
Mississippi State University Mississippi State University

Scholars Junction Scholars Junction

Theses and Dissertations Theses and Dissertations

5-1-2013

A Domain Specific Language Based Approach for Generating A Domain Specific Language Based Approach for Generating

Deadlock-Free Parallel Load Scheduling Protocols for Distributed Deadlock-Free Parallel Load Scheduling Protocols for Distributed

Systems Systems

Pooja

Follow this and additional works at: https://scholarsjunction.msstate.edu/td

Recommended Citation Recommended Citation
Pooja, "A Domain Specific Language Based Approach for Generating Deadlock-Free Parallel Load
Scheduling Protocols for Distributed Systems" (2013). Theses and Dissertations. 118.
https://scholarsjunction.msstate.edu/td/118

This Dissertation - Open Access is brought to you for free and open access by the Theses and Dissertations at
Scholars Junction. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of
Scholars Junction. For more information, please contact scholcomm@msstate.libanswers.com.

https://scholarsjunction.msstate.edu/
https://scholarsjunction.msstate.edu/td
https://scholarsjunction.msstate.edu/theses-dissertations
https://scholarsjunction.msstate.edu/td?utm_source=scholarsjunction.msstate.edu%2Ftd%2F118&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsjunction.msstate.edu/td/118?utm_source=scholarsjunction.msstate.edu%2Ftd%2F118&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholcomm@msstate.libanswers.com

A domain specific language based approach for generating deadlock-free parallel load

scheduling protocols for distributed systems

By

Pooja Adhikari

A Dissertation
Submitted to the Faculty of
Mississippi State University

in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy

in Computer Science
in the Department of Computer Science and Engineering

Mississippi State, Mississippi

May 2013

Copyright by

Pooja Adhikari

2013

A domain specific language based approach for generating deadlock-free parallel load

scheduling protocols for distributed systems

By

Pooja Adhikari

Approved:

Edward Allen Luke
Associate Professor of Computer
Science and Engineering
(Major Professor)

Ioana Banicescu
Professor of Computer
Science and Engineering
(Committee Member)

Eric Hansen
Associate Professor of Computer
Science and Engineering
(Committee Member)

Edward B. Allen
Associate Professor and Graduate
Coordinator of Computer Science and
Engineering
(Committee Member)

Sarah A. Rajala
Professor and Dean of Bagley
College of Engineering

Name: Pooja Adhikari

Date of Degree: May 10, 2013

Institution: Mississippi State University

Major Field: Computer Science

Major Professor: Dr. Edward Allen Luke

Title of Study: A domain specific language based approach for generating deadlock-free
parallel load scheduling protocols for distributed systems

Pages of Study: 179

Candidate for Degree of Doctor of Philosophy

In this dissertation, the concept of using domain specific language to develop error-free

parallel asynchronous load scheduling protocols for distributed systems is studied. The

motivation of this study is rooted in addressing the high cost of verifying parallel asyn-

chronous load scheduling protocols. Asynchronous parallel applications are prone to sub-

tle bugs such as deadlocks and race conditions due to the possibility of non-determinism.

Due to this non-deterministic behavior, traditional testing methods are less effective at

finding software faults. One approach that can eliminate these software bugs is to employ

model checking techniques that can verify that non-determinism will not cause software

faults in parallel programs. Unfortunately, model checking requires the development of

a verification model of a program in a separate verification language which can be an

error-prone procedure and may not properly represent the semantics of the original sys-

tem. The model checking approach can provide true positive result if the semantics of

an implementation code and a verification model is represented under a single framework

such that the verification model closely represents the implementation and the automa-

tion of a verification process is natural. In this dissertation, a domain specific language

based verification framework is developed to design parallel load scheduling protocols and

automatically verify their behavioral properties through model checking. A specification

language, LBDSL, is introduced that facilitates the development of parallel load scheduling

protocols. The LBDSL verification framework uses model checking techniques to verify

the asynchronous behavior of the protocol. It allows the same protocol specification to be

used for verification and the code generation. The support to automatic verification during

protocol development reduces the verification cost post development. The applicability of

LBDSL verification framework is illustrated by performing case study on three different

types of load scheduling protocols. The study shows that the LBDSL based verification

approach removes the need of debugging for deadlocks and race bugs which has potential

to significantly lower software development costs.

Key words: Asynchronous parallel applications, Load Scheduling Protocols, Domain spe-
cific language, Model checking

DEDICATION

To my parents

ii

ACKNOWLEDGEMENTS

I would like to thank my advisor Dr. Edward A. Luke for his direction and guidance

to complete this work. It would not have been possible without his encouragement and

support throughout my tenure at Mississippi State University. I am also very thankful to

Dr. Ioana Banicescu for her support and suggestions in my journey as a PhD student.

I would also like to thank Dr. Edward Allen and Dr. Eric Hansen for their comments

and suggestions for improving my dissertation. I would like to take this opportunity to

show my sincere gratitude to the Department of computer science and engineering and

High Performance Computing Collaborotary (HPC) for financially supporting my graduate

study. This work would have been very difficult to complete without the high performance

computing infrastructure at HPC. I show my gratitude to the support staff of HPC.

I would like to thank my husband Nischal Dahal for being there for me and holding

me on my downs and always believing in me. My parents have always been a source of

motivation throughout my life. I am very lucky to have been showered by such love and

care. I show my respect to my parents. I am very blessed to have my best friend, my sister

Pragya around me to share moments of life. I would also like to thank my in-laws for their

moral support in my journey.

Finally, I would like to thank every teacher, friends and relatives who has helped me

reach this milestone in my career.

iii

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

LIST OF FIGURES . viii

LIST OF CODELETS . ix

CHAPTER

1. INTRODUCTION . 1

1.1 Objective of the dissertation . 4
1.2 Approach to solve the problem stated 5
1.3 Summary . 8

2. LITERATURE REVIEW . 10

2.1 Load Scheduling in Distributed Systems 11
2.1.1 Static Load Scheduling 12
2.1.2 Dynamic Load Scheduling 12

2.1.2.1 PLUM . 13
2.1.2.2 Charm++ . 13
2.1.2.3 LBtool . 14

2.2 Debugging Techniques for Parallel Asynchronous Systems 17
2.2.1 Debugging Tools for MPI Applications 17

2.2.1.1 MPI-Check . 18
2.2.1.2 MPIDD . 18
2.2.1.3 UMPIRE . 19
2.2.1.4 MARMOT and MUST 19

2.2.2 Deadlock Detection of Parallel Multi-Threaded Applications 20
2.3 Deadlock Detection using Formal Verification 21

2.3.1 Proof-Based Formal Verification 21
2.3.2 Model-Based Formal Verification (Model Checking) . . . 22

2.3.2.1 Spin . 23

iv

2.3.2.2 MURPHI . 24
2.3.2.3 SMV . 24
2.3.2.4 BLAST . 25

2.4 State Explosion Problem in Model Checking 25
2.5 Automatic Model Generation in Finite State Verification 27
2.6 Model checking of MPI Applications 28

2.6.1 Representation of MPI primitives in Promela structure . . . 28
2.6.2 Techniques to address state explosion problem for MPI ap-

plications . 29
2.6.3 Representation of MPI Wild- Card receives and Non-blocking

communication in Promela 30
2.6.4 MPI-SPIN . 31
2.6.5 ISP . 32

2.7 Domain Specific Languages . 32
2.7.1 Promela++ . 33
2.7.2 Teapot . 34
2.7.3 Rebeca . 35

2.8 Summary . 35

3. LOAD BALANCING DOMAIN SPECIFIC LANGUAGE(LBDSL) . . . 40

3.1 Load scheduling in Distributed Systems 41
3.1.1 Static Load Scheduling 42
3.1.2 Dynamic Load Scheduling 42

3.2 Design Requirements . 44
3.3 Actor Models . 46
3.4 Introduction to LBDSL . 47

3.4.1 Processes . 48
3.4.2 Chunk of Iterates . 50
3.4.3 Messagetypes . 50
3.4.4 Communication Structures 51
3.4.5 Variables, variable types, constants and control structures . 53
3.4.6 Code Embed . 54

3.5 Syntax of LBDSL components 55
3.5.1 Structure for defining Processes 56
3.5.2 Defined structures in LBDSL 60

3.5.2.1 Structure Chunk 60
3.5.2.2 Structure MessageInfo 61
3.5.2.3 Built-In handlers 62

3.5.3 Structure for defining Messagetypes 63
3.5.4 Communication Structures 65
3.5.5 Constants, Variables, Conditional and Loop Statements . . 67
3.5.6 Structure for embedding C++ code 70

v

3.6 Summary . 71

4. VERIFICATION FRAMEWORK FOR LBDSL 73

4.1 The Verification Framework . 73
4.2 The Promela Language . 75

4.2.1 Components of Promela Language 76
4.2.2 Control Flow in Promela 77
4.2.3 Deadlock detection of a communication protocol in Promela 78
4.2.4 Limitations of Promela 79

4.3 The Language Translator . 79
4.3.1 Model Checking Backend 82

4.4 Summary . 83

5. CASE STUDY: IMPLEMENTATION OF PROBE-BASED CENTRAL-
IZED LOAD SCHEDULING PROTOCOL 84

5.1 The protocol . 85
5.2 The protocol in LBDSL language 89

5.2.1 State Label Declaration 89
5.2.2 Constants Declaration . 91
5.2.3 Passive Rules . 92
5.2.4 Messagetypes Definition 93

5.2.4.1 Messagetype ChunkInformation 93
5.2.4.2 Messagetype ChunkShared 95
5.2.4.3 MessageType RemoteChunkResult 97

5.2.5 Process Declaration . 99
5.2.5.1 Worker Process . 99
5.2.5.2 Scheduler Process 107

5.3 Verification Result . 113
5.4 Summary . 114

6. CASE STUDY: IMPLEMENTATION OF MULTI-THREADED CENTRAL-
IZED LOAD SCHEDULING PROTOCOL 116

6.1 Multi-Threaded Architecture . 116
6.2 The protocol for Multithreaded architecture 117
6.3 The protocol in LBDSL language 121

6.3.1 State Label Declaration 121
6.3.2 Constants Declaration . 122
6.3.3 Passive Rules . 122
6.3.4 Messagetypes Definition 123
6.3.5 Process Declaration . 123

vi

6.3.5.1 Worker Process . 124
6.3.5.2 Scheduler Process 127

6.4 Verification Result . 130
6.5 Summary . 130

7. CASE STUDY: IMPLEMENTATION OF MULTI-THREADED HIERAR-
CHICAL LOAD SCHEDULING PROTOCOL 132

7.1 Hierarchical Load Scheduling 132
7.2 The protocol . 134
7.3 The protocol in LBDSL language 137

7.3.1 State Label Declaration 137
7.3.2 Constants Declaration . 139
7.3.3 Passive Rules . 140
7.3.4 Messagetypes Definition 140
7.3.5 Process Declaration . 141

7.3.5.1 Worker Process . 141
7.3.5.2 LocalScheduler Process 142
7.3.5.3 GlobalScheduler Process 146
7.3.5.4 Initialize Process 147

7.4 Verfication Result . 147
7.5 Summary . 149

8. THREATS TO VALIDITY . 151

8.1 Internal Validity . 151
8.2 External Validity . 152
8.3 Construct Validity . 153
8.4 Summary . 154

9. CONCLUSION AND FUTURE WORK 155

REFERENCES . 161

APPENDIX

A. LEX SYMBOL FILE . 168

A.1 Lexical Rules of the LBDSL Language 169

B. YACC RULE FILE . 172

B.1 Analytical Grammer for the LBDSL Language 173

vii

LIST OF FIGURES

1.1 A trivial deadlock scenario in message passing systems 3

1.2 Concept of a Domain Specific Language 6

2.1 Kripke Structure of Coffee Vending Machine 26

4.1 Verification framework to support LBDSL language 74

4.2 Process to build a compiler using Lex and Yacc 81

4.3 Finite State Verification . 82

5.1 Architecture of a centralized load scheduling protocol 85

5.2 Load Scheduling . 87

5.3 Remote Scheduling . 88

5.4 Probe-based Centralized Load Scheduling Protocol 90

6.1 Architecture of a multithreaded-centralized load scheduling protocol 118

6.2 Multithreaded Load Scheduling . 120

7.1 Architecture of a multithreaded-hierarchical load scheduling protocol . . . 135

7.2 Hierarchical load scheduling protocol . 138

viii

LIST OF CODELETS

2.1 MPI Send in Promela structure . 29

3.1 Process definition in LBDSL . 57

3.2 Process definition in LBDSL . 58

3.3 State label enumeration in LBDSL . 59

3.4 Structure Chunk . 61

3.5 Structure MessageInfo . 62

3.6 Messaegtype definition in LBDSL . 64

3.7 An example of constant value declaration in LBDSL 68

5.1 State Declaration . 91

5.2 Constants for Centralized Load Scheduling Protocol 92

5.3 MessageType ChunkInformation . 94

5.4 MessageType ChunkShared . 96

5.5 MessageType RemoteChunkResult . 98

5.6 Definition for WAIT4 MSG state . 100

5.7 Definition for RETRIEVE MSG state . 101

5.8 Definition for WORK LOCAL state . 102

5.9 Definition for EXEC LOCAL PART state 103

5.10 Definition for TEST4 MSG state . 103

ix

5.11 Definition for SEND INPUT state . 104

5.12 Definition for WORK REMOTE state . 105

5.13 Definition for EXEC REMOTE WHOLE state 106

5.14 Definition for TERMINATE state . 106

5.15 Definition for EXEC LOCAL PART state 108

5.16 Definition for EXEC REMOTE PART state 110

5.17 Definition for FILL LOCAL REQUEST state 111

5.18 Definition for FILL REQUEST state . 112

5.19 Definition for TERMINATE state . 113

6.1 State Declaration for . 121

6.2 Constants for Centralized Load Scheduling Protocol 123

6.3 Definition for FILL REQUEST state . 129

6.4 Definition for TERMINATE state . 130

7.1 State Declaration . 138

7.2 Constants for multithreaded hierarchical load scheduling protocol 140

7.3 Definition for GLOBAL ASSIGNMENT state 143

7.4 Definition for FILL REQUEST state . 144

7.5 Definition for WORK COMPLETE SCHEDULER state 145

7.6 Definition for TERMINATE state . 146

7.7 Definition for FILL GLOBAL REQUEST state 148

7.8 Definition for TERMINATE state . 148

x

CHAPTER 1

INTRODUCTION

Ensuring that parallel programs are free of bugs due to the possibility of non-determinism

is a challenging task. It is challenging because re-running a non-deterministic program

under seemingly identical conditions can produce different results including unwanted be-

haviors such as deadlocks and race bugs, which are rarely reproducible [33]. Note that

sometimes non-determinism can be eliminated from parallel programs to reduce these un-

desirable side effects. However, some domains such as asynchronous load scheduling

protocols, rely on non-deterministic execution in order to achieve high performance.

Load scheduling protocols are an important part of parallel and distributed applica-

tions. In many high performance computing scenarios, tasks and processors may be het-

erogeneous, causing variability in task completion time. This variability can cause uneven

workload and significant inefficiency due to idle processors. In order to maintain high ef-

ficiency and to maximize CPU utilization, the workload has to be evenly scheduled among

available processors. Dynamic load scheduling is generally adopted for this purpose in

order to adjust task assignment among processors based upon their current load distribu-

tion. Task adjustment is done via task migration to other processors, and the decision

for task migration is made at run time. In this scenario, a certain protocol needs to be

1

followed by communicating processes to execute an intended load scheduling. Commu-

nication protocols define a set of rules for task migration during load scheduling process.

The effectiveness of a load scheduling process largely depends upon the effectiveness of

the communication protocol. An efficient communication protocol will reduce an aver-

age response time and communication overhead that occurs during load scheduling. An

asynchronous communication protocol is generally used with load scheduling for message

passing systems.

A message passing system consists of multiple processing nodes, each with its own ex-

clusive address space. Each processing nodes can either be a single processor or a shared

address space multiprocessor. Interaction between the processes on different processing

nodes is accomplished exclusively by sending and receiving messages. Message pass-

ing programs are often written using asynchronous paradigms. Asynchronous programs

are characterized by the absence of a known bound on relative processors speeds or mes-

sage transfer times. Such programs are therefore harder to reason about and can have a

non-deterministic behavior due to race conditions. Due to the non-deterministic behavior,

traditional testing methods are less effective at finding software faults such as deadlocks,

which are examples of common catastrophic bugs seen in this mode of programming.

A deadlock is an event that occurs when processes lock resources [17]. It is possible

that a process may lock more than one resource at a time. In this scenario, a dependency

loop is formed whereby each process is unable to reserve the needed resources due to a

cycle of requests that can never be satisfied. Occurrence of deadlocks in an asynchronous

system may depend upon a specific interleaving of communicating events, and on subtle

2

timing between messaging and computing events. Due to such non-determinism, dead-

locks are difficult to detect using traditional testing techniques such as test-case simulation.

Also, the complexity of these systems usually makes complete verification prohibitively

costly.

A trivial example of deadlock is shown in Figure 1.1 where two processes are sending

a message to each other. Depending on the implementation of the underlying send pro-

tocol, processes may remain blocked, each waiting for the message to be received by the

destination processor.

Figure 1.1

A trivial deadlock scenario in message passing systems

Scheduling and load balancing are two key techniques used in parallel computing sys-

tems to maximize efficiency where task running time variability would otherwise cause

processors to become idle and underutilized. A number of distributed load-balancing

schemes [7, 64] have been developed and such schemes are proven effective in balancing

workload distributions to obtain an optimal performance. Deadlock-free load scheduling

protocols are therefore very important.

Various research efforts are conducted for diagnosing deadlocks in parallel applica-

tions, especially for parallel applications written using the MPI [2] paradigm. Deadlock

3

detection using timeouts is an approach that has been implemented in tools such as Marmot

[49] and MPI-CHECK [54]. However, this method is prone to giving false positive result

for applications that have long computation phases. Another approach to deadlock detec-

tion is through the analysis of execution traces of the parallel application. One disadvan-

tage of these tools is that they cannot precisely characterize the operations that constitute

deadlocks with wild card receiving calls.

1.1 Objective of the dissertation

One approach that can eliminate deadlocks is to employ model checking [23] tech-

niques. This technique performs an exhaustive exploration of all possible interleavings

of execution of a system and does a complete verification in principle. However, this ap-

proach requires a separate verification model of a candidate system that is written using

specific verification languages [23]. Verification is then performed in the model instead

of the original system. The development of a verification model of the program is a te-

dious and error prone procedure. Following are the limitations of applying model-based

verification technique with full confidence.

• Lack of programming expressiveness for common programming structures such as
function calls, structures, and arrays in existing protocol verification languages, mak-
ing a verification model not a conservative representation of its original system.

• Lack of confidence in verification result, since the original system is not used for
verification purpose. Original system may still contain bugs even if the verification
model is verified as error-free.

• Need to keep verification model up-to-date with modifications of protocol specifica-
tion.

• Need to have an in depth knowledge about verification methodologies and its corre-
sponding languages.

4

Model based formal verification is useful if the semantics of an implementation code

and a verification model are represented under a single framework, such that the verifica-

tion model closely represents the implementation, and that the automation of a verification

process is natural.

In this dissertation the limitations of model-based verification are addressed with a new

language, called Load Balancing Domain Specific Language (LBDSL), that integrates the

implementation and verification of asynchronous load scheduling protocols under a sin-

gle framework tuned to the development of parallel asynchronous protocols for message

passing systems. By limiting the scope to a rather narrow domain, it is intended that such

language would help reveal the non-deterministic bugs present in the system, which other-

wise would be hidden and would reveal themselves only after the production is completed

for large systems. The intention is not to claim that this is the only approach that will lower

software development costs in terms of lowering verification costs. The only intention is

to demonstrate that this is one of the approaches that can be used in the efficient develop-

ment of parallel load scheduling protocols (PLSP). It can be one step towards developing

a robust verification framework for PLSP.

1.2 Approach to solve the problem stated

The domain specific language (DSL) approach used in this thesis is not a new concept.

Some of the research efforts that use a DSL concept to obtain a verified application have

used in Promela++[11], Teapot[19] and Rebecca[72]. However, its applicability to verify

the parallel applications, especially PLSP, has not been explored yet. Simply stated, a do-

5

main specific language is a mini-language that is designed to solve problems in a particular

domain. This approach has been suggested as a means to develop reliable software [39]. It

can be viewed as a programming abstraction that contains notation supporting a particular

application domain and is based upon the relevant concepts and features of an applica-

tion domain. Behaviors of a specific domain are projected in its specification framework.

Figure 1.2 provides a general concept about domain specific language.

Figure 1.2

Concept of a Domain Specific Language

This dissertation shows, through case studies, that the components of LBDSL help

simplify the understanding and identification of the essential parts of PLSP. LBDSL al-

lows viewing and differentiating the relevant and irrelevant components of a protocol in

terms of detecting deadlocks and race conditions, and offers guidance towards developing

a strong verification model. The implementation of a PLSP specification in LBDSL also

helps to remove the unwanted computational details that have no effect in determining the

6

correctness of the protocol, and can complicate the verification process if present in the

verification model.

The design of the LBDSL language is done in an iterative fashion and is based upon the

case studies conducted. The first case study is the implementation of a probe-based central-

ized load scheduling protocol. This case study helps to identify the essential components of

the LBDSL language to properly represent the domain of PLSP. Two further case studies,

multithreaded-load scheduling protocol and hierarchical load scheduling protocol, helped

to realize new features to be added to the language.

The design of the LBDSL provides notations for representing processes, message com-

municated between the processes during task distribution, and the medium of communi-

cation between the processes. It also provides a way of representing the verification ir-

relevent features of PLSP as an opaque component such that they have no effect in the

verification process. The language structure also supports the automatic generation of both

an executable code in a desired high level language and a verification model in a specific

verification language. The model checking approach is used as a verification back-end for

the LBDSL framework. By combining model checking concept with a domain specific

language approach, it is hoped that the overall productivity for developing a verified and

robust PLSP will be greatly improved.

Therefore, this dissertation shows that the associative cost required to generate a sepa-

rate model, independent of protocol implementation, can be decreased if the semantics of

the protocol are embedded into a language abstraction. The embedded information about

the logical structure of the protocol can facilitate an automatic extraction of a verification

7

model. The process of protocol development and verification is then possible in a single

step. It also shows that the components of the LBDSL facilitate identifying the essential

features of a protocol, and therefore have the potential benefit of helping the ddesign of

parallel load scheduling protocols more productively.

The major contributions of this dissertation can be summarized as followings:

• The concept of using a domain specific language to be used in the design of an error-
free parallel load scheduling protocols for distributed systems is studied.

• A new domain specific language is presented that unites twin goals of protocol veri-
fication and error-free protocol construction under a single framework.

• The practical implementation of this approach is demonstrated by developing three
different types of load scheduling protocols in the LBDSL language.

1.3 Summary

It should be clear that the motivation of this work is not to develop a safety critical

system, but to develop a mechanism which can be used to reduce the cost associated with

the development of an error-free parallel system. In this regard, the LBDSL verification

framework is different than other methods dedicated to develop a safety critical system,

such as B-method [63]. B-method provides tools and a process of developing verified

software through a process of formal specification and refinement. The LBDSL is not

addressing safety critical applications where software development costs are secondary to

correctness, but rather reduces the overall cost of developing high performance software.

The LBDSL language framework integrates the implementation and verification of parallel

asynchronous load scheduling protocols. It reduces the complexity of testing and debug-

8

ging protocols for subtle deadlock and race bugs which has the potential to significantly

lower the software development costs.

In the following chapter, an overview of existing debugging and verification techniques

for parallel applications is provided, and their limitations that motivates the need for a

protocol construction framework is highlighted. This chapter also justifies the reason for

which a language-based approach is appropriate. In the following chapters, an introduction

is provided to the LBDSL language and techniques used by the LBDSL verification frame-

work to compile the LBDSL program. The usability of LBDSL is then demonstrated by

implementing three types of dynamic load scheduling protocols, namely: the probe-based

centralized load scheduling protocol, the multi-threaded centralized load scheduling pro-

tocol, and the multithreaded hierarchical load scheduling protocol. Threats to the validity

to these case studies are analyzed next followed by conclusions and future work.

9

CHAPTER 2

LITERATURE REVIEW

In many high performance computing scenarios, work load has to be evenly scheduled

among available processors to maintain high efficiency and to maximize CPU utilization.

Dynamic load scheduling is generally adopted to adjust task allocation based upon the pro-

cessors’ current load distribution. In this scenario, asynchronous communication protocols

are generally utilized to coordinate collecting current load status information and to direct

the migration of load between processors.

Non-determinism introduced by the protocol asynchrony is a main source of catas-

trophic bugs such as deadlocks and race conditions in load scheduling protocols. System

non-determinism makes it very difficult to verify that an asynchronous load scheduling

algorithm is error free. It is difficult to verify that the protocols satisfy the safety require-

ments, such as freedom from deadlocks and race bugs, and the termination at valid end

states. Traditional approaches such as test case simulation, are tedious and error prone.

They tend to produce false negative result due to their incapability of capturing all possible

executions of an asynchronous application. A number of research efforts have been carried

out to develop verification methods for generating error-free asynchronous application.

10

This chapter will start by discussing the parallel load scheduling protocols being used in

high performance computing. Then, various research efforts in developing the verification

tools and techniques for parallel applications will be discussed.

2.1 Load Scheduling in Distributed Systems

The interest on distributed computing has grown considerably in recent years. A dis-

tributed system [79] consists of independent processing nodes linked through a communi-

cation network and appears to the users as a single system. Processing nodes communicate

with each other in order to achieve a common goal such as minimization of execution time

and maximization of resource utilization. The processing nodes in a distributed system

may be heterogeneous in terms of processing power and work load. In addition, tasks

assigned to these processors may widely vary in their computational complexity. This

heterogeneity in processing nodes and tasks may lead to unbalanced load in the system.

Therefore, the important issue in such systems is the development of the effective tech-

niques to distribute the parallel load to the processing nodes efficiently in order to achieve

the desired goal. The method of load distribution among the processing nodes is generally

termed as load scheduling. In a distributed system, a load scheduling algorithm determines

the processing node responsible for executing tasks. Several research efforts are found in

the literature that demonstrate the usefulness of load scheduling algorithms. This section

discusses some research efforts that are used for load scheduling.

11

2.1.1 Static Load Scheduling

In static scheduling[68], assignment of tasks to processors is done before program ex-

ecution. This type of algorithm assumes that the information regarding the processing

resources and task execution time is already known at the compile time. These algorithms

are non-preemptive which means the task is always executed in the processor to which

it is assigned. The goal of static load scheduling is to achieve efficient execution time

while minimizing the inter-processor communication. This type of algorithm is useful if

the complexity of workload is known prior to execution and does not vary during run-

time such that initially balanced partition gives the optimal result. Chaco[38], METIS[10]

and SCOTCH[61] are some examples of static partitioning tools that support static load

scheduling.

2.1.2 Dynamic Load Scheduling

Dynamic load scheduling does the redistribution of tasks among the processors dur-

ing execution. This redistribution is performed by transferring the load from heavily

loaded processors to lightly load processors to utilize the available resource. Dynamic

load scheduling is useful for applications where processor workloads vary during run-

time. Optimal performance is achieved in such applications by dynamically distributing

the workload among processors. Dynamic load scheduling algorithms are used in many

applications in high performance computing, ranging from adaptive mesh refinement to

contact detection algorithms[13]. PLUM and Charm++ are the example of some tools that

supports dynamic load scheduling.

12

2.1.2.1 PLUM

PLUM[59] is used to balance the imbalance caused by mesh adaption among proces-

sors in a distributed system. This tool dynamically balances the load among the processors

with a global view. PLUM framework performs Mesh adaption, remapping, repartitioning

and processor assignment. These actions are executed rapidly and efficiently to reduce

significant overheads during numerical simulation. Its data redistribution model predicts

the remapping cost and determines whether or not the gain from balanced workload dis-

tribution offsets the cost of data movement. This framework has proved to be an effective

dynamic load balancing tool and demonstrates the significant performance improvement

even when the number of processors is large.

2.1.2.2 Charm++

CHARM++[47] is a portable and concurrent object-oriented system based on C++ in

which work loads are dynamically created during its execution. The implementation of

dynamic load scheduling algorithms in CHARM++ manages irregular parallel computa-

tions as a result of dynamically created work loads. Charm++ implements the following

two types of dynamic load scheduling algorithms: centralized and hierarchical. In cen-

tralized load scheduling algorithm, one of the processors is chosen to be scheduler. Other

processors send newly generated tasks to the scheduler. The scheduler buffers new tasks in

a prioritized queue and assigns them to worker processors. Worker processors periodically

update their load information to the scheduler by either periodically sending a message

or by piggybacking a message along with a new task request. The scheduler uses load

13

scheduling policies to maintain the work load of each processor within a range of allow-

able load. The main drawback to this approach is the excessive memory requirement and

bottleneck for the central scheduler as it has to store the tasks sent by all worker processors.

In a hierarchical load scheduling algorithm, CHARM++ groups a number of processors

into clusters. Each cluster consists of its own scheduler. The processors in each clusters

sends the task and load information to its corresponding scheduler. Load schedulers are

responsible to distribute load and maintain an allowable load among the processors within

a cluster. The schedulers of all clusters communicate with each other to balance load and

priorities among them to prevent task imbalance in clusters. Schedulers exchange their

load information and migrate tasks to other processors (or clusters) based upon the infor-

mation exchanged. If all schedulers are balanced, they exchange a fixed number of highly

prioritized tasks. This mechanism is called prioritized load balancing. If the schedulers are

not balanced, then the scheduler with a heavier load sends the tasks to the scheduler with

lighter load. This mechanism is called task-load balancing.

2.1.2.3 LBtool

LBtool[20] is a general-purpose dynamic load balancing tool that is developed at Mis-

sissippi State University. Applications with computationally intensive parallel loops use

this tool to perform load balancing. This tool is based on the MPI library and is suitable

for those applications that use the distributed pool of independent tasks. LBtool allows

applications to dynamically schedule the execution of chunks of loop iterates and directs

the transfer of data between the processes. This uses the dynamic load scheduling policies

14

discussed above to compute the chunk size during redistribution. LBtool can be used to

parallelize sequential applications with parallel loops or to implement load scheduling in

an existing parallel application.

