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The wide spread use of ontologies in many scientific areas creates a wealth of ontology-

annotated data and necessitates the development of ontology-based data mining algorithms.

We have developed generalization and mining algorithms for discovering cross-ontology

relationships via ontology-based data mining. We present new interestingness measures

to evaluate the discovered cross-ontology relationships. The methods presented in this

dissertation employ generalization as an ontology traversal technique for the discovery of

interesting and informative relationships at multiple levels of abstraction between concepts

from different ontologies. The generalization algorithms combine ontological annotations

with the structure and semantics of the ontologies themselves to discover interesting cross-

ontology relationships.

The first algorithm uses the depth of ontological concepts as a guide for generalization.

The ontology annotations are translated to higher levels of abstraction one level at a time



accompanied by incremental association rule mining. The second algorithm conducts a

generalization of ontology terms to all their ancestors via transitive ontology relations and

then mines cross-ontology multi-level association rules from the generalized transactions.

Our interestingness measures use implicit knowledge conveyed by the relation seman-

tics of the ontologies to capture the usefulness of cross-ontology relationships. We describe

the use of information theoretic metrics to capture the interestingness of cross-ontology re-

lationships and the specificity of ontology terms with respect to an annotation dataset. Our

generalization and data mining agorithms are applied to the Gene Ontology and the post-

natal Mouse Anatomy Ontology. The results presented in this work demonstrate that our

generalization algorithms and interestingness measures discover more interesting and bet-

ter quality relationships than approaches that do not use generalization. Our algorithms

can be used by researchers and ontology developers to discover inter-ontology connec-

tions. Additionally, the cross-ontology relationships discovered using our algorithms can

be used by researchers to understand different aspects of entities that interest them.

Key words: association rule mining, cross-ontology data mining, interestingness measures,
gene ontology, anatomy ontology
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CHAPTER 1

INTRODUCTION

Recent advances in science have resulted in a data boom that shifted the onus from

data generation to knowledge and data discovery. Ontologies gained popularity in many

scientific areas as the chosen method for data representation and lend themselves well to

computational approaches for knowledge discovery [27, 11, 17, 55, 6]. An ontology is a

formalized description of the current knowledge from a particular domain, objects and the

relationships between them. Multiple ontologies are often used to capture different aspects

of a domain in order to ensure ease of ontology manageability and maintenance. Previous

work on data mining from ontology based data has focused on single ontologies and little

progress has been reported on knowledge discovery involving multiple ontologies.

In this dissertation, we describe new ontology-based knowledge discovery approaches

with an emphasis on bio-ontologies. The knowledge discovery and data mining approaches

use Association Rule Mining (ARM) for extracting cross-ontology relationships between

concepts from different ontologies. These cross-ontology relationships are mined from

data represented using multiple ontologies and have several applications in creating inter-

ontology connections, building mutually operable ontology networks and enabling the

portability of annotations from one ontology to others. We introduce two cross-ontology

data mining algorithms and present interestingness measures to evaluate the discovered

1



cross-ontology relationships. We demonstrate the performance of our methods and metrics

using specific applications in bioinformatics. In this chapter, we introduce basic concepts

and characteristics of ontologies and discuss basic approaches for association rule mining

from data represented using ontologies. We provide a brief overview of the Gene Ontology

[6] and the Mouse Anatomy Ontology [8], the bio-ontologies we will use to demonstrate

the impact of our work. We introduce the application of Association Rule Mining (ARM)

to data represented using ontologies, provide an overview of our new cross-ontology data

mining approaches and new interestingness measures tailored for association rules mined

across multiple ontologies.

1.1 Ontologies

An ontology can be formally defined as “the specification of one’s conceptualization of

a knowledge domain” or as “a representation vocabulary, often specialized to some domain

or subject matter” [21]. Ontologies provide a controlled vocabulary for the description

of concepts from a knowledge domain [21]. Ontologies also enhance inter-operability

between heterogeneous data sources and enable the reuse of data. The major components

of most ontologies are: Individuals, Concepts, Relations and Attributes.

Individuals are instances in an ontology and concepts or classes are groups of instances.

Most ontologies are structured as hierarchies or directed acyclic graphs and there are rela-

tions between the entities in the ontology. Attributes are used to describe the instances in

an ontology by relating them to other objects or classes [33]. However, some ontologies
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do not have individuals and attributes. For example, the ontologies we will introduce in

the subsequent sections of this chapter are made up of only concepts and relations.

Ontologies have emerged as the chosen mode of representation of domain-specific

concepts and specifications in biology. The Open Biological and Biomedical Ontologies

foundry lists over 100 ontologies currently used by the biological and biomedical commu-

nity [63]. The most widely used of all the computational biology ontologies - the Gene

Ontology (GO) [6] - was first released in the year 1999 and has been cited more than 9,900

times at the time of this writing.

The Gene Ontology provides a standardized, species-independent representation for

the characteristics of genes and gene products [6] where gene products are the biochemical

materials produced by gene expression. Gene expression is the process by which a gene

leads to the production of a functional product, usually either a type of RNA or protein. The

GO provides a controlled vocabulary for describing characteristics of gene products and

is composed of three separate ontologies: Cellular Component (CC), Molecular Function

(MF) and Biological Process (BP) [6]. Cellular Component refers to the parts that make up

a cell such as “nuclear membrane”. A biological process is a series of chemical reactions in

a living organism such as “regulation of eye pigmentation”. Molecular Function describes

activities such as “catalytic activity” performed by complexes or molecules. The GO is

structured as a directed acyclic graph, where nodes represent GO terms (concepts) and

the relationships between the terms are arcs. Child terms in the GO are more specialized

than their parents and may have multiple parents via different relations. The relations

currently supported by the GO are: is a, part of , regulates, negatively regulates and

3



positively regulates with is a being the most common [6]. The process of assigning GO

terms to gene products is referred to as annotation. A section of the GO showing the nodes

and the types of relations is shown in Figure 1.1.

Figure 1.1

A section of the GO (Adapted from QuickGO) [13]

Figure 1.2 and Figure 1.3 illustrate the rapid growth of the GO both in terms of the

number of GO terms and the total number of GO annotations assigned to gene products.

There is increasing interest in identifying new relations and connections between the

three ontologies of the GO. [39, 54, 57, 15]. In addition, new technologies for measuring

gene expression at both the RNA and protein levels have led to an explosion in the amount
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of expression data available. Several research groups are using anatomy ontologies in addi-

tion to the Gene Ontology to represent where genes are expressed [48, 24, 9, 31]. Anatomy

ontologies arrange the body parts of an organism in a hierarchy using is a and part of re-

lationships [59]. Some anatomy ontologies are designed to be species independent [44, 55]

while others are limited to the anatomy of particular species [10, 37, 8]. Effective data

mining algorithms are needed to extract value from gene expression data represented by

multiple ontologies [24, 22, 31].

1.2 Data Mining and Association Rule Mining

Data mining can be defined as “the application of specific algorithms for extracting

patterns from data” [30]. Data mining algorithms are routinely applied to bioinformatics

data to convert the data into meaningful information that can be of value to researchers

[67, 71]. Association Rule Mining (ARM) is one of several data mining techniques used

to extract patterns from data and establish relationships between variables from data [1].

Agrawal et al. [3] define an association rule as follows: “A rule is defined as an implication

of the form X → Y where X and Y belong to a set of items and X and Y are disjoint

sets”. ARM is a popular data mining technique and has been used for studies ranging

from transactional analysis for marketing data to inferring gene relationships [45, 66]. We

will introduce the basic concepts of association rules in the context of their most common

application in marketing transaction analysis and then briefly discuss how they have been

applied in bioinformatics.

6



Association rules are typically mined from a set of transactions, which is a collection of

one or more items. If a customer purchases Dairyland milk and Wonder bread, the transac-

tion becomes: {Dairyland milk, Wonder bread}. If we consider a rule of the form X → Y ,

X is called the antecedent of the rule and Y is called the consequent. Interestingness mea-

sures are metrics that help distinguish rules that might be of potential interest to the user

from the rules that are not useful [32]. The most commonly used interestingness measures

are support and confidence. In an association rule of the form X → Y , the support can

be defined as the percentage of transactions that contain both X and Y . The confidence of

the rule X → Y is the percentage of transactions containing X that also contain Y . The

confidence of a rule indicates its strength while support measures its frequency of occur-

rence. Other measures of interestingness that have been proposed are correlation, lift and

collective strength, Thiel coefficient and mutual information [45, 65, 62].

The Apriori algorithm, one of the most popular algorithms used for ARM [3], makes

multiple passes through the transaction dataset extracting itemsets with sufficient support

(frequent itemsets). Association rules are extracted from the frequent itemsets and are

assigned confidence values. The algorithm takes as input, a transaction dataset and one

or more interestingness thresholds and produces a list of interesting association rules as

output.

7



1.3 Ontology-aware Data Mining

Efficient data mining algorithms are needed to mine the wealth of explicit and implicit

information embedded in data annotated using ontologies. Ontology-aware data mining

takes advantage of the structure, semantics and relations of the ontology.

Association rules can be classified into two categories; single level and multi-level as-

sociation rules [35]. Single level association rules are mined from data items at a single

level of abstraction in the ontology. Consider the example hierarchy shown in Figure 1.4.

When a customer purchases items at a supermarket, the items in the transactions are typi-

cally annotated to the lowest level of the hierarchy. An example transaction at this level is:

{Dairyland milk, Wonder bread} indicating that these items are purchased together. Min-

ing association rules at this level might not reveal many interesting patterns because items

at low levels in a hierarchy may not have sufficient support or the rules mined may provide

more specific information than needed for the application [34]. However, if the items are

viewed at a higher level of abstraction, it may be possible to derive more general rules such

as Milk → Bread. Han et al. [34] introduced multi-level rule mining and described three

classes of mulit-level algorithms: a) Progressive Generalization, b) Progressive Deepen-

ing and c) Interactive Up and Down [34]. Progressive Generalization algorithms start at

the highest level of detail (greatest depth in the ontology) and abstract the data gradually

by moving up toward the root in the hierarchy or DAG [34]. Progressive Deepening al-

gorithms start at the root and gradually specialize by moving to the lower, more detailed,

levels of the hierarchy or DAG. Interactive Up and Down algorithms travel up and down

the hierarchy based on user instructions [34] where the user specifies a level for mining and

8



the algorithm either specializes or generalizes as necessary. Most multi-level algorithms

that have been described in the literature use Progressive Generalization.

Food

Milk Bread

Dairyland Foremost Old Mills Wonder

WheatWhiteChocolate2 %

Figure 1.4

An example hierarchy of supermarket items

Prior work in ontology-aware data mining has primarily focused on mining multi-level

rules association rules from single data sources [34]. However, in the age of integrative

science, algorithms are needed for extracting information from multiple knowledge sources

represented using different ontologies simultaneously. Discovering association rules across

ontologies involves dealing with ontologies of different sizes, relations and semantics. For

example, consider the GO in Figure 1.1 and the post-natal Mouse Anatomy Ontology in

Figure 1.5 [60, 37].

The three ontologies of the GO have been extensively developed and have depths of 19

(BP), 18 (CC), and 15 (MF). The post-natal Mouse Anatomy Ontology, on the other hand

9



is a shallow ontology when compared to the GO ontologies with 11 levels [37]. The most

commonly seen relation in the GO is the is a relation whereas the relation seen most often

in Anatomy ontologies is the part of relation. Procedures that can simultaneously traverse

multiple ontologies and cope with differences in semantics and structure are needed.

Organ System

Nerve GanglionBrown
Fat

Adipoblast

Nervous SystemCardiovascular SystemAdipose Tissue

Peripheral Nerve Cranial Nerve

Brown
Fat

Adipoblast

Figure 1.5

A section of the post-natal Mouse Anatomy Ontology

Multi-level ARM algorithms are traditionally applied to transactional data to discover

shopping patterns. There are some significant differences between ontology use in com-

mercial transactions and the use of bio-ontologies representing biological systems. In com-

mercial transactions, each item can typically be annotated to a leaf node in the DAG or

hierarchy as in the example above, where we know exactly which brands of items have

been purchased. These ontologies also tend to be quite stable. On the other hand, the state

of knowledge for most bio-ontologies is incomplete [58]. For example, as our knowledge
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of biological processes, functions and cellular components grows, new concepts and rela-

tions are added to the GO ontologies. These additions are not, however, uniform across the

ontologies because some scientific sub-disciplines have been more active in developing the

GO than others. The result is that concepts at the same depth level in the GO often have

different information contents [4, 5]. The data represented by the super market hierarchy

also differs from data represented by bio-ontologies due to the fact that all the items that

constitute a transaction in a supermarket are typically annotated to concepts at the leaves

of the hierarchy. This enables multi-level ARM algorithms to start generalization from

data that belongs to the same level. In contrast, data represented by bio-ontologies is an-

notated to concepts from widely varying depths in the ontology depending on the current

state of scientific knowledge. Bio-curators typically annotate gene products to the most

detailed level of knowledge available in the scientific literature, but this level of knowledge

is different for different gene products as reflected in the GO annotations.

In addition, traditional ontologies used in transaction databases typically use the is a

and part of relations whereas bio-ontologies like the GO employ a range of relations in-

cluding is a, part of , negatively regulates, positively regulates and regulates. These

relations have different semantics and properties which make data mining more compli-

cated. For example, the is a and part of relations are transitive which means that if A

is a B and B is a X , we can infer that A is a X . This property of transitivity does not

hold for the regulates, positively regulates and negatively regulates relations. ARM

algorithms used to mine knowledge from the GO must account for this added layer of

semantic complexity.
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This dissertation addresses cross-ontology multi-level data mining across multiple on-

tologies at different levels of abstraction and introduces three interestingness measures tai-

lored for cross-ontology multi-level association rules. While we apply our generalization

algorithms to the GO and Mouse Anatomy Ontology, they are suitable for any ontology

structured as a tree or directed acyclic graph.

Our first cross-ontology data mining algorithm (COLL) conducts a level-by-level gen-

eralization accompanied by incremental mining to generate interesting cross-ontology multi-

level association rules. COLL uses the level of a term in an ontology as a guide for gen-

eralization. We apply COLL to mine cross-ontology multi-level association rules across

the three ontologies of the GO. We compare our rules to those discovered by a published

approach that does not use generalization to evaluate the biological interestingness of the

rules. Biologically interesting rules are meaningful rules that convey new information to

biologists. An evaluation by biologists of rules discovered by both approaches shows that

our algorithm discovers more biologically interesting rules as compared to the previously

published approach.

