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Interactions of Asthma Drugs with Artificial Saliva and Mucus. Modeling 

pulmonary particulate transport requires related biofluid physicochemical properties. 

Aims included measuring the effects of common aerosol drugs on artificial saliva and 

diffusivities of asthma medications in mucus. Artificial saliva solutions doped with 

asthma medications were characterized by pH, interfacial tension, and rheology. To 

measure diffusion, drug concentration was monitored by time-dependent FTIR spectra, 

and diffusivity obtained using Fick’s second law. Measured theophylline and albuterol 

diffusivities were ca. 10-6 cm2/s. 

Surface Modification of Polymer Films with Light-Emitting Chemicals. To 

develop a polymer film system that changed color in response to radiation, acid groups of 

poly(ethylene-co-acrylic acid) were used to attach  two light-emitting polymers: 4-

(octyloxy)-4-biphenylcarboxylic acid and 2,7-bis(bromomethyl)-9,9-dihexyl-9H-

fluorene. Each reaction step was confirmed using static contact angle goniometry, FTIR 

spectroscopy, and X-ray photoelectron spectroscopy. UV-Vis and fluorescence 
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spectroscopy measured the absorption spectra. Modified films were irradiated (=254 

nm) and produced blue emissions. 
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CHAPTER I 

INTRODUCTION TO ARTIFICIAL SALIVA, AEROSOL DRUGS, AND MODELING 

DIFFUSION OF DRUGS THROUGH PULMONARY MUCUS 

1.1 Background 

The implementation of inhalation aerosol drugs has been one of the most 

successful and effective treatments for respiratory illnesses. This delivery mechanism has 

allowed for the direct application of therapeutic drugs to damaged, diseased, or distressed 

lungs needing immediate treatment. Asthma is one of the most common respiratory 

illnesses treated by aerosol drugs. Studies of the various types of inhalation drugs have 

led to improvements in the treatment of asthma and how they can promote reversal of 

bronchoconstriction (immediate response treatment) or act as preventative agents to 

provide continuous systemic therapy against the emergence of bronchoconstriction 

[Volsko and Reed, 2000]. 

Aerosols are also being investigated as treatments for other ailments, such as 

diabetes. An inhalation form of insulin called Oralin®, a high-velocity fine particle 

aerosol, was developed as an alternate delivery method for insulin for diabetic patients.  

The invasiveness of current diabetes treatments provoked the interest in using aerosols to 

control the disease. The small particle size and direct deposition into the lungs resulted in 

more rapid absorption and metabolic control than the previous methods of subcutaneous 

injection [Modi, 2005]. Insulin bioavailability can reach 37% with inhalation 

administration as opposed to 1% via oral, sublingual nasal or transdermal administration 
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[Todoroff and Vanbever, 2011].  Infection in the lungs of cystic fibrosis (CF) patients is 

also an ailment for which the use of aerosol drugs is being investigated. Pseudomonas 

aeruginosa is an infection that is nearly impossible to cure with antibiotics and is a 

leading cause of death in CF patients. Due to the denser, more highly glycosylated 

pulmonary mucus of CF patients, it is increasingly difficult to diffuse any treatments 

through these layers to treat the P. aeruginosa. Photodynamic antimicrobial therapy was 

found to be a successful treatment by delivering photosensitizers to the lungs through 

inhalation. Delivery of red light at 635 nm and two photosensitizers across artificial CF 

mucus was successful, validating the theory of using aerosols as treatments for CF 

complications [Donnelly et al., 2007, Khanvilkar et al., 2001]. Recent research has also 

investigated the use of nanoparticle agglomerate suspensions composed of asthma 

treatments fluticasone and/or albuterol. The resulting aerosols contained an ideal water-

soluble nanostructure as well as a range of particle diameters from 1-5 micron, which can 

be tailored for localized treatments. This method would be a solution to the recurring 

issue of drug particle size, exhalation of nanoparticle (>0.5-1 micron in diameter) sized 

drugs, and poor water solubility by some drugs in saliva and pulmonary mucus. A 

tailored drug particle size avoids the physiological barriers of the lung physiology and 

delivers the drug to the desired lung region [El-Gendy et al., 2011, Todoroff and 

Vanbever, 2011]. 

Along with research on current and developing treatments for asthma, other 

factors affecting the efficiency of aerosol treatments need to be investigated to result in 

the most effective treatment for lung inflammation. Saliva, being the ultimate carrier of 

the aerosols to the lungs, needs to be considered when engineering aerosol drugs, as well 

as the pulmonary mucus that serves as a protective barrier for the lungs while obstructing 
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the diffusion of the drugs to the lung surface. Drugs need to be designed to diffuse 

through the viscous mucus layer quickly while retaining their medicinal properties. 

Model mucus membranes have been developed, as well as mathematic simulation models 

for the diffusion of the drugs through mucus. Lipophilicity has been found to be one of 

the most influential characteristics of the ability of drug diffusion, as well as particle size 

[Larhed et al., 1997]. 

The deposition patterns and diffusion mechanisms of the drugs are also under 

intense investigation. Understanding drug properties, deposition patterns, drug-mucus 

interactions, and drug diffusion will ultimately lead to the development of the least 

invasive, most effective drug that will diffuse the lung mucus at the highest concentration 

and in the fastest manner. Developments in this field could contribute to an even wider 

range of illnesses being treated with aerosol drugs. 

1.2 Types of Asthma Treatments 

Aerosols are frequently used as a delivery mechanism in the lungs for the 

treatment of respiratory and systemic illnesses. Compared to other drug delivery 

methods, smaller dosages, low cost and minimal side effects, bypassing of the digestive 

system, non-invasiveness, chemical stability, patient compliance, and faster action make 

inhalation drug delivery worth further investigation and development [Chan, 2006]. 

Significant advances have been made, especially in the past decade, for the 

treatment of respiratory illnesses via pulmonary drug delivery [Chan, 2006]. Treatments 

range from fast acting rescue 2-receptor agonists and systemic corticosteroids to long-

term medications that prevent lung inflammation and control of diseases such as asthma 

[Chan, 2006; Volsko and Reed, 2000]. Aerosol fast-acting 2-receptor agonists are 
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typically the treatment of choice of most physicians due to their effectiveness in relaxing 

the bronchoconstriction by binding to the 2-receptors of the bronchial smooth muscle. 

Fast acting 2-receptor agonists also have minimal systemic absorption and side effects. 

Corticosteroids, when administered short-term and in high doses, can speed the resolution 

of bronchoconstriction as well as lessen the likeliness of relapse. Systemic effects limit 

this treatment to short term for acute attacks [Volsko and Reed, 2000]. Long-term 

treatments are administered to patients to provide continuous therapy and eliminate or 

lessen the frequency and severity of attacks.  These drugs prevent the 

bronchoconstriction that cause asthma attacks as well as control acute symptoms. 

Treatment types include long-acting 2-receptors, corticosteroids, and leukotriene 

modifiers, which block the immune system chemicals that cause asthma symptoms, 

leukotrienes, from affecting the body [Mayo Clinic, 2010]. 

Some of the most common drugs used in the treatments of asthma include 

albuterol/salbutamol, a short-acting 2-receptor agonist, prednisone, a systemic 

corticosteroid, salmeterol and theophylline, both long-acting 2-receptor agonists, or an 

anti-inflammatory corticosteroid, such as fluticasone [Volsko and Reed, 2000]. Other 

long-term treatments include drugs such as Advair®, a salmeterol-fluticasone propionate 

mixture and Singulair®, a leukotriene modifier comprised of montelukast sodium. 

Theophylline was one of the most widely used treatments for asthma for decades as both 

a fast-acting and long-acting treatment, however, due to misuse, abuse, toxicity with high 

doses, and difficulty determining the optimal dosage [Volsko and Reed, 2000], albuterol 

surpassed theophylline as the leading treatment for fast-acting asthmatic management. 

Theophylline is still used as a long-term treatment, but with increased patient monitoring. 

Albuterol/salbutamol, on the other hand, is most commonly used in rescue situations as a 
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response to an asthma attack. Albuterol is one of the most effective immediate treatments 

when inhaled via aerosol inhaler, since it provides direct effect to the inflamed bronchial 

smooth muscle. Potassium iodide (KI), an expectorant, is another treatment that thins 

mucus secretions in the respiratory tract, making it easier for patients to clear the airway 

by coughing. KI is not a commonly used treatment for asthma. This research focuses on 

four asthma treatments: albuterol/salbutamol, theophylline, KI, and Advair®. The 

chemical structures of these drugs can be seen in Figure 1.1. 

Figure 1.1 Chemical structures of the asthma treatments used in this study: albuterol, 
theophylline, KI, and fluticasone propionate and salmeterol xinafoate, 
respectively, which in combination constitute Advair®. 

1.3 Saliva 

Saliva is a complex biological fluid that first contacts the inhaled pharmaceuticals. 

The three human salivary glands, parotid, submandibular, and sublingual glands [Rossetti 
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et al., 2008], secret saliva at a rate of approximately 1.5 liters per day [Preetha and 

Banerjee, 2005, Juniper et al., 1995]. It is an aqueous non-Newtonian slightly alkaline 

fluid comprised primarily of water, lipids, glycoproteins, and digestive enzymes [Preetha 

and Banerjee, 2005]. Saliva has many functions that contribute to mouth lubrication, 

digestion, management of oral microbes [Rossetti et al., 2008], and has recently been 

investigated as a biomarker for diseases and the detection of systemic illnesses [Schipper 

et al., 2007]. 

Artificial saliva can act as a close replicate for patients who lack an adequate 

amount of natural saliva to satisfy the body’s functions. Artificial salivas must be as close 

as possible in a biophysical capacity to the physiological properties of natural saliva. For 

research purposes, artificial salivas must model natural saliva accurately for the validity 

of any conclusions. Properties such as viscosity, wettability, interfacial and viscoelastic 

tension, and uniformity must be closely replicated [Levine, 1993]. 

1.4 Mucus 

Mucus is a viscous secreted fluid that is produced by goblet cells and sub-mucosa 

glands of mucous membranes as a protective barrier [Todoroff and Vanbever, 2011, 

Hombach and Bernkop-Schnurch, 2010]. It is secreted at a rate of approximately one liter 

per day in the human body [Hombach and Bernkop-Schnurch, 2010]. Mucus contains 

antiseptic enzymes, immunoglobulins, proteins, and glycoproteins (mucins). It covers the 

entire airway and protects the membrane against bacteria and other foreign agents that 

enter the lung. Mucus exists in two layers: an upper gel phase and a lower sol phase. The 

upper gel phase is 95% water, 2% mucin, and the remainder salts, proteins, and lipids. 

The lower sol layer is less viscous, which allows for cilia beating [Todoroff and 
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Vanbever, 2011]. Figure 1.2 illustrates the setup of the gel-sol mucus layer on top of the 

pulmonary epithelial cells and beating cilia. 

Figure 1.2 Depiction of gel and sol mucus layers above the pulmonary epithelial cells 
with cilia penetrating the sol layer. 

In the respiratory system, the mucus protects the lungs by trapping foreign 

particles that enter the respiratory tract and lungs.  By protecting the lungs from foreign 

particles, the lung mucus also acts as a barrier that impedes the diffusion of drug 

particulates. The structure of the mucosal barrier is one of the most influential factors 

against the diffusion of particles. Mucin causes the viscoelastic property of mucus and is 

the backbone of the cross-linked network structure of mucus. [Khanvilkar et al, 2001]. 

The crosslinking phenomenon is caused by disulfide bridges and hydrophobic bonds of 

polymerized mucin aggregate rods [Khanvilkar et al, 2001]. In addition, mucus is 

hydrophobic due to the presence of several phospholipids [Khanvilkar et al, 2001]. 

When making artificial mucus, several factors must be considered.  The artificial 

mucus must be close in viscosity to natural mucus in order to accurately mimic the 

viscosity differences between mucus and saliva. In using a more complex artificial mucus 

network, any resulting conclusions regarding useful diffusion and air-liquid interface 

behavior observations will be increasingly accurate. Valid conclusions can be made for 
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inhaled drug behavior when the artificial system is a close to natural physiologic 

characteristics as possible. 

1.5 Drug Inhalation, Deposition, and Diffusion 

Understanding the fate of aerosol drugs in the lungs is essential to the therapeutic 

properties of treatments provided by the drugs. Chemical interaction is an important 

characteristic to consider, since the pharmacodynamic response is determined by these 

interactions [Todoroff and Vanbever, 2011]. Drugs that are quickly uptaken by 

pulmonary macrophages provide rapid response to ailing lungs, while uptake by other 

cell types may redirect the drugs to another pathway, deeming them ineffective to their 

desired pathway [Todoroff and Vanbever, 2011]. Drugs must also be small enough to 

avoid being swept away by cilia in the lung epithelial cells (mucociliary clearance), but 

large enough to avoid being exhaled. In order to minimize the amount of exhaled 

particles and dose variability, particles should be greater than 0.5-1 m. These particles 

will settle in the central and distal tracts of the lung by gravitational settling [Todoroff 

and Vanbever, 2011].  Particles less than 1 m are most likely to be exhaled [El-Gendy et 

al., 2011]. Ultrafine particles less than 100 nm can reach the alveolar region, where 

systemic drug absorption occurs, by Brownian motion [Todoroff and Vanbever, 2011]. 

Particles in the range of 1-3 m also reach the alveolar region, while particles 3-10 m 

deposit in the tracheo-bronchial tree for airway treatment [Todoroff and Vanbever, 2011]. 

The structure of the lung tissue that interacts with the inhaled particles is largely 

dependent on the airway generation where the particle deposits. The particle deposition 

location is based on the aerodynamic diameter of the aerosol particle, and is a function of 

particle density, particle diameter and particle dynamic shape factor [Todoroff and 

8 



 

 

 

  

 

 

 

 

  

 

 

 

 

  

Vanbever, 2011]. Drug behavior at the air-liquid interfaces also needs to be evaluated. 

Proteins, protein aggregation, and particle immersion must also be considered [Todoroff 

and Vanbever, 2011]. 

Lung geometry is the last important factor to consider when modeling particle fate 

with inhalation drugs. Lungs are similar to inverted trees, with a large trunk (the trachea) 

and branches that are bifurcated into many generations, with the largest generations 

branching off the trachea and becoming increasingly smaller with thicker lung walls 

[Gehr et al., 1990]. The thinner, larger generations, where drugs are most likely 

deposited, have more ideal properties such as larger surface area and thinner lung walls 

for drug diffusion [Martonen and Katz, 1993, Gehr et al., 1990]. A depiction of lung 

geometry can be seen in Figure 1.3. 

Figure 1.3 Depiction of human lung generations. 
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1.6 Research Objectives 

Using the information provided from previous sections, a comprehensive 

understanding of asthma, treatments of the disease, the geometry of the lung, and mucus 

and saliva properties has been formed. This study investigates the physicochemical 

properties of saliva and mucus that impact the ultimate fate of the drug being 

administered and its bioavailability. Three artificial salivas were made and evaluated for 

pH, interfacial tension and rheological properties in both the neat and drug-doped forms. 

It is also important to understand the path of the particulates that exist in these inhalation 

drugs through the respiratory tracts, deposition patterns, and the ultimate bioavailability 

of these medications. By using representative drug-doped solutions and an artificial 

mucus layer, materials and transport parameters can be measured for modeling the 

behavior of drug particles in the human lung. 

Once the evaluation of the data demonstrated how the drugs affect the physical 

properties of saliva, the diffusivity properties of the drugs were then tested. Two drugs, 

theophylline and albuterol, were then selected for diffusion experimentation using an 

artificial mucus. Using Fick’s second law of diffusion, the diffusivity coefficients of the 

drugs through the mucus were determined. 

This research is part of a larger project that models the deposition pattern of drug 

particulates on the surface, and then follows the drug particulates through the mucus layer 

to the lung surface. The mucus layer compositions are also being investigated. This part 

of the research focuses on the effects of the drugs on the properties of saliva and 

pulmonary mucus, as well as the diffusion of the drug particles though the mucus layer. 
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CHAPTER II 

CHARACTERIZATION OF THE PHYSICOCHEMICAL PROPERTIES OF NEAT 

AND DRUG-DOPED ARTIFICIAL SALIVA 

2.1 Abstract 

Three artificial saliva solutions, xialine 1, xialine 2, and saliveze, were prepared 

and their properties compared to natural/physiological saliva. The interfacial tensions of 

the saliva solutions were evaluated in addition to rheological properties. All three 

artificial saliva solutions varied minimally (1.62-8.46%) from the interfacial tension 

values given for natural saliva in the literature [Preetha and Banerjee, 2005; Kasakov, 

2009]. The artificial salivas were more viscous than natural saliva at all shear rates 

evaluated by rheology. Each saliva solution was then doped with four drugs used in the 

treatment of asthma: albuterol/salbutamol, theophylline, potassium iodide (KI), and 

Advair®. KI, salbutamol and Advair® consistently increased the interfacial tension 

measurements. Albuterol and theophylline gave inconsistent interfacial tension results 

showing both increased and decreased values. The salbutamol- and Advair®-doped 

salivas consistently demonstrated lower viscosities over the shear rate ranges examined 

(0.1-100 s-1) as compared to the neat salivas. Theophylline had minimal impact on the 

viscosity of the saliva solutions. At lower shear rates, KI-doped salivas were more 

viscous than the neat salivas, but varied minimally from the neat solutions at higher shear 

rates. pH data was also collected for the neat and drug doped saliva solutions. Albuterol 

and theophylline produced minimal changes in the saliva solutions, as well as producing 
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both increases and decreases in pH levels. KI and Advair® produced consistent increases 

in pH levels for all three saliva solutions. 

2.2 Introduction 

Drugs can be aerosolized using a propellant as a pulmonary drug delivery 

mechanism for the treatment of respiratory and systemic illnesses. Inhalation drugs have 

been researched as treatment options for conditions such as asthma [Chan, 2006; Volsko 

and Reed, 2000], diabetes [Modi, 2005; Todoroff and Vanbever, 2011], and cystic 

fibrosis [Donnelly et al., 2007; Khanvilkar et al., 2001], among others. Chemical 

stability, patient compliance, low cost, and small dosages [Chan, 2006] make inhalation 

drug delivery systems worth further investigation and development. 

With inhalation drugs, the drug particles are typically either dry powder or 

dissolved in an aqueous solution dispensed as small droplets. Regardless of the medium 

used to carry the drug to the lung, the drug arrives to the lung with some saliva that gets 

inhaled with each breath. It is therefore important to consider the properties of saliva 

when researching and modeling drug interactions with the lung. In addition, 

understanding the complexity of salivary composition and biological function could lead 

to the development of new salivary substitutes that can combat a number of oral diseases 

and disorders. Saliva is multifunctional and contributes to not only general health, but 

also plays major roles in mouth lubrication [Preetha and Banerjee, 2005; Schipper et al., 

2007], the management of oral microbes [Rossetti et al., 2008] and digestion [Preetha and 

Banerjee, 2005; Schipper et al., 2007]. Additionally, saliva has been recently investigated 

as a provider of biomarkers for diseases and the detection of systemic illnesses [Schipper 

et al., 2007]. 
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Saliva is a complex natural fluid secreted by human salivary glands (parotid, 

submandibular and sublingual glands, and minor salivary glands on the tongue [Schipper 

et al., 2007]) at about 1.5 liters per day [Juniper et al., 1995]. Saliva is an aqueous non-

Newtonian fluid [Juniper et al., 1995] comprised mostly of water (99.5%), proteins 

(0.3%), and inorganic and trace constituents (0.2%) [Schipper et al., 2007]. The proteins 

that are found in saliva are mostly glycoproteins [Schipper et al., 2007; Juniper et al., 

1995], enzymes, immunoglobulins, antimicrobial peptides [Schipper et al., 2007], and 

lipids [Juniper et al., 1995]. The inorganic portion of saliva contains the standard 

electrolytes found in bodily fluid but at different concentrations, which causes saliva to 

be a hypotonic fluid [Schipper et al., 2007]. 

Saliva has many functions in the body, and artificial saliva acts as a close 

replicate for patients who lack enough natural saliva for the body’s lubrication, 

mucoadhesive, and protective needs [Juniper et al., 1995]. The artificial saliva used to 

model natural saliva for experimental purposes must be as close as possible in a 

biophysical capacity for the accuracy and validity of any conclusions. Asthmatic patients 

deal not only with inflamed and constricted airways, but also more viscous saliva 

[Shimura et al., 1988; Keal, 1971]. Studying the effects of pharmaceutical treatments 

have on the viscosity and interfacial tension of saliva is crucial to understanding the 

impact these drugs can have on the physiological properties of saliva. 

Since initial investigations into asthma inhalation drugs in the early 1900s 

[Volsko and Reed, 2000], many subtypes of inhalation treatments have been developed. 

Currently, inhalation-based asthma treatments range from fast-acting “rescue” 2-

receptor agonists to long-acting 2-receptor agonists that prevent lung inflammation and 

control the disease [Ullman and Svedmyr, 1998; Volsko and Reed, 2000]. This study 
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investigates four drugs (albuterol/salbutamol, theophylline, potassium iodide, and a 

fluticasone/salmeterol mixture) that are used in the treatment of asthma. 

Albuterol (salbutamol) is a fast-acting bronchodilator that can be administered 

through an inhaler or a nebulizer. It is the most commonly used fast-acting treatment for 

acute asthmatic symptoms. Albuterol can be applied as either a fast-acting rescue 

treatment or a long-acting treatment [Chan, 2006, Juniper et al., 1995], and is typically 

administered in solution with saline. Theophylline is a methylxanthine drug initially used 

in the 1920s [Hendel and Weinberger, 1983]. It is a bronchodilator and respiratory 

stimulant that can be used as a fast-acting treatment for acute symptoms or can be 

administered for long-acting relief as well. Potassium iodide (KI) is an expectorant that 

works by thinning mucous secretions and reduces chest congestion [Hendel and 

Weinberger, 1983]. The fourth drug is a 2:1 mixture of fluticasone propionate and 

salmeterol xinafoate marketed commercially as Advair. Fluticasone is a corticosteroid 

and is used for anti-inflammatory purposes, and salmeterol, which has also been used by 

itself as a treatment for asthma, is used to treat the constriction of the airways 

[GlaxoSmithKline, 2010]. Figure 2.1 shows the chemical structures of all the drugs 

being investigated. The work presented compares some physicochemical characteristics 

of three artificial salivas, and examines how the addition of asthma medications affects 

the saliva properties. 
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Fi g ur e 2. 1  C h e mi c al str u ct ur es of ast h m a dr u gs us e d i n t his st u d y. 

2. 3 M at e ri al s a n d M et h o d s 

2. 3. 1 D r u gs 

T h e f oll o wi n g dr u gs w er e us e d as t h e i n h al ati o n a er os ol tr e at m e nts i n t hi s st u d y: 

t h e o p h ylli n e ( > 9 8 %, T CI A m eri c a, C A S 5 8- 5 5- 9), al b ut er ol s ulf at e ( 0. 0 8 3 % al b ut er ol i n 

s ol uti o n, N e p hr o n P h ar m a c e uti c al C or p or ati o n, C A S 5 1 0 2 2- 7 0- 9), s al b ut a m ol ( M P 

Bi o m e di c als, C A S 1 8 5 5 9- 9 4- 9), p ot assi u m i o di d e ( 

  

³ 9 9 %, Fis h er S ci e ntifi c, C A S 7 6 8 1 -

1 1- 0) a n d fl uti c as o n e pr o pi o n at e/ s al m et er ol xi n af o at e 1 0 0 m c g/ 5 0 m c g ( c o m m er ci al n a m e 

A d v air ® , Gl a x o S mit h Kli n e). 