A dynamic load scheduling algorithm is composed of two important factors: load

scheduling policies and communication protocols. Load scheduling policies are used by

load scheduling algorithms to balance the load among the processors and minimize the

overhead in computing the schedule of iterations. Load scheduling policies can be static

or dynamic. Lets assume there are N independent iterations to be scheduled among P pro-

cessors. Static load scheduling policies schedules N/P iterations to be performed by each

processor. However, there are different variations of dynamic load scheduling policies

such as fixed sized chunking [50], guided self scheduling [62], factoring [40], fractiling

and adaptive weighted factoring[18].

The type of dynamic load scheduling algorithm is determined by where the policies are

executed. In a centralized algorithm, these policies are executed by the central scheduler.

In a distributed algorithm, all processors in the system execute these policies. Processors

frequently communicate with their neighbors to exchange their load information. Central-

ized load scheduling algorithms suffer from scalability problems, especially in machines

with a relatively small amount of memory. On the other hand, distributed load scheduling

algorithms tends to yield poor load balance on large machines due to the incomplete in-

formation of the system. Hierarchical load scheduling algorithms is the balance between

these two extremes where the processors are divided into different autonomous groups,

which are organized in a hierarchy, decentralizing the load balancing process.

15

Other forms of load scheduling approaches have also been discussed in the literature.

A gradient load scheduling algorithm is one of them, in which task movement from heav-

ily loaded processors is directed by a pressure gradient that is established by the task re-

quests from nearby idle processors [53]. The balanced system is achieved by successful

task migration to requesting processors. Similarly, a drafting communication protocol for

dynamic task migration is another form of load scheduling approach [58]. A three level

system, namely heavy, normal, and light is used to categorize the processors based upon

their work load. Processors communicate only with a group of processors termed as candi-

date processors. A lightly loaded processor requests a heavily loaded processor to send the

bid for task migration. Tasks are migrated to the lightly loaded processor after it receives

a select message from that processor. Multi-threaded load scheduling is an important ap-

proach being discussed in literature [80]. This approach allows multiple processes to exist

within the context of a single processor.

Communication protocols have an important role in dynamic load scheduling[74]. The

decision of task re-distribution is done at run time and is based on the current loading in-

formation of processors. The effectiveness of a dynamic load scheduling hinges on the

effectiveness of the communication protocol. Various communication protocols have been

proposed for dynamic task migration. There are basically two types of communication

for message passing systems: synchronous and asynchronous [44]. A synchronous com-

munication requires the sender and receiver to wait for each other to transfer a message.

In this protocol, the sender is not allowed to contribute unless the receiver acknowledges

the receipt of the message. Synchronous communication contributes to undesired and un-

16

controlled waiting and even deadlock. Asynchronous communication delivers a message

from sender to receiver, without waiting for the receiver. An important advantage of asyn-

chronous communication is that it allows overlapping of computation with communication

since a processor does not need to wait for the completion of a communication. Asyn-

chronous communication protocols are desired to be error-free as their performance has

a great impact on load scheduling process. Different testing and verification techniques

that are being used to obtain an error-free communication protocols are discussed in the

following chapter.

2.2 Debugging Techniques for Parallel Asynchronous Systems

This section reviews the research efforts in developing the deadlock detection tools that

facilitate the debugging and verification of parallel applications.

2.2.1 Debugging Tools for MPI Applications

Message passing interface (MPI)[2, 3] is a commonly used standard used in the de-

velopment of parallel applications in high performance computing. Unfortunately, the

richness of the MPI standard and its inherent non-deterministic behavior has made it dif-

ficult for programmers to use it efficiently and correctly. Numerous research efforts have

been conducted to develop debugging tools and mechanisms for MPI applications such as,

MPI-Check[54], MPIDD[31], UMPIRE[78], MARMOT[49], and MUST[66]. Following

subsection gives a brief overview about these debugging tools.

17

2.2.1.1 MPI-Check

MPI-Check performs by changing the MPI program where MPI calls are replaced with

modified arguments. The arguments provide information about the line number where the

MPI call has been made and the information is stored in a database. Therefore, the debug-

ging process in MPI-Check occurs in two phases: program instrumentation and execution

of instrumented program under the control of MPI-Check. MPI-Check performs deadlock

detection by creating dependency graphs from calls made for point to point and collec-

tive communication. It reports a potential deadlock using timeouts where the dependency

graph is not resolved in a user specified time. Deadlock-detection using timeouts is prone

to false positive result for applications with long computation phases

2.2.1.2 MPIDD

MPIDD performs deadlock detection by analyzing the execution trace of parallel pro-

gram. It has a central manager that traps MPI calls using PMPI. The central manager runs

as another MPI process. The trapped information trace is sent to this process using MPI

calls. The central manager then creates the dependency graphs of execution trace and per-

forms a depth first search for deadlocks in the dependency graph. The major disadvantage

of this tool is that it cannot precisely characterize the operations that constitute deadlocks

with wild card receiving calls.

18

2.2.1.3 UMPIRE

UMPIRE uses timeout mechanism and dependency graphs for deadlock detection. It

performs deadlock detection by analyzing the execution trace of a parallel program. It can

detect deadlocks caused by blocked calls and deadlocks involving spin loops over non-

blocking completion calls. Similar to MPIDD, it has a central manager to trap MPI calls

using PMPI. Unlike MPIDD, it runs as a separate process and communicate with other

processes using shared memory. Similar to MPIDD, it also cannot precisely detect the

deadlocks related to wild card receives.

2.2.1.4 MARMOT and MUST

Similar to MPI-Check, MARMOT also uses timeout mechanism to detect deadlocks in

MPI programs. It traps the communication calls using the MPI profiling interface. How-

ever, a dependency graph is not created using this tool. Similar to MPI-Check, this tool is

also prone to giving false positive results for applications with long computation phases.

MUST is a MPI runtime error detection tool that combine the capabilities of MAR-

MOT and UMPIRE. It uses Profiling MPI for the underlying infrastructure along with the

set of fine grain modules that implement MPI checks. It can execute correctness checks

either in an application process or in extra processes to offload the analysis. It resolves the

scalability issues of UMPIRE and MARMOT.

19

2.2.2 Deadlock Detection of Parallel Multi-Threaded Applications

Nondeterminator [29] is an on-the-fly race condition detection tool, designed to debug

parallel programs written in a CILK [15] language. Cilk is a general purpose programming

language designed for multithreaded parallel computing. Nondetermintor for CILK pro-

grams is aimed at locating determinacy races. Determinacy races occur in parallel applica-

tions due to race conditions, making a program behave non-deterministically. The original

Nondeterminator was a serial program that was used to debug a parallel multithreaded

application. Parallelization over the serial approach has been done on the latest version

of its race detector. The debugging process of nondeterminator starts by instrumenting

each read and write statement in a user’s program. This allows the debugging CILK com-

piler to perform determinacy-race checking at runtime. An execution of an instrumented

CILK program occurs in depth first fashion, generating a directed acyclic graph (DAG)

with nodes representing the computation and edges representing the processing threads.

The compiler of CILK performs race-checking action on the generated DAG when read,

write, and parallel control statements are executed. A debugging tool keeps track of a

series-parallel relationship between the threads to detect race conditions on DAGs, giv-

ing an approximation of the existence of data-race conditions. Tracking a series-parallel

relationship is a process of determining the logical operation of current thread (series or

parallel) with certain previously executed threads. Nondeterminator typically verifies that

a program is race-free and produces same end behavior for a given input data. However, it

does not verify that a program is free of race conditions for those input data sets that are

not used in the debugging process.

20

2.3 Deadlock Detection using Formal Verification

Formal verification methods [14, 9] hinge on the use of mathematical logic for verify-

ing the correctness of a program. It views a program as a mathematical object with well

defined behavior. While the debugging tools described in the last section explores some

of the possible behaviors of system, the formal verification approach explores all possible

behaviors of a system and gives confidence that the system is completely verified in prin-

ciple. There are mainly two approaches to formal verification: proof-based approach and

model-based approach.

2.3.1 Proof-Based Formal Verification

Theorem proving belongs to the category of proof-based approachs. The basic ingredi-

ents of the theorem proving method are axioms, theorems, and inference rules. In theorem

proving, the system under verification is modeled as a set of logic formulae τ called ax-

ioms. Property specifications that the system should satisfy are represented as theorems φ.

Inference rules are then applied to find a proof that τ ` φ. The inference rules represent

the verification path. PVS[60] is an example of a theorem proving tool. PVS provides an

environment for writing specifications of a system and developing proofs. It has been used

to verify several parallel and distributed protocols such as verification of protocol designed

for a dynamically scaled aircraft [30]. The theorem proving technique has the ability to

model parametric systems or infinite state systems. However, this method is not fully au-

tomatic. It requires a considerable amount of user intervention and technical expertise to

create the specification for establishing a logical deduction. The cost of using this tech-

21

nology in industry is very high. There are many success stories where a complex system

has been verified by theorem provers, but industrial acceptance of this technique is still

minimal. Unlike model checking methods, this method lacks the generation of a counter

example. When a proof attempt fails, this technique fails to clarify whether the system is

not correct or the theorem has not correctly modeled the system.

2.3.2 Model-Based Formal Verification (Model Checking)

In early 1980’s Clarke and Emerson proposed a model checking method for automatic

verification of finite state concurrent systems[23]. The model checking technique performs

an exhaustive depth first search on the finite state model of a given system, and automat-

ically verifies whether the model meets the given specification. This technique is used in

the verification of hardware or software systems. Generally, the specification contains the

safety requirements such as absence of deadlocks and race conditions.

Model checking algorithms can only be applied in a finite state system[21]. Properties

to be verified against the system are expressed in temporal logics [67]. Model checking is

based on temporal logic which states that a particular property is not statically true or false

in all the states of a model rather it can be true in some states of the model and false in

others. System properties expressed in temporal logics change their truth value along with

the system transition from state to state. Such a transition system is represented by a model

µ and the properties are represented by a formula φ. An efficient and flexible search proce-

dure is used to find correct temporal patterns in finite state graphs of concurrent systems.

The search process enumerates all reachable states and possible transitions of the mathe-

22

matical model to verify whether or not µ satisfies φ. This process always terminates with a

yes or no answer if sufficient memory is available. This method has some advantages over

the theorem proving process. It requires no proof deduction and is easier to implement. It

has the ability to generate a counter example in case the verification fails, which helps not

only to show that the system contains bugs, but also to trace the source of the bugs.

Different model checking tools are available to facilitate model checking. These tools

take the abstract model of the system written in a verification language as input and the

property specifications represented in temporal logic. Spin [36], MURPHI [25], SMV [23]

and BLAST [12] are the examples of some of popular model checking tools.

2.3.2.1 Spin

Spin is a general model checking tool that facilitates the design and verification of

asynchronous systems [65]. Promela is the input language of this tool. The verification

model of the system is written in Promela specification language and is used by Spin to

prove the correctness of process interaction in an automated fashion. Promela supports the

modeling of asynchronous distributed algorithms as non-deterministic automata. Proper-

ties to be verified against the verification model are expressed as Linear Temporal Logic

formulas. During the verification, these are negated and converted into Buchi automata

which are done automatically by Spin.

Spin uses the explicit state space enumeration mechanism. It explores all possible

execution states of the model and checks the specified properties against them. In addition

to model checking, it can also operate as a simulator, demonstrating one possible execution

23

path of the system. It uses mechanisms such as partial order reduction, state compression,

and bit state hashing to reduce the number of states to be explored, and thus speeding up

the verification process. By default, Spin can verify following safety properties: freedom

from deadlock, proper termination of processes at valid end state and complete transfer of

messages to correct recipients.

2.3.2.2 MURPHI

MURPHI is another model checking tool used in Microprocessor industry for ver-

ifying the cache coherence protocols. Its input language is also called Murphi. The

main building blocks of this language are global variables and guarded commands in a

guard->action notation. Similar to Spin, MURPHI also use an explicit state space

enumeration mechanism. The state exploration is performed as a depth first search or

breadth first search of the state space. Murphi was originally developed by Professor

David Dills group at Stanford. Many versions of Murphi have since been developed by

the same group and other research group. An MPI based distributed implementation of

Murphi called Eddy Murphi [57] is one such example that can do the parallel and dis-

tributed model checking.

2.3.2.3 SMV

The SMV [23] model checker is mostly used for the verification of hardware systems.

Similar to Spin and MURPHI, it is also an explicit state model checker, but it uses ordered

binary decision diagram(OBDD)[16] based symbolic model checking approach to reduce

state space required to store enumerated states. A binary decision diagram is a data struc-
24

ture that is used to represent a boolean function. BDDs are generally used as a compressed

representation of sets or relations in order to reduce the state space requirement during

formal verification.

2.3.2.4 BLAST

BLAST [12] is another model checking tool that is used for the verification of software

applications. It is based on the principle of counter example guided software abstraction

known as CEGAR refinement. The CEGAR refinement process automates the model ex-

traction process using a top-down stepwise abstract refinement approach. BLAST does not

support the non-deterministic programs.

2.4 State Explosion Problem in Model Checking

Model checking methods seem to be an ideal choice for verifying asynchronous com-

munication protocols; however, the state explosion problem makes it difficult to employ

it for the complete verification of a system. The state explosion problem states that the

global states of a concurrent system with many processes can be enormous. This problem

is mainly observed in the systems having many components that interact with each other

during the execution. In the model checking process, the system to be verified is repre-

sented as a kripke structure, a type of non deterministic finite state machine. An example

of a kripke structure of a coffee vending machine is given in Figure 2.1

In this example, vertices represent states of a system, edges represent transition func-

tions between states, and the label of vertices represents a set of atomic propositions that

states have to satisfy. For a system consisting of n non-interacting processes each with k
25

Figure 2.1

Kripke Structure of Coffee Vending Machine

local states, a possible number of reachable states is kn. For example, a state transition

system with n bit counters have 2n states [22]. Complete verification of an asynchronous

system using a model checking method is therefore expensive. A properly abstracted veri-

fication model should not suffer from state explosion problem. An abstract representation

of a system can either be a model with small state space which can be fully verified, or a

model with large state space, which cannot be verified under available system resources.

Therefore, it is very important to have an in-depth knowledge of an application to design

its verification model for efficient model checking. In addition to domain knowledge, it

is also required to have very good concept knowledge about model checking tools and an

understanding of the limitation of model checking process. Generally, the system to be ver-

ified is written in high level language like C++ and Java but the specification language of

model checkers have a very low level of expressiveness compared to commonly program-

ming idioms. Lack of expressiveness of specification language makes it hard to represent

the complex semantics of a system in an abstract representation. Model extraction is also a

manual process for classic model checkers such as Spin. Manual model extraction is error-

26

prone and expensive for large systems. The verification result of the abstract model can

produce false positive results because the model may not be a proper representation of the

real system. Manual model extraction also leads to an iterative process of updating both

model and implementation with changes in system specification. The necessity of a model

checking process, requiring the models in specific input language of model checkers, is

another limitation of the model checking approach.

2.5 Automatic Model Generation in Finite State Verification

The model checking approach can be more attractive if the manual model generation

step can be completely eliminated. There has been research on automated model extrac-

tion approach. The main objective of automatic model extraction process is to automate

generation of a verification model. In this approach, a model extractor is designed that can

generate a verification model from given specification and verify the system at the same

time. A system specification can be in some specific languages or in high level languages

such C++ or Java. An algorithm to automatically generate a Promela model from the sys-

tem specification written in C using two parsers exists, where the first parser extracts the

control structure of the system and the command boundaries [37]. Second parser builds an

abstract model of the system with the help of a manually created lookup table and a model

template. The lookup table contains source code in C on the left and its corresponding

abstract representation in Promela on the right. The model template contains required data

declarations and an outline of the required process declarations. The outline is filled later

with detailed behavior specifications while extracting a model. This approach automates

27

the process of model generation covering 75% of code leaving only 25% of code to be

written manually [35]. Feaver[34] is another tool that applies similar kind of approach to

auto generate a verification model directly from source code and verify them. It is a model

extractor for C or C++ programs. Automated model extraction process has also been suc-

cessful for programs written in Java. Bandera [24] and Java pathfinder [32] are some model

generation tools that works for Java programs.

2.6 Model checking of MPI Applications

Finite state verification of MPI applications has already been studied in literature [5].

The Verified Software Laboratory(VSL) at the University of Delaware conducts research

on verification of MPI applications using model checking [9], [69], [70]. Similarly, Formal

verification group at the University of Utah conducts research on formal verification of MPI

applications at code level. The following subsection elaborates the on-going research in

detail.

2.6.1 Representation of MPI primitives in Promela structure

Addressing the issues related to modeling of MPI semantics in a Promela structure

is an important research topic and is considered by the VSL[71]. Only a subset of MPI

primitives that includes blocking point to point communications, excluding the wildcard

receive primitives such as MPI ANY SOURCE and MPI ANY TAG, are considered for

this study. MPI Send is a blocking send primitive and does not return until the message

transfer operation is complete and the send buffer can be re-used. To model this behavior

in Promela for channel size greater than zero, a blocking statement is introduced until the
28

Codelet 2.1

MPI Send in Promela structure

1 i n l i n e MPI Send (schan , msg){
2 schan ! msg ;
3 i f : : 1 −>empty (schan) : : 1 f i
4 }

channel is empty. Let schan be the channel and msg be the data, then standard MPI Send

can be modeled in Promela as showm in Codelet 2.1.

Here, the second statement represents the send operation and the third statement repre-

sents the blocking statements. Third statement is true until the channel is empty. Similarly,

MPI Recv and MPI Sendrecv can be modeled. Like general applications, verification of

MPI applications can also suffer from the state explosion problem. Although the Spin

model checker implements state reducing algorithms to address this problem, it is too

generalized and ineffective for the domain of MPI applications. The complexity of the

semantics of MPI programs makes state reduction algorithms applied in Spin ineffective.

Additional work has to be done to limit the state space. Different theorems have been de-

duced which makes the model checking process more tractable for asynchronous systems.

These theorems also help in pinpointing potential deadlock situations.

2.6.2 Techniques to address state explosion problem for MPI applications

The first theorem states that, “For any standard MPI point to point communication

without wildcard receive, the model is said to be deadlock free if it is synchronously

deadlock-free”. This theorem addresses the problem of large state space of asynchronous

29

systems, compared to their synchronous counterparts. It is one way of applying abstraction

to asynchronous MPI applications. Similarly, introduction of a barrier to the system may

affect the verification process. Another theorem states that, “If a model having a barrier

is deadlock-free, then the original system is also deadlock-free ”. Applications of these

theorems during the modeling phase helps reduce the state space of MPI applications and

finite state verification technique can be applied effectively.

Theorems to effectively model wild card free MPI applications have also been intro-

duced [9]. In these theorems, introduction of barriers to reduce the state space and model-

ing of barriers in an abstract way are discussed. Channel size can also increase the number

of states visited caused by the varying number of pending messages in the channel. This

problem can be addressed by modeling the channel depth in such a way that the number of

pending messages never exceeds a limit.

2.6.3 Representation of MPI Wild- Card receives and Non-blocking communication
in Promela

The MPI application domain is further expanded to explore the verification of halting

properties in MPI programs that have wildcard-receives and MPI programs that executes

non-blocking operations [69]. A parallel system is said to be halted if all processors of the

system have stopped executing either due to normal termination or due to deadlock condi-

tion. Freedom from deadlock is one of the halting properties. Theorems about wild card

free communications are extended to cover non-blocking wildcard communications. The

Urgent algorithm is introduced that deals with MPI wildcard receive MPI ANY SOURCE

by moving between synchronous and buffering mode search for commutative executions

30

in the state space. The Urgent algorithm is similar to a partial order reduction. It is claimed

to have drastically reduced the number of states explored even when partial order reduction

methods are applied and improved the model checking process. This algorithm does not

require explicitly modeling all the possible executions of MPI application.

2.6.4 MPI-SPIN

In order to make modeling of MPI processes more effective the general version of Spin

is extended to a new library called MPI-Spin [70]. The Model checking process verifies

the model instead of the actual system. The Verification model of the MPI programs need

to be written in Promela. However, Promela does not contain the programming expressive-

ness required for MPI applications and does not contain notions about MPI primitives. A

deep expertise on both the semantics of MPI primitives and the shortcomings of Promela

language is required to design an effective verification model of MPI application in the

Promela language. The main purpose of MPI-Spin is to ease the design of the verifica-

tion model for MPI applications. It ensures correctness of MPI primitives representation

in Promela semantics. It provides many commonly used MPI functions, constants, and

types including those used for non-blocking point to point communication. By default,

this extension of Spin verifies some generic properties as follows:

• Freedom from deadlock.

• Two incomplete requests do not exists whose buffers intersect non-trivially.

• Total number of outstanding requests never exceeds a specified bound.

• When MPI finalize is executed there are no request objects allocated for and there
are no buffered messages destined for the calling processes.

• Size of the incoming messages is never greater than the size of the received buffer.

31

2.6.5 ISP

Insitu Partial Order (ISP) is another tool developed for formal verification of MPI ap-

plications [76]. This tool is developed at Formal Verification Lab at University of Utah.

ISP is similar to Spin, as it also verifies the safety properties of state space representation

of the application. However, it does not require a separate verification model to perform

verification. It performs code level verification, meaning it verifies all relevant interleaving

of a MPI application by replaying the actual program code. ISP has been used to success-

fully verify a MPI application having up to 14,000 lines of code for deadlocks and assertion

violations.

2.7 Domain Specific Languages

There are basically two types of languages for designing a system: generic languages

and domain specific languages [77]. Generic languages provide a framework to write a

general solution for many problems, but the solution may be sub-optimal. On the other

hand, a domain specific language (DSL) provides a specific framework that provides a

better solution for a smaller set of problems.

A DSL is a programming abstraction that provides notation supporting a particular ap-

plication domain and is based upon structures and features of the application domain. The

concept of the DSL has been also used for the automatic verification of parallel and dis-

tributed applications. A new language is designed to support the development of error-free

applications. As discussed, the major drawback of the model based formal verification

method is the lack of expressiveness and inconsistencies in the behavior of a resulting

32

model with respect to its original system. And therefore, there is always a lack of confi-

dence in the verification result obtained from the model checking process. A DSL based

finite state verification approach can address this problem in terms of providing a sufficient

expressive power to make the specification task reasonably straightforward. The concept

of domain specific language has been used to ease model checking complex applications.

Promela++, Teapot and Rebeca are some example of such domain specific languages.

2.7.1 Promela++

Promela++ [11] is a language based approach designed to construct an error-free com-

munication protocol. Communication protocols considered in this work are based upon

layered protocol stacks. The layered protocol stacks approach divides the protocol into

distinct layers and each layer performs some unique function independently of the other

layers. The layering concept is similar to that of TCP/IP or OSI communication proto-

cols. The Promela++ is an extension to Promela which allows the protocol developer to

specify the control flow of protocol layer in C like language. Promela++ compiler is de-

signed to convert the Promela++ code into Promela. The safety properties are specified

in the same way as they are specified in Promela. This approach does not guarantee the

absolute correctness of the program; however, it is used to trace major logical errors. Gen-

eration of C code from the Promela++ is done with the help of event handlers for each

protocol layer. Each event handler constitutes a co-routine that asynchronously processes

the events. These co-routines generate appropriate corresponding C code from Promela++

33

specification. Promela++ has two major deficiencies. It does not support explicit memory

allocation primitives like malloc() and it does not have any support for timers.

2.7.2 Teapot

Teapot [19] is another domain specific language designed to construct verified cache

coherence protocols. Cache coherence can be defined as the consistency of data stored in

local caches in shared resources. It is an important issue in parallel and distributed systems,

in which local replicas of shared data are created to improve scalability and performance.

A cache coherence protocol is an algorithm that manages the required consistency of the

cached copies. Teapot has two major functionalities: first, it translates the teapot protocol

into executable C code and second, it generates an input code for the model checker Mur-

phi. Murphi then detects violations of the specifications in the protocol. A teapot program

consists of a set of states with each state specifying a set of message types and the action to

be taken in response to a particular message. A distinct feature of teapot is to structure the

control flow of protocol using continuation, rather than a flat state machine. Using contin-

uation, it is not required to complete all the actions of one state before moving to another

state. The program execution can move back and forth between states by suspending the

action of one state and then moving the program control to another state and executing

its corresponding actions and later resuming the actions of suspended state. The overall

system of Teapot consists of the following: a teapot compiler which translates the protocol

written in the Teapot language into either C or Murphi based upon desired functionality.

The Teapot compiler consists of a C backend and a Murphi backend. C support routines

34

and Murphi support routines are also required when converting to respective C code and

Murphi code.

2.7.3 Rebeca

Rebeca[73] is an actors[6] based modeling language with a formal foundation whose

objective is to bridge the gap between formal verification approaches and real applica-

tions. It can be considered as a reference model for concurrent computation, based on an

operational interpretation of an actor model. Object oriented concurrent systems can be

designed using this modeling language. The main advantage of using this modeling lan-

guage is twofold. First, it allows an appropriate and efficient way for modeling concurrent

and distributed systems. Second, it allows verifying such systems for correctness using

formal verification. Formal verification using Rebeca is supported by a set of verification

tools. Initially, Rebeca model translation tools were provided to translate rebeca code into

a specification language of model checkers such as Spin and NuSMV and verify the result-

ing model. Since 2005, it is supported by a direct model checker based on Modere[43].

Modere uses modular verification and translation techniques to reduce the state space of

given system. This makes it possible to verify complicated reactive systems. Modere also

uses the general state space reduction techniques such as partial order reduction and sym-

metry reduction.

2.8 Summary

This chapter covers different types of communication protocols that are used in load

scheduling algorithms and verification techniques to obtain error-free load scheduling pro-
35

tocols. Centralized and distributed are two broad categories of load scheduling protocols.

Distributed schemes tend to be more efficient than centralized schemes because of sharing

of the responsibility of managing load among many processors. Other schemes, such as

gradient scheme and prioritized scheme, are variants of distributed scheme. Asynchronous

communication protocols applied in load scheduling techniques are prone to subtle bugs

such as deadlocks and race conditions. Traditional testing mechanisms such as exhaus-

tive test case simulation are also of limited help. Non-deterministic behavior shown by

asynchronous systems makes it hard for the traditional methods to track all possible errors.

Hence, the generation of an efficient and correct communication protocol is a challenging

task.

Communication protocols can be synchronous, loosely synchronous or asynchronous.

Deadlock detection is easier in synchronous communication than asynchronous. Asyn-

chronous applications show the non-deterministic behavior and generate different results

in different executions even with the same set of input data. MPI is the most common

paradigm for writing parallel applications. There are also different debugging tools for

MPI applications. Some of these debugging tools require modification of MPI programs

and some require one extra processor to debug MPI applications. MPI debuggers also help

in debugging for general bugs found in MPI applications but cannot guarantee to cover all

possible interleaving of the application. Formal methods, a proven verification mechanism

for hardware and software, are also being also used for the verification of asynchronous

load scheduling protocols. This approach uses formal methods of mathematics for verifica-

tion of applications and provides a wide range of coverage on executions. Two approaches

36

of formal methods as mentioned in section 2.3 are: proof-based and model-based. Proof-

based approach uses inference rules and deduction logic for verification which requires

technical expertise for proof deduction and makes verification process harder especially

for large systems. Model checking is a simpler approach and is used in analyzing the

correctness of concurrent reactive systems. Various model checking tools are available to

facilitate the model checking process. The model checking process works on a finite state

model of the application system. Applying model checking techniques requires the origi-

nal system to be scaled down to an abstract representation of the model. Since the model

checking is done on the abstracted model, the generated model should contain all possi-

ble behaviors of the original system. Different model checkers have different specification

languages. A designer of the model should have expertise in the original system, model

checking tools, and also should be aware of the limitations of model checking process. The

need to generate an abstract model of the underlying system is a limitation for the model

checking process because creating a verification model manually is both difficult and error

prone. Inefficient model extraction also leads to a state explosion problem which is a major

obstacle for implementing model based formal verification in asynchronous systems. Vari-

ous research efforts to address the state explosion problem and an efficient model extraction

are also discussed in this chapter. Abstraction is the most commonly used approach, where

the size of the state transition graph is reduced by either eliminating the variables irrelevant

to properties of interest or by mapping actual values of the system with a small set of ab-

stract values. The resulting model will have a small state space which is feasible for model

checking. Other methods, such as partial order reduction or symmetry, are used along with

37

the abstraction mechanism. Model checkers need to understand the semantic knowledge

of the system to efficiently implement reduction techniques. For example, partial order

reduction is ineffective while verifying MPI applications using Spin because Spin cannot

handle the complex semantics of the MPI paradigm. A lot of manual intervention is re-

quired while designing an abstract model although the verification process is automated.

Ongoing research of how to model a system to make Spin handle the semantics of MPI is

covered in section 2.5. Model checking MPI applications are important because parallel

systems in high performance computing are commonly written using the MPI paradigm.

In any case, human errors (due to manual model extraction) can result in false negative

result in the verification process. This may increase the cost of verification, and therefore

reduce the usefulness of model checking. The requirement of manual effort in abstracting

the design also hampers the use of model checking of actual systems. Different techniques

are proposed in the literature to automatically generate an abstract model from the given

specifications.

Tools such as Bandera and Javapathfinder have been very successful in automatically

generating a model from Java specifications while minimizing manual intervention. Al-

though these automated model generation tools reduce the model extraction cost, it is not

completely automated and requires a great deal of human expertise. Successful verification

of the application requires the model to be a conservative representation of original system.

The model-based verification cannot guarantee that a model is a proper conservative repre-

sentation of an actual system and therefore verification result cannot be completely relied

upon. Implementation languages are not designed for verification. The extracted models

38

are either prohibitively expensive to verify or the models need significant culling in the ex-

traction process, thus limiting the confidence in the extracted representation. Model based

formal verification is useful if the semantics of an implementation code and a verification

model is represented under a single framework. The verification model should closely

represent the implementation making the automation of a verification process natural.

