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Seasonality estimates based on archaeological shellfish remains have been an 

important component of settlement pattern reconstruction. Investigations of this nature 

allow researchers to place prehistoric people on the landscape at points in space at 

different times of the year. Many of the previous seasonality studies, however, have 

focused on marine species from coastal sites, with little attention given to freshwater 

locales, especially ones in the Mississippi Delta. To address that disparity, this study 

examines freshwater mussel “season of capture” via analysis of stable oxygen isotope 

ratios in specimens recovered from two Late Woodland sites located along the Yazoo 

River, Mississippi.  

As freshwater mussel shells are composed of aragonite, a metastable form of 

calcium carbonate (CaCO3), they can suffer greatly from the impact of meteoric 

diagenesis. Because of this, samples must be evaluated for diagenesis prior to any 

geochemical analysis taking place. Archaeological shell samples were examined via thin-

section petrography and scanning electron microscopy (SEM). Visual analysis indicated 

pristine aragonite microstructure and crystallography in all archaeological shell samples, 



 

 

and confirmed their suitability for isotope analysis. Vetted shells were then micromilled 

across accretionary growth bands, and analyzed for their oxygen isotope signatures. 

Isotope profiles were then interpreted for their individual “season of capture”, and 

oscillation patterns for 22 shell specimens indicated mussels were being collected in all 

four seasons. These data support the view that at least some portion of the human 

population at both sites engaged in shellfishing activities year-round, indicating sedentary 

populations at both locales. 

The shell assemblages were also investigated for the purpose of informing 

modern conservation efforts (i.e., “applied zooarchaeology”). Nearly 24,000 valves were 

analyzed taxonomically, yielding the presence of 37 species, of which 24 represented 

new river records for the Yazoo River. These data provide a valuable historical 

perspective, cataloging communities as they existed prior to extensive modern impacts, 

thus representing an ecological baseline to be compared with modern populations. 

Though modern data are extremely limited for the river, the study revealed it once 

supported a diverse mussel community containing numerous species currently considered 

rare, endangered, or extinct in Mississippi. 
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INTRODUCTION 

Problem Statement  

Archaeological freshwater mussel “shell rings” offer a unique perspective on 

prehistoric human and environmental interaction. These sites, which generally contain 

hundreds of thousands of aragonite mollusk shells, also present an opportunity to increase 

our understanding of Holocene sediment accumulation, essentially acting as a historical 

index of paleo-temperatures, chemical equilibria, and ecological change through time 

(Alvarez et al. 2010; Andrus 2011; Deith and Shackleton 1998; Waselkov 1987). Though 

much study has been directed to archaeological coastal clam and oyster middens in the 

Southeast (e.g., Andrus and Thompson 2012; Bruseth 1980, 1991; Claassen 1986; 

Marquardt 2010; Russo 2006; Thompson and Andrus 2011), as well as similar sites on 

the West Coast (e.g., Culleton et al. 2009; Eerkens et al. 2013; Jones et al. 2008; Tellez-

Duarte et al. 2008), little attention has been given to prehistoric freshwater mussel rings, 

especially ones in the Mississippi Delta. 

As a largely untapped scientific resource, freshwater shell rings present a unique 

opportunity to explain a significant portion of the human condition present in the 

archaeological record. What does it mean to be mobile or sedentary, and what is required 

for both? Can a population be sedentary that is not agricultural? Are these concepts 

interdependent? These questions have been discussed at length within archaeology, and 
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have yet to find much consensus. How archaeologists understand and recognize mobility, 

sedentariness, and subsistence have long been topics marred by essentialist and normative 

thinking (Dunnell 1986; O’Brien and Holland 1990). Often, a correlation between 

settlement pattern and subsistence practices was used to denote whether a population was 

mobile or sedentary. This resulted in studies making reference to both Archaic and 

Woodland sites as “basecamps” rather than permanent villages (Rafferty 1994:406; see: 

Jenkins and Krause 1986; Rogers 1991; Welch 1981). This is also true of shell ring sites, 

which often were, and still are, described as being either “feasting locales”, “macroband 

camps”, or “relatively permanent” occupations (DePratter 1979). This confusion 

generally stems from an assumption of continuum between subsistence and the 

requirements to “be” sedentary. If a population was dependent on hunting and gathering 

for their food, it would require mobility to survive (e.g., Faulkner 1977). Conversely, the 

assumed prerequisite for sedentary living was a reliance on domesticated and cultivated 

crops, despite a number of studies (e.g., Fritz 2008; Rafferty 1985, 1994; Russo 2004, 

2006) noting evidence of sedentary hunter-gatherers throughout both the Archaic and 

Woodland periods. A recent analysis of botanical remains (from numerous Woodland 

sites in the Mississippi Delta) revealed the vast majority of plants consumed at these 

locales were of native-wild variety (e.g., acorns, gourds, and sunflowers seeds) (Fritz 

2008:327-333), and that dependence on cultigens did not arise until the Mississippian 

period (Asch and Asch 1985; Watson 1985).  

Ultimately, the question central to this dissertation is whether freshwater mussel 

shell ring sites in the Mississippi Delta represent sedentary (i.e., year-round) or seasonal 

occupations. This topic will be addressed by analyzing the stable-oxygen isotope (18O) 
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signatures within the seasonal growth layers of aragonitic mussel valves. These sites were 

non-agricultural, with subsistence relying predominately on fishing, game-hunting, and 

local plant-gathering. Thus, if shown to have been occupied year-round (i.e., by at least a 

portion of the population engaged in shellfishing activities), rather than seasonally, this 

study’s findings would challenge the normative thinking regarding sedentary living. 

Additional goals of this research are to advance our understanding of aragonite shell 

diagenesis and taphonomic processes that exist within the vadose zone of archaeological 

shell deposits, as well as to further demonstrate the value “applied” archaeology has to 

modern conservation biology.   

This dissertation intends to cover two main themes: mollusk geochemistry and 

“applied” zooarchaeology. In total, 3 manuscripts are included in this document. The first 

(currently under review in Archaeological and Anthropological Sciences) is an 

assessment of diagenetic alteration within the recovered archaeological freshwater mussel 

specimens, via various microscopy techniques. This study was carried out prior to any 

isotopic examination, and serves as a procedure to evaluate shell specimens for their use 

in chemical analysis. The second manuscript (to be submitted to the Journal of 

Archaeological Science) contains an analysis of oxygen isotope signatures (ẟ18O) within 

archaeological shell remains. The resultant ẟ18O oscillation trends for each specimen are 

then interpreted for a “season of capture”, which collectively are used to assign 

seasonality at both sites. The final manuscript (currently under review in Environmental 

Archaeology) provides a comparative assessment of the taxonomic and community 

makeup of freshwater mussel faunas in the Yazoo River. By analyzing the archaeological 

mussel assemblages from the study areas, comparisons between those data and modern 
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collections from the river can inform on a number of ecological and committee 

characteristics, such as the presence of rare species, juvenile recruitment, population 

diversity and evenness, biogeography, and state and national conservation statuses for 

endangered and threatened faunas.    

Background: Archaeological Shell Rings 

Humans have been exploiting mollusks for millennia, with archaeological shell 

deposits found throughout the world dating as far back as 130,000 years (Bailey 1975; 

Binford 1984; Claassen 1998; Erlandson 2001; Meehan 1982; Stein 1992; Waselkov 

1987). These sites represent a substantial portion of the archaeological record and are 

considered some of the earliest large-scale works in the Southeastern United States, with 

little evidence of significant coastal occupations prior to their construction (Russo 2006; 

Saunders et al. 1994). Delta shell rings differ in many ways from coastal and other 

freshwater sites found throughout North America. Shell deposits in the Mississippi Delta 

(i.e., the Yazoo River Basin) are composed of freshwater mussels, as opposed to clams 

and oysters, and are often shaped as semi-circular, ring-shaped, or various other 

geometric forms (Peacock and Jenkins 2010) (see Figure 1.1). Delta shell-rings are 

usually found adjacent to a nearby water source (e.g., interior rivers, lakes, and bayous), 

from which the mussels were originally collected (Peacock 2002). Though other shell-

bearing sites have been found elsewhere in Mississippi, most do not display any “formal 

structure or layout of shell”, occurring primarily in “general midden deposits and/or as 

concentrations within pits or other features” (Peacock and Jenkins 2010; Peacock et al. 

2011:5).      
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Figure 1.1 Delta shell rings 

Aerial photograph of (left) Rugby Farm (22YZ513) and (right) Light Capp (22YZ605) 
sites. Scale represents 140 meters 

The distinctive shape of the Delta shell deposits, coupled with the fact that many 

are now located on agricultural lands, make them easily identifiable using a variety of 

visual techniques, especially aerial photo data (Lipo and Dunnell 2008) and Geographic 

Information System (GIS) imaging queries (Jenkins 2010; Peacock and Jenkins 2010; 

Peacock et al. 2011:7-10). The increased availability of these technologies has not only 

expanded our understanding of the spatial distribution of these deposits, but also the sheer 

number of shell sites throughout the Mississippi Delta. The present number of identified 

likely shell-rings in the Delta is now 67 (Peacock et al. 2011: Map A-1), which is 

significantly higher than the previously known value of 47, as noted by Peacock and 

Jenkins (2010).          

Shell rings were first recognized in the Mississippi Delta by Moore (1908), where 

the presence of a circular buildup of pottery and mussel fragments was recorded, but 

“excavated without result” (Moore 1908:589). Further investigations in the Yazoo Basin 

were carried out by Harvard University’s Lower Mississippi Survey (LMS), which took 
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place in the mid-20th century, and was a regional investigation that noted the presence of 

8 semi-circular shell deposits (Peacock et al. 2011:6; Phillips 1970; Phillips et al. 1951). 

During the LMS survey, all observed shell middens orientated in a circular fashion were 

associated with the Tchula Lake site (22HU502) as part of the “Tchula Lake settlement 

pattern”, which was later assigned to the Deasonville Phase of the Late Woodland Period 

(ca. 300-600 A.D.) (Phillips 1970:270-273). However, the temporal assignment of the 

Tchula Lake site made by Phillips (1970) was later examined by Dunnell et al. (2002). 

Radiocarbon dates obtained from mussel samples depicted a calibrated range of 1400-590 

B.C., in effect challenging whether the site can be characterized as solely a Deasonville 

occupation (Lipo and Dunnell 2008:153). Unlike coastal shell middens, which are 

typically associated with the Archaic-period, the temporal details of Delta rings, as well 

as how (or if) they are related to one another, is still a matter of debate (Peacock et al. 

2011:6). The few Delta shell rings examined thus far have been dated to the Late 

Woodland period (e.g., Carlock and Rafferty 2009; Peacock et al. 2011; 2012; Raymond 

2014), but much more testing is necessary to establish any contemporaneous relationship 

going forward.  

During the LMS work, the primary emphasis in collection and analysis was 

almost exclusively on ceramics, while non-pottery assemblages were largely excluded 

(Dunnell 1985:297; Rafferty 2008:99). Like much of the archaeology done during this 

period, the ultimate goal was a recreated “culture history”. Archaeologists often 

employed a strict presence/absence use of diagnostic artifact types to denote phases and 

components, based entirely on the occurrence of those artifacts within a site (Rafferty 

2008:100). Unfortunately, the lack of environmental and faunal information on Delta 
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shell-rings can be mostly credited to past (and present) sampling biases. Historically, 

mussel shell routinely has been ignored in favor of more “exotic” artifacts, and was rarely 

used in any archaeological capacity beyond species tabulations and gross paleo-

environmental inquiries (Mitchell 2012; Peacock 2000; Peacock and Jenkins 2010).  

When not being completely overlooked, mussel shell is often just noted as present, but 

generally not addressed or analyzed in any manner beyond that (e.g., Belmont 1983; 

Brain 1989; Collins 1932; Connaway and McGahey 1971; Fuller 1992; Hinks et al. 1993; 

Hyatt 1975, 1992; Marshall 1978; Marshall and Glover 1974; Morgan and Raspet 1979; 

Penman 1985).   

One of the more recent research-based studies of a Delta shell-ring occurred at the 

Kinlock site (22SU526), which is located near Belzoni, in Sunflower County, 

Mississippi. The site rests primarily on agricultural property fronting the Big Sunflower 

River, and consists of a plaza, semicircular shell-ring, and as many as 6 earthen mounds 

(Phillips 1970). The 2009 Mississippi State archaeology field school employed 3 

excavation units and a controlled surface collection (CSC) specifically designed to 

address questions about shell-ring’s structural orientation, age, and the taxonomic 

makeup of the local mussel population (Carlock and Rafferty 2009; Mitchell 2012).   

The study at Kinlock yielded some interesting findings. Taxonomic analysis and 

recorded valve counts demonstrated a marked difference in the preservation of shell 

remains among surface and subsurface assemblages (see Mitchell et al. 2016). Specimens 

obtained from the plow-zone (i.e., surface and Zone A) displayed lower taxonomic 

richness and a very high degree of fractioning and external wear, particularly among 

thinner and less dense species (see also Wolverton et al. 2010). However, shell samples 
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obtained from the preserved midden (i.e., Zones B and C in the excavation units) were 

extremely well preserved (Mitchell 2012). Likewise, shells recovered from below the 

plow-zone are not only ideal for physical preservation, but also obtaining quality 

specimens for chemical analysis. For shell sites located within the vadose zone, the top of 

a mussel deposit can act as a buffer to the effects of aragonite diagenesis (i.e., dissolution, 

secondary cementation, and calcite re-precipitation). This potentially would permit shells 

from more interior midden contexts to have greater protection and preservation (Andrus 

2011; Collins 2012; Chapter 2 this volume; Walter and Morse 1984), thus making such 

specimens more suitable as resources for geochemical analysis. 