2. 3. 2 A rtifi ci al S ali v a C o m p o n e nts a n d M o dif yi n g S u b st a n c es 

T h e c h e mi c als us e d t o m a k e t h e artifi ci al s ali v as, as w ell as t h e c h e mi c als us e d t o 

alt er t h e n e at s ol uti o ns, w er e o bt ai n e d fr o m Si g m a Al dri c h ( St. L o uis, M O, U S A), V W R 
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( W est C h est er, P A, U S A) a n d Fis h er S ci e ntifi c ( H a m pt o n, N H, U S A).  T h e artifi ci al 

s ali v a c o m p o n e nts ar e x a nt h a n g u m ( 9 0- 1 0 0 %, M P Bi o m e di c al, C A S 1 1 1 3 8- 6 6- 2), 

c al ci u m c hl ori d e ( A C S R e a g e nt Gr a d e, 9 0- 1 0 0 %, M P Bi o m e di c al, 1 0 0 4 3- 5 2 - 4), 

m a g n esi u m c hl ori d e ( M P Bi o m e di c al), s o di u m c hl ori d e ( 

  

³ 9 9 %, Fis h er S ci e ntifi c, C A S 

7 6 4 7- 1 4- 5), di- p ot assi u m h y dr o g e n ort h o p h os p h at e ( 9 8 %, A cr os Or g a ni cs, C A S 7 7 5 8 -

1 1- 4), p ot assi u m di- h y dr o g e n ort h o p h os p h at e ( 

  

³ 9 9 %, A cr os Or g a ni cs, C A S 7 7 7 8- 7 7- 0), 

D-s or bit ol ( 9 7 %, A cr os Or g a ni cs, C A S 5 0- 7 0- 4), s o di u m c ar b o x y m et h yl c ell ul os e ( 9 9 %, 

T CI A m eri c a, C A S 9 0 0 4- 3 2- 4), m et h yl- p- h y dr o x y b e n z o at e ( N F gr a d e, Pf alt z a n d B a u er, 

I n c., C A S 9 9- 7 6- 3), s o di u m fl u ori d e ( 9 9 %, Alf a A es ar, C A S 7 6 8 1- 4 9- 4), p ot assi u m 

c hl ori d e, a n d f o o d gr a d e s pirit of l e m o n ( M c C or mi c k br a n d “ p ur e l e m o n e xtr a ct). H P L C 

gr a d e w at er ( Fis h er S ci e ntifi c, C A S 7 7 3 2- 1 8- 5) w as us e d i n t h e pr e p ar ati o n of all 

a q u e o us s ol uti o ns.  S o m e m o difi c ati o ns w er e m a d e t o t h e artifi ci al s ali v a s ol uti o ns b y 

a d di n g c o m p o n e nts, m u ci n ( b o vi n e s u b m a xill ar y gl a n ds T y p e 1- S, Si g m a), a n d/ or 

p h os p h ati d yls eri n e ( P S, > 9 8 %, Fl u k a Bi o c h e mi k a, C A S 5 1 4 4 6- 6 2- 9).  

2. 3. 3 P r e p a r ati o n of St a n d a r d A rtifi ci al S ali v a S ol uti o n s 

T hr e e artifi ci al s ali v a s ol uti o ns w er e us e d f or all e x p eri m e nt al p ur p os es. Xi ali n e 1 

( X 1) a n d xi ali n e 2 ( X 2) ar e m ai nl y c o m p os e d of x a nt h a n g u m, w hil e s ali v e z e is b as e d o n 

s o di u m c ar b o x y m et h yl c ell ul os e a n d s or bit ol. T h e c o m p ositi o ns a n d c o n c e ntr ati o ns of t h e 

c o m p o n e nts of t h es e s ali v a s ol uti o ns w er e o bt ai n e d fr o m Pr e et h a a n d B a n erj e e [ 2 0 0 5] 

a n d ar e s h o w n i n T a bl e 2. 1. 
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Table 2.1 Artificial Saliva Compositions [Preetha and Banerjee, 2005]. 

Artificial Saliva Components Xialine 1 (g/L) Xialine 2 (g/L) Saliveze (g/L) 
Xanthan gum 0.92 0.18 -----

Sodium carboxymethylcellulose ----- ----- 10.00 
Potassium chloride 1.20 1.20 0.62 
Sodium chloride 0.85 0.85 0.87 

Magnesium chloride 0.05 0.05 0.06 
Calcium chloride 0.13 0.13 0.17 

Di-potassium hydrogen orthophosphate 0.13 0.13 0.80 
Potassium di-hydrogen orthophosphate ----- ----- 0.30 

Sodium fluoride ----- ----- 0.0044 
Sorbitol ----- ----- 29.95 

Methyl p-hydroxybenzoate 0.35 0.35 1.00 
Spirit of lemon ----- ----- 3.785 

2.3.4 Preparation of Altered Artificial Saliva Solutions 

In an effort to closer resemble natural saliva, components such as mucin (from the 

bovine submaxillary gland) and phosphatidylserine (PS) were added according to 

concentrations found in literature. Mucin was added in the concentration 2 mg/mL of 

saliva solution, a concentration similar to that found in natural saliva [Vissink et al., 

1984]. PS was added to the saliva solutions based on the known concentration of the 

phospholipid phosphatidylethanolamine (PE) present in natural saliva [Levine, 1993]. PS 

was used instead of PE due to the availability of PS and the higher cost of PE. While the 

lipid concentration in natural saliva has been found to be 4.4 g/mL [Preetha and 

Banerjee, 2005], PS was added to the artificial saliva solutions at 44 g/mL due to 

material constraints of other saliva components and to prevent human error with 

measuring such a small amount of PS. 

Other alterations made to the saliva recipes found in the literature included the 

addition of drugs targeted for the inhalation treatment of bronchial disorders. Albuterol 

was obtained from the manufacturer pre-mixed at a concentration 0.083% (2.5 mg 
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albuterol/3 mL isotonic saline). For consistency, this same concentration was used for the 

addition of theophylline, potassium iodide, salbutamol, and fluticasone 

propionate/salmeterol to the saliva solutions. It is important to note that salbutamol and 

albuterol are structurally identical. The reason both materials are included in the study is 

because the salbutamol was in powder form while albuterol was in solution, and the 

differences in phase was of interest to examine uniformity between the delivery phases. 

2.3.5 pH Measurements of Neat and Drug-Doped Artificial Salivas 

pH measurements were collected for the neat saliva solutions (unmodified), as 

well as the drug doped saliva solutions. The data was collected using an Accumet Basic 

AB15 pH meter (Fisher Scientific). Prior to data collection, the pH meter was calibrated 

using buffer solutions of pH 2,4,7,10, and 12. Sample pH values were collected a 

minimum of three times and averaged. 

2.3.6 Interfacial Tension Measurements 

Interfacial tension data was collected using a Kruss Easydrop contact angle 

goniometer with a Teli CCD camera. To contain and dispense the solution droplets, 

Kendall Monojet tuberlin 1 mL syringes with 1.83 mm inner diameter EFD Ultra 

Dispense needles were used. Kruss' Drop Shape Analysis (DSA) software (version 

1.90.0.14) was used to collect and analyze drop images. Pendant drops with 10 L 

volume were formed at ambient temperature using a dispensing rate of 700 L/min.  

Images of the pendant drops were then captured and the drop shape evaluated using the 

DSA software to determine interfacial tension values. For each solution, a minimum of 

ten interfacial tension points was collected to obtain averages, standard deviation and 

95% confidence intervals. 
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2.3.7 Shear Rate and Viscosity Measurements 

Shear rate and viscosity data were collected and analyzed on the saliva solutions 

using a TA Instruments AR 1500x rheometer with a 60 mm aluminum parallel plate 

accessory, Rheology Advantage Instrument Control AR software (version V5.7.0), and 

Rheology Advantage Data Analysis software (version V5.7.0) . Step-flow shear data 

were collected at 37 C (maintained by a Peltier plate) over a shear rate range of 0.1 to 

100 s-1 , with 10 points per decade. 

2.4 Results 

It is important that these artificial saliva solutions have similar properties to 

natural saliva so that the effects of drug addition on saliva properties can be understood. 

Surface coverage and surface wettability are crucial behaviors key to understanding and 

predicting the path of the particulates in droplet formation and deposition on the lung. 

The following section discusses the pH, interfacial tension and viscosity of the neat 

artificial saliva solutions in comparison to natural saliva as well as the interfacial tensions 

and viscosities of the drug-doped solutions to see the effects of the drug on the 

viscoelastic properties of saliva. 

2.4.1 pH of Neat Saliva Solutions and Drug-Doped Saliva Solutions 

pH is one of many factors that affect the diffusion of particles through the 

pulmonary mucus. It has been reported that an increase in pH produces an increase in 

diffusion coefficient and a decrease in lag time of the drug particle in the mucus[Shaw et 

al., 2005]. With this information, the drug-doped saliva solutions, as well as the neat 

saliva solutions for comparison, were evaluated for pH levels. The effects of drug 

addition on pH of the neat saliva solutions can be seen in Figure 2.2. 
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Figure 2.2 pH data for neat and drug-doped artificial saliva solutions. 

The addition of drugs produced both increases and decreases in pH of the saliva 

solutions. Theophylline had the least effect on pH, producing only a 0.46 % decrease in 

pH for the X1 solution, 0.00% change for X2, and a 2.53% decrease in saliveze. Advair® 

had the greatest effect on pH of the saliva solutions, resulting in 7.43%, 8.33%, and 

2.82% increases for X1, X2, and saliveze, respectively. Albuterol produced decreases in 

pH for X1 (2.64%) and X2 (1.07%), and a slight increase in saliveze (1.43%). KI 

produced consistent, although slight, increases in pH with all three solutions, resulting in 

1.05%, 1.93%, and 0.00% increases for X1, X2, and saliveze, respectively. Of the four 

drugs, KI and Advair were the only two drugs to produce consistent increases in pH. 

The molecular structures of the drugs influenced the effect of the drug addition to 

the saliva solutions. The molecular structure of Advair®, which produced consistent 

increases in pH in all three solutions, contains several C-F bonds, which are 

electronegative and the dissociation of the fluorine is the likely cause of the increase in 

pH. Based on the results of the addition of Advair® to the saliva solutions, the fluorine 

acted as a Lewis acid and accepted a pair of electrons, therefore increasing the pH of the 
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solution. KI, which also consistently increased the pH of all three solutions, likely 

dissociated into K+ and I -. The I - acted as a Lewis acid, accepting a pair of electrons and 

increasing the pH of the solution. However, due to the presence of K+, which likely acted 

as a Lewis base and donated a pair of electrons and raising the pH of the solution, the 

effects of KI on the pH of the solutions are not significant, which is reflected by the very 

slight solution pH increases. Theophylline also had a minimal effect on pH of the saliva 

solutions. The structure of theophylline is very stable due to the double ring structure and 

presence of double bonds. Also, theophylline is a poorly water-soluble molecule [Colinet 

et al., 2009]. Since theophylline did produce decreases in X1 and saliveze, the 

dissociation of H+ from the secondary amine or a breakage of an O=C double bond were 

the location(s) of the electron pair donation, therefore acting as a Lewis base and 

subsequently causing the decrease in pH. Albuterol produced consistent decreases in pH 

in X1 and X2. Albuterol has several –OH present that are known Lewis bases, donating a 

pair of electrons and decreasing the pH of those solutions. Albuterol did produce a slight 

increase in pH in saliveze, which could be due to the different composition of saliveze 

compared to X1 and X2. It is important to large range of the 95% confidence interval 

error bars, which encompass values of neat saliveze and indicate that the slight increase 

in pH of saliveze with the albuterol addition is not significant. 

2.4.2 Interfacial Tension 

The interfacial tension (IFT) of the unmodified saliva solutions was first 

compared to literature values of similar artificial salivas [Preetha and Banerjee, 2005] for 

validation purposes.  The average xialine 1 (X1) IFT value was 67.59 mN/m, 2.0% higher 

than the literature value of 66.15 mN/m. xialine 2 (X2) had an average IFT value of 69.31 
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mN/m, which is 6.8% higher than the 64.89 mN/m literature value. The average saliveze 

IFT value was 67.05 mN/m, 4.9 % higher than the literature value of 64.17 mN/m.  The 

IFT values for the salivas prepared in this studied varied less than 3.03 % between one 

another, despite the difference in recipes.  They were consistently 2.0 to 6.8 % higher 

than the literature-reported IFT values for these salivas.  This is thought to be due to the 

differences in collection methods. Pendant drop using a contact angle goniometer was the 

collection method for this study, while a Langmuir Blodgett instrument was used for the 

data collection of the literature-reported IFT values [Preetha and Banerjee, 2005].   

A comparison of interfacial tension for artificial and natural saliva solutions is 

presented in Figure 2.3. The artificial salivas varied only minimally from interfacial 

tensions of natural saliva [Preetha and Banerjee, 2005; Kasakov, 2009]. The IFTs of the 

artificial salivas varied 1.62-4.57% from natural saliva A [Preetha and Banerjee, 2005] 

and 5.63-8.46% from natural saliva B [Kasakov, 2009]. The IFT data support the use of 

these solutions as valid model substitutes for natural saliva. 
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Figure 2.3 Average interfacial tension values for three artificial salivas (X1, X2, and 
Saliveze) and natural saliva [A: Preetha and Banerjee, 2005; B: Kasakov, 
2009]. Error bars represent 95% confidence intervals. 

  

  

 

  

 

In an effort to make the saliva solutions closer resemble the properties of natural 

saliva, two types of additives found in natural saliva were added—either separately or in 

combination—at concentrations found in natural saliva: phosphatidylserine (PS), a 

phospholipid representative of those found in natural saliva; and mucin, a glycoprotein 

[Preetha and Banerjee, 2005; Vissink et al., 1984]. PS was added at a concentration of 44 

g/100 mL [Preetha and Banerjee, 2005] and mucin was added at a concentration of 2% 

w/v [Vissink et al., 1984]. Interfacial tension data for these modified artificial saliva 

solutions can be seen in Figure 2.4. 
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Figure 2.4 Comparison of IFT for artificial saliva solutions with and without the 
addition of mucus and/or phosphatidylserine (PS), compounds 
representative of those found in natural saliva. 

 

    

   

 

  

 

  

Preetha and Banerjee (2005) found that the addition of a phospholipid 

(phosphatidylethanolamine, PE) and mucin caused an increase in IFT in all three of the 

saliva solutions (X1, X2 and saliveze). Although PS was used in our formulations instead 

of PE, the addition of mucin and/or PS to the saliva solutions in this study, X1, X2 and 

saliveze, increased the IFT (Figure 2.3). For X1, the addition of mucin, PS, and 

mucin+PS resulted 5.61%, 6.64%, and 7.22% increases in IFT, respectively. For X2, 

which has an identical composition to X1 with the exception of a less amount of xanthan 

gum, the addition of mucin, PS, and mucin+PS resulted in 6.50%, 16.90%, and 4.43% 

increases in interfacial tension values, respectively. Lastly, the addition of mucin, PS, and 

mucin + PS to saliveze resulted in 1.70%, 1.85%, and 2.75% increases in interfacial 

tension values, respectively. Due to the significant variations in the interfacial tension 
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property within the artificial salivas (large range of variation from 1.70-16.90%), any 

further experiments were conducted using only neat saliva solutions without PS or mucin. 

IFT was then measured for the three saliva solutions, X1, X2, and saliveze, with 

and without the addition of the four bronchial drugs (albuterol/salbutamol, theophylline 

[theo], potassium iodide [KI], and Advair®). IFT data for these neat and doped saliva 

solutions are shown in Figures 2.5-2.7. For these figures, the blue dashed line represents 

the average IFT for the corresponding neat saliva solution. 

Figure 2.5 Interfacial tension of drug-doped X1 saliva solution. IFT of neat X1 (67.24 
mN/m) indicated by blue dashed line. 

Figure 2.5 contains the IFT data for X1 saliva solution containing 0.083% w/v of 

four asthma drugs showing that drug addition resulted in elevated IFT values for X1. The 

IFT increase ranged from 2.05% (albuterol) to 19.26% (theophylline). The IFT values of 

albuterol and salbutamol varied a higher than expected amount. Despite the shared 

structure and equivalent concentration levels in the saliva solutions, the form of the drug 

(solution versus powder) seems to affect the surface tension in X1. 
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The other two saliva solutions did not show the same general trend for all of the 

drugs.  KI, salbutamol, and Advair increased the IFT for X2 (Figure 2.6), and these 

same three—plus albuterol—resulted in increased IFT for saliveze (Figure 2.7). For X2, 

albuterol caused a 10.17% decrease and theophylline produced a 6.78% decrease in 

average IFT. KI, salbutamol, and Advair® raised the IFT of X1 from 0.51% (KI) to 

8.15% (salbutamol). Of the four drugs tested, saliveze showed a decreased IFT (1.2%) 

only with the addition of theophylline. The other four drugs caused increased IFT ranging 

from 2.0 % (Advair®) to 5.9 % (salbutamol). 

Figure 2.6 Interfacial tension of drug-doped X2 saliva solution. IFT of neat X2 (69.31 
mN/m) indicated by blue dashed line. 

It is uncertain the exact reasons for the inconsistency regarding the impact of drug 

addition on the IFT of the artificial saliva solutions. It was expected that the addition of a 

given drug would result in similar IFT deviation trends, particularly with X1 and X2 

since the two solutions have only small differences in composition. Regardless of the lack 

of general trends, drug addition to the artificial saliva solutions, even at a low 
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concentration (0.083% w/v), resulted in marked deviations in IFT, a key parameter in 

aerosol droplet formation and deposition in the lung. To improve deposition performance, 

the addition of these drugs would ideally result in decreased IFT. Surface tension affects 

wettability of the fluid, which impact surface coverage and therefore diffusion and 

ultimate fate of the fluid and the particulates in the fluid. Drug additions resulting in 

lower surface tensions increase wettability and therefore increase surface coverage. A 

larger surface coverage would allow a larger amount of drug arriving on the lung surface 

to diffuse through the pulmonary mucus layer and into the tissue for the fastest possible 

drug efficiency. 

Figure 2.7 Interfacial tension of drug-doped saliveze saliva solution. IFT of neat 
saliveze (IFT 67.05 mN/m) indicated by blue dashed line. 

The range of changes in IFT with the addition of drugs can be better explained 

with understanding of the hydrophobicity of the drugs. An increase in IFT indicates the 

drop of the solution (referring to the drop suspended from the needle in pendant drop 

goniometry) is becoming more hydrophilic. Theophylline is a poorly water-soluble drug 
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[Colinet et al., 2009], so the increase in IFT of the theophylline-doped X1 solution can be 

justified with that information. The slight decreases in IFT of theophylline-doped X2 and 

saliveze may be due to theophylline not dissolving fully in that solution. The other drugs 

produced consistent IFT increases in all other solutions, with the exception of the 

decrease in albuterol-doped X2. Advair® contains several CF bonds, which are 

hydrophobic and the likely cause for the increase in IFT of the saliva solutions. 

Albuterol/salbutamol is water soluble, and it was expected that both solutes would 

produce decreases in IFT. KI produced consistent increases, indicating the solubility in 

saliva was minimal. The solubility of KI is affected by solvent temperature in pure water. 

Since the saliva solutions are very concentrated with materials other than water, KI had 

limited solubility. 

It is also important to refer to the error bars as well as the values of the average 

IFT values for each drug addition for each solution. The changes in IFT with the addition 

of drugs are very slight at the low drug concentration. Analysis of a stronger 

concentration of drug on the changes in IFT with the drug addition would be required to 

fully determine the effect the drugs have on IFT of saliva.  

2.4.3 Rheology 

The viscoelastic properties of the artificial saliva solutions were also examined 

using rheology. Viscosity data was collected as a function of shear rate to identify any 

shear thinning or shear thickening behaviors. All samples were run in triplicate. Figure 

2.8 displays shear rate versus viscosity data for the neat (unmodified) saliva solutions and 

natural saliva [Preetha and Banerjee, 2005]. All three of the artificial solutions were 

found to be more viscous than natural saliva over the shear rate range tested. This higher 
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viscosity may be due to the relative low number of components in the artificial solutions 

(13) versus natural saliva and/or it could be a result of the limited data for natural saliva 

viscosity found in the literature.  Another issue may lie with the variation in the measured 

values for natural saliva, which is not unexpected considering the inherent variation in 

samples collected from human donors [Preetha and Banerjee, 2005; Vissink, et al. 1984]. 

All three neat artificial saliva solutions were found to be non-Newtonian and 

exhibited shear thinning behavior, similar to the viscoelastic behavior observed for 

natural saliva. Visually saliveze appeared to be much thicker and viscous than either 

xialine solution. The rheology data collected on these samples confirms this observation. 

Xialine 1 and xialine 2 are both less viscous than saliveze over the entire shear rate range 

tested (Fig. 2.8). Due to the only slight differences in composition between xialine 1 and 

xialine 2, it was expected that the two solutions would not exhibit significantly different 

rheological properties. However, the one difference in composition between xialine 1 and 

xialine 2, the concentration of xanthan gum, is the likely reason for this variation. 

Xanthan gum is a well-known and commonly used thickening agent. A slightly more 

viscous xialine 1 would result in a higher viscosity at lower shear rates, but this slight 

variation in composition is less notable at higher shear rates. 
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Figure 2.8 Viscosity versus shear rate for neat artificial saliva solutions and natural 
saliva [*Preetha and Banerjee, 2005, ^Vissink et al., 1984]. 

Rheological characterization was also performed on the saliva solutions doped 

with Advair, KI, salbutamol, or theophylline. Due to material constraints, rheology data 

was not collected for albuterol-doped solutions. Figures 2.9, 2.10, and 2.11 display the 

rheological data for drug doped xialine 1, xialine 2, and saliveze, respectively. 

Figure 2.9 shows a plot of shear rate versus viscosity for neat xialine 1 and its 

drug-doped derivatives. The solutions tested all exhibited shear thinning, non-Newtonian 

viscoelastic behavior. All five solutions show decreased viscosity as shear rate increased 

and appeared to approach common viscosity levels at the highest shear rates tested  (100 

s-1). Neat xialine 1 had the highest viscosity values at low shear rates. 
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Figure 2.9 Plot of viscosity versus shear rate for comparison of neat xialine 1 to drug-
doped xialine 1. 

A plot of rheological data for neat and drug-doped xialine 2 is shown in Figure 

2.10. Neat and drug-doped xialine 2 solutions exhibited non-Newtonian, shear thinning 

behavior. The KI-doped solution had the highest viscosity at the lower shear rates, even 

higher than the neat solution. 
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Figure 2.10 Plot of viscosity versus shear rate for comparison of neat xialine 2 to drug-
doped xialine 2. 

Each of the saliveze solutions, neat and doped (Fig. 2.11), showed non-

Newtonian, shear thinning behavior, similar to xialine 1, xialine 2 and natural saliva. 

Saliveze doped with KI was the only solution to show higher viscosities than the neat 

solution over the entire shear rate range tested. Theophylline-doped saliveze also had a 

higher viscosity than the neat saliveze at lower shear rates, but then its viscosity 

decreased slightly below that of the neat saliveze as the shear rate was increased. 

Salbutamol and Advair® doped solutions followed the same trends observed for the 

xialine solutions and were less viscous than the neat solution over all the shear rate range 

tested. 
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Figure 2.11 Plot of viscosity versus shear rate comparing neat (unmodified) saliveze to 
drug doped saliveze. 

2.5 Conclusions 

The neat artificial saliva solutions generated as part of this study varied minimally 

from literature interfacial tension values for natural saliva, thus supporting the use of 

these artificial solutions as valid substitutes for natural saliva. The artificial salivas were 

more viscous than natural saliva at all shear rates; this could be due to the extreme range 

of possible properties of natural saliva, which vary between specimens and are affected 

by factors such as age of the patient, diet of the patient, general health, and natural 

composition that are never identical between specimens. 

Drug addition to the artificial saliva solutions at a relatively low concentration 

resulted in measurable deviations in the interfacial tension, a key parameter in aerosol 

droplet formation and deposition in the lung.  KI, salbutamol, and Advair consistently 

produced increases in the average interfacial tension measurements that were collected.  
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Albuterol and theophylline were inconsistent with both increases and decreases in 

average interfacial tension measurements observed depending on the specific drug. Ideal 

results would have shown consistent decreases in interfacial tension with the drug 

additions. Lower surface tensions would result in increased wettability and subsequently 

increased surface coverage. A larger surface coverage would allow a larger amount of 

drug arriving on the lung surface to permeate through the mucus layer present on the lung 

and into the tissue for the quickest possible effectiveness of the drug. The impact of drug 

addition on droplet formation, deposition, and wettability are important factors in 

predicting the behavior of aerosol drugs on the lung surface. 

Salbutamol and Advair consistently showed lower viscosities over all shear rate 

ranges when compared to the neat saliva for all saliva types. Since salbutamol and 

albuterol are structurally identical, it can be reasonably assumed that albuterol would 

have produced similar data to salbutamol and also result in lower viscosity trends. 

Theophylline had minimal effect on the viscosity of the saliva solutions, and has little to 

no variations from the neat solutions. KI appeared to have higher viscosities at lower 

shear rates than the neat solutions, but varied minimally from the neat solutions at higher 

shear rates. Decreases in viscosity with the addition of drugs were the desired result. Less 

viscous fluids have increased surface wettability and coverage and therefore would allow 

a larger area of drug-doped saliva to deposit on the lung with a greater amount of drug 

available to treat the applicable condition. 

Additionally, pH data was collected for the neat and drug doped saliva solutions. 

Albuterol and theophylline produced minimal changes in the saliva solutions, as well as 

producing both increases and decreases in pH levels. KI and Advair® produced consistent 

increases in pH levels for all three saliva solutions. 
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CHAPTER III 

DIFFUSION OF THEOPHYLLINE AND ALBUTEROL THROUGH ARTIFICIAL 

MUCUS 

3.1 Abstract 

Two drugs used in the treatment of asthma, theophylline and albuterol, were 

diffused through an artificial mucus layer for the purpose of evaluating their diffusion 

coefficients. To monitor the diffusion process, one side of the mucus layer was placed in 

contact with the drug-doped isopropanol solution and the other side of the layer was in 

contact with a zinc selenide crystal to allow for time-resolved attenuated total reflectance 

Fourier transform infrared spectroscopy (ATR-FTIR) measurements. Spectra were 

collected at constant time intervals and monitored for quantitative changes in spectral 

peaks corresponding to the functional groups of the drugs. Analysis of the data resulted in 

diffusivity coefficients of 5.5-7.0 x 10-6 cm2/s for theophylline (as dissolved in 

isopropanol [IPA]) through artificial mucus and 4.9-9.6 x 10-6 cm2/s for albuterol 

(dissolved in IPA) through artificial mucus.  