The domain specific approach discussed in section 2.7 discusses the works done to

bridge the semantic gap between implementation languages like C, Java, and verifica-

tion languages like Promela. Promela++, a domain specific language and an extension of

Promela, is the best example to use in describing this approach. Designing a new language

abstraction for a specific domain, which in this context are asynchronous communication

protocol, allows a sufficient expressive power to make the protocol specification relatively

easy for the protocol designer. In the case of protocol verification, Promela++, Teapot and

Rebeca, discussed in section 2.7, allows an efficient C code generation from the language

abstraction and also allows the verification of protocol correctness. Domain specific ap-

proaches correctly address semantic gap between actual system and the model extracted in

the model based formal verification approach. Single program written in certain domain

specific language can be compiled to efficient C code and can be used for the automatic

verification of protocol correctness against property specifications. An important advan-

tage of the DSL approach is that it reduces the cost of model extraction and also increases

the effectiveness of the model checking process. The model extracted is a conservative rep-

resentation of underlying implementation because of the embedded semantic knowledge

of the system in the DSL.

39

CHAPTER 3

LOAD BALANCING DOMAIN SPECIFIC LANGUAGE(LBDSL)

Domain specific languages (DSLs) are application oriented, special purpose language

that provide notions and constructs tailored towards a particular application domain. Asyn-

chronous load scheduling protocols are considered as a problem domain for the design

of Load Balancing Domain Specific Language (LBDSL). These protocols suffer from

more complex non-deterministic behavior, which is difficult and expensive to debug. Of-

ten times, apparently correct protocols turns out to have subtle problems that only reveal

themselves on large systems where failures are difficult to unwind. Such late discovery

of software faults makes the development of robust and sophisticated load scheduling pro-

tocols more costly than one might expect. In an approach where the implementation of

load scheduling protocol is verified to be free of deadlocks and race conditions, its devel-

opment cost should be significantly reduced. However, there is no such framework that

combines the necessary components such as ease of programming, modularity in protocol

specification, and finite state verification.

In this chapter, a domain specific framework is proposed to ease the development and

verification of load scheduling protocol for distributed systems. The structure of LBDSL

is inspired from the actor model [6], a mathematical model of concurrent computation that

40

treats “actors”as a universal primitive of concurrent digital computation. This chapter is

organized as follows. In section 3.1, an introduction to load scheduling in distributed sys-

tems is provided. In section 3.2, design requirements for a new domain specific language

are discussed. In section 3.3, a description about the actor model is provided. Section

3.4 introduces the main components of the LBDSL language. In section 3.5, syntactic

definition of LBDSL components is provided. Finally section 3.6 concludes this chapter.

3.1 Load scheduling in Distributed Systems

A distributed system consists of multiple autonomous processing units that commu-

nicate by message passing through a computer network. Each processor has their own

memory and processing power to execute a task. They interact with each other to solve

a common problem. A problem assigned to a distributed system is divided into many in-

dependent tasks and is assigned to one or more processors of the system. However, the

processing power these processing units may be heterogeneous, executing the assigned

task in a different speed. Similarly, tasks assigned to them may also be heterogeneous in

terms of their computational complexity, some taking more time to execute than others.

The heterogeneity in processing power and heterogeneity in load lead to an unbalanced

system resulting to a distributed system with poor efficiency. Load scheduling is a process

of improving the performance of parallel and distributed systems through a redistribution

of load among the processing elements, in order to maximize the resource utilization and

minimize the execution time [8]. There are two broad categories of load scheduling algo-

rithms: static and dynamic [42].

41

3.1.1 Static Load Scheduling

In static load scheduling, assignment of tasks to processors is done before program

execution begins. Information about the task execution times and processing resources is

determined at the compile time. A task assigned to a processor is never re-distributed to

another processor at run time. Static algorithms are non-preemptive. They never initiate

a context switch from a running process to another process. Examples of such algorithms

are round robin algorithms [48], randomized algorithms [1] and central manager algorithm

[8].

3.1.2 Dynamic Load Scheduling

In dynamic load scheduling, distribution of tasks to processors takes place during run

time[41]. Current workload of processors is taken into consideration for maximum utiliza-

tion of CPU time. Task is redistributed when a load imbalance is detected in the system.

Dynamic load scheduling may be carried out by a central authority [52] or may be dis-

tributed among the processing elements [47]. This dissertation is focused to the develop-

ment of dynamic load scheduling protocols. An implementation of both centralized and

distributed dynamic load scheduling protocols are discussed in [47].

In a centralized load scheduling, one of the processors is chosen to be the scheduler.

Other processors send newly generated tasks to the scheduler. Scheduler buffers new tasks

in a priority queue and assigns them to the worker processors. Worker processors periodi-

cally update their load information to the scheduler either sending the message separately

42

or by piggybacking it along with a new task request. The scheduler uses the load schedul-

ing policies to maintain the work load of each processor within a range of allowable load.

In a distributed load scheduling, processors are grouped in clusters. Each cluster con-

sists of its own scheduler. Processors in each cluster send the task and load information to

its corresponding scheduler. Load schedulers are responsible to distribute load and main-

tain an allowable load among the processors within a cluster. The schedulers of all clusters

communicate with each other to balance load and priorities among them to prevent task

imbalance in clusters. Schedulers exchange their load information and migrate tasks to

other processors (or clusters) based upon the information exchanged. Since the decision

of task re-distribution is done at the run time and is based on the current load informa-

tion of processors, effectiveness of a dynamic load scheduling hinges on the efficient and

error-free communication protocol [75].

Processors in a distributed system can communicate either synchronously or asyn-

chronously [45]. A synchronous communication requires both the sender and receiver to

wait for each other to transfer a message. Asynchronous communication does not require

such synchronization. A message transfer is completed from sender to receiver without

waiting for the receiver to be ready. The advantage of asynchronous communication is that

sender and receiver can overlap their computation because they do not wait for each other.

The main purpose of this dissertation is to provide a language-based framework for

construction of deadlock-free asynchronous load scheduling protocols for distributed sys-

tems. The following section discusses the design requirements for the new domain specific

language.

43

3.2 Design Requirements

The main objective of a domain specific language is to build the semantics of a prob-

lem domain into a mini-language so that software developers can easily design a software

for that domain using the language. Object identification and abstraction are the most im-

portant steps in the development of a specification language, where nouns and verbs to

describe a domain are identified.

The domain of dynamic load scheduling protocol is defined by two factors: a load

scheduling policy and a communication protocol. Load scheduling policy schedules the

execution of iterates in chunks with variable sizes. At any instant, it computes the size of

chunks and identifies a proper recipient process during task distribution. A dynamic load

scheduling policy uses current state information for task distribution. On the other hand,

a communication protocol defines the communication pattern during load scheduling. It

determines the process of interaction between system components to achieve the objectives

defined by the load scheudling policy. Therefore, a load scheduling policy selects where a

load should be distributed whereas a load scheduling protocol directs the transportation of

the load to a processor identified by the policy.

In a centralized load scheduling protocol, a central scheduler executes the policies and

manages load scheduling. Worker processors coordinate with the central scheduler to ob-

tain a task for execution. In a distributed load scheduling protocol, the role of the scheduler

is distributed among many processors. The processors coordinate with each other to deter-

mine the chunk size at any particular instant. A third type is the hierarchical load schedul-

ing protocol, which lies in between centralized and distributed load scheduling protocol.

44

In this type, a tree of schedulers exists where leaves are the workers. Each scheduler in a

tree controls the sub-domain. Information exchange and decision making occurs along the

scheduler tree. In summary, communication protocol defines the type of load scheduling

protocol.

An asynchronous load scheduing protocol allows overlapping of communication be-

tween the processors with the execution of load scheduling policies or work computation.

Such type of communications rely on non-deterministic execution in order to achieve high

performance. Unfortunately, non-determinism introduced by asynchronous protocols can

lead to catastrophic bugs such as deadlocks and race conditions which are difficult to detect.

A load balancing domain specific language (LBDSL) is designed to ease the generation

of deadlock-free asynchronous load scheduling protocols. Therefore, LBDSL framework

should facilitate an easy representation of asynchronous protocol specification in its struc-

ture. The single representation should be sufficient to generate an implementation code in

C++ (a high level language) and a verification model in PROMELA specification language.

The verification model can be then verified using SPIN model checker for possible dead-

locks and race conditions. Since the goal of LBDSL is to support automatic verification of

the protocol specification, the design of LBDSL should provide a mechanism to identify

the verification relevant components during protocol specification. For example, the result

of load scheduling policies does not play any role in the correctness of load scheduling

protocols. In this thesis, deadlock and race-condition free protocols are termed as correct

protocols. Correctness of a protocol is independent of a particular choice of chunk size

and recipient process computed by the load scheduling policies. It is, therefore, not re-

45

quired to represent the load scheduling policies in the verification model. However, the

rules of communication between the processes during task distribution play an important

role to determine the protocol is deadlock free and should be considered during protocol

verification.

The design of LBDSL should provide notations for representing processes, message

communicated between the processes during task distribution and the medium of com-

munication between the processes. It should also provide a way of representing the load

scheduling policies as an opaque component, such that they have no effect in the verifica-

tion process. It should also allow the modular specification of load scheduling protocol so

that the components can be used by creating their instance. The language structure should

support the automatic generation of both an executable code and a verification model. The

single representation of protocol specification in LBDSL should be sufficient to automati-

cally generate an implementation code in a desired high level language and a verification

model in a specific verification language.

The design of LBDSL is inspired from the actor model[6]. A summary about the actor

model is provided in the next section.

3.3 Actor Models

The actor model is a mathematical model of concurrent computation that treats “ac-

tors”as the universal primitives of concurrent digital computation. Similar to objects in an

object oriented system, the actor model adopts the philosophy that everything is an actor.

However object-oriented software is executed sequentially while the actor model is inher-

46

ently concurrent. Each actor has an address and a behavior associated with it. An actor can

influence the actions of another actor only by message passing. The recipient actor can act

to an incoming message by the following three ways:

• Send a finite number of messages to other actors.

• Create a finite number of new actors.

• Determine the behavior to execute for the next message it receives.

Actors execute these actions in a concurrent and non deterministic manner. Two mes-

sages sent by an actor can arrive in any order. An actor can send messages only to actors

whose addresses it knows. An actor can obtain the address of another actor either in a

message it receives or the addresses of actors it creates. Therefore, when an actor sends a

message to another actor, it also includes its address in the message.

The actor model can be summarized by having an inherent concurrency in computation

among actors, dynamic generation of new actors, inclusion of actor address in messages

and interaction between the actors through asynchronous message passing.

3.4 Introduction to LBDSL

LBDSL is an actor-based language and is considered as a platform for developing load

scheduling protocols for distributed systems. Formal verification approaches are used to

ensure the correctness of protocols developed using this language. The main components

of LBDSL language are: Processes, chunk of iterates, message types and communicat-

ing structure. In addition, LBDSL also provides commonly used programming constructs

such as constants and variables, conditional and loop statements, and basic mathematical

47

operations. The idea is to provide a language-based infrastructure to easily represent a load

scheduling protocol specification in a correct way and then generate a verified implementa-

tion code from it. The LBDSL provides a mechanism for embedding C++ code in LBDSL

programs. This allows integration of load scheduling polices and communication protocol

in a single framework. Role of each LBDSL components are described in the following

subsections.

3.4.1 Processes

LBDSL is similar to the actor model which consists of independent active objects

known as processes. The processes communicate by exclusively sending and receiving of

message types in a non-deterministic manner. The processes are composed of process vari-

ables, a set of states and transition functions. Any number of processes can be instantiated.

During protocol execution, each process must be mapped to a processor of a distributed

system. Multiple processes can be mapped to a single processor in a multithreaded load

scheduling protocol that supports preemption.

Any number of process variables can be declared with their scope local to the process.

The declared variables must be initialized before they are used. After variable initialization,

processes begin their execution from the start state. Every state but the end state consists

of actions to execute in that state and a transition function to next state. States of LBDSL

processes are labeled. State labels should be declared before they are used by the processes.

The declaration is global and any process can use the declared state label. However, it is

48

not necessary that every process should use all state labels. In other words, a process can

use only a subset of declared state labels.

Actions associated with each state of a process can be message transmission from other

processes or can be execution of load assigned to that process. Processes always make

transitions to the next state defined by the transition function. A process can be at only

one state at a time and the state is termed as current-state. It makes a transition to a new

state when triggered by a receive event or a change in the value of a process variable. State

definition of a process is local to a process and is invisible to other processes. End state

of a process defines the terminating condition for the process execution. A process always

terminates at the end state when the terminating conditions are satisfied.

Every process in LBDSL should be associated with a processtype. This value is mainly

useful for message communication in a multi-threaded architecture. Suppose a source

processor(Say, I) is executing two processes(Say P and Q). Processor address of both of

these processes will be the same. Suppose another processor(Say, J) is sending a message

to process P of processor I. J will, then, use the processtype of P to ensure that the message

will be received by a process P, not Q. Processtype is used by LBDSL communication to

ensure message is received by a correct process.

LBDSL also allows to define a special type of process in order to initialize the system

enviroment before executing load scheduling. Unlike regular processes, this process does

not contain states and transition function. It is not necessary to use this process while

implementing every load scheduling protocol. However, if this process is defined, it will

be executed by all the processors in the system before executing load scheduling protocol.

49

3.4.2 Chunk of Iterates

Communication between the processes performing the load scheduling is always asso-

ciated with sending and receiving of independent workloads or iterates. A group of iterates

in a iterate space is defined as a chunk. A chunk is an abstraction of the dynamic par-

titioning of the iterate space. There are different ways to define a chunk either defining

a starting point and an ending point, or by defining starting point and number of iterates

from the starting point. In LBDSL, a chunk is defined by the starting point of iterates in a

iterate space and total number of iterates from that starting point. Besides this information,

sometimes it is required to communicate estimated execution time of iterates, address of

the destination processor, estimated size of iterates and the action associated with iterates.

All this information defines the meta data of the chunk being communicated.

3.4.3 Messagetypes

Load scheduling protocol assumes that the pool of tasks is distributed among proces-

sors. Different types of messages need to be communicated based upon the degree of im-

balance in the system. In one scenario, when the processes are homogeneous, it is sufficient

to inform workers about their current workload by sending the meta data of a chunk. In

another scenario, when processes are heterogeneous and workload assigned to one process

need to be redistributed to another process, actual chunk is also required to be communi-

cated along with the meta data. These different types of messages to be communicated

during load scheduling process are represented as messagetypes in LBDSL.

50

There will be two message types for the scenario described above. Messagetype de-

fined for the first scenario is responsible for handling the communication of chunk meta-

data. Messagetype defined for the second scenario is responsible for handling the commu-

nication of both metadata and the actual chunk. Load information, either only metadata

of chunk or both metadata and the actual chunk, should be serialized before sending to

another process. Upon receiving the message, destination process deserializes the load in-

formation. The mechanism of message serialization and deserialization must be defined

in a message type definition. Messagetypes of LBDSL are, therefore, handlers used by

processes to communicate different types of load information to other processes.

A message type definition takes meta data of chunk as its input and performs the neces-

sary action. Every messagetype definition should always associate with two tasks: serial-

ization of message before sending and deserialization of message after receiving. Besides

these, any number of tasks related to the communication of load information can be asso-

ciated with a message type.

3.4.4 Communication Structures

Communication between the processes is carried out exclusively by sending and receiv-

ing of messagetypes through directional process queues. In order to model asynchronous

message passing, the capacity of a process queue is greater than 0. Each process is asso-

ciated with one process queue. A message instance to be communicated is defined by a

messagetype name, source process, destination process, processtype of destination process

and metadata of workload associated with the messagetype. Whenever a communication

51

is invoked, messagetype specified in a message instance associates itself with its definition

and prepares the load information based upon the type of communication. For example, if

the communication is related to sending of load information, then serialization of the load

information is performed. On the other hand, if the communication is related to receiving

of load information, then deserialization of the load information received is performed. A

process always makes transition to a new state after receiving a message. A transition to a

new state is guarded by the action defined under metadata received. It has to be noted that

the action defined in the metadata of workload is actually the state label. Besides send-

ing and receiving, a process can just check for messages without actually receiving them.

This checking operation can be either a blocking operation or a non-blocking operation.

A blocking operation will not return until it senses there is some message for its owner

process. Whereas a non-blocking operation just tests for message and resume its task if

there is no message for its owner process. If there is a message, the checking operation

can return the source and size of the expected message. This concept is useful when the

recipient process is receiving variable sized message and cannot anticipate the size of mes-

sage it will be receiving. In this case, size of the message need to be known beforehand

the actual communication to allocate the enough space for the buffer holding the received

message. Communication structures use processtype to ensure that messages has reached

to the proper destination.

52

3.4.5 Variables, variable types, constants and control structures

LBDSL supports the basic data types such as int, bool, double and char. Like structures

in C++, LBDSL also allows one to define user defined data types. A user defined data type

is a group of data elements under one name. These data elements are known as members

of the defined data type and can have different data types.

LBDSL also introduces the concept of variabletypes. The idea of variable types is to

allow the distinction in the usage of variables during their definition. Various variabletypes

defined in LBDSL are as follows:

• Compute variabletype: These variabletypes play a role in the computation of load
and execution of load scheduling policy. Variables defined as compute variabletype
can only be used in the embedded code. These variabletypes can be associated with
any basic data types such as integer, boolean, and double that are supported by C++
and also can also be associated with user defined data types.

• Convey variabletype: These variabletypes play a role in the communication process.
These variabletypes can be associated with integer and boolean data types and user
defined data types.

• Decision variabletype: These variabletypes are used in the decision making process
within the conditional and loop statements. These variable types can be associated
with either integer type or boolean type.

• Storage variabletype: These variabletypes represent arrays and buffers. These can
also be associated with any basic data types supported by C++ as well as user defined
data types.

All variabletypes but the storage variabletypes should be initialized during variable

declaration. LBDSL also supports the definition of constant values. Values defined as

constant can be associated with only the basic data types allowed in LBDSL.

LBDSL supports the concept of conditional programming and loop programming.

Conditional programming is a feature of LBDSL that executes different computations or

53

actions depending upon whether a programmer-specified boolean condition evaluates to

true or false. This type of programming selectively alters the control flow of the program

based on the given conditions. Control flow refers to an order in which individual state-

ments or actions are executed or evaluated. An example of conditional programming is the

If-Else statement in C++.

Similarly, loop programming is a feature of LBDSL that executes a sequence of state-

ments which is specified once but which may be carried out several times in succession.

Total number of executions is controled by specifying the number of iterations.

Lastly, LBDSL also supports two basic mathematical operations: addition and subtrac-

tion.

3.4.6 Code Embed

As mentioned in the section 3.2, a load scheduling protocol executes the load schedul-

ing policies, computes the workload and provides rules of communication between the

processes. The role of load scheduling policies is to compute the chunk size and determine

the recipient process. Such computations are not relevant in terms of protocol correctness

and need not be specified in terms of LBDSL. Similarly, computation of workload is not

relevant in determining that a protocol is free of deadlocks and race conditions. LBDSL

allows abstracting out computations such as, calculation of a chunksize, allocation of a

buffer, computation of workload that do not affect the rule of communications as a black

box. Such computation details are embedded in their original C++ code in LBDSL pro-

gram. Embedded code does not contribute to the verification of the protocol.

54

In the above section, an introduction to various components of LBDSL is presented.

The following section describes how these components are structured in LBDSL.

3.5 Syntax of LBDSL components

The structrue of the LBDSL components models the communication structure of a load

scheduling protocol. Communication structure is separated from the routines executing

load scheduling policies and other computations such as, address allocation and iterate

execution. Routines for such computations are embedded as a block of C++ code in the

LBDSL program. The embedded code is not checked for correctness by the validator.

This technique to delineate the communication structure from computation is used in the

language translation process. The result of language translation is a verification model in

Promela and a complete implementation code in C++.

A simple foreman-worker example is provided to describe the syntactic structure of

LBDSL components. In this example, a worker process starts the communication by send-

ing a message to the scheduler. It terminates after the communication is complete. The

scheduler process starts by waiting for the message from worker. The scheduler terminates

itself after receiving the message.

In the following subsections, the syntactic structure of LBDSL components is provided.

Note that every statement in an LBDSL program is defined as a rule and is preceded by “$”

sign. Statements preceded by this sign are LBDSL-specific components and are processed

to generate corresponding code in C++ and Promela language by the LBDSL language

translator.

55

3.5.1 Structure for defining Processes

The structure of a process construct is divided into three parts: header, body and footer.

The header of a process construct begins with a keyword Begin Process followed

by a unique process name and input arguments. Each process must have a distinct name

and can take any number of input arguments. Line 1 of Codelet 3.1 and line 1 of Codelet

3.2 are the examples of declaring a process header. Processes defined in these examples

have Foreman and Worker as their process name and take myRank as an input argu-

ment. Here, myRank is the address allocated to the corresponding processes. This input

argument is a convey variabletype identified by keyword conveyV. Footer of a process

construct is represented by the keyword End Process.

The body of a process construct is composed of process variables, states and transi-

tion functions. Lines 2-23 in Codelet 3.1 represents the body of the process Foreman.

Similarly, lines 2-17 in Codelet 3.2 represents body of the process Worker.

Lines 2-5 of Codelet 3.1 declares the process variables. Some of them are convey vari-

abletypes which will play a role in the communication process. The rests of the variables

are decision variabletypes and are used by the conditional statements. Similarly, in lines

2-4 of a Codelet 3.2, process variables of different variabletypes are declared. Values of the

process variables that are associated with the basic data types are initialized to the initial

values except for user-defined data types.

States are defined after the declaration of process variables. Every state of a process is

labeled. State label declaration is represented by the keyword Enumerate State. Any

56

Codelet 3.1

Process definition in LBDSL

1 $ B e g i n P r o c e s s Foreman (convey<i n t> myRank)
2 $ d a t a t y p e conveyV<Chunk> newChunk ;
3 $ d a t a t y p e conveyV<MessageInfo> mInfo ;
4 $ d a t a t y p e conveyV<i n t> (msgSrc , −1);
5 $ d a t a t y p e dec i s ionV<i n t> (gotWork , 1) ;
6

7

8 $ S t a r t S t a t e GET:
9 $ P o l l W a i t (ANY SOURCE, SCHD, &mInfo) ;

10 $Update (msgSrc , mInfo . Source) ;
11 $ S e t S t a t e (RETRIEVE) ;
12

13 $ N e x t S t a t e RETRIEVE :
14 $Rece iveMessage (ChunkMetaData , myRank ,
15 msgSrc , SCHD,&newChunk) ;
16 $ S e t S t a t e (newChunk . chunkAct ion) ;
17

18 $ N e x t S t a t e WORK:
19 $Update (gotWork , 0) ;
20 $ S e t S t a t e (TERMINATE) ;
21

22 $ E n d S t a t e TERMINATE:
23 $ C o n d i t i o n T o T e r m i n a t e (gotWork = = 0) ;
24 $ E n d P r o c e s s

57

Codelet 3.2

Process definition in LBDSL

1 $ B e g i n P r o c e s s Worker (convey<i n t> myRank)
2 $ d a t a t y p e conveyV<Chunk> newChunk ;
3 $ d a t a t y p e conveyV<i n t> (msgSrc , 0) ;
4 $ d a t a t y p e dec i s ionV<i n t> (gotWork , 1) ;
5

6 $ S t a r t S t a t e REQUEST:
7 $GetChunk (newChunk , 0 , 1 0 , 0 , 0 ,WORK) ;
8 $SendMessage (ChunkMetaData , myRank ,
9 foreman , SCHD,&newChunk) ;

10 $ S e t S t a t e (WORK COMPLETE) ;
11

12 $ N e x t S t a t e WORK COMPLETE:
13 $Update (gotWork , 0) ;
14 $ S e t S t a t e (TERMINATE) ;
15

16 $ E n d S t a t e TERMINATE:
17 $ C o n d i t i o n T o T e r m i n a t e (gotWork = = 0) ;
18 $ E n d P r o c e s s

58

Codelet 3.3

State label enumeration in LBDSL

1 $ E n u m e r a t e S t a t e = {
2 GET, RETREIEVE , REQUEST,
3 WORK, WORK COMPLETE,
4 TERMINATE
5 } ;

number of unique state labels can be declared. Global declaration of state labels is given

in Codelet 3.3. In this example, six state labels are declared.

Definition of each state consists of a set of tasks to be executed. The scope of a state

definition is local to the process.

Processes begin their execution from the state identified by the keyword Start State

followed by the state label. Other states follow the Start State and are defined by the

keyword Next State. Keyword End State defines the terminating state. End State

also defines the terminating condition of the process execution. Terminating conditions are

defined using decision variabletype using keyword ConditionToTerminate.

Two processtypes are defined namely, SCHD and CLNT. They are assigend to constant

value 0 and 1 respectively.

In Codelet 3.1, process foreman begins the load scheduling process at Start State

with the state label GET. In this state, process Foreman waits for a message. Upon re-

ceiving the message, it makes transition to a new state defined by the transition function

represented by the keyword SetState. Process in state RETRIEVE receives the message

and set the received label as a next state. In state WORK, it updates its terminating condi-

59

tion to true. Notice that every state has a transition function except for the End State.

End State defines the terminating condition using ConditionToTerminate con-

struct.

Worker process executes the similar behavior. In state REQUEST, it request for task

from foreman and moves to state WORK COMPLETE. In state WORK COMPLETE it sets the

terminating condition to false, moves to the End State nad terminates.

3.5.2 Defined structures in LBDSL

LBDSL provides two predefined structures namely, ChunkInfo and MessageInfo

which are discussed in this chapter. Users can only use these structures but cannot modify

them.

3.5.2.1 Structure Chunk

As mentioned in the SubSection 3.4.2, processes in a load scheduling protocol com-

municate the meta data about chunk of iterates. LBDSL provides a built-in structure called

Chunk to allow users easily represent such information in LBDSL language. The structure

of Chunk is given in Codelet 3.4.

This is a user defined data type and is defined using keyword newType. Members of

the Chunk structure are defined as follows:

• chunkStart: This member can hold an integer value and represents the chunk
starting point in a iterate space.

• chunkSize: This member can hold an integer value and represents the number of
iterates in a chunk from chunkStart.

• chunkAction: This member can hold an integer value and represents the action
associated with this chunk. Value associated with this member is a state label. A

60

Codelet 3.4

Structure Chunk

1 newType Chunk{
2 i n t c h u n k S t a r t ;
3 i n t chunkS ize ;
4 i n t chunkParam1 ;
5 do ub l e chunkParam2 ;
6 i n t chunkAct ion ;
7 } ;

process upon receiving the messagetype, makes transition to the state with the state
label received as chunkAction.

• chunkparam1: This member can hold an integer value. This member can be used
to convey information such as size of iterates or address of a process depending upon
the situation.

• chunkParam2: This member can hold a floating point value. This member can be
used to convey information such as estimated execution time of the chunk, and ratio
of workload depending upon the situation.

An instance of Chunk structure should be declared to define the chunk information.

LBDSL provides a construct GetChunk to assign values to an instance of Chunk struc-

ture. GetChunk takes name of the Chunk instance and values to define the meta data of

iterates as its input arguments, and outputs an enumerated Chunk instance. An example of

applying this construct is given in line 7 of Codelet 3.2. In this example, newChunk is an

instance of Chunk and rest of the arguments will enumerate the members of newChunk.

3.5.2.2 Structure MessageInfo

Similar to Chunk structure, LBDSL defines another defined structure, MessageInfo,

to represent specific attributes of the message being exchanged. MessageInfo is defined

61

Codelet 3.5

Structure MessageInfo

1 newType Message In fo {
2 i n t Source ;
3 i n t Tag ;
4 } ;

by Source and Tag as its members. Both of these members can hold integer values. As

mentioned in section 3.4.3, a process can just check for the messages without actually re-

ceiving it. Member Source of this structure will return the source of the message to be

received. And, member Tag of this structure is used the by communication structure to

check whether a process is allowed to receive this message. Syntactically, MessageInfo is

described as shown in Codelet 3.5.

A new instance of MessageInfo should be declared to access the values. Infor-

mation about message source can be then obtained by accessing the value of Source

from that instance. Similarly, information about message tag can be obtained by accessing

the value of Tag from that instance. Like Chunk structure, this is a builtin structure in

LBDSL. An example of using this structure is given in line 3 in Codelet 3.1. In this exam-

ple. an instance of MessageInfo is declared as mInfo. In line 10, its member Source

is accessed from an instance of mInfo which holds the address of source process.

3.5.2.3 Built-In handlers

LBDSL also provides some builtin handlers that can be used as utilities during protocol

specification. Following seven handlers are defined in LBDSL.

62

• GetMessageLength: This handler takes an instance of MessageInfo as input
and returns the length of a message represented by that instance.

• GetComputeSize: This handler takes the total number of unexecuted chunksize
assigned by the scheduler as input. Worker processes use this handler to compute a
size of chunk to compute at any instant.

• GetSubDomainSize: This handler is required during hierarchical load schedul-
ing protocol implementation. A local scheduler uses this handler to get information
the size of its sub-domain. This handler takes as input the address of local scheduler
and the maximum allowed size of a subdomain to compute the subdomain size.

• GetLocalSchedularAddress: This handler is also required during hierarchi-
cal load scheduling protocol implementation. A worker process uses this handler to
determine the address of its local scheduler. This handler takes as input the address
of worker process, and the maximum allowed size of a subdomain to compute the
address of local scheduler.

• GetNumGroups: This handler is also required during hierarchical load scheduling
protocol implementation. This handler takes as input total number of processors in
the system and maximum allowed subdomain size specified by the user. It returns
the total number of subdomains in the system.

3.5.3 Structure for defining Messagetypes

Similar to process definition, messagetype definition also consists of three parts: header,

body and footer. Header of a messagetype begins with keyword Begin Message fol-

lowed by a distinct message name and input arguments. Messagetype definition takes an

instance of Chunk data type as its input argument. Footer of a messagetype is represented

by the keyword End Message.

Body of a messagetype is composed of defining variables and modules for performing

serialization and deserialization of chunk information. Structure of ChunkMetaData

messagetype is shown in Codelet 3.6. The defined messagetype consist of two mod-

ules: sendmessage and receivemessage. Each module begins with a keyword

63

Codelet 3.6

Messaegtype definition in LBDSL

1 $Begin Message ChunkMetaData (convey<Chunk> ∗MetaData)
2 $ d a t a t y p e conveyV<i n t> (pSize , 0) ;
3 $ d a t a t y p e s to reV<u n s i g n e d char> (buf) ;
4

5 $Begin Module SendMessage
6 $ r e S i z e (buf , p S i z e) ;
7 $packMetaData (∗MetaData , buf , p S i z e) ;
8 $End Module
9

10 $Begin Module Rece iveMessage
11 $Update (pSize , ∗MetaData . chunkS ize) ;
12 $ r e S i z e (buf , p S i z e) ;
13 $unPackMetaData (buf , pSize , ∗MetaData) ;
14 $End Module
15 $End Message

Begin Module followed by module name and end of the module definition is identified

by the keyword End Module.