Shell Ring Function and Mobility 

The function of shell ring sites continues to be a topic of debate amongst 

archaeologists (e.g., Cameron 2002; Claassen 1992; Gibson and Carr 2004; Marquardt 

2010; Milner and Jefferies 1998; Russo 2006; Thompson and Andrus 2011; Wills 2001). 

Some have hypothesized  that shell-rings are the accumulation of shell debris from daily 

meals, and are often associated with houses and other domestic activities occurring on top 

of these deposits (e.g., Edwards 1965; Marquardt 2010; Sassaman 2003; Thompson 2006; 

Trinkley 1980, 1985; 1997; Waring and Larson 1968). In most cases, shell remains are 

found in association with other animal remains, uneaten plant byproducts, wood charcoal 

and ashes from cooking fires, broken stone tools, pottery sherds, and various other 

“trash” debris (Marquardt 2010; Parmalee and Klippel 1974). In contrast, sites where the 

deposits are more homogenized, often characterized as containing “clean shell” (e.g., 

Russo 2004; Thompson and Andrus 2011), are generally viewed  as evidence of 

“intentional” mound building or ceremonial feasting (e.g., Claassen 1991a, 1991b, 1992, 
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1996, 2010; Russo 2004, 2006; Russo and Heide 2003; Sassaman 2003, 2008; Saunders 

2004a; 2004b; Thompson 2007).1 However, as Marquardt (2010) has noted for coastal 

sites, and others for freshwater sites (e.g., Milner and Jeffries 1998; Morey and Crothers 

1998; Peacock 1998; Peacock et al. 2011), the interpretation of clean shell as purposeful 

“mound building” is currently unsubstantiated, unless it can be confirmed (via testable 

hypotheses) that these deposits do not represent accumulated middens of habitational 

debris.    

Assessments of prehistoric human group mobility are equally tenuous, with many 

studies interpreting shell-ring sites as seasonal (or “semi-seasonal”) camps, feasting 

centers, sedentary egalitarian villages, or a combination thereof (Anderson 2002; Cable 

1997; DePratter 1979; Michie 1979; Russo 2004; Russo and Heide 2003; Sassaman 2003; 

Saunders 2002, 2004a, 2004b; Thompson 2006; Trinkley 1980; Thompson et al. 2004; 

Waring 1968; Waring and Larson 1968). The descriptors “camp, center, and village”, 

used in association with terms such as “sedentariness and semi-sedentariness”, are 

generally applied as an indicator of “settlement size”, rather than permanence at a 

particular locale (Rafferty 1985:115). This confusion can be avoided by first being 

explicit in what it means to be sedentary, which as defined by Rice (1975) is a site where 

“at least part of the population remains at the same location throughout the entire year”.  

As Rafferty (1985) notes, this definition allows focusing on year-round occupation, 

regardless of the variation in population size.   

Also problematic in this discussion is that many interpretations of shell-ring 

seasonality are made based on non-seasonal data. For example, Saunders (2004a:61) has 

defined shell-rings as “locations for macrobands or tribes to gather at certain times 
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throughout the year for ceremony, feasting, information exchange, mate selection, and 

other social activities”. This definition was based on the notion that shell-ring sites 

contain more elaborate ceramic assemblages that are “formally distinct” from non-shell 

sites (Thompson and Andrus 2011:318). A more appropriate test of a shell-ring’s 

seasonality is through the analysis of faunal and/or floral remains. At a shell-ring on the 

South Carolina coast, Trinkley (1980) noted the presence of migratory bird and turtle 

remains, in addition to shed and unshed deer antlers, as faunal evidence of year-round 

occupation. Similar findings at Horr’s Island (Florida) by Russo (1998), suggests the site 

was occupied year-round by at least a portion of the population.  

Though the presence/absence of certain faunas is a useful qualitative measure of 

site seasonality (i.e., when large excavated samples are not available), sometimes a more 

quantitative approach is necessary. This can be accomplished by assessing the isotopic 

temperature signatures (i.e., 18O) within a mussel’s accretionary growth bands. Water 

temperature generally fluctuates in a predictable manner (i.e., cooler in the winter, 

warmer in the summer), and because mussels stop precipitating their shell when they die, 

an estimation of the water temperature (indicative of season) at the time an animal was 

harvested is possible (Andrus 2011). From that, one can identify a particular mussel’s 

“season of capture” (e.g., Andrus and Crowe 2008; Bailey et al. 1983; Carre et al. 2009; 

Colonese et al. 2009; Harding et al. 2010; Keene 2004; Jones et al. 2008; Kennett and 

Voorhies 1996; Mannino et al. 2003; Quitmyer et al. 2005; Shchweikhardt et al. 2011; 

Shackleton 1969, 1973; Thompson and Andrus 2011), and ultimately the time of year 

people were exploiting shellfish at these sites. 
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Note 

1Though ethnographic comparisons regarding shellfish exploitation have been 

made with modern cultures (e.g., May 2005), behavioral explanations for archaeological 

phenomena should be avoided, as it is impossible to properly “observe” these people and 

their actions in the anthropological sense. Any interpretations should be framed as 

hypotheses and tested. 
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Abstract 

Archaeological freshwater mussel deposits constitute a significant resource for 

ecological, geochemical, and environmental inquiries. As a mussel grows, characteristic 

chemical and physiological signatures are incorporated into its shell, providing spatially- 

and temporally-specific data from interior waterways. However, because freshwater 

mussel shells are composed of aragonite, a metastable form of calcium carbonate 

(CaCO3), they can suffer greatly from the impact of meteoric diagenesis. This study 

considers the chemical diagenesis of freshwater mussel remains from two sites in Yazoo 

County, Mississippi. We employ two microscopy techniques, petrographic analysis of 

thin-sections and scanning electron microscopy, as a basic approach for diagenetic 

assessment, and argue these methods as essential steps for vetting freshwater shells for 
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chemical analysis. Following visual comparisons with modern specimens, results indicate 

pristine aragonite microstructure and crystallography in all archaeological shell samples, 

thus bolstering their suitability for geochemical analysis. 

Introduction 

For decades the geochemical composition of skeletal aragonite has proven a 

valuable source for information on past environments (Abram et al. 2008; Bar-Matthews 

et al. 2003; Cai et al. 2010; Cheng et al. 2009; Cobb et al. 2001; Cole et al. 1993; DeNiro 

1987; Denniston et al. 2007; Koch et al. 1994; van der Merwe 1982; Wang et al. 2001; 

Wang et al. 2004; Zinke et al. 2004). Bivalve mollusks are especially useful in this 

regard, as the crystalline structure within their shells can serve as a high-resolution index 

of the various environmental conditions experienced during an organism’s lifespan 

(Davenport 1938; Epstein et al. 1953; Hippler et al. 2009; Immenhauser et al. 2005; 

Vander Putten et al. 2000; Witbaard et al. 1994). Previous studies have shown 

accretionary features within bivalve shells can preserve a chronologic record of age, 

growth rates, air and water temperature, river discharge, rainfall patterns, salinity, and 

physiological patterns (Chauvaud et al. 2005; Dettman et al. 1999; Elliot et al. 2003; 

Gillikin et al. 2005; Goodwin et al. 2003, 2004; Lorrain et al. 2004; Schöne et al. 2002, 

2004; Surge et al. 2001; Surge and Walker 2005; Wurster and Patterson 2001)  

As one of the most diverse faunal groups, bivalves have an extremely wide 

geographical distribution, and are found in all types of aquatic ecosystems. Likewise, 

bivalve remains are found as far back as the Cretaceous Period, and are a significant 

component of the archaeological record (Bailey 1975; Binford 1984; Claassen 1998; 

Erlandson 2001; Meehan 1982; Stein 1992; Waselkov 1987), being especially prominent 
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in North America, as marine and freshwater species were a significant food-source for 

ancient peoples (Mitchell and Peacock 2014; Peacock et al. 2011; Russo 2004). Shell-

bearing sites are considered some of the earliest large-scale works in the Southeastern 

United States, with little evidence of significant coastal occupations prior to their 

construction (Russo 2006; Saunders et al. 1994). In the early 20th Century, many 

freshwater species were exploited along rivers in central North America for use in the 

pearl button industry (Parmalee and Bogan 1998; Williams et al. 2008). Ultimately, 

bivalves, both marine and freshwater, provide a very wide geographic and temporal range 

for future studies, bolstering their value as sources of environmental data (Chang et al. 

2007; Wanamaker et al. 2011). 

Though much study has been directed to archaeological coastal clam and oyster 

middens in the Southeast (e.g., Andrus and Thompson 2012; Claassen 1986; Bruseth 

1980, 1991; Marquardt 2010; Russo 2006; Thompson and Andrus 2011), as well as to 

similar sites on the West Coast (e.g., Culleton et al. 2009; Eerkens et al. 2013; Jones et al. 

2008; Tellez-Duarte et al. 2008), little attention has been given to sites at freshwater 

locales, especially ones in the Lower Mississippi Alluvial Valley. Despite this fact 

however, freshwater shell remains are considered among the most reliable sources of 

radiocarbon dates for late Pleistocene fossil and archaeological sites (Bowler and Wasson 

1984; Gillespie 1997; Rick et al. 2005; Roberts et al. 1994; Webb et al. 2007), and a 

growing number of reports have demonstrated utility of modern mussel faunas for 

geochemical and environmental studies (e.g., Carroll et al. 2006; Dettman et al. 1999; 

Goewert et al. 2007; Versteegh et al. 2010a, 2010b).    
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Here we focus on freshwater mussels recovered from two archaeological sites in 

Yazoo County, Mississippi. When using prehistoric shells, certain vetting measures must 

be taken to ensure the samples are pristine prior to any chemical analysis taking place. 

Even very subtle diagenetic features can significantly alter the isotopic and trace 

elemental signatures preserved in a shell, which not only reduces the quality of the 

geochemical data obtained, but also any subsequent interpretations made. Ultimately, the 

potential presence of diagenetic alteration within a shell sample should always be 

assessed prior to all ensuing chemical analyses (Claassen, 1998; Collins 2012). If 

archaeological shell is thus determined to not have undergone chemical alteration, and is 

free of diagenesis, that sample can be deemed suitable for geochemical study. In this 

report we demonstrate basic microscopy techniques that, when used in reference to 

standard carbonate petrography guides (i.e., grains, textures, crystallography, and 

structure; e.g., Folk 1973; Sandberg 1983; Sholle and Ulmer-Sholle 2003; Tucker and 

Wright 1990), can unambiguously distinguish between samples that are pristine and those 

which have been diagenetically altered.     

Shell Structure and Geochemistry  

The shell of a freshwater mussel is composed of three main parts (see Figure 2.1). 

The periostracum is the outermost layer, and acts as a protective film for the shell and 

provides pigmentation. The prismatic layer is the middle section, and consists of needle-

like crystals, oriented perpendicular to the inner and outer surface of the shell. Last is the 

nacreous layer (colloquially known as mother of pearl, or nacre), which is secreted as 

thin, brick-like laminae parallel to the inner surface of the shell and constitutes the bulk 

of the shell’s mass (Tucker and Wright 1990). During shell formation, the mantle, which 
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surrounds the visceral mass (i.e., soft tissue), lines the interior surface of the valve and 

accretionally secretes (via bio-mineralization) alternating layers of aragonite (CaCO3) 

and organic matter, continuously building the shell through the life of the organism. 

 

Figure 2.1 SEM image of freshwater mussel shell 

Cross-section of modern freshwater mussel shell, showing periostracum, prismatic, and 
nacreous layers 

The mechanisms by which freshwater mussel shells are formed make them very 

useful for environmental and paleoecological studies (Jones 1993; Lee and Wilson 1969; 

Wefer and Berger 1991). Throughout a mussel’s lifetime, trace elements and isotopes are 

incorporated from the surrounding water source, being absorbed into the crystalline 

structure as the mantle bio-mineralizes the shell (Tucker and Wright 1990). This process 

occurs on the edge of the shell, at the interface between the mantle, the periostracum, and 

the shell itself (Marin et al. 2012), combining the necessary minerals for construction in 
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the extrapallial (i.e., area between mantel and shell) fluid (Timmermans 1969). 

Ultimately, the shell of a mussel will reflect environmental conditions as a characteristic 

chemical signature. These signatures are bound within the shell during growth and can 

provide definitive information about the water source in which the mussel lived 

(Bruchardt and Fritz 1978; Claassen 1998; Faure and Mensing 2005; Faure et al. 1967; 

Odum 1951; Wefer and Berger 1991). Because of this, mollusk remains can be used in a 

number of (regional-, drainage-, or stream-specific) geochemical applications, including 

elemental sourcing studies (Claassen 1998; Peacock 2009), establishing paleo and 

historic waterway temperature ranges (Glassow et al. 1994; Jones and Kennett 1999; 

Kennett 2005), and prehistoric occupation seasonality (Andrus 2011; Andrus and Crowe 

2008; Quitmeyer et al. 1997). 