3.2 Introduction 

Significant advancements in delivery method and drug efficiency have been made 

in the treatment of respiratory illnesses such as asthma. Treatments are most commonly 

aerosol inhalation pharmaceuticals that range from fast-acting rescue drugs to long-term 

medications that prevent lung inflammation and allow for control of the disease [Volsko 

and Reed, 2000]. Inhalation drugs have many characteristics that make them worth 
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further investigation and development, including good patient compliance, chemical 

stability, small dosages, and bypassing the digestive system [Chan, 2006]. 

It is important to understand the path of particulates—including inhalation 

drugs—through the respiratory tract, deposition patterns, and the ultimate bioavailability 

of these medications. Upon inhalation, drug particles travel through the bronchiole lung 

generations and ultimately land on the mucus layer that coats the alveolar pulmonary 

membrane. Inhaled drugs must then diffuse through the mucus layer in order to reach the 

lung surface and treat the inflammation. 

The complexity of the mucus is a major contributing factor to the path of the drug 

particulates and the composition of the pulmonary mucus layer. Mucus is hydrophobic 

[Khanvilkar et al., 2001], exists in two layers, and is arranged in crosslinked and 

entangled mucin fiber networks [Lai et al., 2009]. The gel, which is the upper more 

viscous phase, is composed of 95% water, 2% mucus and 3% salts, proteins and lipids 

[Todoroff and Vanbever, 2011; Khanvilkar et al., 2001]. The sol is the bottom, less 

viscous layer that sits atop the pulmonary epithelial cells and beating cilia. The primary 

function of pulmonary mucus is to protect the lung surface and trap foreign matter that 

enters the lungs. Figure 3.1 illustrates the structure of the gel-sol mucus layer on top of 

the pulmonary epithelial cells and beating cilia. 
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Figure 3.1 Illustration of gel-sol mucus structure above the pulmonary epithelial cells 
with beating cilia penetrating the sol layer. 

   

 

    

 

 

 

  

 

 

The trapped particles are swept away by beating cilia or exhalation unless they are 

able to transport through the mucus faster than the effective velocity transport of the 

upper layer. The gel layer of the mucus is replenished approximately every twenty 

minutes due to the mucus flow rate of about 5 mm per minute [Lai et al., 2009]. This 

rapid transformation is responsible for the effective clearance of any trapped particles. 

The sol layer is renewed much slower. Aside from mucociliary clearance, particles may 

also become trapped in the dense fiber mesh of the mucus layer formed by the mucin 

macromolecules [Khanvilkar et al., 2001], further obstructing the permeability of the 

particle [Lai et al., 2009]. In order for particles to diffuse through the complex mucus 

network, the drugs must penetrate the mucus layer faster than the rate of mucus renewal 

and clearance [Lai et al., 2009]. 

Aerosol drugs are designed to retain medicinal properties while diffusing through 

the mucus. It is possible to design particles to overcome the obstruction of the mucus 

layer. Mucus-inert polymers or hydrophilic coatings can be used to increase the rate of 
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particle diffusion as well as further customize the drug release and improve drug 

effectiveness [Lai et al., 2009]. Another technique being researched is mucoadhesion, 

where particles are coated with a polymeric material designed to cling to the mucus layer, 

slowing the particle transfer time and improving drug absorption [Lai et al., 2009]. 

One of the most influential characteristics of a material to diffuse is size. 

Nanoparticles (>100 nm) can remain in the lungs for weeks due to their small size, while 

larger particles of ideal aerodynamic diameter for treating airways (1-5 μm) [El-Gendy et 

al., 2011] are cleared from the lung within 24 h [Todoroff and Vanbever, 2011]. Particles 

that are small enough to be diffused are cleared through the mucus layer and into the 

pulmonary membrane, eventually becoming systemic. Larger particles are swept away by 

cilia or exhaled. By using representative drug-doped solutions and an artificial mucus 

layer, materials and transport parameters can be measured for modeling the behavior of 

drug particles in the human lung. 

Drug diffusion is also affected by other drug characteristics such as surface charge 

[Khanvilkar et al., 2001, Larhed et al., 1997], molecular weight, and lipophilicity [Larhed 

et al., 1997]. It has also been found that hydrophobic particles have lower permeabilities 

due to the hydrophobic nature of the mucus [Khanvilkar et al., 2001; Norris and Sinko, 

1997].  Strong lipophilic particles have lower diffusion coefficients than less lipophilic 

particles [Larhed et al., 1997]. Molecular weights have been investigated for their 

influence on particle diffusion. Larhed el al. found that drugs with higher molecular 

weights had lower diffusion coefficients than the particles with lower molecular weights 

[Larhed et al., 1997], and this inverse relationship between molecular weight and 

diffusion coefficient has been regularly reported [Khanvilkar et al., 2001]. Additionally, 
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particle charge has been found to influence drug diffusion since mucus components are 

negatively charged. Khanvilkar et al. reported that positively charged low-molecular 

weight drugs bind to the mucus electrostatically [Khanvilkar et al., 2001]. It has also been 

reported that particles with a negative charge is not affected by the mucus barrier 

[Khanvilkar et al., 2001; Norris and Sinko, 1997]. It has also been reported that hydrogen 

bonding and hydrophobic interactions bind polar and non-polar drugs to mucus 

[Khanvilkar et al., 2001]. Additionally, pH was found to influence the diffusion of drugs 

across the membrane. An increase in pH produced an increase in diffusion coefficient and 

a decrease in lag time [Shaw et al., 2005]. 

3.2.1 Mucus Diffusion using ATR-FTIR 

Typically, more conventional methods of transport experiments such as 

permeation cells or dynamic gravimetric sorption have been used to measure diffusion 

[Hallinan et al., 2007; Hallinan et al., 2010]. However, ATR-FTIR as a method for 

measuring diffusion has been used with increasing frequency over the past two decades 

[Elabd et al., 2003]. ATR-FTIR allows for time-resolved analysis of diffusion systems on 

a molecular level during the diffusion process, as well as quantification of molecular 

interactions between the diffusants and diffusing medium through shifts in IR spectra 

[Hallinan et al., 2007; Hallinan et al., 2010]. Several systems have obtained successful 

results using time-solved ATR-FTIR spectra for measuring diffusion. Hallinan et al. 

measured diffusion of methanol and water in nafion using the ATR-FTIR method, as well 

as relating the spectral information to concentration and subsequently Fick’s second law, 

similar to the method used in this study. The results of the methanol and water diffusion 

in nafion matched results determined from a permeation cell, validating this technique for 
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that system [Hallinan et al., 2007; Hallinan et al., 2010]. Additionally, systems such as 

water in polymers like poly(vinyl chloride) or poly(ethylene terephthalate) [Elabd et al., 

2003] and even biological systems such as the permeation of acetonitrile and p-

cyanophenol in polyethylene glycol through silastic membranes representative of skin 

[Watkinson et al., 1994] have been successfully evaluated using the ATR-FTIR method 

of data collection and Fickian diffusion model. Elabd et al. highlights several more 

systems for which this technique has worked, primarily diffusants/solutes through 

polymers [Elabd et al., 2003]. Each of the systems he mentions have many references, 

signifying the abundant amounts of data to validate this method in over fifty diffusing 

systems [Elabd et al., 2003]. 

Despite the success of using ATR-FTIR as a method for characterizing diffusion 

coefficients, this technique has scarcely been used for analyzing mucosal diffusion 

systems. Larhed et al. determined the diffusion coefficients of lipophilic drugs mannitol, 

metoprolol, propranolol, hydrocortisone, and testosterone through native pig intestinal 

mucus, but did so using a radiolabeled drug tracer technique. Plastic syringes (1 mL) with 

the tips cut off were used as diffusion chambers. The syringes were filled with a mucus 

gel solution stabilized with glass bead packing, and the radiolabeled drug solution is 

added over the gel and allowed to diffuse through the gel [Khanvilkar et al., 2001; Larhed 

et al., 1998; Larhed et al., 1997]. The gel is then pushed out of the tube and cut into 

pieces, and the radioactivity in each piece of gel is determined. Using the syringe tube 

geometry, weighted least square fits of normalized theoretically determined radioactivity 

values and normalized experimental radioactivity values, the diffusion coefficients are 

obtained [Khanvilkar et al., 2001; Larhed et al., 1998; Larhed et al., 1997]. Owen et al. 

used a UV spectrophotometric technique where two quartz capillary cells, one loaded 
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with Nonoxynol-9-doped alginate delivery gel and the other with bovine cervical mucus, 

are brought in contact with one another and a quantifiable concentration profile is 

achieved [Khanvilkar et al., 2001; Owen et al.,1999]. The cell holder is then scanned 

using the sample transport drive of a UV spectrophotometer [Khanvilkar et al., 2001; 

Owen et al., 1999]. 

Despite the developments that have been made in the efficiency of inhalation 

drugs and the improvements in the drug delivery systems, little research has been done on 

following the path of the drug particles from inhalation through the diffusion of the 

mucus layer to the lung epithelium. The work presented here involves the development of 

methods for measuring the diffusion coefficients in artificial mucus, and is part of a 

larger project that involves modeling transport within the lung airways, deposition, and 

then fate within the lung.  While particulate removal from the lung can occur via 

exhalation and/or cilial movement into the gastrointestinal tract, these drugs can also 

diffuse across the mucus layers and be taken up by the macrophages and epithelial cells 

lining the lung alveoli. The specific objectives of this effort are to (1) compare the 

composition and the physicochemical properties of artificial mucus with native mucus, 

(2) develop a method to measure diffusivities using FTIR, and (3) measure the diffusion 

coefficients of solvent and drug-doped solutions though artificial mucus layers. 

An artificial mucus, representative of human pulmonary mucus, was prepared to 

act as a surrogate for the native mucus layer present on the lung surface. The composition 

of this artificial mucus solution is available in Section 3.3.1. Due to variations between 

specimens and properties that change with time since harvesting, artificial mucus was 

used for a more well-controlled system. Two commonly used drugs in asthma treatments, 

theophylline and albuterol, were dissolved in isopropanol and the solutions served as a 
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model for drug-solvent mixture that would be deposited on the mucus surface after 

inhalation treatments (e.g. nebulized drug solutions) are administered. Drugs are typically 

delivered to the in either dry powder form or dissolved in saline solution. Due to the lack 

of spectral variation between water-based mucus and water-based saline, isopropanol was 

used as the solvent for ease of tracing the progress of the diffusion. 

3.3 Materials and Methods 

3.3.1 Materials 

3.3.1.1 Diffusants 

Theophylline (>98 %, TCI America, CAS 58-55-9, M.W. 180.17 g/mol) and 

albuterol (Spectrum, CAS 18559-94-9, M.W. 239.31 g/mol) solutions were prepared at 

various concentrations using isopropanol (IPA, Ricca Chemical, 70 % v/v aqueous 

solution, CAS 67-63-0). The chemical structures of theophylline and albuterol are shown 

in Figure 3.2. Each solution was sonicated using a Branson 3510 sonicator with heat until 

completely dissolved. Solutions with concentrations higher than 50-mg/mL experienced 

dissolution when cooled at ambient temperature for times greater than thirty minutes. 

Figure 3.2 Chemical Structures of theophylline (left) and albuterol (right). 
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3.3.1.2 Preparation of Artificial Mucus 

The artificial mucus was made by heating HPLC water (HPLC grade, CAS 7732-

18-5, Fisher Scientific) on a hot plate to 80 °C while stirring with a magnetic stir bar. An 

isotonic saline solution was prepared by adding 1.57 g NaCl/NaHCO3 mixture (Minimum 

of 70% NaCl, Ayr saline nasal rinse packet; B.F. Ascher and Co., Inc.; Lenexa, KS) to 

177 mL 80 C HPLC water. To increase the surface tension, sodium dodecyl sulfate 

surfactant (BioXtra, >99.0 %, CAS 151-21-3, Sigma Aldrich) was added to the saline 

solution in the amount of 5 mM and mixed thoroughly. Next, 1 wt.% locust bean gum 

(LBG, from Ceratonia siliqua seeds, CAS 9000-40-2, Sigma Aldrich) was added drop by 

drop to the saline solution until the LBG was fully dissolved [Anwarul Hasan et al., 

2010]. The artificial mucus gel became more viscous with cooling, ultimately solidifying 

into a semi-solid gel. 

3.3.2 Methods: FTIR Spectroscopy 

Fourier transform infrared spectroscopy was performed using a Nicolet 6700 

spectrometer (Thermo Electron Corporation) and Omnic software (version 8.1.10, 

Thermo Fisher Scientific).  Attenuated total reflectance (ATR-FTIR) spectra were 

collected with a 60 zinc selenide crystal with a liquid nitrogen cooled MCT-A* 

(mercury-cadmium-telluride) detector and a Pike Technologies Veemax II accessory, 

with the angle of incidence set to 60. Pike Technologies also produced the liquid 

retainer, used to contain liquid samples on top of the ATR crystal.  
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3.4 Results and Discussion 

3.4.1 Data Collection 

Drug solution diffusion in mucus was collected and evaluated using FTIR 

spectroscopy. The artificial mucus layer was placed in a reservoir and a spectrum was 

collected to serve as a baseline standard for comparison to time-resolved spectra. Then a 

layer of drug-doped IPA is placed on top of the mucus layer. A schematic of this setup 

can be seen in Figure 3.3. 

Figure 3.3 Schematic of the experimental FTIR diffusion set-up.  The artificial mucus 
layer is sandwiched between a layer of the drug-doped solution and the 
ATR-FTIR crystal.  Not to scale. 

Figure 3.4 shows a comparison of neat IPA with the drug-doped IPA solution to 

show the peaks specific to theophylline. Several peaks are clearly seen in the 1750-1500 

cm-1 range for the theophylline-doped IPA solutions that are not present in neat IPA. Data 

collection concentrations ranged from 5-25 mg/mL. 
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Figure 3.4 ATR-FTIR spectra for a concentration series of theophylline in IPA. 

Spectra were collected at constant time intervals of sixty seconds and monitored 

for changes in spectral peaks corresponding to the functional groups of the drugs. With 

time, peaks corresponding to the drug-doped solution appeared and increased in 

absorbance as the concentration increased at the crystal surface. Eventually the peak 

heights for the solvent and drug became constant indicating an equilibrium state was 

achieved. An example of these time-resolved ATR-FTIR spectra for a 25 mg/mL 

theophylline/IPA solution diffusing through mucus is provided in Figure 3.5. The 

baseline spectrum (t = 0 min) is a scan of the neat mucus. 
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Figure 3.5 Time-resolved ATR-FTIR spectra collected over 600 sec for the diffusion 
of a 25 mg/mL theophylline/IPA solution through a 3.5 mm artificial 
mucus layer. 

 

 

   

   

 

  

 

Examining Figure 3.5, the peaks that appear and subsequently increase in height 

with time correspond to the solvent (IPA) and to the drug (theophylline), with the 

majority of these peaks corresponding to IPA. While theophylline is present in the 

solution, the concentration and relatively low absorption make it difficult to differentiate 

from the IPA peaks.  In addition, the peak at ~1645 cm-1 corresponding to the secondary 

amines in theophylline [Pretsch et al., 2000] is overshadowed by the large peak at ~1640 

cm-1 corresponding to ring stretching of galactose and mannose [Wang and 

Somasundaran,  2007] in the LBG-based mucus. Stacked ATR-FTIR spectra of the 

mucus components can be seen in Figure 3.6. 
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Figure 3.6 Stacked spectra of the artificial mucus components. Boxed peaks around 
~1640 cm-1 are of interest due to the overshadowing the peaks have on 
secondary amine peaks in the drugs. 

  

   

  

 

  

 

  

Albuterol-doped IPA solutions also contained the ~1645 cm-1 peak. Peaks in this 

wavenumber range correspond to secondary amines [Bruno and Svoronos, 2006; 

Silverstein and Webster, 1998] that are present in both chemical structures. Theophylline 

contains primary, secondary and tertiary amines and albuterol contains secondary amines. 

(Refer to the structures in Figure 3.2). The peak height tool was then used to calculate the 

peak height of the drug peaks at ~1645 cm-1 . These peak heights were then converted to 

concentration using a calibration curve, and these concentrations could be used to 

determine an average diffusivity coefficient, which is explained in further detail in 

section 3.4.2 

3.4.2 Data Analysis 

To prepare a peak height-concentration calibration curves for the drug-doped IPA 

solutions, first the height of the 1645 cm-1 peak was found for each solution ranging in 
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from concentration from 0 to75 mg/mL. Measured peak heights for the drug were plotted 

versus the corresponding concentration, and the data set was fitted to a linear function, as 

predicted by Beer’s Law [Hallinan et al., 2010]. An example of a fitted concentration 

profile can be seen in Figure 3.7. 

Figure 3.7 Theophylline concentration profile based on measured FTIR peak height 
fitted to a linear function. 

Next, the peak heights of the drugs were measured for each of the time-resolved 

spectra. In order to evaluate the time-resolved spectra for increasing concentrations of 

drug-doped solutions, the neat mucus solution was subtracted from the time-resolved 

spectra. Using the subtraction processing method available within the Omnic software, 

one spectrum can be subtracted from another to more clearly identify differences; the 
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dr u g- d o p e d I P A s ol uti o n c o n c e ntr ati o n c o ul d b e cl e arl y s e e n i n t h e s u btr a cti o n s p e ctr a. 

F or e x a m pl e, a s p e ctr u m f or t h e o p h ylli n e-I P A s ol uti o n t hr o u g h m u c us at a ti m e of 4 0 0 0 

s e c o n ds w o ul d l o o k li k e t h e n e at m u c us s ol uti o n wit h s e v er al I P A p e a ks a p p e ari n g. Si n c e 

it is k n o w n t h at t h e o p h ylli n e is i n t h e I P A s ol uti o n a n d t h at a str o n g p e a k of m u c us 

o v ers h a d o ws t h e tr a c e a bl e p e a k f or t h e o p h ylli n e t h at i s pr es e nt, it i s n e c ess ar y t o r e m o v e 

a n y p e a ks c orr es p o n di n g t o m u c us i n or d er t o s e e t h e t h e o p h ylli n e p e a k. T h e s u btr a cti o n 

t o ol us es t h e n e at m u c us s p e ctr u m t o i d e ntif y t h e p e a ks c orr es p o n di n g t o m u c us a n d 

r e m o v e t h e m fr o m t h e ti m e r es ol v e d s p e ctr u m, r e s ulti n g i n a s p e ctr u m t h at c orr es p o n ds t o 

t h e t h e o p h ylli n e-I P A s ol uti o n t h at h as pr es e ntl y diff us e d t hr o u g h t h e m u c u s t o t h e s urf a c e 

of t h e A T R cr yst al. Fr o m h er e, t h e p e a k h ei g ht of t h e t h e o p h ylli n e p e a k c a n b e e v al u at e d 

a n d s u bs e q u e ntl y us e d f or f urt h er c al c ul ati o ns. T his e v al u ati o n m et h o d w as us e d t o fi n d 

t h e p e a k h ei g ht of t h e dr u g at e a c h ti m e i nt er v al, a n d t h e d at a w as or g a ni z e d as p e a k 

h ei g ht v ers us ti m e. T h e n, usi n g t h e f u n cti o n f o u n d b y fitti n g t h e c o n c e ntr ati o n pr ofil e 

d at a, t h e p e a k h ei g ht v ers us ti m e d at a w as c o n v ert e d t o c o n c e ntr ati o n v ers u s ti m e b y 

s ol vi n g f or t h e “ x ” v ari a bl e of t h e fitt e d c ali br ati o n c ur v e f u n cti o n. 

Fi c k’s s e c o n d l a w of diff usi o n, a o n e- di m e nsi o n al c o nti n uit y e q u ati o n [ H alli n a n 

et al., 2 0 0 7; El a b d et al., 2 0 0 3], w as us e d t o a n al y z e t h e eff e cti v e diff usi vit y ( n e gl e cti n g 

m ulti c o m p o n e nt eff e cts) of t h e dr u gs t hr o u g h t h e m u c us l a y er. T h e e q u ati o n f or Fi c k’s 

s e c o n d l a w of diff usi o n i n t er ms of c o n c e ntr ati o n c a n b e s e e n i n E q u ati o n 3. 1 [ H alli n a n et 

al., 2 0 0 7]. 

¶ C

¶ t
= D

¶ 2 C

d x 2
E q. 3. 1 

w h er e C is c o n c e ntr ati o n p er u nit v ol u m e of t h e diff us a nt, t is ti m e, x is p ositi o n, a n d D is 

t h e eff e cti v e diff usi o n c o effi ci e nt. Cr a n k's s ol uti o n of Fi c k’s s e c o n d l a w diff er e nti al 
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equation [Crank, 1975; Watkinson et al., 1994] was used to make solving for the 

diffusion coefficient using experimental data easier. Assuming a planar geometry with a 

fixed thickness, h, for the mucus layer on the lung and the two boundary conditions 

shown in Eqns. 3.2 and 3.3, a simplified, quantitatively solvable version of the equation 

is obtained (Eqn. 3.4). A schematic representation of the boundary conditions can be seen 

in Figure 3.8. Crank, using a Laplace Transform method, determined an approximation 

using trigonometric series, which was used to solve the differential equation [Crank, 

1975; Hallinan et al, 2007; Elabd et al., 2003]. 

Figure 3.8 Schematic representation of boundary conditions applied to the mucus-drug 
diffusion system. 

Boundary Condition 1: 
(1) 𝐶 =  𝐶𝑜  𝑎𝑡 𝑥= ℎ, 𝑡 ≥ 0 

Eq. 3.2 

Boundary Condition 2: 

Eq. 3.3 
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𝐶  𝐶  ∑  E q. 3. 4 

Usi n g C O , t h e k n o w n r es er v oir c o n c e ntr ati o n, C , a c o n c e ntr ati o n m e as ur e d at t h e 

m u c us- dr u g s ol uti o n i nt erf a c e, n, t h e s eri es s ol uti o n t o t h e e q u ati o n ( n u m b er of 

it er ati o ns), a n d as t h e d e pt h of p e n etr ati o n of t h e I R s o ur c e b e a m i nt o t h e m u c us l a y er, 

a s ol uti o n t o E q u ati

c

o n 3. 5 c a n b e  f o u n d. E x c el w a s us e d t o s ol v e f or D , usi n g n v al u es 

> 5 0 0. Si n c e all of t h e v ari a bl es w er e k n o w n v al u e s wit h t h e e x c e pti o n of D , a v al u e of D 

w as c h os e n as t h e i niti al g u ess a n d t h e n t h e e q u ati o n is r e gr ess e d u ntil a b e st fit of t h e 

e x p eri m e nt al d at a w as a c hi e v e d.  I n t hi s m a n n er, diff usi viti es w er e f o u n d f or e a c h 

diff us a nt t hr o u g h a n artifi ci al m u c us l a y er. Pl otti n g C/ C O v ers us ti m e f or b ot h 

e x p eri m e nt al a n d c al c ul at e d ti m e-r es ol v e d c o n c e ntr ati o n d at a s er v e d as a vi s u al t o ol f or 

c o m p ari n g t h e c al c ul at e d a n d e x p eri m e nt al v al u es a n d t h er ef or e w as us e d t o g ui d e a n d 

ass ess t h e dir e cti o n a n d pr o gr ess of t h e r e gr essi o n i n a p pr o a c hi n g t h e c orr e ct diff usi o n 

c o effi ci e nt f or t h e e x p eri m e nt al d at a. It s h o ul d b e n ot e d t h at t h e diff usi o n pr o c ess will 

h a v e r e a c h e d e q uili bri u m w h e n C / CO = 1. 

Fi g ur e 3. 9 ill ustr at es t h e a c c ur a c y of Cr a n k’s s ol uti o n usi n g t h e c al c ul at e d 

diff usi vit y as c o m p ar e d t o t h e e x p eri m e nt al d at a f or dr u g diff usi o n t hr o u g h t h e m u c us 

l a y er. O v er all t h e e x p eri m e nt al d at a f oll o ws t h e s h a p e of t h e m o d el e d c ur v e a n d  t h e 

v al u es a gr e e w ell at t < 5 0 0 s e c a n d 3 0 0 0 s e c < t < 9 0 0 0 s e c.  D e vi ati o ns c o nsist e ntl y 

o c c ur b et w e e n t h e m o d el a n d e x p eri m e nt al d at a b et w e e n 5 0 0 a n d 3 0 0 0 s e c.  
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Figure 3.9 Comparison of experimental and calculated concentrations for a 10-
mg/mL theophylline-IPA solution diffusing through an artificial mucus 
layer. 

