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Hyperspectral imagery is often associated with high storage and transmission costs.

Dimensionality reduction aims to reduce the time and space complexity of hyperspectral

imagery by projecting data into a low-dimensional space such that all the important infor-

mation in the data is preserved. Dimensionality-reduction methods based on transforms

are widely used and give a data-dependent representation that is unfortunately costly to

compute. Recently, there has been a growing interest in data-independent representations

for dimensionality reduction; of particular prominence are random projections which are

attractive due to their computational efficiency and simplicity of implementation. This

dissertation concentrates on exploring the realm of computationally fast and efficient ran-

dom projections by considering projections based on a random Hadamard matrix. These

Hadamard-based projections are offered as an alternative to more widely used random

projections based on dense Gaussian matrices. Such Hadamard matrices are then coupled

with a fast singular value decomposition in order to implement a two-stage dimensionality



reduction that marries the computational benefits of the data-independent random projec-

tion to the structure-capturing capability of the data-dependent singular value transform.

Finally, random projections are applied in conjunction with nonnegative least squares to

provide a computationally lightweight methodology for the well-known spectral-unmixing

problem. Overall, it is seen that random projections offer a computationally efficient frame-

work for dimensionality reduction that permits hyperspectral-analysis tasks such as un-

mixing and classification to be conducted in a lower-dimensional space without sacrificing

analysis performance while reducing computational costs significantly.
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CHAPTER 1

INTRODUCTION

1.1 Overview

The advent of hyperspectral imagery has propelled many applications in the area of

remote sensing for earth observation because of the vast spectral information contained

in its dense, contiguous reflectance bands spread throughout the electromagnetic spec-

trum [8, 24, 61, 62, 85, 86]. However, this enormous spectral information poses chal-

lenges to analysis tasks—due to the well-known curse of dimensionality [55]—in addition

to incurring high storage, computation, and transmission costs. Dimensionality reduc-

tion is the most commonly used tool to mitigate the aforementioned issues. Generally,

dimensionality-reduction techniques are used to project high-dimensional data to a low-

dimensional subspace based on some objective function and with the goal that all the im-

portant information in the data is preserved. The assumption is that the corresponding low-

dimensional data has decorrelated bands and lower redundancy of information, thereby

aiding classification of land covers [6, 11, 13, 34, 37, 45, 46]. Widely used dimensionality-

reduction techniques include singular value decomposition (SVD) [59], principal compo-

nent analysis (PCA) [40, 44, 58], linear discriminant analysis (LDA) [7, 38], as well as

local Fisher discriminant analysis (LFDA) [93] and its kernel variants [10, 25, 39, 51].
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Typically, transform-based dimensionality-reduction techniques provide a data-depen-

dent representation and are computationally expensive due their being driven by learn-

ing based on an objective function. Hence, there has been increasing interest towards

data-independent dimensionality reduction such as random projections. Not only do ran-

dom projections provide a data-independent representation, they also are computationally

lightweight and simple to implement [1, 9, 17, 22, 23, 27]. Recent efforts have investigated

computationally fast and efficient random-projection algorithms. This has consequently

led to the introduction of random projections in the form of a Hadamard matrix (HM) as

an alternative to more traditional random projections based on a random Gaussian matrix

(GM) [1, 2, 47, 75, 82].

This dissertation explores computationally efficient dimensionality reduction for hyper-

spectral imagery driven by random projections. First, we overview the prior use of random

projections for dimensionality reduction in the literature, focusing specifically on HM- and

GM-based dimensionality-reduction methods for hyperspectral data [20, 21, 41, 42, 77,

83, 94] and also discussing the theoretical soundness and computational efficiency of such

methods. Next, we introduce a new paradigm for dimensionality reduction which couples

HM- and GM-based projections with feature selection via fast SVD (FSVD), evaluating the

resulting classification performance in the framework of a support-vector-machine (SVM)

classifier with radial-basis-function (RBF) kernel [5, 19, 26, 50, 90, 95]. Finally, we pro-

pose a new framework that addresses the commonly encountered spectral-unmixing phe-

nomenon in hyperspectral imagery by introducing HM- and GM-based nonnegative least

2



squares (NNLS) that combines dimensionality reduction with estimation of endmember

abundances.

1.2 Contributions

In this dissertation, we present three significant contributions for dimensionality re-

duction and classification of hyperspectral data. Firstly, we introduce HM as an alternative

to GM for random projections for the dimensionality reduction of hyperspectral imagery.

While random projections have been used rather extensively in recent literature for the di-

mensionality reduction of hyperspectral imagery (e.g., [35, 36, 44, 46, 65, 67, 71]), such

prior work has focused exclusively on GM-based random projections. Additionally, while

random HM projections have been used previously in other domains, the work we present

here is, to the best of our knowledge, the first use of HM-based random projections for

hyperspectral imagery. HM-based projections are theoretically sound and computationally

faster than traditional GM projections because of their unique block-based structure [2, 3]

that replaces the expensive matrix-multiplication operation associated with GM projec-

tions with a series of additions and subtractions. For hyperspectral imagery, we find that

HM-based random projections are not only computationally faster but also give better clas-

sification performance than traditional GM-based projections even with far fewer dimen-

sions. This dissertation presents HM-based random projections as a viable candidate for

dimensionality reduction. Using HM as an alternative to GM is relevant, particularly when

the goal is object classification or identification in a lower-dimensional subspace, rather

than reconstruction from the lower-dimensional projections (a common focus of prior lit-

3



erature). We note that our work on HM-based random projections for the dimensionality

reduction of hyperspectral imagery was initially published as [75].

Secondly, this dissertation investigates dimensionality reduction via random projec-

tions in conjunction with feature selection using a fast variant of SVD known as FSVD.

Feature selection is effectively dimensionality reduction that removes statistically ill-condi-

tioned features and redundancy of information to improve classification performance. As

discussed in [18], transform-based dimensionality reduction such as SVD can be compu-

tationally cumbersome when dealing with large volumes of data. Thus, there has been an

increasing need for transform-based feature-selection/dimensionality-reduction techniques

deployed in the random-projection domain in order to substantially reduce computational

complexity. FSVD has been proven to reduce computational burdens by providing a good

approximation to SVD in the random-projection domain by enabling selection of the de-

sired number of eigenvectors for further dimensionality reduction [18]. The contribution

we present here is the incorporation of HM-based projections into the FSVD framework

(i.e., HM-FSVD), the original FSVD formulation in [18] using GM-based projections ex-

clusively (i.e., GM-FSVD). Thus, the process we propose here employs a two-stage di-

mensionality reduction: first, projection with HM-based random projections and, second,

feature selection in the HM-projected domain using SVD to select the desired number of

eigenvectors to be retained. Experiment results validate that random projections in con-

junction with FSVD give better classification performance along with reduction in both

time and space complexity in comparison to SVD performed on the original dataset. Addi-

4



tionally, the proposed HM-FSVD gives classification performance superior to GM-FSVD

even at low dimensions. We note that our HM-FSVD work was initially published as [74].

Lastly, we address the spectral-unmixing problem in hyperspectral imagery using NNLS

in conjunction with random-projection-based dimensionality reduction. Although hyper-

spectral imagery provides rich spectral information, it usually comes at the price of low

spatial resolution. This leads to the occurrence of “mixed pixels,” wherein—due to the

large footprint of hyperspectral sensors—a single pixel may, in fact, comprise multiple

landcovers and, as a result, can be expressed as a combination of one or more constituent

endmembers [32]. To simultaneously address these issues of dense spectral information—

which leads to high storage costs—and the “spectral mixing” phenomena, we employ di-

mensionality reduction driven by random projections followed by NNLS-based spectral

unmixing in the low-dimensional space. Dimensionality reduction has many advantages—

such as reduced signal disparity, decorrelation of bands, and inherent denoising—that can

be especially beneficial for spectral unmixing, yielding more accurate abundance estima-

tion of endmembers. Our contribution in this arena is the coupling of NNLS—typically

deployed in the original full-dimensionality space of the hyperspectral pixel—with dimen-

sionality reduction driven by random projections. In this effort, we consider both our pro-

posed HM- and HM-FSVD-based projections. Experimental evaluation demonstrates that,

again, the HM-based dimensionality reduction methods give more accurate abundance es-

timation and superior classification performance with low errors at fewer dimensions as

compared to using the original data without dimension reduction. We note that our NNLS-

based work was initially published as [76].
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The remainder of this dissertation is organized as follows. In Chapter 2, we discuss

background relevant to random projections and their general use for dimensionality re-

duction, introducing the computationally efficient HM-based projections as an alternative

to traditional GM-based methods. Next, in Chapter 3, we present our HM-FSVD dimen-

sionality reduction which couples HM-based random projections with FSVD-based feature

selection. Then, in Chapter 4, we present our coupling of random projections with NNLS

for low-complexity abundance estimation and classification. Finally, Chapter 5 presents

concluding remarks and summarizes observations made in this dissertation.
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CHAPTER 2