Our second cross-ontology data mining algorithm (MOAL) generalizes annotations

in the transaction set to all their ancestors via transitive relations in one pass. The gen-

eralized transactions are then mined for multi-level association rules. We define a set

of post-processing strategies to prune uninteresting rules and generate interesting cross-

ontology multi-level association rules. We introduce two interestingness measures tailored

for cross-ontology multi-level rules. We apply MOAL to mine cross-ontology multi-level
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rules across the ontologies of the GO and show that we discover more knowledge than

approaches that do not use generalization.

We also apply MOAL to mine relationships between the Mouse Anatomy Ontology

and the Gene Ontology. We use information content of concepts to prune general GO and

anatomy terms from the transactions before mining to avoid the discovery of obvious rules.

We also introduce Cross-ontology Mutual Information, an information theoretic interest-

ingness measure tailored for cross-ontology multi-level rules, to evaluate and further prune

uninformative rules. We demonstrate that the combination of information content to prune

general terms and information theoretic interestingness measure enhances the discovery of

interesting relationships between GO and anatomy concepts.

1.4 Summary

This dissertation focuses on the development of cross-ontology multi-level data min-

ing algorithms to mine interesting relationships across ontologies. Chapter 2 includes a

comprehensive literature review of related work in the areas of association rule mining

and association rule mining in bio-ontologies. Chapter 3 presents COLL, our level-by-

level cross-ontology data mining algorithm and an evaluation of the rules that are derived.

Chapter 4 introduces MOAL, our second generalization algorithm and two of our cross-

ontology interestingness measures. We demonstrate the effectiveness of this method for

suggesting new GO annotation candidates. Chapter 5 introduces the use of information

theory for pruning uninformative concepts and assessing interestingness of rules. These

13



methods are applied to data annotated using the GO and anatomy ontologies. Chapter 6

summarizes our work and contributions in this dissertation.

14



CHAPTER 2

LITERATURE REVIEW

The development of tools and techniques for analyzing and extracting meaning from

the massive amounts of data generated by modern technologies is a priority in the scientific

community. This data typically comes from multiple data domains with different data rep-

resentation methods and semantics. Ontologies have emerged as a popular mechanism for

representing and integrating knowledge in scientific domains with different ontologies used

to represent different facets of the domains. Ontologies are computationally amenable and

lend themselves to knowledge discovery since the structure, semantics and relations be-

tween the concepts can be used to discover knowledge. Extracting information from these

ontologies using data mining techniques such as association rule mining can reveal inter-

esting associations and relationships between concepts belonging to different ontologies.

In this chapter, we present a brief overview of ontologies in knowledge representation, a

brief discussion of data mining and a more detailed discussion of Association Rule Mining

(ARM), with an emphasis on ontology-aware association rule mining. Since our research

focuses on association rule mining from biological databases, we discuss previous work in

association rule mining in bioinformatics and ontology-aware mining in bioinformatics.
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2.1 Ontologies

Ontologies have been studied by philosophers since the time of the ancient Greeks and

were popularized for use in computer science by Gruber et al. [33] in 1992 as a means

of conceptualizing existing knowledge. Gruber et al. [33] define a conceptualization as

“an abstract, simplified view of the world that we wish to represent for some purpose”.

The term “Ontology” has roots in philosophy where an ontology is a “systematic account

of existence.” Ontologies gained popularity largely due to the fact that they provide a

shared understanding and vocabulary of the knowledge of a domain, enabling computer

applications and people to use them without ambiguity. An ontology can be defined as “a

formal, explicit specification of a shared conceptualization” where a conceptualization is a

representation of a worldly phenomenon which captures all the concepts pertaining to the

phenomenon [21]. This definition requires an ontology to satisfy the following conditions

[21]:

1. All concepts and constraints on the concepts must be defined explicitly.

2. It must capture the state of knowledge from a domain as agreed upon by a group of
people.

3. It must be computationally amenable.

Ontologies are of different types: domain ontologies, metadata ontologies, represen-

tational ontologies and task ontologies [21] . The ontologies that will be discussed and

used in this dissertation are domain ontologies since they represent knowledge from biol-

ogy domains. In the computational biology community, ontologies promote standardized

terminology for representation of data and enable a common vocabulary for data exchange

and integration.
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2.2 Data Mining

Data mining can be defined as “the analysis of (often large) observational data sets to

find unsuspected relationships and to summarize the data in novel ways that are both un-

derstandable and useful to the data owner” [36]. Data mining is an important component

of the knowledge discovery process and employs algorithmic techniques to reveal implicit

patterns and relationships from data [30]. Ontology-aware data mining uses domain on-

tologies to augment the data mining process. One of the benefits of ontology-aware data

mining is the generation of user-centric association rules focused on patterns of interest to

the user [70]. Mining patterns involving user specified concepts reduces the search space

by eliminating items that are not of the user’s interest [70]. The most important benefit

of ontology-aware data mining is the ability to generate multi-level association rules by

shifting the abstraction level in the dataset.

2.3 Association Rule Mining (ARM)

Association rules are relationships between variables [1]. Association rules were in-

troduced by Agrawal et al. [2] to analyze market basket data consisting of items pur-

chased by customers at a supermarket. An association rule can be defined as “Let I =

{i1, i2, i3 · · · in} be a set of n binary attributes called items. Let D = {t1, t2, · · · tm} be a

set of transactions called the database. Each transaction in D has a unique transaction ID

and contains a subset of the items in I . A rule is defined as an implication of the form

X → Y where X , Y ⊆ I and X ∩ Y = ∅ . The sets of items (for short itemsets) X

and Y are called the antecedent (left-hand-side or LHS) and consequent (right-hand-side
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or RHS) of the rule respectively” [2]. The interestingness of association rules is quantified

by various interestingness measures, the most popular and widely used being support and

confidence [2]. The support of a rule X → Y is defined as the probability of finding both

X and Y in a transaction represented by P (X, Y ) [2]. The confidence of a rule X → Y is

the probability of finding Y in a rule given that X is present represented by P (Y |X) [2].

Association Rule Mining (ARM) can be broadly classified into two types: single level

ARM and multi-level ARM. Single level ARM algorithms mine rules from data presented

at a single level of abstraction and the resulting rules are called single level association

rules [35]. Multi-level ARM algorithms mine rules from data represented at varying levels

of abstraction and the resulting rules are called multi-level association rules [35]. The data

is typically represented by a hierarchy or an acyclic directed graph where the level of detail

in the items decreases as one goes up the hierarchy or graph.

Agrawal et al. [2] introduced the concept of association rules to discover interesting

patterns from shopping basket data. The ARM algorithm used by Agrawal et al. gener-

ates all association rules that satisfied two types of constraints: syntactic constraints and

support constraints. Syntactic constraints specify the items that are allowed to be present

in the rules. For example, if we wanted to obtain all the rules that contained Ii as the an-

tecedent, all the rules that did not contain Ii in the antecedent would be pruned. Support

constraints specified the minimum support required for an association rule. Interestingness

measures such as confidence for pruning association rules were introduced later and sup-

port was considered an interestingness measure. The items were mined as presented in the
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transactions without changing the level of detail and no domain ontology was used to aid

the mining process thereby generating single level association rules.

2.4 Ontology-aware Association Rule Mining

Representing data using domain ontologies allows data mining algorithms to take

advantage of the relationships between concepts from different levels in the ontologies.

Multi-level rule mining was introduced by Han et al. [35] to mine association rules at mul-

tiple concept levels in a hierarchy. Multiple level ARM algorithms can be classified into

three types: Progressive Deepening, Progressive Generalization and Interactive Up and

Down [35]. Progressive Deepening algorithms follow a top down strategy and start at the

top of a hierarchy and proceed to the lower levels as they mine association rules. Progres-

sive generalization algorithms follow a bottom up strategy and start at the bottom of the

hierarchy and work their way up [35]. Interactive Up and Down algorithms travel up and

down the hierarchy according to the users instructions [35]. Multi-level rule mining allows

the user to discover association rules with the desired level of abstraction by choosing a

particular level in the hierarchy for mining. The data is then brought up/down to that level

using generalization/specialization. Generalization of data items to higher concept levels

is useful when items at lower levels have insufficient support to result in interesting rules.

The introduction of multi-level rule mining algorithms poses a new problem of multiple

support and confidence thresholds [35, 47]. Single level ARM algorithms use a single sup-

port and confidence threshold to prune uninteresting rules. However, using a single support

threshold for rules mined at different levels in the hierarchy falsely assumes that items at

19



different levels in a hierarchy have similar occurrence frequencies in the transaction dataset

[47]. A high support threshold will prevent rules from lower levels from being discovered

whereas a low support threshold will lead to the discovery of a huge number of obvious

rules. This problem is called the rare item problem [47].

Liu et al. [47] introduced the concept of multiple minimum supports for mining at

multiple levels in the hierarchy. Their approach uses higher support thresholds when min-

ing rules at higher levels and lower thresholds when mining rules at lower levels. Users

are required to provide minimum support values for each unique item in the transactions

and the minimum support required for a rule to be considered interesting is the minimum

of the supports assigned for the items in the rule [47]. This approach poses problems of

scalability and is impractical when there are a huge number of unique items in a dataset

since it becomes cumbersome for the user to provide minimum supports for all the items in

the dataset/database. This led to automated algorithms that calculated multiple minimum

support values for every level of the ontology using parameters such as the level in the

hierarchy, number of items at that level and a user specified range for the support [66].

Association rule mining assisted by domain ontologies has been applied successfully

to discover patterns from market basket data [64, 35, 34, 47]. Won et al. [70] explore the

prospects of domain ontology assisted ARM by mining generalized association rules from

shopping data. Each transaction contains data regarding the product code, location of the

store, time and the price of the item [70]. The domain ontology that models the items is

used to guide the generalization process which leads to the discovery of strong association

rules [70]. It is important from a marketing standpoint to be able to view trends and patterns

20



over customer behavior at varying levels of detail. Items appearing in the transactions form

the leaves of the domain ontology and the higher level concepts are divided into sections.

Won et al. employ the following types of analyses to generate association rules that project

different views of the customer behavior [70] :

1. Section-to-Section Analysis: The Section-to-Section analysis discovers patterns be-
tween different sections. The items in the transactions are generalized up to the con-
ceptual level of the sections and the mining process is employed on the generalized
transactions to discover patterns at a high conceptual level in the ontology.

2. In-Section Analysis: In-Section analysis reveals all the associations between items
belonging to a section. These rules reveal patterns between items at lower levels in
the ontology.

3. In-Section-to-In-Section Analysis: In-Section-to-In-Section analysis is used to dis-
cover relationships between any lower level item in one section and any lower level
item in another section.

Generalized association rules can be obtained by generalizing the transaction set and

mining rules from the generalized set. Alternatively, the association rules obtained from

mining the original un-generalized transactions can be generalized using a domain on-

tology. The algorithm Generalization of Association Rules using Taxonomies (GART)

proposed by Domingues et al. [28] discovers generalized association rules by generalizing

association rules discovered. Generalization, a two step process, is used as a post pro-

cessing pruning step to reduce the number of rules generated and obtain associations at a

higher conceptual level. The first step groups the association rules based on antecedent or

consequent [28] . If the antecedent for two rules is the same, the consequents of the rules

are merged to result in one rule. For example, the rules X → Y and Z → Y would be

merged to result in X , Z → Y . In the next step, generalization is applied to the side that

was not common to both rules, in this case, the antecedent. X and Z are generalized using a
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taxonomy as the background knowledge. A shortcoming of this approach is that generaliz-

ing discovered association rules limits the discovery of interesting rules since itemsets that

do not have enough support but could garner sufficient support through generalization are

omitted from the mining process. Xuping et al. [69] modified the basic Apriori algorithm

to generate all candidate itemsets of length k until no more can be generated. Xuping et al.

[69] optimize the generalization by supplementing the items in the transactions with all the

parents of the item that appear in the kth candidate itemset instead of using all the parents

of the item.

Previous work on ontology-aware data mining discussed above has applied their ap-

proaches to market basket data and an ontology/taxonomy of shopping items. Ontologies

of shopping items represent a man-made domain where the state of knowledge is com-

plete. The ontologies are typically built bottom-up and this ensures that every high level

concept in the ontology is described in equal detail to the leaf nodes. All the items in

the transactions used for market basket analysis are leaf nodes in the domain ontology

ensuring that the generalization process starts evenly at the lowest level of detail thereby

facilitating a level-by-level generalization approach. The concept-concept relations in the

shopping ontologies use a single kind of relation, the is a relation, thereby simplifying the

generalization process. Note that previous work discussed above addresses the question of

multi-level ARM but does not address the problem of cross-ontology data mining. This

dissertation seeks to discover interesting relationships at multiple levels across multiple

ontologies using association rule mining. The rules mined are called cross-ontology multi-
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level association rules. The methods developed in this dissertation will be applied to the

Gene Ontology and the Mouse Anatomy Ontology.

2.5 Association Rule Mining in Bioinformatics

Association rules provide interesting insights and patterns about the relationships be-

tween data items and have been used to analyze gene expression data in bioinformatics

and in several other applications [23, 18, 40, 41]. Some of these applications use data rep-

resented by a bio-ontology while others do not. Gene expression is the process in which

a gene leads to the production of a functional gene product, primarily proteins but also

functional RNA. ARM algorithms have been applied to gene expression data to discover

patterns between the expression of various genes [23, 38]. ARM algorithms have also

been applied to gene expression data combined with GO annotations to discover signifi-

cant patterns between biological processes and functions [51, 20, 38, 23]. Studies mining

association rules from gene expression data can be broadly categorized into three cate-

gories:

1. Gene-gene Relationships: These studies discover association rules where both the
antecedent and consequent are genes [23, 38]. They discover relationships of the
form GeneA ↑→ GeneB ↓ which implies that if GeneA is up-regulated, it is likely
that GeneB will be down-regulated.

2. Gene-descriptor Relationships: These studies discover association rules where the
antecedent and consequent might be genes, biological conditions, and/or items from
other information sources [51, 20, 38]. One of the types of rules discovered by
these studies is GeneA ↓→ Metabolism(GO : 00001234) ↑. This implies that if
GeneA is downregulated, it is more likely that the biological process Metabolism
is observed. Rules of this form reveal patterns showing how changes in expression
are related to changes in biological processes/functions.

3. Cross-ontology Relationships: These studies mine association rules between two
ontologies and the antecedent and the consequent belong to different ontologies [15,
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19]. Studies in this category have mined association rules across the three ontologies
of the GO. Rules mined in this category are of the form GO : 0000123 → GO :
0000234, where GO : 0000123 and GO : 0000234 belong to different ontologies of
the GO. This implies that it is likely that a gene is annotated to GO : 0000234 if it is
annotated to GO : 0000123. The state of the art in cross-ontology relationships will
be discussed in 2.6.2.