In this example, first module performs the serialization of metadata information and is

defined by keyword packMetaData that performs serialization. But before this module

is called, a buffer should be prepared to hold the serialized data. Keyword reSize is used

to allocate the buffer space. The input arguments for packMetaData are: an instance

of chunk, destination buffer which holds the serialized data and the size of the metadata

parameters.

In the same example, the second module performs the deserialization of the received

message. Similar to serialization, buffer size should be allocated before it receives the

serialized data. In this example, expected size of message to be received is already known

64

and is assigned in chunksize member of Metadata instance. Construct resize uses

this value to allocate the buffer space. Data received in this buffer is then deserialized and

enumerated in the instance of Chunk Structure. The input arguments of data deserialization

construct takes the following parameters as input arguments: buffer holding the serialized

data, size of the buffer and an instance of chunk to which the resulting deserialized data

are enumerated.

The definition of a messagetype is responsible for serialization and deserialization of

both meta data of chunk and actual iterates. Similar to metadata, serialization and dese-

rialization of actual iterates is abstracted by constructs packLoad and unPackLoad.

The input arguments of packLoad constructs are chunk starting point, number of iterates

from starting point to be transferred, the iterate space, destination buffer, size of destination

buffer and pointer returning the address of serialized buffer as its input arguments. The in-

put arguments of unPackLoad construct are same but deserialization is done in the value

obtained in the buffer and enumerated starting from chunkStart up to the chunkSize.

3.5.4 Communication Structures

LBDSL provides communication operations SendMessage and ReceiveMessage

for exchanging messages between processes. Sending a message in LBDSL is repre-

sented by the keyword SendMessage followed by input arguments: messagetype to

be communicated, address of the source process, address of the destination process, pro-

cesstype and an enumerated instance of the Chunk structure. Process foreman is sending

65

messagetype ChunkMetaData associated with chunk instance newChunk to process

msgSrc with processtype CLNT using SendMessage in line 8 of Codelet 3.2.

The structure for receiving a message is similar to that of sending a message. Receiving

of a message is abstracted by the keyword ReceiveMessage which takes the following

input arguments: messagetype to be received, address of the destination process, address

of the source process, processtype and an instance of structure Chunk which holds the re-

ceived chunk information. Process Foreman receives a messagetype ChunkMetaData

that is associated with chunk information newChunk from process msgSrc of processtype

SCHD in line 14 in Codelet 3.1.

In addition to the structures for sending and receiving of messages, communication

structures for waiting and testing for messages are also defined in LBDSL. A process can

wait for the message from other processes using Poll Wait function, without actually

retrieving the message. An example is illustrated in line 9 of Codelet 3.1. This is a blocking

function and a foreman process uses this to wait for a message from any workers. Upon re-

ceipt, this function returns the information about the message source and action associated

with the message in an instance of MessageInfo. Similarly a process can just check for

messages using Poll Test. Poll Test is a nonblocking test for message. The argu-

ments of Poll Test contains extra boolean parameter in addition to that of Poll Wait

to notify whether the process is receiving message.

LBDSL also supports wildcard receives such as ANY SOURCE and ANY TAG. If the

source of message is set to ANY SOURCE, then the process can receive from any processes

in the system. Similarly, if the action is set to ANY TAG, then the process can receive any

66

kind of message from other processes. The use of these wildcard receives is shown in line

9 in Codelet 3.1.

3.5.5 Constants, Variables, Conditional and Loop Statements

LBDSL has a rich set of constructs supporting basic programming idioms. It pro-

vides common programming constructs such as constants, variables, control statements

and mathematical operations. It also provides constructs for defining new data types. These

basic structures help to bring the specification language close to C++ programming model

and Promela verification language, making the translation process more obvious.

A constant is declared as follows:

$datatype constant<data-type>(cname, cvalue)

Here, datatype constant is a keyword for declaring a constant, whereas the val-

ues of data-type, cname and cvalue are controlled by the user. Any basic data types

supported by LBDSL can be specified under data-type filed. cname can be any com-

bination of letters and numbers. cvalue can be either an alphabetical letter or a numerical

value. An example of constant value declaration is given in Codelet 3.7. In this example,

constants NProcessors, NWorkers and foreman are declared whose value is set to

N, N and 0 respectively. All these constants are defined to hold integer type values. Also

two constant values SCHD and CLNT are defined to use their values as processtypes during

communication.

67

Codelet 3.7

An example of constant value declaration in LBDSL

1 $ d a t a t y p e c o n s t a n t<i n t> (NProces so r s , N) ;
2 $ d a t a t y p e c o n s t a n t<i n t> (NWorkers , N) ;
3 $ d a t a t y p e c o n s t a n t<i n t> (foreman , 0) ;
4 $ d a t a t y p e c o n s t a n t<i n t> (SCHD, 0) ;
5 $ d a t a t y p e c o n s t a n t<i n t> (CLNT , 1) ;

LBDSL categorizes variables into four types based upon their usage in the protocol

execution, as mentioned in section 3.4.5. To support this concept, LBDSL defines four

variabletype names as follows:

• computeV: It represents the compute variables. Variables defined as computeV are
used inside the embedded code where computation routines are defined.

• conveyV: It represents the convey variables. Variables defined as convey are used
in the message instance during process communication.

• decisionV: It represents the decision variables. Variables defined as decisionV
are used to define boolean conditions for conditional statements and loop statements.
Also, they are used to define the terminating condition at the end state of a process
definition.

• storeV: It represents the store variables. Variables defined as storeV are used to
define arrays and vectors ina LBDSL program.

LBDSL also supports user defined data type. User defined data type can be used only as

a convey type variable. A user defined data type is declared using the keyword newType.

Its structure is similar to Structs in C++. The members of this structure should be

one of the following datatypes: int, bool or double. The members are accessed by using

instance of that datatype followed by .membername, similar to accessing values from

structure datatype in C++. Codelet 3.4 is an example of user defined datatype. Although

68

this datatype is already defined within LBDSL, this example gives the idea about how to

define a userdefined datatype in LBDSL.

A variable is declared as follows:

$datatype variabletype<data-type> (vname, vvalue)

Here, datatype is a keyword. A user needs to specify one of four variabletypes in

variabletype field, followed by the basic data type associated with this variable type,

variable name and initial value of variable.

Lines 2-5 in Codelet 3.1 is an example of variable declaration. Note that all the vari-

ables are initialized to a value except for user defined datatypes in lines 2 and 3, because

they are not associated with basic datatypes. Variables gotWork and numIdle are de-

fined as type decisionV to indicate they will take part in the decision process in the

control structure.

Variable values can be updated whenever a new value needs to be assigned by updating

a new value to an old value. Another way to update a value of a variable is by using

mathematical operations in the original value. LBDSL provides a keyword Update to

reassign a new value to the process variables. In line 13 of Codelet 3.1, value of a variable

msgSrc is updated to the value of msgSrc.Source. Construct Update also supports

addition, substraction, multiplication, division and modulo mathematical operations.

Conditional statements in LBDSL are deterministic. Operation of conditional state-

ments is similar to If statement in C++. As in C++, a second condition executes if and

only if the first guarded statement returns zero. Every conditional statement starts with

a keyword Begin If and ends with a keyword End If. Loop statement in LBDSL is

69

similar to for statement in C++. An iterator value executes the statements inside the loop-

ing statements from an initial value to a final value. Loop statement in LBDSL starts with

the keyword Begin Loop and ends with the keyword End Loop. The header of a loop

statement is as follows:

Begin Loop(<iterator-name>:<initial-value> To <end-value>

Variable iterator-name is a decisionV variable and is initialized to a value at

the beginning of loop execution. Statements specified with the loop statement will con-

tinue to execute until the iterator-value reached to the end-value. LBDSL can

decide whether to increase or decrease the iterator-value by comparing whether

initial-value is greater than or smaller than the end-value.

3.5.6 Structure for embedding C++ code

As mentioned in the introduction of LBDSL, computations of load scheduling policies,

allocation of buffer, execution of computation indicated by the iterates are embedded in

their original C++ syntax inside LBDSL structure. LBDSL provides two ways to allow

such embedding.

First, it allows to define routines related to executing load scheduling polices or poli-

cies like computations as a passive rule. Basic policy like information includes allocating

buffer, computing buffer size and other computational details that do not require being in

the verification model. Passive rules are treated as a black box and do not contribute to

the verification of the protocol. However there are some restrictions related to defining

such passive rules. A passive rule should include only those computational details that are

70

required for protocol implementation and whose values will not affect the correctness of

the protocol. It cannot include any LBDSL structures or communication structures inside

it.

Similar to the structure of process and messagetype, the structure of a passive rule is

also divided into three structures: header, body and footer. Header of a passive rule begins

with the keyword Begin Rule P followed by passive rule name and input arguments.

Body of a passive rule consists of C++ code related to computational and policy like infor-

mation details. Footer of a passive rule is defined by the keyword End Rule P

Another method to include policy like information in the LBDSL program is by embed-

ding C++ code. Embedded C++ code should be bounded by keywords Begin Embed and

End Embed. However, variables used inside the embedded C++ code should be declared

as type computeV before using them.

3.6 Summary

The LBDSL is a platform for developing asynchronous load scheduling protocols for

high performance computing. The main objective of LBDSL language is to facilitate the

development of an asynchronous load scheduling protocols that are correct and efficient

while reducing the cost of the development. LBDSL provides domain-specific notions to

guide protocol construction in a correct order. It also provides common programming id-

ioms that protocol developers are used to. The design of LBDSL is based on the concept

of finite state machine and composed of process, initial variables, set of states and tran-

sition functions. Processes in LBDSL communicate with each other using messagetypes.

71

LBDSL provides the communication structure that facilitate the messagetype communica-

tion. LBDSL uses the concept of the dynamic partition of iterate space and each partition

is called chunk. Messagetypes of LBDSL are responsible for communicating the metadata

of iterate chunks. LBDSL allows embedding of protocol specification that do not play role

in protocol correctness in their original format.

LBDSL specific constructs are identified by “$” symbol. Language translator for

LBDSL uses the LBDSL specific constructs to support auto translation of a LBDSL pro-

gram into a complete implementation code and a verification model. Verification model is

generated in Promela specification language and SPIN model checker is used to perform

finite state verification on the protocol logic to detect errors. In summary, LBDSL language

supports the cost-efficient generation of error-free load scheduling protocols for distributed

systems having distributed iterate space.

72

CHAPTER 4

VERIFICATION FRAMEWORK FOR LBDSL

This dissertation provides a mechanism that supports the construction of deadlock-free

asynchronous load scheduling protocols using the domain specific language approach. A

verification framework is designed to support the protocol development in LBDSL lan-

guage discussed in last chapter. This chapter elaborates the components of this verification

framework in detail.

4.1 The Verification Framework

The LBDSL verification framework takes as input the load scheduling protocol spec-

ified in the LBDSL language. It exploits the delineation mechanism provided by the

LBDSL to generate a verification model automatically from a high-level specification to

which protocol validation techniques may be applied to detect deadlocks. The verifica-

tion framework takes advantage of an existing finite state verification tool, the Spin model

checker, to provide protocol verification functionality.

The main components of the LBDSL verification framework as shown in Figure 4.1

consists of a specification language, language translation mechanism and model checking

back-end.

73

Figure 4.1

Verification framework to support LBDSL language

The verification framework takes as input the protocol specification written in LBDSL

language. The single LBDSL representation of a protocol is then sufficient to automatically

generate an implementation code in the C++ language and a verification model in the

Promela language. Model checking is applied to the verification model to detect deadlocks

and race conditions in the protocol structure. At the end of the verification process, an

executable code and a verification result are obtained as two products from a single protocol

specification. The extracted verification model will be a conservative representation of

underlying implementation because of the embedded semantic knowledge of the system in

the domain specific language. This approach can remove the cost of maintaining a separate

verification model.

74

Instead of directly coding a verification model in Promela language, an indirect model

generation approach is preferred because of the following reasons:

• A properly designed domain specific language overcomes the need for expertise in
the protocol validation language and verification technique for protocol developers.

• The new approach allows the protocol developer to simultaneously specify the pro-
tocol and its verification model.

• The new approach avoids the exhaustive dual work of maintaining implementation
code and verification model specifications along with the changes in protocol speci-
fications.

The spin model checker is chosen as a verification tool for the LBDSL verification

framework because it is a general tool for verifying the correctness of software models

for distributed and concurrent systems. Since this research focuses on the verification

of communication protocol for distributed systems, Spin is the ideal choice. Also, the

closeness in structure between Promela and C++ adds one more reason to choose Spin

over other verification tools. It is important to briefly discuss about the structure of Promela

language before discussing the language translation mechanism, as the verification model

will be in this language. Following section provides an overview of the Promela language.

4.2 The Promela Language

Promela is the specification language for the Spin model checker. A Promela program

models the control structure of a protocol and checks for correctness with respect to the

provided specifications in terms of linear temporal logic. The control structure of a protocol

basically represents the interactions between various protocol components while compu-

tational details are left unspecified. Communication between two processes in Promela is

75

represented as writing to and reading from a FIFO channel without representing the imple-

mentation details on how those messages will be stored in the channel. This reduces the

state space of the system to be represented by just focusing on those features that requires

verification.

4.2.1 Components of Promela Language

Processes, message channels and variables are the main components of the Promela

specification language. Processes are used to represent the independent objects in a sys-

tem. Processes are the finite state machines that communicate with each other via message

channels. Channels in Promela are represented by the complex data type chan. Variables

are used to store the states of the process. Variables can be local or global. Promela sup-

ports the following basic data types for variables: bit, bool, byte, short and int. It

also allows declaration of arrays and user defined data types, similar to structs in C++.

Processes are declared using the keyword proctype. Processes are similar to proce-

dures in C++. Multiple instances of a process can be executed. Each instance is assigned

a unique process-id by Promela run time system. Processes execution can be synchronous

or asynchronous. Execution of the concurrent processes interleave with each other. A pro-

cess can be executed using a keyword run. A simple process declaration in Promela is as

follows:

proctype test (int arg);.

76

Message channels model the communication between concurrent processes. Message

channels are declared using the keyword chan. An example of message channel declara-

tion is as follows:

chan comm=[SIZE] of {int};

Here, comm defines the name of the channel. SIZE defines total number of messages

that the channel can hold at any instant and int represents the type of variable a chan-

nel can hold. If the SIZE is set to zero, communication is synchronous, otherwise it is

asynchronous. Channels are treated as FIFO queues. Sending and receiving of messages

along these channels is represented by two symbols respectively: ! and ?. For example, a

message is sent to the channel by executing

comm! value;

which means, channel comm is sending value of type integer through it. Similarly, a

message is received from the channel by executing

comm? value1;

which means channel comm is receiving value1 of type integer from it.

4.2.2 Control Flow in Promela

Promela provides three mechanisms for control flow namely, case selection, repetition

and unconditional jumps. Case selection is non-deterministic and is written as:

if ::(condition0)-> option 1 ::(condition1)-> option 2 fi

77

In the above statement, condition0 and condition1 forms a boolean guarded statement.

Corresponding options gets executed whose guarded statements evaluates to true. How-

ever, the case selection process is non-deterministic. If both guarded states are true at any

instance, then only one condition is chosen randomly for execution.

Repetition is used to specify the repeated execution of certain statements and is repre-

sented by the keyword do. An example of repeated statement is as follows:

do ::(condition0)->option1 ::else->break; od

In the above example, option1 is executed until the condition condition0 returns

true otherwise else is executed which breaks the repetition using keyword break.

4.2.3 Deadlock detection of a communication protocol in Promela

The Promela language provides various ways for specifying correctness conditions.

Assertion is one way to denote a correctness condition that must be satisfied when the

system being modeled reaches a given state. It is written as assert(condt) where

condt is the boolean statement that should be satisfied. Promela assertions have the same

semantics as assert statements in C.

Similarly, deadlock detection is enabled by allowing users to specify legal end states.

Legal end states are labeled by the keyword end followed by zero or more characters for

example, end, end1, end of this are all valid end state labels. A legal end state can

either be a state that is reached when the protocol terminates or, in case of non-terminating

protocols, a state that is reached infinitely often. Unexpected end states either denote a

deadlock or an error condition that is caused by an incomplete protocol specification.

78

4.2.4 Limitations of Promela

Promela is very well suited for the protocol verification and provides rich set of mech-

anism for specifying the correctness conditions. However, the sole purpose of this lan-

guage is to check logical errors in protocol specification and is not a general purpose pro-

gramming language. The language does not support the programming constructs such as

procedure calls. Also, the Promela language doesnot have a language compiler to gener-

ate a C++ code out of its specification. The protocol designer has to rewrite a validated

Promela specification in C++. This approach not only requires the duplication of effort

but is also a source of potential errors. A combination of all these factors has contributed

to the restricted use of Promela as a protocol programming language. LBDSL verification

framework utilizes the advantages of Promela language to design a protocol programming

language that supports automatic verification.

4.3 The Language Translator

The verification framework provides a translation mechanism from LBDSL to imple-

mentation code in C++ and verification model in Promela. LBDSL language translator is

built using Yacc. Yacc [46] is a parser generator developed by Stephen Johnson for Unix

operating system. Yacc generates a parser based on the analytical grammar written in a

notation similar to BNF. Yacc requires an external lexical analyzer to parse a file. Lexi-

cal analyzing tool Lex is commonly used along with Yacc to build a language compiler.

Lex reads the input file and splits it into tokens. Yacc uses these tokens to generate the

hierarchical structure of the program.

79

The LBDSL language translator uses the delineation rules to automate the translation

process. The two products of the translation process are an implementation code in the

C++ language and a verification model in the Promela language. Rules preceded by the

\$" sign are converted into both C++ language and Promela verification language. The

embedded code is not translated to Promela and is not the part of verification process.

It is kept as is in the implementation code. LBDSL to C++ compiler ensures semantic

consistency with the verification model. Embedded code, however, can introduce software

errors. Embedded sections should be tested for syntactic and logical errors before including

in the protocol specification. Figure 4.2 is an example of the compilation sequence of a

program in LBDSL.

The pattern file in this diagram contains the tokens defined for constructs of LBDSL

language. Lex will read the patterns and generate a C code for a lexical analyzer. The

lexical analyzer then matches the statements of LBDSL program, based on the pattern

file and converts each string in an LBDSL file into tokens. Tokens are the numerical

representation of those strings to simplify parsing.

The grammar file in this diagram defines the correct syntax of LBDSL components.

Yacc reads the grammar file and generates a C code for a syntax analyzer. The syntax

analyzer will use the grammar rules to analyze tokens from the lexical analyzer and creates

a syntax tree for the LBDSL program. Associated with grammar rules are processing steps

to generate C++ program and Promela program that corresponds to the syntax tree.

In the given example, LBDSL’s construct Enumerate State is processed to gener-

ate its corresponding version in C++ and Promela format. Every rule proceeded by \$"

80

Figure 4.2

Process to build a compiler using Lex and Yacc

81

sign represents a special LBDSL component that represents a particular action executed

during load scheduling. The meaning of these rules and how they should be represented in

each language format is also defined in the grammar file. Using this information, imple-

mentation code in C++ and verification model in Promela is generated at the end.

4.3.1 Model Checking Backend

The model checking back-end of LBDSL’s verification framework performs a finite

state verification of the generated Promela model. Spin model checker is used as a verifi-

cation tool for this purpose. Figure 4.3 provides the general idea about structure of model

checking process.

Figure 4.3

Finite State Verification

The Spin model checker converts the Promela specification into its finite state repre-

sentation. Spin does a state space exploration of the resulting finite automata to check for

82

any violations of user-defined properties. It searches every interleaving of a resulting ver-

ification model. Spin can by default verify that the system is free of deadlocks, that the

system always terminates at a valid end state, and that no dangling messages are present at

the end of the execution. In case of error-detection, Spin will produce a counter example

that allows the developer to trace the path of error.

4.4 Summary

This section summarizes the framework to support the development of load scheduling

protocol using LBDSL language. The framework uses Lex and Yacc to build the compiler

for the LBDSL program generating the corresponding C++ file and Promela file as the

outputs. The generated verification model in Promela language is checked by Spin model

checker for deadlocks and race conditions. Therefore, the end result of this verification

framework is a C++ file and the output of the finite state verification.

The three case studies performed using the LBDSL program and its verification frame-

work are discussed in next three chapters.

83

CHAPTER 5

CASE STUDY: IMPLEMENTATION OF PROBE-BASED CENTRALIZED LOAD

SCHEDULING PROTOCOL

Load Balancing Domain Specific Language (LBDSL) facilitates the development of

deadlock-free and race-condition-free load scheduling protocols for distributed systems.

The usability of LBDSL is demonstrated by implementing three types of dynamic load

scheduling protocols.

Implementation of a centralized probe-based load scheduling protocol for message

passing systems is the first illustration of the applicability of LBDSL[4]. A message pass-

ing system consists of P processing nodes, each with its own exclusive address space[51].

Each processing node can either be a single process or a shared address space multiproces-

sor. Interaction between the processing nodes is accomplished exclusively by sending and

receiving of messages. Message passing programs are often written using asynchronous

paradigms. Asynchronous programs are characterized by the absence of a known bound on

relative processors speed or message transfer times. Implementation of an asynchronous

probe-based centralized load scheduling protocol is described in this chapter.

84

5.1 The protocol

Because of the absence of a centralized memory in a message passing system, the

centralized load scheduling algorithm is designed to schedule a pool of iterates that is

distributed to all processors in the system. One of the processors executes the role of a

scheduler and manages task distribution. The scheduler maintains a chunk table in order

to keep track of work chunks executed by each worker. A worker communicates with the

scheduler to obtain the task information for execution.

The general architecture of a centralized load scheduling protocol is given in Figure 5.1.

Figure 5.1

Architecture of a centralized load scheduling protocol

A load scheduling protocol starts by a scheduler computing a chunk size using user

specified load scheduling policies. One of the following four types of load scheduling

policies is executed by the scheduler to compute a chunk size at any instant:

• (N)o (L)oad (B)alancing (NLB): In NLB, no load scheduling policies are applied.
Available iterates are divided equally among the workers. The chunk size assigned

85

to each worker will be N/w where, N represents the total number of iterates in a
system and w represents the total workers in a system. Workers will execute what
they are assigned without coordinating with other workers.

• (Fixed) (S)ized (C)hunking: (
√
2Nh)/(σP

√
logP)2/3 is the algorithm for comput-

ing chunk size in FSC. where h is the overhead time and represents standard de-
viation of independent loop execution times. This algorithm is mainly suitable for
homogeneous and equally loaded processors. This algorithm is believed to achieve
optimal performance if the required parameters are known.

• (Fac)toring: In FAC, tasks are scheduled in batches of P equal-sized chunks and the
total number of iterations per batch is a fixed ratio of those remaining tasks.

• (G)uided (S)elf (S)cheduling: In GSS, chunk size is computed as remaining/P ,
where remaining is the remaining number of independent tasks to solve. Initially
this policy generates a large chunk size which decreases gradually with the decreas-
ing number of remaining tasks.

Scheduler computes an initial chunk size using load scheduling policy specified and

sends the chunk metadata to workers. A chunk metadata contains information about the

starting point of iterates in a iterate space and total number of iterates from that starting

point. Besides this information, sometimes it is required to communicate estimated execu-

tion time of iterates, address of the destination processor, estimated size of iterates and the

action associated with iterates. All this information defines the metadata of chunk being

communicated.

In the mean time, workers will be waiting for task information from the scheduler.

Upon receiving the information, they start to execute the assigned tasks. A worker will

request a new set of tasks once currently assigned tasks are complete. The scheduler which

is constantly probing for messages, receives the worker’s request, computes a new chunk

size and sends the new metadata to the requesting worker. The scheduler takes into con-

sideration current task execution time to compute the chunk size for next the iteration.

86

The described scenario is shown in Figure 5.2. The distributed work queue logic has the

advantage of communicating only metadata with the scheduler; eliminating the need of ac-

tual iterates movement during task computation and hence saving a lot of communication

overhead.

Figure 5.2

Load Scheduling

A dedicated processor for the scheduler may not be necessary since a chunk size com-

putation involves executing a load scheduling policy which involves simple arithmetic.

The scheduler, therefore, also participates in executing iterates and doubles as a worker.

The scheduler uses a probing mechanism to switch between the role of a scheduler and

worker. As a worker, it will also receive its share of chunk to compute. The worker-self of

a scheduler does not work on the entire chunk size. At any instant, it will execute iterates

at the rate of a size (Say, tSize) that is less than or equal to the chunk size. After executing

each tSize, it will probe for messages from workers. If there is a message, it will switch to

its role of a scheduler, responds to the request, and switch back to its role of a worker.

In order to allow task sharing, workers also do not compute the entire chunk size at

once. It computes iterates at the rate of a size(Say, tSize) at any time. Computed value of

87

tSize should be less than or equal to chunk size. After computing each tSize, a worker will

check for new messages from either scheduler or workers. Task sharing between the work-

ers form the second part of centralized load scheduling and is called remote scheduling.

Remote scheduling is depicted in Figure 5.3.

Figure 5.3

Remote Scheduling

Here, worker I has completed executing its share of iterates and requests for new task

from the scheduler. Scheduler, based upon its chunk table, determines a worker (Say,

worker J) for task sharing. Policy for worker selection for task sharing can be chunk

execution time, by considering the worker that takes a longest execution time be the slower

and eligible for task sharing. The selection factor can also be the worker having largest

unexpected chunks to compute. Scheduler also determines the chunk size to be shared

from worker J. Worker J which is constantly checking for messages, receives the metadata

88

from scheduler for task sharing. Worker J prepares the requested chunk size and sends

the chunk information to worker I. Worker J continues to execute its own task. Worker I

retrieves the remote chunk information, executes the task and returns the result to worker

J. Worker I also sends request to the scheduler for new task. Worker J, upon receiving the

shared chunk result, updates its executed task pool and resumes to its own task.

In the course of responding to the worker’s request, the scheduler may find a situation

when there aren’t any unfinished iterates in the system. In this scenario, scheduler will

send a request to terminate to the worker. The scheduler terminates after all workers in the

system have terminated.

The complete probe-based centralized load scheduling protocol is shown in Figure 5.4.

5.2 The protocol in LBDSL language

A program in LBDSL requires declaring state labels, defining message types and pro-

cesses. LBDSL components specifying the centralized probe-based load balancing proto-

col are now presented. Terms chunk and workload are used interchangeably throughout

this chapter. These terms stand for the group of iterates in a task pool.

5.2.1 State Label Declaration

Processes in LBDSL program is composed of finite number of states and transition

relations that trigger the movement between states. Each state are labeled. State labels

are declared globally before they are used. State label declaration for centralized load

scheduling protocol is shown in Codelet 5.1. Fourteen distinct state labels are declared.

89

Figure 5.4

Probe-based Centralized Load Scheduling Protocol

90

Codelet 5.1

State Declaration

1 $ E n u m e r a t e S t a t e = {
2 WAIT4 MSG , TEST4 MSG ,
3 WORK LOCAL, EXEC LOCAL PART ,
4 RETRIEVE MSG , FILL REQUEST ,
5 WORK REMOTE, EXEC REMOTE PART ,
6 WORK COMPLETE, EXEC REMOTE WHOLE,
7 SEND INPUT , RECV OUTPUT,
8 FILL LOCAL REQUEST , TERMINATE
9 } ;

Note that all the processes in LBDSL can use these state labels. However, each state

within a process should have a unique state label.

5.2.2 Constants Declaration

Total number of processors and process instantiation to be mapped to the processors

in a system is declared. If the number of processors is equal to the number of processes,

one to one mapping of processors to the process instantiation is done. If total process

instantiation is more than number of processors, more than one process will be mapped to

a single processor, forming a case of multithreaded system.

For the centralized probe-based load scheduling protocol, the total number of proces-

sors is set to N. Also, total number of process instantiation is set to N. It means that there

will be one to one mapping between the processors in the system and the process instanti-

ation. Total number of worker processes is declared as a constant value NWorkers. Note

that the number of worker process instantiation is less than number of processors, meaning

91

Codelet 5.2

Constants for Centralized Load Scheduling Protocol

1 $ d a t a t y p e c o n s t a n t<i n t> N P r o c e s s o r s N
2 $ d a t a t y p e c o n s t a n t<i n t> N P r o c e s s e s N
3 $ d a t a t y p e c o n s t a n t<i n t> NWorkers N−1
4

5 $ d a t a t y p e c o n s t a n t<i n t> SCHD 0
6 $ d a t a t y p e c o n s t a n t<i n t> CLNT 1

not all the processors are workers. One processor will execute the scheduler process and

rest of the processors will execute the worker process.

Declaration of these constant values are given in Codelet 5.2

Every process is assigned a constant value as a processtype. This protocol has two

distinct processes: scheduler and worker, and hence, following two constant values are

defined: SCHD and CLNT. SCHD is set to 0 and represents the scheduler process. Similarly,

CLNT is set to 1 and represents the worker process. These values are used during message

communication.

5.2.3 Passive Rules

Protocol specification in LBDSL allows defining some passive rules that are not re-

quired during message communication, but play an important role during workload com-

putation and preparing the messages for communication. This LBDSL program defines

four such passive rules which are now briefly discussed:

1. GetChunkPackSize : This rule computes the size of LBDSL’s defined data type
Chunk. The computed value is required during serialization and deserialization of
chunk metadata during communication.

92

2. Generate inputPackSize: This rule computes the size of iterates that are
scheduled to be shared to another process. The computed value is required for the
serialization and deserialization of iterates being shared.

3. Generate outputPackSize: This rule computes the size of workload that is
executed remotely. The computed value is required for the serialization and deseri-
alization of computed iterates to return it back to the iterate owner.

4. GetChunkSize: This rule is used by the scheduler to compute a chunk size based
on user specified load scheduling policies.

5.2.4 Messagetypes Definition

Processes in a LBDSL program communicate by sending and receiving of messagetypes.