BACKGROUND

2.1 Dimensionality Reduction Using Random Projections

As already mentioned, the rich spectral information contained in hyperspectral im-

agery has given rise not only to widespread applications in remote sensing, but also several

impediments to its use. These latter issues include the curse of dimensionality [55]—

which occurs when the number of training samples is less than the number of spectral

dimensions—as well as other issues such as high storage and computation costs. To over-

come these problems, dimensionality reduction plays a crucial role for facilitating data

analysis in low-dimensional spaces through various forms of feature reduction and fea-

ture selection/extraction [87]. Furthermore, dimensionality reduction aids classification by

decorrelating spectral bands, reducing redundancy of information, and providing inherent

denoising. Some widely used dimensionality-reduction techniques include principal com-

ponent analysis (PCA) [40, 58, 72, 80] as well as linear discriminant analysis (LDA) [7, 38]

and its variants [25, 52, 93].

Generally, transform-based dimensionality reduction—such as PCA and LDA—is de-

signed so as to optimize an objective function aimed at learning the underlying struc-

ture of the data. Consequently, transform-based methods are highly data dependent and

computationally intensive, especially when dealing with the large volumes of data typ-

7



ically associated with hyperspectral imagery. On the other hand, dimensionality reduc-

tion based on random projections has garnered recent interest due to its data-independent

representation as well as its ability to preserve important information present in the data

[9, 17, 43, 48, 60, 92]. Dimensionality reduction via random projection is based on the as-

sumption that a valid and useful low-dimensional representation can be had even when the

low-dimensional space is chosen at random. Since there is no data-specific learning pro-

cess involved, random projections are data independent and computationally lightweight.

Ultimately, this simplicity of implementation and computational efficiency of random-

projection-based methods makes them a favorable candidate for dimensionality reduction

of hyperspectral data [1, 28, 36, 45, 47, 53, 57, 64, 69]. This chapter of this dissertation

focuses on applications of fast random projections for dimensionality reduction to address

the high computation and storage costs associated with hyperspectral imagery. Specifically,

this work explores projections based on a random Hadamard matrix (HM) as an alternative

to more traditional random projections which are commonly driven by a random Gaussian

matrix (GM). In the rest of this chapter, we first discuss the traditional GM-based approach

to random projections in Section 2.2.1 followed by our main focus in Section 2.2.2, HM-

based random projections. The material in this chapter was initially published in [75].

2.2 Random Projections

2.2.1 Random Projection Based on a Gaussian Matrix

Let a dataset of M N -dimensional hyperspectral pixels be X = {xm}Mm=1 ∈ RN×M ;

the corresponding class labels are Θ = {θm}Mm=1, where θm ∈ {1, 2, . . . , C}, and C
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denotes number of classes. Consider projection matrix P ∈ RN×K , whereK is the reduced

dimension and K � N . We desire that P preserves important information present in the

data with very high probability and retains data separability in the corresponding low-

dimensional space. An increasingly common approach is to randomly choose a P by

populating a matrix with independent random variables (e.g., uniform, Gaussian). In this

case, the dimensionality-reduced data matrix X̂ is

X̂ = PTX, (2.1)

where X̂ = {x̂m}Mm=1 ∈ RK×M . Most commonly, Gaussian random variables are used to

populate P, resulting in it being a random GM.

Figure 2.1 illustrates an example of such a GM projection matrix, PGM, where mid-

range gray values are zero, darker values are negative, and lighter values are positive. It has

been shown that GM-based random projection achieves data reduction while preserving

important information in the corresponding low-dimensional space (e.g., [3]). Traditional

GM-based random projections (i.e., P = PGM in (2.1)) require O(NMK) time. The

primary disadvantage of GM-based projections is the heavy computation load imposed by

the dense matrix multiplication operations implied by the GM.

2.2.2 Random Projection Based on a Hadamard Matrix

Growing interest in random projections has led to exploration of non-traditional and

computationally faster projection matrices (e.g., [2, 3, 75, 81, 82]) based on a random
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Hadamard projection. Such projections are driven by a HM defined recursively for any N

that is an integer power of 2 as

HN =

HN
2

HN
2

HN
2
−HN

2

 ∈ RN×N , (2.2)

with H1 = [1], which we normalize as H̄N =
√

1
N

HN . Following [31, 81, 82], we

define a random diagonal matrix D ∈ RN×N with diagonal entries being ±1 with equal

probability (i.e., 1
2
). The purpose of this diagonal matrix D is to randomize HN . Broadly, a

randomizer matrix can be classified as a global or local randomizer based on the structure

of its matrix and the resulting effects on permuted samples. Typically, a uniform random

matrix randomizes samples globally, whereas a diagonal random matrix, as in our case,

randomizes samples locally [31]. We further define a random sampling matrix S ∈ RN×K

that randomly samples K columns of DH̄N , where each column of S is randomly selected

with replacement from the N × N identity matrix IN . Thus, the HM-based projection

matrix is formulated as

PHM =

√
N

K
DH̄NS ∈ RN×K . (2.3)

We note that this definition requires that N be an integer power of 2. Consequently,

when applying PHM as the projection matrix in (2.1), we zero-pad the rows of X as required

such that this condition is satisfied. We further note that PHM is orthonormal, and it has

been shown to preserve important details in the data in a low-dimensional space [2]. Due to

the block-based structure of the HM, each N has logN “recursion” stages of computation;

i.e., for N = 16, there are logN = log2 16 = 4 stages of “recursion” computation (which

are H1, H2, H4, and H8). However, for dimensionality reduction, we need to compute only
10



K stages, along with a linear-time merge step in (2.2). Therefore, HM-based projections

can be computed by combining (2.2) and (2.3) in (2.1) (using P = PHM) inO(NM logK)

time [81, 82]. This can be significantly more computationally efficient than GM-based

random projections that require O(NMK) time. Furthermore, since a HM comprises ±1

entries, the matrix multiplication in (2.1) reduces to a series of additions and subtractions.

Figure 2.2 illustrates an example HM, HN for N = 2i, where i ∈ 0, 1, . . . , 4, where white

represents +1 values, and black represents −1 values. Figure 2.3 shows the HM-based-

projection matrices PHM for same range of N , where in this case white denotes +
√

N
K

,

and black denotes −
√

N
K

. The effects of the random diagonal matrix D in randomizing

H̄N can been seen in Figure 2.3.

We can draw similarities both computationally and structurally between the Hadamard

Transform (HT) and Discrete Fourier transform (DFT) matrix, denoted by the matrix FN

given as

FN =



1 1 1 . . . 1

1 ω ω2 ω(N−1)

... . . . ...

1 ω(N−1) ω2(N−1) . . . ω(N−1)2


∈ RN×N , (2.4)

where ω = e−
ı2π
N implies complex-valued entries in FN . Both FN and HN are similar in

terms of their computational complexity due to their block-based structure (as in (2.2) and

(2.4)). For example, consider N = 2. In this case, the HM is

H2 =

H1 H1

H1 −H1

 =

1 1

1 −1

 , (2.5)
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which is identical to the DFT matrix

F2 =

1 1

1 ω(2−1)

 =

1 1

1 −1

 . (2.6)

For higher orders of N , HN still comprises±1 terms, whereas the DFT matrix FN is com-

posed of complex-valued entries, such that HN and FN diverge in structure and meaning,

the DFT being well-understood in terms of an expansion of sinusoids. On the other hand,

HT is a generalized class of DFT, and is in fact equivalent to a multidimensional DFT of

size of power of 2 [?].

Figure 2.4 illustrates the block-based structure of both the real and imaginary compo-

nents of FN for varying values of N (scaled such that white is +1, black is −1), which is

seen to differ from the corresponding HM example (Figure 2.3).