   

   

  

   

     

 

Evaluation of experimental data determined the diffusivity of theophylline (in 

IPA) through the mucus ranged from 5.5-7.0 x 10-6 cm2/s. Albuterol resulted in a more 

rapid diffusion and produced diffusion coefficients ranging from 7.2-9.6 x 10-6 cm2/s. 

The single-ring structure of albuterol may contribute to the faster diffusion as opposed to 

the two-ring structure of theophylline due to steric hindrance. Molecular weight is also a 

contributing factor in the diffusion; albuterol MW is 239.31 g/mol and theophylline MW 

is 180.17 g/mol. This matches the trend seen in the literature; higher molecular weight 

drugs have been found to diffuse more rapidly through the mucus layer [Larhed et al., 

1997; Khanvilkar et al, 2001]. Albuterol was found to diffuse faster through the mucus 

layer in the experimental system used in this research, which supports the reported 

correlation of higher molecular weight particles and rate of diffusion presented in 
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literature. Table 3.1 summarizes the range of diffusion coefficients measured using the 

FTIR diffusion method for theophylline and albuterol. 

Table 3.1 Summary of measured diffusivity coefficients for theophylline and albuterol 
in artificial mucus. 

Mucus Solution Total Data 95% Layer Diffusivity Drug Concentration Collection Confidence Thickness -6 2(10 cm /s)(mg/mL) Time (s) Interval (cm) 

Theophylline 5-25 6,900-
10,800 0.15-0.35 5.5-7.0  0.12 

Albuterol 5-30 1,500-5,100 0.15-0.40 4.9-9.6  0.59 

The diffusion coefficient values for aerosol drugs through mucus ranged from 4.9-

9.6 x 10-6 cm2/s, and specific examples are given below. In the literature, homologous 

carbohydrates glucuronic acid, glucosmine, and mannitol diffused through native porcine 

mucus produced diffusivity values ranging from 7-9 x 10-6 cm2/s, while the lipophilic 

molecule testosterone produced a diffusivity of 3 x 10-6 cm2/s [Larhed et.al., 1997]. 

Drugs such as isonicotinic acid hydrazide, sodium p-aminosalicylate, pentamidine, 

pyrazinamide, and rifampicin produced diffusivity values ranging from 5.07-7.62 x 10-6 

cm2/s when diffused through reconstituted mucus [Bhat et al., 1995].  Theophylline 

diffusion coefficients have been reported as 2 x 10-6 cm2/s [Grassi et al., 2003] and 1.83 x 

-5 -9 210 -5.83 x 10 cm /s [Alvarez-Lorenzo et al., 1999]. Based on literature findings, the 

range of experimental diffusivity values measured in this work appears to be appropriate 

for the materials tested thereby validating the FTIR- based data collection and analysis 

methods. 
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3.5 Conclusions 

Based on the data that was collected and analyzed for the diffusion of 

theophylline and albuterol through artificial mucus, the average diffusivity coefficients 

that were calculated are accurate representations of how the drugs behave in human 

pulmonary mucus. The methods of analysis employed in the evaluation of the data 

resulted in expected increases in peak heights of the drug-specific peak, and followed the 

expected pattern of a period of steady peak height increase with increasing time followed 

by a period of unchanging peak heights, indicating equilibrium. While the diffusivities 

were expected to be slightly lower, the data was consistent in the diffusivity coefficient 

values that were found regardless of mucus layer thickness or the length of time data was 

collected. The consistency of the data reiterates the validity of this experimental setup 

and method of spectral peak and resulting quantitative data analysis. 
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CHAPTER IV 

INTRODUCTION TO POLYMER SURFACE MODIFICATION USING LIGHT-

EMITTING POLYMERS 

4.1 Background: Polymer Surface Modification 

Polymers are one of the most versatile and widely used materials in modern 

society. They are inexpensive and have a multitude of applications from food packaging 

to biomedical containment to automotive parts [Unver et al., 2011]. Polymer films are of 

particular interest due to their desirable characteristics that contribute to their successful 

applications. In addition to excellent bulk properties, such as high temperature stability 

and strong chemical resistivity, polymer films can be processed by several different 

methods and are available in a wide range of thicknesses. 

For many applications, one of the most important characteristics of polymers is 

the surface chemical composition. Surface composition affects the interactions of the 

polymer with its surroundings and consequently the applications. Polymers can be easily 

modified into a customized product for a specific use [Unver et al., 2011]. Surface 

modified polymers can be designed and tailored for specific applications without altering 

the bulk material. Surface modified polymers can be found in a range of products from 

coatings, composites, adhesive tape, textiles [Scaffaro et al., 2011], and biomaterials 

[Pasparakis et al., 2010]. 

Polymer surface modification can be achieved through several commonly used 

techniques. Methods such as dip coating and spin coating are empirical methods of 
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surface modification that are regularly employed [Tighilt et al., 2008]. Plasma treatment 

is a technique used for polymeric surface modification where several activated species 

(electrons, ions, free radicals, and some neutral species) [Ma et al., 2012] are used to 

expose a surface of the polymer to a non-polymerizing plasma or by depositing a thin 

layer of plasma polymer on the surface of the polymer [Yasuda, 1977].  Properties such 

as adhesion, friction coefficient, optical reflection, surface energy, permeability, and 

biocompatibility of several polymers can be controlled [Castro Vidaurre et al., 2002]. 

Plasma treatment alters the surface characteristics of the polymer but does not affect the 

bulk properties due to the low depth of penetration [Castro Vidaurre et al., 2002]. Surface 

modification via the covalent reaction of small molecules is another method used with 

increasing frequency. By either creating or utilizing existing surface functionality of the 

polymer, the surface functional groups can be covalently altered. By modifying the 

surface only, the resultant material's surface chemistry is often achieved with increased 

control over the final product as well as a more stable and permanent product compared 

to those resulting from other surface modification methods [Zhang et al., 2006]. 

There has been extensive research into the grafting of materials onto and from 

polymer surface substrates. However, only a limited amount of research has investigated 

the grafting of end-functionalized polymers from a solid polymer surface [Walters and 

Hirt, 2006]. Polymer films can support the grafting of a range of molecules due to their 

versatile physical and chemical properties. Using covalent bonding surface modification, 

very unique polymer films can result with specific properties, making them a material of 

high interest due to this “custom-made” functionality [Luo et al.; 2004]. 

Conceptual understanding of polymer chemistry at the molecular level allows for 

the development of desired functional materials. Designing functional polymer films 

62 



 

 

 

    

 

  

 

 

 

 

 

 

  

 

 

 

 

 

requires the knowledge not only of molecular interactions, but also the chemical reactions 

the film will have with its environment. Implementing the design requires careful control. 

It is also important to recognize that while some materials respond to a particular 

stimulus, orientation on the grafting substrate will affect how the response will progress. 

Functional groups that are present on the reacting substrate react with the responsive 

functional groups. Occasionally, the spacing of the reactive functional groups on the 

polymer film backbone may be too large or small and affect the degree of the response 

[Scaffaro et al., 2011]. Additionally, the designer needs to choose the polymer substrate 

wisely and take into account the affect some environmental factors will have on some 

polymers. Exposure to high temperatures, extensive light, acids or other chemicals that 

can negatively impact many properties of the polymer can cause adverse effects, such as 

polymer degradation. Despite these negative performance characteristics of polymers, the 

benefits of their versatility and ability to handle most extreme environments compensates 

for the challenges that are encountered [Lawandy, 1982]. With this understanding, 

polymer films can be designed to have a specific response to particular external stimuli. 

Grafting stimuli-responsive molecules, monomers, or polymers to the polymer films will 

result in a stimuli responsive polymer film, which can be affected by pH, temperature, 

radiation, magnetic field, or light, among others. The responses of polymers exist in a 

wide range such as a change in color, transparency, conductivity, shape (shape memory 

polymers), size, refractive index, crosslinking, and chain recombination, among other 

events [Lawandy, 1982]. Stimuli-responsive polymers are also referred to as “smart 

polymers” and are found in everyday products as well as specialty applications 

[Thomson, 2005; Luo et al., 2004]. 
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Light-sensitive polymer films are the application of interest in this study. Light-

sensitive polymer films fluoresce a color in the visible spectrum and can be used in a 

multitude of applications [Perepichka et al., 2006]. Light bulbs, computers, radiation 

dosimeters, and light emitting diodes (LEDs) televisions are only a few of these 

commercial uses. The concentration of this research is in light-sensitive polymer films 

that change color in response to irradiation. 

4.2 Uses of Light-Emitting Polymers 

LEDs are one of the most common uses for light-emitting polymers since the 

1990s. Some LEDs are capable of emitting light across the visible, ultraviolet and 

infrared wavelengths. In the application of electroluminescence, light emission is 

observed when a voltage is applied through a conductive polymer. This technique is used 

in liquid crystal display (LCD) televisions as well as quantum dots, computers, and light 

bulbs, among others [Perepichka et al., 2006]. LEDs are also being investigated for 

prospective use in ink-jet printers due to their potential in development of the desired 

primary color emissions of red-green-blue on a single substrate [Deng and Wong, 2009]. 

Photopolymers change properties typically in response to ultraviolet light. These 

polymers have been used in fillings in dentistry as well as etching [Danesh et al., 2004]. 

The polymer is soft initially, formed into the desired shape, then cured with UV light. 

Shape-memory plastics are a type of photopolymer that change shape in response to 

temperature increase and as recently found, light [Thomson, 2005]. Researcher Robert 

Langer at the Massachusetts Institute of Technology developed, with German colleagues, 

programmable plastics that change shape in response to specific wavelengths of light 

[Thomson, 2005]. Photosensitive groups are grafted onto a polymer film and stretched 
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with an external stress. Once illuminated with specific wavelength of UV light, 

crosslinking occurs within the molecular network, changing the shape of the polymer 

film. When illuminated with UV light at a different wavelength, the cross-linked 

molecules cleave and the polymer film reverts back to its original shape. These 

researchers are hoping to use this technology for applications such as minimally invasive 

surgery.  For example, a polymer string could be threaded into the body through a small 

incision and when activated by light would alter its physical characteristics, becoming a 

corkscrew shaped stent for keeping blood vessels open [Thomson, 2005].  There could 

also be possible office supply applications, such as quick release staples or paper clips 

that relax when not in use [Thomson, 2005]. 

Another highly investigated and successful use for light emitting polymers is 

radiation detection. Countless studies have been performed on light-emitting polymers 

and the effects that various types of irradiation have on these materials. Polymer-based 

dosimeter systems have been in use for over 60 years [Liz et al., 2011]. Self-indicating 

instant radiation alert dosimeter (SIRAD) badges, developed by JPLabs Inc., are widely 

used as X-ray radiation exposure prevention tools in industry. These badges contain a 

diacetylene compound that is colorless until irradiated with X-ray radiation [Buston et al., 

2006]. Increasing levels of radiation result in a stronger blue color emission from the 

badge [Cheung et al., 2007].  For other types of radiation, surface-modified polystyrene 

films have been studied for use as reusable gamma radiation detectors. Depending on the 

specific light-emitting chemicals grafted to the surface of the polystyrene film, exposure 

brings a blue or red color change [Irie and Irie, 2000]. The absorption intensities of both 

blue and red film types increased linearly with the absorbed dose [Irie and Irie, 2000]. 

Various metal-substituted phthalocyanines, such as copper phthalocyanine (CuPc), have 
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also been investigated as potential gamma radiation detectors [Arshak, A. et al., 2004]. 

These polymers were blended into a 92% CuPc 8% poly with 

diethylenglycolmonobutylether as the solvent [Arshak, K. et al., 2004] have been spin 

coated onto metal oxide substrates with varying thicknesses and evaluated for their 

60 137response with gamma irradiation, with Co and Cs sources used to irradiate the 

samples. It has been reported that the CuPc coated metal film emitted at ~600-690 nm 

range, which is in the orange-red range of the visible spectrum [Arshak, A. et al., 2004]. 

In addition to diacetylene- and phthalocyanine-based dosimeters, polyester, 

fluoropolymer, vinyl, and acrylate polymers have also been investigated for use in 

gamma ray dosimeters [Liz et al., 2011]. 

4.3 Classes of Light-Emitting Polymers 

Conjugated polymers are organic semiconductors [Lambeth, 2004] and have 

strong fluorescent properties. These molecules, when irradiated, emit light in the visible 

UV range. When the absorption maximum in the spectrum is in the UV visible range, the 

polymer will fluoresce [Perepichka et al., 2006]. Several conjugated aromatic polymers 

will be discussed in terms of their structure, light emitting properties, and applications. 

These materials also have excellent film forming characteristics and have the ability to be 

easily applied to large surfaces using simple and cost-effective techniques such as spin 

coating or ink jet printing [Lambeth, 2004]. 

Poly(p-phenylene vinylene) (PPV) is a very commonly used green-yellow-

emitting conductive polymer [Wu and Chen, 2011], and its chemical structure is shown 

in Figure 4.1. PPV was the first polymer to show electroluminescence [Ruddy, 2006; 

Perepichka et al.; 2006]. PPVs are useful for red and green emission, but lack the ability 

66 



 

 

 

  

 

 

 

  

 

   

  

 

 

 

to emit blue light due to the large band gap required for blue emission [Lambeth, 2004]. 

PPV does have the ability to crosslink the main chains by simultaneous UV irradiation 

and annealing, and this technique has been investigated to achieve blue emission with 

PPV [Deng and Wong, 2009]. While crosslinking can result in color variations, further 

processing is required to achieve simultaneous multiple colors from a PPV derivative on 

a single device. Photo-lithographical patterning through multi-step solution processing to 

remove unwanted polymers or photochemical reactions of particular conjugated vinyl-

containing polymers was needed to achieve multiple-color PPV products [Deng and 

Wong, 2009]. 

Figure 4.1 Chemical structure of poly(p-phenylenevinylene) (PPV). 

A second benefit of PPV is that it can be easily modified with functional side 

groups. Most research has been done on modifying the benzene ring [Perepichka et al., 

2006]. The addition of these groups often changes the color the chemical fluoresces. One 

example is MEH-PPV (poly [2-methoxy-5-(2-ethylhexyloxy)-p-phenylene vinylene]). 

MEH-PPV is one of the most frequently used polymers in the PPV class of light-emitting 

polymers and upon excitation emits in the red-orange (590 nm) range of the visible 

spectrum [Zhao et al., 2007; Deng and Wong, 2009].  Other examples of functional 

groups altering color emitting properties are blue-emitting diphenyl substituted structures 

and green-emitted diphenylamino-substituted structures [Perepichka et al., 2006]. 
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PPVs were used in the first polymer based LEDs [Perepichka et al, 2006], and 

continue to be used in a wide range of LED applications. Additionally, PPV derivatives 

are also used as an electron-donating material in organic solar cells, despite their 

tendency to photodegrade. 

Polyacetylene (PA) was the first reported class of conducting polymer [Ruddy, 

2006]. While not aromatic, PA does contain alternating single and double bond carbon 

chain and therefore is still a conjugated system. Figure 4.2 shows the chemical structure 

of polyacetylene. 

Figure 4.2 Chemical structure of polyacetylene (PA). 

Since PA was discovered to be electrically conductive in 1977 [Ruddy, 2006], it 

has been well classified and its material characteristics thoroughly investigated. While 

unsubstituted PA is non-emissive [Perepichka et al., 2006], PA has undergone successful 

experimentation with disubstitution including biphenyls, which produced a violet 

fluorescence (350-370 nm) [Perepichka et al., 2006].  Polyacetylenes have also been the 

basis of liquid crystal applications. Neat polyacetylene is insoluble in organic solvents, so 

introducing liquid crystalline substituents into the main polyacetylene chain or by 

disubstitution attached to the main polymer chain using alkyl spacers results in a soluble, 

fluorescing liquid  [San Jose et al., 2011]. Depending on the substituents of the side 

chains, the polymers exhibit blue or green photoluminescence [San Jose et al., 2011]. 
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Polyfluorene (PF) is another frequently used class of light emitting polymers. PFs 

are a blue-emitting class of light emitting polymers and exhibit high photoluminescence 

quantum yields [Zhao et al., 2009; Jhaveri et al., 2009], good solubility in common 

organic solvents [Zhao et al., 2009; Perepichka et al., 2006], and thermal stability 

[Perepichka at al., 2006]. The chemical structure of polyfluorene is shown in Figure 4.3. 

Figure 4.3 Chemical structure of polyfluorene (PF). 

PFs are most often used in light-emitting diodes (LEDs) [Zhao et al., 2009] and 

photovoltaic cells [Goktas et al., 2012]. PFs are easily modified by functional group 

attachment into the C-2, C-7, or C-9 positions of the fluorenes [Zhao et al., 2009; Jhaveri 

et al., 2009], by copolymerization, and by functionalizing the methylene bridge for the 

fine-tuning of emissive properties [Perepichka et al., 2006; Ruddy, 2006]. 

Yet another type of light-emitting polymer is polydiacetylene (PD). The structure 

of PD is shown in Figure 4.4. These polymers emit red, blue (the most common colors of 

PD crystals and films [Filhol, 2009]), or purple, depending on the delocalization of -

electrons on the conjugated backbone. The variations in color emission indicate the 

possibility of more than two electronic structures of PD chains [Filhol, 2009]. The 

emitted color from PDs is dependent on the environmental temperature, solvent polarity, 

electromagnetic field [Araya, 1991], applied stress, light exposure, and changes in 

chemical environment [Filhol, 2009]. 

69 



 

 

 

    

  

  

 

  

  

   

 

 

  

 

 

  

 

  

 

Figure 4.4 Chemical structure of the repeat unit for polydiacetylene (PD). 

4.4 Research Objectives 

The primary objective is to covalently graft light-sensitive polymers to polymer 

films substrate in order to create light-sensitive films. (Note: This effort is a first step into 

generating beta- and gamma-radiation sensitive polymers.)  In order to graft light-

sensitive chemicals onto the polymer film substrate, the film surface chemistry must be 

modified. A survey was made of light-sensitive chemicals and their chemical structures 

in order to decide on which functional groups would likely allow for facile grafting to the 

surface-modified polymer films. The reaction steps were monitored using Attenuated 

Total Reflectance Fourier Transform Infrared (ATR-FTIR) spectroscopy, and the 

resultant light-sensitive modified films were characterized using UV-Vis spectroscopy 

and fluorescence spectroscopy. 

While the development and existence of radiation-responsive polymer films are 

not novel, most light-sensitive polymer films are not achieved through surface grafting. 

The techniques of spin coating and dip coating are more frequently used, as observed 

through extensive literature research. Employing surface grafting techniques to attain 

light-sensitive polymer films further develops the field and brings forth future 

opportunities to develop other films sensitive to different types of radiation. 
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   Figure 4.5 Chemical structure of 4-(octyloxy)-4-biphenyl carboxylic acid (OBC). 

  

  

 

 

 

  
 

Figure 4.6 Chemical structure of 2,7-bis (bromomethyl)-9,9-dihexyl-9H-fluorene 
(BDMF). 

4.5 Approach 

Two light-sensitive chemicals were selected based on the interest in investigating 

different classes of light-sensitive chemicals (polyphenylenes and polyfluorenes) and the 

expected ease of grafting these chemicals to the selected polymer film, poly(ethylene-co-

acrylic acid) (EAA). The free carboxyl groups on the polymer backbone [Scaffaro, 2011] 

make EAA an ideal substrate for surface modifications. Both light-emitting chemicals 

contain functional groups that will allow them to be grafted to the surface-modified 

polymer film structure. One of the light-sensitive chemicals investigated, 4-(octyloxy)-4-

biphenyl carboxylic acid (OBC), is a polyphenylene class chemical and contains a 

terminal carboxylic acid group that can be used to attach it to the polymer film (Figure 

4.5). OBC is expected to fluoresce in the blue-green range due to the polyphenylene and 

biphenyl structure [San Jose 2011]. 

Figure 4.6 shows the structure of the other light-sensitive chemical investigated, 

2,7-bis (bromomethyl)-9,9-dihexyl-9H-fluorene (BDMF), a polyfluorene class chemical. 

BDMF is expected to fluoresce in the blue range of the emission spectra, since 

polyfluorenes typically fluoresce blue [Zhao et al., 2009]. 
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CHAPTER V 

MODIFICATION AND CHEMICAL GRAFTING OF POLY(ETHYLENE-CO-

ACRYLIC ACID) FILMS 

5.1 Abstract 

Two molecules, 4-(octyloxy)-4-biphenyl carboxylic acid (OBC) and 2,7-bis 

(bromomethyl)-9,9-dihexyl-9H-fluorene (BDMF), were grafted to the surface of 

poly(ethylene-co-acrylic acid) (EAA) films. OBC and BDMF were selected due to their 

light sensitivity and potential for applications utilizing light-sensitive polymer films. 

Carboxylic acid groups on the surface of the EAA films were converted to acid chloride 

groups and then reacted with ethylene diamine to provide primary amines. The primary 

amine groups served as the reactive sites to graft the OCB and BDMF molecules onto the 

EAA films. The progression of each reaction was confirmed using attenuated total 

reflectance Fourier transform infrared (ATR-FTIR) spectroscopy and static contact angle. 

Based on the results from these analysis techniques, each reaction step can be confirmed 

as well as the successful grafting of OBC and BDMF to the EAA films. 

5.2 Introduction 

There has been extensive research into the grafting of materials to polymer 

substrates. Researchers have investigated the grafting of a range of constituents such as 

acryloyl chloride to obtain liquid crystalline polymer films [Burillo et al., 1997], proteins 

onto crosslinked polymer hydrogel membranes, and ethylene vinyl alcohol copolymer 

films [Ikada et al., 1979]. Despite the substantial research into polymers grafted to a 
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substrate, only a limited amount of research has investigated the grafting of materials 

from a solid polymer film [Walters and Hirt, 2006]. 

The versatility of polymers films makes them a practical choice for many 

applications. The bulk properties of polymers are ideal for supporting the grafting of a 

range of molecules resulting in a wide variety of films. Polymer films have strong 

chemical resistivity, high temperature stability, and can be processed using several 

different methods such as extrusion molding or compression molding, which result in a 

wide range of film thicknesses. There are numerous types of polymer films that are 

available with different properties that support many types of grafted materials. 

Surface modification is a method frequently employed to create polymer products 

designed for specific applications without altering the bulk material and can be achieved 

through several techniques. Dip coating and spin coating are frequently used empirical 

methods of surface modification, as well as plasma treatment where several activated 

species (electrons, ions, free radicals, and some neutral species) [Ma et al., 2012] are used 

to expose a surface of the polymer to a non-polymerizing plasma or by depositing a thin 

layer of plasma polymer on the surface of the polymer [Yasuda, 1977]. ]. Surface 

modification via the covalent reaction of small molecules is another method used with 

increasing frequency. By either creating or utilizing existing surface functionality of the 

polymer, the surface functional groups can be covalently altered [Zhang et al., 2006]. 

Using surface modification techniques results in customized surface chemistry tailored 

for specific applications. The surface composition of the polymer affects the interactions 

the polymer has with its environment and subsequently, the suitable applications which 

are unique to each surface modified polymer. Surface modified polymers can be found in 
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a range of products from coatings, composites, adhesive tape, textiles [Scaffaro et al., 

2011], and biomaterials [Pasparakis et al., 2010]. 

There has been extensive research into the grafting of materials onto and from 

polymer surface substrates. However, only a limited amount of research has investigated 

the grafting of end-functionalized polymers from a solid polymer surface [Walters and 

Hirt, 2006]. Polymer films can support the grafting of a range of molecules due to their 

versatile physical and chemical properties. Designing functional polymer films requires 

knowledge not only of molecular and chemical interactions of the film with the reacting 

substrates, but knowledge of the interactions the film will have with its environment. 

Factors such as functional group spacing, orientation, and reactivity with environmental 

factors are important factors to consider when designing a surface modified polymer film. 

With this understanding, polymer films can be designed to have a specific response to 

particular external stimuli. Grafting stimuli-responsive molecules, monomers, or 

polymers to the polymer films will result in a stimuli responsive polymer film, which can 

be affected by pH, temperature, radiation, magnetic field, or light, among others. The 

responses of polymers exist in a wide range such as a change in color, transparency, 

conductivity, shape (shape memory polymers), size, refractive index, crosslinking, and 

chain recombination, among other events [Lawandy, 1982]. Conjugated polymers are 

organic semiconductors [Lambeth, 2004] and have strong fluorescent properties, 

fluoresce a color in the visible spectrum, and can be used in a multitude of applications 

[Perepichka et al., 2006]. Light-sensitive polymer films that change color in response to 

irradiation are the application of interest in this study 

The polymer film selected for this study was poly(ethylene-co-acrylic acid) 

(EAA), which contains carboxylic acid groups that can serve as reactive functional group 
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(a) (b) 

Figure 5.1 Chemical structures of OBC (a) and BDMF (b). 

 

for grafting. EAA is a commonly used polymer film and available commercially. It is 

resistant to many organic solvents and is stable in most environmental conditions. After 

modification of the EAA films, 4-(octyloxy)-4-biphenyl carboxylic acid (OBC), a 

polyphenylene class light-emitting chemical and 2,7-bis (bromomethyl)-9,9-dihexyl-9H-

fluorene (BDMF), a polyfluorene class light-emitting chemical, are grafted onto the 

surface of the EAA film.  