As mentioned in the previous chapter, messagetypes in LBDSL program represents the dif-

ferent types of messages that will be communicated during load scheduling. Messages can

either be the chunk metadata or the iterates itself. A messagetype definition provides a

mechanism to serialize a message before sending it to another process; and to deserialize

a message after receiving it from another process.

Following three messagetypes are defined in this protocol:

5.2.4.1 Messagetype ChunkInformation

The definition of ChunkInformation is given in Codelet 5.3.

Messagetype ChunkInformation handles the communication of chunk metadata.

This messagetype definition takes an instance of data type Chunk as its input. Chunk

is a predefined data type in LBDSL and is used to define the metadata of work chunk in

a LBDSL program. Members of Chunk data type allows defining the starting point for

93

Codelet 5.3

MessageType ChunkInformation

1 $Begin Message C h u n k I n f o r m a t i o n (conveyV<Chunk> ∗MetaData)
2 $ d a t a t y p e computeV<i n t> (pSize , 0) ;
3 $ d a t a t y p e s to reV<u n s i g n e d char> (buf , 0) ;
4

5 $Begin Module SendMessage
6 $GetChunkPackSize (& p S i z e) ;
7 $ r e S i z e (buf , p S i z e) ;
8 $packMetaData (∗MetaData , buf , p S i z e) ;
9 $End Module

10

11 $Begin Module Rece iveMessage
12 $Update (pSize ,∗MetaData . chunkS ize) ;
13 $ r e S i z e (buf , p S i z e) ;
14 $unPackMetaData (buf , pSize , ∗MetaData) ;
15 $End Module
16 $End Message

chunk and size of chunk in the pool of iterates, estimated execution time of chunk in the

previous iteration, action associated with the messagetype and chunk destination.

Definition of this messagetype starts with declaring variables required for message se-

rialization and deserialization. Variable pSize is defined as compute variable type as it

will not take part in messagetype communication. Variable buf stores the serialized data

that needs to be communicated and hence is defined as a store variable type.

This messagetype defines following two modules:

• Module SendMessage:
In this module, actions necessary for serialization of metadata specified in the in-
stance Metadata is described. Passive rule GetChunkPackSize is used to com-
pute the value pSize; that is the size of Chunk data type. Store type variable buf
is then re-sized to pSize. Then, LBDSL builtin handler packMetaData is used
to pack the chunk metadata information. This module takes following values as in-
put: the address of Chunk instance, the store variabletype buf to store the serialized

94

message and the computed pack size pSize. After the execution of this module, a
serialized data is generated that is ready to be communicated to another process.

• Module ReceiveMessage:
In this module, actions necessary for deserialization of metadata specified in the
instance Metadata is described. First of all, expected size of the message to be re-
ceived is retrieved from chunkSize, a member of data type Chunk, and is stored
to compute variable type pSize. Store type variable buf is resized to pSize.
Then, LBDSL inbuilt handler unPackMetaData is used to deserialize the meta-
data information. This module takes following values as input: the store variabletype
buf, expected pack size pSize and the address of Chunk instance. Serialized data
received is deserialized and stored in the instance of Chunk. After the execution of
this module, received data is ready to be used by the process.

This messagetype is used by the processes when they have to communicate the meta-

data information about the workload.

5.2.4.2 Messagetype ChunkShared

The definition of ChunkShared is given in Codelet 5.4

This messagetype handles the communication of chunks, in addition to the chunk meta-

data. It takes an instance of data type Chunk as its input. This instance contains informa-

tion required to communicate the iterates between processes.

Similar to messagetype ChunkInformation, definition of this messagetype starts

with declaring variables required to assist message serialization and deserialization.

This messagetype defines following two modules:

• Module SendMessage:
In this module, actions necessary for serialization of metadata of chunk specified
in the instance Metadata and the iterate chunk itself is described. Passive rule
Generate inputPackSize is executed that computes the total size of the work-
load in a compute variable type pSize. LBDSL’s inbuilt handler packMetaData
is used to pack the chunk metadata information. LBDSL inbuilt handler packLoad
is used to handle serialization of iterates. This handler takes following values as its
argument: starting point of the iterate chunk in task pool, total number of iterates

95

Codelet 5.4

MessageType ChunkShared

1 $Begin Message ChunkShared (conveyV<Chunk> ∗MetaData)
2 $ d a t a t y p e computeV<i n t> (pSize , 0) ;
3 $ d a t a t y p e s to reV<u n s i g n e d char> (buf , 0) ;
4

5 $Begin Module SendMessage
6 $GetChunkPackSize (& p S i z e) ;
7 $ G e n e r a t e i n p u t P a c k S i z e (∗MetaData . c h u n k S t a r t ,
8 ∗MetaData . chunkSize ,& p S i z e) ;
9 $ r e S i z e (buf , p S i z e) ;

10 $Update (∗MetaData . chunkParam1 , p S i z e) ;
11 $packMetaData (∗MetaData , buf , p S i z e) ;
12 $packLoad (∗MetaData . c h u n k S t a r t ,
13 ∗MetaData . chunkSize , i n p u t s , buf , p S i z e) ;
14 $End Module
15

16 $Begin Module Rece iveMessage
17 $Update (pSize ,∗MetaData . chunkS ize) ;
18 $ r e S i z e (buf , p S i z e) ;
19 $unPackLoad (0 ,∗MetaData . chunkSize ,
20 i n p u t s , buf , p S i z e) ;
21 $End Module
22 $End Message

96

that define the workload, name of the task pool, name of the store variabletype that
will hold the serialized data and the size of this variable type. After the execution of
packMetaData and packLoad, a serialized data is generated that is ready to be
communicated to another process.

• Module ReceiveMessage:
In this module, actions necessary for the deserialization of chunk specified in the in-
stance Metadata is described. LBDSL’s inbuilt handler unPackLoad is used to
handle the deserialization of iterate chunks received in the serialized form. This han-
dler takes following values as its argument: starting point of the received workload
(which is zero, as a process is receiving a remote data that does not belongs to its task
pool), total number of iterates that define the workload, name of the task pool, name
of the store variabletype that holds the serialized data and the size of this variable
type. This handler deserializes the information stored in buf and enumerates the
total number of chunkSize received in the specified task pool.

After the execution of handle unPackLoad, received data is ready to be used by the

process. This messagetype is used by the processes to share their workload to another

process.

5.2.4.3 MessageType RemoteChunkResult

The definition of RemoteChunkResult is given in Codelet 5.5

Structure of this message type is similar to message type ChunkShared. This mes-

sagetype is used to communicate the result of the shared workload along with the shared

workload execution time between processes. It takes an instance of data type Chunk as its

input. This instance contains information required to communicate the shared chunk result

between the processes.

Similar to messagetypes ChunkInformation and ChunkShared, definition of

this messagetype starts with declaring variables required to assist message serialization

and deserialization. This messagetype defines following two modules:

97

Codelet 5.5

MessageType RemoteChunkResult

1 $Begin Message RemoteChunkResul t (conveyV<Chunk> ∗MetaData)
2 $ d a t a t y p e computeV<i n t> (pSize , 0) ;
3 $ d a t a t y p e s to reV<u n s i g n e d char> (buf , 0) ;
4

5 $Begin Module SendMessage
6 $GetChunkPackSize (& p S i z e) ;
7 $ G e n e r a t e o u t p u t P a c k S i z e (0 ,∗MetaData . chunkSize ,
8 &p S i z e) ;
9 $ r e S i z e (buf , p S i z e) ;

10 $Update (∗MetaData . chunkParam1 , p S i z e) ;
11 $packMetaData (∗MetaData , buf , p S i z e) ;
12 $packLoad (0 ,∗MetaData . chunkSize , o u t p u t s ,
13 buf , p S i z e) ;
14 $End Module
15

16 $Begin Module Rece iveMessage
17 $Update (pSize ,∗MetaData . chunkS ize) ;
18 $ r e S i z e (buf , p S i z e) ;
19 $unPackLoad (∗MetaData . c h u n k S t a r t ,∗MetaData . chunkSize ,
20 o u t p u t s , buf , p S i z e) ;
21 $End Module
22 $End Message

98

• Module SendMessage:
In this module, actions necessary for serialization of metadata of chunk specified
in the instance Metadata, and the iterate chunk itself is defined. Passive rule
Generate outputPackSize is executed that computes the total size of the exe-
cuted workload in compute variabletype pSize. packMetaData is used to serial-
ize the chunk metadata information. Similarly, LBDSLs inbuilt handler packLoad
is executed to handle serialization of actual workload. After the execution of handles
packMetaData and packLoad, a serialized data is generated that is ready to be
communicated to another process.

• Module ReceiveMessage:
In this module, actions necessary for deserialization of chunk specified in the in-
stance Metadata is defined. LBDSL’s inbuilt handler unPackLoad is executed
to handle deserialization of iterates received in the serialized form. This handler
will deserialize the information stored in buf and enumerates the total number of
chunkSize received in the specified task pool.

After the execution of handle unPackLoad, received data is ready to be used by the

process.

5.2.5 Process Declaration

Task scheduling and task execution are two distinct jobs to be performed in a central-

ized load scheduling protocol. Two processes, Scheduler and Worker, are defined for this

purpose. Following subsections describe the implementation of these processes.

5.2.5.1 Worker Process

Worker process executes work assigned by the scheduler as well as to perform task

sharing. Total number of worker process instantiation is defined by a constant value

Nworkers. Each instantiated worker process is associated with a processorid of a pro-

cessor it is mapped to.

99

Codelet 5.6

Definition for WAIT4 MSG state

1 $ S t a r t S t a t e WAIT4 MSG :
2 $ P o l l W a i t (ANY SOURCE, CLNT,& mInfo) ;
3 $ S a v e S t a t e (WAIT4 MSG) ;
4 $ S e t S t a t e (RETRIEVE MSG) ;

First of all, different variables are defined that are required for specifying the worker

process. Instances of LBDSL inbuilt data types Chunk and MessageInfo are among

these variable declarations.

Following the variable declaration, states and transition functions for worker process

are defined.

Worker process begins its execution from Start State labeled as WAIT4 MSG. Def-

inition of this state is given in Codelet 5.6.

In this state, worker process waits for a message from other processes using module

Poll Wait. Arguments of this module specifies that worker can receive message from

any processes that are sending to this process address with processtype CLNT. It will make

a transition to the next state labeled as RETRIEVE MSG shown in Codelet 5.7 after sensing

a message.

In this state, worker gets the information about the message source from the instance

of MessageInfo. Module GetMessageLength is evoked that will return the esti-

mated message size to be received. Module GetChunk is executed which will enumer-

ate the variable newChunk. More specifically, obtained message length and state label

100

Codelet 5.7

Definition for RETRIEVE MSG state

1 $ N e x t S t a t e RETRIEVE MSG :
2 $Update (msgSrc , mInfo . Source) ;
3 $GetMessageLength (mInfo ,&msgLen) ;
4 $GetChunk (newChunk , 0 , msgLen , msgSrc ,
5 0 . 0 , RETRIEVE MSG) ;
6 $Rece iveMessage (ChunkIn fo rma t ion , myRank ,
7 msgSrc , CLNT,&newChunk) ;
8 $Update (chunkDest , newChunk . chunkParam1) ;
9 $ S e t S t a t e (newChunk . chunkAct ion) ;

RETREIVE MSG that is associated with the messagetype to be received are assigned to

members chunkSize and chunkAction of variable newChunk.

Worker receives the messagetype ChunkInformation using ReceiveMessage.

Module ReceiveMessage takes following parameters as input: the name of messagetype

to be received (ChunkInformation), address of process receiving this messagetype

(myRank), address of the source process (msgSrc), processtype associated with the re-

ceiving process (CLNT) and an address of the instance of data type Chunk which will

be enumerated during this communication (newChunk). Member chunkAction of the

variable newChunk defines the state a worker process should make transition after this

communication is completed.

Note that, when a module SendMessage executes, LBDSL evokes SendMessage

module defined in the messagetype definition associated with this communication. Simi-

larly, when a module ReceiveMessage executes, LBDSL evokes ReceiveMessage

module defined in messagetype associated with the communication.

101

Codelet 5.8

Definition for WORK LOCAL state

1 $ N e x t S t a t e WORK LOCAL:
2 $Update (l o c a l S t a r t , newChunk . c h u n k S t a r t) ;
3 $Update (l o c a l S i z e , newChunk . chunkS ize) ;
4 $Begin Compute
5 / / Embedded C++ code t o s e t e n v i r o m e n t
6 $End Compute
7 $ S e t S t a t e (EXEC LOCAL PART) ;

If the next state is WORK LOCAL, worker process sets the necessary environment for

the iterate execution and moves to the state EXEC LOCAL PART. The definition of these

states is shown in Codelets 5.8 and 5.9.

In the state EXEC LOCAL PART, worker calculates the value tSize that is less than

or equal to the chunkSize using the module GetComputeSize. Worker will compute

the assigned iterates at the rate of one tSize at a time. Worker will constantly check

for new messages it may receive, after executing every tSize of iterates. Checking for

new message is done in state TEST4 MSG using module Poll Test as shown in Codelet

5.10.

Testing for messages is an asynchronous step. If a worker finds out that there is a

message, it will respond to the new message. Otherwise it will continue executing the task.

When the value of tSize becomes equal to the value localSize indicating the last sub

chunk, worker sends a request to the scheduler for a new task. After finished executing the

last sub chunk worker moves to WAIT4 MSG state waiting for the new task.

102

Codelet 5.9

Definition for EXEC LOCAL PART state

1 $ N e x t S t a t e EXEC LOCAL PART :
2 $ B e g i n I f (l o c a l S i z e == t S i z e)−>
3 $GetChunk (newChunk , 0 , 0 , myRank , 0 . 0 , FILL REQUEST) ;
4 $SendMessage (ChunkIn fo rma t ion , myRank , foreman ,
5 SCHD,&newChunk) ;
6 $ E n d I f
7

8 / / Embedded C++ code f o r l o c a l i t e r a t e c o m p u t a t i o n
9

10 $Update (’+ ’ , l o c a l S t a r t , t S i z e) ;
11 $Update (’− ’ , l o c a l S i z e , t S i z e) ;
12

13 $ B e g i n I f (l o c a l S i z e >0)−>
14 $ S a v e S t a t e (EXEC LOCAL PART) ;
15 $ S e t S t a t e (TEST4 MSG) ;
16 $Else−>
17 $ S e t S t a t e (WAIT4 MSG) ;
18 $ E n d I f

Codelet 5.10

Definition for TEST4 MSG state

1 $ N e x t S t a t e TEST4 MSG :
2 $ P o l l T e s t (ANY SOURCE, CLNT,& mInfo ,& isMsg) ;
3 $ B e g i n I f (isMsg==1)−>
4 $ S e t S t a t e (RETRIEVE MSG) ;
5 $Else−>
6 $ S e t S t a t e (S a v e d S t a t e) ;
7 $ E n d I f

103

Codelet 5.11

Definition for SEND INPUT state

1 $ N e x t S t a t e SEND INPUT :
2 $Update (newChunk . chunkAct ion ,WORK REMOTE) ;
3 $ B e g i n I f (chunkDes t == foreman)−>
4 $SendMessage (ChunkShared , myRank , chunkDest ,
5 SCHD,&newChunk) ;
6 $ E l s e
7 $SendMessage (ChunkShared , myRank , chunkDest ,
8 CLNT,&newChunk) ;
9 $ E n d I f

10 $Update (’+ ’ , r e t u r n s , 1) ;
11 $ S e t S t a t e (S a v e d S t a t e) ;

If a worker receives a message for sharing its workload, worker process will move to

state SEND INPUT shown in Codelet 5.11.

In this state, it will prepare the chunk metadata with the information about task to be

shared using LBDSL’s inbuilt module GetChunk. Worker process then executes module

SendMessage to send message type ChunkShared. Module SendMessage takes

following parameters as input: the name of messagetype to send(ChunkShared), address

of the process sending this messagetype(myRank), address of the process receiving this

messagetype(msgSrc), processtype associated with the receiving process(CLNT or SCHD)

and an address of the instance of data type Chunk which contains the information to

be communicated through this messagetype. Recipient worker to this message type will

move to the state WORK REMOTE, receives the shared iterates and set the environment

for the remote task execution. Execution of remote task is then performed in the state

EXEC REMOTE WHOLE. Definition of these states is shown in Codelets 5.12 and 5.13.

104

Codelet 5.12

Definition for WORK REMOTE state

1 $ N e x t S t a t e WORK REMOTE:
2 $Rece iveMessage (ChunkShared , myRank , msgSrc ,
3 CLNT,&newChunk) ;
4 $Update (r e m o t e S t a r t , newChunk . c h u n k S t a r t) ;
5 $Update (r emo teS i ze , newChunk . chunkS ize) ;
6 $Update (s a v e S i z e , r e m o t e S i z e) ;
7 $Update (saveSrc , msgSrc) ;
8 / / Embedded C++ code t o s e t e n v i r o m e n t
9 $ S e t S t a t e (EXEC REMOTE WHOLE) ;

Since the worker is executing the remote task, it will compute the whole remote size

at once. Upon completion, worker will send the message type RemoteChunkResult

associating the action RECV OUTPUT to the owner of the chunk. Worker will also send

the new task request to the scheduler.

If the worker receives the message having WORK COMPLETE as chunkAction, sched-

uler is requesting it for termination. In a WORK COMPLETE state, it will set the terminating

condition to true which in this case is done by assigning boolean value gotWork to zero.

Worker process finally moves to the end state (End State) and terminates. End state also

defines the condition to terminate which should be evaluated to true, to ensure a process

has reached to the valid end state. For a worker process to be in valid end state, it should

complete executing iterates it is been assigned to and should have sent the result of remote

task, if it was assigned any. Definition of the End State for worker process is shown in

Codelete 5.14

105

Codelet 5.13

Definition for EXEC REMOTE WHOLE state

1 $ N e x t S t a t e EXEC REMOTE WHOLE:
2 / / Embedded code f o r remote i t e r a t e c o m p u t a t i o n
3 $GetChunk (newChunk , 0 , s a v e S i z e , 0 , cur ren tChunkTime ,
4 RECV OUTPUT) ;
5

6 $ B e g i n I f (s a v e S r c == foreman)−>
7 $SendMessage (ChunkShared , myRank , chunkDest ,
8 SCHD,&newChunk) ;
9 $Else−>

10 $SendMessage (ChunkShared , myRank , chunkDest ,
11 CLNT,&newChunk) ;
12 $ E n d I f
13

14 $GetChunk (newChunk , 0 , 0 , s aveSrc , 0 . 0 , FILL REQUEST) ;
15 $SendMessage (ChunkIn fo rma t ion , myRank , foreMan ,
16 SCHD,&newChunk) ;
17 $Update (r emo teS i ze , 0) ;
18 $ S e t S t a t e (WAIT4 MSG) ;

Codelet 5.14

Definition for TERMINATE state

1 $ E n d S t a t e TERMINATE:
2 $ C o n d i t i o n T o T e r m i n a t e ((gotWork==0)&&(r e t u r n s ==0)
3 &&(r e m o t e S i z e = = 0)) ;

106

5.2.5.2 Scheduler Process

The main objective of a scheduler process is to schedule iterates among the workers

with an attempt to minimize the total completion time. Scheduler also doubles as a worker

and performs task execution. By default, process-id of a scheduler process is zero. How-

ever, it can take any numerical value as process-id. Scheduler process starts by computing

the initial chunksize, based upon the load scheduling policies specified, and assigning the

initial chunk metadata to all workers including itself. Process then begins its execution

from the start state TEST4 MSG. Structure of this state is similar to the worker process.

A scheduler is performing a non-blocking check for messages in this state. If there is no

pending messages, scheduler will move to the WORK LOCAL state. In this state, it will

set the necessary environment for iterate execution and moves to EXEC LOCAL PART

state. Structure of state WORK LOCAL is similar to worker. However the structure of state

EXEC LOCAL PART is slightly different and is shown in Codelet 5.15.

While in state EXEC LOCAL PART, scheduler will compute the assigned chunks at the

rate of tSize that is less than or equal to chunkSize. After computing each tSize, it

will probe for messages from workers from TEST4 MSG state.

If there is any response to the probe, the response is taken into action by saving the

current state. Otherwise, the scheduler continues executing the task, until it runs out of

tasks. The worker-self of a scheduler will then request for new task to its scheduler self.

While in TEST4 MSG state, if the scheduler senses for a new message, it will move

to RETRIEVE STATE and retrieves the message source and action associated with the

message from the instance of MessageInfo. Using these information, it will receive

107

Codelet 5.15

Definition for EXEC LOCAL PART state

1 $ N e x t S t a t e EXEC LOCAL PART :
2 $ G e t L o c a l S i z e (l o c a l S i z e , t S i z e , sendReques t , p r o b e F r e q) ;
3 / / Embedded C++ code f o r i t e r a t e c o m p u t a t i o n
4 $Update (’+ ’ , l o c a l S t a r t , t S i z e) ;
5 $Update (’− ’ , l o c a l S i z e , t S i z e) ;
6 $ B e g i n I f (l o c a l S i z e >0)−>
7 $ S a v e S t a t e (EXEC LOCAL PART) ;
8 $ S e t S t a t e (TEST4 MSG) ;
9 $Else−>

10 $ S a v e S t a t e (WAIT4 MSG) ;
11 $Update (msgSrc , myRank) ;
12 $Update (chunkDest , myRank) ;
13 $ S e t S t a t e (FILL LOCAL REQUEST) ;
14 $ E n d I f

message type ChunkInformation using module ReceiveMessage and moves to

the state associated with the message. Processtype associated with this communication

is SCHD, since it is scheduler process receiving the message.

If the retrieved message is related to sharing its workload, scheduler moves to the

state SEND INPUT which is similar to worker process. In this state, it will prepare the

chunk metadata with the task share information and executes SendMessage to com-

municate message type ChunkShared. This message type is associated with action

WORK REMOTE.

The worker-self of a scheduler can also receive commands from its scheduler self to

work in remote data. In this case, scheduler moves to WORK REMOTE state, receives the

remote data and sets the environment for the remote task execution, and executes remote

108

task in EXEC REMOTE PART state. Structure of state WORK REMOTE is similar to worker

process. However, structure of state EXEC REMOTE PART is different and is shown in

Codelet 5.16.

Like executing its own task, scheduler executes the remote task by executing each

tSize at any instance. After computing each tSize, it will probe for messages in a

TEST4 MSG state. However, if it is done computing all the allocated remotesize,

it will request for new task from its scheduler-self. It will also send the message type

RemoteChunkResult to the chunk owner.

There are two states defined in the scheduler that will perform the task allocation. State

FILL LOCAL REQUEST is responsible for assigning tasks to worker-self of the scheduler

process and state FILL REQUEST is responsible for assigning task to rest of the workers.

The structure of the first state is given in Codelet 5.17 and second is given in Codelet 5.18.

To assign a new task to requesting workers, the scheduler looks for unexecuted iterates

in its chunk table. If the task pool for requesting worker has unexecuted iterates, the

scheduler will compute a new chunk size and send the chunk information to that worker.

In case of its worker-self, it will set a new chunk size and moves to the working mode.

If the requesting worker is done executing all of its assigned iterates, scheduler will

check whether or not the worker has already shared its work. If it has, scheduler will

make itself not eligible for executing remote task; otherwise the worker will be eligible

for executing remote task. If the worker is eligible, scheduler will compute a worker for

tasks sharing, and send the worker’s information and remote chunk size to the requesting

109

Codelet 5.16

Definition for EXEC REMOTE PART state

1 $ N e x t S t a t e EXEC REMOTE PART :
2 $GetComputeSize (r emo teS i ze , t S i z e , MIN PROBE FREQ , 0) ;
3 / / Embedded C++ code f o r remote i t e r a t e c o m p u t a t i o n
4 $Update (’+ ’ , r e m o t e S t a r t , t S i z e) ;
5 $Update (’− ’ , r emo te S i ze , t S i z e) ;
6

7 $ B e g i n I f (r emo t eS i ze >0)−>
8 $ S e t S t a t e (TEST4 MSG) ;
9 $ S a v e S t a t e (EXEC REMOTE PART) ;

10 $Else−>
11 $GetChunk (newChunk , 0 , s a v e S i z e , 0 , 0 . 0 , RECV OUTPUT) ;
12 $SendMessage (RemoteChunkResult , myRank ,
13 saveSrc , CLNT,&newChunk) ;
14 $Update (’− ’ , incoming , 1) ;
15 $Update (msgSrc , myRank) ;
16 $Update (chunkDest , s a v e S r c) ;
17 $ S a v e S t a t e (WAIT4 MSG) ;
18 $ S e t S t a t e (FILL LOCAL REQUEST) ;
19 $ E n d I f

110

Codelet 5.17

Definition for FILL LOCAL REQUEST state

1 $ N e x t S t a t e FILL LOCAL REQUEST :
2 $ B e g i n I f (yMap [2∗myRank+1]>0)−>
3 $Update (t S o u r c e , myRank) ;
4 $ E l s e I f (I n p u t S e n t [myRank]>1)−>
5 $Update (t S o u r c e , −1) ;
6 $Else−>
7 / / Embedded C++ code i d e n t i f y i n g heavy p r o c e s s o r
8 $ E n d I f
9

10 $ B e g i n I f (t S o u r c e == −1)−>
11 $ S e t S t a t e (WAIT4 MSG) ;
12 $ E l s e I f (t S o u r c e ==myRank)−>
13 $GetChunkSize (i , minChunkSize , t S o u r c e ,&yMap ,
14 &t S t a r t ,& t S i z e ,& b a t c h S i z e ,& batchRem) ;
15 $GetChunk (newChunk , c h u n k S t a r t , chunkSize , 0 ,
16 0 . 0 ,WORK LOCAL) ;
17 $ S e t S t a t e (WORK LOCAL) ;
18 $Else−>
19 $GetChunk (newChunk , t S t a r t , t S i z e , myRank , 0 . 0 ,
20 SEND INPUT) ;
21 $SendMessage (ChunkIn fo rma t ion , myRank , t S o u r c e ,
22 CLNT,&newChunk) ;
23 $ E n d I f

111

Codelet 5.18

Definition for FILL REQUEST state

1 $ N e x t S t a t e FILL REQUEST :
2 / / I d e n t i f y t h e p r o c e s s o r f o r t a s k s c h e d u l i n g
3

4 $ B e g i n I f (t S o u r c e == −1)−>
5 $Update (’+ ’ , numIdle , 1) ;
6 $GetChunk (newChunk , 0 , 0 , 0 , 0 . 0 , QUIT) ;
7 $SendMessage (ChunkIn fo rma t ion , myRank , msgSrc ,
8 CLNT,&newChunk) ;
9 $ B e g i n I f (numIdle == N p r o c e s s o r s −1)−>

10 $ S e t S t a t e (WORK COMPLETE) ;
11 $Else−>
12 $ S e t S t a t e (S a v e d S t a t e) ;
13 $ E n d I f
14 $ E l s e I f (t S o u r c e ==msgSrc)−>
15 $GetChunk (newChunk , t S t a r t , t S i z e , 0 ,
16 0 . 0 ,WORK LOCAL) ;
17 $SendMessage (ChunkIn fo rma t ion , myRank , t S o u r c e ,
18 CLNT,&newChunk) ;
19 $ S e t S t a t e (TEST4 MSG) ;
20 $Else−>
21 $ B e g i n I f (t S o u r c e != foreMan)−>
22 $GetChunk (newChunk , t S t a r t , t S i z e , msgSrc ,
23 0 . 0 , SEND INPUT) ;
24 $SendMessage (ChunkIn fo rma t ion , myRank , t S o u r c e ,
25 CLNT,&newChunk) ;
26 $ S e t S t a t e (TEST4 MSG) ;
27 $Else−>
28 $GetChunk (newChunk , c h u n k S t a r t , chunkSize , chunkDest ,
29 0 . 0 , SEND INPUT) ;
30 $ S e t S t a t e (SEND INPUT) ;
31 $ E n d I f
32 $ E n d I f

112

Codelet 5.19

Definition for TERMINATE state

1 $ E n d S t a t e TERMINATE:
2 $ C o n d i t i o n T o T e r m i n a t e ((gotWork==0)&&(incoming ==0)
3 &&(r e m o t e S i z e = = 0)) ;

worker. In the case when there is no iterates left to execute and all workers are done with

their task, scheduler will send terminate message to the requesting worker.

In the case of its worker-self requesting, the scheduler will moves to WORK COMPLETE

state and update the boolean value representing completion of its local work to true. If all

the processors have terminated it will move to the end state (End State) and terminate;

otherwise it will move to waiting mode.

End state also defines the condition to terminate which should be evaluated to true, to

ensure a process has reached the valid end state. For a scheduler process to be in a valid end

state, it should complete executing iterates it is been assigned to and should have sent the

result of remote task, if it was assigned any. Definition of the End State for scheduler

process is shown in Codelet 5.19

Scheduler process will terminate when its worker-self has completed executing the

assigned task and all workers are already terminated.

5.3 Verification Result

The main purpose of specifying the protocol semantics in LBDSL is to track for dead-

locks and race conditions, if there are any. The protocol specified in the last section is

113

the verified protocol which is free of deadlocks and race conditions. However, the initial

protocol specification was not the same as the final version. In the first specification, the

starting state for the scheduler was set to WORK LOCAL instead of TEST4 MSG. The Spin

verifier associated with LBDSL framework found a deadlock situation after reaching to the

depth of 5980. While a process is at state WORK LOCAL it cannot not receive any requests

from a client process. At the same time, client process will be waiting for this execution to

complete in order to receive a new workload information from the scheduler. The sched-

uler, on the other hand, determines this process as being heavily loaded and requests task

sharing. However, this communication could not be completed because the scheduler first

has to receive the message from this worker. This situation was overcome by the scheduler

by first receiving the message and then only executing its own task.

Because of the non-deterministic behavior of the protocol, the initially defined protocol

did not crash at every execution. It was impossible to track this deadlock situation using

the traditional testing methods. Only finite state verification could trace every possible

execution and determine if there is any situation that leads to a deadlock situation.

5.4 Summary

This chapter describes the implementation of centralized probe-based load scheduling

protocol in LBDSL. The main drawback of the centralized load scheduling protocol is that

the central scheduler can become bottleneck, since workers need to communicate with the

scheduler in order to obtain the task. Similarly, at the end of each execution, all the results

need to be collected at this scheduler.