In the following chapters, we deploy the Hadamard-based random projections we de-

scribe in this section for achieving data-independent dimensionality reduction with reduced

computational complexity as compared to the traditional Gaussian-based projections that

have been used extensively in prior literature. In the next chapter, we specifically employ

HM-based random projections in conjunction with a fast singular-value feature selection

to implement a two-stage dimensionality-reduction process. Then, in Chapter 4, we couple

HM with nonlinear least squares to achieve spectral unmixing in a reduced-dimensionality

space.
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Figure 2.1

Gaussian random-projection matrix PGM for N = 16
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(a) H1 (b) H2 (c) H4

(d) H8 (e) H16

Figure 2.2

Hadamard matrix HN
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(a) PHM1 (b) PHM2 (c) PHM4

(d) PHM8 (e) PHM16

Figure 2.3

Hadamard random projection matrix PHM
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(a) F1(real) (b) F1(imag) (c) F2(real)

(d) F2(imag) (e) F4(real) (f) F4(imag)

(g) F8(real) (h) F8(imag) (i) F16(real)

(j) F16(imag)

Figure 2.4

Real and imaginary components of DFT matrix FN
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CHAPTER 3

FAST SVD WITH RANDOM HADAMARD PROJECTION FOR HYPERSPECTRAL

DIMENSIONALITY REDUCTION AND CLASSIFICATION

3.1 Introduction

As discussed previously in this dissertation, many popular approaches to the dimen-

sionality reduction of hyperspectral imagery take the form of data-dependent transforms.

Most instances of such transform-based dimensionality reduction involve mapping high-

dimensional data to a lower-dimensional subspace based on some objective function yield-

ing an efficient yet data-dependent representation. Singular value decomposition (SVD)

[59]—and the closely related principal component analysis (PCA) [40, 44, 58]—are com-

mon examples of data-dependent transform-based dimensionality reduction that are highly

effective in many scenarios, yet their data dependent nature often entails substantial com-

putational burden.

In this chapter, we explore several strategies for dimensionality reduction and feature

selection driven by random projections to reduce the time and space complexity involved

when dealing with hyperspectral imagery. We consider both the more traditional GM-

based random projection as well as the faster HM-based counterpart, both of which were

introduced in Chapter 2 of this dissertation. In this chapter, we focus on coupling both GM-

and HM-based dimensionality reduction with SVD-driven feature selection to effectively
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produce a two-stage dimensionality reduction. At first glance, data-independent random

projections may seem diametrically opposed in spirit to data-dependent techniques—such

as SVD—that optimize the dimensionality reduction to the dataset at hand; however, recent

work (e.g., [18, 85]) has suggested that the two strategies can effectively complement one

another. For example, [18] proposes a fast SVD driven by Gaussian-based random projec-

tion that enables finding an approximation to the SVD dimensionality-reduction operator

with dramatically reduced computational complexity. Such a fast SVD (FSVD) yields a

surprisingly effective proxy for the true SVD at a fraction of the computational cost.

In experimental results presented in this chapter, we explore the effect of dimension-

ality reduction on the classification performance of hyperspectral imagery using both a

supervised support-vector-machine (SVM) classifier as well as an unsupervised k-means

clustering. We employ both random projections alone as well as in conjunction with FSVD.

We find that, while random projections alone offer extremely fast dimensionality reduc-

tion, the coupling with SVD in the form of FSVD offers an attractive tradeoff between

classification performance and reduced computation costs with the added advantage of an

efficient data-dependent representation at low-dimensions as a close approximation to the

original data space. We experimentally validate the data-preserving property of random-

projection-based dimensionality reduction and empirically prove the computational effi-

ciency of FSVD over SVD. We note that random projection, as a form of dimensionality

reduction, is not intended to enhance class separability. To optimize classification accuracy,

a projection designed specifically for that purpose is warranted; such a projection would

imply labeled samples and a data-dependent projection. We emphasize that, in contrast,
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our goal here is to achieve a tradeoff between classification performance and reduced com-

putational complexity. Consequently, we advocate the proposed Hadamard-based random

projection for FSVD due to its lower computational cost as well as classification accuracy

that is superior to that of the other schemes considered.

The remainder of this chapter is organized as follows. In Section 3.2, we describe

FSVD as a fast and efficient approximation of SVD, but with lower computation complex-

ity than SVD performed in original data space. As our primary contribution, we couple

FSVD with the HM-based random projections that were described in Chapter 2. Then, in

Section 3.3, we experimentally validate the efficacy of our proposed approaches. We note

that the work presented in this chapter was initially published as [74, 75].

3.2 FSVD

Singular value decomposition (SVD), is one of the most frequently used tools for di-

mensionality reduction and feature selection. In SVD, we express any given matrix in terms

of its eigenvectors and eigenvalues and perform dimensionality reduction by choosing the

desired number of eigenvectors from those with the largest-magnitude eigenvalues in an

effort to preserve important information in the matrix. For any given matrix X ∈ RN×M ,

its SVD can be computed as

X = UΣVT , (3.1)

where U ∈ RN×N contains the left singular vectors (orthonormal eigenvectors), Σ ∈

RN×M contains the eigenvalues, and VT ∈ RM×M contains the right singular vectors

(orthonormal eigenvectors). For dimensionality reduction, one retains only the K eigen-
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vectors in U corresponding to the K largest eigenvalues, yielding a matrix UK ∈ RN×K

and

X̂ = UT
KX ∈ RK×M . (3.2)

SVD has long been used in many applications due to its conceptual simplicity and its

theoretic optimality in the sense of minimizing
∥∥X−UKX̂

∥∥
F

(the Eckart-Young theorem,

e.g., [70]). However, it is computationally expensive, requiring O(MN2) time, assuming

M ≥ N .

Recently, it has been proposed [18, 89] to expedite the SVD calculation by applying

it subsequent to a random projection. In such a fast formulation of SVD (which we de-

note as FSVD), the computationally burdensome SVD process effectively takes place in a

lower-dimensional space at the expense of being only an approximation to the exact SVD

as calculated in the full-dimensional space. We extend the FSVD algorithm from [18] by

using an HM-based random projection, as illustrated in Figure 3.1. This FSVD generates a

projection matrix by first applying a random projection intoR-dimensional space before re-

ducing dimensionality further toK via an SVD-based projection. AssumingK < R� N ,

the SVD in Step 4 of Figure 3.1 has computation O(NR2)—much less than SVD applied

directly to the original dataset. Consequently, the XQT computation in Step 4 dominates,

meaning that the overall FSVD algorithm (including random projection in Step 2) runs

in O(NMR) time. Below, we denote the proposed FSVD based on a Hadamard random

projection as “HM-FSVD” while the original Gaussian-based strategy from [18] is labeled

“GM-FSVD.”
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3.3 Experimental Results

3.3.1 Supervised Classification

We experimentally validate the effectiveness of the various random-projection dimen-

sionality-reduction approaches by evaluating supervised-classification performance using

a support-vector-machine (SVM) classifier with a radial-basis-function (RBF) kernel. We

use the Indian Pines1 and University of Pavia [49] datasets in our experiments. The In-

dian Pines dataset was acquired by the Airborne Visible/Infrared Imaging Spectrometer

(AVIRIS) over the Indian Pines test site in northwestern Indiana. The dataset has a spa-

tial dimension of 145 × 145 with a spatial resolution of 22 m, 224 spectral bands, and 16

land-cover classes. After removal of 22 water-absorption bands, the dataset was reduced to

202 spectral bands. The University of Pavia dataset was acquired by the Reflective Optics

System Imaging Spectrometer (ROSIS) over an urban area of Pavia in north Italy. This

dataset has 103 spectral bands each having a spatial dimension of 610× 340 with a spatial

resolution of 1.3 m, with 9 classes of land cover. For each dataset we randomly select 10%

training and 90% testing data. Tables 3.1 and 3.2 give the ground-truth classes as well as

the number of training and testing samples used. All SVM experiments were implemented

with libSVM2.

We now compare five methods of dimensionality reduction, namely: Hadamard- and

Gaussian-driven random projection alone (denoted as “HM” and “GM,” respectively);

HM-FSVD and GM-FSVD as described in Sec. 3.2; and SVD applied directly to the full-

dimensionality dataset (denoted as “SVD”). We also compare to the SVM-RBF classifier

1https://engineering.purdue.edu/˜biehl/MultiSpec/hyperspectral.html
2http://www.csie.ntu.edu.tw/˜cjlin/libsvm
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applied to the original dataset with no dimensionality reduction (denoted as “Original”).

RBF kernel parameters were chosen after 10-fold cross validation, and all the experiments

were run multiple times with average classification accuracy reported. For dimensionality

reduction using HM, GM, and SVD, the dataset is reduced directly to its final dimension-

ality via (2.1) or (3.2); we use a final dimensionality K ∈ {14, 28, 43, 57, 71} for Indian

Pines and K ∈ {7, 15, 22, 29, 37} for Pavia.