In order to graft OBC and BDMF onto the surface of the EAA film, the 

carboxylic acid groups of the neat EAA film will first undergo chemical modification.  

First, accessible carboxylic acid groups (-C=OOH) on the film surface will be converted 

to acid chlorides (-C=OCl) in order to allow for the quick and facile reaction of ethylene 

diamine which will form an amide (-C=ON-) and leave a terminal primary amine (–NH2) 

group. The primary amines are stable and suitable for grafting OBC and BDMF. The end 

result is EAA film with the surface decorated with light-sensitive molecules that 

fluoresce in the visible spectrum. Figure 5.1 shows the chemical structures of OBC and 

BDMF. Prior to grafting, the carboxylic acid (–C=OOH) group of OBC will be converted 

to acid chloride (–C=OCl), similar to the first EAA film reaction step. The acid chloride 

of OBC and the bromine in BDMF can react with the primary amine available on the 

EAA film surface resulting is OBC and BDMF chemisorbed to the EAA file surface. 
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5.3 Materials and Methods 

5.3.1 Materials 

Poly(ethylene-co-acrylic) acid (EAA) film was extruded to an approximate 

thickness of 75 μm from EAA Primacor 1410 (Dow Chemical Company, 9.5 wt% acrylic 

acid) by Sealed Air Corporation in Duncan, SC. Phosphorus pentachloride (PCl5, 95%, 

CAS 10026-13-8), ethylenediamine (CH2Cl2, 99%, CAS 107-15-3), chlorobenzene (99%, 

CAS 108-90-7), and 2,7-bis (bromomethyl)-9,9-dihexyl-9H-fluorene (BDMF, 97%, CAS 

187148-75-0) were purchased from Sigma Aldrich (St. Louis, MO, USA). 

Dichloromethane (99.9%, CAS 75-09-2) and 4-(octyloxy)-4-biphenyl carboxylic acid 

(OBC, 99%, CAS 59748-18-4) were purchased from VWR (West Chester, PA, USA). 

HPLC grade water (Fisher Scientific, CAS 7732-18-5) and tetrahydrofuran (THF, Optima 

grade, 99.9%, CAS 109-99-9) were purchased from Fisher Scientific (Hampton, NH, 

USA). All chemicals were used as received. 

5.3.2 FTIR Spectroscopy 

Fourier Transform infrared spectroscopy was used to analyze the surface 

chemistry of the films.  Spectra were collected using a Nicolet 6700 spectrometer 

(Thermo Electron Corporation) using Omnic software version 8.1.10 (Thermo Fisher 

Scientific 1992-2009).  Attenuated Total Reflectance (ATR-FTIR) spectra were collected 

using a Pike Technologies Veemax II accessory with a 60 zinc selenide (ZnSe) crystal 

and either a liquid nitrogen cooled MCT-A* (mercury-cadmium-telluride) detector or a 

DTGS (deuterated triglycine sulfate) detector. A second method of ATR characterization 

was conducted using a MIRacle-ATR (Pike Technologies) with a ZnSe/diamond crystal. 

Films were also evaluated using transmission FTIR (T-FTIR) with a Thermo Electron 
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universal sample holder. Spectra of the light-sensitive chemicals were collected using the 

MIRacle-ATR. 

5.3.3 Contact Angle Goniometry 

Contact angle measurements were made using a Kruss Easydrop contact angle 

goniometer with a Teli CCD camera. Drops were 10 L in volume and dispensed using a 

1 mL syringe with 1.85 mm inner diameter needles. The drops were formed at ambient 

temperature. A minimum of ten drops per sample was collected and analyzed using Drop 

Shape Analysis software (version 1.90.0.14). Contact angles were measured using the 

'Tangent 2' method; the ten data points were averaged and 95% confidence intervals 

calculated. 

5.4 Results and Discussion 

The following section will illustrate the results and analysis of the methods used 

to confirm the reaction steps from the neat (unreacted) EAA film all the way through the 

final reaction steps of attaching the light-sensitive chemicals to the EAA films. The 

methods of analysis to be discussed include FTIR and contact angle goniometry. 

5.4.1 Preliminary Reactions of EAA Film 

In order to graft the light-sensitive chemicals onto the EAA film surface, the neat 

EAA film underwent two preliminary reactions (Figure 5.2). The first reaction is the 

conversion of the C=OOH in EAA to C=OCl groups [EAA-Cl]. EAA films (~ 0.5-1 in2) 

were placed in a 0.03 g/mL PCl5/CH2Cl2 solution for 45 min at room temperature. The 

films were rinsed three times in clean CH2Cl2 and vacuum dried before proceeding to the 

next step. After rinsing and drying, the films were then converted to EAA-NH2 (-C=OCl 

 -C=ONHCH2CH2NH2) by sonication for 24 h in a 0.0025-g/mL 
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ethylenediamine/HPLC water solution [Walters and Hirt, 2006]. The films were rinsed in 

clean HPLC water three times and vacuum dried before proceeding any further. The 

completion of the reactions was confirmed using ATR-FTIR. 

Figure 5.2 Reaction schematic of the preliminary reaction steps of EAA prior to 
reactions with light-sensitive chemicals. 

Spectra were collected for neat (unreacted) EAA, EAA-Cl, and EAA-NH2 (Figure 5.3). 

Figure 5.3 ATR-FTIR spectra of preliminary film reactions steps: (a) EAA-Neat, (b) 
EAA-Cl, (c) and EAA-NH2. 
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The ATR-FTIR spectrum for neat EAA film is shown in Figure 5.3a. The peak at 

~1700 cm-1 corresponds to the carbonyl stretch of carboxylic acid. In the spectrum for 

EAA-Cl (Figure 5.3b) the carbonyl peak has shifted to ~1795 cm-1 demonstrating that the 

carboxylic acid was converted to acid chloride [Bruno and Svoronos, 2006; Silverstein 

and Webster, 1998]. Once EAA-Cl is reacted with ethylenediamine to form EAA-NH2, 

the acid chloride is converted to an amide.  As can be seen in Figure 5.3c, the spectrum 

for EAA-NH2 does not contain peaks corresponding to the carbonyl of the carboxylic 

acid or acid chloride. Instead, two peaks can be easily identified at ~1640 cm-1 and ~1530 

cm-1 that are associated with amide II bonds [Bruno and Svoronos, 2006; Silverstein and 

Webster, 1998; Pretsch et al., 2000] indicating the successful conversion of the acid 

chloride groups to the amide groups. 

It is important to note the presence of a peak common to all spectra, regardless of 

the reaction step of the film. The peak occurs at ~1465 cm-1and corresponds to the -C-C-

scissor bond of the polyethylene repeat unit [Pretsch et al., 2000]. 

5.4.2 Primary Reactions of EAA Films 

5.4.2.1 Reaction Path “A”: Grafting of OBC 

EAA- NH2 film was reacted in a solution of 4-(octyloxy)-4-biphenyl carboxylic 

acid (OBC) in a 2:1 molar ratio with PCl5 (both in stoichiometric excess) in THF for 72 h 

at 60 C. PCl5 was present in the solution to convert the carboxylic acid of the end-

functionalized OBC chemical to an acid chloride to aid in the grafting of OBC to the 

EAA-NH2 film (Figure 5.4). After completion of the reaction, the films were rinsed in 

clean THF three times and vacuum dried. Figure 5.5 illustrates the grafting of OBC onto 

the EAA-NH2 film surface. 
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  Figure 5.4 Conversion of carboxylic acid of OBC chemical to acid chloride 

    

 

 

 

  
 

 

  

  

After completion of the reaction, the films were rinsed in clean THF three times 

and vacuum dried. Figure 5.5 illustrates the grafting of OBC onto the EAA-NH2 film 

surface. 

Figure 5.5 Reaction schematic of the reaction steps of EAA-NH2 with acid chloride 
converted OBC chemical to EAA-OBC. 

The grafting reaction of OBC onto the EAA film was confirmed using ATR-FTIR 

and contact angle. Figure 5.6 shows the ATR-FTIR spectra for the complete reaction 

process: EAA-Neat, EAA-Cl, EAA-NH2 and EAA-OBC. 
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Figure 5.6 ATR-FTIR spectra of preliminary film reactions steps: EAA-Neat (a), 
EAA-Cl (b), EAA-NH2 (c), and EAA-OBC (d). 

Comparing the spectra for EAA-NH2 (Fig. 5.6c) and EAA-OBC (Fig. 5.6d), it is 

easily seen that there are several notable differences in the spectra for these samples 

indicating that OBC grafted onto the film surface. From the EAA-OBC spectrum, there 

are three peaks of interest that can be used to validate the presence of OBC on the surface 

of the film. From left, a peak at ~1263 cm-1 indicates the C-N in plane bending of a 

secondary amide [Bruno and Svoronos, 2006] that is present at the end of the molecule 

that bonds to the –NH2 of EAA-NH2. The two peaks to the right at ~1100 cm-1 and ~1025 

cm-1 are indicative of the 1-4 disubstituted benzene ring [Silverstein and Webster, 1998]. 

Having two peaks in this region confirms this. Also, in the region of 1300-1100 cm-1 , 

where two peaks are present, peaks corresponding to in-plane aromatic bending occur 

[Silverstein and Webster, 1998]. 

Figure 5.7 depicts a comparison of the spectrum of EAA-OBC with the spectrum 

of the OBC chemical. The peaks of interest are boxed around both spectra, demonstrating 

the peaks used to confirm the OBC presence on the surface of EAA-OBC correspond to 

the OBC chemical. 
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Figure 5.7 FTIR spectral comparison of OBC chemical and EAA-OBC reacted film. 
The peaks used to identify OBC on the surface of EAA-OBC are boxed 
around both spectra. 

5.4.2.2 Reaction Path “B”: Grafting of BDMF 

EAA-NH2 film was reacted in a 5 mM solution of 2,7-bis (bromomethyl)-9,9-

dihexyl-9H-fluorene (BDMF) in chlorobenzene at 60 °C for 48 h. After the reaction was 

complete, the films were rinsed three times in clean chlorobenzene and vacuum dried. 

Figure 5.8 illustrates the grafting of BDMF onto the EAA-NH2 film. The steps to convert 

EAA film to EAA-NH2 are the same as discussed previously.  
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Figure 5.8 Reaction schematic of the reaction steps of EAA-NH2 with BDMF 
chemical to form EAA-BDMF. 

In comparing the spectra of EAA-NH2 and EAA-BDMF (Figure 5.9), BDMF was 

grafted onto the film surface. The peak shoulder at ~1604 cm-1 corresponds to a 

conjugated C=C bond, as is present in the benzene ring of BDMF [Bruno and Svoronos, 

2006; Silverstein and Webster, 1998; Kuptsov and Zhizhin, 1988]. Two peaks in the 

-1 -1 -1 ~1025-1050 cm range at 1041 cm and 1027 cm (peak maxima 0.026 and 0.022, 

respectively) correspond to C-H bending of a secondary amine and a 1-4 disubstituted 

benzene ring, respectively [Bruno and Svoronos, 2006; Silverstein and Webster, 1998]. 

The peak at ~975 cm-1 (peak maxima 0.0207) corresponds to C-H aromatic in-plane 

bending [Kuptsov and Zhizhin, 1988; Silverstein and Webster, 1998]. The peak at ~818 

cm-1 (peak maxima 0.0253) corresponds to a 1,2,4-trisubstituted benzene ring, which is 

the exact substitution of the rings in the BDMF structure [Bruno and Svoronos, 2006]. 
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Figure 5.9 ATR-FTIR spectra of preliminary film reactions steps: EAA-Neat (a), 
EAA-Cl (b), EAA-NH2 (c), and EAA-BDMF (d). 

 

   

  

  

-1 -1 The peaks at 551 cm and 539 cm (peak maxima 0.021 and 0.0166, respectively) 

correspond to C-Br stretch [Bruno and Svoronos, 2006; Silverstein and Webster, 1998; 

Kuptsov and Zhizhin, 1988; Pretsch et al., 2000]]. 

For comparison purposes, the spectrum of EAA-BDMF is compared to the 

spectrum of the BDMF chemical in Figure 5.10. The peaks of interest are boxed around 

both spectra, demonstrating the peaks used to confirm the BDMF presence on the surface 

of EAA-BDMF do correspond to the BDMF chemical. 
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Figure 5.10 FTIR spectral comparison of BDMF chemical and EAA-BDMF reacted 
film. The peaks used to identify BDMF on the surface of EAA-BDMF are 
boxed around both spectra. 

Another important feature of the films is seen using Transmission FTIR. Figure 

5.11 shows a side-by-side comparison of the transmission spectra for EAA-Neat, EAA-

Cl, EAA-NH2, EAA-OBC (on the left) and the preliminary spectra again on the right, this 

time with EAA-BDMF. 
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Figure 5.11 Transmission FTIR spectra of the preliminary step reaction films, as well 
as the final reaction products, EAA-OBC and EAA-BDMF. 

Evaluating the transmission spectra for EAA-Neat, EAA-Cl, EAA-NH2, and 

EAA-OBC (on the left), particularly the peak at ~1795 cm-1 (the peak associated with the 

conversion of the terminal –OH group to the acid chloride [EAA-Neat to EAA-Cl]), the 

appearance of this peak is first seen with the EAA-Cl spectrum, but unlike ATR-FTIR, 

this peak exists in the subsequent reaction step spectra as well. This is due to the 

penetration of the –Cl into the bulk of the film and reacting with interior –OH groups as 

well as the –OH groups present on the surface. With the ethylenediamine reaction, used 

to produce EAA-NH2, the peak lowers in intensity because the surface –Cl are converted 

to the terminal –NH2 group, but the peak is still present because the interior –Cl groups 

are still present. Comparing the EAA-NH2 and the EAA-OBC film, the acid chloride 

peak is again still present because of the interior –Cl groups, while the peaks at ~1640 

-1 -1 cm and ~1530 cm that are associated with amide II bonds of the EAA-NH2 films are 

no longer present since the OBC chemical is grafted in place of the terminal –NH2. This 
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sequence is also true for the BDMF reaction series, with the acid chloride peak appearing 

with the EAA-Cl film and remaining for the duration of the reaction series, as well as the 

appearance of the EAA-NH2 amide II peaks and then the BDMF associated peaks 

replacing the terminal –NH2 peaks. 

5.4.3 Static Contact Angle Results 

Static contact angle measurements were measured for the film samples after each 

reaction step. Since contact angle is sensitive to the outermost surface chemistry, it can be 

used to probe the efficacy of the reactions. Contact angle was determined using the 

Young Equation and uses a representative photo of a sessile drop is shown in Figure 5.12, 

which depicts the forces shown on a static contact angle drop The gas (ambient air), 

liquid (HPLC water) and solid (EAA film) phases are in thermodynamic equilibrium.  

The parameters that relate to the balance of these forces are the interfacial tension 

between these three phases (SG [solid-gas], SL [solid-liquid], LG [liquid-gas]) and the 

equilibrium contact angle, . 
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Figure 5.12 Representative image of a sessile droplet showing the intermolecular forces 
used to calculate the static contact angle. 

Average static contact angles for each EAA film reaction step are given in Table 

5.1. The measured water contact angle of neat EAA film was ~95.63 o 
 1.05, which 

matches the range of contact angle values (87-99 o) found in literature for EAA [Scaffaro 

et al., 2011; Janorkar et al., 2004]. The contact angle of EAA-Cl lowered only slightly to 

91.44 o 
 1.98, similar to the findings of Scaffaro et al. [Scaffaro et al., 2011]. EAA-NH2 

had an average contact angle of 72.47 o 
 1.01, which is also in the range of observed 

static contact angle value of 77 o [Luo et al., 2004]. 
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Table 5.1 Summary of average contact angle values for surface-modified EAA films 
at each reaction step. 

Average CA Std. Dev. 95% CI Reference CA 
Source of 
Reference 

CA 

EAA-Neat 95.63 1.70 1.05 87-99 

Scaffaro et 
al., 2011; 

Janorkar et 
al., 2004 

EAA-Cl 91.44 2.02 1.98 
Slightly lower 

value than EAA-
Neat 

Scaffaro et 
al., 2011 

EAA-NH2 72.47 1.55 1.01 77 Luo et al., 
2004 

EAA-OBC 80.50 2.40 1.49 77-85 Li and 
Marks, 2008 

EAA-BDMF 85.17 0.50 0.56 82 Jhaveri et al., 
2009 

No known contact angle ranges were known for OBC or BDMF grafted films 

however, similar chemicals were found to have contact angle ranges close to those of the 

contact angle averages found in this study. EAA-OBC produced an average contact angle 

value of 80.25o, which is in the range of similar biphenyl-based molecules that had been 

grafted to siloxane functionalized quartz and had a contact angle range of 77-85o [Li and 

Marks, 2008]. EAA-BDMF had an average contact angle of 85.17o, which is close to 82o, 

the average contact angle value of another brominated fluorene molecule [Jhaveri et al., 

2009]. 

Neat EAA was a hydrophobic solid, as was EAA-Cl. With the transition to EAA-

NH2, the film became slightly hydrophilic (< 90). The addition of either OBC or BDMF 

resulted in a slightly more hydrophobic film with the increased contact angles, even 

though the films were still considered in the hydrophilic range. Figures 5.13 and 5.14 

illustrate the progression of contact angles between the reaction steps. 
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Figure 5.13 From left, EAA-Neat, EAA-Cl, EAA-NH2, and EAA-OBC static contact 
angle images. 

  

 

 

 

 

  
 

Figure 5.14 From left, EAA-Neat, EAA-Cl, EAA-NH2, and EAA-BDMF static contact 
angle images. 

  

  

  

 

  

  

 
  

It can be visually observed that the drop shape changes as the film becomes 

hydrophilic (EAA-NH2) and slightly more hydrophobic with either EAA-OBC or EAA-

BDMF. 

5.5 Conclusions 

Based on the ATR-FTIR and static contact angle results, EAA films were 

modified to provide a terminal primary amine group that was then used to graft OBC and 

BDMF. FTIR analysis confirms the presence of the expected functional groups and also 

gives some indication to how the molecules may have reacted onto with films, such as the 

subsurface penetration of the –Cl molecule present for all subsequent reaction spectra. 

Contact angle measurements matched literature values and confirmed the preliminary 

reaction steps as well as supported that OBC and BDMF were successfully grafted to the 

EAA film surface. 
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CHAPTER VI 

OPTICAL PROPERTY CHARACTERIZATION OF EAA-OBC AND EAA-BDMF 

POLYMER FILMS 

6.1 Abstract 

Two light-emitting molecules, 4-(octyloxy)-4-biphenyl carboxylic acid (OBC) 

and 2,7-bis (bromomethyl)-9,9-dihexyl-9H-fluorene (BDMF), were grafted to the surface 

of surface modified poly (ethylene co-acrylic acid) (EAA) films. Each reaction step was 

confirmed previously using attenuated total reflectance Fourier transform infrared 

spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS) and static contact 

angle. This data is available in Chapter 5. OBC and BDMF were chosen as the grafted 

molecules for their light sensitivity and use in further development of light-sensitive 

polymer films. These LEP surface grafted films were evaluated using UV-Vis 

spectrophotometry to determine the maximum UV absorption wavelengths. The films 

were then irradiated at the maximum absorption wavelengths in a fluorescence 

spectrophotometer and the emission wavelengths were found to be in the violet-blue 

and/or red regions of visible light. The films were then irradiated at 254 nm with a UV 

lamp to view the fluorescence of the films at all reaction stages. Both EAA-OBC and 

EAA-BDMF fluoresced in the blue region of visible light. The films were reevaluated 

after six months using MIRacle-ATR FTIR and fluorescence spectrophotometry. The 

FTIR results confirmed that the LBC and BDMF chemicals were still in tact on the 
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surface of the film, and fluorescence spectrophotometry confirmed the films still 

fluoresced in the blue and red regions of visible light. 

6.2 Introduction 

Light-sensitive polymers (LSPs) have experienced significant commercial success 

due to their wide range of applications. LSPs can be found in light-emitting diodes 

(LEDs) since they are capable of emitting light across the visible, ultraviolet and infrared 

wavelengths. They can also be seen in quantum dots, liquid crystal display televisions, 

and light bulbs, among many more applications [Perepichka et al., 2006]. 

LSPs are also frequently used in the detection of radiation. They are widely 

adaptable to various phases used in radiation detection dosimeters, including films 

[Cheung et al., 2007] or polymer gels [Mori et al., 2005]. Typically, radiation detectors 

have the light-emitting chemical grafted onto the surface for films [Cheung et al., 2007; 

Walters and Hirt, 2006; Zhao et al., 2009] or are contained within the gel [Mori et al., 

2005] and change color or another property that is easily monitored for changes with 

radiation exposure. 

The method of grafting light-emitting chemicals to a polymer substrate to act as a 

detection device has limited investigative studies. Due to the accessibility of 

commercially manufactured polymers, poly(ethylene-co-acrylic acid) (EAA) was chosen 

as the polymer substrate. EAA has bulk properties that make it useful for a wide range of 

applications and contains reactive acid groups that can serve as the grafting sites for the 

light-emitting chemicals. 

Light-emitting polymers can fall into a wide variety of classifications. 

Polyphenylenes and polyfluorenes are two classes of light-emitting polymers (LEPs) 
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(a) (b) 

Figure 6.1 Chemical structures of OBC (a) and BDMF (b). 

  

 

  

  

selected for use in this research. Polyphenylenes exhibit strong fluorescence in either the 

blue or red visible light regions, depending on the dendrimer orientation [Liu et al., 2003] 

or functional groups [Imai et al., 2003] that are attached to the main structure. 

Polyfluorenes typically exhibit fluorescence in the blue visible light region [Perepichka et 

al., 2006; Zhao et al., 2009; Yu et al., 2001]. The chemical structures of the two light-

emitting polymers selected for use in this research, 4-(octyloxy)-4-biphenyl carboxylic 

acid (OBC), which is a polyphenylene, and 2,7-bis (bromomethyl)-9,9-dihexyl-9H-

fluorene (BDMF), a polyfluorene, are shown in Figure 6.1. 

When evaluating light-emitting materials for their fluorescence properties, the 

emission wavelengths are compared to the visible spectrum to determine the color of 

fluorescence in the region of visible light. Figure 6.2 shows the wavelength range of 

visible light in the visible spectrum. Based on what can be seen in the visible spectrum, 

for EAA film grafted with OBC or BDMF to emit in the blue visible light range, the 

emission wavelength must fall in the 450-475 nm range. To fluoresce red, the films must 

emit in the range of 620-750 nm [Madigan 2011]. 
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Figure 6.2 Visible spectrum with wavelengths for each color range [Madigan, 2011]. 

6.3 Materials and Methods 

6.3.1 Materials 

The poly(ethylene co-acrylic) acid (EAA) film had an approximate thickness of 

75 μm and was extruded from EAA Primacor 1410 (9.5 wt% acrylic acid) pellets (Dow 

Chemical Company) by Sealed Air Corporation in Duncan, SC. Phosphorus 

pentachloride (PCl5, 95%, CAS 10026-13-8), ethylenediamine (CH2Cl2, 99%, CAS 107-

15-3), chlorobenzene (99%, CAS 108-90-7), and 2,7-bis(bromomethyl)-9,9-dihexyl-9H-

fluorene (BDMF, 97%, CAS 187148-75-0) were purchased from Sigma Aldrich (St. 

Louis, MO, USA). Dichloromethane (99.9%, CAS 75-09-2) and 4-(octyloxy)-4-biphenyl 
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carboxylic acid (OBC, 97%, CAS 59748-18-4) were purchased from VWR (West 

Chester, PA, USA). HPLC water (HPLC grade, Fisher Scientific, CAS 7732-18-5) and 

tetrahydrofuran (THF, Optima grade, 99.9%, CAS 109-99-9) were purchased from Fisher 

Scientific (Hampton, NH, USA). All chemicals were used as received. 

6.3.2 Methods 

6.3.2.1 UV-Vis Spectroscopy 

UV-Vis spectroscopy was collected using a Shimadzu UV-2550 V2.33 UV-Vis 

spectrophotometer. The software used to collect and analyze data was UV Probe 

(Shimadzu, version 2.33). The sample cell temperature was maintained at 25° C and the 

data collection range was 900-200 nm, to cover the near infrared and ultraviolet 

wavelength range. 

6.3.2.2 Fluorescence Spectroscopy 

Fluorescence spectroscopy data was collected using a Horiba Jobin Yvon 

Fluoromax-4 spectrofluorometer. Samples were irradiated at wavelengths of 264 nm and 

290 nm. Data was collected and analyzed using FluorEssence software (Horiba Jobin 

Yvon, version 3.5.1.20). 

6.3.2.3 UV Lamp Illumination 

The films were irradiated using a 6-Watt UltraViolet Products handheld UV lamp 

with wavelength options of 254 nm or 365 nm. 