114

Probing for messages by the scheduler is another disadvantage of this protocol. It is

done to perform the role of scheduler and worker by a single processor. The scheduler

need to constantly probe for the messages and had to switch its role from scheduler to

worker. In the next section we redefine this algorithm using a multithreaded approach.

Two individual threads are defined for the scheduler process. One thread is completely

dedicated to executing the scheduling action. Another thread is responsible for executing

the task of a working process. The detail discussion about this form of load scheduling

problem is discussed in next section.

115

CHAPTER 6

CASE STUDY: IMPLEMENTATION OF MULTI-THREADED CENTRALIZED LOAD

SCHEDULING PROTOCOL

Implementation of a multithreaded centralized load scheduling protocol(MCLSP) for

message passing systems is the second illustration of the applicability of LBDSL. A brief

introduction to multithreaded system in provided in the first section. In the second section,

the protocol for a multithreaded centralized load scheduling protocol is described. In the

third section, implementation of the protocol in LBDSL language is presented. Finally the

verification result concludes the chapter.

6.1 Multi-Threaded Architecture

Multithreading can be defined as an ability of an operating system to allow multiple

threads to execute within a context of a single processor. A thread can be defined as a light-

weight process that contains a sequence of programmed instructions that can be executed

independently[27].

Processors in a distributed system have local memory and communicate with each other

by sending and receiving messages. This communication paradigm fits well when proces-

sors have a single thread of execution. This paradigm can suffer a performance penalty

through high context switching and being prone to deadlocks especially when a single pro-

116

cessor has to execute two different tasks. For example, in a probe-based centralized load

scheduling protocol, the scheduler is executing two different tasks. It is switching between

its role of a scheduler and worker. Asynchronous communication was used to support

overlapping between the communication between the processors with the computation of

its worker-self. Non-determinism introduced by this asynchrony can lead to a deadlock

situation.

In comparision to a single-threaded architecture, the multithreaded paradigm provides

finer granularity of concurrency by making virtual processes independent of processors and

allowing the overlap of communication and computation[56]. In a multithreaded architec-

ture, multiple processes are executing within a single processor. These processes share the

same address space. A thread-safe system ensures that the shared data do not get corrupted

during the execution of threads.

To allow the clean separation between the scheduler and worker processes, a multi-

threaded centralized load scheduling protocol(MCLSP) is implemented as a second case

study. The complete description of the protocol is now presented.

6.2 The protocol for Multithreaded architecture

MCLSP is a modification of a probe-based centralized load scheduling protocol im-

plemented in last chapter. In MCLSP, scheduler and worker processes are executed into

two different threads in one processor. The task of a scheduler process is now simplified

as it has to only perform task scheduling and distribution. Its worker-self is now executed

in a separate process. Similar to the probe-based protocol, the scheduler process in this

117

protocol also maintains a chunk table in order to keep track of work chunks executed by

each worker.

The general architecture of a multithreaded centralized load scheduling protocol is

given in Figure 6.1.

Figure 6.1

Architecture of a multithreaded-centralized load scheduling protocol

Every worker process, including that in processor 0 communicates with the scheduler

via message passing to obtain the task information for execution.

The scheduler computes an initial chunk size using a specified load scheduling policy

and sends the chunk metadata to workers. A chunk metadata contains information about

the starting point of iterates in a iterate space and total number of iterates from that starting

point. Besides these information, sometimes it is required to communicate estimated exe-

118

cution time of iterates, address of the destination processor, estimated size of iterates and

the action associated with iterates. All this information defines the metadata of a chunk

being communicated. In the mean time, workers will be waiting for task information from

the scheduler. Upon receiving the information, they start to execute the assigned task.

Workers will request new set of tasks from the scheduler once the currently assigned task

is complete.

The scheduler upon receiving the request, responds by either sending local work infor-

mation or by requesting to share the work of another worker. In order to allow task sharing,

workers do not compute the entire chunk size at once. It computes iterates at the rate of

a size(say, tSize) at any time. Computed value of tSize should be less than or equal to

chunk size. After computing each tSize, worker will check for new messages from either

scheduler or workers. The worker process will respond to the message if there are any,

otherwise it will continue executing the assigned task. The protocol for the worker in this

case is same as that of probe-based load scheduling protocol described in the last section.

In the course of responding to worker’s request, the scheduler may find a situation when

there aren’t any unfinished iterates in the system. In this scenario, scheduler will send a

request to terminate to the worker. The scheduler terminates once all workers in the system

have terminated.

The complete protocol is given in Figure 6.2.

119

Figure 6.2

Multithreaded Load Scheduling

120

Codelet 6.1

State Declaration for

1 $ E n u m e r a t e S t a t e = {
2 WAIT4 MSG , TEST4 MSG , WORK LOCAL,
3 EXEC LOCAL PART , RETRIEVE MSG ,
4 FILL REQUEST , WORK REMOTE,
5 WORK COMPLETE, EXEC REMOTE WHOLE,
6 SEND INPUT , RECV OUTPUT, TERMINATE
7 } ;

6.3 The protocol in LBDSL language

A program in LBDSL requires declaring state labels, defining messagetypes and pro-

cesses. LBDSL components specifying the multithreaded centralized load balancing pro-

tocol are now presented. Terms chunk and workload are used interchangeably throughout

this chapter. These terms stand for the group of iterates in a task pool.

6.3.1 State Label Declaration

Processes in LBDSL program is composed of finite number of states and transition

relations that trigger the movement between states. Process states are labeled. State labels

are declared globally before they are used. The state label declaration for MCLSP is shown

in Codelet 6.1. Twelve distinct state labels are declared. Note that all the processes in

LBDSL can use these state labels. However, each state within a process should have a

unique state label.

121

6.3.2 Constants Declaration

A LBDSL program requires declaring the number of processors in the system and the

number of processes instantiated to be mapped to the processors. If the number of proces-

sors is equal to the number of processes, one to one mapping of processors to the process

instantiation is done. If total process instantiation is more total number of processors, more

than one process will be mapped to a single processor, forming a case of a multithreaded

system.

For MCLSP, the total number of processors is set to N. Similarly, total number of

processes is set to N+1. It means that more than one processes should be mapped to a

single processor. Processor 0 will be mapped to both scheduler and worker process. The

rest of the processors will execute a worker process.

Every process is assigned a constant value as its processtype. This protocol has two

distinct processes: scheduler and worker, and hence, following two constant values are

defined : SCHD and CLNT. SCHD is set to 0 and represents the processtype for scheduler.

Similarly, CLNT is set to 1 and represents the processtype for worker. These values are

used during message communication.

Declaration of all these constant values is given in Codelet 6.2

6.3.3 Passive Rules

Protocol specification in LBDSL requires defining some passive rules, that are not re-

quired during message communication, but play an important role during workload com-

122

Codelet 6.2

Constants for Centralized Load Scheduling Protocol

1 $ d a t a t y p e c o n s t a n t<i n t> N P r o c e s s o r s N
2 $ d a t a t y p e c o n s t a n t<i n t> N P r o c e s s e s N+1
3 $ d a t a t y p e c o n s t a n t<i n t> NWorkers N
4

5 $ d a t a t y p e c o n s t a n t<i n t> SCHD 0
6 $ d a t a t y p e c o n s t a n t<i n t> CLNT 1

putation and preparing the message for communication. This LBDSL program reuses the

same passive rules that are defined in probe-based centralized load scheduling protocol.

6.3.4 Messagetypes Definition

Three messagetypes defined in the first case study are resused for this case study.

ChunkInformation handles the communication of chunk metadata. ChunkShared

handles the communication of unexecuted chunks and chunk metadata. Communication of

executed shared chunk and shared workload execution time is handled by the messagetype

RemoteChunkResult.

6.3.5 Process Declaration

Task scheduling and task execution are two distinct jobs to be performed in MCLSP.

Two processes, Scheduler and Worker, are defined for this purpose. Following subsections

describe the implementation of these processes in LBDSL.

123

6.3.5.1 Worker Process

The Worker process executes the work assigned by the scheduler, as well as performs

task sharing. Total number of worker process instantiation is defined by a constant value

Nworkers. Each instantiated worker process is associated with a processor-id of a pro-

cessor it is mapped to.

Structure of the worker process for MCLSP is same as the probe-based centralized load

scheduling protocol.

First of all, different variables are defined that are required for specifying the worker

process. Instances of LBDSL inbuilt data types Chunk and MessageInfo are among

these variable declarations. Following the variable declaration, states and transition func-

tions for worker process are defined.

A Worker process begins its execution from Start State labeled as WAIT4 MSG.

In this state, worker process waits for a message from other processes using module

Poll Wait. Arguments of this module specifies that worker can receive message from

any processes that are sending to this process address with processtype CLNT. It makes a

transition to a new state labeled as RETRIEVE MSG after sensing a message.

In this state, the worker gets the information about the message source from an instance

of MessageInfo. Module GetMessageLength is used to get the estimated message

size to be received. Module GetChunk is used to enumerate the variable newChunk.

More specifically, obtained message length and state label RETREIVE MSG that is asso-

ciated with the messagetype to be received are assigned to members chunkSize and

chunkAction of variable newChunk.

124

Worker receives the messagetype ChunkInformation using communication mod-

ule ReceiveMessage. Module ReceiveMessage takes following parameters as in-

put: the name of messagetype to be received (ChunkInformation), address of pro-

cess receiving this messagetype (myRank), address of the source process (msgSrc), pro-

cesstype associated with the receiving process (CLNT) and an instance of datatype Chunk

which will be enumerated during this communication. After this communication is com-

pleted, member chunkAction of variable newChunk will contain the state label of the

next state that this process should make transition to.

Note that, when a communication module ReceiveMessage executed within a state,

LBDSL evokes the ReceiveMessage module defined in the messagetype associated

with the communication. Similarly, when a communication module SendMessage is

executed within a state, LBDSL evokes the SendMessage module defined in the mes-

sagetype definition associated with this communication.

If the worker makes a transtion to state labeled as WORK LOCAL, it sets the necessary

environment for the iterate execution and moves to the state labeled as EXEC LOCAL PART.

In the state EXEC LOCAL PART, the worker calculates the value tSize that is less

than or equal to the chunkSize using the module GetComputeSize. The Worker

will compute the assigned iterates at the rate of one tSize at a time. The Worker will

constantly check for new messages it may receive, after executing every tSize of iterates.

Checking for a new message is done in state TEST4 MSG using module Poll Test .

This is an asynchronous step. If a worker finds out that there is a message, it will

respond to the new message. Otherwise it will continue executing the task. When the

125

value of tSize becomes equal to the value localSize indicating the last sub chunk,

the worker sends a request to the scheduler for a new task. After it finishes executing the

last sub chunk the worker moves to WAIT4 MSG state waiting for the new task.

If a worker receives a message that asks for sharing its workload, the worker process

will move to state SEND INPUT. In this state, it will prepare the chunk metadata with

the information about task to be shared using LBDSL’s inbuilt module GetChunk. The

worker process then executes module SendMessage to send messagetype ChunkShared.

Module SendMessage takes the following parameters as input: the name of messagetype

to send (ChunkShared), address of the process sending this messagetype (myRank),

address of the process receiving this messagetype (msgSrc), processtype associated with

the receiving process (CLNT) and an address of the instance of data type Chunk which

contains the information to be communicated through this messagetype. The Recipient

worker to this message type will move to the state WORK REMOTE, receives the shared

iterates and set the environment for the remote task execution. Execution of the remote

task is then performed in the state EXEC REMOTE WHOLE.

Since the worker is executing the remote task, it will compute the whole remotesize

at once. Upon completion, worker will send the message type RemoteChunkResult

associating the action RECV OUTPUT to the owner of the chunk. The Worker will also

send the new task request to the scheduler.

If the worker receives the message having WORK COMPLETE as chunkAction, it

means that scheduler is requesting it to terminate. In a WORK COMPLETE state, the worker

will set the terminating condition to true which in this case is done by assigning boolean

126

value gotWork to zero. Worker process finally moves to the end state (End State) and

terminates. End state also defines the condition to terminate which should be evaluated to

true, to ensure a process has reached to the valid end state. For a worker process to be in

valid end state, it should complete executing iterates it is been assigned to and should have

sent the result of remote task, if it was assigned any.

6.3.5.2 Scheduler Process

The main objective of the scheduler process is to schedule iterates among the workers

with an attempt to minimize the total completion time. Processid of the scheduler process

is set to the rank of a processor it is mapped to. The Scheduler process starts by computing

the initial chunksize, based upon the load scheduling policies specified, and assigning the

initial chunk metadata to all workers. The Scheduler process then begins its execution

from the start state (Start State) labeled as WAIT4 MSG. The structure of this state is

similar to the worker process except for SCHD is set as the processtype.

It will make a transition to the next state labeled as RETRIEVE MSG after sensing a

message. In this state, the scheduler retrieves the information about the message source

from an instance of MessageInfo. Module GetMessageLength is evoked that will

return the estimated message size to be received. Module GetChunk is executed which

will enumerate the variable newChunk. More specifically, the obtained message length

and state label RETREIVE MSG that is associated with the messagetype to be received are

assigned to members chunkSize and chunkAction of variable newChunk.

127

The scheduler’s only state label it can receive is FILL REQUEST. In this state, sched-

uler assigns a new task to the requesting worker. The structure of the state FILL REQUEST

is given in Codelet 6.3.

To assign a new task to the requesting worker, the scheduler looks for unexecuted

iterates in its chunk table. If the task pool for the requesting worker has unexecuted iterates,

the scheduler will compute a new chunksize and send the chunk information to that worker.

If the requesting worker is done executing all of its assigned iterates, the scheduler

will check whether or not the worker has already shared its work. If it has, the scheduler

will make the worker eligible for executing a remote task. Otherwise, the scheduler will

compute a worker for task sharing, and send the worker’s information and remote chunk

size to the requesting worker. In a situation, when there are no unexecuted iterates and all

of the workers are done with their tasks, the scheduler will send the terminate message to

the requesting worker.

If all the processors have terminated it will move to the end state (End State) and

terminate. Otherwise it will move to waiting mode.

The End state also defines the condition to terminate which should be evaluated to true,

to ensure a process has reached to the valid end state. For a scheduler process to be in

the valid end state, it should have sent terminate messages to all the workers in the system

and the terminating conditions should be true. Definition of the End State for scheduler

process is shown in Codelet 6.4

The Scheduler process will terminate after all workers are terminated.

128

Codelet 6.3

Definition for FILL REQUEST state

1 $ N e x t S t a t e FILL REQUEST :
2 $ B e g i n I f (yMap [2∗msgSrc+1]>0)−>
3 $Update (t S o u r c e , msgSrc) ;
4 $ E l s e I f (I n p u t S e n t [msgSrc]>1)−>
5 $Update (t S o u r c e , −1);
6 $Else−>
7 / / Embedded C++ code i d e n t i f y i n g heavy p r o c e s s o r
8 $ E n d I f
9

10 $ B e g i n I f (t S o u r c e == −1)−>
11 $Update (’+ ’ , numIdle , 1) ;
12 $GetChunk (newChunk , 0 , 0 , 0 , 0 . 0 , QUIT) ;
13 $SendMessage (ChunkIn fo rma t ion , myRank , msgSrc ,
14 CLNT,&newChunk) ;
15

16 $ B e g i n I f (numIdle == N p r o c e s s o r s −1)−>
17 $Update (gotWork , 0) ;
18 $ S e t S t a t e (TERMINATE) ;
19 $Else−>
20 $ S e t S t a t e (WAIT4 MSG) ;
21 $ E n d I f
22

23 $ E l s e I f (t S o u r c e ==msgSrc)−>
24 $GetChunk (newChunk , t S t a r t , t S i z e , 0 ,
25 0 . 0 , WORK LOCAL) ;
26 $SendMessage (ChunkIn fo rma t ion , myRank , t S o u r c e ,
27 CLNT, &newChunk) ;
28 $ S e t S t a t e (WAIT4 MSG) ;
29

30 $Else−>
31 $GetChunk (newChunk , t S t a r t , t S i z e , msgSrc ,
32 0 . 0 , SEND INPUT) ;
33 $SendMessage (ChunkIn fo rma t ion , myRank , t S o u r c e ,
34 CLNT, &newChunk) ;
35 $ S e t S t a t e (WAIT4 MSG) ;
36 $ E n d I f
37 $ E n d I f

129

Codelet 6.4

Definition for TERMINATE state

1 $ E n d S t a t e TERMINATE:
2 $ C o n d i t i o n T o T e r m i n a t e (gotWork = = 0) ;

6.4 Verification Result

Multithreaded centralized load scheduling protocol is similar to the probe-based load

scheduling protocol except for the scheduler process whose only task is to schedule the

iterates. Since a deadlock-free probe-based load scheduling protocol specification was al-

ready generated, verification process did not find any deadlocks or race-conditions in this

protocol. The new protocol is then integrated to the Loci library[55]. The integrated library

is used to execute an application that requires load scheduling. The resulting efficiency of

application is increased by 4% when executed in 4 and 8 number of processors in compar-

ison to probe-based load scheduling protocol.

6.5 Summary

This chapter describes the implementation of a multi-threaded probe-based load schedul-

ing protocol in LBDSL. The protocol consist of a centralized scheduler to perform task

scheduling. All the processors in the system execute the worker process. A processor that

is mapped to both scheduler and worker processes executes two thread’s one for each of

them. Processes within a processor also communicates via message passing to ensure a

thread safe system is built.

130

The main drawback of this protocol is that the central scheduler can become a bottle-

neck, since workers need to communicate with the scheduler in order to obtain the tasks.

Multithreaded hierarchical load scheduling protocol is the third case study that overcomes

the bottleneck of centralized load scheduling protocol, decentralizing the load scheduling

process.

131

CHAPTER 7

CASE STUDY: IMPLEMENTATION OF MULTI-THREADED HIERARCHICAL

LOAD SCHEDULING PROTOCOL

Implementation of a multithreaded hierarchical load scheduling protocol for message

passing systems is the third illustration of the applicability of LBDSL. A brief introduction

of hierarchical load scheduling protocols and their benefit over centralized load scheduling

protocol are discussed in first section. The second section describes the multithreaded

hierarchical load scheduling protocol considered for the case study. Implementation of the

protocol in LBDSL language is presented in the third section. This chapter concludes by

discussing the verification result of the protocol implemented.

7.1 Hierarchical Load Scheduling

Centralized load scheduling is a simplest form of load scheduling protocol where load

balancing decisions are made on a specific processor as a scheduler. The decisions are

based upon the load execution time of a processor in its previous iteration. Since the global

information about processors work load is readily available on the central scheduler, load

scheduling decisions will be a best choice. This protocol has proved to work well for a

few thousands of processors. However, this algorithm faces scalability issues, especially

in machines with a small amount of memory. Also, the scheduler can become a bottleneck

132

for achieving higher performance as all the processors have to communicate with the single

processor to get load information. The solution to this problem can be a fully distributed

load scheduling protocol, where each processor in the system exchanges the load informa-

tion, decentralizing the load scheduling task. However, the processors will not have the

global load information, and this tends to lead to poor load balancing, especially in big

systems.

A hierarchical load scheduling protocol inherits the good qualities of both centralized

and distributed load scheduling protocol. The best part of centralized load scheduling is

the concept of having global information, while deciding for task scheduling. The best part

of distributed load scheduling is to decentralize the role of the scheduler such that every

processor of the system does not have to communicate with one scheduler, increasing the

speed of the scheduling process.

The basic idea behind a hierarchical load scheduling is to divide the processors into

independent autonomous groups and to organize the groups in a hierarchy[81]. Each au-

tonomous group consists of one scheduler that manages load scheduling across all proces-

sors in its sub tree. This approach decentralizes the role of a scheduler. Local schedulers

of each sub domain form the next level of hierarchy and communicates with each other to

balance the load across all the groups. One of the local schedulers is assigned as a root

that maintains the global information by communicating with the local schedulers. Root

scheduler is responsible for balancing load across all the subdomains. Hierarchical load

scheduling protocol can reduce the time and memory required for load balancing because

133

the size of each sub domain is smaller than the entire number of processors. Workers in

each sub domain need to communicate with its scheduler to get the load information.

A hierarchical load scheduling algorithm is more advanced than the centralized load

scheduling algorithm. A general idea about how the hierarchical load scheduling algorithm

operates is discussed above in this section. The next section describes the hierarchical load

scheduling implemented as the third case study.

7.2 The protocol

A hierarchical load scheduling algorithm maintains a hierarchy of schedulers so that

the load scheduling task will be decentralized across a group of local schedulers. There

can be any number of hierarchy levels, with the processors on the bottom of the hierarchy

performing task execution and processors in different levels of hierarchy performing task

scheduling for its sub domain.

Hierarchical load scheduling protocol implemented for this case study has two levels

of hierarchy. Initially, total processors in the system are divided into different sub domains,

each of size less than or equal to L. Processor with lowest ranking in each sub domain is

assigned as the scheduler for that sub domain. The schedulers of all sub domains form the

second level of hierarchy. Processor with rank 0 executes the role of a global scheduler.

Note that a processor with rank 0 has to perform three tasks: global scheduling, local

scheduling and task execution. Similarly, every processor that performs local scheduling

is also executing a task. This protocol also uses a multithreading approach in order to

allow a processor to execute multiple roles. For example, processor 0 will execute three

134

processes global scheduling, local scheduling and task execution. Each process is executed

in a separate thread. A multithreading approach will simplify the protocol, minimizing the

need for asynchronous communication and reducing frequency to deadlock.

The global scheduler maintains a chunk table in order to keep track of work assigned to

each sub-domain. Similarly, local scheduler keeps track of work executed by each worker

in its sub domain. The general architecture of multithreaded-hierarchical load scheduling

protocol is shown in Figure 7.1. The Terms chunk and workload are used interchangeably

throughout this chapter. These terms stand for the group of iterates in a task pool.

Figure 7.1

Architecture of a multithreaded-hierarchical load scheduling protocol

The hierarchical load scheduling protocol starts by global scheduler assigning the meta-

data of workbatch to each local scheduler. Here, workbatch represents a group of iterates

that belongs to the workers of a particular subdomain. To facilitate load scheduling, global

135

scheduler does not assign the complete task to local schedulers, such that a subdomain

performing slowly can share its unexecuted workbatch to another subdomain.

The global scheduler is only sending the metadata of workbatch. It is because the

load scheduling protocol assumes the workload is distributed among the workers. Local

schedulers upon receiving the metadata, each computes a chunksize using user specified

load scheduling policies for each worker in its domain. While computing chunksize, local

scheduler takes into consideration the remaining unexecuted workload from the assigned

batch. Local scheduler sends the chunk metadata to all the workers that belong to its sub

domain. A chunk metadata contains information about the starting point of iterates in a

iterate space and total number of iterates from that starting point. Besides this information,

sometimes it is required to communicate estimated execution time of iterates, address of

the destination processor, estimated size of iterates and the action associated with iterates.

All this information defines the metadata of chunk being communicated.

In the mean time, workers will be waiting for task information from their local sched-

uler. Upon receiving the information, they start to execute the assigned task. Protocol for

the worker process is same as described in the probe-based centralized load scheduling

protocol and multithreaded-centralized load scheduling protocol. However, workers are

allowed to communicate only to other workers in its sub domain and its local scheduler in

this case.

In the course of responding to the worker’s request, the local scheduler may find a

situation when there aren’t any unfinished iterates in the assigned batch for its sub domain.

In this scenario, it will send a request for a new batch of work to the global scheduler.

136

The global scheduler assigns a new batch of work to the local scheduler if there are any.

Otherwise, the global scheduler will send the message to terminate to the local scheduler.

The local scheduler will send either work metadata or the request to terminate to its

workers based upon the information it has received from the global scheduler. The lo-

cal scheduler terminates after all workers in its sub domain have terminated. The global

scheduler terminates after all the local schedulers have terminated.

The complete hierarchical load scheduling protocol is shown in Figure 7.2.

7.3 The protocol in LBDSL language

A program in LBDSL requires declaring state labels, defining message types and pro-

cesses. LBDSL components specifying the multithreaded hierarchical load scheduling

protocol(MHLSP) are now presented.

7.3.1 State Label Declaration

Processes in LBDSL program is composed of finite number of states and transition

relations that trigger the movement between states. Each state is labeled. State labels

are declared globally before they are used. State label declaration for MHLSP is shown

in Codelet 7.1. Sixteen distinct state labels are declared. Note that all the processes in

LBDSL can use these state labels. However, each state within a process should have a

unique state label.

137

Figure 7.2

Hierarchical load scheduling protocol

Codelet 7.1

State Declaration

1 $ E n u m e r a t e S t a t e ={
2 WAIT4 MSG , TEST4 MSG , RETRIEVE MSG ,
3 WORK LOCAL, WORK REMOTE, SEND INPUT ,
4 RECV OUTPUT, FILL REQUEST , TERMINATE,
5 EXEC LOCAL PART , EXEC REMOTE WHOLE,
6 WORK COMPLETE, GLOBAL ASSIGNMENT,
7 GLOBAL SHARE, FILL GLOBAL REQUEST ,
8 WORK COMPLETE SCHEDULER
9 } ;

138

7.3.2 Constants Declaration

A LBDSL program requires declaring the number of processors in the system and the

number of processes instantiated to be mapped to the processors. If the number of proces-

sors is equal to the number of processes, one to one mapping of processors to the process

instantiation is done. If total process instantiation is more than number of processors, more

than one process will be mapped to a single processor, forming a case of a multithreaded

system.

For the hierarchical multithreaded load scheduling protocol, the total number of pro-

cessors is set to N . Similarly, total number of processes is set to M . Number of processes

should always be greater than or equal to number of processors. Here, it is not equal to N

meaning there are more processes than processors in a system, making the protocol eligible

for a multithreaded structure. Also, number of workers NWorkers is equal to number of

processors in the system, meaning, all processors will execute this process. Similarly, the

maximum size of a sub domain is defined by the constant value LeafSize.

Every process in LBDSL is associated to a constant value as its processtype. The

following three processtypes are defined: GSCHD, LSCHD and CLNT, each representing

processes, globalscheduler, localscheduler and worker respectively. GSCHD is set to 2,

LSCHD is set to 0 and CLNT is set to 1. These values are used during message communi-

cation between processes.

Declaration of these constant values are given in Codelet 7.2

139

Codelet 7.2

Constants for multithreaded hierarchical load scheduling protocol

1 $ d a t a t y p e c o n s t a n t<i n t> N P r o c e s s o r s N
2 $ d a t a t y p e c o n s t a n t<i n t> N P r o c e s s e s M
3 $ d a t a t y p e c o n s t a n t<i n t> NWorkers N
4 $ d a t a t y p e c o n s t a n t<i n t> L e a f S i z e L
5

6 $ d a t a t y p e c o n s t a n t<i n t> GSCHD 2
7 $ d a t a t y p e c o n s t a n t<i n t> LSCHD 0
8 $ d a t a t y p e c o n s t a n t<i n t> CLNT 1

7.3.3 Passive Rules

Protocol specification in LBDSL requires defining some passive rules, that are not re-

quired during message communication, but play an important role during workload com-

putation and preparing the message for communication. This LBDSL program reuses the

same passive rules that are defined in probe-based centralized load scheduling protocol.

7.3.4 Messagetypes Definition

Three messagetypes that are defined in the first case study are resused for this case

study. Messagetype ChunkInformation is defined to handle the communication of

chunk metadata. Messagetype ChunkShared is defined to handle the communication of

unexecuted chunks and chunk metadata. Messagetype RemoteChunkResult is defined

to handle the communication of executed shared chunk and shared workload execution

time.

140

7.3.5 Process Declaration

Global scheduling of tasks, task scheduling within a subdomain and task execution

are three distinct jobs to be performed in a hierarchical load scheduling protocol. Three

processes, GlobalScheduler, LocalScheduler and Worker, are defined for this purpose. Fol-

lowing subsections describe the implementation of these processes.

7.3.5.1 Worker Process

A Worker process executes the work assigned by the local scheduler, as well as per-

forms task sharing between workers within the same sub domain. The total number of

Worker process instantiations is defined by a constant value Nworkers. Each instantiated

Worker process is associated with a processor-id of a processor it is mapped to.

A worker process starts by determining the address of its local scheduler using an

builtin module GetLocalSchedularAddress. This module uses the process address

and the maximum allowed size of sub domain to compute the address of the local scheduler.

Since, processors are assigned to the role of local scheduler at run time, processors as

workers also need to determine their local scheduler at run time. After this step, States and

transition functions for Worker process are defined.

The load scheduling protocol of the Worker process for MHLSP is same as the central-

ized load scheduling protocol as described in chapters 5 and 6.

141

7.3.5.2 LocalScheduler Process

The main objective of a LocalScheduler process is to schedule a batch of work load it

receives from the global scheduler across the workers in its sub domain, with an attempt

to minimize the total completion time. Process-id of a local scheduler process is set to the

rank of a processor it is mapped to.

Process LocalScheduler starts by computing the size of its subdomain using builtin

module GetSubDomainSize. This module takes the process address and maximum

allowed size of sub domain to determine its sub domain size. LocalScheduler needs this

information to manage the task pool that belongs to its sub domain.

LocalScheduler waits for the task information for its workers from the GlobalScheduler

in the start state (Start State labeled as WAIT4 MSG. The structure of this state is

same as that of a worker except for it has LSCHD as a processtype in handler Poll Wait.

LocalScheduler will move to the state RETRIEVE MSG when it senses a message. The

structure of this state is also similar to the Worker process except for it uses processtype

LSCHD. In this state, LocalScheduler may get the information about the ratio of the total

size of the task pool it needs to work on if the message is from GlobalScheduler or it may

also receive the request for a task from workers.

If the message is from GlobalScheduler, LocalScheduler moves to the state labeled as

GLOBAL ASSIGNMENT where it computes a batch size for all Workers in its subdomain.

It then computes an initial chunksize for each worker and sends the initial chunk infor-

mation to all the workers in its subdomain. The structure of this state is given in Codelet

7.3.