On the other hand, in case of HM-FSVD and GM-FSVD, the random projection first re-

duces dimensionality to R and then the SVD-based process reduces dimensionality further

to K. We choose R ∈ {20, 40, 61, 81, 101} for Indian Pines and R ∈ {10, 21, 31, 41, 52}

for Pavia, which corresponds to a reduction of approximately 10–50% of the original

dataset dimensionality. On the other hand, final dimensionality K is the same as used

for the other methods; we note that we have chosen the intermediate dimensionality R

such that K = 0.7R. We have found that, for both HM-FSVD and GM-FSVD, choosing

K and R is highly application specific—based on the degree of dimensionality reduction

and number of eigenvectors chosen, there can be varying effects on final classification ac-

curacy. If the number of eigenvectors K is too small, then this leads to loss of information

in the data, and ifK is too large, then it defeats the purpose of dimensionality reduction and

sometimes may even cause a drop in classification accuracy due to correlation of spectral

bands. Here, for simplicity of presentation, we present results exclusively for K = 0.7R.

Figure 3.2 depicts the first three eigenvectors that result from SVD on the original

dataset as well as those from the FSVD-based methods. Additionally, Figure 3.3 gives the

spectral angle (in degrees) between the eigenvectors produced by the FSVD-based methods
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and those from SVD as determined directly from the original dataset with full dimension-

ality. We argue that the proposed FSVD approaches, despite extracting eigenvectors in

the random-projection domain, do indeed produce eigenvectors similar to the more com-

putationally expensive SVD on the original dataset. We observe that HM-FSVD provides

closer eigenvectors than does GM-FSVD.

Figs. 3.4 and 3.5 illustrate how classification accuracy varies with the reduced dimen-

sionality, while Tables 3.3 and 3.4 tabulate classification performance for a fixed final di-

mensionality; Figs. 3.6 and 3.7 show the corresponding classification maps. Finally, com-

putational cost is presented in Tables 3.5 and 3.6 using MATLAB running on a quad-core

3.2-GHz machine with 5.8 GB of RAM.

We see from Tables 3.5 and 3.6 that, as expected, random projections applied alone

(i.e., the HM and GM projections) provide the fastest dimensionality reduction, with the

Hadamard projection being about an order of magnitude faster than the Gaussian projec-

tion, while both are some 3–6 orders of magnitude faster than SVD. However, classification

performance for these two random projections is significantly inferior to that of SVD as

witnessed in Figs. 3.4 and 3.5 as well as Tables 3.3 and 3.4. Intuitively, this is also as

expected, as we tend to view the SVD as the “ideal” dimensionality reduction.

However, the optimality of SVD is merely in the sense of the Eckart-Young theorem;

i.e., SVD provides the closest ‖ · ‖F -norm approximation to the dataset for a given reduced

dimensionality. Importantly, optimality from this perspective does not necessarily imply

optimal classification performance (see, e.g., [84]). To wit, we see in Figs. 3.4 and 3.5 as

well as Tables 3.3 and 3.4 that the FSVD-based dimensionality reductions can outperform
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SVD even though they provide only an approximation to the true SVD eigenvectors. This

is despite their being some 2–5 orders of magnitude faster than SVD.

3.3.2 Unsupervised Clustering

In this section, we study the performance of our proposed methods within an unsuper-

vised-learning paradigm. Specifically, we evaluate the efficacy of our proposed methods

using traditional k-means clustering on an AVIRIS dataset, Salinas-A, which is a subsec-

tion of the original Salinas dataset acquired over Salinas Valley, California3. Salinas-A has

a spatial dimension of 83×86 and 224 spectral bands (after removal of 20 water-absorption

bands, there are 204 spectral bands) with a high spatial resolution of 3.7 m covering 6 land-

cover classes. Table 3.7 gives the number of samples present in each class.

In prior literature, k-means is a common tool for unsupervised classification because of

its simplicity and ease of implementation. However, the choice of the number of clusters k

can prove to be critical to performance. Many cluster-validation algorithms (such as AIC

[4] and BIC [90]) have been developed to estimate the maximum number of clusters present

in a given dataset. However, in our case, for simplicity, we assume that the number of

clusters is the same as the number of known classes present in the Salinas-A dataset—that

is, we set k = 6. In order to maintain consistency with the supervised methods evaluated

in the previous section, the number of reduced dimensions is set as K = 0.7R with K ∈

{14, 28, 42, 57, 71}.
3http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_

Sensing_Scenes
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The same methods considered in Section 3.3.1 are compared, namely, dimensionality

reduction performed on the original data using random projections (both HM and GM),

random projection with FSVD-based learning (HM-FSVD and GM-FSVD), and dimen-

sionality reduction using SVD on the original data (denoted “SVD”) All the above methods

are followed by unsupervised learning using k-means clustering; additionally, k-means is

applied to the original dataset without any dimensionality reduction (denoted as “Origi-

nal”). Figure 3.8 shows the clustering accuracy over varying dimensions. As expected, the

unsupervised learning methods have uniformly lower classification accuracy as compared

to their supervised counterparts. That said, we see that all the methods driven by random

projections outperformed the one on the original data.

3.4 Observations

From the results presented in this chapter, we see that HM-FSVD generally outper-

forms the other dimensionality-reduction strategies for supervised classification, while, for

unsupervised clustering, all the random-projection dimensionality-reduction methods per-

form equivalently. While not as fast as Hadamard-based random projection applied alone,

HM-FSVD is generally significantly faster than its Gaussian-based counterpart GM-FSVD

while being substantially faster than SVD. Consequently, we conclude that HM-FSVD

offers a computationally attractive random-projection-based alternative to SVD for di-

mensionality reduction in supervised hyperspectral-classification applications. HM-FSVD

constitutes a reasonable strategy for dimensionality reduction for unsupervised clustering

as well.
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Up to this point, this dissertation has considered random projections of hyperspectral

imagery with a particular eye towards their effect and interaction with classification pro-

cesses applied to reduced-dimensional hyperspectral imagery. In next chapter, we turn

our attention to another important task in hyperspectral image analysis—the well-known

spectral-unmixing problem.
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Table 3.1

Ground-truth classes and their samples/class for Indian Pines

Classes
No. Name Train Test
1 Alfalfa 5 41
2 Corn-notill 143 1285
3 Corn-min 83 747
4 Corn 24 213
5 Grass/Pasture 48 435
6 Grass/Trees 73 657
7 Grass/Pasture-mowed 3 25
8 Hay-windrowed 48 430
9 Oats 2 18

10 Soybean-notill 97 875
11 Soybean-min 246 2209
12 Soybean-clean 59 534
13 Wheats 21 184
14 Woods 127 1140
15 Building-Grass-Trees-Drives 39 347
16 Stone-steel Towers 9 84

Total 1027 9222

Table 3.2

Ground-truth classes and their samples/class for University of Pavia

Classes
No. Name Train Test
1 Asphalt 663 5968
2 Meadows 1865 16784
3 Gravel 210 1889
4 Trees 306 2758
5 Metal sheets 134 1211
6 Bare soil 503 4526
7 Bitumen 133 1197
8 Bricks 368 3314
9 Shadows 95 852

Total 4277 38499
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Table 3.3

Class-specific, overall accuracy (OA), and κ statistics for Indian Pines with K = 28

Class HM HM-FSVD GM GM-FSVD SVD Original
1 63.41 70.73 41.46 58.54 60.98 60.98
2 79.53 84.28 74.24 79.92 79.61 79.92
3 68.14 73.90 62.65 72.69 71.22 73.76
4 58.68 61.97 59.15 64.32 64.78 49.76
5 93.33 95.17 93.10 94.25 94.25 93.56
6 97.56 96.35 95.74 97.11 97.11 97.41
7 80 84 84 84 84 88
8 98.84 99.30 99.53 99.77 99.77 99.53
9 50 66.67 44.44 66.67 66.67 66.67
10 72.11 84.91 71.08 76.46 76.57 81.26
11 81.08 86.06 83.30 86.69 87.10 83.57
12 73.59 83.15 75.47 83.15 83.15 67.79
13 95.11 96.74 96.20 97.28 97.28 96.74
14 93.50 96.40 95.60 96.22 96.92 95.43
15 56.48 57.92 57.06 59.37 59.37 53.03
16 83.33 88.09 84.52 85.71 85.71 75
OA 82.50 86.36 80.17 84.59 84.86 81.96
κ 78.71 84.14 78.03 82.62 82.68 80.48
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Table 3.4