Mussel Shell Diagenesis 

There are numerous post-depositional phenomena that can negatively impact 

faunal assemblages at archaeological sites. Mussel deposits, for example, are often 

subjected to years of wear and fracturing from agricultural activities (e.g., plow-zone 

tillage) and various taphonomic processes (Claassen 1998; Dunnell 1990; Dunnell and 

Simek 1995; Lewarch and O’Brien 1981; Muckle 1994; Nielson 1991; Peacock 2000; 

Sanger 1981; Waselkov 1987).  Though the physical condition of shell remains has long 

been a topic of interest, especially in regard to its influence on species identification and 

representativeness (e.g., Mitchell 2012; Mitchell et al. 2016; Peacock 2000; Peacock and 

Chapman 2001; Randklev et al. 2010; Wolverton et al. 2010), considerations of chemical 

diagenesis has been mostly underemphasized by archaeologists. Fortunately, there exists 

an abundance of geological and sedimentary literature focusing on all manners of 
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carbonate structure, chemistry, and deposition (e.g., Ahr 2008; Folk 1974; Sandberg 

1983; Tucker and Wright 1990; and references therein).    

Diagenesis refers to any physical, chemical, or biological alteration undergone by 

sediment after its initial deposition within the soil (Gastaldo et al. 1996). For carbonates, 

chemical diagenesis is viewed as the most important agent of change (Ahr 2008). The 

outcomes of which generally include dissolution, the development of micro-porosity, 

secondary cementation, recrystallization, and changes in trace elements and isotopic 

signatures (Ahr 2008:145; Moore 2001; Tucker and Wright 1990:315). Numerous 

environmental and depositional factors control these changes, however, and each deposit 

can be geologically distinct. Also, the “type” of carbonate itself will ultimately determine 

solubility, as biogenic carbonates contain different mineral phases of calcium carbonate 

(CaCO3), each with different levels of stability. Freshwater mussel shells are composed 

of aragonite, a metastable polymorph of CaCO3. Aragonite, along with high-Mg calcite, 

is unstable at Earth surface pressure and temperature, and will inevitably either dissolve 

or convert to calcite over time (Tucker and Wright 1990). Once a mussel dies, the shell 

will begin to degrade as it is no longer being maintained by the mantel. If subjected to 

meteoric water, an aragonitic shell may undergo rapid dissolution and/or recrystallization. 

If that happens, the original isotopic and/or elemental signatures stored within shell’s 

structure will be at worst, lost forever, or at best, severely distorted (Sayani et al. 2011). 

For aragonite, the primary factor controlling chemical diagenesis is the presence 

of acidic meteoric water (i.e., water that falls as precipitation and percolates from the 

surface down through the deposit profile) (Allan and Matthews 1982; Folk 1974; Harris 

and Matthews 1968; Magnani et al. 2007; Morse and Mackenzie 1990; Morse et al. 
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1997). This impact has been discussed at length (e.g., Ahr 2008; Carlson 1983; Tucker 

and Wright 1990), and typically manifests in aragonite as 1) dissolution of primary 

crystals, 2) infilling of skeletal pore spaces with secondary cements, and/or 3) 

recrystallization of aragonite to calcite (Moore 1989; Morse and Mackenzie 1990; Sayani 

et al. 2011; Webb et al. 2007). This dynamic is also contingent on the equilibrium 

between the solid phase and the aqueous solution of calcium (Ca2+) present within the 

environment. Ultimately, the degree of disequilibrium between the water and the deposit 

is the primary factor controlling the rate of chemical reaction, with the level of 

dissolution, cementation, and/or re-precipitation becoming amplified as disequilibrium 

increases (Collins 2012). Though equilibria and the presence of water are important, the 

extent of change induced can vary dramatically, depending on a variety of other 

depositional properties, such as sediment porosity, soil CO2 and pH, and meteoric water 

temperature (Birkeland 1984; Bischoff 1969; Bohn et al. 1985; Brooks and Whitaker 

1997; Goldstein 2008; Ward 1975).  

Archaeological mussel shell middens are unique from other carbonate deposits 

(e.g., limestone, karst, or ancient corals), as the dominant sedimentary matrix constituent 

is shell, representing animals collected and processed for subsistence purposes by 

prehistoric peoples, and later discarded with other organic matter and artifacts over time 

(i.e., essentially as refuse) (Marquardt 2010; Parmalee and Klippel 1974). Additionally, 

studies have shown that shell middens that have remained subaerially exposed may 

exhibit excellent preservation of carbonate materials (e.g., Andrus 2011; Collins 2012; 

Villarreal et al. 2015). Ultimately, the structure of a shell midden can act, in itself, as an 

agent of preservation. Dense deposits can shield against diagenesis, as the massive 
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amount of carbonate materials present can buffer the impact of acidic waters, focusing 

the majority of exposure to shells on the surface and shallower areas of the midden. 

Moreover, shell from the “plow-zone” (i.e., usually ca. 10 - 20cm from surface) is 

commonly impacted by physical wear from tillage and taphonomy (Mitchell et al. 2016; 

Peacock 2000), and specimens here would likely not be the best candidates for chemical 

analysis. It is possible that sampling more to a midden’s interior would have a higher 

probability of yielding pristine shells (Andrus 2011). 

Study Areas 

The Rugby Farm (22YZ513) and Light Capp (22YZ605) sites are located on the 

Yazoo River in rural farmland southwest of Yazoo City, Mississippi (see Figure 2.2). 

These sites are from a group of over 50 shell rings associated with the ecoregion of the 

Northern Holocene Meander Belts (Peacock et al. 2011: Fig. 4). The area is situated in 

the Lower Mississippi Alluvial Valley (specifically within the Yazoo Basin), and is 

colloquially known as the “Mississippi Delta”. Both sites contain a circular shell-ring that 

fronts the adjacent river. These sites are separated by only ca. 4.1 kilometers, with 

22YZ513 being downstream and to the southwest of 22YZ605 along the Yazoo River. 

The two sites are roughly the same size, as both have outside and inner ring diameters of 

roughly 170 m and 115 m, respectively (Peacock et al. 2011; Raymond 2014). At the 

center of each ring is a plaza that contains relatively few artifacts when compared with 

the dense surrounding midden.  

The Rugby Farm site was first recorded by Chambers (1932) and Ford (1936), 

and was later discussed by Phillips (1970), as part of Harvard University’s Lower 

Mississippi Survey (LMS). Temporally, the site is associated with the Deasonville (350-
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650 A.D.) phase of the Late Woodland period, though there is evidence of both earlier 

and later components present at the site (i.e., Marksville [0-350 A.D.] and Coles Creek 

[800-1200 A.D.] period components); lithic and ceramic artifacts diagnostic of 

Deasonville were the majority, however (Phillips 1970). The Light Capp site, though not 

previously investigated (other than via aerial imagery; see Peacock et al. 2011: Fig. 8), is 

relatively dated as contemporaneous with Rugby Farm, and to the Middle and Late 

Woodland periods (Raymond 2014). Ongoing work (see Raymond 2014) indicates that 

both sites represent single, likely sedentary, Middle to Late Woodland occupations that 

terminate at or near the start of the Mississippi period. 
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Figure 2.2 22YZ513 and 22YZ605 

Map showing location of Rugby Farm (22YZ513) and Light Capp (22YZ605) sites in 
Yazoo County, Mississippi 

Methods and Materials 

 This study follows standard methods and practices employed in previous 

carbonate diagenesis studies (e.g., Dickson 1966; Immenhauser et al. 2005; James 1974; 

Land 1967; Maliva et al. 2001; Matthews 1968; Sayani et al. 2011; Tucker 1988), as well 

as techniques specific to handling of archaeological shell (see Collins 2012; Leng and 

Lewis 2016; Villarreal et al. 2015). The combination of thin-section petrography and 
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scanning electron microscopy (SEM) serves to provide qualitative visual aids (via 

observed grain-texture and structure; see Folk 1973, 1974) for investigating the aragonite 

pristineness within the selected mussel specimens. There are multiple types of diagenetic 

alteration, but here we are specifically interested in detecting evidence of the aragonite to 

calcite transformation (i.e., dissolution, cementation, and recrystallization). Though 

additional methods and approaches exist, we feel the two discussed and included here, 

thin-section petrography and SEM analysis, provide an effective and reliable ‘minimal 

standard’ for vetting mollusk remains for use as a material resource in geochemical 

research.   

Field Methods and Specimen Selection  

Shell was collected in 2013 by Mississippi State University’s archaeology field 

school. Here, we use shell obtained from 2 excavation units (1 from each site) dug in 

areas of high concentration of mussel shell. Both units are 1 x 1 m in dimension, and 

were excavated until artifact-free subsoil was reached. The majority of the shell was 

located within the dense midden deposits of Zones A and B (see Figures 2.3 and 2.4), 

which at both sites contained a number of other non-shell artifacts, including ceramic pot 

sherds, lithic flakes, and various bone fragments. Standard excavation methods were 

applied: zone levels were dug in 10 cm increments (or smaller, if soil horizons visibly 

changed). All material was separated from the dirt via water screening with 0.635cm (1/4 

inch) and 0.159cm (1/16 inch) wire mesh. The artifacts were then transported to the 

Mississippi State University (MSU) campus for analysis. 



 

34 

 

Figure 2.3 22YZ513 excavation unit 

Left: 1 x 1 m excavation unit from Rugby Farm (22YZ513). White material visible is 
freshwater mussel shell. Photograph shows the west wall profile. Trowel indicates both 
scale and direction of north. Right: stratigraphic illustration showing depth and soil 
descriptions of west wall profile 

 

Figure 2.4 22YZ605 excavation unit 

Left: 1 x 1 m excavation unit from Light Capp (22YZ605). White material visible is 
freshwater mussel shell. Picture is of the east wall profile. Trowel indicates both scale 
and direction of north. Right: stratigraphic illustration showing depth and soil 
descriptions of east wall profile 

Archaeological specimens were chosen based on several criteria. First, only 

valves of Amblema plicata (Say, 1817) and Fusconaia flava (Rafinesque, 1820) were 

included in the study (see Figure 2.5). Reasoning for this was threefold: 1) these species 
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are well represented within the shell assemblages at each site; 2) both have fairly dense 

and robust shells, which generally contain thicker growth bands clearly visible when 

sectioned and polished; and 3) these species are being used as part of an ongoing stable 

isotope and seasonality study. Only complete, un-fragmented, valves were used. This was 

done with specific attention placed on the presence of intact umbos (i.e., the beak portion 

of the shell) showing full growth out to the shell’s edge (i.e., the ventral margin, or the 

last part of shell the organism grew). Lastly, to ensure that each organism is represented 

once, only left valves were used.   

 

Figure 2.5 Selected mussel species 

Example modern (top) and archaeological (bottom) specimens of F. flava (left) and A. 
plicata (right). All are left valves. Modern specimens provided by the Mississippi 
Museum of Natural Science 

Petrographic Thin-sections and Scanning Electron Microscopy (SEM) 

When making the thin-sections, each archaeological mussel valve was cut from 

the umbo to the ventral margin with a diamond wafer saw, showing a full cross-section of 

the organism’s lifetime of growth. Each specimen was then levelled on a Buehler lapping 
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bench, and hand polished using carbide paper, starting at 600 grit, and finishing at 1200 

grit. Shell sections were then mounted onto pre-frosted glass slides (46 x 27 mm), 

polished-side down, and encased in blue epoxy resin. Once the epoxy was hardened, 

samples were cut and polished down to ca. 30 microns, following the same polishing 

procedure as before, but finishing at 1500 grit, rather than 1200. Thin-sections were also 

made from modern mussels (see Figure 2.6) using the same method, and served as a 

visual standard for comparison with the archaeological specimens. Using a petrographic 

microscope, potential differences in crystalline structure and pristineness between the 

modern and archaeological thin-sections can be assessed, with emphasis on investigating 

the presence of any dissolution and/or precipitation features within the archaeological 

shell. All thin-sections are shown below in plain polarized light (PPL). 

 

Figure 2.6 Modern mussel thin-sections 

Representative thin-sections of modern A. plicata (left) and F. flava (right). Scale bar 
represents 3 mm 

Modern and archaeological shells were visually analyzed on Zeiss EVO 50 and 

JEOL JSM-6500F scanning electron microscopes at the Institute for Imaging & 

Analytical Technologies (I2AT), MSU. Samples were prepared by creating fresh breaks 
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in the shell and mounting those fragments on stainless steel stubs with carbon tape. This 

was done to remove any artifact from the diamond saw cutting or polishing steps, 

essentially presenting a ‘natural’ profile of shell structure, allowing one to view the 

internal crystalline structure from multiple angles. Each fragment was then sputter-coated 

with 30 nm of platinum, using an EMS 150T ES coater. Samples were initially coated 

with only 15 nm, but they showed a considerable amount of electrostatic charge when 

viewed in the scope; therefore, coating was increased to 30. As with the thin-sections, 

SEM images were also taken of modern shells for comparison with the archaeological 

samples (see Figure 2.7). Species identification for each included thin-section and SEM 

image is noted in Table 2.2. 

 

Figure 2.7 Modern SEM images 

SEM images of modern A. plicata (left) and F. flava (right) 
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Table 2.2 Thin-sections and SEM images for 22YZ513 and 22YZ605 

 22YZ513 22YZ605 
 Thin-section SEM Thin-section SEM 

Zone A A. plicata F. flava F. flava F. flava 
Zone B1 F. flava F. flava A. plicata A. plicata 
Zone B2 F. flava A. plicata F. flava A. plicata 
Zone B3 F. flava F. flava A. plicata F. flava 
Zone C1 A. plicata A. plicata F. flava A. plicata 
Zone C2 A. plicata A. plicata  -  - 

Species ID for each zone and level from Rugby Farm (22YZ513) and Light Capp 
(22YZ605) 
 

Results 

All archaeological thin-sections demonstrate typical freshwater mussel 

microstructure. Though no organic periostricum was preserved in any of the samples, the 

outer prismatic layer and nacreous zone are clearly visible (see Figures 2.8 and 2.9). 