6.3.2.4 FTIR Spectroscopy 

Fourier Transform infrared spectroscopy was used to analyze the surface 

chemistry of the films.  Spectra were collected using a Nicolet 6700 spectrometer 
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(Thermo Electron Corporation) using Omnic software version 8.1.10 (Thermo Fisher 

Scientific 1992-2009). A MIRacle-ATR (Pike Technologies) with a ZnSe/diamond 

crystal and a liquid nitrogen cooled MCT-A* (mercury-cadmium-telluride) detector. 

6.4 Results and Discussion 

6.4.1 UV-Vis Spectroscopy 

Once the grafting of LEPs onto the EAA film surface was confirmed [see Chapter 

5], these LSP-modified films can be evaluated for their fluorescent properties. The first 

step was to determine at what wavelengths the films absorbed UV light. Using the UV-

Vis spectrophotometer, samples were irradiated and data evaluated for peaks in the 

absorption spectra. Figure 6.3 shows the UV-Vis spectrum for EAA-Neat, EAA-Cl, 

EAA-NH2, and EAA-OBC films. It can be seen in the spectra that EAA-OBC contains a 

peak that none of the other films possess. This peak is at a maximum at MAX ~ 290 nm. 

Figure 6.3 UV-Vis spectra for EAA-Neat, EAA-Cl, EAA-NH2, and EAA-OBC. 
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The UV-Vis spectra for EAA-Neat, EAA-Cl, EAA-NH2, and EAA-BDMF are 

shown in Figure 6.4. Similar to EAA-OBC, a peak unique to EAA-BDMF can clearly be 

seen in the UV-Vis spectrum. The peak for the EAA-BDMF film reaches a maximum 

absorbance at MAX ~ 264 nm with a shoulder at  ~ 320 nm. 

Figure 6.4 UV-Vis spectra for EAA-Neat, EAA-Cl, EAA-NH2, and EAA-BDMF. 

6.4.2 Fluorescence Spectroscopy 

Using the absorbance maxima wavelengths seen in the UV-Vis 

spectrophotometry spectra, the films were next irradiated with UV light in a florescence 

spectrophotometer to determine the wavelengths at which the films fluoresce. Since the 

films had absorbance maxima values of ~264 nm and ~290 nm, all the films were 

irradiated at both wavelengths. Figure 6.5 shows the florescence spectrophotometry (FS) 

spectra of EAA-Neat, EAA-Cl, EAA-NH2 and EAA-OBC. The EAA-Neat, EAA-Cl, 

EAA-NH2 spectra are shown for ~290 nm, since that wavelength corresponded to the 
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absorbance maximum seen for EAA-OBC. The spectra of both 264 nm and 290 nm are 

shown for EAA-OBC. 

Figure 6.5 FS spectra for EAA-Neat, EAA-Cl, EAA-NH2, and EAA-OBC. 

Examining the spectra, EAA-OBC spectra each have two peaks that indicate 

fluorescence in the visible region for both wavelengths at which the film was irradiated. 

A peak can be seen in the EAA-OBC-264 nm spectrum at a wavelength of ~365 nm. A 

nearby peak can be seen at ~410 nm for the EAA-OBC-290 nm spectrum. Emission in 

this region would fluoresce in the violet-blue region of visible light. There is also a 

significant peak at ~700 nm, which corresponds to a fluorescence in the red region of 

visible light. While the peak exists in both EAA-OBC spectra, the EAA-OBC-290 nm 

spectrum has a peak of much higher intensity in comparison to the EAA-OBC-264 nm 

spectrum. This is due to the fact that the absorbance maximum for the EAA-OBC film 

was at 290 nm and not 264 nm, which would result in stronger fluorescence at the 290 

nm wavelength. 
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The FS spectra for EAA-Neat, EAA-Cl, EAA-NH2, and EAA-BDMF can be seen 

in Figure 6.6. Like with the FS spectra for EAA-OBC, the EAA-Neat, EAA-Cl, EAA-

NH2 spectra are shown for ~264 nm, since that wavelength corresponded to the 

absorbance maximum seen for EAA-BDMF The spectra for both absorbance 

wavelengths are shown for EAA-BDMF. 

Figure 6.6 FS spectra for EAA-Neat, EAA-Cl, EAA-NH2, and EAA-BDMF. 

Two peaks of interest can be seen in the EAA-BDMF FS spectra that indicate 

fluorescence in the visible region for both irradiated wavelengths. The left peak can be 

seen in the both the EAA-BDMF-264 nm and EAA-BDMF-290 nm spectra at a 

wavelength of ~460 nm. While not an intense peak, it corresponds to emission in the in 

the violet-blue region of visible light. There is a significant peak at ~700 nm in the EAA-

BDMF-264 nm spectrum, which corresponds to a fluorescence in the red region of visible 
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light. This peak does not appear in the EAA-BDMF-290 nm spectrum due to the fact that 

the absorbance maximum for the EAA-BDMF film was at 264 nm and not 290 nm. 

Florescence would have a stronger appearance at the 264 nm irradiation wavelength. 

6.4.3 UV Lamp Illumination 

Since the films have been shown to fluoresce using analytical techniques, the next 

step was to place the films at all stages of film modification and surface grafting under a 

UV lamp and observe for film fluorescence. The films were placed in a glass UV-

transparent petri dish and irradiated at =254 nm. Unfortunately, the limitations of the 

UV lamp only allowed for irradiation at a single UV wavelength. The films prior to 

irradiation and the irradiated films can be seen in Figure 6.7. The physical appearance of 

the films did not change after irradiation. 

Figure 6.7 Films prior to UV irradiation (a) and during irradiation (b). 

Observing Figure 6.7, it is clear that the grafting of the OBC and BDMF 

chemicals caused the EAA films to fluoresce. The films did not emit visible light at any 

reaction step prior to the light-sensitive chemicals being grafted to the surface-modified 

EAA films. While it was expected that EAA-BDMF would have a more intense 
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fluorescence at 254 nm due to the absorbance maxima of EAA-BDMF occurring at 264 

nm, EAA-OBC had a stronger fluorescence at that wavelength. Since BDMF is a bulkier 

molecule, it could be that OBC grafted to the EAA-NH2 film at a higher surface density 

due to its more linear geometry. 

6.4.4 FTIR and Fluorescence Spectroscopy of 6 Month Old Films 

The stability of the EAA-OBC and EAA-BDMF films is important for further 

development of the films and any future applications. The films were stored in a 

desiccator for six months, then brought out to re-examine the FTIR spectra to confirm the 

functional groups of the reacted films are still intact and the FS spectra to confirm the 

films will still fluoresce. 

Figure 6.8 MIRacle-ATR FTIR spectral comparison of newly made EAA-OBC film 
with EAA-OBC film after 6 months. 

A comparison of a newly made EAA-OBC film with the same film six months 

later is shown in Figure 6.8. From a visual inspection of the spectra, the spectra of the 

two films show no difference. To confirm the film was unchanged, the location of the 

peaks and the peak heights were also evaluated. The locations of the peaks of interest 
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remained unchanged after six months, however the peaks heights did have some changes. 

Comparing the six-month-old film to the newly made film, the peaks experienced both 

peak height increases and decreases. The maximum peak height increase was a 23.33 % 

increase at ~1108 cm-1. The maximum peak decrease was 27.03 % at ~1025 cm-1. The 

MIRacle-ATR data confirms the presence of the OBC chemical still intact after six 

months, and that the peaks only experienced slight changes in that time period. 

Figure 6.9 MIRacle ATR FTIR spectral comparison of newly made EAA-BDMF film 
with EAA-BDMF film after 6 months. 

MIRacle-ATR spectra were also used to evaluate the EAA-BDMF film as a newly 

made film and after six months. Again, a visual inspection of the spectra reveals no 

apparent differences. The locations and peak heights of the peaks of interest were 

examined for any changes. The locations of the peaks experienced no changes, and the 

peak heights varied only slightly. The maximum peak height increase was 7.69% and 

occurred at ~1172 cm-1, and the maximum decrease in peak height happened at ~979 cm-1 
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and was 3.85%. The MIRacle-ATR spectra confirmed that the light-sensitive chemicals 

were both intact for both films after a time period of six months. 

Next, the films were evaluated using fluorescence spectroscopy for any changes 

in fluorescing activity. Figures 6.10 and 6.11 display the results of the FS spectra for the 

six-month-old films, as well as the spectra of the newly made films for comparison. 

Figure 6.10 FS spectra of EAA-OBC film after six months and newly made EAA-OBC 
film for comparison. 

The FS spectra for EAA-OBC reacted films are seen in Figure 6.10. The newly 

made films are shown as dashed lines for comparison to the film spectra of the six-

month-old films. The films were again irradiated at two wavelengths, 264 cm and 290 

nm. The aged films did produce peaks in the same locations as the newly made films, but 

the peak intensity was severely lower. However, this result does not indicate a 

degradation of the films after six months. The fluorescence spectrophotometer has an 

extremely small irradiating beam and can only collect spectra for a small spot of the film. 

Due to the availability of reactive groups from the neat film from which the films are 
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surface modified and subsequently reacted with the LS chemicals, only a small 

percentage of the film surface will contain the LS chemical groups. The beam may have 

collected spectra for an area of weak OBC presence. The important result from the FS 

data is that the film still fluoresces at the same wavelengths and therefore will emit in the 

blue and red regions of visible light. 

Figure 6.11 FS spectra of EAA-BDMF film after six months and newly made EAA-
BDMF film for comparison. 

The EAA-BDMF film produced different results than the EAA-OBC films after 

six months. It can be seen from Figure 6.11 that the FS spectra of EAA-BDMF aged film 

demonstrated an increase in intensity of the peak at ~460 nm; the exact opposite of the 

EAA-OBC results. This is yet another example of how the FS beam collects only a 

minimal area of sample surface for data analysis and the intensity of the peaks is not a 

complete indication of film fluorescence capabilities. The important fact of the existence 

of the peak is most valuable. However, the newly made film produced a strong peak at 

~688 nm when irradiated at 264 nm. While the aged film at 264 nm did not produce a 
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distinct peak, the film did have moderate fluorescing activity in that region and is still 

expected to emit in the red region of visible light, along with the blue emission as 

indicated by the peak at ~460 nm. 

Lastly, the films were illuminated with a UV lamp at a wavelength of 254 nm, 

shown in Figure 6.12. Both films are clearly fluorescing in the blue region of visible 

light. The results from MIRacle-ATR FTIR, fluorescence spectroscopy and UV 

illumination indicate the presence of the LS chemicals on the surface of both films as 

well as confirm the fluorescing properties of the films remain after a period of six 

months. 

Figure 6.12 UV illumination of six month old EAA-BDMF (left) and EAA-OBC (right) 
at a wavelength of 254 nm. 
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6.5 Conclusions 

The observed fluorescence of the EAA-OBC and EAA-BDMF samples 

demonstrates that grafting of OBC and BDMF to the surface-modified EAA films was 

successful. It was also shown that the activity of these light-sensitive chemicals was not 

significantly reduced by the use of the terminal functional groups in order to attach the 

molecules to the EAA films, as the conjugated structures remained intact. Absorbances of 

the films were measured using UV-Vis spectrophotometry. Using the absorbance maxima 

values from the UV-Vis data, the OBC- and BDMF-modified EAA films were irradiated 

at the absorbance maxima wavelengths. The fluorescence spectrophotometry results 

showed that the films would emit visible light in the violet-blue and/or red regions. Due 

to the promising data shown from these analytic techniques, the films were irradiated 

using a 254 nm UV lamp, and both films fluoresced strongly in the blue range of visible 

light. If films were irradiated at a higher wavelength, such as 700 nm where both films 

demonstrated emission peaks, it is expected that the films would also fluoresce red. The 

films were re-evaluated after six months using MIRacle-ATR FTIR, fluorescence 

spectrophotometry, and UV illumination, producing data that confirmed the presence of 

the OBC and BDMF chemicals still in tact on the surface of the films as well as spectra 

indicating the fluorescence stability of the films over an extended period of time and 

visible confirmation of fluorescing properties. 

111 



 

 

  
 

  
     

 
 

       

    
  

 

        

 
 

 
     

  
 

 
      

 
 

 

   
      

  
 

 

 
  

 
 

  
 
 

 

 
  

6.6 References 

Imai, M.; Ikegami, M.; Momotake, A.; Nagahata, R.; Arai, T. Photoisomerization and 
Fluorescence Behavior of Polyphenylene-based Stilbene Dedrimers. Photochem. 
Photobiol. Sci. 2003, 2, 1181-1186. 

Liu, D.; De Feyter, S.; Cotlet, M.; Stefan, Alina; Wiesler, Uwe-Martin; Herrmann, 
Andreas; Grebel-Koehler, Dorthe; Qu, Jianqiang; Mullen, Klaus; Schryver, Frans C. 
Fluorescence and Intramolecular Energy Transfer in Polyphenylene Dendrimers. 
Macromolecules 2003, 36, 5918-5925.  

Madigan, Jay [curator]. National Aeronautics and Space Administration: What 
wavelength goes with color? 
http://science-edu.larc.nasa.gov/EDDOCS/Wavelengths_for_Colors.html (accessed 
February 20, 2012). 

Mori, Shinichiro; Endo, Masahiro; Furukawa, Shigeo; Sunaoka, Masayoshi; Nonaka, 
Hiroi. “Development of high-radiation-sensitive polymer gel for magnetic resonance 
imaging in three-dimensional dosimetry”. Magnetic Resonance Imaging, 2005, 23, 691-
694. 

Perepichka, Dmitrii F.; Perepichka, Igor F.; Meng Hong; Wudl, Fred. Light Emitting 
Polymers. , Organic Light-emitting Materials and Devices, Marcel-Dekker Inc., CRC 
Press, 2006. 

Walters, Keisha B.; Hirt, Douglas E. Grafting of End-Functionalized Poly(tert-butyl 
acrylate) to Poly (ethylene-co-acrylic acid) film. Polymer 2006, 47, 6567-6574. 
Cheung, Tsang; Butson, Martin J.; Yu, Peter K.N. “X-ray energy dependence of the dose 
response of SIRAD radiation dosimeters”. Applied Radiation and Isotopes, 2007, 65 (7), 
814-817. 

Yu, J.W.; Kim, J.K.; Hong, J.M.; Kim, Y.C.; Cho, H.N.; Kim, D.Y.; Kim, C.Y. 
Molecular Design of Light Emitting Polymers. Chinese Journal of Polymer Science 
2001, 18 (3), 227-237. 

Zhao, Q.; Liu, S.; Huang, W. Polyfluorene-Based Blue-Emitting Materials. Macrol. 
Chem. Phys. 2009, 210, 1580-1590. 

112 

http://science-edu.larc.nasa.gov/EDDOCS/Wavelengths_for_Colors.html


 

 

 

 

  

 

 

  

 

  

  

  

 

  

 

   

 

   

 

  

CHAPTER VII 

RECOMMENDATIONS 

7.1 Recommendations for Artificial Saliva 

Based on the inconsistency between drug-doped salivas in all three methods of 

characterization (pH, rheology, and pendant drop), it is suggested that future studies 

examine the effects of drug concentration and how varying these parameters influences 

the physicochemical and viscoelastic properties. Using one representative artificial saliva 

as opposed to three would eliminate the variances between saliva solutions, and the true 

effects of concentration and other investigated characteristics could be examined without 

having to take into effect the differences is saliva composition. Also, investigating the 

effect of phospholipid phosphatidylethanolamine (PE) in the artificial saliva as opposed 

to phosphatidylserine (PS) to see changes in physicochemical properties in artificial 

saliva and how the properties compare to natural saliva. 

Investigating the effects of other influential factors such as lipophilicity, 

hydrophobicity, and particle charge would also be beneficial. A suggested method would 

be using the same core particle substrate as a standard reference, and coating the particle 

with varying materials with different properties, such as a hydrophilic poly(ethylene 

glycol) coating versus a hydrophilic amine functional polymer coating. Studying the 

lipophilicity of drugs using octanol-water partition coefficients (studies underway) is also 

extremely beneficial, since lipophilicity is a key parameter in drug diffusion. A review 

paper summarizing the effects of various surface chemistries and concentration 
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dependence would be an asset to the field of aerosol particulate studies and biological 

modeling. 

Diffusion modeling would also be enhanced by modeling the gel and sol layers of 

mucus as opposed to one mucus substrate. Temperature-dependent diffusion studies 

using a temperature-controlled ATR-FTIR crystal would be beneficial. The temperature 

of the human body, at 37 °C, would affect the diffusion of a drug particle as opposed to 

25 °C ambient temperature. 

7.2 Recommendations for Light-sensitive Polymer Films 

The EAA-OBC and EAA-BDMF films both fluoresced blue when illuminated 

with UV light at a wavelength of 254 nm. Both films also produced peaks in the red 

region of visible light when characterized by fluorescence spectrophotometry (FS). It is 

recommended that the films be illuminated with other UV wavelengths to see the films 

fluoresce red. The films could also be illuminated a wavelength where no FS peaks were 

seen to see if the films have any fluorescence in those ranges. Investigating the properties 

of the films with other radiation sources such as gamma (γ) or alpha (α) would provide 

insight to the potential of the films’ surface chemistry as indicators for other types of 

irradiation. Grafting the film surface chemistry to other substrates with differing surface 

chemistry and terminal functional groups would also be beneficial for determining the 

effects of spacing on color emission. 

Investigating environmental effects on the films and their aging properties would 

be an interesting characterization study. The films could be characterized as newly made 

films, and then stored in a variety of environmental conditions such as humid or dry 
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environments, as well as hot and cold surroundings. At various time intervals, the films 

could again be characterized to determine the effects of the various environments. 
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APPENDIX A 

FTIR METHODS: ATR, TRANSMISSION, AND DRIFTS 
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A.1 FTIR Methods: ATR, Transmission, and DRIFTS 

All FTIR (Fourier transform infrared) spectroscopy data was collected on a 

Nicolet 6700 FTIR spectrometer (Thermo Electron Corporation) using Omnic software 

(version 8.1.10, Thermo Fisher Scientific 1992-2009). In this research, either a liquid 

nitrogen cooled MCT A* (mercury-cadmium-telluride) detector or a deuterated triglycine 

sulfate (DTGS) detector with an extended range KBr beam splitter was used. Two 

accessories were used to collect attenuated total reflection (ATR-FTIR) spectra: (1) Pike 

Technologies Veemax II accessory with a 60 zinc selenide crystal for film and liquid 

samples or a 65 germanium crystal for gold wafer samples; (2) Pike Technologies 

MIRacle-ATR accessory with a 45 diamond/ZnSe crystal. For transmission FTIR, a 

universal sample holder was used. Diffused reflectance infrared Fourier transform 

spectroscopy (DRIFTS) were performed using a Pike Technologies EasyDiff accessory.  

A.2 FTIR Set-Up 

1. Clear the air line (Figure A.1 below depicts the airline setup) 

a. Check the sink to make sure there is no glassware and make sure 

everyone in the lab is wearing earplugs. 

b. Carefully climb up on the counter to the right of the Waters GPC. 

c. Close the yellow valve by positioning the handle perpendicular to the 

airline (Labeled 1 in Fig. A.1.). 

d. Open the red valve by positioning the handle parallel to the airline 

(Labeled 2 in Fig. A.1). 
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e. There are two filters to the right of the yellow valve. Loosen the 

screws at the bottom of each filter. Air will be released from the 

bottom of the filters (Labeled 3 in Fig.A.1). 

1 

2 

3 

Figure A.1 Airline valve setup in PolySEL Lab 180 

f. Watch the airflow into the sink until there is no more moisture coming 

out of the hose with the compressed air that is also exiting. Once there 

is no more water, close the screws of the filters, then close the red 

valve, and then open the yellow valve. 

g. Check the flow meter going into the FTIR to make sure there is 30 psi 

flowing into the FTIR. 

2. Place the accessory being used into the FTIR 

a. The Veemax II ATR accessory and the MIRacle-ATR accessory both 

have an air line that attaches to the FTIR at the bottom left of the FTIR 

118 



 

 

 

 

 

 

 

  

 

  

 

  

   

 

  

 

  

 

 

 

 

chamber. Each accessory also comes with two “ears” that attach to the 

entrance and exit of the FTIR and seals the accessory from external 

air. While not in use, each of the holes on the side of either accessory 

should be sealed with Parafilm to prevent anything foreign from 

entering the accessory chamber. 

b. The DRIFTS accessory as well as Transmission accessory are run with 

the main chamber lid closed. 

c. Ask for help before attempting to transition between FTIR accessories 

for the first time. 

3. Add liquid nitrogen to the liquid nitrogen trap to cool the MCT detector 

a. The liquid nitrogen chamber is on the left side of the FTIR covered by 

a circular lid. 

b. Open the lid, remove the plug and place the funnel (plastic funnel with 

metal stem and Styrofoam barrier) into the hole. 

c. Pour liquid nitrogen into the funnel slowly, allowing enough time the 

liquid nitrogen to flow into the FTIR liquid nitrogen chamber and to 

not overflow the funnel. If the liquid nitrogen overflows (the excess 

liquid nitrogen can be seen at the base of the funnel/entrance to the 

liquid nitrogen chamber), a loud crackling noise can be heard. 

Overflowing the liquid nitrogen will damage the FTIR benchtop and 

accelerate the deterioration of the rubber gasket surrounding the liquid 

nitrogen chamber. 
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d. Remove the funnel and gently place it on a paper towel on the 

benchtop. Since the funnel is frozen, it will crack if placed forcefully 

or dropped. 

e. Replace the plug into the liquid nitrogen chamber and close the 

chamber cover slightly.  Wait a few minutes before completely closing 

the cover to the chamber to avoid damaging the plastic cover or rubber 

gasket.  These will fracture if physically forced when frozen. 

f. Wait approximately 20 minutes for the detector to completely cool and 

the FTIR interior to purge prior to running samples.  

4. Aligning the FTIR 

a. Aligning the FTIR should be done once per week in the transmission 

mode. Instructions for alignment are available in the FTIR manual as 

well as a supplemental manual prepared by another member of the 

PolySEL research group. 
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A.3 Data Collection and Use of OMNIC Software 

Open the OMNIC Software and select “Collect  Experiment Setup” 
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1. The Experiment Setup window will open 

In the “Collect” tab, the number of scans, resolution, and background 

collection method is set. For polymer films, 128 or 256 scans are 

recommended. For liquid samples, 128 scans is recommended, except for time 

resolved diffusion spectra collection, where 64 or 32 scans is recommended 

due to the speed with which the spectra need to be collected and the need to 

not have combined/averaged (but rather discrete) spectral information. For Au 

wafers with thick surface coatings, 256 scans are recommended. 

2. Typically, each user has saved setup files for the types of samples and FTIR 

each person uses. To access a saved setup file, click “open” on the bottom left 

of the collect tab, select the folder the file is saved in, and click “open”. The 

saved file with its parameters will load into the OMNIC Experiment Setup 
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window. 
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3. It is also important to check the “Bench” tab in the Experiment Setup window 

prior to collecting the background or any samples 

Here, the user can see the interferogram strength, change the type of detector 

for data collection, and edit the collection range, gain, and aperture. If the 

interferogram is too strong (>10) such that the detector is saturated, a physical 

screen can be inserted at the FTIR beam path exit or the aperture can be 

reduced. 

4. Once the parameters have been confirmed in the Experiment Setup window, 

click “ok” at the bottom right of the Experiment Setup window. Next, go to 

the top left of the OMNIC software window and click “ColBkg” for “Collect 
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 Background”. 

A window will open to confirm that the user is prepared to collect the 

background. Make sure the crystal being used has been cleaned and allowed 

to dry (no residual solvent) for Veemax or MIRacle ATR, or that the chamber 

has been closed for DRIFTS or Transmission, and that the FTIR has had 

enough time to purge before collecting the background for all collection 

techniques. Without taking these steps, there will be strong water peaks that 

appear in the background and most likely there will subsequently be negative 

peaks in the sample spectra. 

5. The background will begin collecting and take 1-3 minutes depending on the 

number of scans the user selected. 
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     6. Once the background has been collected, select “yes” in the popup window to 

add the background to a window. 
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Go to “File Save As” and save the background spectra in the folder of 

choice. 

Next, back in the OMNIC software, go to “CollectExperiment SetupUse 

Specified Background” and select the background file that has previously 

been saved, and click “ok”. 

7. Next, load the sample. Once the sample is situated, select “ColSmp” for 

“Collect Sample”. Name the sample in the first pop up window, click “ok”, 

and then “ok” again in the second pop up window. Sample spectra will then 

be collected. 

8. Once the sample spectrum is done being collected, select “yes” to add the 

spectra to a window (usually the same window of the background). However, 
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be aware of which window OMNIC is adding the spectra in case any changes 

need to be made. 

9. Next, the sample spectra can be saved individually or as a group if there are 

multiple spectra in the user's data folder. 

10. Data collection using the OMNIC software follows the same procedure for 

each method of FTIR data collection. Make sure that the parameters are 

appropriate for the method being used. 