Class-specific, overall accuracy (OA), and κ statistics for University of Pavia with K = 15

Class HM HM-FSVD GM GM-FSVD SVD Original
1 90.77 93.93 90.33 92.32 92.81 93.62
2 96.50 97.59 97.99 98.37 96.37 97.01
3 68.77 82.21 62.20 73.90 81.31 79.57
4 89.99 91.33 91.99 92.39 92.20 93.69
5 99.67 99.59 99.67 99.50 95.70 95.70
6 79.96 88.93 62.17 82.96 87.58 88.47
7 84.96 88.80 70.84 81.62 87.63 87.80
8 85.15 88.41 88.83 89.62 83.46 85.48
9 100 99.88 100 99.88 99.41 99.41
OA 90.98 93.95 88.15 92.75 92.41 93.12
κ 87.57 91.83 84.96 90.36 89.92 90.86

Table 3.5

Computation time (in seconds) for Indian Pines

K HM HM-FSVD GM GM-FSVD SVD
14 0.002 0.031 0.010 0.062 2.18
28 0.001 0.033 0.009 0.067 2.20
43 0.001 0.030 0.009 0.067 2.30
57 0.001 0.030 0.009 0.064 2.18
71 0.001 0.037 0.009 0.062 2.65

Table 3.6

Computation time (in seconds) for University of Pavia

K HM HM-FSVD GM GM-FSVD SVD
7 0.002 0.033 0.041 0.072 3346
15 0.003 0.042 0.045 0.076 3819
22 0.003 0.057 0.043 0.076 3863
29 0.003 0.054 0.050 0.082 3653
37 0.003 0.084 0.046 0.084 3751
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Table 3.7

Ground-truth classes and their samples/class for Salinas-A

No. Class Samples
1 Brocoli-green-weeds-1 391
2 Corn-senesced-green-weeds 1343
3 Lettuce-romaine-4wk 616
4 Lettuce-romaine-5wk 1525
5 Lettuce-romaine-6wk 674
6 Lettuce-romaine-7wk 799

Total 5348

1. Input: Original data X ∈ RN×M , random projection matrix P ∈ RN×R (use
PGM or PHM as P)

2. Randomly project X to R-dimensional space, yielding X̂ ∈ RR×M :

X̂ = PTX

3. Orthonormalize the rows of X̂ to produce Q:

Q = orth(X̂) ∈ RR×M

4. Perform SVD on XQT ∈ RN×R; i.e.,

XQT = ÛΣ̂V̂T

5. Let the new projection matrix, PFSVD ∈ RN×K , contain the largest K singular
vectors from Û such that K < R� N .

6. Output: New projection matrix PFSVD ∈ RN×K .

Figure 3.1

The FSVD algorithm for feature selection within the random-projection domain
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Figure 3.2

The first three eigenvectors as produced by SVD and FSVD-based methods for Indian
Pines
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Figure 3.3

Spectral angle between the eigenvectors produced by FSVD-SVD methods for Indian
Pines
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Figure 3.4

Classification accuracy for Indian Pines for varying final dimensionality K
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Figure 3.5

Classification accuracy for University of Pavia for varying final dimensionality K
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(a) Ground-truth map

(b) HM (c) HM-FSVD (d) GM

(e) GM-FSVD (f) SVD (g) Original

Figure 3.6

Classification maps for the Indian Pines dataset illustrating different methods using
K = 28
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(a) Ground-truth map

(b) HM (c) HM-FSVD (d) GM

(e) GM-FSVD (f) SVD (g) Original

Figure 3.7

Classification maps for the University of Pavia dataset illustrating different methods using
K = 15
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Figure 3.8

Unsupervised clustering performance using k-means on the Salinas-A dataset
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CHAPTER 4

RANDOM PROJECTIONS AND NONNEGATIVE LEAST SQUARES FOR

SPECTRAL UNMIXING AND CLASSIFICATION

4.1 Introduction

The high spectral resolution of hyperspectral sensors usually comes at the price of low

spatial resolution [14]. Due to the large spatial footprint of the sensor, a single pixel typ-

ically spans a wide area containing multiple landcover masses, thereby forming a “mixed

pixel.” Often, this phenomenon is described using a linear mixture model (LMM) wherein

the mixed pixel is expressed as a linear combination of its constituent endmembers, the

latter being “pure” spectral signatures each describing a single landcover class. In this

case, fractional abundances specify the contribution of each endmember to the given mixed

pixel. Due to their correspondence to the physical realm, fractional abundances in an LMM

must be nonnegative and sum to one in order to describe a mixed pixel realistically. In par-

ticular, negative abundance values would have no physical meaning and could not occur in

reality.

Prior literature contains numerous methods proposed for the determination, or extrac-

tion, of endmember pixels from a hyperspectral image. Some such endmember-extraction

techniques include the pixel purity index (PPI) [15], N-FINDR [96], and vertex compo-

nent analysis (VCA) [79]. Likewise, there exist a multitude of techniques for the esti-
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mation of proportional abundances given a set of endmembers; these include constrained

optimization algorithms like nonnegative matrix factorization (NMF) [12, 88], nonnega-

tive least squares (NNLS) [12, 16, 56, 68, 78], as well as fully-constrained least squares

(FCLS) [54, 73]. The imposition of nonnegativity in these formulations reflects the physi-

cal necessity of nonnegative abundances; FCLS, on the other hand, imposes additionally a

sum-to-one constraint to further embody realistic conditions into the model.

We note that, recently, there have been methods proposed that deploy compressed sens-

ing (CS) for dimensionality reduction, endmember extraction, and reconstruction of data.

Such CS-based methods are attractive due to computational efficiency and ease of imple-

mentation [35, 36, 63, 67, 97]; however, most literature on CS-based methods is focused

exclusively on achieving spectral dimensionality reduction such that a minimal reconstruc-

tion error (usually in the `1 norm) is achieved. We note, on the other hand, that it is not

imperative to incur the computational burden associated with `1-norm reconstruction if our

objective is classification in the reduced space rather than reconstruction [29, 30, 33, 66].

In this chapter, we address the significance of dimensionality reduction for the spectral-

unmixing problem associated with hyperspectral imagery, coupling the random-projection

methodology introduced in the previous chapters with the NNLS [12, 16, 56, 68, 78] strat-

egy for spectral unmixing. In particular, we extend the concept of dimensionality reduction

using HM-based projections to the hyperspectral-unmixing paradigm.

In general, it is expected that dimensionality reduction impacts spectral unmixing in

ways such as increasing discrimination capability and abundance estimation through the

decorrelation of spectral bands, through decreasing signal disparity, and through providing
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inherent noise reduction while preserving essential information present in the data. While

it would seem that a fully-constrained model that incorporates both nonnegativity and a

sum-to-one condition provides the most accurate reflection of reality, recent work (e.g.,

[91]) suggests that merely imposing nonnegativity alone is sufficient. Consequently, in this

work, we adopt only a nonnegativity assumption as it results in a dramatically simplified

mathematical formulation.

Furthermore, it is important to note that random projections alone do not provide data-

specific information discernment which can be crucial to spectral unmixing, wherein the

goal is constituent endmember-abundance estimation. This task instead calls for a more de-

tailed learning of data structure such as that provided by transform-based dimensionality-

reduction methods. However, when applied directly to hyperspectral data, transform-based

methods can be computationally heavy. Therefore, data-learning (in this case feature selec-

tion) can be performed in a random-projection domain to effectively exploit the benefits of

a data-dependent representation while at the same time alleviating the computational bur-

den of transform-based-methods. Hence, we employ HM-based random projections with

feature selection using FSVD as described in Chapter 3. This is then followed by NNLS for

abundance estimation to provide a structured two-stage dimensionality reduction tailored

to the spectral-unmixing problem.

The rest of this chapter is organized as follows. In Section 4.2, we briefly overview the

LMM as well as NNLS for spectral unmixing, while, in Section 4.3, we discuss our pro-

posed combination of random projections, FSVD, and NNLS. In Section 4.4, we present
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a battery of experimental results, while we make some concluding observations in Sec-

tion 4.5. We note that the work presented in this chapter was initially published as [76].