2.5.1 Gene-gene Relationships

Association rules obtained by mining gene expression data have been used to under-

stand the relationships between genes in the context of an experiment. Hanash et al. [23]

mine association rules from gene expression data obtained from yeast to study the effects

of the expression of a particular gene on the expression of other genes in the same network

made up of co-expressed genes. The association rules can also determine if there are re-

lationships among expressed genes and special conditions like disease. The transactions

used in this study contain sets of down- and up regulated genes along with the cellular

conditions in which the gene expression took place. The Apriori algorithm is used to mine

association rules with support and confidence to prune uninteresting rules [3]. This study

discovers association rules of the type GeneA → GeneB which implies that if GeneA

is expressed, it is likely that GeneB is also expressed. It also discovers rules of the type

ConditionA → GeneA, GeneB which implies that if ConditionA is observed then it is

likely that GeneA and GeneB are expressed [23].

2.5.2 Gene-descriptor Relationships

Mining gene expression data augmented with additional biological information helps

researchers understand the relationships between gene expression, gene function and/or
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other biological conditions. The genes in the expression data are annotated with identifiers

from various sources such as the GO and the Kyoto Encyclopedia of Genes and Genomes

(KEGG). Transactions in these studies consist of a gene identifier along with annotations

from one or more sources. Carmona-Saez et al. [20] integrate heterogeneous sources of

information such as GO annotations and KEGG pathways and gene expression data to

obtain association rules. Association rules discovered in this study involve genes in one

or more pathways at one or more time points in the experiment. The rules discovered by

Carmona-Saez et al. discover patterns between GO and KEGG identifiers and different

time points in the experiments. Carmona-Saez et al. integrate gene expression data with

GO annotations and then with KEGG annotations to form two different datasets. The

mining process discovers gene expression-GO annotation associations or gene expression-

KEGG annotation associations. It is therefore clear that Carmona-Saez et al. do not mine

cross-ontology associations. The GO and KEGG annotations associated with the genes are

used as is and are not mapped to their parents/ancestors. This indicates that no method

of ontology traversal is employed in the mining process thereby generating single level

association rules.

Another example of association rule mining from gene expression data integrated with

other data sources is GenMiner [51]. GenMiner uses genes annotated with GO, KEGG

and phenotypic annotations as transactions. Phenotypic annotations describe the observ-

able traits or characteristics of an organism. Association rules of different types involving

genes, biological conditions and GO annotations were discovered in this study. The discov-
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ered association rules were pruned using support and confidence thresholds. No ontology

traversal mechanism is used in GenMiner to generalize/specialize the GO annotations.

Hemert et al. [38] present an approach to mine association rules from gene expression

and image data from the developmental stages of mouse. This study generates two types

of association rules.

1. Rules where both the antecedent and consequent are genes implying that if the an-
tecedent gene is expressed, it is likely that the consequent gene is also expressed.

2. Rules where both the antecedent and consequent are spatial regions in annotated
images from the developmental stages of mouse. These rules imply that if a gene is
expressed in the area indicated in the antecedent image, then the same gene is likely
to show expression in the area indicated in the consequent image.

The studies discussed above mine association rules from gene expression data or from

gene expression data supplemented with data from one or more ontologies. When data

from an ontology is used, the rules mined are single level association rules since the mining

process does not change the level of detail of the data. Relations in the ontology are not

used in the mining process and thus, the data abstraction remains unchanged.

2.6 Ontology-aware Data Mining in Bioinformatics

Generalization and specialization are two approaches to view data represented by an

ontology/hierarchy at multiple levels of detail. Some research groups have used generaliza-

tion strategies to view data represented using bio-ontologies at multiple levels of abstrac-

tion. Some of the studies mine association rules while others use generalization strategies

in bio-ontologies for other applications. We also discuss prior work on cross-ontology

mining in bioinformatics. Tseng et al. [66] mine multi-level association rules from mi-

croarray data combined with GO annotations. This approach starts with microarray data
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where the gene expression levels are discretized and are associated with the corresponding

gene. Each GO term annotated to the gene is replaced by the path from the GO term to

the root of the ontology. The genes are replaced by the paths of their GO terms along with

the discretized gene expression value to form the transactions for rule mining [66]. This

approach generates rules between GO terms where the antecedent and consequent are GO

terms which are either up-regulated or down-regulated. Tseng et al. primarily aim their

generalization process on the genes in the microarray experiment and seek to combine

genes with similar annotation profiles into groups. As far as generalizing the GO identi-

fiers is concerned, their approach augments every GO annotation in a transaction with all

its parents. The mining algorithm requires the user to specify the minimum support thresh-

old and the maximum support threshold to be used to calculate multiple support thresholds

for data items at different levels. The frequency of the higher level parent terms in the

dataset increases when every GO annotation in a transaction set is accompanied by all its

parents on the paths to the root. In such a case, the association rules discovered will be

focused on the higher-level terms thereby compromising on the information content in the

rules and obscuring the lower level terms in the transactions which are more informative.

On the contrary, a level-by-level generalization approach performs a more complete gener-

alization and allows the mining of interesting rules at every stage of generalization without

any loss of information.
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2.6.1 Generalization in the GO

Several research groups have used the information content of GO terms to guide gen-

eralization although for applications other than association rule mining. Davis et al. [25]

describe an approach for generalizing in the GO by calculating the information content of

a node using both the ontology structure and the annotation dataset as a metric for gen-

eralization. They use a non-traditional definition of information content of a concept x

as Ix = Px − Ox, where Px is the information gained by not generalizing concept x and

Ox is the information lost if all the child terms of x are generalized to x. Px and Ox are

calculated using information from the annotation dataset and the ontology structure. They

use this approach to generate automatic slim sets from the GO, but it is unclear how this

approach will work for mining associations from multiple ontologies.

Alterovitz et al. [5] define metrics to compute the information content of concepts

from the GO. The information content of a GO annotation, IC (GO), is defined as the

probability of observing a gene with the GO annotation from the entire genome. When a

gene is annotated with a GO term, it is implied by the true path rule that it can be annotated

to all the descendants of the term related via is a or part of relationships. Adding the

annotation counts of all the descendants to the annotation count of the GO term in question

results in an accurate generalized annotation count. Mistry et al. [53] also compute the

information content of GO annotations to determine the semantic similarity between two

GO terms. They define IC of a term t as log(pt) where pt , the probability of observing the

term t, is computed as (Generalized annotation count (t)/Annotation count of the root).
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2.6.2 Cross-ontology Relationships in Bio-ontologies

Hoehndorf et al. [39] present a method for discovering associations between two

DAGs and testing the significance of such associations. The tests take as input two disjoint

DAGs along with functions that represent the count of occurrences of each vertex. Vertices

in the DAGs represent concepts and counts for edges between all pairs of vertices where

the vertices do not belong to the same DAG represent the co-occurrence counts of the two

vertices. The decoration of a vertex is the set of all the counts of the vertex along with

the counts of all its children. The decoration of an edge is the set of its count along with

the counts of edges between the children of the vertices the edge connects. The score

between two vertices depends on the decoration functions of the two vertices along with

the decoration of the edge connecting the two vertices. The count for each vertex is picked

randomly with a uniform distribution from the set of all counts. The counts for all vertices

are randomly assigned in this manner and the edge counts are reassigned to all pairs of

vertices. The pair wise scores are recalculated and three conditions are tested:

1. Is the score between the two vertices u and v high?

2. Is score(u, v)− score(child(u), v) high?

3. Is the score(u, v)− score(parent(u), v) high?

If these three conditions hold true, it implies that the association between the vertices u

and v is significant and no generalization or specialization needs to be carried out on u or

v. In fact, the method implies that generalization/specialization of u or v in such a case

will lead to an association with lesser significance. This method was applied to a corpus of

biomedical documents. Text mining was used to calculate occurrences and co-occurrences
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of terms from the GO and the Cell Ontology (CL) in the documents [7]. The statistical tests

were applied on all pairs of terms from the two ontologies and the insignificant associations

were pruned. The method identifies several associations between concepts of the GO and

CL ontologies [39]. A disadvantage of this method is that it is highly computationally

intensive since it generates all possible pairs between the vertices from the two DAGs

and computes the scores between those pairs for multiple permutations before obtaining

the significant associations. It has only been applied to text mining and not to mining

associations from biological datasets.

Burgun et al. [15] describe an approach to mine association rules between the three

component ontologies of the GO. They use the Apriori algorithm to mine association rules

and limit the number of items in the consequent and antecedent to one. Their approach

aims to identify association rules across the three GO ontologies; Cellular Component,

Biological Process and Molecular Function and thus, they prune any rules where the an-

tecedent and the consequent belong to the same sub-ontology of the GO [15]. This is done

to identify relations between terms across the ontologies so that these relationships can

be added to the GO and aid in better and more complete annotations. The rules mined

through this approach are single level rules and no generalization/specialization is applied

to the data.

A similar attempt to enhance the GO by adding relationships between the three ontolo-

gies is the project called the second layer of the GO [57]. Myhre et al. [57] use association

rules to connect the three ontologies of the GO in an attempt to add more biological in-

formation and more annotations. At the time of Myhre’s work, the GO did not contain
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inter-ontology relations although there are implicit relationships in the gene annotation

data. Myhre et al. were one of the first groups to tackle the issue of inter-ontology con-

nections in the GO by introducing the second GO layer and defining relationships between

the three ontologies of the GO. One of the techniques used to obtain these relationships is

association rule mining. Publicly available gene annotation data was used to mine asso-

ciation rules. Gene identifiers along with GO annotations formed a transaction. Myhre et

al. subsequently use each mined association to generate additional rules based on the GO

structure. For example, if a rule x→ y is mined, they infer the rule Descendant(x)→ y.

Myhre et al. explain these descendant inferences using the true path rule of the GO which

states that “the pathway from a child term all the way up to its top-level parent(s) must

always be true”. However, the true path rule supports inferring ancestor terms from de-

scendant terms but does not allow the inference of descendant terms from ancestors. The

mined and inferred rules are manually analyzed for biological relevance before allowing

the rules to become a relationship between the GO ontologies [57].

There are several hitherto unexplored avenues of cross-ontology mining in data repre-

sented by bio-ontologies that are the motivation for the work in this dissertation. The de-

velopment of new technologies for genome-wide gene expression analyses in recent years

has led to an explosion of gene expression data. Several databases: The Gene Expres-

sion Database (GXD) [31], The Gene Expression Omnibus (GEO) [9], Genepaint.org [68],

Brain Gene Expression Map (BGEM) [48] and The Gallus Expression in Situ Hybridiza-

tion Analysis (GEISHA) [24] use various bio-ontologies such as Anatomy ontologies and
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the Gene Ontology to represent gene expression data. There is a severe lack of appropriate

data mining algorithms to extract value from these types of data.

GEISHA is a centralized repository of in situ hybridization data from chicken embryos

[24]. GEISHA maps gene expression of all differentially expressed genes in the chicken

embryo using high throughput in situ hybridization analysis. The gene expression informa-

tion is associated with anatomical expression locations from an anatomical ontology and

Gene Ontology annotations of the genes.

The Gene Expression Database (GXD) is a database created by the developers of the

Adult Mouse Anatomy ontology to provide a resource for mouse gene expression data. The

GXD database contains 930,000 expression results from 45,305 assays for 12,139 genes

(as of 2011) [31]. GXD uses the anatomical structures from Edinburg Mouse Atlas ontol-

ogy (EMA) [8] to provide anatomical annotations for differentially expressed genes and

integrates different types of expression data such as RNA in situ hybridization, immuno-

histochemistry, northern blot, western blot, RT-PCR, cDNA source and array data.

The use of ontologies to represent various aspects of gene expression data promotes

the use of standardized vocabulary and opens new vistas for ontology based data mining to

discover valuable relationships and knowledge between different facets of gene expression.

The Adult Mouse Anatomy (AMA) ontology is a well developed ontology structured as

a directed acyclic graph [37]. The AMA ontology describes the anatomical structures

of a post-natal mouse. Another mouse anatomy ontology used widely for annotation of

gene expression data is EMA [8]. The anatomical structures from EMA are structured

as hierarchies and are divided by Theiler stages of development. Stages TS-1 to TS-27
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describe the anatomy of the developing mouse embryo while TS-28 describes the post-

natal mouse [37].

Extensive efforts have also been made to build species independent ontologies such as

eVOC and Uberon to represent gene expression data from various species [44, 55]. eVOC

is a set of four orthogonal ontologies that contain terms to describe cDNA and SAGE

libraries [44]. All available human cDNA and SAGE libararies are annotated using the

eVOC. The eVOC ontologies for expression data represent knowledge from the following

domains: Anatomical System, Cell type, Developmental Stage and Pathology. Anatomical

System and Cell type are used to specify the location of gene expression. Developmen-

tal stage specifies the stage of development of the embryo while Pathology describes the

disease state during which the gene expression takes place.

Uberon, an extensive cross-species anatomy ontology that references the Gene Ontol-

ogy, Mouse Anatomy Ontology, Zebrafish Anatomy and other ontologies, enables inter-

operability between various ontologies [55, 10, 37, 60, 8]. While much progress has been

made to use standardized terms and ontologies in the representation of expression data, sur-

prisingly little efforts have been directed towards techniques for data analysis and knowl-

edge discovery. The data represented using Anatomy and Gene Ontology is a valuable

resource for mining cross-ontology relationships between terms from the two ontologies.

There has been no work done to mine cross-ontology relationships between the Mouse

Anatomy Ontology and Gene Ontology to the best of our knowledge.

Cross-ontology relationships mined from data represented using multiple ontologies

have several applications and are of interest to both ontology creators and researchers

33



using ontology-based annotations. The cross-ontology relationships mined from anno-

tation data can be used to establish inter-ontology connections. These connections link

related ontological concepts and promote inter-operability between different ontologies.

The cross-ontology relationships can also be used to port existing annotations in one on-

tology to a different ontology. Additionally, cross-ontology relationships can be used by

researchers to learn the properties of entities that interest them. For example, if a biolo-

gist is investigating genes expressed in the liver without knowing any other information

about the genes, he/she can use cross-ontology relationships between the Anatomy Ontol-

ogy and GO to learn the biological processes and molecular functions typically associated

with gene products expressed in the liver thereby obtaining an initial idea of the types of

functions the gene might have.

2.7 Summary

In summary, prior efforts in association rule mining applied to annotation data from

bio-ontologies focus on mining either multi-level association rules or cross-ontology rules,

but not both. Studies that explore information theoretic measures to calculate the informa-

tion content of GO terms using generalization do not mine cross-ontology relationships.