When compared to the modern thin-sections, the archaeological specimens show no signs 

of dissolution or recrystallization, and similarly display growth bands of varying color 

and thickness, dependent on species, age of the specimen, or where on the valve the 

image was taken. The only significant physical difference is the presence of stress 

fractures within some of the archaeological shells, likely due to post-depositional 

compaction. Some samples do show epoxy seepage, evident in the blurry areas between 

growth lines, but this should be considered an artifact of the thin-section making process.  
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Figure 2.8 22YZ513 thin-sections 

Representative thin-sections from each zone and level at Rugby Farm (22YZ513). Scale 
bar represents 3 mm 



 

40 

 

Figure 2.9 22YZ605 thin-sections 

Representative thin-sections from each zone and level at Light Capp (22YZ605). Scale 
bar represents 3 mm 

As with the thin-sections, the scanning electron microscopy showed typical 

aragonite microstructure, both in regards to the prismatic layer and nacreous zone. In 

each image, the nacreaous zone exhibits the characteristic brick-like laminae associated 
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with aragonititic crystals, as shown from multiple angles and magnification (see Figures 

2.10 and 2.11). Generally, what is desired are clean surfaces, with sharp edges and 

angles, and with little to no porosity, either within or between individual crystals (excess 

pores are usually indicative of dissolution). 
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Figure 2.10 22YZ513 SEM images 

Representative SEM images from each zone and level at Rugby Farm (22YZ513) 
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Figure 2.11 22YZ605 SEM images 

Representative SEM images of each zone and level at Light Capp (22YZ605) 
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Discussion 

 Evidence of dissolution may be difficult to discern. The images were assessed for 

consistency of crystal shape and consistency of spaces between crystals. Traditionally, 

carbonate petrographers look for evidence of truncated allochems as evidence of 

dissolution.  At this scale we sought evidence of truncated crystals, or disrupted 

microcrostalline structure.  

All archaeological specimens analyzed via thin-section petrography and scanning 

electron microscopy display pristine aragonite crystalline structures, with no evidence of 

fabric dissolution, secondary cementation, or calcite recrystallization. This indicates an 

absence of post-depositional chemical alteration of the aragonite shell sampled from the 

two study sites. The only observable physical difference between the modern and 

archaeological thin-sections is the presence of minor fracture lines within some of the 

archaeological specimens. This was expected, however, as taphonomic effects and 

differential preservation are omnipresent factors in archaeological faunal deposits, being 

especially prominent in mussel middens (e.g., Mitchell et al. 2016; Peacock 2000; 

Wolverton et al. 2010). In spite of this, the lack of alteration within and surrounding those 

areas of fracture further demonstrates the quality of the archaeological shell sampled 

here.        

The SEM images show pristine microcrystalline structure in the archaeological 

shell, closely resembling the state of preservation present within the modern specimens, 

despite the difference in age and depositional environment. The nacreous zones of each 

specimen also retain their brick-like crystals, with no signs of laminae fusion, dissolution 

or formation of calcite crystals. This is significant, as Webb et al. (2007) has previously 
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noted, via SEM micrographs of Pleistocene aragonite shell, that when the organic 

material between aragonite crystals dissolves or becomes degraded, calcite cements will 

often fill in those areas, causing nacreous layers to fuse together. Such cements may have 

drastically different geochemistry compared to the surrounding aragonite (Muller et al. 

2001), and would likely hinder any chemical interpretations (Allison et al. 2007). The 

samples analyzed in this study show no signs of fused nacreous crystals or equant calcite 

cement, indicating that calcite precipitation has not occurred.   

The archaeological and modern specimens were also viewed in a CL-4 Cold-

cathode Luminoscope (see Collins 2012:3698 for instrument parameters). With 

cathodoluminescence, some aspects of geochemistry, particularly mineral content, can be 

determined on the basis of emitted luminescence color (Long and Agrell 1965; Mariano 

1976; Mariano and Ring 1975). For carbonates, the colors of calcite are generally viewed 

as orange or red (Klopp 1981; Marshall 1988; Habermann et al. 2000), while aragonite 

emits a green (Mazzoleni et al. 1995; Richter et al. 2003), or sometimes blue (Collins 

2012:Fig.12), luminescence. When viewed in the CL, both our modern and 

archaeological specimens emitted a bright green luminescence (see Figure 2.12), 

suggesting an aragonitic composition free of calcite. Though cathodoluminescence has 

been noted as a potential tool for assessing shellfish sourcing and seasonality (see Collins 

2012 for discussion), it is not essential for this study, and is generally applied to 

carbonates of much older geological age (e.g., Angiolini et al. 2008, 2012; Stephenson et 

al. 2012) when identifying diagenesis. It does, however, provide a basic assessment of 

mineralogy via observed emitted luminescence, and can be applied to archaeological 

samples in conjuncture with the methods discussed here. 
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Figure 2.12 Cathodoluminescence images 

Example cathodeluminescence images of modern (left) and archaeological (right) 
freshwater mussel shells. Green luminescence indicates aragonite composition. Scale is 
2mm 

Ultimately, shell recovered from the Rugby Farm and Light Capp sites can be 

considered pristine, free of significant diagenesis, and, by choosing the most structurally 

simple, fully intact sites for drilling/sampling, suitable for use in geochemical analysis. 

The environmental conditions present at our study areas would seem conducive for shell 

preservation. However, it is difficult to know if similar conditions exist at other shell-

bearing sites, even ones nearby, without further testing. For future inquires, soil studies at 

our two sites, along with comparisons with shell from other associated locations, could 

provide valuable information on the environmental parameters needed for favorable shell 

preservation. Shell, like bone, preserves best under alkaline conditions (Evans 1972). 

Acidic soils and/or mechanical reworking of deposits, the latter being very common at 

shell-rings located on agricultural property, may consequently result in a higher 

likelihood of not only external wear and fracturing, but chemical alteration (Tuthill 

1963). Referencing previous studies of soil chemistry is obviously beneficial (e.g., Arya 
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and Paris 1981; Hall et al. 1975; Rawl et al. 1982; Saxton et al. 1986), but additional 

inquiries into the relationship between shell middens and their depositional environment 

also would have value.  

As previously noted, the shell midden itself can be an important factor influencing 

chemical and physical diagenesis. The volume of shells combined with the structure of a 

shell midden can create a localized environment where all fluids are saturated with 

respect to aragonite. In that sense, the midden environment can act as an agent of shell 

preservation. Because meteoric water can enter a midden both from rainfall and as 

flowing ground water, shells near the top and near the edges of the midden would be 

most likely specimens to have undergone some dissolution or alteration. If dissolution 

occurs in the upper zones or margins, the saturation state of the water with respect to 

aragonite would increase. Shells recovered from the interior portions of dense deposits, as 

shown here, could be shielded against chemical diagenesis, by that increased saturation 

state of the associated fluids. Though some of our specimens do show evidence of 

interior fracturing and compaction, the created pore-spaces do not seem to have promoted 

any dissolution. In general, extensive physical erosion of shell is focused at or near the 

surface of a site (i.e., the plow-zone), with exposure to wear typically decreasing with 

depth (Andrus 2011; Peacock 2000; Peacock and Chapman 2001). Despite the potential 

impacts on plow-zone shells, both chemically and physically, thin-sections and SEM 

images from Zone A at both the Rugby Farm and Light Capp sites exhibited the same 

degree of preservation as ones recovered from deeper strata. 
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Conclusions 

This study demonstrates that the use of thin-section petrography and scanning 

electron microscopy provide a simple, yet unambiguous, approach for examining 

chemical diagenesis in freshwater mussel remains. Visual analysis verified that aragonitic 

freshwater shell from the Light Capp and Ruby Farm sites has undergone no significant 

chemical alteration and retains its original microstructure, making it suitable for 

geochemical analysis. Though few archaeological freshwater mussel studies have been 

carried out in this capacity, the results shown here are certainly promising, as our study 

areas show an extraordinary level of preservation, even within the plow-zone deposits. 

Future studies should continue to provide information on depositional environment, 

midden porosity, and shell preservation at freshwater sites. As emphasized throughout 

this study, the degree of diagenetic alteration present within archaeological shell must be 

established prior to any chemical analysis. Though additional methods are indeed 

available to researchers (such as x-ray diffraction [XRD], and Raman spectroscopy), the 

two demonstrated here successfully accomplished the goals of our study, and we argue 

for their inclusion as a baseline step in any future freshwater mussel diagenesis 

investigation.      
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Abstract 

Seasonality estimates based on archaeological shellfish remains have been an 

important component of settlement pattern reconstruction. Investigations of this nature 

allow researchers to place prehistoric people on the landscape at points in space at 

different times of the year. Many of the previous seasonality studies, however, have 

focused on marine species from coastal sites, with little attention given to freshwater 

locales, especially ones in the Mississippi Delta. To address that disparity, this study 

examines freshwater mussel “season of capture” via analysis of stable oxygen isotope 

ratios in specimens recovered from two Late Woodland sites located along the Yazoo 

River, Mississippi. Isotope profiles from 22 shell specimens indicate mussels were being 

collected throughout the year. These data support the view that at least some portion of 

the human population at both sites engaged in shellfishing activities in all four seasons, 
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indicating a sedentary occupation at each locale, despite lacking the perceived 

requirement of agricultural subsistence.  

Introduction 

Archaeological faunal deposits are valuable sources of paleoenvironmental proxy 

data (Quitmeyer and Jones 1997; Reitz et al. 1996 2008; Rick and Erlandson 2008). Shell 

middens are particularly useful in this regard (Waselkov 1987; Deith and Shackleton 

1988; Stein 1992; Reitz and Wing 1999; Álvarez et al. 2010; Thompson and Worth 

2011), and have been noted in nearly every region with a long established history of 

human occupation (Erlandson 2001; Shone and Surge 2012). As such, they serve as 

valuable sources for a variety of artifacts (both faunal and non-faunal) that span in age 

from the late Pleistocene through the Holocene in much of the world (Andrus 2011). 

Because the dominant matrix constituents composing shell middens are bivalve mollusk 

remains, which in most cases have been confirmed as representing locally gathered 

organisms (Claassen 1998; Peacock 2002; Russo 2004), the shells themselves can 

provide regional- and site-specific data applicable to a number of interdisciplinary 

inquiries. Humans have been exploiting shellfish for millennia, with archaeological 

mollusk deposits found throughout the world dating back in some cases over 130,000 

years (Bailey 1975; Binford 1984; Claassen 1998; Erlandson 2001; Jerardino and Marean 

2010; Meehan 1982; Stein 1992; Waselkov 1987). These sites represent a substantial 

portion of the archaeological record and, in Southeastern North America, some shell 

middens are considered among the earliest large-scale artificial constructions.  

Because of how aquatic mollusks form their shells, they are valuable as seasonal 

and environmental indicators (Davenport 1938; Hippler et al. 2009; Immenhauser et al. 
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2005; Jones 1993; Lee and Wilson 1969; Vander Putten et al. 2000; Wefer and Berger 

1991; Witbaard et al. 1994). Throughout a mollusk’s lifetime, isotopes and trace elements 

are incorporated from the surrounding water source and absorbed into its shell’s 

crystalline structure as the mantle bio-mineralizes the shell (Tucker and Wright 1990). 

Ultimately, a mollusk shell will reflect environmental conditions via a characteristic 

chemical signature. These signatures are bound within the shell during growth and can 

provide definitive information about the water source in which the animals lived 

(Bruchardt and Fritz 1978; Claassen 1998; Deith 1986; Faure and Mensing 2005; Faure 

et al. 1967; Jones 1980; Jones et al. 1990; Odum 1951; Quitmyer et al. 1997; Rhoads and 

Lutz 1980; Wefer and Berger 1991). Because of this, mollusk remains can be used in a 

number of geochemical and archaeological applications, including elemental sourcing 

studies (Claassen 1998; Peacock 2009), establishing prehistoric waterway temperature 

ranges (Glassow et al. 1994; Jones and Kennett 1999; Kennett 2005), and, of most 

importance to this study, occupation seasonality (Andrus 2011; Andrus and Crowe 2008; 

Quitmyer et al. 1997). 

Determination of site seasonality is a valuable tool for understanding prehistoric 

human mobility (Monks 1981; Rocek and Bar-Yosef 1998). Such inquires, however, 

require the analysis of season-specific data. For decades, visual and geochemical analysis 

of shell growth patterns (i.e., sclerochronology) have been popular techniques (Jones et 

al. 2007) for assessing monumentality, feasting, and mobility at archaeological sites 

around the globe (e.g., Jew et al. 2013; Jones 1983; Koike 1980; Lightfoot and Cerrato 

1989; Milner 2001; Monks 1981; Quitmyer et al. 1985, 1997; Reitz et al. 2012; Russo 

1998; Schone et al. 2002). Because a mussel stops growing its shell when it dies, a 
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seasonal estimate at the point when it was harvested (i.e., “season of capture”) can be 

attained, which, in turn, is used to extrapolate the time and duration a particular site was 

occupied (i.e., whether a site was inhabited year-round, or intermittently) (Harding et al. 