4.2 NNLS and Abundance Estimation

In the LMM, a pixel vector with N spectral bands, y ∈ RN , is described as a linear

combination of C endmembers M ∈ RN×C and their corresponding proportional abun-

dances α =

[
α1 · · · αC

]T
such that

y = Mα + w, (4.1)

where w ∈ RN is an inherent noise process such as atmospheric turbulence, noise during

signal acquisition, etc. In practice, we are given simply the vector y along with mixing

matrix M with C endmembers that have been extracted from the data. Our aim is thus to

estimate the abundance of the endmembers. In the NNLS formulation of this unmixing

problem, we estimate the true abundance α via a quadratically constrained optimization

problem.

NNLS belongs to the set of constrained least-squares regression problems wherein

variables are limited to nonnegative values. A typical NNLS problem can be defined as,

given an input matrix M ∈ RN×C and a pixel vector y ∈ RN , find a nonnegative vector

α̂(y) ∈ RC such that

α̂(y) = arg min
α∈RC
α≥0

∥∥Mα− y
∥∥2
2
. (4.2)

Nonnegativity is relevant with regard to spectral unmixing in hyperspectral imagery since

we are estimating fractional abundance values of endmembers in the mixed pixel, and,

physically, the assumption of nonnegativity always holds true.
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As for classification, we obtain classification maps from the estimated abundance val-

ues by hard classification, i.e.,

θ(y) = arg max
c∈{1,...,C}

α̂c(y), (4.3)

where α̂(y) =

[
α̂1(y) · · · α̂C(y)

]T
, and θ(y) is the class label assigned to vector y

based on the class with maximum abundance. The reconstructed vector ŷ is then

ŷ = Mα̂(y). (4.4)

Below, we use (4.4) to formulate a reconstruction error with the goal of evaluating classi-

fication performance.

4.3 Proposed Approach

4.3.1 NNLS Based on Random Projections

Our main contribution here is to couple dimensionality reduction driven by random

projections with the NNLS paradigm for spectral unmixing such that the unmixing is effec-

tively applied in a reduced-dimensional space, thereby ameliorating computational aspects

of the problem. To perform dimensionality reduction using random projections, we use

either the GM-based projection matrix PGM from (2.1) or the HM-based projection matrix

PHM from (2.3). Assuming that the endmember matrix M is known, its corresponding

low-dimensional representation using HM-based projections is

M̂HM = PT
HMM ∈ RK×C . (4.5)
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By combining equations (4.2) with (2.3) and (4.5), we couple the Hadamard-based dimen-

sionality reduction to the NNLS problem (i.e., HM-NNLS) as

α̂HM(y) = arg min
α∈RC
α≥0

∥∥M̂HMα−PT
HMy

∥∥2
2

(4.6)

which applies the NNLS formulation of (4.2) with dimensionality reduction into a K-

dimensional space, K � N . As noted in Section 2.2.2, random projection driven by a

Hadamard matrix is computationally efficient because it is implementable as a series of

addition and subtraction operations.

As an alternative to HM-NNLS, we can instead use a Gaussian-based projection ma-

trix, PGM, The resulting Gaussian-based dimensionality reduction with NNLS (i.e., GM-

NNLS) is then obtained by substituting PGM into (4.5) and (4.6):

M̂GM = PT
GMM ∈ RK×C , (4.7)

α̂GM(y) = arg min
α∈RC
α≥0

∥∥M̂GMα−PT
GMy

∥∥2
2

(4.8)

The drawback to GM-NNLS is a heavier computational load due to the dense matrix-

multiplication computations implied by the Gaussian matrix. The resulting HM-NNLS

and GM-NNLS algorithms are detailed in Algorithm 4.1, where the corresponding GM-

NNLS algorithm follows by substituting PGM for PHM.

4.3.2 Random Projection with Feature Selection Using FSVD-Based NNLS

Although dimensionality reduction using random projections achieves reduction in

time and space complexity, the spectral-unmixing problem might benefit from learning the

underlying data structure in order to achieve better abundance estimation and classification
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performance. For this, it would be possible to apply any data-dependent transform; how-

ever, the FSVD paradigm proposed in Chapter 3, which combines the benefits of both com-

putationally lightweight random projections and a data-dependent transform-based repre-

sentation offers an attractive alternative. We formulate the resulting HM-FSVD-NNLS and

GM-FSVD-NNLS as follows.

Let the collection of target vectors be defined as Y =

[
y1 · · ·yM

]
∈ RN×M . This is

randomly projected using HM-based projections to an R-dimensional space. SVD is then

performed on the resulting lower-dimensional ŶHM, and the desiredK features are selected

for further dimensionality reduction such that K < R � N . The selected K features are

used as the new projection matrix P̂HM for a second-stage dimensionality reduction. This

new projection matrix is then used in (4.5) and (4.6) to drive the projection-domain NNLS.

The proposed HM-FSVD-NNLS and GM-FSVD-NNLS algorithms are detailed in Algo-

rithm 4.2, where the corresponding GM-FSVD-NNLS algorithm follows by substituting

PGM for PHM.

4.4 Experimental Results

4.4.1 Experimental Setup

In this section, we experimentally validate the efficacy of our proposed random-

projection-based dimensionality reduction and abundance estimation. We use the same

Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) dataset that was used in Sec-

tion 3.3.2, i.e., Salinas-A. We also generate an artificial random dataset with N = 204

spectral bands and M = 2, 000 samples by linearly mixing pixels from Salinas-A. The
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number of endmembers is C = 6; these are collected in mixing matrix M. Artificially

generated abundance vector α(m) for pixel m is modeled as a uniformly distributed ran-

dom variable within [0, 1]. Finally, we add additive white Gaussian noise η(m) such that

the final artificial pixel vector for pixel m is

y(m) = Mα(m) + η(m). (4.9)

Finally, we use the Cuprite1 dataset, an AVIRIS image acquired over the Cuprite areas

in Nevada. This dataset has a spatial dimension of 512 × 614 with 224 spectral bands;

after removal of water absorption bands (bands 1–2, 105–115, 150–170, and 223–224),

the remaining 188 spectral bands are used. Figure 4.11 gives a grayscale visualization of

Cuprite.

For quantitative assessment, we define the average abundance error (AE) over the entire

M -pixel dataset as

AE =
1

M

M∑
m=1

∥∥α(m) − α̂(y(m))
∥∥2, (4.10)

where α̂(y(m)) is the NNLS-estimate (i.e., (4.2) or (4.6), depending on whether random

projection is used or not) for pixel vector y(m). We also define an average pixel recon-

struction error (PRE) as the error between original target vector y(m) and the reconstructed

target vector ŷ(m) as

PRE =
1

M

M∑
m=1

∥∥y(m) − ŷ(m)
∥∥2, (4.11)

where ŷ(m) is either Mα̂(y), M̂HMα̂(y), or M̂GMα̂(y) as appropriate, depending on

whether random projections are used and which kind.
1http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_

Sensing_Scenes
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In the experimental results to follow, we compare the methods proposed in this chapter,

namely, HM-NNLS and GM-NNLS as described in Section 4.3.1 as well as HM-FSVD-

NNLS and GM-FSVD-NNLS as described in Section 4.3.2. Additionally, we compare

to dimensionality reduction using SVD applied directly to the original dataset followed

by NNLS, which we denote as “SVD-NNLS,” and, finally, NNLS abundance estimation

applied directly on the original dataset without dimensionality reduction (denoted simply

as “NNLS”).

For HM-FSVD-NNLS and GM-FSVD-NNLS, a two-stage dimensionality reduction is

performed by using random projections to first reduce to R dimensions followed by a sec-

ond reduction to a final dimensionality K; as in Section 3.3, we use K = 0.7R throughout

the results presented here. On the other hand, in the case of HM-NNLS, GM-NNLS, and

SVD-NNLS, dimensionality reduction to K dimensions was carried out directly. We use

specifically K ∈ {14, 29, 43, 57, 71, 85, 100, 114, 129, 143}.

4.4.2 Results for the Artificial Dataset

Tables 4.1 and 4.2 present the AE and PRE, respectively, for the artificial dataset, using

a reduced dimensionality of K = 29 for the HM-NNLS and GM-NNLS techniques. We

see that the methods based on random projections provide close approximation to the orig-

inal data with low AE and PRE regardless of the noise level; this effect can be especially

noted in the case of HM-FSVD-NNLS which uniformly achieves the lowest PRE of all the

methods considered.
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4.4.3 Results for the Salinas-A Dataset

For the Salinas-A dataset, Figure 4.3 illustrates the spectral angle (in degrees) between

the eigenvectors produced by the FSVD-NNLS methods and those from SVD as deter-

mined directly from the original dataset with full dimensionality. We see that HM-FSVD-

NNLS yields lower spectral angles than GM-FSVD-NNLS, proving that FSVD-methods

does indeed provide effective data-learning and preserves essential information present in

the data. Tables 4.3–4.5 tabulate overall classification accuracy (OA) and PRE for the

Salinas-A dataset. Figures 4.4–4.9 give the fractional abundance maps for K = 29 for

all methods under consideration, while Figure 4.10 illustrates the classification maps after

hard classification (i.e., (4.3)) is performed on estimated abundance maps for a reduced di-

mension ofK = 29. Finally, Table 4.6 gives the computation time for the various methods.