With more bio-ontologies being developed to describe different types of biological data

and the increasing interest in using multiple ontologies to capture complex biological data,

the ability to extract implicit relationships between different ontologies is becoming more

important for biologists and tool developers who wish to utilize these ontologies and the

data represented using them.
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CHAPTER 3

CROSS-ONTOLOGY MULTI-LEVEL DATA MINING IN THE GENE ONTOLOGY

Approaches for association rule mining (ARM) can be broadly classified into single

level ARM and multi-level ARM depending on whether rules are mined from data at a

single level of abstraction or at different levels of abstraction. Multi-level association rule

mining uses data represented using one or more ontologies and mines interesting rela-

tionships at multiple levels in the ontologies by viewing the data at different levels of

abstraction. Cross-ontology multi-level ARM uses the structure and relations of ontolo-

gies to discover interesting associations between concepts from multiple ontologies and

at multiple levels in the ontologies. Previous work in the area of association rule mining

and bio-ontologies has dealt with multi-level association rule mining and cross-ontology

rule mining separately. However, cross-ontology rule mining at multiple levels to discover

multi-level cross-ontology rules has not been explored.

We have developed a bottom-up generalization procedure called Cross-Ontology Data

Mining-Level by Level (COLL) for mining interesting multi-level association rules across

multiple ontologies. COLL and other methods discussed in this chapter are designed to

work on ontologies structured as directed acyclic graphs (DAGs) and thus, can be applied

to ontologies structured as DAGs from any domain. We apply COLL to data represented

using the Gene Ontology, one of the most widely used bio-ontologies. The Gene Ontology
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is a collection of three ontologies: Cellular Component (CC), Biological Process (BP)

and Molecular Function (MF). The three ontologies of the GO have several differences in

terms of the number of ontology levels, the number of GO terms, the distribution of GO

terms across different levels and annotations assigned to datasets. We consider the three

ontologies of the GO to be individual ontologies in this chapter.

3.1 Algorithms

This section presents the cross-ontology data mining algorithm, COLL, and methods

to determine termination levels to terminate generalization in the GO ontologies.

3.1.1 Generalization in the GO

Multi-level association rule mining requires viewing the GO annotation transactions

at multiple levels of abstraction. We have chosen to use a generalization strategy for on-

tology traversal where the level of abstraction of the annotations is increased one level at

a time with the Apriori algorithm [3] applied at each iteration. The termination level for

generalization is determined using a Monte Carlo approach.

The cross-ontology data mining algorithm (COLL) presented below takes the following

inputs:

1. A set of transactions TLevel = {t1, t2 · · · tm}, where each transaction ti has a transac-
tion identifier ti id accompanied by a list of terms: Ti = {ti id, termi 1, termi 2 · · · termi m}

2. p: p-value threshold for the Chi-square test

3. s: minimum support

4. c: minimum confidence

5. A set of termination levels for each category of cross-ontology rules Terminationlevel =
{terminationlevel1, terminationlevel2 · · · terminationlevelj}.
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COLL produces the following output: A set of non-redundant cross-ontology rules that

satisfy the specified interestingness measure thresholds,R Interesting = {R1, R2, R3 · · ·Rp}

where Ri is a rule with an antecedent and consequent from different ontologies.

3.1.2 Cross-Ontology Data Mining Level By Level (COLL)

The GO annotations in the transactions are typically at multiple levels in the GO hier-

archy. Initially, TLevel is the original transaction set where Level represents the depth of the

deepest annotation in the transaction set. The Apriori algorithm is applied to the initial set

of transactions to generate a set of rules. All rules involving terms from the same ontology

are pruned, and a set of interesting rules is established. Subsequently, COLL replaces all

GO annotations present at the current level with their immediate parent(s) related via an

is a or part of relation to form a new transaction dataset, TLevel−1. COLL then applies

Apriori to the TLevel−1 transactions, and adds new rules to the set of interesting rules. When

both the antecedent and consequent GO terms come from the same ontology, they are re-

moved, leaving only cross-ontology rules. These rules are classified into six categories

depending on the GO ontologies of the GO terms in the rule. COLL produces as output a

set of non-redundant cross-ontology rules that satisfies the specified interestingness mea-

sure thresholds, R Interesting = {R1, R2 · · ·Rp} where Ri contains a GO term as the

antecedent and a GO term from a different GO ontology as the consequent.

COLL terminates generalization based on individual termination levels for each cat-

egory of cross-ontology rules. These termination levels are determined using synthetic

datasets as described in 3.1.3. COLL uses the highest termination level of the three cross-
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Algorithm 3.1 Cross-Ontology Data Mining Algorithm

Functions:
Apriori(p, s, c): Mines for association rules in the given transaction dataset
FindParent(term): Finds parents of a given term in the hierarchy where the relation
is is-a or part-of
FindDeepestLevel(D): Finds the level of the deepest term in the provided dataset
FindLevel(term): Finds the depth of any given term
PruneSameOntology(R): Prunes all rules where the antecedent and consequent are
from the same ontology
FindCrossOntologyCategory(r): Returns the cross-ontology category of the rule

Function COLL()

level← FindDeepestLevel()
R Interesting ← φ
minlevel = min(Terminationlevel)
R← Apriori(TLevel, p, s, c)
R Crossontology ← PruneSameOntology(R)
R Interesting ← R Interesting ∪R Crossontology
while level > minlevel do

for all ti ∈ TLevel do
for all termi j ∈ ti do
termlevel← FindLevel(termi j)
if termlevel = level then
parentterm← FindParent(termi j)
ti ← ti − termi j ∪ parentterm

end if
TLevel−1 ← TLevel−1 ∪ ti

end for
end for
R← Apriori(TLevel, p)
R Crossontology ← PruneSameOntology(R)
for all ri ∈ R Crossontology do
category = FindCrossOntologyCategory(ri)
if terminationlevel(category) < level then
Rules temp← Rules temp ∪ ri

end if
end for
R Interesting ← R Interesting ∪Rules temp
Rules temp← φ
level← level − 1

end while
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ontology categories to terminate the generalization and mining process. Rules from cate-

gories with lower termination levels are subsequently pruned. It should be noted that terms

higher in the ontology have lower depth values.

Figure 3.1

Issues in generalization in the Gene Ontology

Figure 3.1 illustrates several issues that must be addressed when generalizing in the

GO ontologies. First, each term can have multiple parents and therefore the term must be

replaced by all of its parents. This may result in multiple assignments of the same term to

a gene. The union operator is used to avoid duplicates. The GO supports many different
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types of relationships [12] as illustrated in Figure ??. Only is a and part of relationships

are defined to be transitive and therefore generalization is limited to these relationships.

We use Christian Borgelt’s implementation of the Apriori algorithm to mine association

rules from the transactions at each level [16]. The user will require appropriate database

tables with GO ontology data to execute COLL. The user supplies a p-value threshold for

the Chi-square test and the Apriori algorithm prunes all rules with p-values that do not

meet the threshold. COLL also prunes any rules where the antecedent and consequent are

from the same GO ontology.

3.1.3 Termination of Generalization

As COLL iteratively generalizes GO annotations in the transaction dataset one level

at a time, the annotations in the rules become more abstract. Rules at very high levels of

abstraction are less informative and more likely to have occurred by chance. We have de-

veloped and evaluated three Monte Carlo methods for determining the termination level for

generalization. All three approaches generate synthetic random datasets, mine the random

datasets for rules, and use this data to determine the false discovery rate for different levels

of generalization. In the first approach, annotations are selected randomly from all three

ontologies in the GO using a uniform distribution (Uniform Random). In the second ap-

proach, selection of random annotations mirrors the distribution of GO annotations at each

level in the target GO ontology (Random By Ontology) while in the third approach GO

annotations are sampled with replacement from the set of all GO annotations in the target

trasanction set (Sampling with Replacement). To test these approaches, we used as our tar-

40



get database the gene annotation dataset for chicken from AgBase, a website that provides

gene annotations for animal and agricultural plant gene products [52]. The chicken dataset

(downloaded as of 2/9/11) contains 6259 transactions. The mouse gene annotation dataset

from AgBase (downloaded as of 12/12/11) used in additional experiments in subsequent

sections of the paper contains 22880 transactions.

The Uniform Random approach does not take into account the fact that terms in the GO

are not distributed uniformly across different levels as shown in Figure 3.2. Additionally,

the terms at any given level in the GO are not distributed uniformly across the ontologies

of the GO as shown in Figure 3.3.
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Figure 3.2

Number of terms at each level of the GO (data version 1.1.2633)

The Random By Ontology approach models the GO annotation distribution in the tar-

get dataset to account for the uneven distribution of GO terms across different levels and
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Figure 3.3

Distribution of terms from Cellular Component, Molecular Function and Biological
Process at different levels of the GO (data version 1.1.2633)

ontologies. A three step process is used to select each random GO annotation in the syn-

thetic dataset. First, the distribution of GO annotations across the levels in the ontology is

used to select the level of the GO term to be generated. Once a level has been selected, the

distribution of annotations across GO ontologies at the designated level is used to select a

ontology. Finally, an annotation is selected with uniform probability from the set of all GO

terms at the designated level and ontology.

The Sampling with Replacement approach uses all the GO annotations in the target

dataset (including duplicates across transactions) as the background instead of all the GO

terms in the GO. GO annotations are selected with a uniform probability with replacement

from the background set.

The synthetic datasets are mined for multi-level cross-ontology rules in all six cate-

gories: MF → CC, CC →MF , CC → BP , BP → CC, BP →MF and MF → BP
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using algorithm COLL except that minlevel for generalization is set to 1. The False Dis-

covery Rate (FDR) for each cross-ontology category at each generalization level is com-

puted as FDR(COi) = (COi/Ri) ∗ 100, where COi is the number of cross-ontology

rules for cross-ontology category CO at generalization level i and Ri is the total number

of rules generated at generalization level i. The final false discovery rate for each cross-

ontology category is the average FDR for 50 synthetic datasets. The termination level for

each cross-ontology category is the first level of generalization where the FDR exceeds a

predetermined threshold.

3.2 Results/Discussion

The iterative generalization and mining method used by COLL explores many multi-

level GO term combinations to discover implicit co-occurrence relationships. One of the

limitations of this approach is that some multi-level term combinations get excluded be-

cause of the level-by-level generalization. We have explored a different method of gener-

alization, which conducts inferences via transitive relationships in the GO such as is a and

part of and supplements annotations with all inferred ancestors. This algorithm general-

izes all annotations at the same time and then the generalized transactions are mined using

the Apriori algorithm.

3.2.1 Termination Level

The results shown in Figure 3.4 show that both the Random By Ontology and Sampling

with Replacement approaches generate synthetic datasets with GO distributions similar to

the target dataset for all three GO ontologies. The Uniform Random approach does not
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adequately model the distribution of GO terms in the target dataset. The Random By

Ontology approach with an FDR threshold of 0.01 is used to determine termination levels

in the remainder of the experiments.

Figure 3.4

A comparison of the distribution of GO annotations in the synthetic datasets generated
using the three approaches and the distribution in the target dataset in the three GO

ontologies: (a): Cellular Component, (b) Biological Process, (c) Molecular Function

Table 3.1 shows the FDR for each cross-ontology category at each level for the chicken

dataset. Based on these results, the termination level for this dataset with an FDR of 0.01

is 6 for MF → CC, CC → MF , BP → MF , MF → BP and 8 for CC → BP ,

BP → CC.
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Table 3.1

Average false discovery rate of random cross-ontology rules from 50 synthetic datasets at
each level of generalization.

Level of General-
ization in the GO

False Discovery Rate of Random Rules

MF → CC ,
CC →MF

BP → MF ,
MF → BP

CC → BP ,
BP → CC

16 0 0 0
15 0 0 0
14 0 0 0
13 0 0 0
12 0 0 0
11 0 0 0
10 0 0 0
9 0.00020 0.00032 0.00016
8 0.00150 0.00000 0.00422
7 0.00372 0.00032 0.01000
6 0.00438 0.00130 0.00924
5 0.02076 0.02088 0.01974
4 0.01724 0.03904 0.01644
3 0.01378 0.02792 0.04646
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3.2.2 Interestingness Measures and Pruning Strategies

We use support, confidence and the Chi-square test as measures of interestingness

during the rule mining process. A low support threshold and a high confidence threshold

were used in the mining process. Unlike market basket applications where high support is

required [2, 47, 35, 34, 3, 1], GO annotations that co-occur with a high frequency, even if

the terms each occur a relatively small number of times, are still interesting if they are not

likely to occur together by chance. The support, s of a rule X → Y is calculated as the

probability of X and Y co-occurring in the transaction dataset; sX→Y = P (X ∩ Y ). The

confidence, c of a rule X → Y is calculated as the probability of observing Y given that X

is present in a transaction; cX→Y = P (Y |X). The Chi-square test compares the values of

expected occurrence with the value of observed occurrence for every attribute in a trans-

action and reports a p-value which can be used to infer the level of dependence between

two attributes [29, 46]. Previous research on mining multi-level association rules has used

multiple support thresholds for different levels in the hierarchy but it can be very difficult

to determine how these support thresholds should be calculated. The Chi-square test au-

tomatically addresses this issue by using the expected and observed occurrence counts for

terms at different levels. The rules that pass the Chi-square test threshold contain GO term

pairs that occur more significantly than expected.

In addition to using interestingness measures to prune rules while mining, the following

strategies are also used to prune rules that are biologically uninteresting:

1. Rules where the antecedent and the consequent are related by a child-ancestor rela-
tionship are pruned. Such relationships are implied by the true path rule in the GO
and do not convey novel information to a biologist.
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2. When the result set contains two rules of the form X → Y and X → Ancestor(Y )
with a confidence difference of less than 10%, the rule of the formX → Ancestor(Y )
is pruned. Given the rule X → Y , the rule X → Ancestor(Y ) is implied and thus
the more detailed version of the rule is retained.

3.2.3 Association Rules

We applied the cross-ontology data mining algorithm to the chicken and mouse datasets

with 0.05% support, 60% confidence and a p-value of 0.01 for the Chi-square test and com-

pared these results with those resulting from applying a previously published approach de-

scribed by Burgun et al. [19]. Burgun’s approach does not use any generalization and thus,

mines single level rules. Table 3.2 shows that, after pruning, COLL mines 5368 and 3959

cross-ontology rules from the chicken and mouse datasets respectively. Our pruning strate-

gies reduce the total number of rules by 96.99% and 95.26% for the chicken and mouse

datasets. The rules generated by Burgun et al. are a subset of the rules generated by COLL

and do not include multi-level rules. COLL produced substantially more cross-ontology

rules than Burgun’s approach.

It is to be noted that in this study, association rule mining discovers inherent patterns

between GO annotations. These patterns are a result of co-annotation of one or more GO

terms to a particular gene product. Therefore, the antecedent and consequent GO terms in

our cross-ontology rules are existing GO terms from annotation data and not new terms.

COLL discovered rules at multiple levels of generalization from the chicken and mouse

datasets in all six of the cross-ontology categories. Table 3.3 shows that the number of

rules mined at each level of generalization increases from level 14 to level 6. This can be

attributed to two facts. Firstly, generalization lends increased support to co-occurring GO
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Table 3.2

Summary of the number of rules mined before and after pruning by COLL and the
Burgun approach.