142

Codelet 7.3

Definition for GLOBAL ASSIGNMENT state

1

2 $ N e x t S t a t e G l o b a l A s s i g n m e n t :
3 / / Embedded C++ Code t o compute b a t c h s i z e
4

5 $Begin Loop (t S o u r c e : myRank To sizeSubDomain)
6 $Update (i n p u t S e n t [t S o u r c e] , 0) ;
7 $GetChunkSize (i , minChunkSize , t S o u r c e , &yMap ,
8 &c h u n k S t a r t , &chunkSize , &b a t c h S i z e , &batchRem) ;
9 $GetChunk (newChunk , c h u n k S t a r t , chunkSize , t S o u r c e ,

10 0 . 0 ,WORK LOCAL) ;
11 $SendMessage (ChunkIn fo rma t ion , myRank , t S o u r c e ,
12 CLNT,&newChunk) ;
13 $End Loop
14

15 $ S e t S t a t e (WAIT4 MSG) ;

If the message is from the workers requesting work, the LocalScheduler moves to the

state labeled as FILL REQUEST. State FILL REQUEST is responsible for assigning tasks

to workers. The structure of this state is given in Codelet 7.4.

To assign a new task to the requesting worker, local scheduler looks for unexecuted

iterates in its chunk table. If the task pool for requesting worker has unexecuted iterates,

local scheduler will compute a new chunk size and send the chunk information to that

worker.

If the requesting worker is done executing all of its assigned iterates, the local scheduler

will check whether or not the worker has already shared its work. If it has, the local sched-

uler will make the requesting worker not eligible for executing remote task. Otherwise, the

local scheduler will compute a worker for tasks sharing, and send the worker’s information

143

Codelet 7.4

Definition for FILL REQUEST state

1 $ N e x t S t a t e FILL REQUEST :
2 $ B e g i n I f (msgSrc != newChunk . chunkDes t)−>
3 $Update (i , newChunk . chunkDes t) ;
4 $Update (’− ’ , i n p u t S e n t [i−myRank] , 1) ;
5 $ E n d I f
6

7 $ B e g i n I f (yMap [msgSrc] > 0)−>
8 $Update (t S o u r c e , msgSrc) ;
9 $ E l s e I f (I n p u t S e n t [msgSrc]> 1)−>

10 $Update (t S o u r c e , −1) ;
11 $Else−>
12 / / Embedded code i d e n t i f y i n g p r o c e s s o r f o r t a s k s h a r i n g
13 $ E n d I f
14

15 $ B e g i n I f (t S o u r c e == −1)−>
16 $Update (’+ ’ , numIdle , 1) ;
17

18 $ B e g i n I f (numIdle == sizeSubDomain)
19 $GetChunk (newChunk , 0 , s izeSubDomain , msgSrc ,
20 0 ,FILL GLOBAL REQUEST) ;
21 $SendMessage (ChunkIn fo rma t ion , myRank , foreMan ,
22 GSCHD, newChunk) ;
23 $Update (numIdle , 0) ;
24 $ E n d I f
25 $ S e t S t a t e (WAIT4 MSG) ;
26 $ E l s e I f (t S o u r c e ==msgSrc)−>
27 $GetChunk (newChunk , c h u n k S t a r t , chunkSize , 0 ,
28 0 ,WORK LOCAL) ;
29 $SendMessage (ChunkIn fo rma t ion , myRank , t S o u r c e ,
30 CLNT, newChunk) ;
31 $ S e t S t a t e (WAIT4 MSG) ;
32 $Else−>
33 $GetChunk (newChunk , c h u n k S t a r t , chunkSize , msgSrc ,
34 0 . 0 , SEND INPUT) ;
35 $SendMessage (ChunkIn fo rma t ion , myRank , t S o u r c e ,
36 CLNT, newChunk) ;
37 $ S e t S t a t e (WAIT4 MSG) ;
38 $ E n d I f

144

Codelet 7.5

Definition for WORK COMPLETE SCHEDULER state

1 $ N e x t S t a t e WORK COMPLETE SCHEDULAR:
2 $Begin Loop (i : myRank To sizeSubDomain)
3 $Update (mappedSource , myRank+ i) ;
4 $GetChunk (newChunk , 0 , 0 , msgSrc , 0 . 0 ,WORK COMPLETE) ;
5 $SendMessage (ChunkIn fo rma t ion , myRank , mappedSource ,
6 CLNT,&newChunk) ;
7 $End Loop
8 $Update (gotWork , 0) ;
9 $ S e t S t a t e (TERMINATE) ;

and remote chunk size to the requesting worker. In case when there is no iterates left to

execute and all workers are done with their task, LocalScheduler will request for new work

batch to the global scheduler.

It may receive a new batch of tasks, in which case it again goes to state labeled as

GLOBAL ASSIGNMENT and distributes the task to its workers. It may also receive the

request to terminate from the global scheduler. In this case, local scheduler will move to

state labeled as WORK COMPLETE SCHEDULER where it sends the terminate message to

its workers, sets the condition to terminate as true and moves to the end state. Structure for

states WORK COMPLETE SCHEDULER and TERMINATE is given in Codelets 7.5 and 7.6.

The End state also defines the condition to terminate which should be evaluated to true,

to ensure a process has reached to the valid end state. For a scheduler process to be in a

valid end state, it should have sent terminate messages to all the workers in the system.

145

Codelet 7.6

Definition for TERMINATE state

1 $ E n d S t a t e TERMINATE:
2 $ C o n d i t i o n T o T e r m i n a t e (gotWork = = 0) ;

7.3.5.3 GlobalScheduler Process

The main objective of a GlobalScheduler process is to schedule workload across all

the sub domains in the system, with an attempt to minimize the total completion time and

balance the workload in the system. The Process-id of a GlobalScheduler process is set

to the rank of a processor it is mapped to. GlobalScheduler starts by computing the initial

batchsize to assign to each subdomain, based upon the user specified batchsize ratio. It

then assigns the metadata about the current batch size to all local schedulers in the system

using messagetype ChunkInformation. Batchsize ratio is assigned to the member

chunkparam2 of datatype Chunk. It is assigned to this specific member because the

ratio can be a floating point value and, as mentioned before in the chapter about LBDSL

structure, the data type of member chunkParam2 is also floating point.

After sending the initial batch information to all the local schedulers, GlobalScheduler

waits for messages from the local schedulers in state WAIT4 MSG. The structure of this

state is similar to that of LocalScheduler and Worker except for the handler POLL WAIT

uses the process type GSCHD. When it senses a message, it moves to state RETRIEVE MSG,

where it receives the address of a local scheduler requesting for the information about un-

scheduled task. Global scheduler will then move to the state FILL GLOBAL REQUEST.

146

In this state, global scheduler will send the new batch size information if there are any un-

scheduled batches of work remained in the task pool. Otherwise it will send the message

to terminate to the local scheduler. It will terminate when it is done sending the terminate

message to all the local schedulers in the system by moving to the end state TERMINATE.

Structure of both of these states is given in Codelets 7.7 and 7.8.

The terminating condition for this process is when the value of a variable gotWork is

set to false meaning there are no unscheduled work in the system.

7.3.5.4 Initialize Process

Initialize process computes the number of workers for each sub-domain and identifies

the local scheduler of those sub-domains. This process is executed by all the processors in

the system before the execution of hierarchical load scheduling protocol.

7.4 Verfication Result

The specification of hierarchical load scheduling protocol in LBDSL language is ex-

ecuted with the verification framework for deadlocks. The protocol specified in the last

section is a verified protocol which is free of deadlocks and race conditions. However, the

initial protocol specification was not the same as the final version. In the first specification,

within a sub-domain, when a worker has already given its task and hasn’t received the ex-

ecuted task, it was still eligible for task sharing. But the specification provided flexibility

that leads to a race condition situation where a process tries to receive the request to task

sharing and result of already shared task. To avoid this situation a worker is restricted from

being eligible for sending its next share of task, if it is currently sharing a task and hasnt
147

Codelet 7.7

Definition for FILL GLOBAL REQUEST state

1 $ N e x t S t a t e FILL GLOBAL REQUEST :
2 $Update (sizeSubDomain , newChunk . chunkParam1) ;
3 $GetGroupMap (msgSrc , s izeSubDomain ,& groupMap) ;
4

5 $ B e g i n I f (numBatch [groupMap]< t o t a l B a t c h)−>
6 $GetChunk (newChunk , 0 , 0 , 0 , 1 ,GLOBAL ASSIGNMENT) ;
7 $SendMessage (ChunkIn fo rma t ion , myRank , msgSrc ,
8 LSCHD,&newChunk) ;
9 $Update (numBatch [groupMap] , numBatch [groupMap] + 1) ;

10 $Else−>
11 $GetChunk (newChunk , 0 , 0 , 0 , 0 ,WORK COMPLETE SCHEDULER) ;
12 $SendMessage (ChunkIn fo rma t ion , myRank , msgSrc ,
13 LSHD,&newChunk) ;
14 $Update (numIdle , numIdle + 1) ;
15

16 $ B e g i n I f (numIdle ==numGroups)−>
17 $Update (gotWork , 0) ;
18 $ S e t S t a t e (TERMINATE) ;
19 $Else−>
20 $ S e t S t a t e (WAIT4 MSG) ;
21 $ E n d I f
22 $ E n d I f

Codelet 7.8

Definition for TERMINATE state

1 $ E n d S t a t e TERMINATE:
2 $ C o n d i t i o n T o T e r m i n a t e (gotWork = = 0) ;

148

yet received the result. These details are implemented in state FILL REQUEST within

process LocalScheduler.

A Race condition was also detected in the protocol specified. The problem is promi-

nent in processor 0 which is executing all three processes. The problem occurs when a

GlobalScheduler and Worker are sending message to the LocalScheduler. Both of these

message races with each other to be received by the LocalScheduler and the correct mes-

sage is not received in some executions. To avoid this situation, task sharing is disabled for

worker 0.

Because of the non-deterministic behavior of the protocol, the initially defined protocol

did not crash at every execution. It was impossible to track this race situation using the tra-

ditional testing methods. Only finite state verification could trace every possible execution

and determine if there is any situation that leads to a race situation.

7.5 Summary

The hierarchical load scheduling protocol implemented here still does not provide the

load sharing functionality among the sub-domains. The Load sharing feature among the

sub-domains provides a functionality where a complete workload is scheduled in different

batches by the global scheduler among the local schedulers. If one sub-domain is done

executing its own work, GlobalScheduler requests it to share the workload of another sub-

domain. However, task sharing has been enabled among the workers within a sub-domain.

For implementing task sharing among sub-domains, a new message type is required that

handles the communication of a batch of work that belongs to one sub-domain, to another

149

sub-domain. The implementation of task sharing among the sub-domains has been left as

a future work.

This case study implements a hierarchical load scheduling protocol. The verification

result showed a problem related to the original implementation. Based on the output,

the structure of LBDSL program was improved. The protocol described here is the final

deadlock free and race condition free hierarchical load scheduling protocol.

150

CHAPTER 8

THREATS TO VALIDITY

It is very important to consider the threats to validity in order to judge the quality of

research based on case studies. Threats to validity can be defined as conditions, other than

that has been considered during research, that could be responsible for the outcomes con-

cluded [28]. Research conclusions that are based on case studies are prone to a multitude

of possible threats. A discussion about the validity threats can help to analyze the research

fairly and mitigate these threats in future research. This chapter provides a discussion of

the validity threats on this research work.

Case studies conducted in this dissertation help to validate the hypothesis that a domain

specific language based verification approach is a cost efficient way to generate deadlock-

free load scheduling protocols for message passing systems. Threats to validity for the

conclusions derived from these case studies are discussed in this chapter.

8.1 Internal Validity

Internal validity refers to the characteristic of a study design. It is concerned with

whether the correct conclusion was drawn from the research conducted. In this research,

the internal validity is related to whether or not the conclusion that the application of do-

main specific language (DSL) based approach for protocol specification generates a dead-

151

lock free load scheduling protocol. Our research does not pose this threat. It is because

the DSL based verification framework uses the protocol specification written in LBDSL

and automatically generates a verification model in the Promela language which is further

verified by the Spin model checker. Had there been further manual intervention during

verification model generation, there would have definitely been a threat to internal validity.

However, the conclusions are drawn solely from the outcomes obtained from the verifica-

tion framework and therefore this threat to validity does not exist.

Misuse of code embed features of LBDSL is also a threat to internal validity. If the

crucial features of the communication semantics that can cause deadlocks are inserted in-

side LBDSL program using code embed features, then the delineation mechanism of the

verification framework does not include them in the verification model. These semantics,

therefore, do not take part in verification process and the final verification result will be a

false positive result. LBDSL program, however, does not allow one to embed the commu-

nication semantics inside the code embed feature. Messages to be communicated must be

specified as messagetypes and must use communication structures to communicate these

message types, hence avoiding the possible threat to internal validity.

8.2 External Validity

One problem inherent in the research based on case studies is external validity[26]. It

means, the results obtained from conducting particular type of case studies may or may

not apply to another development project. External validity is concerned with whether we

can generalize the results outside the scope of our study. This dissertation does posses this

152

threat. Although this dissertation is investigating the applicability of a DSL to devise a

cost-efficient verification methodology for parallel load scheduling protocols, only three

types of case studies are conducted. These case studies demonstrate the implementation

of load scheduling protocols for message passing systems where the task pool has been

distributed among the processors. However, there are multitude of ways to design load

scheduling protocols. For example, the third case study is one way to design a hierar-

chical load scheduling protocol but this is not the only way. Therefore, it requires many

case studies to determine the solid structure of LBDSL that is able to model any kind of

load scheduling protocol for distributed systems. The objective of this work is to provide

evidence that will help to determine whether or not the hypothesis that a domain specific

approach allows a cost efficient way to generate deadlock free load scheduling protocols

over traditional systems. Although, this dissertation poses the external validity threat, it

certainly establishes the evidence for the hypothesis stated.

8.3 Construct Validity

Construct validity focuses on the relation between the theory behind the experiment

and the observed outcomes. In other words, it addresses whether we are testing what we

intended to test. This research is not prone to this threat. This research proposed that

the verification of asynchronous load scheduling protocols can be made more automatic,

robust and cost effective, if the semantics of such protocols are properly encoded into a

domain specific language. We claimed that the proposed approach would reduce time and

cost of producing an error-free asynchronous load scheduling protocols within a supported

153

domain and an implementation of a load scheduling protocol, within a narrow domain, that

are directly verified would be obtained.

In this research, a specification language having constructs that reflects the domain of

asynchronous load scheduling protocols for message passing systems is developed. Three

different types of load scheduling protocols are represented in this specification language.

With LBDSL supported verification framework, the protocol specification is automatically

verified to be free of deadlocks using finite state verification approach. The verification

is only on the communication structure. Therefore this implementation cannot determine

other types of compute bugs or memory errors. An implementation code in C++ is also

generated as one of the output of this verification framework. Therefore, the experimental

set up correlates with the hypothesis proposed and hence construct validity is not a threat.

8.4 Summary

This chapter discusses the possible threats to validity to the conclusions based on the

case studies. While the conclusions derived are not prone to internal validity and construct

validity errors, it is definitely prone to external validity. This validity threat indicates that

there is not one way to design a protocol and the experiment conducted in a certain con-

trolled environment may not be applicable to other cases. However, this research definitely

concludes that a domain specific approach can provide a cost efficient way for designing

deadlock free load scheduling protocols for distributed systems.

154

CHAPTER 9

CONCLUSION AND FUTURE WORK

Deadlock-free parallel load scheduling protocols (PLSP) have a very important role in

high performance computing. However PLSP cannot be completely verified for deadlocks

using existing parallel debugging techniques because of the non-determinism introduced

due to asynchrony between process communications. Verification result may be false pos-

itive and the parallel applications may still contain subtle software faults.

Finite state verification can guarantee the complete verification of a parallel load schedul-

ing protocols, in comparison to the debugging techniques that evaluate only some of the

total execution paths, especially in asynchronous protocols. However the problem with

finite state verification is that it is difficult to guarantee that verification model is a proper

conservative representation of an actual system, and therefore verification results cannot be

completely relied upon. Implementation languages were not designed for verification, and

therefore the extracted models are either prohibitively expensive to verify, or the models

need significant culling in the extraction process limiting the confidence in the extracted

representation. Model based formal verification is useful if the semantics of an implemen-

tation code and a verification model is represented under a single framework such that the

155

verification model closely represents the implementation and the automation of a verifica-

tion process is natural.

An assembly of protocol implementation and automatic extraction of verification model

is possible using a domain specific language. The primary motivation of this dissertation is

to reduce the cost of writing an error-free parallel load scheduling protocols for distributed

systems with the help of language abstraction. The proposed approach does not claim to

be the best approach for generating verified communication protocols; however, it will

certainly improve the current state of art.

A specification language, LBDSL, is introduced that facilitates the development of

deadlock free asynchronous load scheduling protocols. The components of LBDSL lan-

guage closely represent the targeted domain. The verification framework for LBDSL uses

the model checking techniques to verify the asynchronous behavior of the protocol. It

allows the same protocol specification to be used for verification and the code genera-

tion. The communication structure in the protocol, denoted by the delineation symbol, is

extracted from LBDSL specification and fed to the SPIN model checker for verification

against safety properties. Marking the communication semantics between processes as

verification relevant directs the auto translation process. LBDSL, therefore, overcomes the

need of expertise of the protocol validation language and verification techniques for pro-

tocol developers, which would otherwise add to the verification costs. Using the LBDSL

verification framework, the single protocol representation is sufficient to generate an imple-

mentation code and a verification result. It also avoids the exhaustive dual work of main-

taining implementation code and verification model specifications along with the changes

156

in protocol specifications. The main objective of saving manpower and time for testing and

debugging subtle deadlock and race bugs is fulfilled using the LBDSL.

The benefit of using LBDSL for developing PLSP is three fold. First, the newly devel-

oped programming interface clearly shows the important components required to build a

clean and sophisticated PLSP. The building blocks of this language are Processes, Chunk

structure, Messagetypes and Communication structure which are also the essential com-

ponents of a PLSP. Processors in a distributed message passing system communicate by

explicit sending and receiving of messages. Different types of messages will be exchanged

in this process. Messages may only include the metadata about load or may contain the

actual load information. To execute load scheduling, some processors execute the task of

load scheduling and some processors execute the task of load execution. Using LBDSL,

different processes can be created for each task. Similarly, different message types can

be created based upon types of information exchanged during load scheduling. Similarly,

Chunk structure allows defining the metadata of load that need to be exchanged during load

scheduling. Communication structures can be used to initiate the sending and receiving of

messages. In summary, the structures ease the PLSP development process.

PLSP has an important feature of Code Embedding. A PLSP is composed of load

scheduling policies and a communication protocol. Deadlock is mainly caused due to the

nature of the communication protocol. The size of work load to be computed and the

particular process that is chosen during communication is irrelevant in terms of deadlock

detection. In other words, a PLSP should be deadlock free, irrespective of the particular

choice of these values. In PLSP, components that play role during communication and the

157

communication structure are distinguished from the components that execute load schedul-

ing policies or execute load computation. The latter can be embedded in their original C++

code using Code Embed feature. This delineation mechanism is used during verification

model generation by the language translator, such that the resulting model will have rel-

atively small size and only focuses on the communication structure which can introduce

deadlocks. Components that are embedded in LBDSL program do not appear in the verifi-

cation model and do not play role in verification process. This feature not only reduces the

size of resulting verification model but also simplifies the verification process. This is the

second benefit of using the LBDSL framework.

Lastly, Spin model checker is used as the verification back end for LBDSL framework

which verifies the resulting verification model written in Promela. To perform verification,

Spin generates the finite state representation of the verification model and performs the

depth first search of all possible execution paths from the start state. It checks for possible

deadlocks and race conditions by exploring all possible inter leavings of an asynchronous

system and does a complete verification. Support to automatic verification during protocol

development is the third benefit of using LBDSL framework.

Implementation of three different PLSPs namely, Probe based centralized, multithreaded,

and hierarchical demonstrates the applicability of LBDSL in a practical field. These ex-

periments also help to identify the essential components of LBDSL language. However

one must note that the LBDSL language is not a fully functional language. It means, the

results obtained from conducting particular type of case studies may or may not apply to

another development project. Although this dissertation is investigating the applicability of

158

a DSL to devise a cost-efficient verification methodology for parallel load scheduling pro-

tocols, only three types of case studies are conducted. These case studies demonstrate the

implementation of load scheduling protocols for message passing systems where the task

pool has been distributed among the processors. However, there are many ways to design

load scheduling protocols. It requires many case studies to determine the solid structure of

LBDSL that is able to model any kind of load scheduling protocol for distributed systems.

Objective of this work is to provide evidence that will help to determine whether or not the

hypothesis that a domain specific approach allows a cost efficient way to generate deadlock

free load scheduling protocols over traditional systems. Implemented case study definitely

made a case showing that the LBDSL based verification approach removes the need for

debugging for deadlocks and race bugs which has potential to significantly lower software

development costs.

There are various things that need to be done to make LBDSL framework more per-

fect. First of all, various state space reduction methods can be included during verification

model generation process such that efficient verification model is generated that can ver-

ify large systems without worrying about the state space problem. Secondly, the current

version of the LBDSL verification framework only verifies against the deadlocks and race

conditions. If the framework is able to support the verification of other correctness features

of PLSP specified in Linear Temporal Logic (LTL) specifications, LBDSL framework will

be more generic in terms of supporting the protocol verification. Besides deadlocks and

race conditions, correctness features of various PLSP vary. Protocols may need to verify

some specific state is always executed or a particular property is always satisfied. The

159

support to verify any type of properties specified in temporal logics is also left as a future

work of this dissertation.

160

REFERENCES

[1] “Static randomized incremental algorithms,” Towards Dynamic Randomized Algo-
rithms in Computational Geometry, vol. 758 of Lecture Notes in Computer Science,
Springer Berlin Heidelberg, 1993, pp. 22–34.

[2] “Message Passing Interface Forum. MPI :A Message-Passing Interface standard,”
1995, http://www.mpi-forum.org/docs/.

[3] “Message Passing Interface Forum. MPI-2: Extensions to the Message-Passing Inter-
face.,” 1997, http://www.mpi-forum.org/docs/.

[4] P. Adhikari and E. Luke, “Verificaition of Parallel Asynchronous Load Scheduling
Protocols using Domain Specific Language Approach,” Proceedings of 21th Interna-
tional Conference on Software and Data Engineering, Los Angeles, CA, 2012.

[5] P. Adhikari, E. A. Luke, and E. B. Allen, “Verification of a Loop Scheduling Protocol
using Finite State Verification,” Proceedings of the 22nd International Conference on
Parallel and Distributed Computing and Communication Systems, 2009.

[6] G. Agha and P. Thati, “An Algebraic Theory of Actors and Its Application to a Simple
Object-Based Language,” From Object-Orientation to Formal Methods, vol. 2635 of
Lecture Notes in Computer Science, Springer Berlin, Heidelberg, 2004, pp. 26–57.

[7] E. E. Ajaltouni, A. Boukerche, and Z. Ming, “An Efficient Dynamic Load Balancing
Scheme for Distributed Simulations on a Grid Infrastructure,” 12th IEEE/ACM Inter-
national Symposium on Distributed Simulation and Real-Time Applications, october
2008, pp. 61 –68.

[8] G. R. Andrews, D. P. Dobkin, and P. J. Downey, “Distributed allocation with pools
of servers,” Proceedings of the first ACM SIGACT-SIGOPS symposium on Principles
of distributed computing, New York, NY, USA, 1982, PODC ’82, pp. 73–83, ACM.

[9] G. S. Avrunin, S. F. Siegel, and A. R. Siegel, “Finite-state verification for high perfor-
mance computing,” Proceedings of the second international workshop on Software
engineering for high performance computing system applications, New York, NY,
USA, 2005, pp. 68–72, ACM.

161

[10] K. Barker, A. N. Chernikov, N. Chrisochoides, and K. Pingali, “A Load Balancing
Framework for Adaptive and Asynchronous Applications,” IEEE Transaction on
Parallel and Distributed Systems, vol. 15, no. 2, Feb. 2004, pp. 183–192.

[11] A. Basu, A language-based approach to protocol construction, doctoral dissertation,
Cornell University, Ithaca, NY, USA, 1998.

[12] D. Beyer, T. A. Henzinger, R. Jhala, and R. Majumdar, “The software model checker
Blast: Applications to software engineering,” International Journal of Software Tools
for Technology Transfer, vol. 9, no. 5, 2007, pp. 505–525.

[13] M. Bhandarkar, L. V. Kal, E. de Sturler, and J. Hoeflinger, “Adaptive Load Balancing
for MPI Programs,” Proceedings of the International Conference on Computational
Science-Part II, London, UK, 2001, pp. 108–117, Springer-Verlag.

[14] P. Bjesse, “What is formal verification?,” SIGDA Newsletter, vol. 35, no. 24, 2005,
p. 1.

[15] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H. Randall, and
Y. Zhou, “Cilk: an efficient multithreaded runtime system,” SIGPLAN Notice, vol.
30, no. 8, 1995, pp. 207–216.

[16] R. E. Bryant, “Binary decision diagrams and beyond: enabling technologies for
formal verification,” Proceedings of the 1995 IEEE/ACM international conference on
Computer-aided design, Washington, DC, USA, 1995, pp. 236–243, IEEE Computer
Society.

[17] J. Brzezinski, J.-M. Helary, and M. Raynal, “Deadlocks in distributed systems: re-
quest models and definitions,” Proceedings of the Fifth IEEE Computer Society Work-
shop on Future Trends of Distributed Computing Systems, 28-30 1995, pp. 186 –193.

[18] R. L. Carino and I. Banicescu, “Dynamic load balancing with adaptive factoring
methods in scientific applications,” The Journal of Supercomputing, vol. 44, no. 1,
2008, pp. 41–63.

[19] S. Chandra, B. Richards, and J. R. Larus, “Teapot: A Domain-Specific Language for
Writing Cache Coherence Protocols,” IEEE Transaction on Software Engineering,
vol. 25, no. 3, 1999, pp. 317–333.

[20] R. Chaube, I. Banicescu, and R. Cario, “Parallel implementations of three scien-
tific applications using LB migrate,” IEEE International Parallel and Distributed
Processing Symposium, 2008, pp. 1–8.

[21] J. Chen, H. Zhou, and S. D. Bruda, “Combining Model Checking and Testing for
Software Analysis,” Proceedings of the 2008 International Conference on Computer
Science and Software Engineering, Washington, DC, USA, 2008, pp. 206–209, IEEE
Computer Society.

162

[22] E. M. Clarke, E. A. Emerson, and J. Sifakis, “Model checking: algorithmic veri-
fication and debugging,” Communications of the ACM, vol. 52, no. 11, 2009, pp.
74–84.

[23] E. M. Clarke, O. Grumberg, and D. A. Peled, Model Checking, MIT Press, 1999.

[24] J. C. Corbet, M. B. Dwyer, J. Hatcliff, S. Laubach, C. S. Păsăreanu, Robby, and
H. Zheng, “Bandera: extracting finite-state models from Java source code,” ICSE
’00: Proceedings of the 22nd international conference on Software engineering, New
York, NY, USA, 2000, pp. 439–448, ACM.

[25] D. L. Dill, A. J. Drexler, A. J. Hu, and C. H. Yang, “Protocol Verification as a
Hardware Design Aid,” Proceedings of the 1991 IEEE International Conference on
Computer Design on VLSI in Computer & Processors, Washington, DC, USA, 1992,
pp. 522–525, IEEE Computer Society.

[26] T. T. Dinh-Trong and J. M. Bieman, “The FreeBSD Project: A Replication Case
Study of Open Source Development,” IEEE Transaction on Software Engineering,
vol. 31, no. 6, June 2005, pp. 481–494.

[27] J. Emer, M. D. Hill, Y. N. Patt, J. J. Yi, D. Chiou, and R. Sendag, “Single-threaded
vs. multithreaded: Where should we focus?,” IEEE Micro, vol. 27, no. 6, 2007, pp.
14–24.

[28] R. Feldt and A. Magazinius, “Validity Threats in Empirical Software Engineering
Research - An Initial Survey,” Proceedings of the Software Engineering and Knowl-
edge Engineering Conference, Redwood City, San Fransisco Bay, CA, USA, 2010,
pp. 374–379.

[29] M. Feng and C. E. Leiserson, “Efficient detection of determinacy races in Cilk pro-
grams,” Proceedings of the ninth annual ACM symposium on Parallel algorithms and
architectures, New York, NY, USA, 1997, pp. 1–11, ACM.

[30] A. E. Goodloe and C. A. Muoz, “Compositional Verification of a Communication
Protocol for a Remotely Operated Vehicle,” Formal Methods for Industrial Critical
Systems, vol. 5825, 2009, pp. 86–101.

[31] W. Haque, “Concurrent deadlock detection in parallel programs,” International Jour-
nal of Computers and Applications, vol. 28, no. 1, 2006, pp. 19–25.

[32] K. Havelund and T. Pressburger, “Model checking JAVA programs using JAVA
PathFinder,” International Journal on Software Tools for Technology Transfer, vol.
2, no. 4, 2000, pp. 366– 381.

[33] R. C. Holt, “Some Deadlock Properties of Computer Systems,” ACM Computing
Surveys, vol. 4, no. 3, Sept. 1972, pp. 179–196.

163

[34] G. Holzmann, , G. J. Holzmann, and M. H. Smith, “Automating Software Feature
Verification,” Bell Labs Technical Journal, vol. 5, 2000, pp. 72–87.

[35] G. J. Holzmann, “Logic Verification of ANSI-C Code with SPIN,” Proceedings of the
7th International SPIN Workshop on SPIN Model Checking and Software Verification,
London, UK, 2000, pp. 131–147, Springer-Verlag.

[36] G. J. Holzmann, The SPIN Model Checker: Primer and Reference Manual, Addison-
Wesley, 2003.

[37] G. J. Holzmann and M. H. Smith, “A practical method for verifying event-driven
software,” ICSE ’99: Proceedings of the 21st international conference on Software
engineering, New York, NY, USA, 1999, pp. 597–607, ACM.

[38] Y. F. Hu and R. J. Blake, ,” Progress in computer research, F. Columbus, ed., Nova
Science Publishers, Inc., Commack, NY, USA, 2001, chapter Load balancing for
unstructured mesh applications, pp. 117–148.

[39] P. Hudak, “Modular domain specific languages and tools,” Proceedings of the 5th
International Conference on Software Reuse, june 1998, pp. 134 –142.

[40] S. F. Hummel, E. Schonberg, and L. E. Flynn, “Factoring: a method for scheduling
parallel loops,” Communications of the ACM, vol. 35, no. 8, 1992, pp. 90–101.