We note that the methods based on random projections have computation times lower than

both NNLS and SVD on the original dataset, and we see that HM-FSVD-NNLS generally

provides the closest approximation to the original data while preserving important infor-

mation so as to yield generally the lowest PRE and highest OA through all dimensions.

4.4.4 Results for the Cuprite Dataset

Figures 4.12–4.17 illustrate the estimated fractional abundance maps for reduced di-

mension K = 92 for the Cuprite dataset for all methods under consideration. We note

that, visually, it appears that HM-FSVD-NNLS yields a more accurate abundance es-

timation compared to the other methods. Table 4.7 tabulates computation time for the
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Cuprite dataset, again demonstrating that the random-projection-based methods are faster

than SVD on the original data space.

4.5 Observations

In this chapter, we empirically demonstrated the effectiveness of using various meth-

ods for dimensionality reduction driven by random projections coupled with NNLS in

order to address the spectral-unmixing problem in a reduced-dimensional space, thereby

circumventing high storage and computation costs. The proposed HM-FSVD-NNLS in-

corporates benefits of both computationally lightweight random projections as well as the

data-specific learning of transform-based methods, but with a significant reduction in com-

putation time over SVD as applied in the original data space. All the methods based on

random projections performed competitively; in particular, HM-FSVD-NNLS had the best

abundance estimation and classification performance with low reconstruction errors even

at low dimensions. As expected, all the HM-based methods were more computationally

efficient than their GM-based counterparts, and significantly faster than SVD applied alone

to the original dataset.

These observations conclude our investigations of random projections for dimension-

ality reduction of hyperspectral imagery. The next—and final—chapter of this dissertation

makes a number of concluding remarks.
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Table 4.1

AE for the artificial dataset over different noise levels for a reduced dimensionality of
K = 29

Noise AE
(in dB) HM-NNLS HM-FSVD- GM-NNLS GM-FSVD- SVD- NNLS

NNLS NNLS NNLS
20 0.116 0.116 0.153 0.137 0.190 0.121
40 0.058 0.061 0.076 0.077 0.046 0.062
60 0.020 0.025 0.052 0.024 0.011 0.021
80 3.72e-04 5.15e-04 4.55e-03 5.60e-04 2.29e-04 3.89e-04
100 3.73e-06 5.06e-06 5.22e-05 5.19e-06 3.34e-06 3.90e-06

Table 4.2

PRE for the artificial dataset over different noise levels for a reduced dimensionality of
K = 29

Noise PRE
(in dB) HM-NNLS HM-FSVD- GM-NNLS GM-FSVD- SVD- NNLS

NNLS NNLS NNLS
20 0.729 0.702 0.853 0.817 0.749 0.768
40 0.726 0.694 0.748 0.804 0.730 0.755
60 0.725 0.693 0.746 0.804 0.721 0.755
80 0.725 0.693 0.747 0.801 0.721 0.754
100 0.725 0.693 0.747 0.801 0.721 0.754
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Table 4.3

OA and κ statistics for Salinas-A with reduced dimensionality K = 29

Class HM-NNLS HM-FSVD- GM-NNLS GM-FSVD- SVD- NNLS
NNLS NNLS NNLS

1 99.74 99.74 99.74 99.74 99.74 99.74
2 38.49 43.04 38.49 39.24 38.37 38.49
3 96.49 96.62 96.33 96.59 92.34 96.91
4 98.68 98.70 98.61 98.61 96.13 98.68
5 99.85 99.85 99.85 99.85 99.85 99.85
6 99.25 99.87 99.15 99.37 98.99 99.49
OA 83.68 84.33 83.65 83.81 83.22 83.71
κ 80.07 80.99 80.02 80.15 79.76 80.12

Table 4.4

OA over varying reduced dimensionality K for Salinas-A

OA
K HM-NNLS HM-FSVD- GM-NNLS GM-FSVD- SVD- NNLS

NNLS NNLS NNLS
14 83.71 84.46 83.64 83.02 82.81 83.71
29 83.68 84.33 83.65 83.81 83.22 83.71
43 83.68 83.72 83.65 83.78 83.39 83.71
57 83.68 83.55 83.65 83.02 83.23 83.71
71 83.68 84.14 83.67 82.66 83.58 83.71
85 83.68 83.90 83.67 83.43 83.24 83.71
100 83.71 83.94 83.71 83.43 83.67 83.71
114 83.71 84.74 83.71 83.73 83.71 83.71
129 83.71 83.90 83.71 83.76 83.60 83.71
143 83.71 84.11 83.71 83.71 83.52 83.71
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Table 4.5

PRE over varying reduced dimensionality K for Salinas-A

PRE
K HM-NNLS HM-FSVD- GM-NNLS GM-FSVD- SVD- NNLS

NNLS NNLS NNLS
14 0.0032 0.0020 0.0048 0.0035 0.0035 0.0030
29 0.0028 0.0026 0.0025 0.0033 0.0037 0.0030
43 0.0028 0.0021 0.0034 0.0033 0.0033 0.0030
57 0.0026 0.0022 0.0027 0.0031 0.0035 0.0030
71 0.0027 0.0024 0.0023 0.0032 0.0038 0.0030
85 0.0028 0.0020 0.0029 0.0032 0.0037 0.0030
100 0.0024 0.0026 0.0024 0.0031 0.0031 0.0030
114 0.0025 0.0021 0.0030 0.0031 0.0031 0.0030
129 0.0028 0.0022 0.0033 0.0030 0.0032 0.0030
143 0.0030 0.0024 0.0035 0.0030 0.0032 0.0030

Table 4.6

Computation time (in sec) over varying reduced dimensionality K for Salinas-A

Computation time (in sec)
K HM-NNLS HM-FSVD- GM-NNLS GM-FSVD- SVD- NNLS

NNLS NNLS NNLS
14 2.19 2.45 2.59 3.65 4.72 4.20
29 2.21 2.54 2.75 3.54 4.59 4.20
43 2.23 2.41 2.64 4.01 4.31 4.20
57 2.52 2.77 3.03 3.39 4.33 4.20
71 2.47 3.09 2.82 3.61 4.32 4.20
85 2.55 2.81 2.71 3.56 4.82 4.20
100 2.58 3.18 2.86 3.57 4.89 4.20
114 2.64 2.81 2.94 3.77 5.19 4.20
129 2.70 2.92 3.48 3.51 5.29 4.20
143 2.63 2.81 3.46 3.54 5.34 4.20
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Table 4.7

Computation time (in sec) for reduced dimensionality K = 92 for Cuprite

Computation time (in sec)
K HM-NNLS HM-FSVD- GM-NNLS GM-FSVD- SVD- NNLS

NNLS NNLS NNLS
92 301 412 328 449 3857 1031

1. Input: Endmember matrix M ∈ RN×C and a test hyperspectral vector y ∈ RN .

2. Generate random projection matrix PHM via (2.3).

3. Use computed random projections to project endmember matrix M to its corre-
sponding K-dimensional space producing M̂HM:

M̂HM = PT
HMM ∈ RK×C .

4. Conduct the NNLS unmixing problem for abundance estimation:

α̂HM(y) = arg minα∈RCα≥0
∥∥M̂HMα−PT

HMy
∥∥2
2
.

5. Perform hard classification on the estimated abundance values to derive class
labels,

θ(y) = arg maxc∈{1,...,C} α̂c(y),

where α̂HM(y) =
[
α̂1(y) · · · α̂C(y)

]
.

6. Compute the reconstructed target vector ŷ from the estimated abundances:

ŷHM = M̂α̂HM(y).

7. Output: Abundances α̂HM(y) and hard-classification result θ(y).

Figure 4.1

The randomized HM-NNLS algorithm for abundance estimation
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1. Input: Endmember matrix M ∈ RN×C , original dataset Y ∈ RN×M , and a
test hyperspectral vector y ∈ RN .