Dataset COLL BURGUN
Number
of Rules
Mined

Number
of Cross-
Ontology
Rules after
Pruning

Number
of Rules
Mined

Number
of Cross-
Ontology
Rules after
Pruning

Chicken 178,362 5,368 12,422 2,693
Mouse (All
annota-
tions)

83,602 3,959 4,936 1,517

term pairs thereby resulting in more rules. Secondly, the GO is more populated at levels

12 to 6, which results in the majority of generalization taking place at these levels thereby

causing an increase in the mined rules. The number of rules from each cross-ontology

category is shown in Table 3.4. The rules were categorized by their confidence values and

the results in Table 3.5 show that a majority of the rules have a very high confidence level.

Examples of the cross-ontology rules mined from the chicken dataset by COLL are shown

in Table 3.6.

In order to compare the biological relevance of the rules mined by the two approaches,

two biologists manually evaluated rules selected from the two approaches. The biologists

categorized rules into one of the three categories for surprisingness (Unknown/Surprising,

Somewhat known and Widely known) and meaningfulness (Meaningful, Maybe meaning-

ful and Not meaningful). The surprisingness of a rule determines if the relationship was

hitherto unknown to the biologist. The meaningfulness of a rule indicates whether or not
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Table 3.3

Number of rules mined by COLL at each level of generalization mined from the chicken
and mouse datasets.

Level of
Generaliza-
tion in the
GO

Chicken
All Anno-
tations

Mouse

All Anno-
tations

IEA Anno-
tations Re-
moved

14 2 0 0
13 11 10 6
12 24 12 17
11 91 24 33
10 208 99 110
9 595 327 317
8 938 870 953
7 1,467 1,152 1,562
6 2,025 1,465 2,131

Table 3.4

Number of rules mined by COLL in each cross-ontology category.

Cross-Ontology
Rule Category

Chicken
All Anno-
tations

Mouse

All Anno-
tations

IEA Anno-
tations Re-
moved

CC → BP 658 246 872
BP → CC 1,669 1,532 2,129
MF → BP 1,510 1,240 1,272
BP →MF 950 326 472
MF → CC 421 538 321
CC →MF 153 77 63
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Table 3.5

Number of rules mined by COLL in each confidence range.

Cross-
Ontology
Rule Cate-
gory

Chicken
All Anno-
tations

Mouse

All Anno-
tations

IEA Anno-
tations Re-
moved

100% 1,759 593 603
90% - 99% 85 539 206
80% - 89% 740 590 852
70% - 79% 1,196 792 942
60% - 69% 1,581 1,445 2,526

it makes sense for the items in the rule to be co-annotated. A brief description of these

categories is as follows:

1. Surprisingness:

a. Unknown/Surprising: The rule reveals a relationship that the biologist had no
prior knowledge of.

b. Somewhat known: There is limited knowledge on the relationship in the rule
and might be useful for researchers.

c. Widely known: The relationship is an obvious one and is common knowledge.

2. Meaningfulness:

a. Meaningful: It seems acceptable to the biologist that the items in the rule were
co-annotated.

b. Maybe meaningful: The items in the rule might be co-annotated in specific
scenarios.

c. Not meaningful: The biologist does not see the reason behind co-annotating
the items in the rule.

We conducted two evaluations with rule sets chosen using different selection strategies.

For the first evaluation (Table 3.7), 25 rules were chosen at random from the mouse and
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Table 3.6

Examples of cross-ontology rules mined from the chicken dataset.

Antecedent GO Term
Name

Consequent GO Term
Name

Cross-
Ontology
Category

GO:0005901 caveola GO:0031325 positive
regulation
of cellular
metabolic
process

CC → BP

GO:0005929 cilium GO:0042058 regulation
of epidermal
growth fac-
tor receptor
signaling
pathway

CC → BP

GO:0015491 cation:cation
antiporter
activity

GO:0045895 regulation of
protein kinase
activity

MF → BP

GO:0015491 cation:cation
antiporter
activity

GO:0015707 nitrite trans-
port

MF → BP

GO:0043091 L-arginine im-
port

GO:0051139 metal
ion:hydrogen
antiporter
activity

BP →MF

GO:0002286 T cell activa-
tion involved
in immune
response

GO:0043231 intracellular
membrane-
bounded
organelle

BP → CC

GO:0015491 cation:cation
antiporter
activity

GO:0045859 regulation of
protein kinase
activity

MF → BP

GO:0016459 myosin com-
plex

GO:0003774 motor activity CC →MF
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chicken result sets and a biologist was asked to assign the rules to the categories shown in

Table 3.7. In order to evaluate the effect of annotations inferred from electronic annotation

(IEA) on rule surprisingness, the mouse dataset was also mined after removing all IEA

annotations. Twenty-five random rules were evaluated from this list and the results are

reported in Table 3.7.

Table 3.7

Number of rules in each evaluation category from a random set of 25 rules mined by
COLL and the Burgun approach.

Number of Rules in Evaluation Category
Chicken All
Annotations

Mouse All
Annotations

Mouse IEA
Annotations
Removed

COLL Burgun COLL Burgun COLL Burgun

Surprisingness
Unknown /
Surprising

5 0 4 1 0 1

Somewhat
Known

4 5 2 2 2 3

Widely
Known

15 18 19 22 18 17

Meaningfulness
Meaningful 16 22 19 22 19 19
Maybe
Meaningful

3 2 6 2 0 3

Not Mean-
ingful

5 0 0 0 0 0

For the second evaluation, we selected 50 rules with lower confidence values (60% to

64%) and 50 with the highest confidence values (100%) from the mouse dataset with all

annotations. We noticed that the rules were largely dominated by rules involving Cellular

Component (CC → BP , BP → CC, CC → MF , MF → CC). In order to ensure a
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good representation of rules from all categories, we selected 20 rules from CC → BP ,

BP → CC, CC → MF , MF → CC and 30 rules from MF → BP , BP → MF .

All of the rules with 100% confidence derived by both methods were deemed to be widely

known and meaningful by the biologists. These rules represent commonly known biolog-

ical knowledge. The results for the evaluation of rules with lower confidence are reported

in Table 3.8.

Table 3.8

Number of rules in each evaluation category from a set of 50 rules in a confidence range
of 60-64% mined by COLL and the Burgun approach.

Evaluation Category Mouse All Annotations
COLL Burgun

Surprisingness
Unknown/Surprising 4 0
Somewhat Known 8 3
Widely Known 35 41

Meaningfulness
Meaningful 39 35
Maybe Meaningful 11 11
Not Meaningful 0 0

Both evaluations (Table 3.7, Table 3.8) show that COLL discovers unknown and sur-

prising rules while none of the rules discovered by Burgun are surprising. The majority

of rules identified by both approaches is biologically meaningful. However, most of the

meaningful rules identified by Burgun are widely known and no surprising/unknown rules

are discovered. In addition to discovering many more rules as compared to Burgun (49%

more in chicken, 61% more in mouse), COLL discovers more unknown and surprising

rules.
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The evaluation of cross-ontology rules mined after all IEA annotations were removed

revealed that no Unknown/Surprising rules are mined by the cross-ontology data mining

algorithm for the selected subset. The biologists evaluated these rules based upon personal,

biological knowledge and literature searches. In cases where there the GO annotation is

based solely on literature, all GO annotations will be documented and found via literature

searches. Since IEA derived GO annotations are based upon existing annotation knowl-

edge (such as Enyzme Commission and SwissProt Keywords) and conserved functional

motifs and domains (InterPro), the IEA annotations in effect represent derived biological

knowledge that is applied generally rather than from a species-specific experiment.

3.2.4 Summary

Ontologies are the chosen method of data representation for several scientific domains

and capture an enormous amount of data in the form of data annotations. The Gene Ontol-

ogy, for example, is a vast resource for understanding gene function and there are currently

more than 80 million GO annotations available for a diverse range of species. Apart from

containing gene product information, GO annotations contain a huge amount of implicit

knowledge that can be discovered using data mining techniques such as association rule

mining. In this chapter, we describe an approach for mining multi-level cross-ontology

association rules from GO annotations using level-by-level generalization as the ontology

traversal mechanism. The cross-ontology data mining algorithm views annotation data at

varying levels of detail and captures implicit patterns of co-occurring GO terms across

GO ontologies. We show that COLL discovers more and better quality rules as compared
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to a previously published approach that mined single level cross-ontology rules. Cross-

ontology multi-level rule mining algorithms help analyze data from multiple ontologies

and add value by discovering novel knowledge useful to researchers.
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CHAPTER 4

INTERESTINGNESS MEASURES FOR MULTI-ONTOLOGY MULTI-LEVEL

ASSOCIATION RULES

4.1 Introduction

The use of ontologies for data representation has increased dramatically as ontologies

have been adopted by many scientific domains such as chemistry, biology, computer sci-

ence, artificial intelligence, the Semantic Web, systems engineering, software engineering

and library science. The extensive use of ontologies to represent data has resulted in mas-

sive repositories of ontology annotation data. Annotations are associations between objects

in a knowledge domain and one or more concepts from an ontology. Objects are often an-

notated to multiple ontologies to describe different aspects. While these annotations are

explicitly used to convey knowledge, they also contain implicit knowledge in the form of

hidden data patterns that can be discovered using data mining techniques such as associa-

tion rule mining. Annotations from multiple ontologies can be used to discover interesting

relationships between concepts from the ontologies.

We present a method that utilizes the structure and semantics of the ontologies for min-

ing association rules from data annotated to multiple ontologies. We have also developed

interestingness measures tailored for rules mined from multiple ontologies at multiple lev-

els of abstraction. Unlike the method discussed in Chapter 3 that utilizes a level-by-level
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approach for generalization [50], the new method derives relationships between concepts

at all levels simultaneously and does not constrain generalization to one level at a time.

We demonstrate the utility of our method by applying it to data annotated to the three

ontologies of the Gene Ontology, one of the most widely used bio-ontologies [57].

Association rules mined at multiple levels of abstraction from data represented using a

domain ontology are called multi-level association rules [34, 35]. While multi-level asso-

ciation rules have typically been mined from data represented using a single ontology, they

can also be mined from data from multiple ontologies resulting in multi-ontology multi-

level rules (MO ML). MO ML rules can be categorized into two types: cross-ontology

multi-level (CO ML) rules and same-ontology multi-level (SO ML) rules. In a CO ML

rule of the form x → y , x and y belong to different ontologies whereas in a SO ML rule,

x and y belong to the same ontology. One drawback of association rule mining from large

databases is the enormous number of resulting rules. We present an approach for mining

MO ML rules using generalization in multiple ontologies and interestingness measures and

pruning strategies specifically designed to quantify the interestingness of MO ML rules.

Interestingness measures are used during and after the mining process to select and rank

the rules based on database statistics. Support and confidence are the two most widely used

interestingness metrics. Support of a rule x → y is the probability of x and y occurring

together in a set of transactions and confidence of x → y is the probability of observ-

ing y given that x occurs. Other interestingness measures include lift, Thiel co-efficient,

Shannon’s information content, mutual information, conditional entropy and J-measure

[26, 14]. These measures are designed for single-level single-source rules because they
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assume that all transactions contain concepts or terms from all of the ontologies. However,

in applications such as GO annotation, some transactions may not contain terms from all

GO ontologies. In biological domains, this is typically due to lack of information in the

scientific literature or incomplete annotation of the existing data. Therefore, there is a need

for interestingness measures tailored for multi-ontology rules.

The most widely used approach for adapting interestingness measures for multi-level

rules is to use multiple support thresholds for different levels [34, 35, 47, 66]. However,

it is very difficult to determine appropriate thresholds for different levels especially for

extensive ontologies. This becomes even more complicated when mining from multiple

ontologies necessitating selection of different support thresholds for each level in each of

the ontologies. We present a multi-ontology multi-level association rule mining algorithm

to mine MO ML rules through the use of generalization. We also present interestingness

measures tailored for MO ML rules and post-processing strategies for pruning and ranking

the MO ML rules

4.2 Algorithms

This section describes the multi-ontology generalization and mining algorithm and

presents pruning strategies and interestingness measures for multi-ontology association

rules.

4.2.1 Generalization and Mining Algorithm

We have developed a multi-ontology generalization and mining algorithm, Multi-

ontology data mining at All Levels (MOAL), that uses as input a set of transactions where
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each transaction contains co-occurring concepts from multiple ontologies. For example,

the transactions could be ontology terms associated with a set of genes describing different

aspects of the gene. The output of MOAL is a set of multi-ontology multi-level associa-

tion rules that meet the interestingness measure thresholds applied during mining. MOAL

creates generalized transactions by supplementing every concept in a transaction with all

ancestors in its ontology via transitive relationships such as is a and part of . Duplicate

concepts are removed from transactions after the generalization process. The generalized

transactions are mined using Christian Borgelt’s implementation of the Apriori algorithm

to generate MO ML association rules [16]. MOAL employs a suite of post-processing

strategies to prune uninteresting rules. Unlike our level-by-level mining method, MOAL

requires only a single round of association rule mining [50].

4.2.2 Pruning Strategies and Interestingness Measures

The initial mining step is conducted with relaxed thresholds for standard interesting-

ness measures (support, confidence and a p-value threshold for the Chi-square test). This

provides an initial, but very large, set of MO ML rules. We then apply a set of post-

processing strategies to further reduce the size of the rule set and a set of interestingness

measures tailored for multi-level multi-ontology rules.

4.2.2.1 Post-processing strategies for association rules

We have developed several pruning strategies that can be applied for different applica-

tions and that utilize knowledge of the domain ontology.
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Ancestor Rules: Rules may be generated where the antecedent and the consequent have

an ancestor/descendant relationship. This information is already captured in the ontology

and is therefore redundant and these rules are pruned. Note that this step is not necessary

if the same ontology rules are being pruned (see below).

General Rules: In some cases, both general and specific versions of a rule are derived.

We prune the more general rule if it is not substantially more interesting than the specific

rule. More specifically, if the result set contains a rule of the form x→ y then rules of the

form x→ Ancestor(y), Ancestor(x)→ y and Ancestor(x)→ Ancestor(y) are pruned

unless the confidence of the general rule is greater than the confidence of the more specific

rule by a user-specified increment. In our experiments, we use a confidence increment of

10%.

Same Ontology Rules: In applications where we are only interested in discovery of

new relationships between terms in different ontologies (cross-ontology rules), we discard

all rules where the antecedent and consequent belong to the same ontology.

Symmetric Rules: In some applications, the directionality of the rule is not important.