2010). This is accomplished by taking powdered samples beginning from a shell’s 

terminal growth band (i.e., the last part of shell grown before death), and assessing the 

stable oxygen isotope signature (expressed as ẟ18O) over time. ẟ18O values are then 

interpreted as a profile of growth experienced during a mussel’s lifetime (see Andrus and 

Crowe 2008; Thompson and Andrus 2011). As mussels growth their shell on a seasonal 

basis, and as ẟ18O is primarily controlled by temperature, this relationship ultimately 

provides the rationale behind this kind of “season of capture” analysis.     

Though much study has been directed to archaeological coastal clam and oyster 

middens in the Southeast (e.g., Andrus and Thompson 2012; Claassen 1986; Bruseth 

1980, 1991; Marquardt 2010; Russo 2006; Thompson and Andrus 2011), as well as to 

similar sites on the West and East Coasts (e.g., Culleton et al. 2009; Eerkens et al. 2013; 

Jones et al. 2008; Tellez-Duarte et al. 2008), little attention has been given to sites at 

freshwater locales, especially ones in the Lower Mississippi Alluvial Valley. Here we 

focus on freshwater mussel shells recovered from two archaeological sites in Yazoo 

County, Mississippi, and present data on ẟ18O values attained from sequentially sampled 

growth lines within each specimen. 

ẟ18O Isotope Geochemistry 

Isotopic signatures within skeletal carbonate have long been an important source 

of information for a number of fields. Previous studies have employed such analyses to 

assess paleoclimate trends via ocean sea surface temperature (SST) (e.g., Emiliani et al. 
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1964; Jones and Kennett 1999; Jones et al. 2005; Walker and Surge 2006), precipitation 

patterns (e.g., Gajurel et al. 2006; Harding et al. 2010; Kennett and Voorhies 1995), river 

discharge (e.g, Kaandorp et al. 2005; Ricken et al. 2003), and seasonality of prehistoric 

shellfish harvesting (e.g., Bailey et al. 1983; Carré et al. 2009; Claassen 1983; Coutts 

1970; Colonese et al. 2009; Keene 2004; Jones et al. 2008; Kennett and Voorhies 1996; 

Mannino et al. 2003; Milner 2001; Quitmyer et al. 2005; Shackleton 1969, 1973; 

Thompson and Andrus 2011).  

As a temperature/seasonal proxy, the applied basis for 18O research is that of a 

“paleo-thermometer”, which was first discussed by Urey (1947), and later extended to 

include both inorganic and biologic carbonates (Epstein et al. 1953; McCrea 1950; 

Shanahan et al. 2005).  Investigating isotopic variation for seasonal reconstruction is 

contingent on first understanding the relationship between temperature, the 18O of the 

surrounding water (18Owater), and the 18O of the shell (18Oshell) (Dettmann et al. 

1999:1049; Shanahan et al. 2005:3950). The amount of carbonate material added to a 

shell, as well as its chemical make-up, are influenced by many factors, including the 

organism’s age, reproductive cycle, available nutrients, and water temperature (Goodwin 

et al. 2003). Studies have shown that 18O fractionation coincides with the conditions of 

the surrounding water (Epstein et al. 1953; Grossman and Ku 1986; Wefer and Berger 

1991), with shell growth being more pronounced during warmer months and less in 

colder months, ultimately representing an observable seasonal cycle (Dettmann et al. 

1999; Dettmann and Lohmann 2000; Schone 2003). This cycle is a function of how 18O 

is represented in the surrounding water, essentially gauged by the ratio of the two main 

oxygen isotopes, 18O and 16O. At higher temperatures, water that is isotopically “light” 
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(i.e., molecules with 16O) is evaporated preferentially, enriching the residual water with 

the “heavier” isotope (i.e., 18O) (Tallez-Duarte et al. 2008:50). Given this, numerous 

studies have concluded the carbonate/18O relationship reflects an interaction with water 

temperature and isotopic content, more so than any other factor, making it the ideal proxy 

for paleo-temperature and seasonal studies (e.g., Brey and Mackensen 1997; Dunca and 

Mutvei 2001; Dunca et al. 2005; Goodwin et al. 2003; Jones et al. 1978, 1989; Kennish 

and Olsson 1975; Pannella and MacClintock 1969; Versteegh et al. 2010b; Urey 1947).  

Materials and Methods 

Specimens used in this study are from two primarily Late Woodland 

(Deasonville) period (AD 300 – 600) sites in Yazoo County, Mississippi. The Rugby 

Farm (22YZ513) and Light Capp (22YZ605) sites are located on the Yazoo River in rural 

farmland southwest of Yazoo City, Mississippi (see Figure 3.1). These sites are from a 

group of over 50 “shell-ring” sites associated with the ecoregion of the Northern 

Holocene Meander Belts (Peacock et al. 2011: Fig. 4). The area is situated in the Lower 

Mississippi Alluvial Valley, specifically within the Yazoo River Basin (an area 

colloquially known as the “Mississippi Delta”). Both sites contain a circular shell-ring 

and deposit of deep midden.    
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Figure 3.1 22YZ513 and 22YZ605 

Map showing location of Rugby Farm (22YZ513) and Light Capp (22YZ605) sites in 
Yazoo County, Mississippi 

Laboratory methods follow procedures demonstrated to be effective in previous 

shell isotope studies (e.g., Andrus and Crowe 2000; Thompson and Andrus 2011; 

Thompson et al. 2015). Excavated mussel shells were selected based on several criteria. 

First, only valves of Amblema plicata (Three Ridge) and Fusconaia flava (Wabash 

Pigtoe) were included in the study (see Figure 3.2), as they are well represented within 

the shell assemblages at each site and both have fairly dense/robust shells, which 
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generally contain thicker growth bands clearly visible when sectioned and polished. Only 

complete, un-fragmented, valves were used, with specific attention placed on the 

presence of intact umbos (i.e., the beak portion of the shell) showing full growth out to 

the shell’s edge (i.e., the ventral margin, or the last part of shell the organism grew). 

Lastly, to ensure that each organism is represented once, only left valves were used. 

Young specimens were preferred, as they were likely growing more rapidly before 

capture and thus may be sampled at higher temporal resolution. Specimens were bisected, 

encased and mounted on petrographic slides with epoxy, then thick-sectioned (to ca. 5 

mm) using a diamond wafer saw. 

 

Figure 3.2 Selected mussel specimens 

Representative specimens of F. flava (left) and A. plicata (right). Both are left valves. 
Lines represent bisecting transects 

Each shell was then sampled using the New Wave Research Micromill housed at 

the Department of Geosciences, Mississippi State University. Milling and collection 

techniques generally follow those employed in previous studies involving carbonates 

specimens (e.g., Charlier et al. 2006; Dettmann et al. 1999; Hoffmann et al. 2009; Spotl 
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and Mattey 2006). Micro-mill techniques have been in use in sedimentology and rock 

petrology for over 25 years (Dettman and Lohmann 1995; Fouke and Rakovan 2001; 

Prezbindowski 1980; Verschure 1978), and are currently the most commonly used tools 

for high resolution sampling of accretionary carbonates (Patterson et al. 1993; Wurster et 

al. 1999). Incremental carbonate samples were taken from each valve following the 

organism’s ontogeny (parallel to growth), starting at the edge of the shell, and milling 

towards earlier growth. Generally between 16 to 20 samples were taken from each 

specimen. An attempt was made to collect a minimum of 40 micrograms per sample, with 

a maximum of 110 micrograms.     

The resultant powdered carbonate samples were weighed, loaded into 4.5 ml 

borosilicate vials, and analyzed via standard practice at the University of Alabama Stable 

Isotope Laboratory, Department of Geological Sciences. All samples were analyzed for 

δ13C (though not included here) and δ18O using a Thermo Gas Bench II coupled to either 

a Thermo Delta V or Thermo Delta Plus isotope ratio mass spectrometer in continuous 

flow mode. After flushing with ultra-pure He prior to extraction, the carbonate samples 

were reacted with orthophosphoric acid in the sealed vials at 25 °C. Values are reported 

in parts per mil (‰) relative to the Vienna Pee Dee belemnite (VPDB) standard by 

correcting to multiple NBS-19 analyses (typically 10 per run). NBS-19 was also used to 

assess and correct for drift and sample size linearity if needed. The range in standard 

deviation (1σ) of the NBS-19 standards for each run was .06 ‰ to .12 ‰ for ẟ18O, with 

an average precision of .09 ‰. All ẟ18O values are shown in Table 3.2 and 3.3. 
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Results 

Tables 3.2 and 3.3 contain ẟ18O values measured in shells recovered from Rugby 

Farm and Light Capp. Most shells showed at least a partial sinusoidal ẟ18O profile (i.e., a 

negative or positive trend), but five (highlighted) demonstrated no apparent regular 

pattern of oscillation (i.e., being more or less flat lines). The ẟ18O ranges from each shell 

(min, median, max) from Rugby Farm and Light Capp are plotted in Figure 3.3. Overall, 

ẟ18O ranges within individual shells from -4.86‰ to -8.29‰. Samples that are recorded 

as “error” either did not have enough carbonate powder to attain an accurate value, or had 

too much, causing the mass spectrometer reading to spike. Some data are also missing. 

For Rugby Farm, values from 9 specimens (Zn a and b; Zn B Lv 2 c; Zn B Lv 3 b and d; 

and Zn C Lv 2 a, b, c, and d) have not yet been received, while Light Capp is missing 

data from 8 shells (Zn B Lv 2 a, b, c, and d; Zn C Lv 1 a, b, c, d). 
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Figure 3.3 ẟ18O medians and ranges 

Median ẟ18O values (black diamonds) and ranges (vertical bars) for all analyzed shells 
from Rugby Farm (left) and Light Capp (right). X-axis are sample valves plotted from 
most negative to most positive. Y-axis is ẟ18O in parts per mil (‰) expressed relative to 
VPDB 

Discussion 

Season of Capture 

All archaeological specimens were subjected to high spatial resolution oxygen 

isotope analysis in order to determine their season of capture, and thus the season(s) of 

site occupation (Andrus and Crowe 2008). Although no absolute temperature values are 

provided here, as that would require both the temperature and isotopic signature of the 

water (i.e., ẟ18Owater) at the time the shells were collected (not obtainable from 

archaeological specimens), seasonality can still be assessed on a qualitative basis by 

analyzing the amplitudes and relative shapes in the ẟ18O profiles for each specimen. Of 

the 27 mussels sampled (15 from Rugby Farm, 12 from Light Capp), 22 produced 

observable profiles to determine season of capture. The five shells that did not display an 

oscillating ẟ18O profile, or a recognizable portion of one, were designated as 

“uninterpretable”.  
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Sequential sampling across the lines of growth in a mussel shell can reveal a 

pattern of δ18O oscillation, and thus season of capture. Wave peaks will correspond to 

thermal minima, while troughs correspond to thermal maxima (Krantz et al. 1984; Wefer 

and Berger 1991; Dettman and Lohmann 1993). To assess this, ẟ18O values for the 22 

shells containing oscillating profiles were organized into X:Y charts, as done in previous 

studies (e.g., Andrus and Crowe 2008; Thompson and Andrus 2011; Thompson et al. 

20015). Each profile is then divided into three equal sections (see Figure 3.4a-v), done 

relative to each shell’s ẟ18O range. This is done because each organism can have a 

distinct physiological response in shell growth to seasonal temperature change, as 

evidenced by individual differences in minimum and maximum ẟ18O amplitude (Andrus 

2011). For seasonal interpretation, particular importance is placed on the last ẟ18O value 

in a shell’s profile, which is taken to represent the isotopic signature at the time of the 

organism’s death (i.e., when it was collected). However, for context, it is necessary to 

show ẟ18O values over a particular span in a shell’s growth (representing “time”), as an 

isolated value would not permit a seasonal assignment (Andrus and Crowe 2008). A 

“winter” season was assigned to shells in which the last δ18O value was in the upper third 

of the profile. “Summer” was assigned to shells whose last δ18O value was in the lower 

third. A spring or fall season was assigned to values falling in the middle (transitional) 

section, depending on the ẟ18O trend direction (i.e., positive trends indicate fall, and 

negative trends indicate spring). 
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Figure 3.4 ẟ18O oscillation profiles for 22YZ513 and 22YZ605 
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Figure 3.4 (Continued) 
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Figure 3.4 (Continued) 

Shell ẟ18O oscillation profiles from Rugby Farm (22YZ513) and Light Capp (22YZ605). 
Seasonal assignment noted in top right corner of each chart. ẟ18O in parts per mil (‰) 
expressed relative to VPDB 

In total, all 4 seasons are represented in the 22 profiled shell specimens (see 

Figure 3.5). Winter and summer account for the majority of the seasonal assignments 

(with 7 and 10, respectively). Though both spring and fall seasons were assigned, they 

cannot in themselves be considered definitive, as the middle third portion of the ẟ18O 
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range is essentially a transition period between colder and warmer temperatures, 

ultimately representing a gross estimate within the minimum and maximum range of 

values. The more meaningful results shown here are there are at a minimum 3 seasons 

(i.e., cooler periods, which transition to warmer periods, and vice-versa) represented at 

both study areas.  This demonstrates a high likelihood that shellfish were being exploited 

at these sites on a year-round basis, thus indicating a sedentary population. 