[41] R. C. I. Banicescu, “Addressing the stochastic nature of scientific computations via
dynamic loop scheduling,” Electronic Transactions on Numerical Analysis, vol. 21,
2005, pp. 66–80.

[42] S. Iqbal and G. F. Carey, “Performance analysis of dynamic load balancing algorithms
with variable number of processors,” Journal of Parallel and Distributed Computing,
vol. 65, no. 8, Aug. 2005, pp. 934–948.

[43] M. M. Jaghoori, A. Movaghar, and M. Sirjani, “Modere: the model-checking engine
of Rebeca,” Proceedings of the 2006 ACM symposium on Applied computing, New
York, NY, USA, 2006, pp. 1810–1815, ACM.

[44] E. Johnsen and O. Owe, “An asynchronous communication model for distributed
concurrent objects,” Proceedings of the Second International Conference on Software
Engineering and Formal Methods, September 2004, pp. 188 – 197.

[45] E. Johnsen and O. Owe, “An asynchronous communication model for distributed
concurrent objects,” Proceedings of the Second International Conference on Software
Engineering and Formal Methods, September 2004, pp. 188 – 197.

[46] S. C. Johnson, Yacc: Yet another compiler-compiler, Bell Laboratories, 1975.

164

[47] L. V. Kale and S. Krishnan, “CHARM++: a portable concurrent object oriented
system based on C++,” ACM SIGPLAN Notices, vol. 28, no. 10, Oct. 1993, pp.
91–108.

[48] P. Konghong and M. Hamdi, “Distro: a distributed static round-robin scheduling
algorithm for bufferless Clos-Network switches,” IEEE Global Telecommunications
Conference, nov. 2002, vol. 3, pp. 2298 – 2302.

[49] B. Krammer, M. S. Mller, and M. M. Resch, “MPI Application Development Using
the Analysis Tool MARMOT,” International Conference on Computational Science,
vol. 3038 of Lecture Notes in Computer Science, Springer Berlin, Heidelberg, 2004,
pp. 464–471.

[50] C. P. Kruskal and A. Weiss, “Allocating Independent Subtasks on Parallel Proces-
sors,” IEEE Transaction on Software Engineering, vol. 11, no. 10, 1985, pp. 1001–
1016.

[51] V. Kumar, A. Grama, A. Gupta, and G. Karypis, Introduction to parallel comput-
ing: design and analysis of algorithms, Benjamin-Cummings Publishing Co., Inc.,
Redwood City, CA, USA, 1994.

[52] W. Leinberger, G. Karypis, V. Kumar, R. Biswas, and R. Biswas, “Load balancing
across near-homogeneous multiresource servers,” In 9th Heterogeneous Computing
Workshop, 2000, pp. 60–71.

[53] F. C. Lin and R. M. Keller, “The Gradient Model Load Balancing Method,” IEEE
Transaction on Software Engineering, vol. 13, no. 1, 1987, pp. 32–38.

[54] R. Luecke, Y. Zou, J. Coyle, J. Hoekstra, and M. Kraeva, “Deadlock detection in
MPI programs,” Concurrency and Computation: Practice and Experience, vol. 14,
no. 11, 2002, pp. 911–932.

[55] E. A. Luke, A rule-based specification system for computational fluid dynamics,
doctoral dissertation, Mississippi State, MS, USA, 1999.

[56] T. Marsland, Y. Gao, and F. Lau, A study of software multithreading in distributed
systems, Citeseer, 1995.

[57] I. Melatti, R. Palmer, G. Sawaya, Y. Yang, R. M. Kirby, and G. Gopalakrishnan,
“Parallel and distributed model checking in Eddy,” Inernational Journal on Software
Tools Technology Transfer, vol. 11, no. 1, 2009, pp. 13–25.

[58] L. M. Ni, C.-W. Xu, and T. B. Gendreau, “A Distributed Drafting Algorithm for Load
Balancing,” IEEE Transaction on Software Engineering, vol. 11, no. 10, 1985, pp.
1153–1161.

165

[59] L. Oliker and R. Biswas, “PLUM : Parallel Load Balancing for Adaptive Unstruc-
tured Meshes,” Journal of Parallel and Distributed Computing, vol. 52, no. 2, 1998,
pp. 150 – 177.

[60] S. Owre, J. M. Rushby, and N. Shankar, “PVS: A prototype verification system,”
Automated DeductionCADE-11, 1992, pp. 748–752.

[61] F. Pellegrini and J. Roman, “Sparse Matrix Ordering with SCOTCH,” Proceedings
of the International Conference and Exhibition on High-Performance Computing and
Networking, London, UK, UK, 1997, HPCN Europe ’97, pp. 370–378, Springer-
Verlag.

[62] C. D. Polychronopoulos and D. J. Kuck, “Guided self-scheduling: A practical
scheduling scheme for parallel supercomputers,” IEEE Transaction on Computers,
vol. 36, no. 12, 1987, pp. 1425–1439.

[63] M. Poppleton and R. Banach, “Requirements validation by lifting retrenchments
in B,” Proceedings of 9th IEEE International Conference on Engineering Complex
Computer Systems, 2004, pp. 87–96.

[64] X. Qin, H. Jiang, A. Manzanares, X. Ruan, and S. Yin, “Communication-Aware Load
Balancing for Parallel Applications on Clusters,” IEEE Transactions on Computers,
vol. 59, no. 1, January 2010, pp. 42 –52.

[65] J. L. Quiroz-Fabian, M. Aguilar-Cornejo, G. Román-Alonso, and M. A. Castro-
Garcı́a, “Model Checking for Integrating Dynamic Load Distribution into Parallel
Applications,” Proceedings of the 2008 Mexican International Conference on Com-
puter Science, Washington, DC, USA, 2008, pp. 221–231, IEEE Computer Society.

[66] B. Schaeli and R. D. Hersch, “Dynamic testing of flow graph based parallel appli-
cations,” Proceedings of the 6th workshop on Parallel and distributed systems, New
York, NY, USA, 2008, pp. 1–10, ACM.

[67] P. Schnoebelen, “The Complexity of Temporal Logic Model Checking,” 2002.

[68] S. Sharma, S. Singh, and M. Sharma, “Performance Analysis of Load Balancing
Algorithms,” World Academy of Science, Engineering and Technology, vol. 38, 2008.

[69] S. F. Siegel, “Efficient verification of halting properties for MPI programs with wild-
card receives,” Proceedings on the 6th International Conference on Verification,
Model Checking, and Abstract Interpretation, 2005, vol. 3385 of Lecture Notes in
Computer Science, pp. 413–429.

[70] S. F. Siegel, “Using MPI-Spin to Model Check MPI Programs with Nonblocking
Communication,” 2006.

166

[71] S. F. Siegel and G. S. Avrunin, “Verification of MPI-Based Software for Scientific
Computation,” Model Checking Software: 11th International SPIN Workshop. 2004,
pp. 286–303, Springer-Verlag.

[72] M. Sirjani, “Rebeca: theory, applications, and tools,” Proceedings of the 5th interna-
tional conference on Formal methods for components and objects, Berlin, Heidelberg,
2007, pp. 102–126, Springer-Verlag.

[73] M. Sirjani, A. Movaghar, A. Shali, and F. S. de Boer, “Modeling and Verification of
Reactive Systems using Rebeca,” Fundamenta Informaticae, vol. 63, no. 4, January
2004, pp. 385 –410.

[74] T. Suen and J. Wong, “Efficient task migration algorithm for distributed systems,”
IEEE Transactions on Parallel and Distributed Systems,, vol. 3, no. 4, jul 1992, pp.
488 –499.

[75] T. Y. Suen and J. K. Wong, “Efficient Task Migration Algorithm for Distributed
Systems,” IEEE Transaction on Parallel and Distributed Systems, vol. 3, no. 4, 1992,
pp. 488–499.

[76] S. S. Vakkalanka, S. Sharma, G. Gopalakrishnan, and R. M. Kirby, “ISP: a tool for
model checking MPI programs,” Proceedings of the 13th ACM SIGPLAN Symposium
on Principles and practice of parallel programming, New York, NY, USA, 2008, pp.
285–286, ACM.

[77] A. van Deursen, P. Klint, and J. Visser, “Domain-specific languages: an annotated
bibliography,” ACM SIGPLAN Notices, vol. 35, no. 6, 2000, pp. 26–36.

[78] J. S. Vetter and B. R. de Supinski, “Dynamic software testing of MPI applications
with umpire,” Proceedings of the 2000 ACM/IEEE conference on Supercomputing.
2000, IEEE Computer Society.

[79] D. W. Walker, “The design of a standard message passing interface for distributed
memory concurrent computers,” Parallel Computing, vol. 20, no. 4, 1994, pp. 657 –
673.

[80] B.-Y. Zhang, Z.-Y. Mo, G.-W. Yang, and W.-M. Zheng, “Dynamic Load-Balancing
and High Performance Communication in Jcluster,” IEEE International Parallel and
Distributed Processing Symposium, march 2007, pp. 1 –7.

[81] G. Zheng, E. Meneses, A. Bhatele, and L. V. Kale, “Hierarchical load balancing for
Charm++ applications on large supercomputers,” 39th IEEE International Confer-
ence on Parallel Processing Workshops, 2010, pp. 436–444.

167

APPENDIX A

LEX SYMBOL FILE

168

A.1 Lexical Rules of the LBDSL Language

1 ” $ ” r e t u r n RULE;
2 ” d a t a t y p e ” r e t u r n SYSTEMDEFINEDTYPE ;
3 ” c o n s t a n t ” r e t u r n DEFINE ;
4 ”<” r e t u r n LEFTARROW;
5 ” i n t ” r e t u r n INT ;
6 ” f l o a t ” r e t u r n FLOAT;
7 ” d ou b l e ” r e t u r n DOUBLE;
8 ” u n s i g n e d c h a r ” r e t u r n LONGCHAR;
9 ”>” r e t u r n RIGHTARROW;

10 ” E n u m e r a t e S t a t e ” r e t u r n ENUMSTATE;
11 ”=” r e t u r n EQUALS;
12 ”{” r e t u r n LBRACE;
13 ”}” r e t u r n RBRACE;
14 ” , ” r e t u r n COMMA;
15 ” ; ” r e t u r n SEMICOLON;
16 ” . ” r e t u r n DOT;
17 ”∗” r e t u r n MULTIPLY ;
18 ” / ” r e t u r n DIVIDE ;
19 ” [” r e t u r n LSBRACE;
20 ”] ” r e t u r n RSBRACE;
21 ”+” r e t u r n PLUS ;
22 ”−” r e t u r n MINUS;
23 ”==” r e t u r n ISEQUAL ;
24 ”>=” r e t u r n GREATEROREQUAL;
25 ”<=” r e t u r n LESSOREQUAL;
26 ” != ” r e t u r n NOTEQUAL;
27 ”&&” r e t u r n AND;
28 ”&” r e t u r n POINTER ;
29 ” | | ” r e t u r n OR;
30 ” (” r e t u r n SPARAN;
31 ”) ” r e t u r n RPARAN;
32 ”−>” r e t u r n IMPLIES ;
33 ” : ” r e t u r n SINGLECOLON ;
34 ” : : ” r e t u r n DOUBLECOLON;
35 ” \” ” r e t u r n DOUBLEQUOTE;
36 ” ’ ” r e t u r n QUOTE;
37 ”&” r e t u r n BITAND ;
38 ” ” r e t u r n UNDERSCORE;
39 ” Handles ” r e t u r n HANDLES;
40 ” v a r i a b l e ” r e t u r n VAR;

169

41 ” b u f f e r ” r e t u r n BUFFER ;
42 ” B e g i n R u l e P ” r e t u r n BEGINPASSIVERULE ;
43 ” End Rule P ” r e t u r n ENDPASSIVERULE ;
44 ” Begin Message ” r e t u r n BEGINMESSAGE;
45 ” End Message ” r e t u r n ENDMESSAGE;
46 ” Beg in Typede f ” r e t u r n BEGINACTIVERULE ;
47 ” End Typedef ” r e t u r n ENDACTIVERULE;
48 ” Typedef ” r e t u r n TYPEDEF ;
49 ” IP ” r e t u r n INPUT ;
50 ”OP” r e t u r n OUTPUT;
51 ” a r r a y ” r e t u r n AARRAY;
52 ” Ass ign ” r e t u r n VALUEASSIGN ;
53 ” Execu te ” r e t u r n EXECUTEMODULE;
54 ” packMetaData ” r e t u r n MESSAGEPACK;
55 ” packLoad ” r e t u r n LOADPACK;
56 ” unPackMetaData ” r e t u r n MESSAGEUNPACK;
57 ” unPackLoad ” r e t u r n LOADUNPACK;
58 ” Send ” r e t u r n MESSAGESEND;
59 ” Rece ive ” r e t u r n MESSAGERECV;
60 ” SendMessage ” r e t u r n SENDMESSAGE;
61 ” Rece iveMessage ” r e t u r n RECEIVEMESSAGE ;
62 ” p o i n t e r ” r e t u r n POINTER ;
63 ” A s s i g n O u t p u t ” r e t u r n POINTERRETURN ;
64 ” B e g i n P r o c e s s ” r e t u r n BEGINACTOR;
65 ” E n d P r o c e s s ” r e t u r n ENDACTOR;
66 ” S e t S t a t e ” r e t u r n SETSTATE ;
67 ” S a v e S t a t e ” r e t u r n SAVEACTION ;
68 ” S a v e d S t a t e ” r e t u r n LASTACTION ;
69 ” B e g i n E x e c u t e ” r e t u r n BEGINWHILE ;
70 ” End Execu te ” r e t u r n ENDWHILE;
71 ” U n t i l ” r e t u r n UNTIL ;
72 ” S t a r t S t a t e ” r e t u r n STARTSTATE ;
73 ” E n d S t a t e ” r e t u r n ENDSTATE;
74 ” N e x t S t a t e ” r e t u r n NEXTSTATE;
75 ” P o l l W a i t ” r e t u r n BLOCKPROBE;
76 ” P o l l T e s t ” r e t u r n NBLOCKPROBE;
77 ” GetMessageLength ” r e t u r n GETMSGLENGTH;
78 ” O p e r a t i o n ” r e t u r n OPERATION ;
79 ” B e g i n I f ” r e t u r n BEGINIF ;
80 ” E l s e I f ” r e t u r n ELSEIF ;
81 ” E l s e ” r e t u r n ELSE ;
82 ” E n d I f ” r e t u r n ENDIF ;
83 ” Begin Loop ” r e t u r n BEGINFOR ;

170

84 ” End Loop ” r e t u r n ENDFOR;
85 ”To” r e t u r n TO;
86 ” Update ” r e t u r n UPDATE;
87 ” conveyV ” r e t u r n TRANSFER ;
88 ” computeV ” r e t u r n COMPUTE;
89 ” s t o r e V ” r e t u r n STORE ;
90 ” d e c i s i o n V ” r e t u r n DECISION ;
91 ” GetChunk ” r e t u r n GETCHUNK;
92 ” Begin Compute ” r e t u r n BEGINCOMPUTE;
93 ” End Compute ” r e t u r n ENDCOMPUTE;
94 ” G e t L o c a l S i z e ” r e t u r n GETLOCALSIZE ;
95 ” Begin Module ” r e t u r n BEGINMODULE;
96 ” End Module ” r e t u r n ENDMODULE;
97 ” r e S i z e ” r e t u r n RESIZE ;
98 ” C o n d i t i o n T o T e r m i n a t e ” r e t u r n TERMINATECONDITION ;
99 [∗&]∗ [a−zA−Z]+[0−9 a−zA−Z]∗

100 {
101 c h a r ∗ r e s =new c h a r [s t r l e n (y y t e x t + 1)] ;
102 s t r c p y (r e s , y y t e x t) ;
103 y y l v a l . s v a l = r e s ;
104 r e t u r n IDENTIFIER ;
105 }
106

107 [−]∗[0−9]+[.0−9]∗
108 {
109 c h a r ∗ r e s =new c h a r [s t r l e n (y y t e x t + 1)] ;
110 s t r c p y (r e s , y y t e x t) ;
111 y y l v a l . s v a l = r e s ;
112 r e t u r n SINTEGER ;
113 }
114

115 [\ t \n]+ ;

171

APPENDIX B

YACC RULE FILE

172

B.1 Analytical Grammer for the LBDSL Language

1

2 Program : body ;
3

4 body :
5 | body b o d y l i n e s ;
6

7 b o d y l i n e s :
8 d e c l a r a t i o n | e n u m e r a t i o n
9 | embeddedcode | H a n d l e r s

10 | u s e r d e f i n e d d a t a t y p e
11 | a s s i g n m e n t | A c t o r s ;
12

13 a s s i g n m e n t :
14 RULE VALUEASSIGN SPARAN IDENTIFIER COMMA
15 v a l u e RPARAN SEMICOLON
16 | RULE UPDATE SPARAN IDENTIFIER LSBRACE v a l u e
17 RSBRACE COMMA v a l u e RPARAN SEMICOLON
18 | RULE UPDATE SPARAN v a l u e COMMA v a l u e RPARAN
19 SEMICOLON
20 | RULE UPDATE SPARAN QUOTE o p e r a t o r QUOTE COMMA
21 v a l u e COMMA v a l u e RPARAN SEMICOLON
22 | RULE RESIZE SPARAN IDENTIFIER COMMA v a l u e
23 RPARAN SEMICOLON ;
24

25

26 d e c l a r a t i o n :
27 RULE SYSTEMDEFINEDTYPE DEFINE LEFTARROW d a t a t y p e
28 RIGHTARROW IDENTIFIER v a l u e
29 | RULE SYSTEMDEFINEDTYPE STORE LEFTARROW d a t a t y p e
30 RIGHTARROW SPARAN IDENTIFIER COMMA v a l u e RPARAN
31 SEMICOLON
32 | RULE SYSTEMDEFINEDTYPE TRANSFER LEFTARROW
33 d a t a t y p e RIGHTARROW SPARAN IDENTIFIER COMMA v a l u e
34 RPARAN SEMICOLON
35 | RULE SYSTEMDEFINEDTYPE DECISION LEFTARROW
36 d a t a t y p e RIGHTARROW SPARAN IDENTIFIER COMMA v a l u e
37 RPARAN SEMICOLON
38 | RULE SYSTEMDEFINEDTYPE COMPUTE LEFTARROW d a t a t y p e
39 RIGHTARROW SPARAN IDENTIFIER COMMA v a l u e RPARAN
40 SEMICOLON

173

41 | RULE SYSTEMDEFINEDTYPE TRANSFER LEFTARROW d a t a t y p e
42 RIGHTARROW IDENTIFIER SEMICOLON
43 | RULE SYSTEMDEFINEDTYPE COMPUTE LEFTARROW d a t a t y p e
44 RIGHTARROW IDENTIFIER SEMICOLON
45 | RULE SYSTEMDEFINEDTYPE STORE LEFTARROW d a t a t y p e
46 RIGHTARROW IDENTIFIER SEMICOLON
47 | RULE SYSTEMDEFINEDTYPE STORE LEFTARROW d a t a t y p e
48 RIGHTARROW IDENTIFIER LSBRACE v a l u e RSBRACE
49 SEMICOLON ;
50

51 d a t a t y p e :
52 INT | FLOAT | DOUBLE | IDENTIFIER
53 | SINTEGER | DECISION | LONGCHAR ;
54

55 v a l u e :
56 d a t a t y p e | v a l u e DOT v a l u e
57 | v a l u e IMPLIES v a l u e
58 | IDENTIFIER LSBRACE d a t a t y p e o p e r a t o r
59 d a t a t y p e RSBRACE
60 | IDENTIFIER LSBRACE d a t a t y p e o p e r a t o r d a t a t y p e
61 o p e r a t o r d a t a t y p e RSBRACE
62 | IDENTIFIER LSBRACE RSBRACE
63 | IDENTIFIER LSBRACE IDENTIFIER RSBRACE ;
64

65 e n u m e r a t i o n :
66 RULE ENUMSTATE EQUALS LBRACE i t em RBRACE
67 SEMICOLON ;
68

69 i t em :
70 IDENTIFIER | IDENTIFIER COMMA i tem ;
71

72 embeddedcode :
73 RULE BEGINCOMPUTE | embed | RULE ENDCOMPUTE ;
74

75 embed :
76 | embed embedded code ;
77

78 embedded code :
79 d a t a t y p e | v a l u e | p u n c t u a t i o n
80 | b r a c k e t s | c o m p a r i s i o n | o p e r a t o r ;
81

82 p u n c t u a t i o n :
83 SEMICOLON | COMMA

174

84 | EQUALS | DOT
85 | IMPLIES | DOUBLECOLON
86 | SINGLECOLON | UNDERSCORE
87 | DOUBLEQUOTE ;
88

89 b r a c k e t s :
90 SPARAN | RPARAN
91 | LBRACE | RBRACE
92 | LEFTARROW | RIGHTARROW
93 | LSBRACE | RSBRACE ;
94

95 c o m p a r i s i o n :
96 AND | OR | GREATEROREQUAL
97 | LESSOREQUAL | NOTEQUAL
98 | ISEQUAL | LEFTARROW
99 | RIGHTARROW | BITAND ;

100

101 o p e r a t o r :
102 PLUS | MINUS | MULTIPLY | DIVIDE ;
103

104 H a n d l e r s :
105 p a s s i v e h a n d l e r s | m e s s a g e t y p e s ;
106

107 p a s s i v e h a n d l e r s :
108 h a n d l e h e a d h a n d l e b o d y h a n d l e t a i l ;
109

110 h a n d l e h e a d :
111 RULE BEGINPASSIVERULE IDENTIFIER SPARAN
112 argument RPARAN ;
113

114 argument :
115 | COMPUTE LEFTARROW d a t a t y p e RIGHTARROW
116 IDENTIFIER
117 | TRANSFER LEFTARROW d a t a t y p e RIGHTARROW
118 IDENTIFIER
119 | STORE LEFTARROW d a t a t y p e RIGHTARROW
120 IDENTIFIER
121 | COMPUTE LEFTARROW d a t a t y p e RIGHTARROW
122 IDENTIFIER en d i ng argument
123 | TRANSFER LEFTARROW d a t a t y p e RIGHTARROW
124 IDENTIFIER en d i ng argument
125 | STORE LEFTARROW d a t a t y p e RIGHTARROW
126 IDENTIFIER en d i ng argument

175

127 | v a l u e | v a l u e COMMA argument ;
128

129 h a n d l e t a i l :
130 RULE ENDPASSIVERULE ;
131

132 en d i ng :
133 COMMA | SEMICOLON ;
134

135 h a n d l e b o d y :
136 | embeddedcode ;
137

138 u s e r d e f i n e d d a t a t y p e :
139 RULE BEGINACTIVERULE TYPEDEF IDENTIFIER
140 msg type body RULE ENDACTIVERULE ;
141

142 msg type body :
143 SYSTEMDEFINEDTYPE VAR LEFTARROW d a t a t y p e
144 RIGHTARROW IDENTIFIER
145 | SYSTEMDEFINEDTYPE VAR LEFTARROW d a t a t y p e
146 RIGHTARROW IDENTIFIER SEMICOLON msg type body ;
147

148 m e s s a g e t y p e s :
149 m e s s a g e t y p e h e a d | me ssag e ty pe bo dy
150 | m e s s a g e t y p e t a i l ;
151

152 m e s s a g e t y p e h e a d :
153 RULE BEGINMESSAGE IDENTIFIER SPARAN
154 argument RPARAN ;
155

156 m e s s a g e t y p e t a i l :
157 RULE ENDMESSAGE ;
158

159 me ssa ge ty pe bo dy :
160 d e c l a r a t i o n | module ;
161

162 module :
163 RULE BEGINMODULE SENDMESSAGE
164 | RULE BEGINMODULE RECEIVEMESSAGE
165 | RULE ENDMODULE | modulebody ;
166

167 modulebody :
168 a s s i g n m e n t | embeddedcode | execu t emodu le
169 | packmessage | messagesend | unpackmessage

176

170 | message recv | p o i n t e r a s s i g n m e n t
171 | m a t h e m a t i c a l o p e r a t i o n s
172 | BEGINCOMPUTE
173 | ENDCOMPUTE | i f e l s e ;
174

175

176 execu t emodu le :
177 RULE IDENTIFIER SPARAN argument RPARAN SEMICOLON ;
178

179 packmessage :
180 RULE MESSAGEPACK SPARAN v a l u e COMMA v a l u e COMMA
181 v a l u e COMMA v a l u e RPARAN SEMICOLON
182 | RULE LOADPACK SPARAN v a l u e COMMA v a l u e COMMA
183 v a l u e COMMA v a l u e COMMA v a l u e COMMA
184 v a l u e RPARAN SEMICOLON ;
185

186 unpackmessage :
187 RULE MESSAGEUNPACK SPARAN v a l u e COMMA v a l u e COMMA
188 v a l u e COMMA v a l u e RPARAN SEMICOLON
189 | RULE LOADUNPACK SPARAN v a l u e COMMA
190 v a l u e COMMA v a l u e COMMA v a l u e COMMA
191 v a l u e COMMA v a l u e RPARAN SEMICOLON ;
192

193 messagesend :
194 RULE MESSAGESEND SPARAN IDENTIFIER COMMA
195 IDENTIFIER COMMA IDENTIFIER COMMA
196 IDENTIFIER COMMA IDENTIFIER RPARAN SEMICOLON ;
197

198 message recv :
199 RULE MESSAGERECV SPARAN IDENTIFIER COMMA
200 IDENTIFIER COMMA IDENTIFIER COMMA
201 IDENTIFIER COMMA IDENTIFIER COMMA
202 IDENTIFIER RPARAN SEMICOLON ;
203

204 p o i n t e r a s s i g n m e n t :
205 RULE POINTERRETURN SPARAN v a l u e COMMA
206 d a t a t y p e LSBRACE SINTEGER RSBRACE
207 RPARAN SEMICOLON ;
208

209 A c t o r s :
210 a c t o r h e a d | a c t o r b o d y | a c t o r t a i l ;
211

212 a c t o r h e a d :

177

213 RULE BEGINACTOR IDENTIFIER SPARAN argument
214 RPARAN ;
215

216 a c t o r t a i l :
217 RULE ENDACTOR ;
218

219 a c t o r b o d y :
220 me ssag e ty pe bo dy | i n i t i a l i z e s t a t e
221 | w h i l e l o o p | i f e l s e
222 | c o m m u n i c a t i o n o p e r a t i o n s
223 | m e s s a g e t y p e s | f o r l o o p
224 | c h u n k o p e r a t i o n s
225 | RULE TERMINATECONDITION c o n d i t i o n SEMICOLON ;
226

227 i n i t i a l i z e s t a t e :
228 RULE SETSTATE SPARAN LASTACTION RPARAN SEMICOLON
229 | RULE SETSTATE SPARAN v a l u e RPARAN SEMICOLON
230 | RULE SAVEACTION SPARAN v a l u e RPARAN SEMICOLON ;
231

232

233 w h i l e l o o p :
234 RULE BEGINWHILE SINGLECOLON UNTIL
235 | c o n d i t i o n | c o m p a r i s i o n
236 | RULE ENDWHILE ;
237

238 c o n d i t i o n :
239 SPARAN v a l u e c o m p a r i s i o n v a l u e RPARAN
240 | SPARAN v a l u e c o m p a r i s i o n v a l u e RPARAN
241 c o m p a r i s i o n c o n d i t i o n ;
242

243 i f e l s e :
244 RULE STARTSTATE IDENTIFIER SINGLECOLON
245 | RULE ENDSTATE IDENTIFIER SINGLECOLON
246 | RULE NEXTSTATE IDENTIFIER SINGLECOLON
247 | RULE BEGINIF | c o n d i t i o n
248 | c o m p a r i s i o n | IMPLIES
249 | RULE ENDIF | RULE ELSE
250 | RULE ELSEIF ;
251

252 f o r l o o p :
253 RULE BEGINFOR SPARAN v a l u e SINGLECOLON
254 v a l u e TO v a l u e RPARAN
255 | RULE ENDFOR ;

178

256

257 c o m m u n i c a t i o n o p e r a t i o n s :
258 b l o c k p r o b e | g e n e r a t e m e s s a g e l e n g t h
259 | n b l o c k p r o b e ;
260

261 b l o c k p r o b e :
262 RULE BLOCKPROBE SPARAN v a l u e COMMA
263 v a l u e COMMA v a l u e RPARAN SEMICOLON ;
264

265 n b l o c k p r o b e :
266 RULE NBLOCKPROBE SPARAN v a l u e COMMA
267 v a l u e COMMA v a l u e COMMA v a l u e RPARAN SEMICOLON;
268

269 g e n e r a t e m e s s a g e l e n g t h :
270 RULE GETMSGLENGTH SPARAN v a l u e COMMA
271 v a l u e RPARAN SEMICOLON;
272

273 m e s s a g e t y p e s :
274 RULE SENDMESSAGE SPARAN v a l u e COMMA
275 v a l u e COMMA v a l u e COMMA v a l u e COMMA v a l u e
276 RPARAN SEMICOLON
277 | RULE RECEIVEMESSAGE SPARAN v a l u e COMMA
278 v a l u e COMMA v a l u e COMMA v a l u e COMMA v a l u e
279 RPARAN SEMICOLON ;
280

281 m a t h e m a t i c a l o p e r a t i o n s :
282 RULE OPERATION SPARAN o p e r a t i o n RPARAN SEMICOLON
283 | RULE OPERATION SPARAN o p e r a t i o n RPARAN ;
284

285 o p e r a t i o n :
286 v a l u e COMMA v a l u e COMMA QUOTE o p e r a t o r QUOTE
287 COMMA v a l u e ;
288

289 c h u n k o p e r a t i o n s :
290 RULE GETCHUNK SPARAN v a l u e COMMA v a l u e COMMA
291 v a l u e COMMA v a l u e COMMA v a l u e COMMA v a l u e
292 RPARAN SEMICOLON
293 | RULE GETLOCALSIZE SPARAN v a l u e COMMA v a l u e
294 COMMA v a l u e COMMA v a l u e RPARAN SEMICOLON ;

179

	A Domain Specific Language Based Approach for Generating Deadlock-Free Parallel Load Scheduling Protocols for Distributed Systems
	Recommended Citation

	tmp.1625165283.pdf.2W74M