In these cases, if x→ y and y → x are both in the result set, only x, y will be retained. The

associated support for x, y is calculated asmin(MOSuppoort(x→ y),MOSupport(y →

x)), confidence asmin(MOConfidence(x→ y),MOConfidence(y → x)) and p-value

as max(p−value(x→ y), p−value(y → x)). We use the MO ML definitions of support

and confidence as described in 4.2.2.2.
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4.2.2.2 Multi-ontology multi-level interestingness measures

Multi-ontology multi-level association rules are mined from transactions with con-

cepts at varying levels of abstraction from multiple ontologies. Interestingness measures

typically use the entire set of transactions as the background to compute the interesting-

ness of a rule. For example, the support of a rule x → y is calculated as |x∩y|
|N | . The set of

all transactions, N , is the background for the calculation of support. Likewise, the back-

ground for confidence of a rule x → y is the set of transactions that contain x. However,

in the case of MO ML rules, all transactions in the dataset may not contain annotations

from all three GO ontologies. A transaction that does not contain any annotations from an

ontology cannot contribute to generating a multi-ontology rule involving the ontology in

question. Therefore, in the case of MO ML rules, we restrict the background to the subset

of transactions that contain terms from all of the ontologies involved in the rule.

We have developed two multi-ontology interestingness measures that are designed to

address this issue: Multi-ontology Support (MOSupport) and Multi-ontology Confidence

(MOConfidence). These measures are adapted from the traditional definitions of support

and confidence. Multi-ontology support is the probability of the two terms in the rule

occurring together in the transaction background of the rule. Multi-ontology confidence of

a rule is the probability of observing the consequent term given that the antecedent term is

present in the transaction background of the rule.

MO ML rules include both cross-ontology (CO ML) and same-ontology (SO ML)

rules. The background for MOSupport and MOConfidence are computed differently for

CO ML and SO ML rules. For cross ontology (CO ML) rules, our approach uses the
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subset of transactions with at least one annotation from both ontologies in the rule as the

background to compute MOSupport and MOConfidence. For SO ML rules, we use the

subset of transactions with at least two annotations from the ontology in the rule as the

background to compute interestingness.

4.2.2.3 Definitions

In the following definitions, x → y represents a MO ML rule. If x → y is a CO ML

rule, x and y belong to different ontologies. If x→ y is an SO ML rule, x and y belong to

the same ontology. The following sets are subsets of the transaction set used for mining and

are used in the computation of Multi-ontology Support and Multi-ontology Confidence.

• Xx→y is the set of transactions containing x and at least one term from the ontology
of y. For an SO ML rule, it is the set of transactions containing x and at least one
other term from the ontology of y’s ontology.

• Yx→y is the set of transactions containing y and at least one term from the ontology
of x. For an SO ML rule, it is the set of transactions containing y and at least one
other term from the ontology of x’s ontology.

• MOCategoryx→y is the set of transactions containing at least one term from the
ontology of x and one term from the ontology of y. In the case of an SO ML rule,
MOCategoryx→y is the set of transactions containing at least two terms from x’s
ontology.

• XYx→y is the set of transactions containing both x and y.

Note that these sets of transactions are retrieved from transactions that have been gen-

eralized using MOAL. The count of a term is the sum of the count of the term itself and all

of its descendant terms via is a and part of relationships.

• Multi-ontology Support
The multi-ontology support (MOSupport) of a MO ML rule, x→ y is defined as

MOSupportx→y =
XYx→y

MOCategoryx→y

(4.1)
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• Multi-ontology Confidence The Multi-ontology confidence (MOConfidence) of a
MO ML rule, x→ y is defined as

MOConfidencex→y =
XYx→y

Xx→y

(4.2)

4.3 Results and Discussion

We test and demonstrate our mining, interestingness and pruning strategies by applying

them to data represented using the GO ontologies Molecular Function (MF), Cellular Com-

ponent (CC) and Biological Process (BP). Although the three GO ontologies have many

similarities, they are independent ontologies and differ in the number of terms, depth, and

the number of gene products annotated. For example, MF has 10,948 terms while CC has

3,255 and BP has 24,291 terms (as of 6/13/12) and the distributions of the terms across

different levels of the GO ontologies differ (Figure 4.1). For the sake of this study, we will

treat the ontologies of the GO as independent ontologies.

4.3.1 Evaluating Effectiveness of Post-processing Strategies

We used publicly available GO annotation datasets for all evidence codes (chicken

downloaded as of 2/9/11, mouse downloaded as of 12/12/11 and human downloaded as of

13/6/12) from AgBase [52], a website that provides gene annotations for animal and agri-

cultural plant gene products. Each gene and its associated GO annotations from the three

GO ontologies is a single transaction in the dataset. Initial mining was conducted with

thresholds for the standard interesting measures of 0.05% support, 20% confidence and a

0.01 p-value threshold. We applied the post-processing strategies discussed in 4.2.2.1 to

the resulting set. This set is then further evaluated using MO ML interestingness mea-
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Figure 4.1

Distribution of terms from Cellular Component, Molecular Function and Biological
Process at different levels of the GO (data version 1.1.2633).

sures. The pruning strategies reduced the number of rules from chicken, human and mouse

datasets by 85.89%, 88.1% and 88.18% respectively Table 4.1.

4.3.2 Applications

Association rule mining from the GO can be utilized in many different types of applica-

tions such as mining relationships between tissue-specific expression and GO function, or

relationships between anatomical locations and GO function [66, 46, 38]. We demonstrate

the application of our mining method for suggesting new annotations and for discovering

cross-ontology relationships across the three GO ontologies [57].

4.3.2.1 Candidates for new annotations

MOAL can be used to provide automated assignment of annotations to gene products

or to provide annotation candidates for biocurators doing manual annotation. For exam-
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Table 4.1

Number of rules pruned using post-processing strategies for the GO from the chicken,
human and mouse GO annotation datasets.

Chicken Human Mouse
Post-
processing
Strategy

Number
of Rules
after
Applica-
tion

Post-
processing
Strategy

Number
of Rules
after
Applica-
tion

Post-
processing
Strategy

Number
of Rules
after
Applica-
tion

Post-
processing
Strategy

Before
any Prun-
ing

808,505 0 835,953 0 851,201 0

Prune
Rules
from the
Same GO
Ontology

181,702 77.52 238,215 71.59 227,114 73.31

Remove
General
Rules

121,696 33.02 101,588 57.35 102,646 54.80

Remove
Direction-
ality of
the Rule

114,044 6.28 99,056 2.49 100,558 2.03
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ple, if a biocurator has assigned a GO term x to a gene product, a rule x → y offers

y as a candidate for co-annotation. Biocurators assign GO terms to gene products using

the most detailed level of available knowledge and thus would find specific annotation

candidates much more useful than abstract candidates. Our “General Rules” pruning strat-

egy discussed in 4.2.2.1 prunes all general versions of a rule and thus provides the most

specific annotation candidates available for any antecedent. Multi-ontology support and

multi-ontology confidence values are indicators of the usefulness of the candidate. These

rules provide annotators with a mechanism for leveraging the work of other biocurators

and serve as a quality checking tool for their annotations.

QuickGO at the European Bioinformatics Institute [13] provides a list co-occurring

GO terms for each GO term in their annotation database and this facility is utilized by

biocurators to suggest additional GO annotations. For a GO term selected by the user

(selected term) QuickGO provides a list of GO terms (compared terms) that co-occur in

their annotation database. The compared terms are ranked using PR (Probability ratio)

and S% (Probability similarity ratio). PR is the “Ratio of probability of compared term

given selected term to probability of compared term” and S% is the “Ratio of probability

of both terms to probability of either term” [13]. QuickGO displays the top 100 compared

terms sorted by their S% value. In order to evaluate our method, we compared the annota-

tion suggestions generated by our method to the co-occurring GO terms generated by the

QuickGO approach. For this application, we use MOConfidence as our primary interest-

ingness metric. For a rule of the form x→ y , MOConfidence is the conditional probability

of seeing y given that x has been observed in a set of transactions containing at least one
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annotation from each ontology. In this case, x corresponds to the QuickGO “selected term”

and y corresponds to the QuickGO “compared term”. If an annotator has assigned a term

x to a gene product, they want to know which other terms often co-occur with term x.

The QuickGO S% metric is computed as 100 times the ratio of the cardinality of the set of

transactions containing both x and y (denoted |x∩y|) and the set of transactions containing

either x or y (denoted |x ∪ y|), i.e. S% = |x∩y|
|x∪y| ∗ 100. S% does not capture the conditional

dependence of y on x. Thus, even in cases where every occurrence of x is accompanied by

the occurrence of y, the S% value will be very low if x occurs infrequently and y occurs

frequently. The second issue with this metric is encountered when mining cross ontology

rules, as illustrated in Figure 4.2. In biological databases some gene products are annotated

to multiple ontologies while others are not. Let us assume that x belongs to Ontology 1

(O1) and y belongs to Ontology 2 (O2). The background (denominator) for QuickGO’s

computation will include transactions that contain no annotations from O2. It is more ap-

propriate to consider only those transactions that are annotated to both O1 and O2 when

evaluating cross ontology rules. MOConfidence measures the conditional probability of y

given the occurrence of x in a set of transactions containing at least one annotation from

each ontology, i.e.

MOConfidence =
|X ∩ Y |
|X ∩O2|

(4.3)
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Figure 4.2

This figure compares the backgrounds used by MOAL to compute COConfidence and
QuickGO to compute S%. 2

QuickGO also does not use information captured in the structure and relations of the

GO because it uses no generalization. This limitation is illustrated in Figure 4.3. A rule

x → y may not meet support and confidence thresholds, but a more general form of the

rule, t1→ t2, may meet these thresholds.

2Figure Notes: X belongs to ontology O1 and Y belongs to ontology O2. The set of transactions contain-
ing X and Y are subsets of transactions annotated to O1 and O2 respectively. COConfidence captures the
conditional probability of observing Y given X and uses only those transactions containing X and annotated
to O2 (X ∩ O2) as the backround to compute COConfidence. On the other hand, QuickGO uses all trans-
actions containing X or Y (X ∪ Y ) as the background to compute S%. X ∪ Y includes transactions that
contain X but are not annotated to O2 and transactions that contain Y but are not annotated to O1. These
transactions cannot contribute to a multi-ontology rule between O1 and O2 since they are not annotated to
both ontologies.

68



x 

t1 

y 

t2 

. . . . . .  . . . . .  . . . . . .  

. . . . . .  

Figure 4.3

The circles in this figure represent concepts in an ontology and the arrows represent
relations.4

We compared our multi-ontology rules with the co-occurrence terms generated by the

QuickGO approach. Both approaches were used to identify candidate annotations from the

mouse GO annotation dataset. We used a support threshold of 0.05%, a confidence thresh-

old of 5% and a p-value cut-off of 0.01 to mine the MO ML rules. We pruned general rules

and ancestor rules and then applied a 5% COConfidence cut-off on the resulting rules to

generate the MO ML rules used in this comparison. We applied a 5% threshold on the S%

metric for the co-occurring terms discovered by QuickGO’s approach. Table 4.2 compares

the number of co-annotation suggestions discovered by both approaches. MOAL gener-

ates approximately nine times as many co-annotation candidates as the QuickGO approach.

4Figure Notes: If the original transactions containing x and y are mined, x and y may not co-occur
frequently enough to have sufficient support to generate the rule, x → y. However, if the transactions were
generalized, more general versions of x and y (t1 and t2) might garner enough support to generate the rule
t1→ t2.
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In addition to generating more co-annotation candidates, MOAL generates candidates for

more terms than QuickGO. The second row in Table 4.2 shows that MOAL generates co-

annotation suggestions for 3715 antecedents while QuickGO generates co-occurring terms

for 1608 antecedents. The reason for this difference is that MOAL generalizes the anno-

tations and generates co-annotation candidates for the generalized terms along with the

original annotations in the dataset as shown in Table 4.2. QuickGO generates co-occurring

terms only for the original annotations in the dataset and therefore cannot discover co-

annotation candidates with generalized antecedents or consequents. Additionally, the co-

occurring terms generated by QuickGO are limited to the levels of detail already present in

the transaction set. MOAL, on the other hand, generates co-annotation suggestions from

multiple levels in the GO due to the use of generalization. Note that QuickGO generates

candidate pairs (x, y) and not rules of the form x → y. The counts for QuickGO include

pairs of the form (x, x), which always have an S% of 100. MOAL does not generate rules

of the form x → x. In many cases, MOAL will suggest rules of the form x → y and

y → x, but these may have very different confidence values. Thus, it may be that when a

gene is annotated to x, it is also often annotated to y, but the reverse may not be true.

We also compared the number of co-annotation candidates generated by the two ap-

proaches for 15 specific antecedents. These antecedents were selected with uniform prob-

ability from the antecedents with the highest MOConfidence. The results in Table 4.3 show

that MOAL typically discovers about twice as many candidates as the QuickGO approach.
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Table 4.2

Comparison of the number of co-annotation suggestions discovered by MOAL and
QuickGO.

MOAL
Rules

QuickGO
Co-
annotations

Total Co-annotation
Candidates

935,770 108,006

Number of Co-
annotation Candidates
with Generalized
Antecedent and Conse-
quent

30,685 0

Number of Co-
annotation Candidates
with Generalization
Antecedent

135,230 0

Number of Co-
annotation Candidates
with Generalized
Consequent

126,907 0

Total Number of Co-
annotation Candidates
with Generalized Terms

292,822 0
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Table 4.3

Comparison of the number of co-annotation candidates by MOAL and QuickGO for
particular GO terms.

GO Term Number of
Co-annotation
Candidates by
MOAL

Number of Co-
occurring Terms
by QuickGO

Number of
Co-annotation
Candidates
Discovered by
QuickGO and
MOAL

GO:0005272 64 32 18
GO:0035727 66 31 17
GO:0003743 42 13 6
GO:0006413 29 13 5
GO:0090305 43 30 5
GO:0005244 47 58 13
GO:0034765 89 55 13
GO:0071805 25 32 6
GO:0006200 42 32 6
GO:0016887 63 28 3
GO:0003924 65 32 7
GO:0006184 46 32 7
GO:0005267 31 32 7
GO:0010466 51 20 3
GO:0016310 84 58 8
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4.3.2.2 Cross-ontology relationships in the GO

Another application of the rules discovered by our mining approach is automated dis-

covery of cross-ontology relationships between the three GO ontologies. These relation-

ships can be used to add connections between the three GO ontologies. Myhre et al. [57]

was one of the first groups to tackle the issue of discovering GO cross-ontology relation-

ships in an automated fashion. Myhre et al. developed ‘The Second GO Layer’ between

terms from the three ontologies of the GO. Three semi-automated methods including as-

sociation rule mining were used to supplement the GO with additional paths across the

three ontologies. The first method uses lexical analysis on the name of GO terms to find

similarly named terms from the three GO ontologies [57]. The second method mines as-

sociation rules between Molecular Function, Biological Process and between Molecular

Function, Cellular Component.