 

Figure 3.5 Seasonality histogram 

Histogram depicting seasonal assignments among combined samples from Rugby Farm 
(22YZ513) and Light Capp (22YZ605) 

Potential Issues with ẟ18O Interpretations  

There are numerous factors that can negatively affect a season of capture 

determination. For example, diagenetic alteration within selected mussel samples would 

undoubtedly impact isotopic analysis, potentially distorting interpretations of ẟ18O 

magnitude and range (Ahr 2008; Moore 2001; Sayani et al. 2011; Tucker and Wright 

1990). Ultimately, any chemical alteration within a shell sample should be assessed prior 
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to all ensuing chemical analyses (Claassen 1998; Collins 2012; Mitchell et al. under 

review). All of the shells used in this study were critically evaluated for evidence of 

diagenesis, particularly aragonite to calcite transformation (see Moore 1989; Morse and 

Mackenzie 1990; Webb et al. 2007). Via analysis of petrographic thin sections and 

scanning electron microscopy, our specimens were found free of any significant chemical 

alteration (see discussion in Mitchell et al. under review), and deemed suitable for 

isotopic analysis.     

Another concern for season of capture studies involves how sequential sampling 

across shell growth lines accounts for time-averaging and spatial resolution (Richardson 

2001), as different approaches (e.g., how many samples are taken, and how far apart they 

are in succession) can yield vastly different results. Ultimately, how growth and time are 

averaged within a shell can be observed. Here, since growth line width varied amongst 

samples, we attempted to “fit” as many sampling transects into as small a growth section 

as possible, hoping to attain at worst a monthly ẟ18O profile. This was done by keeping 

the distance between sequential samples fairly consistent for all shells sampled. As 

shown in Figure 3.6, though milling transects are fairly similar in width, one can attain 

both a yearly and monthly picture of ẟ18O oscillation. For example, judging from the 

oscillation profile, specimen “Zone B Level 2 (d)” depicts ẟ18O values spanning nearly 

two years of growth (i.e., fall-winter-spring-summer-fall-winter-spring). Conversely, 

specimen “Zone A (a)” contains growth bands that are markedly wider, which when 

sampled, yielded an ẟ18O oscillation that captures only a few months of growth (i.e., 

winter-spring-summer). Though profiles similar in scope to “Zone B Level 2 (d)” are 

generally preferred in season of capture studies, a narrower seasonal depiction can expose 
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change in more detail season-to-season (Goodwin et al. 2003). We feel the results shown 

here depict a good mix of both profile types. 

 

Figure 3.6 Representative ẟ18O profiles and correlating shells 

Top: 22YZ513 Zone B (d) with associated specimen. Bottom: 22YZ605 Zone A (a) with 
associated specimen. White brackets indicate sampling tracks, from the edge of the shell 
(sample 1), towards earlier growth periods (final sample).  Scale bars represent 4 mm 

Perhaps the most notable factor affecting season of capture assessments are how 

different species, and even individual mussels, can undergo a variety of physiological 

responses to environmental changes and/or disturbances (Andrus 2011; Schöne 2008). 

For bivalves, it has been well noted that a significant temperature-dependent isotope 

fractionation exists between the organism and its surrounding water (e.g., Chauvaud et al. 



 

83 

2005; Elliot et al. 2003; Epstein et al. 1953; Dettman et al. 1999; Goewert et al. 2007; 

Grossman and Ku 1986; Surge et al. 2001; Versteegh et al. 2009, 2010a). Some species, 

however, display an offset in metabolic processes (Fenger et al. 2007; Wefer and Berger 

1991), often in the form of growth cessations or diminishment generally experienced 

during seasonal extremes (i.e., maximum and minimum temperatures) (Andrus 2010; 

Andrus and Thompson 2012; Carroll et al. 2006; Dettman et al. 1999; Jones and 

Quitmeyer 1996; Thomas and Andrus 2011; Veinott and Cornett 1996). Growth 

cessations are also characteristic of ontogenetically older individuals, as growth bands 

will generally decrease in both abundance and width as the organism ages (Goodwin et 

al. 2003), which is why it is best to avoid older specimens (as done here).    

To account for these physiological issues, researchers generally have used mark-

recapture methods on living mussels to understand the relationship between their shell 

growth and ambient environmental conditions (e.g., Carroll et al. 2006; Dettman et al. 

1999; Haag and Commens-Carson 2008; Howard and Cuffey 2006; Neves and Moyer 

1988). This method involves marking shells, returning them to their habitat, then 

retrieving them at a later date to examine the growth characteristics which have occurred 

since the initial marking. Shells are then compared with the temperature and dissolved 

oxygen data from the organism’s water source, which are taken systematically during the 

experiment. Unfortunately, this method, though effective, is very time consuming (taking 

at least a year), and often suffers from a low return of marked specimens, especially in 

dynamic stream habitats. Also problematic is that over-handling of live specimens can 

cause the organism to develop “disturbance rings”, which can appear similar to normal 
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growth rings, leading to potential interpretational errors (Rypel et al. 2008; Haag and 

Commens-Carson 2008). 

For researchers investigating ancient and archaeological shell for 

paleotemperature purposes, these modern analogues have generally been utilized for two 

reasons: 1) to confirm that the particular mollusk species being studied grows its shell 

seasonally; and 2) to provide an expected and predicted range of both water temperature 

and ẟ18Owater for their particular study area. These studies have mostly been applied to 

marine species and saltwater/brackish environments. For the purposes of this study, 

however, modern data are not necessary. The goal here was not to define an absolute 

temperature range for the study area, but to test whether these sites were occupied by 

people exploiting shellfish across multiple seasons. The basis for such a distinction relies 

on the fact that the freshwater mussels sampled did indeed grow their shells on a seasonal 

basis. Though very few archaeological reports have confronted this topic (e.g., Quitmeyer 

et al. 1997), there have been numerous studies confirming that growth rings in freshwater 

mussels are precipitated seasonally (e.g., Fritz and Poplawski 1974; Rypel et al. 2008; 

Stuiver 1970; Veinott and Cornett 2011). One study, in particular, has significant value 

for this discussion. A recent report by Haag and Commens-Carson (2008) validated the 

seasonal growth of 17 freshwater mussel species collected from the Little Tallahatchie 

River (Panola County, Mississippi), including specimens of A. plicata and F. flava. This 

is notable for two reasons: 1) this study confirms the suitability of A. plicata and F. flava 

as seasonal indicators; and 2) the Little Tallahatchie River is also located in the 

Mississippi Delta, so growth rates observed in the modern specimens by Haag and 
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Commen-Carsons (2008) would likely be very comparable to faunas living in the Yazoo 

River. 

Conclusions 

Although there are sometimes concerns with the accuracy and precision of 

geochemical analyses, it is important to consider evidence in its totality, rather than any 

single sample or value when assessing a site’s overall seasonality (Blitz et al. 2014; 

Thompson et al. 2015). There is always the chance a season of capture assignment could 

be incorrect, hence the need for an adequate and representative sample size; a single shell 

should not be interpreted as an infallible indicator of seasonality. We feel the sampling 

strategy employed here provides sufficient evidence for a season of capture assignment, 

as multiple specimens were taken in each zone and level from excavation units dug at 

Rugby Farm and Light Capp, ultimately providing a multi-context and multi-specimen 

dataset.   

This study confirms that season of capture can be determined through analysis of 

patterns of ẟ18O incremental values in freshwater mussel remains. Evidence for 

shellfishing, and thus occupation, is present for all four seasons at Rugby Farm, and all 

but spring at Light Capp. It should be noted, however, that ‘season of capture’ and 

‘season of collection’ do not always correlate (Andrus 2011), and it is possible that sites 

were occupied longer than the season of capture data may indicate (e.g., in the case of 

sites only showing a partial year of occupation). Hence, the season of capture findings 

should be considered a “minimal” assessment of occupation, which for both sites, points 

to at least a portion of the population being present year-round. This is the first such 

study from the Mississippi Delta, and the findings discussed here contradict the previous 
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archaeological notions of what is ‘required’ for sedentary living. As non-agricultural 

occupations (Raymond 2014), these two sites could sustain year-round populations, with 

shellfishing apparently being a major component of the population’s subsistence. Similar 

findings have previously been established for coastal Archaic-period shell rings, so that 

Late Woodland sites in the Mississippi Delta exhibit a similar dynamic is noteworthy, 

and challenges the overall normative thinking of many archaeologists’ conceptualization 

of mobility and subsistence. 
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Abstract 

Archaeological faunal assemblages can provide data valuable to modern 

conservation ecology. For example, while freshwater mussels (Bivalvia: Unionidae, 

Margaritiferidae) are common constituents in the archaeological record of North 

America, today they are one of the world’s most imperiled faunal groups. Efforts to aid 

habitat restoration, population growth, and species reintroduction can be informed by 

studies of prehistoric mussel assemblages. These data can provide a historical 

perspective, cataloging communities as they existed prior to extensive modern impacts, 

thus representing an ecological baseline to be compared with modern populations. This 

study focuses on two late prehistoric (ca. 300 – 600 A.D.) sites on the Yazoo River, 

where nearly 24,000 freshwater mussel valves were recovered. Though modern data are 

extremely limited for the river, analysis revealed it once supported a diverse mussel 

community containing numerous species currently considered rare, endangered, or 

extinct in Mississippi. In total, the combined shell assemblages yielded 24 new river 
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records for the Yazoo River. One species in particular, Quadrula fragosa, represents the 

second such occurrence in Mississippi, and bolsters its candidate status as a new state 

record, as argued in a recent report from a neighboring river in the Yazoo Basin. 

Introduction 

Archaeological faunal remains have become a valuable resource for studying 

ecological and environmental change through time (Frazier 2010; Lauwerier and Plug 

2004; Lyman 1996, 2006; Lyman and Cannon, 2004; Peacock et al. 2011, 2012, 2014; 

Wolverton and Lyman, 2012). For conservation efforts, the utility of archaeological 

deposits has been recognized (e.g., Anderson et al. 2010; Bailey et al. 2000; Crumley 

1994; Frazier 2007; Lyman 1996, 2006) and demonstrated in a growing number of 

reports (e.g., Haag 2009; Lyman and Cannon 2004; Wolverton and Lyman 2012). 

Understanding the history of a species now regarded as threatened or imperiled, such as 

its original geographic range, is an important aspect of conservation ecology. The 

perspective provided by zooarchaeology in this regard is significant, as it permits the 

characterization of faunal communities as they existed prior to extensive modern impacts 

(Cvancara 2000; Haag 2009; McGregor and Dumas 2010; Mitchell and Peacock 2014; 

Peacock 2012). Ultimately, establishing a true ecological ‘baseline’ for comparison with 

modern communities is a feasible goal, but requires reference to the abundant prehistoric 

and historic record (e.g., Pauly 1995).   

Freshwater mussel (Bivalvia: Unionidae, Margaritiferidae) remains are commonly 

found at archaeological sites in North America, and elsewhere (Brown et al. 1994; 

Peacock and Jenkins 2010; Peacock et al. 2011). Beyond purely archaeological inquiries, 

freshwater mussel remains have been a central topic in a growing body of 
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interdisciplinary literature. Studies from Mississippi (e.g., Bogan 1987; Hartfield 1993; 

Mitchell 2012; Mitchell and Peacock 2014; Peacock and James 2002; Peacock and 

Mistak 2008; Peacock and Mitchell 2015; Peacock et al. 2011), and other states (e.g., 

Barber 1982; Gordon 1983; Peacock et al. 2013; Randklev and Lundeen 2012; Randklev 

et al. 2010), have shown that archaeological mussel deposits frequently contain species 

not previously known to have existed in a given water body, or even drainage.  

Archaeological data therefore can be very useful for conservation efforts by providing a 

more complete picture of past mussel community structures. This is especially pertinent 

for areas where modern biological surveys have not been carried out, or where historical 

data are lacking.    

Although freshwater mussels were historically diverse and abundant throughout 

much of North America, many species are now in steep decline and mussels generally are 

considered one of the most imperiled faunal groups globally (Bogan 2008; Haag 2009; 

Grabarkiewicz and Davis 2008; Lydeard et al. 2004; Machtinger 2007; Neves et al. 

1997). It is now believed that nearly 80% of freshwater mussel species are endangered in 

the United States (Mazzacano and Jepsen 2011), while for Mississippi alone, the state 

Department of Wildlife and Fisheries currently recognizes at least 23 species as either 

endangered, threatened, or imperiled, while several others are “presumed extinct” (Jones 

et al. 2005; Mississippi National Heritage Program 2011). Much of this decline has been 

credited to waterway impoundment, pollution, and other types of habitat destruction that 

(Aldridge 2000; Bogan 1993; Haag and Warren 1998; Strayer et al. 2004; Williams et al. 

1993; Williams et al. 2008). Ultimately, data obtained from shell-bearing sites can be 
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used to establish the pre-industrial ranges and expected natural proportions of mussel 

species in aquatic systems now significantly altered.   

Previous analysis of archaeological shell has resulted in many new river records 

for a number of species, and, in some cases, has led to major extensions in known 

geographical ranges (e,g., Mitchell and Peacock 2014; Peacock and Chapman 2001; 

Peacock 2002, 2012; Peacock and James 2002; Peacock et al. 2013; Peacock et al. 2014; 

Randklev and Lundeen 2012). Ideally, archeological shell deposits, especially those 

which are longer-term, can accurately represent what was available in a particular 

prehistoric mussel community (Matteson 1958, 1959; Parmalee and Klippel 1974; 

Parmalee et al. 1972), given repeated sampling over different portions of local mussel 

beds (i.e., space-time-averaging) by prehistoric shellfishers (e.g., Christian and Harris 

2005; Dorsey 2000; Lyman 2003; Milller and Payne 1993; Otaola et al. 2015; Peacock 

2000; Peacock et al. 2013). Adequate sampling will thus produce data representative of 

the archeological deposit, which, unless demonstrated otherwise, may be taken as 

representative of past faunas (Peacock et al. 2012; see Mitchell et al. 2016 for a 

discussion of sampling and preservation and their influence on species 

representativeness).   

