4GB RAM memory, and a 320GB hard disk at 5,400RPM. The CS is

implemented on Amazon Elastic Compute Cloud (EC2). As explained in Section 4.2.3,

transforming A into A′ can be done just once for many LSEs. Therefore, we focus on the

performance of solving A′x = b′ with coefficient matrices of dimension n × n, with n

ranging from 5, 000 to 30, 000.

6.1 Computing Complexity

We first explore the computing time of our algorithm, in which the CC shifts most of

the computational burden to the cloud by outsourcing matrix-vector computations. We

compare our results to the iterative algorithm in [24] with 768-bit encryptions, which is

their best performing case. We notice that [24] employs the Jacobi method to solve diago-

nally dominant matrices, which may not converge when applied to a general matrix. Thus,

we compare the time that the CC takes to complete the computations in each iteration of

both algorithms. The results are summarized in Table 6.1. We observe that the CC is able
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to complete each iteration much faster in our scheme than in [24]. For example, in the

case when n = 5, 000 the CC in our algorithm completes an iteration in only 0.7ms, while

it takes 27s in [24], a difference of five orders of magnitude. We also notice that as the

dimension of the matrix increases, our performance gain is even more obvious. This is due

to the use of regular arithmetic in our scheme but the use of the computationally expensive

homomorphic decryptions in [24].

Table 6.1

Comparison of Average Computing Time Per Iteration for the CC

Matrix Size Our Algorithm [24]
n = 5, 000 0.70 ms 27.82 s
n = 8, 000 0.72 ms 46.06 s
n = 10, 000 0.76 ms 56.32 s
n = 30, 000 1.50 ms 121.81 s

6.2 Memory I/O complexity

We then evaluate the total memory I/O complexity of our algorithm. Again, since [24]

may not converge when applied to a general matrix, we compare such cost of our scheme

with that of [14]. We can see from Table 6.2 that our algorithm has much lower memory I/O

cost compared to [14], which is consistent with our I/O complexity analysis. For example,

when n = 5, 000, the CC’s total memory I/O access time is 3.4 minutes in our scheme

while 6.0 minutes in [14]. When n goes to 30, 000, the CC’s total memory I/O access
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Table 6.2

Comparison of Total Memory I/O Access Time for the CC

Matrix Size Our Algorithm [14]
n = 5, 000 3.4 min 6.0 min
n = 8, 000 13.5 min 23.6 min
n = 10, 000 14.2 min 24.8 min
n = 15, 000 23.4 min 40.8 min
n = 30, 000 64.7 min 171.3 min

time is 64.7 minutes in our scheme while 171.3 minutes in [14]. This shows a significant

difference, i.e., up to 62% time saving in our algorithm.

We also explore the total running time of the proposed algorithm in Table 6.3. We dis-

regard the communication time with the cloud so that we can focus on the total computing

and memory I/O access time. We observe that the total running time savings offered by our

algorithm are very attractive. For example, in the case of n = 5, 000 our scheme solves the

large-scale LSE in 3.6 minutes, while the scheme in [14] takes 6.2 minutes, indicating 42%

time saving in our algorithm. Moreover, in the case of n = 30, 000, the total running time

of our algorithm is 66.9 minutes, compared to a total of 192.7 minutes in [14]. Thus, our

algorithm achieves as high as 65% time saving, which is very impressive. In addition, from

Table 6.2 and Table 6.3, we can tell that memory I/O operations lead to a very significant

part of the total running time, which shows the impact that memory I/O complexity has on

the overall algorithm performance. Therefore, low I/O complexity is indispensable for a

practical outsourcing algorithm.
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We finally plot Fig. 6.1 to more clearly compare the total running time of our algorithm

with that of [14]. In accordance to our theoretical results, we observe that the total running

time in each algorithm grows quadratically as the dimension of the coefficient matrix n

increases. We also notice that the time saving of our algorithm becomes more and more

significant compared to that of [14] as n increases.

Table 6.3

Comparison of Total Running Time

Matrix Size Our Algorithm [14]
n = 5, 000 3.6 min 6.2 min
n = 8, 000 13.7 min 24.6 min
n = 10, 000 14.5 min 26.7 min
n = 15, 000 23.9 min 43.6 min
n = 30, 000 66.9 min 192.7 min
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Figure 6.1

The total running time of our algorithm compared with that of [14].
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CHAPTER 7

CONCLUSIONS AND FUTURE WORKS

In this thesis, we have investigated the problem of securely outsourcing large-scale

sparse LSEs. In particular, to protect the cloud client’s privacy, we develop a privacy-

preserving matrix transformation based on linear algebra and show that the resulting matrix

is computationally indistinguishable from a random one. Then, we propose a algorithm

based on the conjugate gradient method that can solve large-scale LSEs efficiently while

preserving the client’s privacy. Formal analysis shows that our proposed algorithm has

much lower computational and memory I/O complexities than previous works, and protects

the client’s privacy well. We finally conduct extensive experiments on Amazon Elastic

Compute Cloud (EC2) and find that our algorithm offers significantly less total running

time compared to previous works.
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