Myhre et al. subsequently use each mined association to generate additional rules

based on the GO structure. For example, if a rule x → y is mined, they infer the rule

Decendant(x) → y [57]. Myhre et al. explain these descendant inferences using the

true path rule of the GO which states that “the pathway from a child term all the way

up to its top-level parent(s) must always be true” [57, 6]. However, the true path rule

supports inferring ancestor terms from descendant terms but does not allow the inference

of descendant terms from ancestors. The mined and inferred rules are manually analyzed

for biological relevance before they become a relationship rule between the GO ontologies.

Association rule mining typically generates an enormous number of rules and manually

analyzing so many rules is time consuming. Our interestingness measures and pruning

73



strategies discussed in 4.2.2.1 can be used to prune uninteresting rules and substantially

reduce the need for manual analysis.

Much progress has been made in the area of cross-ontology relationships since the time

of Myhre’s work. Inter-ontology parent-child relationships have been added to the GO and

efforts have been made to normalize the GO by adding logical definitions to Gene Ontology

classes [54]. These logical definitions enable the use of tools such as Protege to reason,

add relationships between other ontologies and automatically classify classes. There is a

concerted effort to eliminate inconsistencies and simplify the task of maintaining the Gene

Ontology. Mungall et al. [54] use logical class definitions structured as genus-differentia

constructs to define cross products in the GO. Intra-GO cross products connect terms from

different ontologies in the GO as well as terms from the same GO ontology (self-cross

products). Inter-GO cross products connect terms in the GO to terms in other ontologies

such as Chemical Entities of Biological Interest, Cell ontology, Sequence ontology, Protein

ontology, Uberon, Plant anatomy ontology and Phenotypic quality [54]. The inter-ontology

cross products in the GO are added using manually provided logical class definitions for

the concepts in the GO. They are generated using the semantics of the ontology and its

class definitions.

Our method, on the other hand, uses annotation data and the structure of the GO to

discover cross-ontology relationships. MOAL uses generalization to view the transactions

at multiple levels of abstraction thus discovers more and better quality rules [50]. Our

mining method will also discover relationships between terms that are not named similarly

and that would be missed by Myhre’s lexical analysis approach. Table 4.4 shows examples
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of the cross-ontology rules mined by MOAL. The relationships discovered by MOAL are

supported by the annotation data whereas Myhre’s inferred relationships are not supported

by annotation data. Our generalization and mining algorithm can supplement the existing

cross products in the GO and lead to better connectivity between the three GO ontologies.

4.4 Summary

As ontologies become increasingly popular as methods of data representation, the

need for efficient methods for mining knowledge from ontologies representing related do-

mains of knowledge are essential. It is also important to design metrics to extract the most

interesting associations with little manual input. The MOAL algorithm is used to mine

cross-ontology multi-level rules through the use of generalization techniques. We also

developed multi-ontology measures to assess the interestingness of multi-ontology multi-

level rules along with pruning strategies. We describe two applications for our multi-level

multi-ontology association rules and demonstrate the effectiveness of our methods for both

applications.
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Table 4.4

Cross-ontology rules mined by MOAL.

Antecedent Consequent Rule Category
glutathione peroxidase activ-
ity

mitochondrion MF → CC

cysteine-type endopeptidase
inhibitor activity involved in
apoptotic process

cellular response to cadmium
ion

MF → BP

leukotriene metabolic process microsome BP → CC
nucleolus cellular response to epidermal

growth factor stimulus
CC → BP

fatty acid beta-oxidation peroxisome BP → CC
protein complex binding mediator complex MF → CC
phagocytosis photoreceptor outer segment BP → CC
nucleolus ERK1 and ERK2 cascade CC → BP
perinuclear region of cyto-
plasm

plasma membrane organiza-
tion

CC → BP

cytoplasmic membrane-
bounded vesicle

plasma membrane organiza-
tion

CC → BP

serine-type peptidase activity response to UV MF → BP
positive regulation of en-
dothelial cell migration

extracellular space BP → CC

positive regulation of cat-
alytic activity

trans-Golgi network BP → CC
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CHAPTER 5

INFORMATION THEORETIC APPROACHES FOR CROSS-ONTOLOGY DATA

MINING IN THE MOUSE ANATOMY ONTOLOGY AND THE

GENE ONTOLOGY

5.1 Introduction

The development of new technologies for genome-wide gene expression analyses in

recent years has led to an explosion in the amount of expression data available and the

creation of data repositories such as GXD, GEO, Genepaint.org, BGEM and GEISHA

[31, 9, 68, 48, 24]. Many of these databases describe the anatomical locations of gene

expression along with other gene product characteristics captured by the GO ontologies.

Ontologies are increasingly used to annotate expression data and several species-specific

and species-independent anatomy ontologies are available [55, 44, 8, 37, 10].

The use of ontologies to represent various aspects of gene expression information pro-

vides new opportunities for ontology-based data mining to discover implicit relationships.

For example, questions such as “What biological processes are likely to be expressed in

the brain of a mouse?” or more complex queries such as “What proteases are expressed

in the liver but not in the brain” can be answered using data mining techniques such as

ontology-enabled association rule mining. Association rules mined from gene expression

data represented using Anatomy and Gene ontologies can be used to get clues about the
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function of newly described genes where only the tissue expression is known. There has

been surprisingly little research in the development of methods for ontology-based data

analysis and knowledge discovery inspite of the prominence of ontologies for data repre-

sentation.

We introduce the use of information theoretic metrics used in conjunction with gen-

eralization and mining algorithms to discover and evaluate implicit relationships across

anatomy and gene ontologies. Our previous work on generalization algorithms explored

two methods of generalization: (1) level-by-level generalization [50] and (2) generaliza-

tion to all ancestors via transitive relationships [49]. These algorithms were applied to

GO annotation data and used to discover relationships across the ontologies of the GO.

Ontology terms near the root tend to be very general and not informative; in our previous

work, we used a level cutoff to remove rules with very general terms. However, multi-

ple studies show that the level of a GO term is not an accurate indicator of its specificity

[4, 5]. Alterovitz et al. [4] demonstrate that terms at the same level of the GO can have

very different information contents. GO terms annotated to many gene products convey

less information than a term that is annotated to a limited number of gene products [4].

The information content of ontology terms takes the probability of the term into account

and is used by several groups for different applications [25, 53, 5, 4]. Davis et al. [25]

used a non-traditional definition of information content to generate automatic slims of the

GO while Mistry et al. [53] use information content to determine the semantic similarity

between two GO terms.
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In this paper, we use two information theoretic measures to inform ontology-enabled

association rule mining from multiple ontologies. The information content of terms from

the GO and of terms from the postnatal Mouse Anatomy Ontology [8] are used to remove

uninformative terms from the transaction dataset after generalization and prior to min-

ing. This step helps avoid mining rules with uninformative terms. Additionally, we define

Cross-ontology Mutual Information (CO MI), a new information theoretic interestingness

measure tailored for assessing the interestingness of cross-ontology rules. We select a

threshold for the CO MI of a rule using Monte Carlo methods and use this threshold to

eliminate uninteresting rules after mining. The combination of IC and CO MI removes

terms with little information and discovers rules with a high mutual information content.

5.2 Algorithms

This section describes the generalization method and information theoretic interest-

ingness measures to evaluate the discovered cross-ontology rules.

5.2.1 Generalization and Mining

We apply the MOAL algorithm discussed in Chapter 4 to simultaneously generalize

terms from all of the ontologies represented in the transaction set. Annotations in the trans-

action set are supplemented with all ancestors related via transitive relations in the general-

ization process. The generalized transactions are processed to remove general terms using

an Information Content threshold as described in 5.2.2. The generalized and pruned trans-

actions are mined using Christian Borgelt’s implementation of the Apriori algorithm and
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Cross ontology Mutual Information is used to assess the interestingness of the resulting

rule set [16].

5.2.2 Information Theoretic Pruning of General Terms

Terms from the same level of the GO can have vastly different information contents

[4]. This is because the GO has evolved over time and different sections of the GO have

been developed to different extents depending on the level of known scientific knowledge,

the involvement of the specific research community and the amount of existing evidence

for linking a gene to a specific function. The information content of a term with respect

to an annotation data set is a better indicator of the term’s specificity than its depth in the

ontology.

Several groups have used Shannon’s information content to compute the information

content of GO terms with respect to a GO annotation dataset. Shannon’s Information

Content of a term t (ICt), is defined as the negative logarithm of the probability of ob-

serving the term [61]. For our application, it is the negative logarithm of the probability

of selecting a gene annotated to t, from the set of all genes in the transaction set (N ) i.e.

ICt = −log2p(t), where p(t) = |Genest|
|N | such that Genest is the set of gene products that

are annotated to t. Information content is measured in bits and doubles for every 50%

reduction in the frequency of occurrence of a term.

However, if only the annotations explicitly given in the annotations of gene products are

used to compute information content, annotations that are implied by the relation seman-

tics of the ontology are ignored. The true path rule of the GO dictates that a gene product
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annotated to a term x is also implicitly annotated to all ancestors of x via the transitive re-

lations (is a and part of ). Several research groups have modified Shannon’s IC to address

this issue [53, 4]. They define ICt = −log2p(t), where p(t) =
|Genest|+

Pj
i=1 |Genesti |
|N | , where

ti : i = {1, 2 · · · j} are the descendants of t via transitive relations [53, 4]. This definition

of IC is applicable to terms from any ontology that uses transitive relations. When mining

from data represented using multiple ontologies, we compute the IC for terms from an on-

tology M using the cardinality of the set of transactions that are annotated to at least one

term from M . Prior research treats the GO as a single ontology and uses the total number

of genes in the transaction set as the background to compute IC. However, the GO is a

collection of three separate ontologies that differ in size, number of concepts and number

of gene products annotated. It is not unusual for gene products to be annotated to terms

from one ontology of the GO and not to another. We therefore treat the three ontologies of

the GO as separate ontologies in the calculation of IC.

We select a threshold for the IC of ontology terms and remove terms with an IC less

than the threshold from the generalized transactions before mining. Selecting an IC thresh-

old is a subjective choice and depends on the application of the discovered rules, the on-

tologies in question and the annotation dataset. For example, the GO term ‘chlorophyll

biosynthesis’ might not be very informative for plants since it is commonly annotated to

gene products in plants [4]. However, it may be highly informative for other species where

it is rarely observed.
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5.2.3 Cross-ontology Mutual Information

Mutual Information of an association rule captures the shared information content of

the antecedent and the consequent in the rule. The Mutual Information also represents

the level of dependence of the antecedent and the consequent on each other. The mutual

information (MI) of an association rule x → y is defined as MI = p(xy) ∗ log2
p(xy)

p(x)∗p(y)

[43]. This definition of MI uses the entire set of transactions as the background to compute

the probabilities thus assuming that all transactions contain annotations from every ontol-

ogy under consideration. However, in many biological datasets, it is often the case that

a substantial number of objects will not be annotated to all ontologies. We have adapted

the standard definition of MI to define Cross-ontology Mutual Information (CO MI) for

assessing the interestingness of cross-ontology multi-level association rules.

We use the following sets in the definition of Cross-ontology Mutual Information where

x→ y represents a cross-ontology rule with x and y belonging to different ontologies. All

the following sets are subsets of the generalized transaction set used for mining.

1. Xx→y is the set of transactions which contains x and at least one term from the
ontology of y.

2. Yx→y is the set of transactions which contains y and at least one term from the ontol-
ogy of x.

3. COCategoryx→y is the set of transactions which contains at least one term from x’s
ontology and y’s ontology.

4. XYx→y is the set of transactions which contains both x and y.

The Cross-ontology Mutual Information (CO MI) of a rule, x→ y is defined as:

CO MIx→y = p(xy) ∗ log2
p(xy)

p(x) ∗ p(y)
(5.1)
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where px = |Xx→y |
|COCategoryx→y | , py = |Yx→y |

|COCategoryx→y | , and pxy = |XYx→y |
|COCategoryx→y |

A Monte Carlo method is used to select the threshold for CO MI. A synthetic dataset

containing the same number of transactions as the transaction set is generated using sam-

pling with replacement from the set of all terms in the transaction set. Cross-ontology

multi-level rules are mined from the synthetic data and the CO MI of the rules is calcu-

lated. The rules mined from the synthetic data are considered to be Known False Positives

while rules mined from the actual transaction set are True Positives Containing Unknown

False Positives. These rule sets are combined and rules are ranked by CO MI. A CO MI

threshold is selected to yield a desired false positive rate and rules with a CO MI below

the threshold are discarded.

Information Content and Cross-ontology Mutual Information are both required because

they capture different properties of the rules. Information content represents the specificity

of terms in the rules and an IC cutoff prevents the inclusion of uninformative terms in

rules. Use of an IC cutoff is particularly useful when generalization is applied as part of the

mining process. Mutual Information, on the other hand, captures the information shared

by the antecedent and consequent. CO MI is high when the antecedent and consequent

co-occur more frequently than if they are independent events.

5.3 Experiment

We designed an experiment to demonstrate the effectiveness of both generalization

and our information theoretic metrics for discovery of cross-ontology relationships. Rules
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were mined with and without generalization and the information theoretic metrics were

applied incrementally.

The data set used for this experiment was gene expression data in post-natal mouse

from the Gene Expression Database (GXD) [31] at the Mouse Genomics Institute (MGI).

GXD is a database created by the developers of the adult Mouse Anatomy Ontology to pro-

vide a resource for mouse gene expression data [31]. GXD uses the anatomical structures

from Edinburg Mouse Atlas (EMA) to provide anatomical annotations for differentially

expressed genes [8]. The mouse anatomical structures from EMA are structured as hi-

erarchies and are divided by Theiler stages (TS) of development. Stages TS-1 to TS-27

describe the anatomy of the developing mouse embryo while TS-28 describes the post-

natal mouse.

The transaction set contains 8,176 transactions and 123,069 GO terms and 124,920

anatomy terms (9/24/2012). Each transaction contains a gene product name accompanied

by one or more annotations to the anatomy and gene ontologies.

For this experiment, 3.32 bits was chosen as the IC threshold for both the GO and

anatomy terms. A term has 3.32 bits of information if it is annotated to 10% of the genes

in the transactions. This threshold was selected empirically. The Monte Carlo method

described in Section 2.3 is used to select a threshold for CO MI. The selected threshold is

used to remove uninformative rules.

The Cellular Component, Molecular Function, Biological Process and the Anatomy

ontologies were treated as separate ontologies in computation of IC and CO MI.
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5.4 Results and Discussion

Table 5.1 provides a summary of the experimental results. A total of 5,993 cross-

ontology multi-level rules were mined using the complete procedure described in 5.3. Ta-

ble 5.1 shows the effect of including generalization, IC, and CO MI in the mining process.