A.4 Sample Set-Up 

A.4.1 Veemax II ATR 

The Veemax ATR is most commonly used for films or liquid samples with the 

ZnSe crystal and wafers with the 65° germanium crystal. The incidence angle for the 
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ZnSe crystal and the standard germanium crystal is 60° and 65° for the 65° germanium 

crystal. Adjust the incidence angle using the knob on the front of the Veemax accessory. 

To clean any of the Veemax crystals, moisten a cotton ball generously with 

methanol, rub the crystal in a circular motion, dry the crystal with a new, dry cotton ball, 

and then wait a few minutes for any residual methanol to evaporate prior to placing a 

sample or collecting a background spectrum. 

To collect sample spectra for films or wafers, place the sample on the crystal. 

Set the sample in place by tightening the clamp slowly. Uniform force is 

necessary for consistent contact between the sample and the crystal. Without adequate 

contact, sample spectra will be noisy, inconsistent, and generally cannot be used without 

analysis for ratios in order to generate semi-quantitative data. 
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The sample is now ready for data collection. Once spectra collection is completed 

for this sample, loosen the clamp, rotate the clamp from over the crystal and sample, 

remove the sample carefully so to not scratch the crystal surface, and clean the crystal 

before moving on to the next sample. 

To collect sample spectra for liquid samples, clean the crystal and then attach a 

previously cleaned liquid retainer, fastening the screws to the crystal plate using an Allen 

wrench. To clean the liquid retainer, methanol with a cotton ball is usually adequate. It is 

recommended that the user remove the rubber O-ring while cleaning to ensure there is no 

residual solvent or sample trapped beneath the O-ring. Cleaning using the glassware 

cleaning method can also be used. For especially difficult samples, sonication in 

methanol followed by wiping with methanol cotton ball is recommended. The liquid 

retainer can also be sonicated in water. Make sure the O-ring is replaced completely to 

ensure the seal with the ATR crystal is good. 
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Using a pipet, gently add the liquid sample to the center of the crystal until the 

crystal is covered by a layer of the liquid. It is not necessary to fill the entire retainer 

volume with the liquid sample in order to collect good spectra. If the sample contains any 

hazardous or volatile components, cover the sample well with a clean glass slide to 

prevent evaporation and/or exposure of the user to a hazardous substance.  For all liquid 

samples, monitor the liquid level as well as the edges of the liquid retainer to ensure no 

solvent is leaking under the retainer. Once the liquid has been placed on the crystal, the 

sample is ready for data collection. 

Once spectra are collected, use a dry cotton ball to soak up the sample off the 

crystal surface before removing the liquid retainer. With the retainer still attached, clean 

the crystal with one or more methanol soaked cotton balls. Remove the retainer and clean 

the retainer and crystal thoroughly with methanol before moving on to the next sample. 

A.4.2 MIRacle ATR 

The MIRacle-ATR can be used for liquid, solid, and powder samples. The sample 

setup is very similar to the Veemax ATR setup. For solid samples such as films, there is 

no need for the liquid retainer or mounting ring to be attached. Clean the crystal the same 

way as with the Veemax ATR, wait for residual methanol to evaporate, collect the 

background, and then place the sample on top of the crystal and secure with the pressure 
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clamp and flat bottom pressure tip. For liquid or powder samples, attach the liquid 

retainer and secure the retainer with the mounting ring. For powder samples, gently 

“spoon” the sample into the sampling area with a spatula and use the pressure clamp with 

the concave tip to secure the powder. 

A.4.3 DRIFTS 

DRIFTS is most commonly used to collect powder samples. To collect DRIFTS 

samples, a few preparation steps are required prior to setting up the sample for collection. 

First, measure out the powder sample and KBr powder in a 5:95 wt% ratio. Since only a 

small amount of powder mixture is required, 0.005 grams of sample and 0.095 grams of 

KBr powder is recommended. Mix the KBr powder and sample thoroughly in the mortar 

and pestle. Transfer to a weighing boat for ease of sample transfer into the DRIFTS 

sample cup or into a small vial for storage in the desiccator. Transfer sample into one of 

the metal sample cups in the DRIFTS sample preparation kit. Using a razorblade smooth 
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the surface to ensure a relatively flat sample surface from which the light will bounce. 

Prepare the second metal sample cup with neat KBr powder (no sample added) that has 

also been crushed and smoothed in the manner described above. Place the neat KBr 

powder sample container in the first sample slot (the slot the goes into the DRIFTS 

accessory first) and the Sample-KBr mixture sample container into the second sample 

slot (the slot further from the end that enters the DRIFTS accessory first). Very carefully, 

open the top of the FTIR hood and place the samples into the DRIFTS accessory. 

Pull back on the holder gently to not disturb the smooth powder, close the lid of 

the FTIR sample compartment hood and wait approximately 25-30 minutes for the FTIR 

to purge. Collect the neat KBr background when an appropriate amount of time has 

passed, then open the FTIR hood and quickly but carefully push the sample holder 

forward. The Sample-KBr mixture is now in place to have its spectrum collected. 
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Once the sample spectrum collection is completed, remove the sample holder and 

clean the metal sample cup containing the Sample-KBr powder mixture.  Retain the neat 

KBr cup, if there are more samples to run.  Or clean both sample cups if spectra 

collection is complete for all samples. 

A.4.4 Transmission FTIR 

Transmission FTIR is unique in that spectral information is collected from the 

entire sample thickness, as opposed to sample (sub) surface as is the case in the other 

FTIR collection methods described above. To use this method, light must be transmitted 

completely through the sample.  The transmission method is therefore most commonly 

used on translucent gases, liquids, and (polymer) films. Insert the transmission accessory 

and close the FTIR sample compartment hood to allow the FTIR to purge. Wait 

approximately 25-30 minutes before collecting the background (open/empty sample 

compartment) and sample spectra. 
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For polymer films, place the sample in the sample clamp and after collecting the 

background, quickly slide the sample into the grooves in the Transmission accessory, and 

close the sliding door on the hood. The sample is now ready for spectra collection. 

To remove the sample, open the lid to the FTIR hood and quickly and carefully 

slide the sample clamp out of the accessory. Keep the lid to the hood closed between 

samples. 
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APPENDIX B 

SURFACE ANALYSIS AND DEPTH OF PENETRATION: A COMPARISON OF 

DIFFERENT SURFACE-SENSITIVE FTIR TECHNIQUES 
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B.1 Introduction to Surface Chemistry Characterization Methods 

Several characterization methods are available to researchers to investigate the 

surface chemistry of samples. Commonly used techniques available to our laboratories 

include X-ray photoelectron spectroscopy (XPS), contact angle goniometry, Fourier 

transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), 

transmission electron microscopy (TEM) and atomic force microscopy (AFM). Each 

technique uses a different method to collect sample data. XPS uses an X-ray beam to 

irradiate samples and has a relative depth of penetration of 1 m, while FTIR uses an 

infrared beam and measures the sample’s absorption of the IR beam. The FTIR depth of 

penetration can range from approximately 0.1 to 2 m [Kwan 1998], depending on the 

parameters used. Contact angle goniometry has no penetration abilities, and conveys 

surface chemistry information using interfacial tension and contact angles, which are 

impacted by the surface functional groups present. In electron microscopy techniques a 

primary electron beam is passed through the sample and produce excited backscattered 

secondary electrons that generate a sample image [John Innes Center 2012]. TEM 

completely penetrates the sample thickness, while SEM scans the surface with the 

electron beam and has an approximate depth of penetration range of 0.1 to 3 m that is 

dependent on sample composition, density, atomic weight, and beam energy [Muller 

2008]. TEM specimens do have a maximum thickness dependent upon instrument 

capabilities. Samples with a thickness greater than the maximum thickness in their 

native state must be amenable to being sliced and cryotomed. 

The versatility, reliability, and speed of FTIR spectroscopy make it an ideal 

characterization method. External reflectance (ER-FTIR) is an FTIR spectroscopic 
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technique that does not utilize a crystal since the IR beam from the source is reflected by 

the sample to the detector. Attenuated total reflectance (ATR-FTIR) does not require a 

solid surface, as is the case with ER-FTIR, and is a fast and easy FTIR technique. In 

addition, there are several options for crystal and ATR accessory configurations 

allowing for a wide range of sample types to be examined. Characteristics that must be 

considered include the ATR crystal properties, angle of incidence, sample material 

properties, and depth of investigation desired. 

Of the factors that must be considered when configuring an ATR-FTIR study, 

one of the most important is the crystal selection. The primary consideration is, of 

course, the absence of IR light absorbance in the wavelength range of interest.  Selection 

of the crystal is also dependent on the crystal chemical resistance for the sample and any 

solvent present, durability, hardness, and refractive index.  Table B.1 summarizes some 

key properties of commonly used ATR-FTIR crystals. 
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Table B.1 Tabulated Summary of Commonly used ATR-FTIR Crystal Properties 
Important for Crystal Selection [Pike Technologies, 2011]. 

Crystal Material 

Refractive 
Index 

Long Wave 
Length Cutoff 

-wavenumber (cm 
1) 

Hardness 
2(kg/mm ) 

General Sample 
and Solvent 

Compatibility 

Diamond/ZnSe 

2.4 

525 5700 

Can withstand 
hard, acidic or 

alkaline samples; 
pH range 1-14 

Ge 

4 

780 550 

General purpose, 
or rubber or 
carbon-filled 

samples; pH range 
1-4 

Si 
3.4 

1500 1150 
Useful for far-IR 

spectral ranges; pH 
range 1-12 

ZnSe 
2.4 

525 120 
General purpose 
ATR crystal; pH 

range 5-9 

Most commonly used ATR crystals have a refractive index between 2.4 and 4.0, 

which is higher than most organic samples [Dole 2011]. Organic solvents such as 

tetrahydrofuran, toluene, and acetone have refractive indices of 1.41, 1.50, and 1.37, 

respectively. In calculating depth of penetration, for a given sample higher crystal 

refractive indices result in lower depths of penetration.  It is also important to consider 

sample composition when choosing an ATR crystal. For example, zinc selenide (ZnSe) 

would not be a good crystal choice for an acidic sample since it would etch the crystal 

surface [Kazarian and Chan, 2010]. A primary factor in obtaining quality ATR-FTIR 

data is dependent upon the sample surface since intimate contact is necessary to obtain 

suitable signal-to-noise ratio suitable.  However, obtaining this contact area—generally 
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through use of a clamp—is an issue for hard and/or rough samples that would scratch 

the surface of a soft crystal such as ZnSe.  Some chemicals can react and etch the 

surface of the crystal, as well as acidic solutions pH > 5 [Dole 2011, Pike Technologies 

2011]. Etched or scratched crystal surfaces result in lower crystal-sample contact and 

therefore lower quality spectra, lower depth of penetration, and potential accessory 

contamination since the scratches cannot be cleaned easily. Lower and inconsistent 

sample-crystal contact may result in spectral errors such as inaccurate peak detection, 

increased noise levels, and the presence of negative peaks. Refer to Appendix A for 

information on how to ensure consistent sample-crystal contact. 

Crystal parameters are chosen to optimize sensitivity based on the crystal and 

sample compositions. One parameter that can be controlled is incidence angle. For a 

given sample-crystal combination, a higher incidence angle results in a lower depth of 

penetration and so consequently lower spectral peak intensities [Kazarian and Chan, 

2010]. The minimum and maximum depths of penetration are important to consider 

when choosing an ATR crystal depending on whether only surface information is 

desired, or you also want to interrogate a significant portion of sub-surface space to 

maximize the signal or detect as functional groups that may be present in that region of 

the sample. Based on sample composition and theorized reactions, the crystal must be 

selected for compatibility with the sample. For example, self-assembled monolayers 

(SAMs) grafted from gold wafers need a crystal that is sensitive enough to allow beam 

penetration through the grafted surface chemistry, but must not penetrate completely 

through the monolayer to the gold wafer, since the gold will reflect an excess of light 

and overshadow the spectral peaks of the surface chemistry functional groups. For 

surface-modified films, a larger depth of penetration is desired due to the ability of some 
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molecules to penetrate into the film, while others are too large and restricted to the 

film’s surface. A larger depth of penetration would permit the analysis of a greater 

thickness of film. 

Figure B.1 illustrates how the FTIR instrument collects ATR spectra. The IR 

beam is transmitted through the crystal where it reflects evanescent waves off the crystal 

and into the sample surface, where light is absorbed or reflected. Reflected light is 

bounced back to the detector. Evanescent waves are only effective if the crystal has a 

higher refractive index than the sample. The outputted spectrum contains absorbance 

peaks that correspond to molecular motions of the functional groups that made contact 

with the reflected light. 

Figure B.1 Spectra collection using a single-bounce attenuated total reflectance 
(ATR) FTIR accessory.  

B.2 Depth of Penetration 

There are several factors that affect the depth of penetration of the FTIR light 

source and therefore the portion of the sample interrogated. Equation B.1 [Dole 2011] is 

used to calculate the depth of penetration of the FTIR light source into the sample: 
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d p =
l

2 p (n 1
2 si n 2 q - n 2

2 )1/ 2
E q. B. 1 

w h er e λ  is t h e w a v el e n gt h of li g ht, θ is t h e a n gl e of i n ci d e n c e of t h e I R b e a m, a n d n 1 a n d 

n 2 ar e t h e r efr a cti v e i n di c es of t h e cr yst al a n d s a m pl e, r es p e cti v el y. 

B. 3 D e pt h of P e n et r ati o n: C o m p a ri n g A T R T e c h ni q u es 

A T R e x p eri m e nts i n o ur l a b or at ori es utili z e diff er e nt cr yst als ( wit h diff er e nt 

r efr a cti v e i n di c es) a n d diff er e nt i n ci d e n c e a n gl es w h e n c oll e cti n g s a m pl e s p e ctr a. W hil e 

ot h er cr yst al o pti o ns ar e a v ail a bl e fr o m v e n d ors, i n o ur l a b or at ori es t h e MI R a cl e A T R 

a c c ess or y is c o nfi g ur e d wit h a 4 5   Z n S e- di a m o n d cr yst al, a n d t h e V e e m a x A T R c a n b e 

o utfitt e d wit h a Z n S e ( 6 0  ) or g er m a ni u m ( 6 0  or 6 5 ) cr yst al. T a bl e B. 1 li sts t h e 

r efr a cti v e i n di c es, i n ci d e n c e a n gl es, a n d r a n g es of d e pt h of p e n etr ati o ns f or t h e cr yst als 

us e d f or t hi s r es e ar c h. T h e d e pt h of p e n etr ati o n r a n g es s h o w n ar e c al c ul at e d f or a 

p ol y( et h yl e n e c o- a cr yli c a ci d) ( E A A) s a m pl e w hi c h h as a r efr a cti v e i n d e x of 1. 4 0 8. 

T h er e ar e t w o diff er e nt d et e ct ors a v ail a bl e o n t h e Ni c ol et 6 7 0 0 F TI R t h at w as us e d f or 

d at a c oll e cti o n, M C T a n d D G T S. E a c h is c a p a bl e of c oll e cti n g o v er a diff er e nt 

w a v e n u m b er ( 1/  ) r a n g e; t h e M C T a n d D G T S d et e ct or w a v e n u m b er r a n g e s us e d i n t hi s 

- 1 - 1 r es e ar c h ar e 4 0 0 0- 8 0 0 c m  a n d 7 0 0 0- 4 0 0 c m  , r es p e cti v el y.  Si n c e w a v el e n gt h i s a 

v ari a bl e i n t h e d e pt h of p e n etr ati o n c al c ul ati o n, t h e e x a ct w a v e n u m b er ( or w a v e n u m b er 

r a n g e) of i nt er est i m p a cts t h e dp ( or dp r a n g e).  T h er ef or e, if t h e s a m e w a v e n u m b er r a n g e 

is b ei n g us e d f or b ot h d et e ct ors, t h er e is n o diff er e n c e i n t h e dp .  It c a n b e s e e n fr o m 
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Table B.2 Table of Refractive Indices [Kazarian and Chan, 2010], Incidence Angles, 
and Calculated Depth of penetration (dp) ranges for an EAA film sample 
(n2=1.408) for the four ATR crystal options available in our laboratories.  

Crystal 
Material 

Crystal 
Refractive 
Index (n1) 

Incidence 
Angle (θ) 

EAA dp range (m) 

MCT detector DTGS 
detector 

Diamond 2.4 45 0.42-2.10 0.24-4.20 
Zinc 

Selenide 2.4 60 0.26-1.30 0.15-2.60 

Germanium 4.0 60 0.13-0.63 0.07-1.26 
Germanium 4.0 65 0.12-0.60 0.07-0.60 

Note that the available dp for each crystal option varies based upon the available 
wavenumber range of each detector (MCT: 4000-800 cm-1; DGTS: 7000-400 cm-1). 

B.4 Comparing spectra of ATR Techniques 

Figure B.2 shows a common scale comparison of Veemax and MIRacle ATR-

FTIR spectra for an EAA-NH2 film. MIRacle ATR provides stronger (higher intensity) 

peaks than the Veemax ATR. This is due to the fact that MIRacle ATR has a greater 

depth of penetration during sample collection.  Since more sample is being contacted by 

the IR radiation, there is a strong signal.  When compatible with an experiment and 

sample type, the MIRacle accessory is therefore the preferred technique. 

143 



1800 1600 1400 1200 1000

Abs
0.010

MIRacle ATR
Veemax ATR

-

 

 

 

   
   

 Wavenumber (cm 1) 

Figure B.2 Comparison of MIRacle and Veemax ATR spectra for an EAA-NH2 film 
with absorbance presented on a common scale. 
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APPENDIX C 

COMPRESSION MOLDER OPERATIONAL GUIDELINES AND PRODUCTION OF 

EVOH FILMS USING COMPRESSION MOLDING 
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C.1 Compression Molder Operational Guidelines 

A compression molder is available in the Swalm School of Chemical Engineering 

at Mississippi State University for use, with approval, in the Unit Operations Laboratory. 

The compression molder was manufactured by Carver, Inc. (model number 

3893.4PR1A00, Wabash, Indiana). Due to the danger of using a compression molder, it is 

important to understand fully how to use the compression molder prior to operating the 

machine without assistance. A brief set of directions for how to use the compression 

mold follows. 

1. Turn on the main power supply using the large switch to the right of the 

compression molder. 

Figure C.1 Main power source switch. 

2. Turn on the power to the compression molder using the red switch located on 

the right side of the compression molder. 
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Figure C.2 Picture indicating red switch for powering compression molder. 

3. Power on the hydraulic pumps (right rocker) and heated plate (left rocker) 

using the switches on the instrument panel. 

Figure C.3 Instrument control panel. 

148 



 

 

 

  

 

 

  

  

 

 

  

 
 

 

4. Adjust the temperatures for the upper and lower plates using up and down 

arrows on the control panel.  Set and confirm final use temperatures using the 

right most button for each temperature controller. 

5. Set the pressure by using manual mode (“man”) on right control panel, and set 

pressure to pounds by pressing “set” three times. Use up and down arrows to 

choose pressure and confirm by pressing “man”. 

6. Wait for the plates and mold to heat to the set temperature. 

Figure C.4 Carver, Inc. compression molder (model 3893.4PR1A00). 

7. Place the material in mold (prior application of silicon release spray is 

recommended). Press both green buttons simultaneously and hold until the 
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desired pressure is reached. Leave sample in press for desired length of time.  

Press the red button to release the plates. Warning: samples come out of the 

compression molder at extremely high temperatures. Wearing hot gloves 

remove the mold carefully and allow the mold to cool before handling the 

sample. 

8. To shut down the instrument, first cool mold to room temperature by opening 

the water line to instrument using the water spigot on the wall to the right of 

the press.  Next turn off the control panel using the power button on the right 

side of the instrument and finally shut off the main power source. 

C.2 Using the Compression Molder to Make EVOH Films 

EVOH (ethyl vinyl alcohol) pellets, produced by Dow Chemical, were molded 

into films using a compression molder. The films were processed at 190 C and 4000 

pounds. Prior to pressing, EVOH pellets must first be dried in a vacuum oven (no heat 

applied) for 24 hours to evaporate any water that may have adsorbed onto the surface of 

the pellets. Figure C.5 shows a film that was produced without first drying the pellets. 
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Figure C.5 EVOH film produced at 190 C and 4000 lbf without drying pellets. 

As can be seen from Figure C.5, if the pellets are not dried prior to compression 

molding, a brittle, irregular film is produced. With drying, a thinner, more uniform film is 

produced. Figure C.6 shows a film produced from dried EVOH pellets. 

Figure C.6 EVOH film produced at 190 C 4000 lbs. with dried pellets. 
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APPENDIX D 

CONTACT ANGLE GONIOMETRY OPERATIONAL GUIDELINES FOR DATA 

COLLECTION AND ANALYSIS 
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D.1 Instrument Specifications 

All contact angle and pendant drop data was collected using a Kruss EasyDrop 

with a Teli CCD camera and analyzed using Drop Shape Analysis (DSA) software 

(version 1.90.0.14, Kruss). 

Figure D.1 Kruss EasyDrop Contact Angle Goniometer with syringe loaded. 

D.2 Instrument Set-Up 

1. Ensure the instrument is level using a small level placed on the sample 

stage. Adjust the feet of the EasyDrop if the level needs to be adjusted. 

2. Attach either a red (sessile drop) or green (pendant drop) needle to a 

Hamilton syringe. 
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3. Flush the needle several times using the fluid that will be used for data 

collection. 

4. Fill the needle, and ensure there are no bubbles in the tip. 

5. Open DSA software, then go to the Device Control Panel and open the 

“Dosing” tab. 

6. Click the button for “Contin” to set the dosing control to continuous. 

7. Note: The up arrow indicates moving the plunger of the syringe up and the 

down arrow indicates moving the syringe plunger down. Using the up or 

down arrows, adjust the position of the syringe plunger holder to the 

proper position and insert the syringe into the holder extremely carefully 

to avoid breaking the glass syringe barrel. Refer to Figure D.2 for an 

illustration of proper syringe placement. 

Figure D.2 Images depicting the proper syringe (left) and syringe plunger (right) 
placement on the Kruss EasyDrop Contact Angle Goniometer. 
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8. Using the dosing control down arrow, depress the syringe plunger until 

fluid is dispensed out of the needle. 

D.3 Static Contact Angle 

Before running experimental samples, the static contact angle procedure should 

be performed on polymer standards (EAA, PTFE, and LDPE) with HPLC water. Table 

D.1 at the conclusion of this appendix summarizes the reference contact angles for these 

materials. 

1. Place sample on sample stage. 

2. In the DSA software, go to file, menu and click “F-G window.” 

3. Click on the “Live Video Feed” button (icon of video camera) and make sure the 

camera and live video window are focused. 

4. Increase illumination strength to 32 by going to the DSA device control panel and 

“Imaging” tab. 

5. Loosen the screw on the back of syringe holder to lower needle into frame. The 

tip of the syringe needle should be visible on the screen within the live video feed. 

Tighten the thumb screw once needle is in frame. 

6. In the DSA device control panel, click the “Dosing” tab, then set the dosing 

method to “Volume” and set the volume to 5 µL. 

7. Press the up arrow to dispense 5 µL of fluid. 

8. Using the up and down  dial on the sample holder, slowly raise the sample until it 

just touches the drop and the drop comes down onto the surface of the sample, 

then lower the sample platform. 
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9. Zoom in on the sample using the zoom dial on the camera until the drop almost 

fills (~ 80%) the F-G window feed, then capture a photo of the drop using the 

“Snap” button on the tool bar (icon of a camera). 

10. Right click on the F-G window, go to “Drop Type”, and click on “Sessile Drop”, 

then go to “Drop Subtype” and select “Normal Sessile Drop”. Also, make sure 

“Auto Detect Substrate” in unchecked. 

11. Right click on the F-G window, go to baseline type, and select “Linear.” 

12. Click on the baseline shown in F-G window, and adjust using arrow keys.  The 

baseline should intersect the drop where the drop meets the substrate.  

13. Go to file menu and open “Result Window”, then right click on F-G window and 

select the appropriate fitting method under contact angle using. 

14. Record results in lab notebook and/or data spreadsheet.  Save the drop photo file. 

D.4 Pendant Drop 

The data collection method of pendant drop is very similar to contact angle. 

1. In the DSA software, go to file, menu and click “F-G window.” 

2. Click on the “Live Video Feed” button (picture of video camera) and make sure 

the camera and live video window is focused. 

3. Increase illumination strength to 32 by going to the DSA device control panel and 

“Imaging” tab. 

4. Loosen the screw on the back of syringe holder to lower needle into frame. The 

tip of the syringe needle should be visible on the screen within the live video feed. 

Tighten the thumb screw once needle is in frame. 
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5. In the DSA device control panel, click the “Dosing” tab, then set the dosing 

method to “Volume” and set the volume to 10 µL. 

6. Press the up arrow to dispense 10 µL of fluid. 

7. Zoom in on the sample using the zoom dial on the camera until the drop almost 

fills the F-G window feed, then take a picture of the drop using the “Snap” button 

on the tool bar (button has picture of a camera). 