2. Generate random projection matrix PHM via (2.3).

3. Reduce dimensionality of dataset Y:

ŶHM = PT
HMY.

4. Orthonormalize the rows of ŶHM to produce Q = orth(ŶHM) ∈ RR×M

5. Perform SVD on YQT ∈ RN×R. i.e., YQT = ÛΣ̂V̂T

6. Let the new projection matrix be P̂HM ∈ RN×K contain the largest K singular
vectors from Û such that K < R� N .

7. Let the new reduced-dimension mixing matrix be

M̂HM = P̂T
HMM ∈ RK×C .

8. Conduct the NNLS unmixing problem for abundance estimation:

α̂HM(y) = arg minα∈RCα≥0
∥∥M̂HMα− P̂T

HMy
∥∥2
2
.

9. Perform hard classification on the estimated abundance values to derive class
labels,

θ(y) = arg maxc∈{1,...,C} α̂c(y),

where α̂HM(y) =
[
α̂1(y) · · · α̂C(y)

]
.

10. Compute the reconstructed target vector ŷ from the estimated abundances:

ŷHM = M̂α̂HM(y).

11. Output: Abundances α̂HM(y) and hard-classification result θ(y).

Figure 4.2

The randomized HM-FSVD-NNLS algorithm for abundance estimation
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Figure 4.3

Spectral angle between the eignevectors produced by the FSVD-SVD-NNLS methods for
Salinas-A
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(a) Broccoli-green-weeds-1 (b) Corn-senesced-green-weeds (c) Lettuce-romaine-4wk

(c) Lettuce-romaine-5wk (d) Lettuce-romaine-6wk (e) Lettuce-romaine-7wk

Figure 4.4

Abundance maps for each class using HM-NNLS for the Salinas-A dataset for K = 29
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(a) Broccoli-green-weeds-1 (b) Corn-senesced-green-weeds (c) Lettuce-romaine-4wk

(c) Lettuce-romaine-5wk (d) Lettuce-romaine-6wk (e) Lettuce-romaine-7wk

Figure 4.5

Abundance maps for each class using HM-FSVD-NNLS for the Salinas-A dataset for
K = 29
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(a) Broccoli-green-weeds-1 (b) Corn-senesced-green-weeds (c) Lettuce-romaine-4wk

(c) Lettuce-romaine-5wk (d) Lettuce-romaine-6wk (e) Lettuce-romaine-7wk

Figure 4.6

Abundance maps for each class using GM-NNLS for the Salinas-A dataset for K = 29
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(a) Broccoli-green-weeds-1 (b) Corn-senesced-green-weeds (c) Lettuce-romaine-4wk

(c) Lettuce-romaine-5wk (d) Lettuce-romaine-6wk (e) Lettuce-romaine-7wk

Figure 4.7

Abundance maps for each class using GM-FSVD-NNLS for the Salinas-A dataset for
K = 29
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(a) Broccoli-green-weeds-1 (b) Corn-senesced-green-weeds (c) Lettuce-romaine-4wk

(c) Lettuce-romaine-5wk (d) Lettuce-romaine-6wk (e) Lettuce-romaine-7wk

Figure 4.8

Abundance maps for each class using SVD-NNLS for the Salinas-A dataset for K = 29
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(a) Broccoli-green-weeds-1 (b) Corn-senesced-green-weeds (c) Lettuce-romaine-4wk

(c) Lettuce-romaine-5wk (d) Lettuce-romaine-6wk (e) Lettuce-romaine-7wk

Figure 4.9

Abundance maps for each class using NNLS for the Salinas-A dataset.
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(a) Ground-truth map (b) HM-NNLS (c) HM-FSVD-NNLS

(c) GM-NNLS (d) GM-FSVD-NNLS (e) SVD-NNLS

(f) NNLS

Figure 4.10

Classification maps for Salinas-A dataset illustrating different methods for reduced
dimension K = 29
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Figure 4.11

Grayscale visualization of the Cuprite dataset
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(a) Alunite (b) Montmorillonite (c) Alunite+Kaolinite+Muscovite

(d) Kaolinite (e) Halloysite (f) Dickite

(g) Muscovite (h) Buddingtonite (i) Chalcedony

Figure 4.12

Abundance maps for each endmember using HM-NNLS for the Cuprite dataset with
K = 92
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(a) Alunite (b) Montmorillonite (c) Alunite+Kaolinite+Muscovite

(d) Kaolinite (e) Halloysite (f) Dickite

(g) Muscovite (h) Buddingtonite (i) Chalcedony

Figure 4.13

Abundance maps for each endmember using HM-FSVD-NNLS for the Cuprite dataset
with K = 92
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(a) Alunite (b) Montmorillonite (c) Alunite+Kaolinite+Muscovite

(d) Kaolinite (e) Halloysite (f) Dickite

(g) Muscovite (h) Buddingtonite (i) Chalcedony

Figure 4.14

Abundance maps for each endmember using GM-NNLS for the Cuprite dataset with
K = 92
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(a) Alunite (b) Montmorillonite (c) Alunite+Kaolinite+Muscovite

(d) Kaolinite (e) Halloysite (f) Dickite

(g) Muscovite (h) Buddingtonite (i) Chalcedony

Figure 4.15

Abundance maps for each endmember using GMFSVD-NNLS for the Cuprite dataset
with K = 92
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(a) Alunite (b) Montmorillonite (c) Alunite+Kaolinite+Muscovite

(d) Kaolinite (e) Halloysite (f) Dickite

(g) Muscovite (h) Buddingtonite (i) Chalcedony

Figure 4.16

Abundance maps for each endmember using SVD-NNLS for the Cuprite dataset
withK = 92
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(a) Alunite (b) Montmorillonite (c) Alunite+Kaolinite+Muscovite

(d) Kaolinite (e) Halloysite (f) Dickite

(g) Muscovite (h) Buddingtonite (i) Chalcedony

Figure 4.17

Abundance maps for each endmember using NNLS for the Cuprite dataset.
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CHAPTER 5

CONCLUSIONS

This dissertation targets the development of algorithms for the dimensionality reduction

of hyperspectral imagery using random projection. There has been a growing need for

faster and more efficient dimensionality-reduction techniques—especially in the case of

hyperspectral imagery which poses a heavy computational load due to its dense spectral

bands. As data sizes continue to increase, computationally lightweight dimensionality

reduction—such as offered by random projections—is likely to become ever more critical

in hyperspectral applications.

In Chapter 2, we take the first stride in this direction by considering random projec-

tions based on a random Hadamard matrix (HM) as an alternative to the more widely

used random Gaussian matrix (GM). HM-based projections ameliorate the computational

burden by replacing a costly matrix multiplication with a series of addition and subtrac-

tion operations. We discuss in detail the similarities between the computationally efficient

block-based-structure of the HM and that of the Discrete Fourier transform (DFT).

In Chapter 3, we further explore the realm of random projections by coupling them

with more traditional transform-based methods in the form of a two-stage dimensionality

reduction using a fast singular value decomposition (FSVD). More specifically, we first
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employ a random projection to reduce dimensionality into an intermediate-dimensional

space, and then perform FSVD-based feature selection to achieve reduction to the final

low-dimensional space. Typically, transform-based dimensionality reduction methods are

computationally intense but provide a desirable data-dependent dimensionality reduction

that can capture relevant data structures. The two-stage dimensionality reduction thus

leverages random projections in order to expedite the computation of the subsequent data-

dependent FSVD transform. Ultimately, this yields an approximation to the true SVD at a

fraction of the computational cost.

Finally, in Chapter 4, we address the commonly encountered spectral-unmixing prob-

lem by employing dimensionality reduction using random projection along with a nonnegative-

least-squares (NNLS) process to yield a computationally efficient estimation of endmem-

ber abundances. The random-projection methods explored in the preceding chapters pro-

vided a computationally efficient reduction of dimensionality with NNLS being deployed

in the resulting low-dimensional space. By several measures, the random-projection-based

methods match or outperform NNLS deployed directly on the original dataset while run-

ning significantly faster.

Such is the overarching observation made generally throughout this dissertation—

that random projections offer an efficient and easily implementable methodology for di-

mensionality reduction that permits hyperspectral-analysis tasks—such as unmixing and

classification—to be conducted in a lower-dimensional space. In doing so, little, if any,

performance is lost in the analysis task, while reductions in computational complexity
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are significant. For this reason, random projections are anticipated to continue to be of

paramount importance for the dimensionality reduction of hyperspectral imagery.
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