We measure the effect of each of these components with respect to the number of rules

mined, the average and total Information Content, and the average and total Cross-ontology

Mutual Information. IC And CO MI are computed as given in Equation 5.1 and Section

5.2.2 for rules mined from both the original and generalized transaction sets. Note that

in the computation of probabilities used to compute IC and CO MI, the frequency of all

terms includes the count of the term itself and all descendants via transitive relations. Our

goal is to mine rules where the individual terms in the rules have high information content

and the mutual information in the rules is also high.

Table 5.1 shows that the use of generalization always leads to the generation of more

rules. Prior to any pruning (first column), the average Information Content (IC) of the rules

is the same for rules mined from both the original and generalized transaction sets while

the average Cross-ontology Mutual Information (CO MI) for rules mined from generalized

transactions is 29.57% greater than those mined from the original transaction set. The total

IC of terms and the total CO MI of rules mined from generalized transactions increase dra-

matically with generalization because many more rules are generated. Thus, generalization

alone increases the number of rules, the average mutual information of rules, and the total

information content and total mutual information.
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Table 5.1

Comparison of the number of rules mined, average CO MI, total CO MI, average IC and
total IC for original and generalized transaction sets when IC and CO MI thresholds are

applied individually and together.

Transactions
Sets

Before
Pruning

IC Thresh-
old Applied

CO MI
Threshold
Applied

IC and
CO MI
Thresholds
Applied

Number of Rules
Original 12,188 6,950 11,184 6,070
Generalized 117,790 48,727 113,297 44,366

Average IC
Original 3.96 5.78 4.05 5.69
Generalized 3.96 5.64 3.99 5.51

Total IC
Original 96,592 80,453 90,611 34,595
Generalized 934,973 549,780 453,114 489,448

Average CO MI
Original 0.0071 0.0064 0.0083 0.0071
Generalized 0.0092 0.0074 0.0097 0.0079

Total CO MI
Original 87.20 45.04 93.14 43.14
Generalized 1,087.67 362.72 1,109.12 353.67
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The purpose of applying an IC threshold is to increase the specificity (information con-

tent) of terms in the rules mined. When an IC threshold of 3.32 bits was applied to terms in

both transaction sets, (Table 5.1, second column), the number of rules is reduced 43% and

58% for the original and generalized transactions sets respectively. The greater reduction

in the generalized rules stems from the fact that the generalization process introduces many

high level terms that are not informative. The application of the IC threshold increases the

average IC of the terms in the rules by approximately 46% for both the original and gen-

eralized transactions. The average CO MI of rules mined from both sets decreases due to

the loss of rules with high mutual information, but with terms that are so general they are

not informative. The total IC and CO MI of both rules sets decreases with the application

of IC threshold because of the reduction in the number of rules.

When the CO MI threshold is applied alone (without the IC threshold, Table 5.1 col-

umn 2) there is a much smaller reduction in the number of rules than seen with the IC cutoff

(8% and 4% from the original and generalized transactions respectively). The CO MI of

rules increases by 9% and 5.4% for original and generalized transactions respectively. The

average CO MI of rules mined from the generalized transactions remains 16.86% higher

than for rules mined from the original transactions. The IC values change only slightly and

are about the same for both rule sets. Thus, with the CO MI threshold we used, the number

of rules deleted was relatively small, but there was a gain in mutual information without

loss in information content of terms.

The last column in Table 5.1 demonstrates the synergistic effects of using generalized

transactions, an IC threshold, and a CO MI threshold. The average IC of generalized rules
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in this case is comparable to when only IC threshold was applied, but there is a 38.09%

increase in the average IC of generalized rules when both IC and CO MI thresholds are ap-

plied as compared to when CO MI was applied alone. The average CO MI of generalized

rules is higher than it was when only an IC threshold was applied. However, there is some

loss in the average CO MI of generalized rules when both thresholds are applied due to the

loss of high mutual information rules containing very general terms. These results demon-

strate that the combined application of generalization used with IC and CO MI thresholds

results in rules containing informative terms and where the mutual information of the rules

is high.

Table 5.2 shows example rules mined between the three GO ontologies and the post-

natal Mouse Anatomy Ontology terms. Our initial thoughts on these rules were that rela-

tionships between Biological Process and Anatomy concepts would be the most meaning-

ful. However, there are meaningful relationships in all three rule categories (BP-Anatomy,

MF-Anatomy and CC-Anatomy). Some specialized cell types are limited to certain types

of tissue and Cellular Component terms for those cell types are associated with those types

of tissue in the Anatomy Ontology. Similarly, some functions are associated with special-

ized biological processes that are associated with certain tissues. The cross-ontology rules

discovered require further processing either by a biocurator or using logical reasoning.

When an antecedent is found to be associated with both specific and general versions of

a concept, it depends on the application to find the appropriate level of relationship to use

since it does not make sense to always retain the most specific or the most general version

of the relationship.
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Table 5.2

Example of cross-ontology rules mined between the GO ontologies and post-natal Mouse
Anatomy Ontology.

Antecedent Term Name Consequent Term Name Rule
Cate-
gory

Average
IC

Average
CO MI

TS:28:894 heart
ventricle

GO:0005244 voltage-
gated ion
channel
activity

MF-
Anatomy

5.902 0.058

TS:28:840 inner ear GO:0007605 sensory
perception
of sound

BP-
Anatomy

6.128 0.027

GO:0005581 collagen TS:28:1141 connective
tissue

CC-
Anatomy

7.677 0.022

TS:28:284 septal
olfactory
organ

GO:0004984 olfactory
receptor
activity

MF-
Anatomy

8.025 0.019

GO:0042472 inner ear
morpho-
genesis

TS:28:1152 cochlea BP-
Anatomy

6.287 0.019

TS:28:160 tendon GO:0030934 anchoring
collagen

CC-
Anatomy

9.676 0.006

TS:28:1257 blood
vessel en-
dothelium

GO:0005385 zinc ion
trans-
membrane
transporter
activity

MF-
Anatomy

9.418 0.005

TS:28:1257 blood
vessel en-
dothelium

GO:0071577 zinc ion
trans-
membrane
transport

BP-
Anatomy

9.438 0.005
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5.5 Conclusion

The development of high throughput gene expression technologies and the widespread

use of ontologies for the representation of gene expression data has created huge repos-

itories of data represented using multiple bio-ontologies. There is an acute shortage of

efficient ontology-aware data mining techniques that can extract value from this data using

both explicit and implicit information in the expression data. We present information theo-

retic measures used in conjunction with a generalization and mining algorithm to discover

interesting relationships across the Gene Ontology and Anatomy Ontology. The cross-

ontology relationships between GO and Mouse Anatomy Ontology will allow biologists to

ask complex questions involving both expression location and function of gene products.

Researchers who have large gene expression datasets will be able to extend knowledge of

tissue expression to learn about gene product function or vice versa using cross-ontology

relationships discovered from existing annotation data. We show that generalization used

in conjunction with information content and mutual information results in the discovery of

more and better quality cross-ontology rules.
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CHAPTER 6

SUMMARY

We developed algorithms for conducting ontology-based mining from data represented

using multiple ontologies. The methods presented in this dissertation employ generaliza-

tion as an ontology traversal technique for the discovery of interesting and informative rela-

tionships at multiple levels of abstraction between concepts from different ontologies. We

present new metrics to rank and evaluate the usefulness of the discovered cross-ontology

relationships. These metrics use implicit knowledge conveyed by the relation semantics

of the ontologies to capture the interestingness of cross-ontology relationships. One of the

mining approaches combines two information theoretic metrics to capture the interesting-

ness of cross-ontology relationships and the specificity of ontology terms with respect to

an annotation dataset.

The level-by-level generalization and mining algorithm (COLL) uses the depth of on-

tological concepts as a guide for generalization. The ontology annotations are translated

to higher levels of abstraction one level at a time accompanied by incremental association

rule mining. COLL is applied to discover cross-ontology relationships across the three

ontologies of the Gene Ontology and our results demonstrate that COLL results in the dis-

covery of a greater number of biologically surprising relationships than mining without

generalization. The COLL algorithm is accepted for publication in the journal PLoS One.
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Our second ontology traversal algorithm (MOAL), conducts a generalization of on-

tology terms to all their ancestors via transitive ontology relations and then mines cross-

ontology multi-level association rules from the generalized transactions. Two new cross-

ontology interestingness measures that utilize the GO relation semantics, Cross Ontology

Support and Cross Ontology Confidence, were developed to evaluate the discovered rules.

We identify applications for MOAL for the discovery of cross-ontology relationships in

the GO akin to the existing GO cross-products [54] and for generating co-annotation can-

didates for GO concepts. We demonstrate that our method performs better than a currently

used resource for identification of candidate annotations. A paper describing the MOAL

algorithm is submitted to the Journal of Biomedical Informatics.

MOAL is applied to mine informative cross-ontology relationships from gene expres-

sion data represented using the three GO ontologies and the Mouse Anatomy Ontology.

These ontologies differ in depth, number of ontological concepts and number of data an-

notations to the ontology. Simultaneous generalization is conducted in both ontologies

and two information theoretic measures, Cross-ontology Information Content and Cross-

ontology Mutual Information, are applied to avoid the discovery of uninformative rules

and rules involving terms with insufficient specificity. A journal article describing the use

of the two information theoretic measures combined with generalization is in preparation.

In summary, our work in this dissertation presents different ontology-based data mining

algorithms for the discovery of cross-ontology relationships and introduces interestingness

measures to evaluate and rank the discovered rules. The advent of next generation high

throughput technologies has resulted in an influx of biological data that is being repre-
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sented using ontologies. Manual analysis of this huge mass of data is impossible and

requires automated techniques for knowledge discovery. Our work addresses the dire lack

of effective ontology-based data mining techniques that support the discovery of inter-

ontology relationships. These cross-ontology data mining methods can be applied and

expanded to address several important issues in the bio-ontologies world. These issues are

discussed briefly in the subsequent paragraphs.

As more and more research communities in bioinformatics adopt the use of ontologies

to represent knowledge, the issues of cross-ontology querying, relationship discovery and

interoperability of ontologies become increasingly complex. It is widely recognized that

the advantages of ontologies extend far beyond controlled vocabularies [42]. The struc-

ture, semantics and the relations in ontologies allow inferences over data and facilitate

the use of data mining techniques for knowledge discovery [42]. For example, the devel-

opment and establishment of cross-ontology connections between several bio-ontologies

such as the GO, Cell Ontology, Phenotype Ontology and several species-dependent and

independent Anatomy ontologies is a highly active research area and is the focus of sev-

eral scientific communities [54, 15, 42, 57, 44, 55]. These cross-ontology connections

are typically generated using semantic and lexical analyses, reasoning from logical defi-

nitions of ontological concepts and the ontologies themselves. While the semantics and

logical definitions of concepts provide one type of tool for discovery of relationships, the

huge amount of information residing in annotation databases provides another valuable

source of new knowledge. Annotation data contains complex and hitherto unknown cross-

ontology patterns in the form of implicit and explicit annotations that can be discovered
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using data mining techniques presented in this dissertation[50, 49, 32, 42]. These pat-

terns reveal unsuspected and interesting knowledge that can serve to establish connections

between ontologies. These inter-ontology connections promote inter-operability between

ontologies and enable the portability of gene product annotations from one ontology to

learn gene product characteristics represented by a different ontology.

Our work on cross-ontology data mining can be applied to the task of creating net-

works of interoperable ontologies. Several species specific ontologies are often developed

to represent knowledge in a single domain. These ontologies are however, not mutually

interoperable, requiring inter-ontology mappings to combine data represented using two

ontologies. Creating a network of mutually interoperable ontologies leads to the better

description of gene products with respect to their genotypes and phenotypes. The equiva-

lence relations established between different phenotype ontologies to improve the ontolo-

gies themselves as well as enable phenotype data integration across species is an example

of the utility of interoperable ontology networks [56]. As the bioinformatics community

rapidly embraces the use of ontologies for knowledge representation, multiple groups have

embarked on creating specific ontologies to address their research needs. Some of these

ontologies capture very similar knowledge and yet use different terminology and are not

interoperable thereby defeating the very purpose of ontologies, which is to foster interop-

erability between users and promote the use of standard terminology. For example, the

adult Mouse Anatomy Ontology [37] and the adult Mouse Anatomical Dictionary [8] both

describe the anatomical structures of the post-natal mouse but use different terms and re-

lationships. For example, ‘renal connecting tubule’ in the Anatomical Dictionary is the
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same as ‘kidney connecting tubule’ in AMA. The lack of mappings across such ontolo-

gies makes it difficult for researchers to identify similar terms and to port their annotations

when a better developed ontology is created. Our methods can be used to identify similar

concepts from different ontologies based on the number of common objects annotated to

both those concepts thereby creating inter-ontology mappings.

Some projects capture knowledge from diverse domains requiring the integration of

multiple ontologies. For example, Effectopedia is an online encyclopedia that describes

adverse outcome pathways (http://www.effectopedia.org/). Effectopedia describes the ad-

verse effects of chemicals on an organism at various levels of organization such as the cel-

lular, molecular and population level. This resource also captures toxicological, chemical,

clinical and biological information about chemicals thereby requiring the use of concepts

from multiple ontologies to describe a single pathway. A straightforward method of accom-

plishing this integration is to combine all ontologies under a common root. This approach

requires extensive logical definitions and specifications and might result in a huge, tangled

and unmanageable ontology. Some studies have explored the idea of creating networks

centered on gene products and their annotations to multiple ontologies [42]. A structure

such as this links gene products to concepts from multiple ontologies and facilitates cross-

ontology querying [42] and would be a good application for our methods.

Further extensions of our cross-ontology mining methods can also lead to improved

knowledge discovery. In some applications, a combination of data mining with and logi-

cal reasoning may be effective. For example, we often extract numerous related rules for

Anatomy-Biological Process where the same biological process takes place in many simi-
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lar tissues such as different kinds of muscles. A combination of logical reasoning could be

applied to the resulting rule set to discover the most general anatomy term that should be

related to the biological process. We have used both information content and mutual infor-

mation to capture two different aspects of the interestingness of rules. It may be possible

to define a single metric that combines information content and mutual information that

can be used to rank the rules.

In conclusion, the area of bio-ontologies is a rapidly growing discipline with many ex-

citing possibilities. The majority of computational efforts in the area of bio-ontologies are

focused on the development of ontological structures, logical definitions, automated rea-

soners and data annotation. While the framework of bio-ontologies provides mechanisms

for the discovery of new knowledge, annotation repositories are an alternative source of

new knowledge. There is a pressing need for the development of algorithms and meth-

ods that can analyze the massive repositories of data represented using ontologies and add

value to it. Our ontology-aware data mining methods are an advance in filling this gap

between ontological development and knowledge discovery.
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