8. Right click on the FG window, go to “Drop Type”, and click on “Pendant Drop”.  

Also, make sure “Auto Detect Substrate” under “Drop Subtype” is unchecked. 

9. On the tool bar, select the “Baseline Detection” button (button looks like a circle 

representing a sessile drop with a horizontal line through the center). 

10. Click on the baseline shown in F-G window, and adjust using arrow keys.  The 

baseline should intersect the drop where the top of the drop meets the bottom of 

the needle. 

11. On the tool bar, select “Extraction” (button looks like outline of a pendant drop), 

the select “FIT”. 

12. Record results and save a picture of the drop. 

Table D.1 Reference static contact angles for standard materials 

Polymer Film Reference Contact Angle Reference 
EAA 87-99 Scaffaro et al., 2011; 

Janorkar et al., 2004 
LDPE 99 Popelka et al., 2012 
PTFE 109-116 Wu, 1982; Busscher, 1983 
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APPENDIX E 

DETERMINATION OF OPTIMAL REACTION TIMES FOR PRELIMINARY EAA 

SURFACE MODIFICATION STEPS 
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E.1 Determination of Optimal Reaction Times for Preliminary EAA Surface 
Modification Steps 

Prior to grafting the light-sensitive polymers to the surface of EAA films, 

preliminary chemical transformations were required to modify the surface chemistry.  For 

these preliminary reaction steps—conversion of carboxyl groups to acid chlorides and 

then to primary amines—it was important to optimize the reactions conditions. The focus 

was on identifying the shortest reaction time that allowed for complete reaction, as 

assessed by FTIR, in order to streamline the synthesis steps and minimize any side 

reactions or damage to the films. Figure E.1 illustrates the preliminary reaction steps: (1) 

conversion of –C(=O)OH for the neat EAA film to –C(=O)Cl, and (2) subsequent 

conversion of –(C=O)Cl to an amide (–(C=O)N) with a terminal NH2. 

Figure E.1 Primary reaction steps for surface modification of EAA film: conversion of 
carboxylic acid to acid chloride using PCl5 and subsequent conversion to 
primary amines using ethylene diamine. 

As seen in Figure E.1, the –OH in the EAA-Neat film was converted to –Cl using 

a 0.3 g/mL phosphorous pentachloride (PCl5)/dichloromethane (CH2Cl2) solution 

[Walters and Hirt, 2006]. This reaction is relatively quick, and the progression of the 
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reaction was monitored using ATR-FTIR. The right side of Figure E.1 indicates the 

reaction steps the films undergo after the initial primary reaction steps. These reaction 

paths (“A” and “B”) are described in more detail in section 5.4.2 of Chapter 5, “Surface 

Modification and Chemical Grafting of Poly (Ethylene co-acrylic acid) Films”. Figure 

E.2 shows ATR-FTIR spectra of the EAA-Cl film at various reaction times. 

Figure E.2 ATR-FTIR spectra of EAA-Cl films at reaction times of 0, 5, 15, 35, and 
45 minutes showing progressive decrease in the acid carbonyl (at ~1700 
cm-1) and increase in the acid chloride carbonyl (at ~1795 cm-1). 

Evaluating the spectra, the strong peak observed in the 0 min spectrum at ~1700 

cm-1 corresponds to the carbonyl stretch of carboxylic acid [Silverstein and Webster, 

1998, Kupstov and Zhizhin, 1988] and the height of this peak decreases with reaction 

time. The ~1795 cm-1 peak corresponds to the carbonyl stretch of acid chloride 

[Silverstein and Webster, 1998, Kupstov and Zhizhin, 1988].  As expected this peak is 

absent in the 0 min spectrum (EAA-Neat) but is present in all of the reacted film spectra, 
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and its intensity increases progressively with reaction time. Table E.1 lists the 

quantitative peak heights for the time intervals shown in Figure E.2. 

Table E.1 Carbonyl peak height values for the transformation from carboxylic acid 
(1700 cm -1) to acid chloride (1795 cm-1) during the reaction of EAA with 
PCl5 to form EAA-Cl. 

Film Reaction Time 
(minutes) 

Peak Height (Abs.), 
Peak at 1700 cm -1 

Peak Height (Abs.), 
Peak at 1795 cm -1 

0 0.0377 0.0000 

5 0.0058 0.0258 

15 0.0028 0.0286 

35 0.0018 0.0269 

45 0.00600 0.0269 

The measured acid chloride carbonyl peak height at 35 min and 45 min are equal, 

indicating the reaction is apparently complete at 35 min. To minimize any batch-to-batch 

variation in yields, all EAA-PCl5 films were reacted for 45 min to ensure the reaction had 

gone to completion prior to proceeding with the next step. 

The second preliminary reaction that needed to be optimized was the conversion 

of –(C=O)Cl to –(C=O)N with a terminal NH2. As shown in Figure E.1, the EAA-Cl to 

EAA-NH2 step was achieved using a 0.0025 g/mL ethylene diamine/water solution. This 

reaction progression was also monitored using ATR-FTIR. Figure E.3 shows the ATR-

FTIR spectra for the EAA-NH2 films at various reaction times. 
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Figure E.3 ATR-FTIR spectra of EAA-NH2 films at reaction times of 0, 60, 90, and 
150 min and 24 hours—with and without sonication. Sonicated films had 
complete surface reaction with the ethylene diamine, while unsonicated 
films contained some unreacted surface –Cl groups (presence of peak at 
~1800 cm-1). 

Examining the spectra, the acid chloride peak from EAA-Cl can be seen in the 0 

min spectrum at ~1800 cm-1 . As anticipated, this peak decreases with increasing time. 

-1 -1 Two peaks at ~1646 cm and ~1530 cm are not present in the 0 minute spectrum but is 

seen in all the other spectra, indicating the peak corresponds to the –NH2 reacted films. 

These peaks indicate the formation of a secondary amide [Silverstein and Webster,1998, 

Kupstov and Zhizhin, 1988], replacing the acid chloride of the EAA-Cl film, and 

increases in intensity as time increases. The secondary amide peaks begin to appear as 

early as 60 minutes, but even after 150 minutes the acid chloride peak was still present. 

The films were reacted for 24 hours and still showed the acid chloride peak. After 
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sonication for 24 hours, the acid chloride peak had receded and the secondary amide 

peaks were fully formed, indicating the reaction had gone to completion. Table E.2 gives 

numerical peak height values for the peaks of interest in the EAA-NH2 reaction series. 

Table E.2 Peak height values for functional groups of interest in the reaction of EAA-
Cl to EAA-NH2. 

Film Reaction Time 
(minutes) 

Peak Height (Abs.), 
Peak at 1800 cm -1 

Peak Height (Abs.), 
Peak at 1646 cm -1 

Peak Height 
(Abs.), 

Peak at 1530 
-1 cm 

0 0.0269 0.0000 0.0000 
60 0.0197 0.0020 0.0017 
90 0.0192 0.0059 0.0037 
150 0.0131 0.0078 0.0066 

24 Hours, No 
Sonication 

0.0054 0.0109 0.0091 

24 Hours, With 
Sonication 

0.0000 0.0182 0.0149 
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APPENDIX F 

GRATING OF POLY(ETHYLENE GLYCOL DIACRYLATE) TO AMINE SURFACE-

MODIFIED EAA FILMS 
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F.1 Introduction 

The grafting of poly(ethylene glycol diacrylate) (PEGD), a difunctional polymer, 

was initially going to be used to aid in the grafting of (bromomethyl)-9,9-dihexyl-9H-

fluorene) (BDMF) to the amine-modified EAA films (EAA-NH2) through the terminal 

acrylate groups. However, successful reaction between BDMF and EAA-NH2 was 

achieved without aid from the acrylate reactive groups of PEGD.  This work can be found 

in section 5.4.2 of Chapter 5, “Surface Modification and Chemical Grafting of Poly 

(ethylene co-acrylic acid) Films”. While the PEGD reaction was not needed to grafting of 

PEGD to the EAA-NH2 films, the reaction method was successful.  The procedure and 

preliminary results are presented here since this reaction could be useful to another 

researcher. 

F.2 Results 

Two different molecular weights of PEGD were investigated since it was 

suspected that the additional polymer length might affect the grafting of PEGD to EAA-

NH2 or the subsequent grafting of BDMF to the free terminal acrylate group of PEGD. 

The PEGD molecular weights examined were Mn = 258 (n=4) and Mn = 575 (n=11) 

(Sigma Aldrich, CAS 26570-48-9) referred to as PEGD258 and PEGD575, respectively. 

The chemical structure of PEGD is shown in Figure F.1. 

Figure F.1 Chemical structure of poly(ethylene glycol diacrylate) (PEGD). 

167 



 

 

 

   

  

 

 

  

    

  

 

   

 

For the grafting reaction, sodium hydroxide (NaOH) was used as a base catalyst. 

The molar ratio of PEGD to NaOH was 2:1, and both acetone and toluene were tested as 

the solvent. PEGD was in solution with the solvent at 5 mM. The films were reacted for 5 

hours at 60 C. on a hot plate. Due to the bulkiness of the PEGD chemical this reaction 

takes several hours. The films were enclosed in individual vials, constantly stirred using 

a magnetic stir bar, and were insulated with sand that was also heated to 60 C. The films 

were all reacted concurrently. At the conclusion of the reaction time, each film was 

removed with tweezers, rinsed three times with clean solvent, and then dried at room 

temperature in a vacuum oven (at a pressure of 30 mmHg). A schematic of the reaction 

steps in Figure F.2 shows that the terminal C=C group reduces to a single group to attach 

to the terminal –NH2 of the film via the terminal carbon. The –NH2 of the EAA-NH2 film 

loses an –H in order to bond with the C of the acrylate on the PEGD molecule. This is a 

Michael’s addition reaction [Russell et al., 2000, Mather et al., 2006]. ATR-FTIR 

spectroscopy was used to monitor the reaction progression. 
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Figure F.2 Reaction scheme for the reaction of PEGD with EAA-NH2. 

Figure F.3 shows the ATR-FTIR spectra for EAA-NH2 (2) and several samples of 

EAA-PEGD (3a-4b) under different reaction conditions to illustrate the changes in 

surface functional groups. There are several spectral differences between EAA-NH2 and 

the PEGD reacted films. Three peaks in particular are of interest in the PEGD-reacted 

-1 -1 -1 films and located at approximately 1750 cm , 1240 cm , and 1020 cm . Based on the 

PEGD chemical structure and the proposed reaction scheme, these peaks are associated 

with the reaction of PEGD with the surface of EAA-NH2 via covalent bonding. The peak 

at ~1750 cm-1 corresponds to the C=O stretching vibration of ketones present in the 

PEGD structure [Bruno and Svoronos, 2006, Silverstein and Webster, 1998]. The peak at 

~1240 cm-1 corresponds to the C-O stretching vibration of the esters present in the PEGD 

structure [Bruno and Svoronos, 2006, Silverstein and Webster, 1998]. The vinyl 

(acrylate) groups present in the PEGD structure absorb at ~1020 cm-1 [Bruno and 
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Svoronos , 2006, Silverstein and Webster, 1998]. Using ATR-FTIR, the presence of 

PEGD functional groups on the surface of the EAA-NH2 films confirmed the grafting of 

PEGD to the EAA film surfaces. 

Figure F.3 ATR-FTIR spectra of EAA-NH2 (2), EAA-PEGD575-Acetone (3a), EAA-
PEGD575-Toluene (3b), EAA-PEGD258-Acetone (4a) and EAA-
PEGD258-Toluene (4b). Spectral peaks of interest are boxed. 
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 APPENDIX G 

NANOPARTICLES IN DRUG DIFFUSION 
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G.1 Introduction 

Nanoparticles have attracted increased interest in recent decades for a variety of 

applications. They have been investigated for use in many applications, such as chemicals 

(catalysts), biology (biosensing, bioimaging) [De et al., 2008], semiconductors, and drug 

delivery [Zhang et al., 2011] and have the potential for applications in water purification, 

medical diagnostics (quantum dots), and generation and conservation of energy [Card et 

al., 2008].  Nanoparticles are already present in many consumer products, including 

ultraviolet B radiation-protective sunscreen, topical silver nanoparticles for antimicrobial 

and odor-reducing applications, and cosmetics [DeLouise, 2012; Card et al., 2008]. The 

small size of nanoparticles (>100-200 nm) makes them adaptable for a multitude of 

functions. Of particular interest is the use of nanoparticles in inhalation drug delivery 

systems for treatment of pulmonary conditions. Some valuable properties of 

nanoparticles, such as large relative surface area [Zhang et al., 2011], good solubility in 

pulmonary mucus [Card et al., 2008], and surface morphology [Chow et al., 2007] make 

them a promising material for inhalation drug delivery. 

G.2 Characteristics of Nanoparticles 

Nanoparticles have the ability to be optimally designed for particular applications. 

Characteristics such as numerous particle formation techniques, narrow particle size 

distribution, improved drug stability, enhanced bioavailability, continual release and 

precise site targeting allow for optimization of nanoparticle systems [Chow et al., 2007]. 

The ability to engineer particles is advantageous for the designing of final drug products 

and their precise characteristics to specific applications, the consistency of particle 

properties, and development of treatment techniques for respiratory drug delivery 
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systems. For example, large surface area, one of the more influential properties of 

nanoparticles, results in faster drug release and shorter times to reach high drug 

concentrations at the absorption site [Zhang et al., 2011].  It also increases solubility and 

dissolution rate and minimizes macrophage clearance [Zhang et al., 2011]. 

Not all characteristics of nanoparticles positively affect the path of nanoparticles 

within the respiratory system. Size-related challenges such as exhalation and mucociliary 

clearance are frequently encountered. Submicron particles, such as nanoparticles, have a 

higher risk of being exhaled due to their small size [Chow et al, 2007]. Holding the breath 

after inhalation helps the nanoparticles deposit before being exhaled. Nanoparticles must 

also be engineered with specific properties such as shape, hydrophobicity and particle 

diameter [Chow et al., 2007] that are particularly advantageous for the desired quick 

dissolution or sustained release drug behaviors that are pertinent to each application. By 

considering these properties and designing the nanoparticle systems accordingly, the 

small size challenges of nanoparticles can be overcome and even beneficial. 

An additional challenge that is encountered with nanoparticles is agglomeration. 

Nanoparticles can assemble into particles larger than 1 micron [Card et al., 2008]. Due to 

their large surface area, nanoparticles possess high Gibbs free energy, making it 

challenging to prevent agglomeration and prevent formulation instability [Zhang et al., 

2011]. Nanoparticle surface modifications can be designed to limit interactions between 

particles, lessening the tendency for agglomeration and therefore increasing the 

probability for inhalation and deposition in the lungs [Card et al., 2008]. In some 

instances, the nanoparticle susceptibility to agglomeration may be regarded as a positive 

characteristic. Controlling agglomeration in nanoparticles can result in nanoparticle 

agglomerate dry powders that can be customized to the desired physicochemical 
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characteristics for aerosol delivery and dissolution [El-Gendy et al., 2011]. An example 

of this with asthma drugs is highlighted in Section G.4, Nanoparticles in Inhalation 

Medicine. 

As seen in Chapter Three with drug particles, other factors affect the deposition 

and diffusion on inhaled particles. Factors such as molecular weight, pH, and charge 

influence the path of the particulates in the lung. An inverse relationship between 

molecular weight and diffusion coefficient has been regularly reported [Khanvilkar et al., 

2001]. It has also been found that hydrophobic particles have lower permeabilities due to 

the hydrophobic nature of the mucus [Khanvilkar et al., 2001; Norris and Sinko, 1997]. 

Additionally, pH was found to influence the diffusion of drugs across the membrane. An 

increase in pH produced an increase in diffusion coefficient and a decrease in lag time 

[Shaw et al., 2005]. 

G.3 Fate of Nanoparticles in the Lung 

The advantages of pulmonary lung delivery have previously been discussed [See 

Chapters 1-3]. Using nanoparticles as a vehicle for drug delivery to the lungs presents 

vast opportunities for enhanced drug efficiency. The path of nanoparticles in the lung 

must be investigated so the particles can be engineered with the most essential properties 

in mind. Nanoparticles, unlike larger drug particles, will deposit primarily by diffusion in 

the lung after inhalation. Due to the small size of nanoparticles, convection, a critical 

characteristic in micron-scale inhaled particles, is no longer a dominant factor [Zhang et 

al., 2011]. It is important to note, however, that the deposition of micron-sized 

agglomerates of nanoparticles is controlled by convection [Zhang et al., 2011]. 
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Upon landing on the pulmonary mucosal surface, the physiochemical 

characteristics of the nanoparticles, particularly the size and surface chemistry, will 

ultimately dictate the rate and efficiency of diffusion across the mucus layers. Ideally, the 

mucus layer will enhance dissolution of the particle and help it descend further into the 

mucus, first through the upper gel phase of the mucus layer and eventually through the 

sol phase. Agglomerates may remain in the gel layer, or separate back into individual 

nanoparticles and follow the same path of dissolution and absorption [Zhang et al., 2011]. 

The rate of nanoparticle absorption depends on site of deposition in the lung (varying 

mucus layer and epithelial wall thicknesses) as well as nanoparticle properties such as 

polarity and solubility. Polar/hydrophilic nanoparticles dissolve readily in mucus [Zhang 

et al., 2011]. After absorption, the particle is uptaken by the epithelium or alveolar 

macrophages [Zhang et al., 2011]. Some nanoparticles may transport across the epithelia 

and into the bloodstream. From the bloodstream nanoparticles may reach organs or sites 

such as lymph nodes or bone marrow [Sung et al., 2007]. 

G.4 Nanoparticles in Inhalation Medicine 

The vast amount of research that has been published has demonstrated the 

potential of nanoparticles for treatments of lung conditions. In 2007 alone over 200 

scientific publications related to engineered nanoparticles were published [Card et al., 

2008], a significant increase from the late 1990s when annual publications were below 

fifty for engineered nanoparticle studies. Since initial investigations into the use of 

nanoparticles for drug delivery began in the 1960s [Sung et al., 2007], several methods of 

delivering nanoparticles into the lung for therapeutic actions have been developed. 

Nanoparticles can dissolve, entrap, or encapsulate the drug or be physically or chemically 
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adsorbed to the active drug [Sung et al., 2007; Parveen et al., 2012]. Their small size 

allows them to efficiently penetrate barriers and into individual cells, which reduces 

negative side effects and increases the therapeutic effect [Parveen et al., 2012]. 

Nanoparticles used in biological systems are typically synthetic biodegradable polymeric 

particles, and the degradation of these materials can be manipulated to control the drug 

release rate [Sung et al., 2007]. The wide range of delivery methods have enabled 

nanoparticles to be effectively designed and researched as potential methods for the 

treatment of many pulmonary illnesses, including lung cancer, tuberculosis, and asthma. 

The broad spectrum of diseases with nanoparticle research is a significant contribution to 

the future of inhalation nanoparticle treatments. Several examples of nanoparticle-based 

delivery methods currently being studied are outlined below. 

Anticancer drugs are known to cause severe negative side effects in cancer 

patients. Studies have been conducted for the potential uses of inhalation routes for 

delivery of the chemotherapy drugs. Due to unresolved systemic side effects and toxicity 

issues that limit the amount of drug that can be administered, pulmonary delivery systems 

still face many challenges before they can be employed in regular cancer treatments [Roa 

et al., 2011]. Nanoparticles, however, can be targeted to specific cell types and combine 

the concepts of specific directed drug delivery and the benefits of using nanoparticles for 

lung cancer treatment [Roa et al., 2011]. A study was conducted using doxorubicin-

loaded nanoparticles in H460 and A459 lung cancer cells in mice. It was determined that 

inhaled doxorubicin nanoparticle powders increased survival time in affected mice 

compared to intravenous administration of the same dosage of drug [Roa et al., 2011]. 

Nanoparticles have also been investigated in the treatment of tuberculosis (TB). 

Therapeutic plasma levels of antitubercular drugs increased for up to 6 days when guinea 
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pigs took a single inhaled dose of aerosolized poly (DL-lactide-co-glycolide) 

nanoparticles doped with the drugs isoniazid, rifampicin, or pyrazinamide [Card et al., 

2008]. Repeated inhalation treatments had higher levels of therapeutic plasma drug levels 

success than more frequent oral administration of the antitubercular drugs [Card et al., 

2008]. Another study (in vivo) on guinea pigs found that the same drugs (isoniazid, 

rifampicin, or pyrazinamide) were more effective than oral drug administration when 

encapsulated in alginate nanoparticles and administered through inhalation [Zahoor et al., 

2005; Card et al., 2008]. By investigating the use of nanoparticles to (1) target alveolar 

macrophages that harbor TB bacilli and (2) sustain high drug concentrations in the lung 

[Misra et al., 2011], the future of nanoparticle aerosol treatment for TB remains 

promising. 

Asthma is yet another condition that nanoparticles have been demonstrated as a 

successful treatment option. Most pharmaceutical drugs used to treat asthma have particle 

sizes between 1-5 μm, which is the ideal particle size to prevent exhalation or 

mucociliary clearance that occurs with smaller particles [El-Gendy et al., 2011]. To avoid 

the clearance of nanoparticles from the lung, nanoparticle size asthma drugs have been 

purposely agglomerated and evaluated for their potential as treatments for asthma. 

Suspensions containing agglomerated nanoparticles were used to develop aerosols of the 

asthma medications albuterol and fluticasone. Additionally, an aerosolized blend of dried 

agglomerated fluticasone and albuterol in solution was evaluated [El-Gendy et al., 2011]. 

Powders of the single drug agglomerates or combined therapeutics possessed desirable 

aerodynamic properties, particle sizes, and also increased surface area resulting in 75% 

total deposition compared to only 22-30% total deposition as has been reported for 

albuterol administered through metered-dose inhaler [Dhand, 2005]. The powders of the 
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single drug agglomerates or combined therapeutics also experienced increased 

dissolution [El-Gendy et al., 2011] over traditional micron-sized single drug particles. 

The formulation presented in this thesis presents promising data and conclusions that 

immensely support further development of nanoparticles as treatments for asthma. 

G.5 Toxicity of Nanoparticles 

Nanoparticle toxicity is a highly debated topic in regards to patient side effects in 

nanoparticle research. Much of the nanoparticle toxicity investigation stems from 

negative environmental factors such as air pollution, industrial exhaust, and naturally 

occurring nanoparticles (viruses or allergens [DeLouise, 2012]). The ability of these 

ambient ultrafine particles (particles with an aerodynamic diameter >100 nm) to diffuse 

through the pulmonary mucus and through the epithelial and endothelial cells to organs 

and even the central nervous system is cause for concern and further investigation. Due to 

the large surface area of nanoparticles, which as previously been discussed, nanoparticles 

are biologically active and have the physiochemical properties to enter through the lungs 

and other body systems. Environmental (urban and industrial) nanoparticles are generally 

insoluble in the pulmonary mucus and lung and non-biodegradable materials, such as 

carbon black, carbon nanotubes, ultrafine asbestos, silica, and metal-based nanoparticles 

such as titanium dioxide [Card et al., 2008]. Therapeutic nanoparticles are biodegradable 

[Sung et al., 2007] and therefore affect the body differently. 

In light of the detrimental effects environmental nanoparticles have demonstrated, 

the effects of engineered nanoparticles are also under investigation. Engineered 

nanoparticles have distinctive and specifically designed properties that render them 

valuable to treat lung ailments and are biologically degradable [Sung et al., 2007], unlike 
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environmental nanoparticles. While engineered nanoparticles could potentially trigger 

adverse pulmonary effects on the respiratory system, most engineered nanoparticles are 

intended for treatment purposes and are designed to avoid any detrimental effects.  There 

is an extreme lack of knowledge regarding toxicity of engineered nanoparticles and a set 

of guidelines needs to be established in order to have a common scale to compare 

potential toxicities of multiple types of nanoparticles [Card et al., 2008]. 

G.6 Conclusions 

From the concise summary of published studies and nanoparticle characteristics 

presented here, it is clear that the exploration into nanoparticle-based pulmonary lung 

drug delivery applications is only just beginning. Initial results have yielded positive 

results for the ability of nanoparticle-based therapies to improve respiratory conditions, 

and have provided a foundation to direct the development of future nanoparticle-based 

drug delivery methods. Engineered particles can overcome obstacles of sub-micron sized 

particles and existing aerosol drugs. The precise design and targeted drug delivery 

potential make nanoparticulate therapy an area that deserves further investigation. 

A successful, validated method for the determination of diffusion coefficients for 

aerosol drugs through a representative pulmonary mucus has been previously discussed 

in Chapter 6 of this thesis. This method could also be applied to other biological fluids of 

interest. These diffusivities are necessary to model the transport properties of these drugs 

and in turn, nanoparticles in assessing their bioavailability in the lung, regardless of 

origin (environmental or engineered). Modeling the diffusion coefficients of 

nanoparticles will enhance past and present studies on the potential of nanoparticles for 
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drug delivery as well as studying the effects of industrial or naturally occurring 

nanoparticles on the lung. 
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