Here, data are presented on mussel shell obtained from two prehistoric sites 

located adjacent to the Yazoo River, in Yazoo County, Mississippi, followed by a 

discussion of the differences between those assemblages and modern faunas recorded in 

the waterway. There currently are very limited modern mussel data for the Yazoo River, 

so archaeological shell from the river takes on particular importance for establishing an 
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ecological baseline for future conservation and management purposes (Peacock and 

Mitchell 2015). 

Methods 

Specimens used in this study are from two primarily Late Woodland 

(Deasonville) period (AD 300 – 600) sites in Yazoo County, Mississippi. The Rugby 

Farm (22YZ513) and Light Capp (22YZ605) sites are located on the Yazoo River in rural 

farmland southwest of Yazoo City, Mississippi (see Figure 4.1). These sites are from a 

group of over 50 “shell-ring” sites associated with the ecoregion of the Northern 

Holocene Meander Belts (Peacock et al. 2011: Fig. 4). The area is situated in the Lower 

Mississippi Alluvial Valley (specifically within the Yazoo River Basin), in the area 

colloquially known as the “Mississippi Delta”. Both sites contain a circular shell-ring and 

deposit of deep midden. They are only separated by ca. 4 kilometers, with 22YZ513 

being downstream to the southwest of 22YZ605 along the Yazoo River. 
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Figure 4.1 22YZ513 and 22YZ605 

Map showing location of Rugby Farm (22YZ513) and Light Capp (22YZ605) sites in 
Yazoo County, Mississippi 

Shell specimens were collected in 2013 by Mississippi State University’s 

archaeology field school via a controlled surface collection (CSC) and 7 excavation units, 

3 at 22YZ513 and 4 at 22YZ605.  All units (1 x 1 m in dimension) were excavated until 

sterile subsoil was reached, and both sites produced a number of non-shell artifacts, 

including ceramic pot sherds, lithic flakes, and various bone fragments (Raymond 2014). 

Standard excavation methods were applied: zone levels were dug in 10 cm increments (or 
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smaller, if soil horizons visibly changed), and all material was separated from the dirt via 

water screening with .635 cm (1/4 inch) and .159 cm (1/16 inch) wire mesh.   

Shell was analyzed to the genus and species level using various guides (e.g., 

Burch 1975; Cummings and Mayer 1992; Howells et al. 1996; Parmalee and Bogan 

1998; Williams et al. 2008) and the freshwater mussel comparative collection housed at 

the Cobb Institute of Archaeology, Mississippi State University. Taxonomy was assigned 

using Turgeon et al. (2008) with minor updates. 

Results 

A total of 23,899 valves retaining umbos were recovered from the Rugby Farm 

and Light Capp sites  (surface and excavated contexts combined), from which 37 species 

were identified. These species (left and right valves combined) are listed in descending 

order of abundance in Table 4.2 (left and right values from each provenience are 

available upon request). 

Table 4.2 Archaeological freshwater mussel data from the Rugby Farm (22YZ513) 
and Light Capp (22YZ605) sites, and Mississippi Museum of Natural 
Science records of modern occurrence for the Yazoo River. 

 Archaeological 
Modern 

(MMNS) 
Conservation Status 

 22YZ513 22YZ605 Combined Total 
Species # # # % State National 
Reginaia ebena 2283 3733 6016 37.166%   S4 CS 
Pleurobema rubrum  1097 2151 3248 20.065%   S1 T 
Plectomerus dombeyanus  847 1142 1989 12.288% X S5 CS 
Oboquaria reflexa  315 553 868 5.362% X S5 CS 
Quadrula postulosa         299 508 807 4.985% X S5 CS 
Fusconaia flava  258 407 665 4.108%   S5 CS 
Quadrula quadrula  217 311 528 3.262% X S5 CS 
Amblema plicata               161 251 412 2.545% X S5 CS 
Quadrula nodulata  145 267 412 2.545% X S3 CS 
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Table 4.2 (Continued) 

Obovaria olivaria  85 155 240 1.483%   S2 SC 
Elliptio dilatata  66 146 212 1.310%   S1* CS 
Obovaria subrotunda  41 82 123 0.760%   S2 SC 
Lampsilis teres     47 28 75 0.463% X S3 CS 
Quadrula verrucosa  23 51 74 0.457% X S4 CS 
Cyprogenia aberti     23 46 69 0.426%   S3, S4 CS 
Lampsilis hydiana              29 29 58 0.358%   S2 CS 
Lampsilis siliquoidea  21 29 50 0.309%   SH T 
Ligumia recta            22 22 44 0.272%   S2 SC 
Quadrula apiculata          17 25 42 0.259% X S5 CS 
Truncilla truncata  9 26 35 0.216% X S5 CS 
Villosa lienosa             22 13 35 0.216%   S5 CS 
Quadrula cylindrica          10 22 32 0.198%   S1* T 
Meglonaia nervosa  9 21 30 0.185% X S4, S5 CS 
Quadrula metanevra  6 24 30 0.185%   SH* CS 
Arcidens confragosus      8 14 22 0.136%   S4 CS 
Plethobasus cyphyus  4 10 14 0.086%   S1* T 
Quadrula fragosa     2 10 12 0.074%    - T 
Lampsilis cardium  7 4 11 0.068%   S3, S4 SC 
Ligumia subrostrata        4 3 7 0.043%   S5 CS 
Obovaria unicolor             1 6 7 0.043%   S3 SC 
Potamilus purpuratus  2 4 6 0.037% X S5 CS 
Toxolasma parvum   4 0 4 0.025%   S4 CS 
Ellipsaria lineolata  0 3 3 0.019%   S3 SC 
Strophitus undulatus       2 1 3 0.019%   S1 CS 
Truncilla donaciformis     1 1 2 0.012% X S2 CS 
Lampsilis ornata         1 0 1 0.006%   S3 SC 
Lampsillis radiata  0 1 1 0.006%    -  CS 
Anodonta suborbiculata  0 0 0 0.000% X S3, S4 CS 
Leptodea fragilis  0 0 0 0.000% X S5 CS 
Potamilus ohiensis  0 0 0 0.000% X S3 CS 
Pyganodon grandis         0 0 0 0.000% X S5 CS 
Toxolasma texasiensis    0 0 0 0.000% X S4 CS 
Uniomerus tetralasmus  0 0 0 0.000% X S5 CS 
Utterbackia imbecillis      0 0 0 0.000% X S5 CS 
Total Identified 6088 10099 16187 100%    
Unidentifiable 3209 4503 7712     
Total Analyzed 9297 14602 23899     
# = number of valves, and % = percent identified valves. State conservation status derived from Jones et al. (2005): S1 = critically 
imperiled; S2 = imperiled; S3 = rare or uncommon; S4 = widespread, abundant, and apparently secure within the state; S5 = 
demonstrably secure within the state; SH = of historical occurrence within the state. An asterisk indicates that species is listed by the 
US Fish and Wildlife Service as either threatened or endangered. National conservation status derived from Williams et al. (1993): T = 
threatened; SC = special concern; CS = currently stable 
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Discussion 

Unfortunately, modern mussel survey data from the Yazoo River are very limited. 

A challenge that often arises when comparing modern and archaeological assemblages is 

accounting for ‘time-space-averaging’ (Christian and Harris 2005; Dorsey 2000; Lyman 

2003; Milller and Payne 1993; Otaola et al. 2015; Peacock et al. 2013). For example, 

archaeological sites often contain tens of thousands of valves, as at both Rugby Farm and 

Light Capp, so an assemblage presumably represents long-term collecting by numerous 

households over a relatively small area (Peacock 2002). Conversely, modern mussel 

surveys typically represent very time-limited collections over areas that are widely 

distributed in space, the results of which can vary considerably from year to year. 

Accordingly, comparisons between archaeological and modern faunas have tended to be 

more qualitative (e.g., Lyons et al. 2007, Tevesz et al. 2002). Despite this fact, however, 

archaeological studies can still provide very useful biogeographical data (such as range 

extensions via species presence/absence), as well as insights on prehistoric aquatic 

environmental conditions (as certain species favor clearer water, while others can be 

more silt-tolerant).  

A list of species historically known to have been in the river was provided by the 

Mississippi Museum of Natural Sciences (MMNS) and these are noted in Table 4.2. 

Analysis of the Rugby Farm and Light Capp shell assemblages yielded 37 species, 24 of 

which are not identified in the modern collection, and thus constitute new river records 

for the Yazoo River. These species are as follows (in order of abundance): R. ebena, P. 

rubrum, F. flava, O. jacksoniana, E. dilatata, O. subrotunda, C. aberti, L. hydiana, L. 

siliquoidea, L. recta, V. lienosa, Q. cylindrica, Q. metanevra, A. confragosus, P. cyphyus, 
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Q. fragosa, L. cardium, L. subrostrata, O. unicolor, T. parvum, E. lineolata, S. undulatus, 

L. ornata, and L. radiata. Six species are present in the MMNS collection, but absent 

from the archaeological assemblages: A. suborbiculata, L. fragilis, P. ohiensis, P. 

grandis, T. texasiensis, and U. imbecillis. These faunas have previously been reported 

from archaeological sites in the Yazoo Basin (Peacock et al. 2011; see Gilleland 2016 for 

occurrence of A. suborbiculata), but their absence here is possibly due to differential 

preservation negatively affecting thin-shelled species. Alternatively, both P. grandis and 

U. imbecillis typically favor more lentic environments, so their absence from sites along 

the main river is not surprising. Though archaeological data on the Yazoo River are also 

limited, a recent report (see Peacock and Mitchell 2015) from a backwater area of the 

river yielded a similar taxonomic makeup as the one shown here, outside of a few faunas 

(i.e., E. lineolata, L. subrostrata, O. unicolor, L. ornata, and Q. fragosa; the latter two 

will be discussed below).  

Since archaeological shell assemblages are generally comprised of mussels which 

were locally gathered (see Peacock 2000; Peacock et al. 2012), the taxonomic makeup of 

these sites may be used to understand the aquatic environmental conditions that existed 

there at the time. For example, E. dilatata is frequently characterized as a clear-water 

species (e.g., Parmalee 1967, Starret 1971), and its presence here (as well as at other 

archaeological sites in the Yazoo Basin [see Hartfield 1993:table 1, Peacock et al. 

2011:map A-10]), and absence from modern populations, points to changes that likely 

have occurred as a result of increased turbidity (e.g., Dineen 1971, Hoeh and Trdan 1984, 

Klippel et al. 1978, Starrett 1971, Taylor and Spurlock 1982, White 1977). The same 

applies to C. aberti, an Ozarkian species now known to have had a wide prehistoric 
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distribution in the Yazoo Basin (Bogan 1987, Hartfield 1993, Jones et al. 2005, Peacock 

and James 2002, Peacock et al. 2011), but absent from modern collections there. 

However, other common species recovered at Rugby Farm and Light Capp (e.g., A. 

plicata, F. flava, O. reflexa, P. dombeyanus, Q. pustulosa, R. ebena) are characterized as 

relatively silt-tolerant (Peacock 1998), and are found throughout the Yazoo Basin, both 

historically and in modern times. The environmental picture provided here, indicates that 

shells were collected from multiple environments near the respective sites, both from the 

main (more turbid) river, as well as the surrounding (more lentic) microhabitats, like 

oxbow lakes and ponds.      

There are serval species recovered in this study that are particularly noteworthy 

from a biogeographical perspective. P. cyphyus and Q. cylindrica are both listed as 

“critically imperiled” species in Mississippi, as well as nationally (Jones et al. 2005), so 

documenting their historical presence and range in the Yazoo River has importance. S. 

undulatus is also listed as critically imperiled in Mississippi, and has been rare in modern 

times (Jones et al. 2005). Though present at both Rugby Farm and Light Capp (n=1 and 

n=2, respectively), it appears equally uncommon prehistorically, with only two other 

archaeological occurrences documented for Mississippi, both on the Big Sunflower River 

(Mitchell and Peacock 2014; Peacock et al. 2011; see Peacock et al. 2013 for examples 

from Bayou Bartholomew, AR). L. ornata, is noted as secure in Mississippi, but is more 

commonly found in eastern and southern tributaries, as well as Lake Pontchartrain, 

Louisiana (Jones et al. 2005). This also seems to be the case prehistorically, as L. ornata 

has only been recorded from sites in the Tombigbee River Drainage (Peacock et al. 
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2011:map A-18). The single valve recovered at Rugby Farm, thus represents the only 

archaeological example from the Yazoo Basin.  

The most significant find, however, was the presence of twelve Q. fragosa valves 

from Rugby Farm and Light Capp (n=2 and n=10, respectively). Morphologically, this 

species can be confused with other Quadrulas, namely Q. quadrula, as both possess a 

sulcus with varying expression of nodules and pustules present on either side. However, 

Q. fragosa is distinguished by its “pronounced wing or expanded posterior slope, 

posterior to the beak” (Parmalee and Bogan 1998:212), a more inflated shell, and more 

elevated umbo (Baker 1928), all of which are features clearly expressed on the specimens 

recovered here. Also, these posterior-dorsal slopes are markedly wider, more alate, and 

contain more sculpture (Baker 1928; Watters 1988) than the Q. quadrula specimens from 

the study sites (see Figure 4.2). 

 

Figure 4.2 Quadrula fragosa 

Left: representative specimen of Q. fragosa. Right: representative specimen of Q. 
quadrula. Both are right valves 
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Historically, Q. fragosa was more common in the Midwest, but was found in 

southern tributaries of the Mississippi River in Tennessee, Arkansas, and Louisiana 

(Harris 2006; Hemmingsen 2008; Parmalee and Bogan 1998; Posey et al. 1996; USFWS 

1997). Like many other freshwater species, its range has been significantly reduced over 

time as a result of damming, impoundment, and decreased water quality (Doolittle 1988; 

Fuller 1980; Graczyk 1986; Havlik 1987; Heath and Rasmussen 1990). Q. fragosa is now 

listed as “endangered” by the United States Fish and Wildlife Service (USFWS 1991), 

and considered likely extirpated from its entire historic range except for one (possible) 

remnant population in the St. Croix River, between Minnesota and Wisconsin 

(Cummings 1991). However, the original range of Q. fragosa, as currently understood, 

was such that the presence of the species in a medium-sized river in northwest 

Mississippi is plausible, especially given its presence in western tributaries of the 

Mississippi River in Arkansas (Harris 2006; Hemmingsen 2008; Peacock et al. under 

review; USFWS 1997). The status of Q. fragosa as a new state record for Mississippi has 

recently been proposed by Peacock et al. (under review), where 161 specimens were 

recovered from two sites on the Tallahatchie River, in Leflore County, Mississippi. The 

12 specimens discussed here would appear to support such a claim, and further extend the 

range of Q. fragosa into the Yazoo Basin. 

Concerns for Bias 

Comparison of archaeological and modern mussel assemblages is complicated by 

a number of factors. There are several biases/effects that can negatively impact what can 

be said from an archaeological assemblage. Researcher bias generally concerns 

inadequate sampling of archaeological deposits and the effects that has on any subsequent 
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interpretations. With mussel deposits, the problem that often arises is the need to account 

for time-space-averaging, given that individual clusters of shell could represent particular 

sections of a mussel bed from the river or stream where they were gathered, as well as 

different collecting periods. Because of this, it is useful to not only sample from the 

subsurface, but also from multiple zones on the surface of a shell deposit (Mitchell et al. 

2016). As noted earlier, a total of 7 excavation units and a CSC were applied to the study 

areas, so the likelihood that a representative sample has been obtained is high.   

A dynamic out of the researcher’s control, however, is differential preservation 

(also referred to as “preservation bias”), which commonly impacts archaeological shell 

remains, particularly those in the plow-zone (i.e., surface and near surface contexts) and 

typically has a greater impact on species with less dense/more elongate (i.e., “rod-

shapped”) shells (Mitchell et al. 2016; Peacock 2000; Peacock and Chapman 2001; 

Wolverton et al. 2010). Though shell shape is indeed a factor, density in the umbonal area 

tends to be the most important factor for species identification (Mitchell 2012). For 

example, E. dilatata and P. dombeyanus, both of which have rather thin and elongate 

shells, are easily identified even when highly fractured, primarily due to their 

pseudocardinal and lateral teeth often remaining intact (see Mitchell 2012:figs. 5.11 and 

5.12). For the more dense/”cup-shaped” species, deterioration of external morphology 

(e.g., pustules, nodules, and ridges) can negatively affect some species, as that is typically 

the deciding factor for identification. For instance, some species of Quadrula can be 

indistinguishable from each other when highly eroded. Because of this, specimens 

identified to genus only were recorded as “unidentifiable”.  
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Ultimately, the percentage of unidentifiable shell in an assemblage can provide a 

gross estimate of preservation at a site. Analysis of both the Light Capp and Rugby Farm 

shell demonstrate a significant difference in preservation between plow-zone (i.e., CSC 

and Zone A) and midden (Zones B and C) contexts (see Table 4.3), which was expected. 

However, as numerous thin-shelled taxa (e.g., L. teres, P. purpuratus, V. lienosa) were 

recovered, preservation bias does not appear a major factor at either site. Overall, both 

sites combined to have nearly 68 percent of the recovered mussel valves identifiable to 

species, which is a fairly typical value for well-preserved sites in the Southeast (Peacock 

2009). 

Table 4.3 Plow-zone vs midden contexts 

  Plow-zone Midden 

# 22YZ513 % 22YZ605 % 22YZ513 % 22YZ605 % 

Identifiable 2924 55.2 5709 62.5 3164 79.1 4390 80.3 

Unidentifiable 2375 44.8 3426 37.5 834 20.9 1077 19.7 

Total 5299 100 9135 100 3998 100 5467 100 
Comparison of identifiable and unidentifiable valves between the Plow-zone (Zone A and 
CSC combined) and Midden (Zones B and C combined) contexts. # = number of valves, 
% = percent of total 

There is also the concern that prehistoric shell-fishers preferentially selected 

and/or avoided certain species because of particular tastes or other non-random cultural 

traits (i.e., the “culture filter”, see Daly 1969; or “cultural bias”, see Peacock et al. 2012; 

Theler 1991). The presence of such a dynamic would undoubtedly affect any 

interpretations of biogeographical patterns and ranges. One way to explore this concern is 

to examine the size distribution of shells recovered. For instance, given the relatively low 

energy return (Parmalee and Klippel 1974), small specimens might have been avoided, 
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with preference given to collecting larger organisms. Many archaeological reports note 

mussel shells ranging down to very small sizes (e.g., Mitchell and Peacock 2014; 

Peacock 2000; Peacock et al. under review) with size-class distributions indicative of 

normal populations (Peacock 2000; Peacock and Mistak 2008; see also Peacock 2012:fig. 

3.1). Though a detailed size-class analysis was not applied here, it is clear that very small 

individuals of many different species are well represented in both assemblages (see 

Figure 4.3), ultimately challenging the notion that small species, and/or juvenile 

individuals, were intentionally being avoided. Also, simply given the abundance (i.e., 

taxonomic richness) of taxa present at both sites (n=37), it is likely whatever was 

available in the river at the time was collected (and later deposited), with no preference to 

particular species.    

 

Figure 4.3 Juvenile specimens of freshwater mussels from Rugby Farm and Light 
Capp 

Top Row (left to right): L. recta (left valve), F. flava (left valve), O. reflexa (right valve), 
and R. ebena (right valve). Bottom Row (left to right): O. subrotunda (left valve), Q. 
verrucosa (left valve), T. truncata (right valve), and Q. quadrula (right valve) 
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Conclusions 

The shell assemblages recovered from Rugby Farm and Light Capp are valuable 

for a number of reasons. For one, when compared to modern data, the number of 

extended ranges and new river records from each give a much larger picture of the 

original mussel population that existed in the Yazoo River. This not only provides a more 

baseline assessment of the community structure within the river, but can better inform 

reintroduction efforts for species no longer present in the region. Also, considering the 

taxonomic richness and inclusion of so many small specimens, the shells recovered at 

Rugby Farm and Light Capp represent diverse and seemingly healthy populations, with 

strong juvenile recruitment across numerous species; this is especially important, as 

modern surveys from neighboring rivers have noted juvenile recruitment lacking in many 

current populations (see Miller and Payne 1995, 2004; Miller et al. 1992 for discussion 

on the Big Sunflower River). Though the assemblages do not appear very even (see 

discussion of evenness/diversity in Mitchell et al. 2016), as only two taxa account for 

over 57 percent of the total population (i.e., R. ebena and P. rubrum), this is possibly the 

result of a preservation bias favoring thicker, more “cup-shaped”, species. Obviously, the 

presence of Q. fragosa is noteworthy, as it bolsters the claim for a range extension made 

by Peacock et al. (under review), and demonstrates the species’ occurrence in another 

river in the Yazoo Basin. Consequently, as conservation efforts for many mussels have 

been met with much difficulty (USFWS 1997), any and all new information pertaining to 

the historic habitats of Q. fragosa has value.   

Malacologists and conservationists are constantly developing more effective 

strategies to grow populations, improve survival rates, and aid recruitment of relocated 
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faunas in affected mussel communities (Machtinger 2007). Ultimately, the absence of a 

true ecological baseline in how mussel communities are assessed and understood is a 

limiting factor, but one that can be addressed by utilizing zooarchaeological data. This 

notion of employing historical/archaeological resources is not new to conservation 

biology. The concept known as the “shifting baseline syndrome” (SBS), as discussed by 

Pauly (1995), contends that fishery sciences do not have the historical perspective, nor 

the formal approach, for dealing with presently extirpated faunas that once existed in 

great abundance. This problem arises due to each generation of scientists accepting the 

present population characteristics (e.g., stock size, species composition, diversity) as their 

ecological baseline, and it is that standard which is used to evaluate further change (Pauly 

1995). Accordingly, developing a dialogue for integrating prehistoric and historic data 

into present models of conservation is crucial. As there are few modern or historical data 

from the Yazoo River, the findings discussed here provide a benchmark that would 

otherwise be inaccessible. It is hoped that this report will increase recognition of the 

importance zooarchaeological data have for conservation biology. 
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CONCLUSIONS AND FUTURE WORK 

This dissertation presents an initial investigation of occupation seasonality (via 

ẟ18O analysis) at prehistoric shell ring sites in the Mississippi Delta. Similar studies have 

successfully been applied to marine specimens from coastal locals (e.g., Andrus and 

Crowe 2008; Thompson and Andrus 2011; Thompson et al. 2015), but this work 

represents one of the few aimed at prehistoric freshwater mussels (e.g., Dettman 2011, 

albeit not for the purpose of seasonality). Though 22 useful oscillation patterns were 

attained, 5 shells were deemed “uninterpretable”, and unfortunately could not provide 

any valuable information as to their seasonality. Previous studies of modern freshwater 

mussels have noted occasional difficulty when interpreting seasonal growth bands, 

especially in ontogenetically older specimens and ones that have experienced growth 

cessations during periods of thermal minima and maxima (Rypel et al. 2008). Future 

studies should aim to address the degree of these dynamics within archaeological shell, 

and how such physiological effects can impact ẟ18O oscillation interpretation. More 

comparison with modern studies would aid in this, as well as provide a more quantitative 

basis for advancing archaeological freshwater shell as valuable resources for regional 

climate-change proxies. The study demonstrated here applied ẟ18O interpretation as a 

qualitative indicator of prehistoric shellfishing (via “season of capture”), which has value 

in itself, but correlating those data with modern analogues could provide a useful range in 
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both water temperature and ẟ18Owater variation experienced during each animal’s lifetime, 

making such work applicable to other disciplines.              

Prior to isotope analysis, the archaeological shell specimens were assessed for 

post-depositional chemical alteration. This study confirmed that the mussel valves 

contained pristine microstructure, were free of diagenesis, and suitable for geochemical 

study. The diagenesis study contained here represents only the second such study applied 

to archaeological freshwater mussel remains (e.g., Collins 2012). The need for such a 

vetting process cannot be overstated, and all future shell ring studies employing 

geochemical analysis (e.g., isotopes, trace elements) should apply similar investigations. 

For example, though the specimens studied here were pristine, as well as those described 

by Collins (2012), shell samples recently sampled from the Vaughn Mound Site 

(22LO538) are of much poorer quality (see Figure 5.1). Both of these SEM images show 

characteristic evidence of diagenesis (dissolution and laminae fusion). Investigation of 

the Vaughn Mound shell is currently ongoing, but the limited viewing so far reinforces 

the need for such analysis, as well as raises questions regarding differences in the 

depositional and environmental conditions of sites such as Rugby Farm and Light Capp, 

compared to Vaughn Mound. 



 

128 

 

Figure 5.1 Vaughn Mound SEM images 

Left: shell specimen showing evidence of dissolution. Right: shell specimen showing 
fusion of laminae structures 

The final study in this dissertation expanded the known ranges of 27 freshwater 

mussel species into the Yazoo River, as well as demonstrating the presence of Quadrula 

fragosa, which was previously noted as a new state record for Mississippi by Peacock et 

al. (under review). These findings are significant for a number of reasons. For example, 

“applied zooarchaeological” studies, such as this, have continually presented a more 

comprehensive account of baseline community characteristics at each sampled location, 

as compared to modern survey data, especially regarding taxonomic richness, diversity 

and evenness, and rare and/or threatened faunas (e.g., Mitchell and Peacock 2014; 

Peacock et al. 2011). An additional, and currently unexplained, discovery from the Rugby 

Farm and Light Capp shell assemblages, is the presence of a very unique morphological 

feature found on numerous (n=213) shell specimens. This feature, present in valves of 

Reginaia ebena, is expressed as distinct lines, oriented perpendicular from normal growth 
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bands, from the umbo to the edge of the shell along each valve’s anterior margin (see 

Figure 5.2). 

 

Figure 5.2 Shell specimen from Rugby Farm 

Left valve of R. ebena showing unexplained morphological feature  

The cause of these lines is unknown, and although R. ebena is a common 

constituent of shell assemblages in the Mississippi Delta, this feature has not been 

mentioned in any previous archaeological shell study. Freshwater mussels are noted as 

being extremely plastic organisms (Haag 2012), which could be an explanation here, as 

these particular shells were responding to some type of environmental pressure or 

condition. However, though some have observed similar morphological features in 

modern faunas (Bob Jones, Wendell Haag, personal communication, February 2016), 

explanations for this characteristic, including any related environmental conditions, are 

seemingly absent from the literature. 
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